671b44bd50d08335f2d17a4b743d8fa463c5e085
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 bool
439 fs_reg::is_contiguous() const
440 {
441 return stride == 1;
442 }
443
444 unsigned
445 fs_reg::component_size(unsigned width) const
446 {
447 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448 hstride == 0 ? 0 :
449 1 << (hstride - 1));
450 return MAX2(width * stride, 1) * type_sz(type);
451 }
452
453 extern "C" int
454 type_size_scalar(const struct glsl_type *type)
455 {
456 unsigned int size, i;
457
458 switch (type->base_type) {
459 case GLSL_TYPE_UINT:
460 case GLSL_TYPE_INT:
461 case GLSL_TYPE_FLOAT:
462 case GLSL_TYPE_BOOL:
463 return type->components();
464 case GLSL_TYPE_DOUBLE:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
496 * except for double-precision types, which are loaded as one dvec4.
497 */
498 extern "C" int
499 type_size_vs_input(const struct glsl_type *type)
500 {
501 if (type->is_double()) {
502 return type_size_dvec4(type);
503 } else {
504 return type_size_vec4(type);
505 }
506 }
507
508 /**
509 * Create a MOV to read the timestamp register.
510 *
511 * The caller is responsible for emitting the MOV. The return value is
512 * the destination of the MOV, with extra parameters set.
513 */
514 fs_reg
515 fs_visitor::get_timestamp(const fs_builder &bld)
516 {
517 assert(devinfo->gen >= 7);
518
519 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
520 BRW_ARF_TIMESTAMP,
521 0),
522 BRW_REGISTER_TYPE_UD));
523
524 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
525
526 /* We want to read the 3 fields we care about even if it's not enabled in
527 * the dispatch.
528 */
529 bld.group(4, 0).exec_all().MOV(dst, ts);
530
531 return dst;
532 }
533
534 void
535 fs_visitor::emit_shader_time_begin()
536 {
537 /* We want only the low 32 bits of the timestamp. Since it's running
538 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
539 * which is plenty of time for our purposes. It is identical across the
540 * EUs, but since it's tracking GPU core speed it will increment at a
541 * varying rate as render P-states change.
542 */
543 shader_start_time = component(
544 get_timestamp(bld.annotate("shader time start")), 0);
545 }
546
547 void
548 fs_visitor::emit_shader_time_end()
549 {
550 /* Insert our code just before the final SEND with EOT. */
551 exec_node *end = this->instructions.get_tail();
552 assert(end && ((fs_inst *) end)->eot);
553 const fs_builder ibld = bld.annotate("shader time end")
554 .exec_all().at(NULL, end);
555 const fs_reg timestamp = get_timestamp(ibld);
556
557 /* We only use the low 32 bits of the timestamp - see
558 * emit_shader_time_begin()).
559 *
560 * We could also check if render P-states have changed (or anything
561 * else that might disrupt timing) by setting smear to 2 and checking if
562 * that field is != 0.
563 */
564 const fs_reg shader_end_time = component(timestamp, 0);
565
566 /* Check that there weren't any timestamp reset events (assuming these
567 * were the only two timestamp reads that happened).
568 */
569 const fs_reg reset = component(timestamp, 2);
570 set_condmod(BRW_CONDITIONAL_Z,
571 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
572 ibld.IF(BRW_PREDICATE_NORMAL);
573
574 fs_reg start = shader_start_time;
575 start.negate = true;
576 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
577 BRW_REGISTER_TYPE_UD),
578 0);
579 const fs_builder cbld = ibld.group(1, 0);
580 cbld.group(1, 0).ADD(diff, start, shader_end_time);
581
582 /* If there were no instructions between the two timestamp gets, the diff
583 * is 2 cycles. Remove that overhead, so I can forget about that when
584 * trying to determine the time taken for single instructions.
585 */
586 cbld.ADD(diff, diff, brw_imm_ud(-2u));
587 SHADER_TIME_ADD(cbld, 0, diff);
588 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
589 ibld.emit(BRW_OPCODE_ELSE);
590 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
591 ibld.emit(BRW_OPCODE_ENDIF);
592 }
593
594 void
595 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
596 int shader_time_subindex,
597 fs_reg value)
598 {
599 int index = shader_time_index * 3 + shader_time_subindex;
600 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
601
602 fs_reg payload;
603 if (dispatch_width == 8)
604 payload = vgrf(glsl_type::uvec2_type);
605 else
606 payload = vgrf(glsl_type::uint_type);
607
608 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
609 }
610
611 void
612 fs_visitor::vfail(const char *format, va_list va)
613 {
614 char *msg;
615
616 if (failed)
617 return;
618
619 failed = true;
620
621 msg = ralloc_vasprintf(mem_ctx, format, va);
622 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
623
624 this->fail_msg = msg;
625
626 if (debug_enabled) {
627 fprintf(stderr, "%s", msg);
628 }
629 }
630
631 void
632 fs_visitor::fail(const char *format, ...)
633 {
634 va_list va;
635
636 va_start(va, format);
637 vfail(format, va);
638 va_end(va);
639 }
640
641 /**
642 * Mark this program as impossible to compile with dispatch width greater
643 * than n.
644 *
645 * During the SIMD8 compile (which happens first), we can detect and flag
646 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
647 * SIMD16+ compile altogether.
648 *
649 * During a compile of dispatch width greater than n (if one happens anyway),
650 * this just calls fail().
651 */
652 void
653 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
654 {
655 if (dispatch_width > n) {
656 fail("%s", msg);
657 } else {
658 max_dispatch_width = n;
659 compiler->shader_perf_log(log_data,
660 "Shader dispatch width limited to SIMD%d: %s",
661 n, msg);
662 }
663 }
664
665 /**
666 * Returns true if the instruction has a flag that means it won't
667 * update an entire destination register.
668 *
669 * For example, dead code elimination and live variable analysis want to know
670 * when a write to a variable screens off any preceding values that were in
671 * it.
672 */
673 bool
674 fs_inst::is_partial_write() const
675 {
676 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
677 (this->exec_size * type_sz(this->dst.type)) < 32 ||
678 !this->dst.is_contiguous() ||
679 this->dst.offset % REG_SIZE != 0);
680 }
681
682 unsigned
683 fs_inst::components_read(unsigned i) const
684 {
685 /* Return zero if the source is not present. */
686 if (src[i].file == BAD_FILE)
687 return 0;
688
689 switch (opcode) {
690 case FS_OPCODE_LINTERP:
691 if (i == 0)
692 return 2;
693 else
694 return 1;
695
696 case FS_OPCODE_PIXEL_X:
697 case FS_OPCODE_PIXEL_Y:
698 assert(i == 0);
699 return 2;
700
701 case FS_OPCODE_FB_WRITE_LOGICAL:
702 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
703 /* First/second FB write color. */
704 if (i < 2)
705 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
706 else
707 return 1;
708
709 case SHADER_OPCODE_TEX_LOGICAL:
710 case SHADER_OPCODE_TXD_LOGICAL:
711 case SHADER_OPCODE_TXF_LOGICAL:
712 case SHADER_OPCODE_TXL_LOGICAL:
713 case SHADER_OPCODE_TXS_LOGICAL:
714 case FS_OPCODE_TXB_LOGICAL:
715 case SHADER_OPCODE_TXF_CMS_LOGICAL:
716 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
717 case SHADER_OPCODE_TXF_UMS_LOGICAL:
718 case SHADER_OPCODE_TXF_MCS_LOGICAL:
719 case SHADER_OPCODE_LOD_LOGICAL:
720 case SHADER_OPCODE_TG4_LOGICAL:
721 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
722 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
723 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
724 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
725 /* Texture coordinates. */
726 if (i == TEX_LOGICAL_SRC_COORDINATE)
727 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
728 /* Texture derivatives. */
729 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
730 opcode == SHADER_OPCODE_TXD_LOGICAL)
731 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
732 /* Texture offset. */
733 else if (i == TEX_LOGICAL_SRC_TG4_OFFSET)
734 return 2;
735 /* MCS */
736 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
737 return 2;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
743 assert(src[3].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source (ignored for reads). */
748 else if (i == 1)
749 return 0;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
754 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 /* Surface coordinates. */
758 if (i == 0)
759 return src[3].ud;
760 /* Surface operation source. */
761 else if (i == 1)
762 return src[4].ud;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
767 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
768 assert(src[3].file == IMM &&
769 src[4].file == IMM);
770 const unsigned op = src[4].ud;
771 /* Surface coordinates. */
772 if (i == 0)
773 return src[3].ud;
774 /* Surface operation source. */
775 else if (i == 1 && op == BRW_AOP_CMPWR)
776 return 2;
777 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
778 op == BRW_AOP_PREDEC))
779 return 0;
780 else
781 return 1;
782 }
783
784 default:
785 return 1;
786 }
787 }
788
789 unsigned
790 fs_inst::size_read(int arg) const
791 {
792 switch (opcode) {
793 case FS_OPCODE_FB_WRITE:
794 case FS_OPCODE_FB_READ:
795 case SHADER_OPCODE_URB_WRITE_SIMD8:
796 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
797 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
798 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
799 case SHADER_OPCODE_URB_READ_SIMD8:
800 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
801 case SHADER_OPCODE_UNTYPED_ATOMIC:
802 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
803 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
804 case SHADER_OPCODE_TYPED_ATOMIC:
805 case SHADER_OPCODE_TYPED_SURFACE_READ:
806 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
807 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
808 if (arg == 0)
809 return mlen * REG_SIZE;
810 break;
811
812 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
813 /* The payload is actually stored in src1 */
814 if (arg == 1)
815 return mlen * REG_SIZE;
816 break;
817
818 case FS_OPCODE_LINTERP:
819 if (arg == 1)
820 return 16;
821 break;
822
823 case SHADER_OPCODE_LOAD_PAYLOAD:
824 if (arg < this->header_size)
825 return REG_SIZE;
826 break;
827
828 case CS_OPCODE_CS_TERMINATE:
829 case SHADER_OPCODE_BARRIER:
830 return REG_SIZE;
831
832 case SHADER_OPCODE_MOV_INDIRECT:
833 if (arg == 0) {
834 assert(src[2].file == IMM);
835 return src[2].ud;
836 }
837 break;
838
839 default:
840 if (is_tex() && arg == 0 && src[0].file == VGRF)
841 return mlen * REG_SIZE;
842 break;
843 }
844
845 switch (src[arg].file) {
846 case UNIFORM:
847 case IMM:
848 return components_read(arg) * type_sz(src[arg].type);
849 case BAD_FILE:
850 case ARF:
851 case FIXED_GRF:
852 case VGRF:
853 case ATTR:
854 return components_read(arg) * src[arg].component_size(exec_size);
855 case MRF:
856 unreachable("MRF registers are not allowed as sources");
857 }
858 return 0;
859 }
860
861 namespace {
862 /* Return the subset of flag registers that an instruction could
863 * potentially read or write based on the execution controls and flag
864 * subregister number of the instruction.
865 */
866 unsigned
867 flag_mask(const fs_inst *inst)
868 {
869 const unsigned start = inst->flag_subreg * 16 + inst->group;
870 const unsigned end = start + inst->exec_size;
871 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 /* XXX - This doesn't consider explicit uses of the flag register as source
879 * region.
880 */
881 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
882 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
883 /* The vertical predication modes combine corresponding bits from
884 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
885 */
886 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
887 return flag_mask(this) << shift | flag_mask(this);
888 } else if (predicate) {
889 return flag_mask(this);
890 } else {
891 return 0;
892 }
893 }
894
895 unsigned
896 fs_inst::flags_written() const
897 {
898 /* XXX - This doesn't consider explicit uses of the flag register as
899 * destination region.
900 */
901 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
902 opcode != BRW_OPCODE_IF &&
903 opcode != BRW_OPCODE_WHILE)) ||
904 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
905 return flag_mask(this);
906 } else {
907 return 0;
908 }
909 }
910
911 /**
912 * Returns how many MRFs an FS opcode will write over.
913 *
914 * Note that this is not the 0 or 1 implied writes in an actual gen
915 * instruction -- the FS opcodes often generate MOVs in addition.
916 */
917 int
918 fs_visitor::implied_mrf_writes(fs_inst *inst)
919 {
920 if (inst->mlen == 0)
921 return 0;
922
923 if (inst->base_mrf == -1)
924 return 0;
925
926 switch (inst->opcode) {
927 case SHADER_OPCODE_RCP:
928 case SHADER_OPCODE_RSQ:
929 case SHADER_OPCODE_SQRT:
930 case SHADER_OPCODE_EXP2:
931 case SHADER_OPCODE_LOG2:
932 case SHADER_OPCODE_SIN:
933 case SHADER_OPCODE_COS:
934 return 1 * dispatch_width / 8;
935 case SHADER_OPCODE_POW:
936 case SHADER_OPCODE_INT_QUOTIENT:
937 case SHADER_OPCODE_INT_REMAINDER:
938 return 2 * dispatch_width / 8;
939 case SHADER_OPCODE_TEX:
940 case FS_OPCODE_TXB:
941 case SHADER_OPCODE_TXD:
942 case SHADER_OPCODE_TXF:
943 case SHADER_OPCODE_TXF_CMS:
944 case SHADER_OPCODE_TXF_MCS:
945 case SHADER_OPCODE_TG4:
946 case SHADER_OPCODE_TG4_OFFSET:
947 case SHADER_OPCODE_TXL:
948 case SHADER_OPCODE_TXS:
949 case SHADER_OPCODE_LOD:
950 case SHADER_OPCODE_SAMPLEINFO:
951 return 1;
952 case FS_OPCODE_FB_WRITE:
953 return 2;
954 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
955 case SHADER_OPCODE_GEN4_SCRATCH_READ:
956 return 1;
957 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
958 return inst->mlen;
959 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
960 return inst->mlen;
961 default:
962 unreachable("not reached");
963 }
964 }
965
966 fs_reg
967 fs_visitor::vgrf(const glsl_type *const type)
968 {
969 int reg_width = dispatch_width / 8;
970 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
971 brw_type_for_base_type(type));
972 }
973
974 fs_reg::fs_reg(enum brw_reg_file file, int nr)
975 {
976 init();
977 this->file = file;
978 this->nr = nr;
979 this->type = BRW_REGISTER_TYPE_F;
980 this->stride = (file == UNIFORM ? 0 : 1);
981 }
982
983 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
984 {
985 init();
986 this->file = file;
987 this->nr = nr;
988 this->type = type;
989 this->stride = (file == UNIFORM ? 0 : 1);
990 }
991
992 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
993 * This brings in those uniform definitions
994 */
995 void
996 fs_visitor::import_uniforms(fs_visitor *v)
997 {
998 this->push_constant_loc = v->push_constant_loc;
999 this->pull_constant_loc = v->pull_constant_loc;
1000 this->uniforms = v->uniforms;
1001 }
1002
1003 void
1004 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1005 {
1006 assert(stage == MESA_SHADER_FRAGMENT);
1007
1008 /* gl_FragCoord.x */
1009 bld.MOV(wpos, this->pixel_x);
1010 wpos = offset(wpos, bld, 1);
1011
1012 /* gl_FragCoord.y */
1013 bld.MOV(wpos, this->pixel_y);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.z */
1017 if (devinfo->gen >= 6) {
1018 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1019 } else {
1020 bld.emit(FS_OPCODE_LINTERP, wpos,
1021 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1022 interp_reg(VARYING_SLOT_POS, 2));
1023 }
1024 wpos = offset(wpos, bld, 1);
1025
1026 /* gl_FragCoord.w: Already set up in emit_interpolation */
1027 bld.MOV(wpos, this->wpos_w);
1028 }
1029
1030 enum brw_barycentric_mode
1031 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1032 {
1033 /* Barycentric modes don't make sense for flat inputs. */
1034 assert(mode != INTERP_MODE_FLAT);
1035
1036 unsigned bary;
1037 switch (op) {
1038 case nir_intrinsic_load_barycentric_pixel:
1039 case nir_intrinsic_load_barycentric_at_offset:
1040 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1041 break;
1042 case nir_intrinsic_load_barycentric_centroid:
1043 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1044 break;
1045 case nir_intrinsic_load_barycentric_sample:
1046 case nir_intrinsic_load_barycentric_at_sample:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1048 break;
1049 default:
1050 unreachable("invalid intrinsic");
1051 }
1052
1053 if (mode == INTERP_MODE_NOPERSPECTIVE)
1054 bary += 3;
1055
1056 return (enum brw_barycentric_mode) bary;
1057 }
1058
1059 /**
1060 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1061 */
1062 static enum brw_barycentric_mode
1063 centroid_to_pixel(enum brw_barycentric_mode bary)
1064 {
1065 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1066 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1067 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1068 }
1069
1070 fs_reg *
1071 fs_visitor::emit_frontfacing_interpolation()
1072 {
1073 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1074
1075 if (devinfo->gen >= 6) {
1076 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1077 * a boolean result from this (~0/true or 0/false).
1078 *
1079 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1080 * this task in only one instruction:
1081 * - a negation source modifier will flip the bit; and
1082 * - a W -> D type conversion will sign extend the bit into the high
1083 * word of the destination.
1084 *
1085 * An ASR 15 fills the low word of the destination.
1086 */
1087 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1088 g0.negate = true;
1089
1090 bld.ASR(*reg, g0, brw_imm_d(15));
1091 } else {
1092 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1093 * a boolean result from this (1/true or 0/false).
1094 *
1095 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1096 * the negation source modifier to flip it. Unfortunately the SHR
1097 * instruction only operates on UD (or D with an abs source modifier)
1098 * sources without negation.
1099 *
1100 * Instead, use ASR (which will give ~0/true or 0/false).
1101 */
1102 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1103 g1_6.negate = true;
1104
1105 bld.ASR(*reg, g1_6, brw_imm_d(31));
1106 }
1107
1108 return reg;
1109 }
1110
1111 void
1112 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1113 {
1114 assert(stage == MESA_SHADER_FRAGMENT);
1115 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1116 assert(dst.type == BRW_REGISTER_TYPE_F);
1117
1118 if (wm_prog_data->persample_dispatch) {
1119 /* Convert int_sample_pos to floating point */
1120 bld.MOV(dst, int_sample_pos);
1121 /* Scale to the range [0, 1] */
1122 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1123 }
1124 else {
1125 /* From ARB_sample_shading specification:
1126 * "When rendering to a non-multisample buffer, or if multisample
1127 * rasterization is disabled, gl_SamplePosition will always be
1128 * (0.5, 0.5).
1129 */
1130 bld.MOV(dst, brw_imm_f(0.5f));
1131 }
1132 }
1133
1134 fs_reg *
1135 fs_visitor::emit_samplepos_setup()
1136 {
1137 assert(devinfo->gen >= 6);
1138
1139 const fs_builder abld = bld.annotate("compute sample position");
1140 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1141 fs_reg pos = *reg;
1142 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1143 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1144
1145 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1146 * mode will be enabled.
1147 *
1148 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1149 * R31.1:0 Position Offset X/Y for Slot[3:0]
1150 * R31.3:2 Position Offset X/Y for Slot[7:4]
1151 * .....
1152 *
1153 * The X, Y sample positions come in as bytes in thread payload. So, read
1154 * the positions using vstride=16, width=8, hstride=2.
1155 */
1156 struct brw_reg sample_pos_reg =
1157 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1158 BRW_REGISTER_TYPE_B), 16, 8, 2);
1159
1160 if (dispatch_width == 8) {
1161 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1162 } else {
1163 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1164 abld.half(1).MOV(half(int_sample_x, 1),
1165 fs_reg(suboffset(sample_pos_reg, 16)));
1166 }
1167 /* Compute gl_SamplePosition.x */
1168 compute_sample_position(pos, int_sample_x);
1169 pos = offset(pos, abld, 1);
1170 if (dispatch_width == 8) {
1171 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1172 } else {
1173 abld.half(0).MOV(half(int_sample_y, 0),
1174 fs_reg(suboffset(sample_pos_reg, 1)));
1175 abld.half(1).MOV(half(int_sample_y, 1),
1176 fs_reg(suboffset(sample_pos_reg, 17)));
1177 }
1178 /* Compute gl_SamplePosition.y */
1179 compute_sample_position(pos, int_sample_y);
1180 return reg;
1181 }
1182
1183 fs_reg *
1184 fs_visitor::emit_sampleid_setup()
1185 {
1186 assert(stage == MESA_SHADER_FRAGMENT);
1187 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1188 assert(devinfo->gen >= 6);
1189
1190 const fs_builder abld = bld.annotate("compute sample id");
1191 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1192
1193 if (!key->multisample_fbo) {
1194 /* As per GL_ARB_sample_shading specification:
1195 * "When rendering to a non-multisample buffer, or if multisample
1196 * rasterization is disabled, gl_SampleID will always be zero."
1197 */
1198 abld.MOV(*reg, brw_imm_d(0));
1199 } else if (devinfo->gen >= 8) {
1200 /* Sample ID comes in as 4-bit numbers in g1.0:
1201 *
1202 * 15:12 Slot 3 SampleID (only used in SIMD16)
1203 * 11:8 Slot 2 SampleID (only used in SIMD16)
1204 * 7:4 Slot 1 SampleID
1205 * 3:0 Slot 0 SampleID
1206 *
1207 * Each slot corresponds to four channels, so we want to replicate each
1208 * half-byte value to 4 channels in a row:
1209 *
1210 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1211 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1212 *
1213 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1214 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1215 *
1216 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1217 * channels to read the first byte (7:0), and the second group of 8
1218 * channels to read the second byte (15:8). Then, we shift right by
1219 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1220 * values into place. Finally, we AND with 0xf to keep the low nibble.
1221 *
1222 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1223 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1224 *
1225 * TODO: These payload bits exist on Gen7 too, but they appear to always
1226 * be zero, so this code fails to work. We should find out why.
1227 */
1228 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1229
1230 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1231 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1232 brw_imm_v(0x44440000));
1233 abld.AND(*reg, tmp, brw_imm_w(0xf));
1234 } else {
1235 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1236 BRW_REGISTER_TYPE_D), 0);
1237 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1238
1239 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1240 * 8x multisampling, subspan 0 will represent sample N (where N
1241 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1242 * 7. We can find the value of N by looking at R0.0 bits 7:6
1243 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1244 * (since samples are always delivered in pairs). That is, we
1245 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1246 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1247 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1248 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1249 * populating a temporary variable with the sequence (0, 1, 2, 3),
1250 * and then reading from it using vstride=1, width=4, hstride=0.
1251 * These computations hold good for 4x multisampling as well.
1252 *
1253 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1254 * the first four slots are sample 0 of subspan 0; the next four
1255 * are sample 1 of subspan 0; the third group is sample 0 of
1256 * subspan 1, and finally sample 1 of subspan 1.
1257 */
1258
1259 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1260 * accomodate 16x MSAA.
1261 */
1262 abld.exec_all().group(1, 0)
1263 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1264 brw_imm_ud(0xc0));
1265 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1266
1267 /* This works for both SIMD8 and SIMD16 */
1268 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1269
1270 /* This special instruction takes care of setting vstride=1,
1271 * width=4, hstride=0 of t2 during an ADD instruction.
1272 */
1273 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1274 }
1275
1276 return reg;
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplemaskin_setup()
1281 {
1282 assert(stage == MESA_SHADER_FRAGMENT);
1283 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1284 assert(devinfo->gen >= 6);
1285
1286 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1287
1288 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1289 BRW_REGISTER_TYPE_D));
1290
1291 if (wm_prog_data->persample_dispatch) {
1292 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1293 * and a mask representing which sample is being processed by the
1294 * current shader invocation.
1295 *
1296 * From the OES_sample_variables specification:
1297 * "When per-sample shading is active due to the use of a fragment input
1298 * qualified by "sample" or due to the use of the gl_SampleID or
1299 * gl_SamplePosition variables, only the bit for the current sample is
1300 * set in gl_SampleMaskIn."
1301 */
1302 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1303
1304 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1305 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1306
1307 fs_reg one = vgrf(glsl_type::int_type);
1308 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1309 abld.MOV(one, brw_imm_d(1));
1310 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1311 abld.AND(*reg, enabled_mask, coverage_mask);
1312 } else {
1313 /* In per-pixel mode, the coverage mask is sufficient. */
1314 *reg = coverage_mask;
1315 }
1316 return reg;
1317 }
1318
1319 fs_reg
1320 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1321 {
1322 if (!src.abs && !src.negate)
1323 return src;
1324
1325 fs_reg temp = bld.vgrf(src.type);
1326 bld.MOV(temp, src);
1327
1328 return temp;
1329 }
1330
1331 void
1332 fs_visitor::emit_discard_jump()
1333 {
1334 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1335
1336 /* For performance, after a discard, jump to the end of the
1337 * shader if all relevant channels have been discarded.
1338 */
1339 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1340 discard_jump->flag_subreg = 1;
1341
1342 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1343 discard_jump->predicate_inverse = true;
1344 }
1345
1346 void
1347 fs_visitor::emit_gs_thread_end()
1348 {
1349 assert(stage == MESA_SHADER_GEOMETRY);
1350
1351 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1352
1353 if (gs_compile->control_data_header_size_bits > 0) {
1354 emit_gs_control_data_bits(this->final_gs_vertex_count);
1355 }
1356
1357 const fs_builder abld = bld.annotate("thread end");
1358 fs_inst *inst;
1359
1360 if (gs_prog_data->static_vertex_count != -1) {
1361 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1362 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1364 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1365 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1366 prev->eot = true;
1367
1368 /* Delete now dead instructions. */
1369 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1370 if (dead == prev)
1371 break;
1372 dead->remove();
1373 }
1374 return;
1375 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1376 break;
1377 }
1378 }
1379 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1380 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1381 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1382 inst->mlen = 1;
1383 } else {
1384 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1385 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1386 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1387 sources[1] = this->final_gs_vertex_count;
1388 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1389 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1390 inst->mlen = 2;
1391 }
1392 inst->eot = true;
1393 inst->offset = 0;
1394 }
1395
1396 void
1397 fs_visitor::assign_curb_setup()
1398 {
1399 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1400
1401 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1402 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1403 for (unsigned int i = 0; i < inst->sources; i++) {
1404 if (inst->src[i].file == UNIFORM) {
1405 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1406 int constant_nr;
1407 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1408 constant_nr = push_constant_loc[uniform_nr];
1409 } else {
1410 /* Section 5.11 of the OpenGL 4.1 spec says:
1411 * "Out-of-bounds reads return undefined values, which include
1412 * values from other variables of the active program or zero."
1413 * Just return the first push constant.
1414 */
1415 constant_nr = 0;
1416 }
1417
1418 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1419 constant_nr / 8,
1420 constant_nr % 8);
1421 brw_reg.abs = inst->src[i].abs;
1422 brw_reg.negate = inst->src[i].negate;
1423
1424 assert(inst->src[i].stride == 0);
1425 inst->src[i] = byte_offset(
1426 retype(brw_reg, inst->src[i].type),
1427 inst->src[i].offset % 4);
1428 }
1429 }
1430 }
1431
1432 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1433 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1434 }
1435
1436 void
1437 fs_visitor::calculate_urb_setup()
1438 {
1439 assert(stage == MESA_SHADER_FRAGMENT);
1440 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1441 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1442
1443 memset(prog_data->urb_setup, -1,
1444 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1445
1446 int urb_next = 0;
1447 /* Figure out where each of the incoming setup attributes lands. */
1448 if (devinfo->gen >= 6) {
1449 if (_mesa_bitcount_64(nir->info->inputs_read &
1450 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1451 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1452 * first 16 varying inputs, so we can put them wherever we want.
1453 * Just put them in order.
1454 *
1455 * This is useful because it means that (a) inputs not used by the
1456 * fragment shader won't take up valuable register space, and (b) we
1457 * won't have to recompile the fragment shader if it gets paired with
1458 * a different vertex (or geometry) shader.
1459 */
1460 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1461 if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1462 BITFIELD64_BIT(i)) {
1463 prog_data->urb_setup[i] = urb_next++;
1464 }
1465 }
1466 } else {
1467 bool include_vue_header =
1468 nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1469
1470 /* We have enough input varyings that the SF/SBE pipeline stage can't
1471 * arbitrarily rearrange them to suit our whim; we have to put them
1472 * in an order that matches the output of the previous pipeline stage
1473 * (geometry or vertex shader).
1474 */
1475 struct brw_vue_map prev_stage_vue_map;
1476 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1477 key->input_slots_valid,
1478 nir->info->separate_shader);
1479 int first_slot =
1480 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1481
1482 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1483 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1484 slot++) {
1485 int varying = prev_stage_vue_map.slot_to_varying[slot];
1486 if (varying != BRW_VARYING_SLOT_PAD &&
1487 (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(varying))) {
1489 prog_data->urb_setup[varying] = slot - first_slot;
1490 }
1491 }
1492 urb_next = prev_stage_vue_map.num_slots - first_slot;
1493 }
1494 } else {
1495 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1496 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1497 /* Point size is packed into the header, not as a general attribute */
1498 if (i == VARYING_SLOT_PSIZ)
1499 continue;
1500
1501 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1502 /* The back color slot is skipped when the front color is
1503 * also written to. In addition, some slots can be
1504 * written in the vertex shader and not read in the
1505 * fragment shader. So the register number must always be
1506 * incremented, mapped or not.
1507 */
1508 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1509 prog_data->urb_setup[i] = urb_next;
1510 urb_next++;
1511 }
1512 }
1513
1514 /*
1515 * It's a FS only attribute, and we did interpolation for this attribute
1516 * in SF thread. So, count it here, too.
1517 *
1518 * See compile_sf_prog() for more info.
1519 */
1520 if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1521 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1522 }
1523
1524 prog_data->num_varying_inputs = urb_next;
1525 }
1526
1527 void
1528 fs_visitor::assign_urb_setup()
1529 {
1530 assert(stage == MESA_SHADER_FRAGMENT);
1531 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1532
1533 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1534
1535 /* Offset all the urb_setup[] index by the actual position of the
1536 * setup regs, now that the location of the constants has been chosen.
1537 */
1538 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1539 if (inst->opcode == FS_OPCODE_LINTERP) {
1540 assert(inst->src[1].file == FIXED_GRF);
1541 inst->src[1].nr += urb_start;
1542 }
1543
1544 if (inst->opcode == FS_OPCODE_CINTERP) {
1545 assert(inst->src[0].file == FIXED_GRF);
1546 inst->src[0].nr += urb_start;
1547 }
1548 }
1549
1550 /* Each attribute is 4 setup channels, each of which is half a reg. */
1551 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1552 }
1553
1554 void
1555 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1556 {
1557 for (int i = 0; i < inst->sources; i++) {
1558 if (inst->src[i].file == ATTR) {
1559 int grf = payload.num_regs +
1560 prog_data->curb_read_length +
1561 inst->src[i].nr +
1562 inst->src[i].offset / REG_SIZE;
1563
1564 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1565 *
1566 * VertStride must be used to cross GRF register boundaries. This
1567 * rule implies that elements within a 'Width' cannot cross GRF
1568 * boundaries.
1569 *
1570 * So, for registers that are large enough, we have to split the exec
1571 * size in two and trust the compression state to sort it out.
1572 */
1573 unsigned total_size = inst->exec_size *
1574 inst->src[i].stride *
1575 type_sz(inst->src[i].type);
1576
1577 assert(total_size <= 2 * REG_SIZE);
1578 const unsigned exec_size =
1579 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1580
1581 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1582 struct brw_reg reg =
1583 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1584 inst->src[i].offset % REG_SIZE),
1585 exec_size * inst->src[i].stride,
1586 width, inst->src[i].stride);
1587 reg.abs = inst->src[i].abs;
1588 reg.negate = inst->src[i].negate;
1589
1590 inst->src[i] = reg;
1591 }
1592 }
1593 }
1594
1595 void
1596 fs_visitor::assign_vs_urb_setup()
1597 {
1598 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1599
1600 assert(stage == MESA_SHADER_VERTEX);
1601
1602 /* Each attribute is 4 regs. */
1603 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1604
1605 assert(vs_prog_data->base.urb_read_length <= 15);
1606
1607 /* Rewrite all ATTR file references to the hw grf that they land in. */
1608 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1609 convert_attr_sources_to_hw_regs(inst);
1610 }
1611 }
1612
1613 void
1614 fs_visitor::assign_tcs_single_patch_urb_setup()
1615 {
1616 assert(stage == MESA_SHADER_TESS_CTRL);
1617
1618 /* Rewrite all ATTR file references to HW_REGs. */
1619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1620 convert_attr_sources_to_hw_regs(inst);
1621 }
1622 }
1623
1624 void
1625 fs_visitor::assign_tes_urb_setup()
1626 {
1627 assert(stage == MESA_SHADER_TESS_EVAL);
1628
1629 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1630
1631 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1632
1633 /* Rewrite all ATTR file references to HW_REGs. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_gs_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_GEOMETRY);
1643
1644 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1645
1646 first_non_payload_grf +=
1647 8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1648
1649 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1650 /* Rewrite all ATTR file references to GRFs. */
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655
1656 /**
1657 * Split large virtual GRFs into separate components if we can.
1658 *
1659 * This is mostly duplicated with what brw_fs_vector_splitting does,
1660 * but that's really conservative because it's afraid of doing
1661 * splitting that doesn't result in real progress after the rest of
1662 * the optimization phases, which would cause infinite looping in
1663 * optimization. We can do it once here, safely. This also has the
1664 * opportunity to split interpolated values, or maybe even uniforms,
1665 * which we don't have at the IR level.
1666 *
1667 * We want to split, because virtual GRFs are what we register
1668 * allocate and spill (due to contiguousness requirements for some
1669 * instructions), and they're what we naturally generate in the
1670 * codegen process, but most virtual GRFs don't actually need to be
1671 * contiguous sets of GRFs. If we split, we'll end up with reduced
1672 * live intervals and better dead code elimination and coalescing.
1673 */
1674 void
1675 fs_visitor::split_virtual_grfs()
1676 {
1677 /* Compact the register file so we eliminate dead vgrfs. This
1678 * only defines split points for live registers, so if we have
1679 * too large dead registers they will hit assertions later.
1680 */
1681 compact_virtual_grfs();
1682
1683 int num_vars = this->alloc.count;
1684
1685 /* Count the total number of registers */
1686 int reg_count = 0;
1687 int vgrf_to_reg[num_vars];
1688 for (int i = 0; i < num_vars; i++) {
1689 vgrf_to_reg[i] = reg_count;
1690 reg_count += alloc.sizes[i];
1691 }
1692
1693 /* An array of "split points". For each register slot, this indicates
1694 * if this slot can be separated from the previous slot. Every time an
1695 * instruction uses multiple elements of a register (as a source or
1696 * destination), we mark the used slots as inseparable. Then we go
1697 * through and split the registers into the smallest pieces we can.
1698 */
1699 bool split_points[reg_count];
1700 memset(split_points, 0, sizeof(split_points));
1701
1702 /* Mark all used registers as fully splittable */
1703 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1704 if (inst->dst.file == VGRF) {
1705 int reg = vgrf_to_reg[inst->dst.nr];
1706 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1707 split_points[reg + j] = true;
1708 }
1709
1710 for (int i = 0; i < inst->sources; i++) {
1711 if (inst->src[i].file == VGRF) {
1712 int reg = vgrf_to_reg[inst->src[i].nr];
1713 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1714 split_points[reg + j] = true;
1715 }
1716 }
1717 }
1718
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_written(inst); j++)
1723 split_points[reg + j] = false;
1724 }
1725 for (int i = 0; i < inst->sources; i++) {
1726 if (inst->src[i].file == VGRF) {
1727 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1728 for (unsigned j = 1; j < regs_read(inst, i); j++)
1729 split_points[reg + j] = false;
1730 }
1731 }
1732 }
1733
1734 int new_virtual_grf[reg_count];
1735 int new_reg_offset[reg_count];
1736
1737 int reg = 0;
1738 for (int i = 0; i < num_vars; i++) {
1739 /* The first one should always be 0 as a quick sanity check. */
1740 assert(split_points[reg] == false);
1741
1742 /* j = 0 case */
1743 new_reg_offset[reg] = 0;
1744 reg++;
1745 int offset = 1;
1746
1747 /* j > 0 case */
1748 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1749 /* If this is a split point, reset the offset to 0 and allocate a
1750 * new virtual GRF for the previous offset many registers
1751 */
1752 if (split_points[reg]) {
1753 assert(offset <= MAX_VGRF_SIZE);
1754 int grf = alloc.allocate(offset);
1755 for (int k = reg - offset; k < reg; k++)
1756 new_virtual_grf[k] = grf;
1757 offset = 0;
1758 }
1759 new_reg_offset[reg] = offset;
1760 offset++;
1761 reg++;
1762 }
1763
1764 /* The last one gets the original register number */
1765 assert(offset <= MAX_VGRF_SIZE);
1766 alloc.sizes[i] = offset;
1767 for (int k = reg - offset; k < reg; k++)
1768 new_virtual_grf[k] = i;
1769 }
1770 assert(reg == reg_count);
1771
1772 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1773 if (inst->dst.file == VGRF) {
1774 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1775 inst->dst.nr = new_virtual_grf[reg];
1776 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1777 inst->dst.offset % REG_SIZE;
1778 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1779 }
1780 for (int i = 0; i < inst->sources; i++) {
1781 if (inst->src[i].file == VGRF) {
1782 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1783 inst->src[i].nr = new_virtual_grf[reg];
1784 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1785 inst->src[i].offset % REG_SIZE;
1786 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1787 }
1788 }
1789 }
1790 invalidate_live_intervals();
1791 }
1792
1793 /**
1794 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1795 *
1796 * During code generation, we create tons of temporary variables, many of
1797 * which get immediately killed and are never used again. Yet, in later
1798 * optimization and analysis passes, such as compute_live_intervals, we need
1799 * to loop over all the virtual GRFs. Compacting them can save a lot of
1800 * overhead.
1801 */
1802 bool
1803 fs_visitor::compact_virtual_grfs()
1804 {
1805 bool progress = false;
1806 int remap_table[this->alloc.count];
1807 memset(remap_table, -1, sizeof(remap_table));
1808
1809 /* Mark which virtual GRFs are used. */
1810 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1811 if (inst->dst.file == VGRF)
1812 remap_table[inst->dst.nr] = 0;
1813
1814 for (int i = 0; i < inst->sources; i++) {
1815 if (inst->src[i].file == VGRF)
1816 remap_table[inst->src[i].nr] = 0;
1817 }
1818 }
1819
1820 /* Compact the GRF arrays. */
1821 int new_index = 0;
1822 for (unsigned i = 0; i < this->alloc.count; i++) {
1823 if (remap_table[i] == -1) {
1824 /* We just found an unused register. This means that we are
1825 * actually going to compact something.
1826 */
1827 progress = true;
1828 } else {
1829 remap_table[i] = new_index;
1830 alloc.sizes[new_index] = alloc.sizes[i];
1831 invalidate_live_intervals();
1832 ++new_index;
1833 }
1834 }
1835
1836 this->alloc.count = new_index;
1837
1838 /* Patch all the instructions to use the newly renumbered registers */
1839 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1840 if (inst->dst.file == VGRF)
1841 inst->dst.nr = remap_table[inst->dst.nr];
1842
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == VGRF)
1845 inst->src[i].nr = remap_table[inst->src[i].nr];
1846 }
1847 }
1848
1849 /* Patch all the references to delta_xy, since they're used in register
1850 * allocation. If they're unused, switch them to BAD_FILE so we don't
1851 * think some random VGRF is delta_xy.
1852 */
1853 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1854 if (delta_xy[i].file == VGRF) {
1855 if (remap_table[delta_xy[i].nr] != -1) {
1856 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1857 } else {
1858 delta_xy[i].file = BAD_FILE;
1859 }
1860 }
1861 }
1862
1863 return progress;
1864 }
1865
1866 static void
1867 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1868 int *push_constant_loc, int *pull_constant_loc,
1869 unsigned *num_push_constants,
1870 unsigned *num_pull_constants,
1871 const unsigned max_push_components,
1872 const unsigned max_chunk_size,
1873 struct brw_stage_prog_data *stage_prog_data)
1874 {
1875 /* This is the first live uniform in the chunk */
1876 if (*chunk_start < 0)
1877 *chunk_start = uniform;
1878
1879 /* If this element does not need to be contiguous with the next, we
1880 * split at this point and everything between chunk_start and u forms a
1881 * single chunk.
1882 */
1883 if (!contiguous) {
1884 unsigned chunk_size = uniform - *chunk_start + 1;
1885
1886 /* Decide whether we should push or pull this parameter. In the
1887 * Vulkan driver, push constants are explicitly exposed via the API
1888 * so we push everything. In GL, we only push small arrays.
1889 */
1890 if (stage_prog_data->pull_param == NULL ||
1891 (*num_push_constants + chunk_size <= max_push_components &&
1892 chunk_size <= max_chunk_size)) {
1893 assert(*num_push_constants + chunk_size <= max_push_components);
1894 for (unsigned j = *chunk_start; j <= uniform; j++)
1895 push_constant_loc[j] = (*num_push_constants)++;
1896 } else {
1897 for (unsigned j = *chunk_start; j <= uniform; j++)
1898 pull_constant_loc[j] = (*num_pull_constants)++;
1899 }
1900
1901 *chunk_start = -1;
1902 }
1903 }
1904
1905 /**
1906 * Assign UNIFORM file registers to either push constants or pull constants.
1907 *
1908 * We allow a fragment shader to have more than the specified minimum
1909 * maximum number of fragment shader uniform components (64). If
1910 * there are too many of these, they'd fill up all of register space.
1911 * So, this will push some of them out to the pull constant buffer and
1912 * update the program to load them.
1913 */
1914 void
1915 fs_visitor::assign_constant_locations()
1916 {
1917 /* Only the first compile gets to decide on locations. */
1918 if (dispatch_width != min_dispatch_width)
1919 return;
1920
1921 bool is_live[uniforms];
1922 memset(is_live, 0, sizeof(is_live));
1923 bool is_live_64bit[uniforms];
1924 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1925
1926 /* For each uniform slot, a value of true indicates that the given slot and
1927 * the next slot must remain contiguous. This is used to keep us from
1928 * splitting arrays apart.
1929 */
1930 bool contiguous[uniforms];
1931 memset(contiguous, 0, sizeof(contiguous));
1932
1933 int thread_local_id_index =
1934 (stage == MESA_SHADER_COMPUTE) ?
1935 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1936
1937 /* First, we walk through the instructions and do two things:
1938 *
1939 * 1) Figure out which uniforms are live.
1940 *
1941 * 2) Mark any indirectly used ranges of registers as contiguous.
1942 *
1943 * Note that we don't move constant-indexed accesses to arrays. No
1944 * testing has been done of the performance impact of this choice.
1945 */
1946 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1947 for (int i = 0 ; i < inst->sources; i++) {
1948 if (inst->src[i].file != UNIFORM)
1949 continue;
1950
1951 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1952
1953 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1954 assert(inst->src[2].ud % 4 == 0);
1955 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1956 assert(last < uniforms);
1957
1958 for (unsigned j = constant_nr; j < last; j++) {
1959 is_live[j] = true;
1960 contiguous[j] = true;
1961 if (type_sz(inst->src[i].type) == 8) {
1962 is_live_64bit[j] = true;
1963 }
1964 }
1965 is_live[last] = true;
1966 } else {
1967 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1968 int regs_read = inst->components_read(i) *
1969 type_sz(inst->src[i].type) / 4;
1970 for (int j = 0; j < regs_read; j++) {
1971 is_live[constant_nr + j] = true;
1972 if (type_sz(inst->src[i].type) == 8) {
1973 is_live_64bit[constant_nr + j] = true;
1974 }
1975 }
1976 }
1977 }
1978 }
1979 }
1980
1981 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1982 thread_local_id_index = -1;
1983
1984 /* Only allow 16 registers (128 uniform components) as push constants.
1985 *
1986 * Just demote the end of the list. We could probably do better
1987 * here, demoting things that are rarely used in the program first.
1988 *
1989 * If changing this value, note the limitation about total_regs in
1990 * brw_curbe.c.
1991 */
1992 unsigned int max_push_components = 16 * 8;
1993 if (thread_local_id_index >= 0)
1994 max_push_components--; /* Save a slot for the thread ID */
1995
1996 /* We push small arrays, but no bigger than 16 floats. This is big enough
1997 * for a vec4 but hopefully not large enough to push out other stuff. We
1998 * should probably use a better heuristic at some point.
1999 */
2000 const unsigned int max_chunk_size = 16;
2001
2002 unsigned int num_push_constants = 0;
2003 unsigned int num_pull_constants = 0;
2004
2005 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2006 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2007
2008 /* Default to -1 meaning no location */
2009 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2010 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2011
2012 int chunk_start = -1;
2013
2014 /* First push 64-bit uniforms to ensure they are properly aligned */
2015 for (unsigned u = 0; u < uniforms; u++) {
2016 if (!is_live[u] || !is_live_64bit[u])
2017 continue;
2018
2019 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2020 push_constant_loc, pull_constant_loc,
2021 &num_push_constants, &num_pull_constants,
2022 max_push_components, max_chunk_size,
2023 stage_prog_data);
2024
2025 }
2026
2027 /* Then push the rest of uniforms */
2028 for (unsigned u = 0; u < uniforms; u++) {
2029 if (!is_live[u] || is_live_64bit[u])
2030 continue;
2031
2032 /* Skip thread_local_id_index to put it in the last push register. */
2033 if (thread_local_id_index == (int)u)
2034 continue;
2035
2036 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2037 push_constant_loc, pull_constant_loc,
2038 &num_push_constants, &num_pull_constants,
2039 max_push_components, max_chunk_size,
2040 stage_prog_data);
2041 }
2042
2043 /* Add the CS local thread ID uniform at the end of the push constants */
2044 if (thread_local_id_index >= 0)
2045 push_constant_loc[thread_local_id_index] = num_push_constants++;
2046
2047 /* As the uniforms are going to be reordered, take the data from a temporary
2048 * copy of the original param[].
2049 */
2050 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2051 stage_prog_data->nr_params);
2052 memcpy(param, stage_prog_data->param,
2053 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2054 stage_prog_data->nr_params = num_push_constants;
2055 stage_prog_data->nr_pull_params = num_pull_constants;
2056
2057 /* Up until now, the param[] array has been indexed by reg + offset
2058 * of UNIFORM registers. Move pull constants into pull_param[] and
2059 * condense param[] to only contain the uniforms we chose to push.
2060 *
2061 * NOTE: Because we are condensing the params[] array, we know that
2062 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2063 * having to make a copy.
2064 */
2065 int new_thread_local_id_index = -1;
2066 for (unsigned int i = 0; i < uniforms; i++) {
2067 const gl_constant_value *value = param[i];
2068
2069 if (pull_constant_loc[i] != -1) {
2070 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2071 } else if (push_constant_loc[i] != -1) {
2072 stage_prog_data->param[push_constant_loc[i]] = value;
2073 if (thread_local_id_index == (int)i)
2074 new_thread_local_id_index = push_constant_loc[i];
2075 }
2076 }
2077 ralloc_free(param);
2078
2079 if (stage == MESA_SHADER_COMPUTE)
2080 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2081 new_thread_local_id_index;
2082 }
2083
2084 /**
2085 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2086 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2087 */
2088 void
2089 fs_visitor::lower_constant_loads()
2090 {
2091 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2092
2093 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2094 /* Set up the annotation tracking for new generated instructions. */
2095 const fs_builder ibld(this, block, inst);
2096
2097 for (int i = 0; i < inst->sources; i++) {
2098 if (inst->src[i].file != UNIFORM)
2099 continue;
2100
2101 /* We'll handle this case later */
2102 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2103 continue;
2104
2105 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2106 if (location >= uniforms)
2107 continue; /* Out of bounds access */
2108
2109 int pull_index = pull_constant_loc[location];
2110
2111 if (pull_index == -1)
2112 continue;
2113
2114 assert(inst->src[i].stride == 0);
2115
2116 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2117 const unsigned block_sz = 64; /* Fetch one cacheline at a time. */
2118 const fs_builder ubld = ibld.exec_all().group(block_sz / 4, 0);
2119 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
2120 const unsigned base = pull_index * 4;
2121
2122 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2123 dst, brw_imm_ud(index), brw_imm_ud(base & ~(block_sz - 1)));
2124
2125 /* Rewrite the instruction to use the temporary VGRF. */
2126 inst->src[i].file = VGRF;
2127 inst->src[i].nr = dst.nr;
2128 inst->src[i].offset = (base & (block_sz - 1)) +
2129 inst->src[i].offset % 4;
2130
2131 brw_mark_surface_used(prog_data, index);
2132 }
2133
2134 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2135 inst->src[0].file == UNIFORM) {
2136
2137 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2138 if (location >= uniforms)
2139 continue; /* Out of bounds access */
2140
2141 int pull_index = pull_constant_loc[location];
2142
2143 if (pull_index == -1)
2144 continue;
2145
2146 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2147 brw_imm_ud(index),
2148 inst->src[1],
2149 pull_index * 4);
2150 inst->remove(block);
2151
2152 brw_mark_surface_used(prog_data, index);
2153 }
2154 }
2155 invalidate_live_intervals();
2156 }
2157
2158 bool
2159 fs_visitor::opt_algebraic()
2160 {
2161 bool progress = false;
2162
2163 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2164 switch (inst->opcode) {
2165 case BRW_OPCODE_MOV:
2166 if (inst->src[0].file != IMM)
2167 break;
2168
2169 if (inst->saturate) {
2170 if (inst->dst.type != inst->src[0].type)
2171 assert(!"unimplemented: saturate mixed types");
2172
2173 if (brw_saturate_immediate(inst->dst.type,
2174 &inst->src[0].as_brw_reg())) {
2175 inst->saturate = false;
2176 progress = true;
2177 }
2178 }
2179 break;
2180
2181 case BRW_OPCODE_MUL:
2182 if (inst->src[1].file != IMM)
2183 continue;
2184
2185 /* a * 1.0 = a */
2186 if (inst->src[1].is_one()) {
2187 inst->opcode = BRW_OPCODE_MOV;
2188 inst->src[1] = reg_undef;
2189 progress = true;
2190 break;
2191 }
2192
2193 /* a * -1.0 = -a */
2194 if (inst->src[1].is_negative_one()) {
2195 inst->opcode = BRW_OPCODE_MOV;
2196 inst->src[0].negate = !inst->src[0].negate;
2197 inst->src[1] = reg_undef;
2198 progress = true;
2199 break;
2200 }
2201
2202 /* a * 0.0 = 0.0 */
2203 if (inst->src[1].is_zero()) {
2204 inst->opcode = BRW_OPCODE_MOV;
2205 inst->src[0] = inst->src[1];
2206 inst->src[1] = reg_undef;
2207 progress = true;
2208 break;
2209 }
2210
2211 if (inst->src[0].file == IMM) {
2212 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2213 inst->opcode = BRW_OPCODE_MOV;
2214 inst->src[0].f *= inst->src[1].f;
2215 inst->src[1] = reg_undef;
2216 progress = true;
2217 break;
2218 }
2219 break;
2220 case BRW_OPCODE_ADD:
2221 if (inst->src[1].file != IMM)
2222 continue;
2223
2224 /* a + 0.0 = a */
2225 if (inst->src[1].is_zero()) {
2226 inst->opcode = BRW_OPCODE_MOV;
2227 inst->src[1] = reg_undef;
2228 progress = true;
2229 break;
2230 }
2231
2232 if (inst->src[0].file == IMM) {
2233 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2234 inst->opcode = BRW_OPCODE_MOV;
2235 inst->src[0].f += inst->src[1].f;
2236 inst->src[1] = reg_undef;
2237 progress = true;
2238 break;
2239 }
2240 break;
2241 case BRW_OPCODE_OR:
2242 if (inst->src[0].equals(inst->src[1])) {
2243 inst->opcode = BRW_OPCODE_MOV;
2244 inst->src[1] = reg_undef;
2245 progress = true;
2246 break;
2247 }
2248 break;
2249 case BRW_OPCODE_LRP:
2250 if (inst->src[1].equals(inst->src[2])) {
2251 inst->opcode = BRW_OPCODE_MOV;
2252 inst->src[0] = inst->src[1];
2253 inst->src[1] = reg_undef;
2254 inst->src[2] = reg_undef;
2255 progress = true;
2256 break;
2257 }
2258 break;
2259 case BRW_OPCODE_CMP:
2260 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2261 inst->src[0].abs &&
2262 inst->src[0].negate &&
2263 inst->src[1].is_zero()) {
2264 inst->src[0].abs = false;
2265 inst->src[0].negate = false;
2266 inst->conditional_mod = BRW_CONDITIONAL_Z;
2267 progress = true;
2268 break;
2269 }
2270 break;
2271 case BRW_OPCODE_SEL:
2272 if (inst->src[0].equals(inst->src[1])) {
2273 inst->opcode = BRW_OPCODE_MOV;
2274 inst->src[1] = reg_undef;
2275 inst->predicate = BRW_PREDICATE_NONE;
2276 inst->predicate_inverse = false;
2277 progress = true;
2278 } else if (inst->saturate && inst->src[1].file == IMM) {
2279 switch (inst->conditional_mod) {
2280 case BRW_CONDITIONAL_LE:
2281 case BRW_CONDITIONAL_L:
2282 switch (inst->src[1].type) {
2283 case BRW_REGISTER_TYPE_F:
2284 if (inst->src[1].f >= 1.0f) {
2285 inst->opcode = BRW_OPCODE_MOV;
2286 inst->src[1] = reg_undef;
2287 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2288 progress = true;
2289 }
2290 break;
2291 default:
2292 break;
2293 }
2294 break;
2295 case BRW_CONDITIONAL_GE:
2296 case BRW_CONDITIONAL_G:
2297 switch (inst->src[1].type) {
2298 case BRW_REGISTER_TYPE_F:
2299 if (inst->src[1].f <= 0.0f) {
2300 inst->opcode = BRW_OPCODE_MOV;
2301 inst->src[1] = reg_undef;
2302 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2303 progress = true;
2304 }
2305 break;
2306 default:
2307 break;
2308 }
2309 default:
2310 break;
2311 }
2312 }
2313 break;
2314 case BRW_OPCODE_MAD:
2315 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2316 inst->opcode = BRW_OPCODE_MOV;
2317 inst->src[1] = reg_undef;
2318 inst->src[2] = reg_undef;
2319 progress = true;
2320 } else if (inst->src[0].is_zero()) {
2321 inst->opcode = BRW_OPCODE_MUL;
2322 inst->src[0] = inst->src[2];
2323 inst->src[2] = reg_undef;
2324 progress = true;
2325 } else if (inst->src[1].is_one()) {
2326 inst->opcode = BRW_OPCODE_ADD;
2327 inst->src[1] = inst->src[2];
2328 inst->src[2] = reg_undef;
2329 progress = true;
2330 } else if (inst->src[2].is_one()) {
2331 inst->opcode = BRW_OPCODE_ADD;
2332 inst->src[2] = reg_undef;
2333 progress = true;
2334 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2335 inst->opcode = BRW_OPCODE_ADD;
2336 inst->src[1].f *= inst->src[2].f;
2337 inst->src[2] = reg_undef;
2338 progress = true;
2339 }
2340 break;
2341 case SHADER_OPCODE_BROADCAST:
2342 if (is_uniform(inst->src[0])) {
2343 inst->opcode = BRW_OPCODE_MOV;
2344 inst->sources = 1;
2345 inst->force_writemask_all = true;
2346 progress = true;
2347 } else if (inst->src[1].file == IMM) {
2348 inst->opcode = BRW_OPCODE_MOV;
2349 inst->src[0] = component(inst->src[0],
2350 inst->src[1].ud);
2351 inst->sources = 1;
2352 inst->force_writemask_all = true;
2353 progress = true;
2354 }
2355 break;
2356
2357 default:
2358 break;
2359 }
2360
2361 /* Swap if src[0] is immediate. */
2362 if (progress && inst->is_commutative()) {
2363 if (inst->src[0].file == IMM) {
2364 fs_reg tmp = inst->src[1];
2365 inst->src[1] = inst->src[0];
2366 inst->src[0] = tmp;
2367 }
2368 }
2369 }
2370 return progress;
2371 }
2372
2373 /**
2374 * Optimize sample messages that have constant zero values for the trailing
2375 * texture coordinates. We can just reduce the message length for these
2376 * instructions instead of reserving a register for it. Trailing parameters
2377 * that aren't sent default to zero anyway. This will cause the dead code
2378 * eliminator to remove the MOV instruction that would otherwise be emitted to
2379 * set up the zero value.
2380 */
2381 bool
2382 fs_visitor::opt_zero_samples()
2383 {
2384 /* Gen4 infers the texturing opcode based on the message length so we can't
2385 * change it.
2386 */
2387 if (devinfo->gen < 5)
2388 return false;
2389
2390 bool progress = false;
2391
2392 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2393 if (!inst->is_tex())
2394 continue;
2395
2396 fs_inst *load_payload = (fs_inst *) inst->prev;
2397
2398 if (load_payload->is_head_sentinel() ||
2399 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2400 continue;
2401
2402 /* We don't want to remove the message header or the first parameter.
2403 * Removing the first parameter is not allowed, see the Haswell PRM
2404 * volume 7, page 149:
2405 *
2406 * "Parameter 0 is required except for the sampleinfo message, which
2407 * has no parameter 0"
2408 */
2409 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2410 load_payload->src[(inst->mlen - inst->header_size) /
2411 (inst->exec_size / 8) +
2412 inst->header_size - 1].is_zero()) {
2413 inst->mlen -= inst->exec_size / 8;
2414 progress = true;
2415 }
2416 }
2417
2418 if (progress)
2419 invalidate_live_intervals();
2420
2421 return progress;
2422 }
2423
2424 /**
2425 * Optimize sample messages which are followed by the final RT write.
2426 *
2427 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2428 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2429 * final texturing results copied to the framebuffer write payload and modify
2430 * them to write to the framebuffer directly.
2431 */
2432 bool
2433 fs_visitor::opt_sampler_eot()
2434 {
2435 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2436
2437 if (stage != MESA_SHADER_FRAGMENT)
2438 return false;
2439
2440 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2441 return false;
2442
2443 /* FINISHME: It should be possible to implement this optimization when there
2444 * are multiple drawbuffers.
2445 */
2446 if (key->nr_color_regions != 1)
2447 return false;
2448
2449 /* Requires emitting a bunch of saturating MOV instructions during logical
2450 * send lowering to clamp the color payload, which the sampler unit isn't
2451 * going to do for us.
2452 */
2453 if (key->clamp_fragment_color)
2454 return false;
2455
2456 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2457 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2458 fs_inst *fb_write = (fs_inst *)block->end();
2459 assert(fb_write->eot);
2460 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2461
2462 /* There wasn't one; nothing to do. */
2463 if (unlikely(fb_write->prev->is_head_sentinel()))
2464 return false;
2465
2466 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2467
2468 /* 3D Sampler » Messages » Message Format
2469 *
2470 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2471 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2472 */
2473 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2474 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2475 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2476 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2477 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2478 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2479 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2480 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2481 return false;
2482
2483 /* XXX - This shouldn't be necessary. */
2484 if (tex_inst->prev->is_head_sentinel())
2485 return false;
2486
2487 /* Check that the FB write sources are fully initialized by the single
2488 * texturing instruction.
2489 */
2490 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2491 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2492 if (!fb_write->src[i].equals(tex_inst->dst) ||
2493 fb_write->size_read(i) != tex_inst->size_written)
2494 return false;
2495 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2496 if (fb_write->src[i].file != BAD_FILE)
2497 return false;
2498 }
2499 }
2500
2501 assert(!tex_inst->eot); /* We can't get here twice */
2502 assert((tex_inst->offset & (0xff << 24)) == 0);
2503
2504 const fs_builder ibld(this, block, tex_inst);
2505
2506 tex_inst->offset |= fb_write->target << 24;
2507 tex_inst->eot = true;
2508 tex_inst->dst = ibld.null_reg_ud();
2509 tex_inst->size_written = 0;
2510 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2511
2512 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2513 * flag and submit a header together with the sampler message as required
2514 * by the hardware.
2515 */
2516 invalidate_live_intervals();
2517 return true;
2518 }
2519
2520 bool
2521 fs_visitor::opt_register_renaming()
2522 {
2523 bool progress = false;
2524 int depth = 0;
2525
2526 int remap[alloc.count];
2527 memset(remap, -1, sizeof(int) * alloc.count);
2528
2529 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2530 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2531 depth++;
2532 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2533 inst->opcode == BRW_OPCODE_WHILE) {
2534 depth--;
2535 }
2536
2537 /* Rewrite instruction sources. */
2538 for (int i = 0; i < inst->sources; i++) {
2539 if (inst->src[i].file == VGRF &&
2540 remap[inst->src[i].nr] != -1 &&
2541 remap[inst->src[i].nr] != inst->src[i].nr) {
2542 inst->src[i].nr = remap[inst->src[i].nr];
2543 progress = true;
2544 }
2545 }
2546
2547 const int dst = inst->dst.nr;
2548
2549 if (depth == 0 &&
2550 inst->dst.file == VGRF &&
2551 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2552 !inst->is_partial_write()) {
2553 if (remap[dst] == -1) {
2554 remap[dst] = dst;
2555 } else {
2556 remap[dst] = alloc.allocate(regs_written(inst));
2557 inst->dst.nr = remap[dst];
2558 progress = true;
2559 }
2560 } else if (inst->dst.file == VGRF &&
2561 remap[dst] != -1 &&
2562 remap[dst] != dst) {
2563 inst->dst.nr = remap[dst];
2564 progress = true;
2565 }
2566 }
2567
2568 if (progress) {
2569 invalidate_live_intervals();
2570
2571 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2572 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2573 delta_xy[i].nr = remap[delta_xy[i].nr];
2574 }
2575 }
2576 }
2577
2578 return progress;
2579 }
2580
2581 /**
2582 * Remove redundant or useless discard jumps.
2583 *
2584 * For example, we can eliminate jumps in the following sequence:
2585 *
2586 * discard-jump (redundant with the next jump)
2587 * discard-jump (useless; jumps to the next instruction)
2588 * placeholder-halt
2589 */
2590 bool
2591 fs_visitor::opt_redundant_discard_jumps()
2592 {
2593 bool progress = false;
2594
2595 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2596
2597 fs_inst *placeholder_halt = NULL;
2598 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2599 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2600 placeholder_halt = inst;
2601 break;
2602 }
2603 }
2604
2605 if (!placeholder_halt)
2606 return false;
2607
2608 /* Delete any HALTs immediately before the placeholder halt. */
2609 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2610 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2611 prev = (fs_inst *) placeholder_halt->prev) {
2612 prev->remove(last_bblock);
2613 progress = true;
2614 }
2615
2616 if (progress)
2617 invalidate_live_intervals();
2618
2619 return progress;
2620 }
2621
2622 /**
2623 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2624 * from \p r.offset which overlaps the region starting at \p s.offset and
2625 * spanning \p ds bytes.
2626 */
2627 static inline unsigned
2628 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2629 {
2630 const int rel_offset = reg_offset(s) - reg_offset(r);
2631 const int shift = rel_offset / REG_SIZE;
2632 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2633 assert(reg_space(r) == reg_space(s) &&
2634 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2635 return ((1 << n) - 1) << shift;
2636 }
2637
2638 bool
2639 fs_visitor::compute_to_mrf()
2640 {
2641 bool progress = false;
2642 int next_ip = 0;
2643
2644 /* No MRFs on Gen >= 7. */
2645 if (devinfo->gen >= 7)
2646 return false;
2647
2648 calculate_live_intervals();
2649
2650 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2651 int ip = next_ip;
2652 next_ip++;
2653
2654 if (inst->opcode != BRW_OPCODE_MOV ||
2655 inst->is_partial_write() ||
2656 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2657 inst->dst.type != inst->src[0].type ||
2658 inst->src[0].abs || inst->src[0].negate ||
2659 !inst->src[0].is_contiguous() ||
2660 inst->src[0].offset % REG_SIZE != 0)
2661 continue;
2662
2663 /* Can't compute-to-MRF this GRF if someone else was going to
2664 * read it later.
2665 */
2666 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2667 continue;
2668
2669 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2670 * things that computed the value of all GRFs of the source region. The
2671 * regs_left bitset keeps track of the registers we haven't yet found a
2672 * generating instruction for.
2673 */
2674 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2675
2676 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2677 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2678 inst->src[0], inst->size_read(0))) {
2679 /* Found the last thing to write our reg we want to turn
2680 * into a compute-to-MRF.
2681 */
2682
2683 /* If this one instruction didn't populate all the
2684 * channels, bail. We might be able to rewrite everything
2685 * that writes that reg, but it would require smarter
2686 * tracking.
2687 */
2688 if (scan_inst->is_partial_write())
2689 break;
2690
2691 /* Handling things not fully contained in the source of the copy
2692 * would need us to understand coalescing out more than one MOV at
2693 * a time.
2694 */
2695 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2696 inst->src[0], inst->size_read(0)))
2697 break;
2698
2699 /* SEND instructions can't have MRF as a destination. */
2700 if (scan_inst->mlen)
2701 break;
2702
2703 if (devinfo->gen == 6) {
2704 /* gen6 math instructions must have the destination be
2705 * GRF, so no compute-to-MRF for them.
2706 */
2707 if (scan_inst->is_math()) {
2708 break;
2709 }
2710 }
2711
2712 /* Clear the bits for any registers this instruction overwrites. */
2713 regs_left &= ~mask_relative_to(
2714 inst->src[0], scan_inst->dst, scan_inst->size_written);
2715 if (!regs_left)
2716 break;
2717 }
2718
2719 /* We don't handle control flow here. Most computation of
2720 * values that end up in MRFs are shortly before the MRF
2721 * write anyway.
2722 */
2723 if (block->start() == scan_inst)
2724 break;
2725
2726 /* You can't read from an MRF, so if someone else reads our
2727 * MRF's source GRF that we wanted to rewrite, that stops us.
2728 */
2729 bool interfered = false;
2730 for (int i = 0; i < scan_inst->sources; i++) {
2731 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2732 inst->src[0], inst->size_read(0))) {
2733 interfered = true;
2734 }
2735 }
2736 if (interfered)
2737 break;
2738
2739 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2740 inst->dst, inst->size_written)) {
2741 /* If somebody else writes our MRF here, we can't
2742 * compute-to-MRF before that.
2743 */
2744 break;
2745 }
2746
2747 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2748 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2749 inst->dst, inst->size_written)) {
2750 /* Found a SEND instruction, which means that there are
2751 * live values in MRFs from base_mrf to base_mrf +
2752 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2753 * above it.
2754 */
2755 break;
2756 }
2757 }
2758
2759 if (regs_left)
2760 continue;
2761
2762 /* Found all generating instructions of our MRF's source value, so it
2763 * should be safe to rewrite them to point to the MRF directly.
2764 */
2765 regs_left = (1 << regs_read(inst, 0)) - 1;
2766
2767 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2768 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2769 inst->src[0], inst->size_read(0))) {
2770 /* Clear the bits for any registers this instruction overwrites. */
2771 regs_left &= ~mask_relative_to(
2772 inst->src[0], scan_inst->dst, scan_inst->size_written);
2773
2774 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2775 reg_offset(inst->src[0]);
2776
2777 if (inst->dst.nr & BRW_MRF_COMPR4) {
2778 /* Apply the same address transformation done by the hardware
2779 * for COMPR4 MRF writes.
2780 */
2781 assert(rel_offset < 2 * REG_SIZE);
2782 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2783
2784 /* Clear the COMPR4 bit if the generating instruction is not
2785 * compressed.
2786 */
2787 if (scan_inst->size_written < 2 * REG_SIZE)
2788 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2789
2790 } else {
2791 /* Calculate the MRF number the result of this instruction is
2792 * ultimately written to.
2793 */
2794 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2795 }
2796
2797 scan_inst->dst.file = MRF;
2798 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2799 scan_inst->saturate |= inst->saturate;
2800 if (!regs_left)
2801 break;
2802 }
2803 }
2804
2805 assert(!regs_left);
2806 inst->remove(block);
2807 progress = true;
2808 }
2809
2810 if (progress)
2811 invalidate_live_intervals();
2812
2813 return progress;
2814 }
2815
2816 /**
2817 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2818 * flow. We could probably do better here with some form of divergence
2819 * analysis.
2820 */
2821 bool
2822 fs_visitor::eliminate_find_live_channel()
2823 {
2824 bool progress = false;
2825 unsigned depth = 0;
2826
2827 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2828 /* The optimization below assumes that channel zero is live on thread
2829 * dispatch, which may not be the case if the fixed function dispatches
2830 * threads sparsely.
2831 */
2832 return false;
2833 }
2834
2835 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2836 switch (inst->opcode) {
2837 case BRW_OPCODE_IF:
2838 case BRW_OPCODE_DO:
2839 depth++;
2840 break;
2841
2842 case BRW_OPCODE_ENDIF:
2843 case BRW_OPCODE_WHILE:
2844 depth--;
2845 break;
2846
2847 case FS_OPCODE_DISCARD_JUMP:
2848 /* This can potentially make control flow non-uniform until the end
2849 * of the program.
2850 */
2851 return progress;
2852
2853 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2854 if (depth == 0) {
2855 inst->opcode = BRW_OPCODE_MOV;
2856 inst->src[0] = brw_imm_ud(0u);
2857 inst->sources = 1;
2858 inst->force_writemask_all = true;
2859 progress = true;
2860 }
2861 break;
2862
2863 default:
2864 break;
2865 }
2866 }
2867
2868 return progress;
2869 }
2870
2871 /**
2872 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2873 * instructions to FS_OPCODE_REP_FB_WRITE.
2874 */
2875 void
2876 fs_visitor::emit_repclear_shader()
2877 {
2878 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2879 int base_mrf = 0;
2880 int color_mrf = base_mrf + 2;
2881 fs_inst *mov;
2882
2883 if (uniforms > 0) {
2884 mov = bld.exec_all().group(4, 0)
2885 .MOV(brw_message_reg(color_mrf),
2886 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2887 } else {
2888 struct brw_reg reg =
2889 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2890 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2891 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2892
2893 mov = bld.exec_all().group(4, 0)
2894 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2895 }
2896
2897 fs_inst *write;
2898 if (key->nr_color_regions == 1) {
2899 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2900 write->saturate = key->clamp_fragment_color;
2901 write->base_mrf = color_mrf;
2902 write->target = 0;
2903 write->header_size = 0;
2904 write->mlen = 1;
2905 } else {
2906 assume(key->nr_color_regions > 0);
2907 for (int i = 0; i < key->nr_color_regions; ++i) {
2908 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2909 write->saturate = key->clamp_fragment_color;
2910 write->base_mrf = base_mrf;
2911 write->target = i;
2912 write->header_size = 2;
2913 write->mlen = 3;
2914 }
2915 }
2916 write->eot = true;
2917
2918 calculate_cfg();
2919
2920 assign_constant_locations();
2921 assign_curb_setup();
2922
2923 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2924 if (uniforms > 0) {
2925 assert(mov->src[0].file == FIXED_GRF);
2926 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2927 }
2928 }
2929
2930 /**
2931 * Walks through basic blocks, looking for repeated MRF writes and
2932 * removing the later ones.
2933 */
2934 bool
2935 fs_visitor::remove_duplicate_mrf_writes()
2936 {
2937 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2938 bool progress = false;
2939
2940 /* Need to update the MRF tracking for compressed instructions. */
2941 if (dispatch_width >= 16)
2942 return false;
2943
2944 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2945
2946 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2947 if (inst->is_control_flow()) {
2948 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2949 }
2950
2951 if (inst->opcode == BRW_OPCODE_MOV &&
2952 inst->dst.file == MRF) {
2953 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2954 if (prev_inst && inst->equals(prev_inst)) {
2955 inst->remove(block);
2956 progress = true;
2957 continue;
2958 }
2959 }
2960
2961 /* Clear out the last-write records for MRFs that were overwritten. */
2962 if (inst->dst.file == MRF) {
2963 last_mrf_move[inst->dst.nr] = NULL;
2964 }
2965
2966 if (inst->mlen > 0 && inst->base_mrf != -1) {
2967 /* Found a SEND instruction, which will include two or fewer
2968 * implied MRF writes. We could do better here.
2969 */
2970 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2971 last_mrf_move[inst->base_mrf + i] = NULL;
2972 }
2973 }
2974
2975 /* Clear out any MRF move records whose sources got overwritten. */
2976 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2977 if (last_mrf_move[i] &&
2978 regions_overlap(inst->dst, inst->size_written,
2979 last_mrf_move[i]->src[0],
2980 last_mrf_move[i]->size_read(0))) {
2981 last_mrf_move[i] = NULL;
2982 }
2983 }
2984
2985 if (inst->opcode == BRW_OPCODE_MOV &&
2986 inst->dst.file == MRF &&
2987 inst->src[0].file != ARF &&
2988 !inst->is_partial_write()) {
2989 last_mrf_move[inst->dst.nr] = inst;
2990 }
2991 }
2992
2993 if (progress)
2994 invalidate_live_intervals();
2995
2996 return progress;
2997 }
2998
2999 static void
3000 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3001 {
3002 /* Clear the flag for registers that actually got read (as expected). */
3003 for (int i = 0; i < inst->sources; i++) {
3004 int grf;
3005 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3006 grf = inst->src[i].nr;
3007 } else {
3008 continue;
3009 }
3010
3011 if (grf >= first_grf &&
3012 grf < first_grf + grf_len) {
3013 deps[grf - first_grf] = false;
3014 if (inst->exec_size == 16)
3015 deps[grf - first_grf + 1] = false;
3016 }
3017 }
3018 }
3019
3020 /**
3021 * Implements this workaround for the original 965:
3022 *
3023 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3024 * check for post destination dependencies on this instruction, software
3025 * must ensure that there is no destination hazard for the case of ‘write
3026 * followed by a posted write’ shown in the following example.
3027 *
3028 * 1. mov r3 0
3029 * 2. send r3.xy <rest of send instruction>
3030 * 3. mov r2 r3
3031 *
3032 * Due to no post-destination dependency check on the ‘send’, the above
3033 * code sequence could have two instructions (1 and 2) in flight at the
3034 * same time that both consider ‘r3’ as the target of their final writes.
3035 */
3036 void
3037 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3038 fs_inst *inst)
3039 {
3040 int write_len = regs_written(inst);
3041 int first_write_grf = inst->dst.nr;
3042 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3043 assert(write_len < (int)sizeof(needs_dep) - 1);
3044
3045 memset(needs_dep, false, sizeof(needs_dep));
3046 memset(needs_dep, true, write_len);
3047
3048 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3049
3050 /* Walk backwards looking for writes to registers we're writing which
3051 * aren't read since being written. If we hit the start of the program,
3052 * we assume that there are no outstanding dependencies on entry to the
3053 * program.
3054 */
3055 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3056 /* If we hit control flow, assume that there *are* outstanding
3057 * dependencies, and force their cleanup before our instruction.
3058 */
3059 if (block->start() == scan_inst && block->num != 0) {
3060 for (int i = 0; i < write_len; i++) {
3061 if (needs_dep[i])
3062 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3063 first_write_grf + i);
3064 }
3065 return;
3066 }
3067
3068 /* We insert our reads as late as possible on the assumption that any
3069 * instruction but a MOV that might have left us an outstanding
3070 * dependency has more latency than a MOV.
3071 */
3072 if (scan_inst->dst.file == VGRF) {
3073 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3074 int reg = scan_inst->dst.nr + i;
3075
3076 if (reg >= first_write_grf &&
3077 reg < first_write_grf + write_len &&
3078 needs_dep[reg - first_write_grf]) {
3079 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3080 needs_dep[reg - first_write_grf] = false;
3081 if (scan_inst->exec_size == 16)
3082 needs_dep[reg - first_write_grf + 1] = false;
3083 }
3084 }
3085 }
3086
3087 /* Clear the flag for registers that actually got read (as expected). */
3088 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3089
3090 /* Continue the loop only if we haven't resolved all the dependencies */
3091 int i;
3092 for (i = 0; i < write_len; i++) {
3093 if (needs_dep[i])
3094 break;
3095 }
3096 if (i == write_len)
3097 return;
3098 }
3099 }
3100
3101 /**
3102 * Implements this workaround for the original 965:
3103 *
3104 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3105 * used as a destination register until after it has been sourced by an
3106 * instruction with a different destination register.
3107 */
3108 void
3109 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3110 {
3111 int write_len = regs_written(inst);
3112 int first_write_grf = inst->dst.nr;
3113 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3114 assert(write_len < (int)sizeof(needs_dep) - 1);
3115
3116 memset(needs_dep, false, sizeof(needs_dep));
3117 memset(needs_dep, true, write_len);
3118 /* Walk forwards looking for writes to registers we're writing which aren't
3119 * read before being written.
3120 */
3121 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3122 /* If we hit control flow, force resolve all remaining dependencies. */
3123 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3124 for (int i = 0; i < write_len; i++) {
3125 if (needs_dep[i])
3126 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3127 first_write_grf + i);
3128 }
3129 return;
3130 }
3131
3132 /* Clear the flag for registers that actually got read (as expected). */
3133 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3134
3135 /* We insert our reads as late as possible since they're reading the
3136 * result of a SEND, which has massive latency.
3137 */
3138 if (scan_inst->dst.file == VGRF &&
3139 scan_inst->dst.nr >= first_write_grf &&
3140 scan_inst->dst.nr < first_write_grf + write_len &&
3141 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3142 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3143 scan_inst->dst.nr);
3144 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3145 }
3146
3147 /* Continue the loop only if we haven't resolved all the dependencies */
3148 int i;
3149 for (i = 0; i < write_len; i++) {
3150 if (needs_dep[i])
3151 break;
3152 }
3153 if (i == write_len)
3154 return;
3155 }
3156 }
3157
3158 void
3159 fs_visitor::insert_gen4_send_dependency_workarounds()
3160 {
3161 if (devinfo->gen != 4 || devinfo->is_g4x)
3162 return;
3163
3164 bool progress = false;
3165
3166 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3167 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3168 insert_gen4_pre_send_dependency_workarounds(block, inst);
3169 insert_gen4_post_send_dependency_workarounds(block, inst);
3170 progress = true;
3171 }
3172 }
3173
3174 if (progress)
3175 invalidate_live_intervals();
3176 }
3177
3178 /**
3179 * Turns the generic expression-style uniform pull constant load instruction
3180 * into a hardware-specific series of instructions for loading a pull
3181 * constant.
3182 *
3183 * The expression style allows the CSE pass before this to optimize out
3184 * repeated loads from the same offset, and gives the pre-register-allocation
3185 * scheduling full flexibility, while the conversion to native instructions
3186 * allows the post-register-allocation scheduler the best information
3187 * possible.
3188 *
3189 * Note that execution masking for setting up pull constant loads is special:
3190 * the channels that need to be written are unrelated to the current execution
3191 * mask, since a later instruction will use one of the result channels as a
3192 * source operand for all 8 or 16 of its channels.
3193 */
3194 void
3195 fs_visitor::lower_uniform_pull_constant_loads()
3196 {
3197 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3198 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3199 continue;
3200
3201 if (devinfo->gen >= 7) {
3202 const fs_builder ubld = fs_builder(this, block, inst).exec_all();
3203 const fs_reg payload = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD);
3204
3205 ubld.group(8, 0).MOV(payload,
3206 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3207 ubld.group(1, 0).MOV(component(payload, 2),
3208 brw_imm_ud(inst->src[1].ud / 16));
3209
3210 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3211 inst->src[1] = payload;
3212 inst->header_size = 1;
3213 inst->mlen = 1;
3214
3215 invalidate_live_intervals();
3216 } else {
3217 /* Before register allocation, we didn't tell the scheduler about the
3218 * MRF we use. We know it's safe to use this MRF because nothing
3219 * else does except for register spill/unspill, which generates and
3220 * uses its MRF within a single IR instruction.
3221 */
3222 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3223 inst->mlen = 1;
3224 }
3225 }
3226 }
3227
3228 bool
3229 fs_visitor::lower_load_payload()
3230 {
3231 bool progress = false;
3232
3233 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3234 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3235 continue;
3236
3237 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3238 assert(inst->saturate == false);
3239 fs_reg dst = inst->dst;
3240
3241 /* Get rid of COMPR4. We'll add it back in if we need it */
3242 if (dst.file == MRF)
3243 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3244
3245 const fs_builder ibld(this, block, inst);
3246 const fs_builder hbld = ibld.exec_all().group(8, 0);
3247
3248 for (uint8_t i = 0; i < inst->header_size; i++) {
3249 if (inst->src[i].file != BAD_FILE) {
3250 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3251 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3252 hbld.MOV(mov_dst, mov_src);
3253 }
3254 dst = offset(dst, hbld, 1);
3255 }
3256
3257 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3258 inst->exec_size > 8) {
3259 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3260 * a straightforward copy. Instead, the result of the
3261 * LOAD_PAYLOAD is treated as interleaved and the first four
3262 * non-header sources are unpacked as:
3263 *
3264 * m + 0: r0
3265 * m + 1: g0
3266 * m + 2: b0
3267 * m + 3: a0
3268 * m + 4: r1
3269 * m + 5: g1
3270 * m + 6: b1
3271 * m + 7: a1
3272 *
3273 * This is used for gen <= 5 fb writes.
3274 */
3275 assert(inst->exec_size == 16);
3276 assert(inst->header_size + 4 <= inst->sources);
3277 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3278 if (inst->src[i].file != BAD_FILE) {
3279 if (devinfo->has_compr4) {
3280 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3281 compr4_dst.nr |= BRW_MRF_COMPR4;
3282 ibld.MOV(compr4_dst, inst->src[i]);
3283 } else {
3284 /* Platform doesn't have COMPR4. We have to fake it */
3285 fs_reg mov_dst = retype(dst, inst->src[i].type);
3286 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3287 mov_dst.nr += 4;
3288 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3289 }
3290 }
3291
3292 dst.nr++;
3293 }
3294
3295 /* The loop above only ever incremented us through the first set
3296 * of 4 registers. However, thanks to the magic of COMPR4, we
3297 * actually wrote to the first 8 registers, so we need to take
3298 * that into account now.
3299 */
3300 dst.nr += 4;
3301
3302 /* The COMPR4 code took care of the first 4 sources. We'll let
3303 * the regular path handle any remaining sources. Yes, we are
3304 * modifying the instruction but we're about to delete it so
3305 * this really doesn't hurt anything.
3306 */
3307 inst->header_size += 4;
3308 }
3309
3310 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3311 if (inst->src[i].file != BAD_FILE)
3312 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3313 dst = offset(dst, ibld, 1);
3314 }
3315
3316 inst->remove(block);
3317 progress = true;
3318 }
3319
3320 if (progress)
3321 invalidate_live_intervals();
3322
3323 return progress;
3324 }
3325
3326 bool
3327 fs_visitor::lower_integer_multiplication()
3328 {
3329 bool progress = false;
3330
3331 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3332 const fs_builder ibld(this, block, inst);
3333
3334 if (inst->opcode == BRW_OPCODE_MUL) {
3335 if (inst->dst.is_accumulator() ||
3336 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3337 inst->dst.type != BRW_REGISTER_TYPE_UD))
3338 continue;
3339
3340 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3341 * operation directly, but CHV/BXT cannot.
3342 */
3343 if (devinfo->gen >= 8 &&
3344 !devinfo->is_cherryview && !devinfo->is_broxton)
3345 continue;
3346
3347 if (inst->src[1].file == IMM &&
3348 inst->src[1].ud < (1 << 16)) {
3349 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3350 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3351 * src1 are used.
3352 *
3353 * If multiplying by an immediate value that fits in 16-bits, do a
3354 * single MUL instruction with that value in the proper location.
3355 */
3356 if (devinfo->gen < 7) {
3357 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3358 inst->dst.type);
3359 ibld.MOV(imm, inst->src[1]);
3360 ibld.MUL(inst->dst, imm, inst->src[0]);
3361 } else {
3362 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3363 ibld.MUL(inst->dst, inst->src[0],
3364 ud ? brw_imm_uw(inst->src[1].ud)
3365 : brw_imm_w(inst->src[1].d));
3366 }
3367 } else {
3368 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3369 * do 32-bit integer multiplication in one instruction, but instead
3370 * must do a sequence (which actually calculates a 64-bit result):
3371 *
3372 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3373 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3374 * mov(8) g2<1>D acc0<8,8,1>D
3375 *
3376 * But on Gen > 6, the ability to use second accumulator register
3377 * (acc1) for non-float data types was removed, preventing a simple
3378 * implementation in SIMD16. A 16-channel result can be calculated by
3379 * executing the three instructions twice in SIMD8, once with quarter
3380 * control of 1Q for the first eight channels and again with 2Q for
3381 * the second eight channels.
3382 *
3383 * Which accumulator register is implicitly accessed (by AccWrEnable
3384 * for instance) is determined by the quarter control. Unfortunately
3385 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3386 * implicit accumulator access by an instruction with 2Q will access
3387 * acc1 regardless of whether the data type is usable in acc1.
3388 *
3389 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3390 * integer data types.
3391 *
3392 * Since we only want the low 32-bits of the result, we can do two
3393 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3394 * adjust the high result and add them (like the mach is doing):
3395 *
3396 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3397 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3398 * shl(8) g9<1>D g8<8,8,1>D 16D
3399 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3400 *
3401 * We avoid the shl instruction by realizing that we only want to add
3402 * the low 16-bits of the "high" result to the high 16-bits of the
3403 * "low" result and using proper regioning on the add:
3404 *
3405 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3406 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3407 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3408 *
3409 * Since it does not use the (single) accumulator register, we can
3410 * schedule multi-component multiplications much better.
3411 */
3412
3413 fs_reg orig_dst = inst->dst;
3414 if (orig_dst.is_null() || orig_dst.file == MRF) {
3415 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3416 inst->dst.type);
3417 }
3418 fs_reg low = inst->dst;
3419 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3420 inst->dst.type);
3421
3422 if (devinfo->gen >= 7) {
3423 if (inst->src[1].file == IMM) {
3424 ibld.MUL(low, inst->src[0],
3425 brw_imm_uw(inst->src[1].ud & 0xffff));
3426 ibld.MUL(high, inst->src[0],
3427 brw_imm_uw(inst->src[1].ud >> 16));
3428 } else {
3429 ibld.MUL(low, inst->src[0],
3430 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3431 ibld.MUL(high, inst->src[0],
3432 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3433 }
3434 } else {
3435 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3436 inst->src[1]);
3437 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3438 inst->src[1]);
3439 }
3440
3441 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3442 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3443 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3444
3445 if (inst->conditional_mod || orig_dst.file == MRF) {
3446 set_condmod(inst->conditional_mod,
3447 ibld.MOV(orig_dst, inst->dst));
3448 }
3449 }
3450
3451 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3452 /* Should have been lowered to 8-wide. */
3453 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3454 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3455 inst->dst.type);
3456 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3457 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3458
3459 if (devinfo->gen >= 8) {
3460 /* Until Gen8, integer multiplies read 32-bits from one source,
3461 * and 16-bits from the other, and relying on the MACH instruction
3462 * to generate the high bits of the result.
3463 *
3464 * On Gen8, the multiply instruction does a full 32x32-bit
3465 * multiply, but in order to do a 64-bit multiply we can simulate
3466 * the previous behavior and then use a MACH instruction.
3467 *
3468 * FINISHME: Don't use source modifiers on src1.
3469 */
3470 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3471 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3472 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3473 mul->src[1].stride *= 2;
3474
3475 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3476 inst->group > 0) {
3477 /* Among other things the quarter control bits influence which
3478 * accumulator register is used by the hardware for instructions
3479 * that access the accumulator implicitly (e.g. MACH). A
3480 * second-half instruction would normally map to acc1, which
3481 * doesn't exist on Gen7 and up (the hardware does emulate it for
3482 * floating-point instructions *only* by taking advantage of the
3483 * extra precision of acc0 not normally used for floating point
3484 * arithmetic).
3485 *
3486 * HSW and up are careful enough not to try to access an
3487 * accumulator register that doesn't exist, but on earlier Gen7
3488 * hardware we need to make sure that the quarter control bits are
3489 * zero to avoid non-deterministic behaviour and emit an extra MOV
3490 * to get the result masked correctly according to the current
3491 * channel enables.
3492 */
3493 mach->group = 0;
3494 mach->force_writemask_all = true;
3495 mach->dst = ibld.vgrf(inst->dst.type);
3496 ibld.MOV(inst->dst, mach->dst);
3497 }
3498 } else {
3499 continue;
3500 }
3501
3502 inst->remove(block);
3503 progress = true;
3504 }
3505
3506 if (progress)
3507 invalidate_live_intervals();
3508
3509 return progress;
3510 }
3511
3512 bool
3513 fs_visitor::lower_minmax()
3514 {
3515 assert(devinfo->gen < 6);
3516
3517 bool progress = false;
3518
3519 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3520 const fs_builder ibld(this, block, inst);
3521
3522 if (inst->opcode == BRW_OPCODE_SEL &&
3523 inst->predicate == BRW_PREDICATE_NONE) {
3524 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3525 * the original SEL.L/GE instruction
3526 */
3527 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3528 inst->conditional_mod);
3529 inst->predicate = BRW_PREDICATE_NORMAL;
3530 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3531
3532 progress = true;
3533 }
3534 }
3535
3536 if (progress)
3537 invalidate_live_intervals();
3538
3539 return progress;
3540 }
3541
3542 static void
3543 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3544 fs_reg *dst, fs_reg color, unsigned components)
3545 {
3546 if (key->clamp_fragment_color) {
3547 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3548 assert(color.type == BRW_REGISTER_TYPE_F);
3549
3550 for (unsigned i = 0; i < components; i++)
3551 set_saturate(true,
3552 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3553
3554 color = tmp;
3555 }
3556
3557 for (unsigned i = 0; i < components; i++)
3558 dst[i] = offset(color, bld, i);
3559 }
3560
3561 static void
3562 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3563 const struct brw_wm_prog_data *prog_data,
3564 const brw_wm_prog_key *key,
3565 const fs_visitor::thread_payload &payload)
3566 {
3567 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3568 const gen_device_info *devinfo = bld.shader->devinfo;
3569 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3570 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3571 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3572 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3573 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3574 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3575 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3576 const unsigned components =
3577 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3578
3579 /* We can potentially have a message length of up to 15, so we have to set
3580 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3581 */
3582 fs_reg sources[15];
3583 int header_size = 2, payload_header_size;
3584 unsigned length = 0;
3585
3586 /* From the Sandy Bridge PRM, volume 4, page 198:
3587 *
3588 * "Dispatched Pixel Enables. One bit per pixel indicating
3589 * which pixels were originally enabled when the thread was
3590 * dispatched. This field is only required for the end-of-
3591 * thread message and on all dual-source messages."
3592 */
3593 if (devinfo->gen >= 6 &&
3594 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3595 color1.file == BAD_FILE &&
3596 key->nr_color_regions == 1) {
3597 header_size = 0;
3598 }
3599
3600 if (header_size != 0) {
3601 assert(header_size == 2);
3602 /* Allocate 2 registers for a header */
3603 length += 2;
3604 }
3605
3606 if (payload.aa_dest_stencil_reg) {
3607 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3608 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3609 .MOV(sources[length],
3610 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3611 length++;
3612 }
3613
3614 if (sample_mask.file != BAD_FILE) {
3615 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3616 BRW_REGISTER_TYPE_UD);
3617
3618 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3619 * relevant. Since it's unsigned single words one vgrf is always
3620 * 16-wide, but only the lower or higher 8 channels will be used by the
3621 * hardware when doing a SIMD8 write depending on whether we have
3622 * selected the subspans for the first or second half respectively.
3623 */
3624 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3625 sample_mask.type = BRW_REGISTER_TYPE_UW;
3626 sample_mask.stride *= 2;
3627
3628 bld.exec_all().annotate("FB write oMask")
3629 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3630 inst->group),
3631 sample_mask);
3632 length++;
3633 }
3634
3635 payload_header_size = length;
3636
3637 if (src0_alpha.file != BAD_FILE) {
3638 /* FIXME: This is being passed at the wrong location in the payload and
3639 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3640 * It's supposed to be immediately before oMask but there seems to be no
3641 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3642 * requires header sources to form a contiguous segment at the beginning
3643 * of the message and src0_alpha has per-channel semantics.
3644 */
3645 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3646 length++;
3647 } else if (key->replicate_alpha && inst->target != 0) {
3648 /* Handle the case when fragment shader doesn't write to draw buffer
3649 * zero. No need to call setup_color_payload() for src0_alpha because
3650 * alpha value will be undefined.
3651 */
3652 length++;
3653 }
3654
3655 setup_color_payload(bld, key, &sources[length], color0, components);
3656 length += 4;
3657
3658 if (color1.file != BAD_FILE) {
3659 setup_color_payload(bld, key, &sources[length], color1, components);
3660 length += 4;
3661 }
3662
3663 if (src_depth.file != BAD_FILE) {
3664 sources[length] = src_depth;
3665 length++;
3666 }
3667
3668 if (dst_depth.file != BAD_FILE) {
3669 sources[length] = dst_depth;
3670 length++;
3671 }
3672
3673 if (src_stencil.file != BAD_FILE) {
3674 assert(devinfo->gen >= 9);
3675 assert(bld.dispatch_width() != 16);
3676
3677 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3678 * available on gen9+. As such it's impossible to have both enabled at the
3679 * same time and therefore length cannot overrun the array.
3680 */
3681 assert(length < 15);
3682
3683 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3684 bld.exec_all().annotate("FB write OS")
3685 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3686 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3687 length++;
3688 }
3689
3690 fs_inst *load;
3691 if (devinfo->gen >= 7) {
3692 /* Send from the GRF */
3693 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3694 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3695 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3696 load->dst = payload;
3697
3698 inst->src[0] = payload;
3699 inst->resize_sources(1);
3700 } else {
3701 /* Send from the MRF */
3702 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3703 sources, length, payload_header_size);
3704
3705 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3706 * will do this for us if we just give it a COMPR4 destination.
3707 */
3708 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3709 load->dst.nr |= BRW_MRF_COMPR4;
3710
3711 inst->resize_sources(0);
3712 inst->base_mrf = 1;
3713 }
3714
3715 inst->opcode = FS_OPCODE_FB_WRITE;
3716 inst->mlen = regs_written(load);
3717 inst->header_size = header_size;
3718 }
3719
3720 static void
3721 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3722 {
3723 const fs_builder &ubld = bld.exec_all();
3724 const unsigned length = 2;
3725 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3726
3727 ubld.group(16, 0)
3728 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3729
3730 inst->resize_sources(1);
3731 inst->src[0] = header;
3732 inst->opcode = FS_OPCODE_FB_READ;
3733 inst->mlen = length;
3734 inst->header_size = length;
3735 }
3736
3737 static void
3738 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3739 const fs_reg &coordinate,
3740 const fs_reg &shadow_c,
3741 const fs_reg &lod, const fs_reg &lod2,
3742 const fs_reg &surface,
3743 const fs_reg &sampler,
3744 unsigned coord_components,
3745 unsigned grad_components)
3746 {
3747 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3748 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3749 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3750 fs_reg msg_end = msg_begin;
3751
3752 /* g0 header. */
3753 msg_end = offset(msg_end, bld.group(8, 0), 1);
3754
3755 for (unsigned i = 0; i < coord_components; i++)
3756 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3757 offset(coordinate, bld, i));
3758
3759 msg_end = offset(msg_end, bld, coord_components);
3760
3761 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3762 * require all three components to be present and zero if they are unused.
3763 */
3764 if (coord_components > 0 &&
3765 (has_lod || shadow_c.file != BAD_FILE ||
3766 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3767 for (unsigned i = coord_components; i < 3; i++)
3768 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3769
3770 msg_end = offset(msg_end, bld, 3 - coord_components);
3771 }
3772
3773 if (op == SHADER_OPCODE_TXD) {
3774 /* TXD unsupported in SIMD16 mode. */
3775 assert(bld.dispatch_width() == 8);
3776
3777 /* the slots for u and v are always present, but r is optional */
3778 if (coord_components < 2)
3779 msg_end = offset(msg_end, bld, 2 - coord_components);
3780
3781 /* P = u, v, r
3782 * dPdx = dudx, dvdx, drdx
3783 * dPdy = dudy, dvdy, drdy
3784 *
3785 * 1-arg: Does not exist.
3786 *
3787 * 2-arg: dudx dvdx dudy dvdy
3788 * dPdx.x dPdx.y dPdy.x dPdy.y
3789 * m4 m5 m6 m7
3790 *
3791 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3792 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3793 * m5 m6 m7 m8 m9 m10
3794 */
3795 for (unsigned i = 0; i < grad_components; i++)
3796 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3797
3798 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3799
3800 for (unsigned i = 0; i < grad_components; i++)
3801 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3802
3803 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3804 }
3805
3806 if (has_lod) {
3807 /* Bias/LOD with shadow comparator is unsupported in SIMD16 -- *Without*
3808 * shadow comparator (including RESINFO) it's unsupported in SIMD8 mode.
3809 */
3810 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3811 bld.dispatch_width() == 16);
3812
3813 const brw_reg_type type =
3814 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3815 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3816 bld.MOV(retype(msg_end, type), lod);
3817 msg_end = offset(msg_end, bld, 1);
3818 }
3819
3820 if (shadow_c.file != BAD_FILE) {
3821 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3822 /* There's no plain shadow compare message, so we use shadow
3823 * compare with a bias of 0.0.
3824 */
3825 bld.MOV(msg_end, brw_imm_f(0.0f));
3826 msg_end = offset(msg_end, bld, 1);
3827 }
3828
3829 bld.MOV(msg_end, shadow_c);
3830 msg_end = offset(msg_end, bld, 1);
3831 }
3832
3833 inst->opcode = op;
3834 inst->src[0] = reg_undef;
3835 inst->src[1] = surface;
3836 inst->src[2] = sampler;
3837 inst->resize_sources(3);
3838 inst->base_mrf = msg_begin.nr;
3839 inst->mlen = msg_end.nr - msg_begin.nr;
3840 inst->header_size = 1;
3841 }
3842
3843 static void
3844 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3845 const fs_reg &coordinate,
3846 const fs_reg &shadow_c,
3847 const fs_reg &lod, const fs_reg &lod2,
3848 const fs_reg &sample_index,
3849 const fs_reg &surface,
3850 const fs_reg &sampler,
3851 unsigned coord_components,
3852 unsigned grad_components)
3853 {
3854 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3855 fs_reg msg_coords = message;
3856 unsigned header_size = 0;
3857
3858 if (inst->offset != 0) {
3859 /* The offsets set up by the visitor are in the m1 header, so we can't
3860 * go headerless.
3861 */
3862 header_size = 1;
3863 message.nr--;
3864 }
3865
3866 for (unsigned i = 0; i < coord_components; i++)
3867 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3868 offset(coordinate, bld, i));
3869
3870 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3871 fs_reg msg_lod = offset(msg_coords, bld, 4);
3872
3873 if (shadow_c.file != BAD_FILE) {
3874 fs_reg msg_shadow = msg_lod;
3875 bld.MOV(msg_shadow, shadow_c);
3876 msg_lod = offset(msg_shadow, bld, 1);
3877 msg_end = msg_lod;
3878 }
3879
3880 switch (op) {
3881 case SHADER_OPCODE_TXL:
3882 case FS_OPCODE_TXB:
3883 bld.MOV(msg_lod, lod);
3884 msg_end = offset(msg_lod, bld, 1);
3885 break;
3886 case SHADER_OPCODE_TXD:
3887 /**
3888 * P = u, v, r
3889 * dPdx = dudx, dvdx, drdx
3890 * dPdy = dudy, dvdy, drdy
3891 *
3892 * Load up these values:
3893 * - dudx dudy dvdx dvdy drdx drdy
3894 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3895 */
3896 msg_end = msg_lod;
3897 for (unsigned i = 0; i < grad_components; i++) {
3898 bld.MOV(msg_end, offset(lod, bld, i));
3899 msg_end = offset(msg_end, bld, 1);
3900
3901 bld.MOV(msg_end, offset(lod2, bld, i));
3902 msg_end = offset(msg_end, bld, 1);
3903 }
3904 break;
3905 case SHADER_OPCODE_TXS:
3906 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3907 bld.MOV(msg_lod, lod);
3908 msg_end = offset(msg_lod, bld, 1);
3909 break;
3910 case SHADER_OPCODE_TXF:
3911 msg_lod = offset(msg_coords, bld, 3);
3912 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3913 msg_end = offset(msg_lod, bld, 1);
3914 break;
3915 case SHADER_OPCODE_TXF_CMS:
3916 msg_lod = offset(msg_coords, bld, 3);
3917 /* lod */
3918 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3919 /* sample index */
3920 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3921 msg_end = offset(msg_lod, bld, 2);
3922 break;
3923 default:
3924 break;
3925 }
3926
3927 inst->opcode = op;
3928 inst->src[0] = reg_undef;
3929 inst->src[1] = surface;
3930 inst->src[2] = sampler;
3931 inst->resize_sources(3);
3932 inst->base_mrf = message.nr;
3933 inst->mlen = msg_end.nr - message.nr;
3934 inst->header_size = header_size;
3935
3936 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3937 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3938 }
3939
3940 static bool
3941 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3942 {
3943 if (devinfo->gen < 8 && !devinfo->is_haswell)
3944 return false;
3945
3946 return sampler.file != IMM || sampler.ud >= 16;
3947 }
3948
3949 static void
3950 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3951 const fs_reg &coordinate,
3952 const fs_reg &shadow_c,
3953 fs_reg lod, const fs_reg &lod2,
3954 const fs_reg &sample_index,
3955 const fs_reg &mcs,
3956 const fs_reg &surface,
3957 const fs_reg &sampler,
3958 const fs_reg &tg4_offset,
3959 unsigned coord_components,
3960 unsigned grad_components)
3961 {
3962 const gen_device_info *devinfo = bld.shader->devinfo;
3963 unsigned reg_width = bld.dispatch_width() / 8;
3964 unsigned header_size = 0, length = 0;
3965 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3966 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3967 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3968
3969 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3970 inst->offset != 0 || inst->eot ||
3971 op == SHADER_OPCODE_SAMPLEINFO ||
3972 is_high_sampler(devinfo, sampler)) {
3973 /* For general texture offsets (no txf workaround), we need a header to
3974 * put them in. Note that we're only reserving space for it in the
3975 * message payload as it will be initialized implicitly by the
3976 * generator.
3977 *
3978 * TG4 needs to place its channel select in the header, for interaction
3979 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3980 * larger sampler numbers we need to offset the Sampler State Pointer in
3981 * the header.
3982 */
3983 header_size = 1;
3984 sources[0] = fs_reg();
3985 length++;
3986
3987 /* If we're requesting fewer than four channels worth of response,
3988 * and we have an explicit header, we need to set up the sampler
3989 * writemask. It's reversed from normal: 1 means "don't write".
3990 */
3991 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
3992 assert(regs_written(inst) % reg_width == 0);
3993 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
3994 inst->offset |= mask << 12;
3995 }
3996 }
3997
3998 if (shadow_c.file != BAD_FILE) {
3999 bld.MOV(sources[length], shadow_c);
4000 length++;
4001 }
4002
4003 bool coordinate_done = false;
4004
4005 /* Set up the LOD info */
4006 switch (op) {
4007 case FS_OPCODE_TXB:
4008 case SHADER_OPCODE_TXL:
4009 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4010 op = SHADER_OPCODE_TXL_LZ;
4011 break;
4012 }
4013 bld.MOV(sources[length], lod);
4014 length++;
4015 break;
4016 case SHADER_OPCODE_TXD:
4017 /* TXD should have been lowered in SIMD16 mode. */
4018 assert(bld.dispatch_width() == 8);
4019
4020 /* Load dPdx and the coordinate together:
4021 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4022 */
4023 for (unsigned i = 0; i < coord_components; i++) {
4024 bld.MOV(sources[length++], offset(coordinate, bld, i));
4025
4026 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4027 * only derivatives for (u, v, r).
4028 */
4029 if (i < grad_components) {
4030 bld.MOV(sources[length++], offset(lod, bld, i));
4031 bld.MOV(sources[length++], offset(lod2, bld, i));
4032 }
4033 }
4034
4035 coordinate_done = true;
4036 break;
4037 case SHADER_OPCODE_TXS:
4038 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4039 length++;
4040 break;
4041 case SHADER_OPCODE_TXF:
4042 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4043 * On Gen9 they are u, v, lod, r
4044 */
4045 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4046
4047 if (devinfo->gen >= 9) {
4048 if (coord_components >= 2) {
4049 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4050 offset(coordinate, bld, 1));
4051 } else {
4052 sources[length] = brw_imm_d(0);
4053 }
4054 length++;
4055 }
4056
4057 if (devinfo->gen >= 9 && lod.is_zero()) {
4058 op = SHADER_OPCODE_TXF_LZ;
4059 } else {
4060 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4061 length++;
4062 }
4063
4064 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4065 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4066 offset(coordinate, bld, i));
4067
4068 coordinate_done = true;
4069 break;
4070
4071 case SHADER_OPCODE_TXF_CMS:
4072 case SHADER_OPCODE_TXF_CMS_W:
4073 case SHADER_OPCODE_TXF_UMS:
4074 case SHADER_OPCODE_TXF_MCS:
4075 if (op == SHADER_OPCODE_TXF_UMS ||
4076 op == SHADER_OPCODE_TXF_CMS ||
4077 op == SHADER_OPCODE_TXF_CMS_W) {
4078 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4079 length++;
4080 }
4081
4082 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4083 /* Data from the multisample control surface. */
4084 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4085 length++;
4086
4087 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4088 * the MCS data.
4089 */
4090 if (op == SHADER_OPCODE_TXF_CMS_W) {
4091 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4092 mcs.file == IMM ?
4093 mcs :
4094 offset(mcs, bld, 1));
4095 length++;
4096 }
4097 }
4098
4099 /* There is no offsetting for this message; just copy in the integer
4100 * texture coordinates.
4101 */
4102 for (unsigned i = 0; i < coord_components; i++)
4103 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4104 offset(coordinate, bld, i));
4105
4106 coordinate_done = true;
4107 break;
4108 case SHADER_OPCODE_TG4_OFFSET:
4109 /* More crazy intermixing */
4110 for (unsigned i = 0; i < 2; i++) /* u, v */
4111 bld.MOV(sources[length++], offset(coordinate, bld, i));
4112
4113 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4114 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4115 offset(tg4_offset, bld, i));
4116
4117 if (coord_components == 3) /* r if present */
4118 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4119
4120 coordinate_done = true;
4121 break;
4122 default:
4123 break;
4124 }
4125
4126 /* Set up the coordinate (except for cases where it was done above) */
4127 if (!coordinate_done) {
4128 for (unsigned i = 0; i < coord_components; i++)
4129 bld.MOV(sources[length++], offset(coordinate, bld, i));
4130 }
4131
4132 int mlen;
4133 if (reg_width == 2)
4134 mlen = length * reg_width - header_size;
4135 else
4136 mlen = length * reg_width;
4137
4138 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4139 BRW_REGISTER_TYPE_F);
4140 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4141
4142 /* Generate the SEND. */
4143 inst->opcode = op;
4144 inst->src[0] = src_payload;
4145 inst->src[1] = surface;
4146 inst->src[2] = sampler;
4147 inst->resize_sources(3);
4148 inst->mlen = mlen;
4149 inst->header_size = header_size;
4150
4151 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4152 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4153 }
4154
4155 static void
4156 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4157 {
4158 const gen_device_info *devinfo = bld.shader->devinfo;
4159 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4160 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4161 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4162 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4163 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4164 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4165 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4166 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4167 const fs_reg &tg4_offset = inst->src[TEX_LOGICAL_SRC_TG4_OFFSET];
4168 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4169 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4170 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4171 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4172
4173 if (devinfo->gen >= 7) {
4174 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4175 shadow_c, lod, lod2, sample_index,
4176 mcs, surface, sampler, tg4_offset,
4177 coord_components, grad_components);
4178 } else if (devinfo->gen >= 5) {
4179 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4180 shadow_c, lod, lod2, sample_index,
4181 surface, sampler,
4182 coord_components, grad_components);
4183 } else {
4184 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4185 shadow_c, lod, lod2,
4186 surface, sampler,
4187 coord_components, grad_components);
4188 }
4189 }
4190
4191 /**
4192 * Initialize the header present in some typed and untyped surface
4193 * messages.
4194 */
4195 static fs_reg
4196 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4197 {
4198 fs_builder ubld = bld.exec_all().group(8, 0);
4199 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4200 ubld.MOV(dst, brw_imm_d(0));
4201 ubld.MOV(component(dst, 7), sample_mask);
4202 return dst;
4203 }
4204
4205 static void
4206 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4207 const fs_reg &sample_mask)
4208 {
4209 /* Get the logical send arguments. */
4210 const fs_reg &addr = inst->src[0];
4211 const fs_reg &src = inst->src[1];
4212 const fs_reg &surface = inst->src[2];
4213 const UNUSED fs_reg &dims = inst->src[3];
4214 const fs_reg &arg = inst->src[4];
4215
4216 /* Calculate the total number of components of the payload. */
4217 const unsigned addr_sz = inst->components_read(0);
4218 const unsigned src_sz = inst->components_read(1);
4219 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4220 const unsigned sz = header_sz + addr_sz + src_sz;
4221
4222 /* Allocate space for the payload. */
4223 fs_reg *const components = new fs_reg[sz];
4224 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4225 unsigned n = 0;
4226
4227 /* Construct the payload. */
4228 if (header_sz)
4229 components[n++] = emit_surface_header(bld, sample_mask);
4230
4231 for (unsigned i = 0; i < addr_sz; i++)
4232 components[n++] = offset(addr, bld, i);
4233
4234 for (unsigned i = 0; i < src_sz; i++)
4235 components[n++] = offset(src, bld, i);
4236
4237 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4238
4239 /* Update the original instruction. */
4240 inst->opcode = op;
4241 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4242 inst->header_size = header_sz;
4243
4244 inst->src[0] = payload;
4245 inst->src[1] = surface;
4246 inst->src[2] = arg;
4247 inst->resize_sources(3);
4248
4249 delete[] components;
4250 }
4251
4252 static void
4253 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4254 {
4255 const gen_device_info *devinfo = bld.shader->devinfo;
4256
4257 if (devinfo->gen >= 7) {
4258 /* We are switching the instruction from an ALU-like instruction to a
4259 * send-from-grf instruction. Since sends can't handle strides or
4260 * source modifiers, we have to make a copy of the offset source.
4261 */
4262 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4263 bld.MOV(tmp, inst->src[1]);
4264 inst->src[1] = tmp;
4265
4266 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4267
4268 } else {
4269 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4270 BRW_REGISTER_TYPE_UD);
4271
4272 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4273
4274 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4275 inst->resize_sources(1);
4276 inst->base_mrf = payload.nr;
4277 inst->header_size = 1;
4278 inst->mlen = 1 + inst->exec_size / 8;
4279 }
4280 }
4281
4282 static void
4283 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4284 {
4285 assert(bld.shader->devinfo->gen < 6);
4286
4287 inst->base_mrf = 2;
4288 inst->mlen = inst->sources * inst->exec_size / 8;
4289
4290 if (inst->sources > 1) {
4291 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4292 * "Message Payload":
4293 *
4294 * "Operand0[7]. For the INT DIV functions, this operand is the
4295 * denominator."
4296 * ...
4297 * "Operand1[7]. For the INT DIV functions, this operand is the
4298 * numerator."
4299 */
4300 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4301 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4302 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4303
4304 inst->resize_sources(1);
4305 inst->src[0] = src0;
4306
4307 assert(inst->exec_size == 8);
4308 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4309 }
4310 }
4311
4312 bool
4313 fs_visitor::lower_logical_sends()
4314 {
4315 bool progress = false;
4316
4317 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4318 const fs_builder ibld(this, block, inst);
4319
4320 switch (inst->opcode) {
4321 case FS_OPCODE_FB_WRITE_LOGICAL:
4322 assert(stage == MESA_SHADER_FRAGMENT);
4323 lower_fb_write_logical_send(ibld, inst,
4324 brw_wm_prog_data(prog_data),
4325 (const brw_wm_prog_key *)key,
4326 payload);
4327 break;
4328
4329 case FS_OPCODE_FB_READ_LOGICAL:
4330 lower_fb_read_logical_send(ibld, inst);
4331 break;
4332
4333 case SHADER_OPCODE_TEX_LOGICAL:
4334 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4335 break;
4336
4337 case SHADER_OPCODE_TXD_LOGICAL:
4338 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4339 break;
4340
4341 case SHADER_OPCODE_TXF_LOGICAL:
4342 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4343 break;
4344
4345 case SHADER_OPCODE_TXL_LOGICAL:
4346 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4347 break;
4348
4349 case SHADER_OPCODE_TXS_LOGICAL:
4350 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4351 break;
4352
4353 case FS_OPCODE_TXB_LOGICAL:
4354 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4355 break;
4356
4357 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4358 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4359 break;
4360
4361 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4362 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4363 break;
4364
4365 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4366 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4367 break;
4368
4369 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4370 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4371 break;
4372
4373 case SHADER_OPCODE_LOD_LOGICAL:
4374 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4375 break;
4376
4377 case SHADER_OPCODE_TG4_LOGICAL:
4378 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4379 break;
4380
4381 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4382 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4383 break;
4384
4385 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4386 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4387 break;
4388
4389 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4390 lower_surface_logical_send(ibld, inst,
4391 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4392 fs_reg());
4393 break;
4394
4395 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4396 lower_surface_logical_send(ibld, inst,
4397 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4398 ibld.sample_mask_reg());
4399 break;
4400
4401 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4402 lower_surface_logical_send(ibld, inst,
4403 SHADER_OPCODE_UNTYPED_ATOMIC,
4404 ibld.sample_mask_reg());
4405 break;
4406
4407 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4408 lower_surface_logical_send(ibld, inst,
4409 SHADER_OPCODE_TYPED_SURFACE_READ,
4410 brw_imm_d(0xffff));
4411 break;
4412
4413 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4414 lower_surface_logical_send(ibld, inst,
4415 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4416 ibld.sample_mask_reg());
4417 break;
4418
4419 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4420 lower_surface_logical_send(ibld, inst,
4421 SHADER_OPCODE_TYPED_ATOMIC,
4422 ibld.sample_mask_reg());
4423 break;
4424
4425 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4426 lower_varying_pull_constant_logical_send(ibld, inst);
4427 break;
4428
4429 case SHADER_OPCODE_RCP:
4430 case SHADER_OPCODE_RSQ:
4431 case SHADER_OPCODE_SQRT:
4432 case SHADER_OPCODE_EXP2:
4433 case SHADER_OPCODE_LOG2:
4434 case SHADER_OPCODE_SIN:
4435 case SHADER_OPCODE_COS:
4436 case SHADER_OPCODE_POW:
4437 case SHADER_OPCODE_INT_QUOTIENT:
4438 case SHADER_OPCODE_INT_REMAINDER:
4439 /* The math opcodes are overloaded for the send-like and
4440 * expression-like instructions which seems kind of icky. Gen6+ has
4441 * a native (but rather quirky) MATH instruction so we don't need to
4442 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4443 * logical instructions (which we can easily recognize because they
4444 * have mlen = 0) into send-like virtual instructions.
4445 */
4446 if (devinfo->gen < 6 && inst->mlen == 0) {
4447 lower_math_logical_send(ibld, inst);
4448 break;
4449
4450 } else {
4451 continue;
4452 }
4453
4454 default:
4455 continue;
4456 }
4457
4458 progress = true;
4459 }
4460
4461 if (progress)
4462 invalidate_live_intervals();
4463
4464 return progress;
4465 }
4466
4467 /**
4468 * Get the closest allowed SIMD width for instruction \p inst accounting for
4469 * some common regioning and execution control restrictions that apply to FPU
4470 * instructions. These restrictions don't necessarily have any relevance to
4471 * instructions not executed by the FPU pipeline like extended math, control
4472 * flow or send message instructions.
4473 *
4474 * For virtual opcodes it's really up to the instruction -- In some cases
4475 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4476 * instructions) it may simplify virtual instruction lowering if we can
4477 * enforce FPU-like regioning restrictions already on the virtual instruction,
4478 * in other cases (e.g. virtual send-like instructions) this may be
4479 * excessively restrictive.
4480 */
4481 static unsigned
4482 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4483 const fs_inst *inst)
4484 {
4485 /* Maximum execution size representable in the instruction controls. */
4486 unsigned max_width = MIN2(32, inst->exec_size);
4487
4488 /* According to the PRMs:
4489 * "A. In Direct Addressing mode, a source cannot span more than 2
4490 * adjacent GRF registers.
4491 * B. A destination cannot span more than 2 adjacent GRF registers."
4492 *
4493 * Look for the source or destination with the largest register region
4494 * which is the one that is going to limit the overall execution size of
4495 * the instruction due to this rule.
4496 */
4497 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4498
4499 for (unsigned i = 0; i < inst->sources; i++)
4500 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4501
4502 /* Calculate the maximum execution size of the instruction based on the
4503 * factor by which it goes over the hardware limit of 2 GRFs.
4504 */
4505 if (reg_count > 2)
4506 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4507
4508 /* According to the IVB PRMs:
4509 * "When destination spans two registers, the source MUST span two
4510 * registers. The exception to the above rule:
4511 *
4512 * - When source is scalar, the source registers are not incremented.
4513 * - When source is packed integer Word and destination is packed
4514 * integer DWord, the source register is not incremented but the
4515 * source sub register is incremented."
4516 *
4517 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4518 * restrictions. The code below intentionally doesn't check whether the
4519 * destination type is integer because empirically the hardware doesn't
4520 * seem to care what the actual type is as long as it's dword-aligned.
4521 */
4522 if (devinfo->gen < 8) {
4523 for (unsigned i = 0; i < inst->sources; i++) {
4524 if (inst->size_written > REG_SIZE &&
4525 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4526 !is_uniform(inst->src[i]) &&
4527 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4528 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4529 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4530 max_width = MIN2(max_width, inst->exec_size / reg_count);
4531 }
4532 }
4533 }
4534
4535 /* From the IVB PRMs:
4536 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4537 * are applied for both halves of the SIMD32 instruction. If different
4538 * execution mask channels are required, split the instruction into two
4539 * SIMD16 instructions."
4540 *
4541 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4542 * 32-wide control flow support in hardware and will behave similarly.
4543 */
4544 if (devinfo->gen < 8 && !inst->force_writemask_all)
4545 max_width = MIN2(max_width, 16);
4546
4547 /* From the IVB PRMs (applies to HSW too):
4548 * "Instructions with condition modifiers must not use SIMD32."
4549 *
4550 * From the BDW PRMs (applies to later hardware too):
4551 * "Ternary instruction with condition modifiers must not use SIMD32."
4552 */
4553 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4554 max_width = MIN2(max_width, 16);
4555
4556 /* From the IVB PRMs (applies to other devices that don't have the
4557 * gen_device_info::supports_simd16_3src flag set):
4558 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4559 * SIMD8 is not allowed for DF operations."
4560 */
4561 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4562 max_width = MIN2(max_width, inst->exec_size / reg_count);
4563
4564 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4565 * the 8-bit quarter of the execution mask signals specified in the
4566 * instruction control fields) for the second compressed half of any
4567 * single-precision instruction (for double-precision instructions
4568 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4569 * the EU will apply the wrong execution controls for the second
4570 * sequential GRF write if the number of channels per GRF is not exactly
4571 * eight in single-precision mode (or four in double-float mode).
4572 *
4573 * In this situation we calculate the maximum size of the split
4574 * instructions so they only ever write to a single register.
4575 */
4576 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4577 !inst->force_writemask_all) {
4578 const unsigned channels_per_grf = inst->exec_size /
4579 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4580 unsigned exec_type_size = 0;
4581 for (int i = 0; i < inst->sources; i++) {
4582 if (inst->src[i].file != BAD_FILE)
4583 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4584 }
4585 assert(exec_type_size);
4586
4587 /* The hardware shifts exactly 8 channels per compressed half of the
4588 * instruction in single-precision mode and exactly 4 in double-precision.
4589 */
4590 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4591 max_width = MIN2(max_width, channels_per_grf);
4592 }
4593
4594 /* Only power-of-two execution sizes are representable in the instruction
4595 * control fields.
4596 */
4597 return 1 << _mesa_logbase2(max_width);
4598 }
4599
4600 /**
4601 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4602 * various payload size restrictions that apply to sampler message
4603 * instructions.
4604 *
4605 * This is only intended to provide a maximum theoretical bound for the
4606 * execution size of the message based on the number of argument components
4607 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4608 * variant of the message can be used, though some messages may have
4609 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4610 * the message length to determine the exact SIMD width and argument count,
4611 * which makes a number of sampler message combinations impossible to
4612 * represent).
4613 */
4614 static unsigned
4615 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4616 const fs_inst *inst)
4617 {
4618 /* Calculate the number of coordinate components that have to be present
4619 * assuming that additional arguments follow the texel coordinates in the
4620 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4621 * need to pad to four or three components depending on the message,
4622 * pre-ILK we need to pad to at most three components.
4623 */
4624 const unsigned req_coord_components =
4625 (devinfo->gen >= 7 ||
4626 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4627 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4628 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4629 3;
4630
4631 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4632 * variant of the TXL or TXF message.
4633 */
4634 const bool implicit_lod = devinfo->gen >= 9 &&
4635 (inst->opcode == SHADER_OPCODE_TXL ||
4636 inst->opcode == SHADER_OPCODE_TXF) &&
4637 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4638
4639 /* Calculate the total number of argument components that need to be passed
4640 * to the sampler unit.
4641 */
4642 const unsigned num_payload_components =
4643 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4644 req_coord_components) +
4645 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4646 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4647 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4648 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4649 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4650 inst->components_read(TEX_LOGICAL_SRC_TG4_OFFSET) : 0) +
4651 inst->components_read(TEX_LOGICAL_SRC_MCS);
4652
4653 /* SIMD16 messages with more than five arguments exceed the maximum message
4654 * size supported by the sampler, regardless of whether a header is
4655 * provided or not.
4656 */
4657 return MIN2(inst->exec_size,
4658 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4659 }
4660
4661 /**
4662 * Get the closest native SIMD width supported by the hardware for instruction
4663 * \p inst. The instruction will be left untouched by
4664 * fs_visitor::lower_simd_width() if the returned value is equal to the
4665 * original execution size.
4666 */
4667 static unsigned
4668 get_lowered_simd_width(const struct gen_device_info *devinfo,
4669 const fs_inst *inst)
4670 {
4671 switch (inst->opcode) {
4672 case BRW_OPCODE_MOV:
4673 case BRW_OPCODE_SEL:
4674 case BRW_OPCODE_NOT:
4675 case BRW_OPCODE_AND:
4676 case BRW_OPCODE_OR:
4677 case BRW_OPCODE_XOR:
4678 case BRW_OPCODE_SHR:
4679 case BRW_OPCODE_SHL:
4680 case BRW_OPCODE_ASR:
4681 case BRW_OPCODE_CMPN:
4682 case BRW_OPCODE_CSEL:
4683 case BRW_OPCODE_F32TO16:
4684 case BRW_OPCODE_F16TO32:
4685 case BRW_OPCODE_BFREV:
4686 case BRW_OPCODE_BFE:
4687 case BRW_OPCODE_ADD:
4688 case BRW_OPCODE_MUL:
4689 case BRW_OPCODE_AVG:
4690 case BRW_OPCODE_FRC:
4691 case BRW_OPCODE_RNDU:
4692 case BRW_OPCODE_RNDD:
4693 case BRW_OPCODE_RNDE:
4694 case BRW_OPCODE_RNDZ:
4695 case BRW_OPCODE_LZD:
4696 case BRW_OPCODE_FBH:
4697 case BRW_OPCODE_FBL:
4698 case BRW_OPCODE_CBIT:
4699 case BRW_OPCODE_SAD2:
4700 case BRW_OPCODE_MAD:
4701 case BRW_OPCODE_LRP:
4702 case FS_OPCODE_PACK:
4703 return get_fpu_lowered_simd_width(devinfo, inst);
4704
4705 case BRW_OPCODE_CMP: {
4706 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4707 * when the destination is a GRF the dependency-clear bit on the flag
4708 * register is cleared early.
4709 *
4710 * Suggested workarounds are to disable coissuing CMP instructions
4711 * or to split CMP(16) instructions into two CMP(8) instructions.
4712 *
4713 * We choose to split into CMP(8) instructions since disabling
4714 * coissuing would affect CMP instructions not otherwise affected by
4715 * the errata.
4716 */
4717 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4718 !inst->dst.is_null() ? 8 : ~0);
4719 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4720 }
4721 case BRW_OPCODE_BFI1:
4722 case BRW_OPCODE_BFI2:
4723 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4724 * should
4725 * "Force BFI instructions to be executed always in SIMD8."
4726 */
4727 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4728 get_fpu_lowered_simd_width(devinfo, inst));
4729
4730 case BRW_OPCODE_IF:
4731 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4732 return inst->exec_size;
4733
4734 case SHADER_OPCODE_RCP:
4735 case SHADER_OPCODE_RSQ:
4736 case SHADER_OPCODE_SQRT:
4737 case SHADER_OPCODE_EXP2:
4738 case SHADER_OPCODE_LOG2:
4739 case SHADER_OPCODE_SIN:
4740 case SHADER_OPCODE_COS:
4741 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4742 * Gen6.
4743 */
4744 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4745 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4746 MIN2(8, inst->exec_size));
4747
4748 case SHADER_OPCODE_POW:
4749 /* SIMD16 is only allowed on Gen7+. */
4750 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4751 MIN2(8, inst->exec_size));
4752
4753 case SHADER_OPCODE_INT_QUOTIENT:
4754 case SHADER_OPCODE_INT_REMAINDER:
4755 /* Integer division is limited to SIMD8 on all generations. */
4756 return MIN2(8, inst->exec_size);
4757
4758 case FS_OPCODE_LINTERP:
4759 case FS_OPCODE_GET_BUFFER_SIZE:
4760 case FS_OPCODE_DDX_COARSE:
4761 case FS_OPCODE_DDX_FINE:
4762 case FS_OPCODE_DDY_COARSE:
4763 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4764 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4765 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4766 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4767 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4768 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4769 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4770 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4771 return MIN2(16, inst->exec_size);
4772
4773 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4774 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4775 * message used to implement varying pull constant loads, so expand it
4776 * to SIMD16. An alternative with longer message payload length but
4777 * shorter return payload would be to use the SIMD8 sampler message that
4778 * takes (header, u, v, r) as parameters instead of (header, u).
4779 */
4780 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4781
4782 case FS_OPCODE_DDY_FINE:
4783 /* The implementation of this virtual opcode may require emitting
4784 * compressed Align16 instructions, which are severely limited on some
4785 * generations.
4786 *
4787 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4788 * Region Restrictions):
4789 *
4790 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4791 * and SIMD8 is not allowed for DF operations."
4792 *
4793 * In this context, "DW operations" means "operations acting on 32-bit
4794 * values", so it includes operations on floats.
4795 *
4796 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4797 * (Instruction Compression -> Rules and Restrictions):
4798 *
4799 * "A compressed instruction must be in Align1 access mode. Align16
4800 * mode instructions cannot be compressed."
4801 *
4802 * Similar text exists in the g45 PRM.
4803 *
4804 * Empirically, compressed align16 instructions using odd register
4805 * numbers don't appear to work on Sandybridge either.
4806 */
4807 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4808 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4809 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4810
4811 case SHADER_OPCODE_MULH:
4812 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4813 * is 8-wide on Gen7+.
4814 */
4815 return (devinfo->gen >= 7 ? 8 :
4816 get_fpu_lowered_simd_width(devinfo, inst));
4817
4818 case FS_OPCODE_FB_WRITE_LOGICAL:
4819 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4820 * here.
4821 */
4822 assert(devinfo->gen != 6 ||
4823 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4824 inst->exec_size == 8);
4825 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4826 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4827 8 : MIN2(16, inst->exec_size));
4828
4829 case FS_OPCODE_FB_READ_LOGICAL:
4830 return MIN2(16, inst->exec_size);
4831
4832 case SHADER_OPCODE_TEX_LOGICAL:
4833 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4834 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4835 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4836 case SHADER_OPCODE_LOD_LOGICAL:
4837 case SHADER_OPCODE_TG4_LOGICAL:
4838 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4839 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4840 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4841 return get_sampler_lowered_simd_width(devinfo, inst);
4842
4843 case SHADER_OPCODE_TXD_LOGICAL:
4844 /* TXD is unsupported in SIMD16 mode. */
4845 return 8;
4846
4847 case SHADER_OPCODE_TXL_LOGICAL:
4848 case FS_OPCODE_TXB_LOGICAL:
4849 /* Only one execution size is representable pre-ILK depending on whether
4850 * the shadow reference argument is present.
4851 */
4852 if (devinfo->gen == 4)
4853 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4854 else
4855 return get_sampler_lowered_simd_width(devinfo, inst);
4856
4857 case SHADER_OPCODE_TXF_LOGICAL:
4858 case SHADER_OPCODE_TXS_LOGICAL:
4859 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4860 * messages. Use SIMD16 instead.
4861 */
4862 if (devinfo->gen == 4)
4863 return 16;
4864 else
4865 return get_sampler_lowered_simd_width(devinfo, inst);
4866
4867 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4868 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4869 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4870 return 8;
4871
4872 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4873 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4874 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4875 return MIN2(16, inst->exec_size);
4876
4877 case SHADER_OPCODE_URB_READ_SIMD8:
4878 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4879 case SHADER_OPCODE_URB_WRITE_SIMD8:
4880 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4881 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4882 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4883 return MIN2(8, inst->exec_size);
4884
4885 case SHADER_OPCODE_MOV_INDIRECT:
4886 /* Prior to Broadwell, we only have 8 address subregisters */
4887 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4888 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4889 inst->exec_size);
4890
4891 case SHADER_OPCODE_LOAD_PAYLOAD: {
4892 const unsigned reg_count =
4893 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4894
4895 if (reg_count > 2) {
4896 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4897 * can be easily lowered (which excludes headers and heterogeneous
4898 * types).
4899 */
4900 assert(!inst->header_size);
4901 for (unsigned i = 0; i < inst->sources; i++)
4902 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4903 inst->src[i].file == BAD_FILE);
4904
4905 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4906 } else {
4907 return inst->exec_size;
4908 }
4909 }
4910 default:
4911 return inst->exec_size;
4912 }
4913 }
4914
4915 /**
4916 * Return true if splitting out the group of channels of instruction \p inst
4917 * given by lbld.group() requires allocating a temporary for the i-th source
4918 * of the lowered instruction.
4919 */
4920 static inline bool
4921 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4922 {
4923 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4924 (inst->components_read(i) == 1 &&
4925 lbld.dispatch_width() <= inst->exec_size));
4926 }
4927
4928 /**
4929 * Extract the data that would be consumed by the channel group given by
4930 * lbld.group() from the i-th source region of instruction \p inst and return
4931 * it as result in packed form. If any copy instructions are required they
4932 * will be emitted before the given \p inst in \p block.
4933 */
4934 static fs_reg
4935 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4936 unsigned i)
4937 {
4938 /* Specified channel group from the source region. */
4939 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4940
4941 if (needs_src_copy(lbld, inst, i)) {
4942 /* Builder of the right width to perform the copy avoiding uninitialized
4943 * data if the lowered execution size is greater than the original
4944 * execution size of the instruction.
4945 */
4946 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4947 inst->exec_size), 0);
4948 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4949
4950 for (unsigned k = 0; k < inst->components_read(i); ++k)
4951 cbld.at(block, inst)
4952 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4953
4954 return tmp;
4955
4956 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4957 /* The source is invariant for all dispatch_width-wide groups of the
4958 * original region.
4959 */
4960 return inst->src[i];
4961
4962 } else {
4963 /* We can just point the lowered instruction at the right channel group
4964 * from the original region.
4965 */
4966 return src;
4967 }
4968 }
4969
4970 /**
4971 * Return true if splitting out the group of channels of instruction \p inst
4972 * given by lbld.group() requires allocating a temporary for the destination
4973 * of the lowered instruction and copying the data back to the original
4974 * destination region.
4975 */
4976 static inline bool
4977 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
4978 {
4979 /* If the instruction writes more than one component we'll have to shuffle
4980 * the results of multiple lowered instructions in order to make sure that
4981 * they end up arranged correctly in the original destination region.
4982 */
4983 if (inst->size_written > inst->dst.component_size(inst->exec_size))
4984 return true;
4985
4986 /* If the lowered execution size is larger than the original the result of
4987 * the instruction won't fit in the original destination, so we'll have to
4988 * allocate a temporary in any case.
4989 */
4990 if (lbld.dispatch_width() > inst->exec_size)
4991 return true;
4992
4993 for (unsigned i = 0; i < inst->sources; i++) {
4994 /* If we already made a copy of the source for other reasons there won't
4995 * be any overlap with the destination.
4996 */
4997 if (needs_src_copy(lbld, inst, i))
4998 continue;
4999
5000 /* In order to keep the logic simple we emit a copy whenever the
5001 * destination region doesn't exactly match an overlapping source, which
5002 * may point at the source and destination not being aligned group by
5003 * group which could cause one of the lowered instructions to overwrite
5004 * the data read from the same source by other lowered instructions.
5005 */
5006 if (regions_overlap(inst->dst, inst->size_written,
5007 inst->src[i], inst->size_read(i)) &&
5008 !inst->dst.equals(inst->src[i]))
5009 return true;
5010 }
5011
5012 return false;
5013 }
5014
5015 /**
5016 * Insert data from a packed temporary into the channel group given by
5017 * lbld.group() of the destination region of instruction \p inst and return
5018 * the temporary as result. If any copy instructions are required they will
5019 * be emitted around the given \p inst in \p block.
5020 */
5021 static fs_reg
5022 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5023 {
5024 /* Builder of the right width to perform the copy avoiding uninitialized
5025 * data if the lowered execution size is greater than the original
5026 * execution size of the instruction.
5027 */
5028 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5029 inst->exec_size), 0);
5030
5031 /* Specified channel group from the destination region. */
5032 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5033 const unsigned dst_size = inst->size_written /
5034 inst->dst.component_size(inst->exec_size);
5035
5036 if (needs_dst_copy(lbld, inst)) {
5037 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5038
5039 if (inst->predicate) {
5040 /* Handle predication by copying the original contents of
5041 * the destination into the temporary before emitting the
5042 * lowered instruction.
5043 */
5044 for (unsigned k = 0; k < dst_size; ++k)
5045 cbld.at(block, inst)
5046 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5047 }
5048
5049 for (unsigned k = 0; k < dst_size; ++k)
5050 cbld.at(block, inst->next)
5051 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5052
5053 return tmp;
5054
5055 } else {
5056 /* No need to allocate a temporary for the lowered instruction, just
5057 * take the right group of channels from the original region.
5058 */
5059 return dst;
5060 }
5061 }
5062
5063 bool
5064 fs_visitor::lower_simd_width()
5065 {
5066 bool progress = false;
5067
5068 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5069 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5070
5071 if (lower_width != inst->exec_size) {
5072 /* Builder matching the original instruction. We may also need to
5073 * emit an instruction of width larger than the original, set the
5074 * execution size of the builder to the highest of both for now so
5075 * we're sure that both cases can be handled.
5076 */
5077 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5078 const fs_builder ibld = bld.at(block, inst)
5079 .exec_all(inst->force_writemask_all)
5080 .group(max_width, inst->group / max_width);
5081
5082 /* Split the copies in chunks of the execution width of either the
5083 * original or the lowered instruction, whichever is lower.
5084 */
5085 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5086 const unsigned dst_size = inst->size_written /
5087 inst->dst.component_size(inst->exec_size);
5088
5089 assert(!inst->writes_accumulator && !inst->mlen);
5090
5091 for (unsigned i = 0; i < n; i++) {
5092 /* Emit a copy of the original instruction with the lowered width.
5093 * If the EOT flag was set throw it away except for the last
5094 * instruction to avoid killing the thread prematurely.
5095 */
5096 fs_inst split_inst = *inst;
5097 split_inst.exec_size = lower_width;
5098 split_inst.eot = inst->eot && i == n - 1;
5099
5100 /* Select the correct channel enables for the i-th group, then
5101 * transform the sources and destination and emit the lowered
5102 * instruction.
5103 */
5104 const fs_builder lbld = ibld.group(lower_width, i);
5105
5106 for (unsigned j = 0; j < inst->sources; j++)
5107 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5108
5109 split_inst.dst = emit_zip(lbld, block, inst);
5110 split_inst.size_written =
5111 split_inst.dst.component_size(lower_width) * dst_size;
5112
5113 lbld.emit(split_inst);
5114 }
5115
5116 inst->remove(block);
5117 progress = true;
5118 }
5119 }
5120
5121 if (progress)
5122 invalidate_live_intervals();
5123
5124 return progress;
5125 }
5126
5127 void
5128 fs_visitor::dump_instructions()
5129 {
5130 dump_instructions(NULL);
5131 }
5132
5133 void
5134 fs_visitor::dump_instructions(const char *name)
5135 {
5136 FILE *file = stderr;
5137 if (name && geteuid() != 0) {
5138 file = fopen(name, "w");
5139 if (!file)
5140 file = stderr;
5141 }
5142
5143 if (cfg) {
5144 calculate_register_pressure();
5145 int ip = 0, max_pressure = 0;
5146 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5147 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5148 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5149 dump_instruction(inst, file);
5150 ip++;
5151 }
5152 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5153 } else {
5154 int ip = 0;
5155 foreach_in_list(backend_instruction, inst, &instructions) {
5156 fprintf(file, "%4d: ", ip++);
5157 dump_instruction(inst, file);
5158 }
5159 }
5160
5161 if (file != stderr) {
5162 fclose(file);
5163 }
5164 }
5165
5166 void
5167 fs_visitor::dump_instruction(backend_instruction *be_inst)
5168 {
5169 dump_instruction(be_inst, stderr);
5170 }
5171
5172 void
5173 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5174 {
5175 fs_inst *inst = (fs_inst *)be_inst;
5176
5177 if (inst->predicate) {
5178 fprintf(file, "(%cf0.%d) ",
5179 inst->predicate_inverse ? '-' : '+',
5180 inst->flag_subreg);
5181 }
5182
5183 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5184 if (inst->saturate)
5185 fprintf(file, ".sat");
5186 if (inst->conditional_mod) {
5187 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5188 if (!inst->predicate &&
5189 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5190 inst->opcode != BRW_OPCODE_IF &&
5191 inst->opcode != BRW_OPCODE_WHILE))) {
5192 fprintf(file, ".f0.%d", inst->flag_subreg);
5193 }
5194 }
5195 fprintf(file, "(%d) ", inst->exec_size);
5196
5197 if (inst->mlen) {
5198 fprintf(file, "(mlen: %d) ", inst->mlen);
5199 }
5200
5201 if (inst->eot) {
5202 fprintf(file, "(EOT) ");
5203 }
5204
5205 switch (inst->dst.file) {
5206 case VGRF:
5207 fprintf(file, "vgrf%d", inst->dst.nr);
5208 break;
5209 case FIXED_GRF:
5210 fprintf(file, "g%d", inst->dst.nr);
5211 break;
5212 case MRF:
5213 fprintf(file, "m%d", inst->dst.nr);
5214 break;
5215 case BAD_FILE:
5216 fprintf(file, "(null)");
5217 break;
5218 case UNIFORM:
5219 fprintf(file, "***u%d***", inst->dst.nr);
5220 break;
5221 case ATTR:
5222 fprintf(file, "***attr%d***", inst->dst.nr);
5223 break;
5224 case ARF:
5225 switch (inst->dst.nr) {
5226 case BRW_ARF_NULL:
5227 fprintf(file, "null");
5228 break;
5229 case BRW_ARF_ADDRESS:
5230 fprintf(file, "a0.%d", inst->dst.subnr);
5231 break;
5232 case BRW_ARF_ACCUMULATOR:
5233 fprintf(file, "acc%d", inst->dst.subnr);
5234 break;
5235 case BRW_ARF_FLAG:
5236 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5237 break;
5238 default:
5239 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5240 break;
5241 }
5242 break;
5243 case IMM:
5244 unreachable("not reached");
5245 }
5246
5247 if (inst->dst.offset ||
5248 (inst->dst.file == VGRF &&
5249 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5250 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5251 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5252 inst->dst.offset % reg_size);
5253 }
5254
5255 if (inst->dst.stride != 1)
5256 fprintf(file, "<%u>", inst->dst.stride);
5257 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5258
5259 for (int i = 0; i < inst->sources; i++) {
5260 if (inst->src[i].negate)
5261 fprintf(file, "-");
5262 if (inst->src[i].abs)
5263 fprintf(file, "|");
5264 switch (inst->src[i].file) {
5265 case VGRF:
5266 fprintf(file, "vgrf%d", inst->src[i].nr);
5267 break;
5268 case FIXED_GRF:
5269 fprintf(file, "g%d", inst->src[i].nr);
5270 break;
5271 case MRF:
5272 fprintf(file, "***m%d***", inst->src[i].nr);
5273 break;
5274 case ATTR:
5275 fprintf(file, "attr%d", inst->src[i].nr);
5276 break;
5277 case UNIFORM:
5278 fprintf(file, "u%d", inst->src[i].nr);
5279 break;
5280 case BAD_FILE:
5281 fprintf(file, "(null)");
5282 break;
5283 case IMM:
5284 switch (inst->src[i].type) {
5285 case BRW_REGISTER_TYPE_F:
5286 fprintf(file, "%-gf", inst->src[i].f);
5287 break;
5288 case BRW_REGISTER_TYPE_DF:
5289 fprintf(file, "%fdf", inst->src[i].df);
5290 break;
5291 case BRW_REGISTER_TYPE_W:
5292 case BRW_REGISTER_TYPE_D:
5293 fprintf(file, "%dd", inst->src[i].d);
5294 break;
5295 case BRW_REGISTER_TYPE_UW:
5296 case BRW_REGISTER_TYPE_UD:
5297 fprintf(file, "%uu", inst->src[i].ud);
5298 break;
5299 case BRW_REGISTER_TYPE_VF:
5300 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5301 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5302 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5303 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5304 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5305 break;
5306 default:
5307 fprintf(file, "???");
5308 break;
5309 }
5310 break;
5311 case ARF:
5312 switch (inst->src[i].nr) {
5313 case BRW_ARF_NULL:
5314 fprintf(file, "null");
5315 break;
5316 case BRW_ARF_ADDRESS:
5317 fprintf(file, "a0.%d", inst->src[i].subnr);
5318 break;
5319 case BRW_ARF_ACCUMULATOR:
5320 fprintf(file, "acc%d", inst->src[i].subnr);
5321 break;
5322 case BRW_ARF_FLAG:
5323 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5324 break;
5325 default:
5326 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5327 break;
5328 }
5329 break;
5330 }
5331
5332 if (inst->src[i].offset ||
5333 (inst->src[i].file == VGRF &&
5334 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5335 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5336 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5337 inst->src[i].offset % reg_size);
5338 }
5339
5340 if (inst->src[i].abs)
5341 fprintf(file, "|");
5342
5343 if (inst->src[i].file != IMM) {
5344 unsigned stride;
5345 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5346 unsigned hstride = inst->src[i].hstride;
5347 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5348 } else {
5349 stride = inst->src[i].stride;
5350 }
5351 if (stride != 1)
5352 fprintf(file, "<%u>", stride);
5353
5354 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5355 }
5356
5357 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5358 fprintf(file, ", ");
5359 }
5360
5361 fprintf(file, " ");
5362
5363 if (inst->force_writemask_all)
5364 fprintf(file, "NoMask ");
5365
5366 if (inst->exec_size != dispatch_width)
5367 fprintf(file, "group%d ", inst->group);
5368
5369 fprintf(file, "\n");
5370 }
5371
5372 /**
5373 * Possibly returns an instruction that set up @param reg.
5374 *
5375 * Sometimes we want to take the result of some expression/variable
5376 * dereference tree and rewrite the instruction generating the result
5377 * of the tree. When processing the tree, we know that the
5378 * instructions generated are all writing temporaries that are dead
5379 * outside of this tree. So, if we have some instructions that write
5380 * a temporary, we're free to point that temp write somewhere else.
5381 *
5382 * Note that this doesn't guarantee that the instruction generated
5383 * only reg -- it might be the size=4 destination of a texture instruction.
5384 */
5385 fs_inst *
5386 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5387 fs_inst *end,
5388 const fs_reg &reg)
5389 {
5390 if (end == start ||
5391 end->is_partial_write() ||
5392 !reg.equals(end->dst)) {
5393 return NULL;
5394 } else {
5395 return end;
5396 }
5397 }
5398
5399 void
5400 fs_visitor::setup_fs_payload_gen6()
5401 {
5402 assert(stage == MESA_SHADER_FRAGMENT);
5403 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5404
5405 assert(devinfo->gen >= 6);
5406
5407 /* R0-1: masks, pixel X/Y coordinates. */
5408 payload.num_regs = 2;
5409 /* R2: only for 32-pixel dispatch.*/
5410
5411 /* R3-26: barycentric interpolation coordinates. These appear in the
5412 * same order that they appear in the brw_barycentric_mode
5413 * enum. Each set of coordinates occupies 2 registers if dispatch width
5414 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5415 * appear if they were enabled using the "Barycentric Interpolation
5416 * Mode" bits in WM_STATE.
5417 */
5418 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5419 if (prog_data->barycentric_interp_modes & (1 << i)) {
5420 payload.barycentric_coord_reg[i] = payload.num_regs;
5421 payload.num_regs += 2;
5422 if (dispatch_width == 16) {
5423 payload.num_regs += 2;
5424 }
5425 }
5426 }
5427
5428 /* R27: interpolated depth if uses source depth */
5429 prog_data->uses_src_depth =
5430 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5431 if (prog_data->uses_src_depth) {
5432 payload.source_depth_reg = payload.num_regs;
5433 payload.num_regs++;
5434 if (dispatch_width == 16) {
5435 /* R28: interpolated depth if not SIMD8. */
5436 payload.num_regs++;
5437 }
5438 }
5439
5440 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5441 prog_data->uses_src_w =
5442 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5443 if (prog_data->uses_src_w) {
5444 payload.source_w_reg = payload.num_regs;
5445 payload.num_regs++;
5446 if (dispatch_width == 16) {
5447 /* R30: interpolated W if not SIMD8. */
5448 payload.num_regs++;
5449 }
5450 }
5451
5452 /* R31: MSAA position offsets. */
5453 if (prog_data->persample_dispatch &&
5454 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5455 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5456 *
5457 * "MSDISPMODE_PERSAMPLE is required in order to select
5458 * POSOFFSET_SAMPLE"
5459 *
5460 * So we can only really get sample positions if we are doing real
5461 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5462 * persample dispatch, we hard-code it to 0.5.
5463 */
5464 prog_data->uses_pos_offset = true;
5465 payload.sample_pos_reg = payload.num_regs;
5466 payload.num_regs++;
5467 }
5468
5469 /* R32: MSAA input coverage mask */
5470 prog_data->uses_sample_mask =
5471 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5472 if (prog_data->uses_sample_mask) {
5473 assert(devinfo->gen >= 7);
5474 payload.sample_mask_in_reg = payload.num_regs;
5475 payload.num_regs++;
5476 if (dispatch_width == 16) {
5477 /* R33: input coverage mask if not SIMD8. */
5478 payload.num_regs++;
5479 }
5480 }
5481
5482 /* R34-: bary for 32-pixel. */
5483 /* R58-59: interp W for 32-pixel. */
5484
5485 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5486 source_depth_to_render_target = true;
5487 }
5488 }
5489
5490 void
5491 fs_visitor::setup_vs_payload()
5492 {
5493 /* R0: thread header, R1: urb handles */
5494 payload.num_regs = 2;
5495 }
5496
5497 void
5498 fs_visitor::setup_gs_payload()
5499 {
5500 assert(stage == MESA_SHADER_GEOMETRY);
5501
5502 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5503 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5504
5505 /* R0: thread header, R1: output URB handles */
5506 payload.num_regs = 2;
5507
5508 if (gs_prog_data->include_primitive_id) {
5509 /* R2: Primitive ID 0..7 */
5510 payload.num_regs++;
5511 }
5512
5513 /* Use a maximum of 24 registers for push-model inputs. */
5514 const unsigned max_push_components = 24;
5515
5516 /* If pushing our inputs would take too many registers, reduce the URB read
5517 * length (which is in HWords, or 8 registers), and resort to pulling.
5518 *
5519 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5520 * have to multiply by VerticesIn to obtain the total storage requirement.
5521 */
5522 if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5523 max_push_components || gs_prog_data->invocations > 1) {
5524 gs_prog_data->base.include_vue_handles = true;
5525
5526 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5527 payload.num_regs += nir->info->gs.vertices_in;
5528
5529 vue_prog_data->urb_read_length =
5530 ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5531 }
5532 }
5533
5534 void
5535 fs_visitor::setup_cs_payload()
5536 {
5537 assert(devinfo->gen >= 7);
5538 payload.num_regs = 1;
5539 }
5540
5541 void
5542 fs_visitor::calculate_register_pressure()
5543 {
5544 invalidate_live_intervals();
5545 calculate_live_intervals();
5546
5547 unsigned num_instructions = 0;
5548 foreach_block(block, cfg)
5549 num_instructions += block->instructions.length();
5550
5551 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5552
5553 for (unsigned reg = 0; reg < alloc.count; reg++) {
5554 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5555 regs_live_at_ip[ip] += alloc.sizes[reg];
5556 }
5557 }
5558
5559 /**
5560 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5561 *
5562 * The needs_unlit_centroid_workaround ends up producing one of these per
5563 * channel of centroid input, so it's good to clean them up.
5564 *
5565 * An assumption here is that nothing ever modifies the dispatched pixels
5566 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5567 * dictates that anyway.
5568 */
5569 bool
5570 fs_visitor::opt_drop_redundant_mov_to_flags()
5571 {
5572 bool flag_mov_found[2] = {false};
5573 bool progress = false;
5574
5575 /* Instructions removed by this pass can only be added if this were true */
5576 if (!devinfo->needs_unlit_centroid_workaround)
5577 return false;
5578
5579 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5580 if (inst->is_control_flow()) {
5581 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5582 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5583 if (!flag_mov_found[inst->flag_subreg]) {
5584 flag_mov_found[inst->flag_subreg] = true;
5585 } else {
5586 inst->remove(block);
5587 progress = true;
5588 }
5589 } else if (inst->flags_written()) {
5590 flag_mov_found[inst->flag_subreg] = false;
5591 }
5592 }
5593
5594 return progress;
5595 }
5596
5597 void
5598 fs_visitor::optimize()
5599 {
5600 /* Start by validating the shader we currently have. */
5601 validate();
5602
5603 /* bld is the common builder object pointing at the end of the program we
5604 * used to translate it into i965 IR. For the optimization and lowering
5605 * passes coming next, any code added after the end of the program without
5606 * having explicitly called fs_builder::at() clearly points at a mistake.
5607 * Ideally optimization passes wouldn't be part of the visitor so they
5608 * wouldn't have access to bld at all, but they do, so just in case some
5609 * pass forgets to ask for a location explicitly set it to NULL here to
5610 * make it trip. The dispatch width is initialized to a bogus value to
5611 * make sure that optimizations set the execution controls explicitly to
5612 * match the code they are manipulating instead of relying on the defaults.
5613 */
5614 bld = fs_builder(this, 64);
5615
5616 assign_constant_locations();
5617 lower_constant_loads();
5618
5619 validate();
5620
5621 split_virtual_grfs();
5622 validate();
5623
5624 #define OPT(pass, args...) ({ \
5625 pass_num++; \
5626 bool this_progress = pass(args); \
5627 \
5628 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5629 char filename[64]; \
5630 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5631 stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5632 \
5633 backend_shader::dump_instructions(filename); \
5634 } \
5635 \
5636 validate(); \
5637 \
5638 progress = progress || this_progress; \
5639 this_progress; \
5640 })
5641
5642 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5643 char filename[64];
5644 snprintf(filename, 64, "%s%d-%s-00-00-start",
5645 stage_abbrev, dispatch_width, nir->info->name);
5646
5647 backend_shader::dump_instructions(filename);
5648 }
5649
5650 bool progress = false;
5651 int iteration = 0;
5652 int pass_num = 0;
5653
5654 OPT(opt_drop_redundant_mov_to_flags);
5655
5656 do {
5657 progress = false;
5658 pass_num = 0;
5659 iteration++;
5660
5661 OPT(remove_duplicate_mrf_writes);
5662
5663 OPT(opt_algebraic);
5664 OPT(opt_cse);
5665 OPT(opt_copy_propagation);
5666 OPT(opt_predicated_break, this);
5667 OPT(opt_cmod_propagation);
5668 OPT(dead_code_eliminate);
5669 OPT(opt_peephole_sel);
5670 OPT(dead_control_flow_eliminate, this);
5671 OPT(opt_register_renaming);
5672 OPT(opt_saturate_propagation);
5673 OPT(register_coalesce);
5674 OPT(compute_to_mrf);
5675 OPT(eliminate_find_live_channel);
5676
5677 OPT(compact_virtual_grfs);
5678 } while (progress);
5679
5680 progress = false;
5681 pass_num = 0;
5682
5683 if (OPT(lower_pack)) {
5684 OPT(register_coalesce);
5685 OPT(dead_code_eliminate);
5686 }
5687
5688 if (OPT(lower_d2x)) {
5689 OPT(opt_copy_propagation);
5690 OPT(dead_code_eliminate);
5691 }
5692
5693 OPT(lower_simd_width);
5694
5695 /* After SIMD lowering just in case we had to unroll the EOT send. */
5696 OPT(opt_sampler_eot);
5697
5698 OPT(lower_logical_sends);
5699
5700 if (progress) {
5701 OPT(opt_copy_propagation);
5702 /* Only run after logical send lowering because it's easier to implement
5703 * in terms of physical sends.
5704 */
5705 if (OPT(opt_zero_samples))
5706 OPT(opt_copy_propagation);
5707 /* Run after logical send lowering to give it a chance to CSE the
5708 * LOAD_PAYLOAD instructions created to construct the payloads of
5709 * e.g. texturing messages in cases where it wasn't possible to CSE the
5710 * whole logical instruction.
5711 */
5712 OPT(opt_cse);
5713 OPT(register_coalesce);
5714 OPT(compute_to_mrf);
5715 OPT(dead_code_eliminate);
5716 OPT(remove_duplicate_mrf_writes);
5717 OPT(opt_peephole_sel);
5718 }
5719
5720 OPT(opt_redundant_discard_jumps);
5721
5722 if (OPT(lower_load_payload)) {
5723 split_virtual_grfs();
5724 OPT(register_coalesce);
5725 OPT(compute_to_mrf);
5726 OPT(dead_code_eliminate);
5727 }
5728
5729 OPT(opt_combine_constants);
5730 OPT(lower_integer_multiplication);
5731
5732 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5733 OPT(opt_cmod_propagation);
5734 OPT(opt_cse);
5735 OPT(opt_copy_propagation);
5736 OPT(dead_code_eliminate);
5737 }
5738
5739 lower_uniform_pull_constant_loads();
5740
5741 validate();
5742 }
5743
5744 /**
5745 * Three source instruction must have a GRF/MRF destination register.
5746 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5747 */
5748 void
5749 fs_visitor::fixup_3src_null_dest()
5750 {
5751 bool progress = false;
5752
5753 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5754 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5755 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5756 inst->dst.type);
5757 progress = true;
5758 }
5759 }
5760
5761 if (progress)
5762 invalidate_live_intervals();
5763 }
5764
5765 void
5766 fs_visitor::allocate_registers(bool allow_spilling)
5767 {
5768 bool allocated_without_spills;
5769
5770 static const enum instruction_scheduler_mode pre_modes[] = {
5771 SCHEDULE_PRE,
5772 SCHEDULE_PRE_NON_LIFO,
5773 SCHEDULE_PRE_LIFO,
5774 };
5775
5776 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5777
5778 /* Try each scheduling heuristic to see if it can successfully register
5779 * allocate without spilling. They should be ordered by decreasing
5780 * performance but increasing likelihood of allocating.
5781 */
5782 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5783 schedule_instructions(pre_modes[i]);
5784
5785 if (0) {
5786 assign_regs_trivial();
5787 allocated_without_spills = true;
5788 } else {
5789 allocated_without_spills = assign_regs(false, spill_all);
5790 }
5791 if (allocated_without_spills)
5792 break;
5793 }
5794
5795 if (!allocated_without_spills) {
5796 if (!allow_spilling)
5797 fail("Failure to register allocate and spilling is not allowed.");
5798
5799 /* We assume that any spilling is worse than just dropping back to
5800 * SIMD8. There's probably actually some intermediate point where
5801 * SIMD16 with a couple of spills is still better.
5802 */
5803 if (dispatch_width > min_dispatch_width) {
5804 fail("Failure to register allocate. Reduce number of "
5805 "live scalar values to avoid this.");
5806 } else {
5807 compiler->shader_perf_log(log_data,
5808 "%s shader triggered register spilling. "
5809 "Try reducing the number of live scalar "
5810 "values to improve performance.\n",
5811 stage_name);
5812 }
5813
5814 /* Since we're out of heuristics, just go spill registers until we
5815 * get an allocation.
5816 */
5817 while (!assign_regs(true, spill_all)) {
5818 if (failed)
5819 break;
5820 }
5821 }
5822
5823 /* This must come after all optimization and register allocation, since
5824 * it inserts dead code that happens to have side effects, and it does
5825 * so based on the actual physical registers in use.
5826 */
5827 insert_gen4_send_dependency_workarounds();
5828
5829 if (failed)
5830 return;
5831
5832 schedule_instructions(SCHEDULE_POST);
5833
5834 if (last_scratch > 0) {
5835 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5836
5837 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5838
5839 if (stage == MESA_SHADER_COMPUTE) {
5840 if (devinfo->is_haswell) {
5841 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5842 * field documentation, Haswell supports a minimum of 2kB of
5843 * scratch space for compute shaders, unlike every other stage
5844 * and platform.
5845 */
5846 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5847 } else if (devinfo->gen <= 7) {
5848 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5849 * field documentation, platforms prior to Haswell measure scratch
5850 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5851 */
5852 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5853 max_scratch_size = 12 * 1024;
5854 }
5855 }
5856
5857 /* We currently only support up to 2MB of scratch space. If we
5858 * need to support more eventually, the documentation suggests
5859 * that we could allocate a larger buffer, and partition it out
5860 * ourselves. We'd just have to undo the hardware's address
5861 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5862 * and then add FFTID * (Larger Per Thread Scratch Space).
5863 *
5864 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5865 * Thread Group Tracking > Local Memory/Scratch Space.
5866 */
5867 assert(prog_data->total_scratch < max_scratch_size);
5868 }
5869 }
5870
5871 bool
5872 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5873 {
5874 assert(stage == MESA_SHADER_VERTEX);
5875
5876 setup_vs_payload();
5877
5878 if (shader_time_index >= 0)
5879 emit_shader_time_begin();
5880
5881 emit_nir_code();
5882
5883 if (failed)
5884 return false;
5885
5886 compute_clip_distance(clip_planes);
5887
5888 emit_urb_writes();
5889
5890 if (shader_time_index >= 0)
5891 emit_shader_time_end();
5892
5893 calculate_cfg();
5894
5895 optimize();
5896
5897 assign_curb_setup();
5898 assign_vs_urb_setup();
5899
5900 fixup_3src_null_dest();
5901 allocate_registers(true);
5902
5903 return !failed;
5904 }
5905
5906 bool
5907 fs_visitor::run_tcs_single_patch()
5908 {
5909 assert(stage == MESA_SHADER_TESS_CTRL);
5910
5911 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5912
5913 /* r1-r4 contain the ICP handles. */
5914 payload.num_regs = 5;
5915
5916 if (shader_time_index >= 0)
5917 emit_shader_time_begin();
5918
5919 /* Initialize gl_InvocationID */
5920 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5921 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5922 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5923 bld.MOV(channels_ud, channels_uw);
5924
5925 if (tcs_prog_data->instances == 1) {
5926 invocation_id = channels_ud;
5927 } else {
5928 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5929
5930 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5931 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5932 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5933 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5934 brw_imm_ud(INTEL_MASK(23, 17)));
5935 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5936
5937 bld.ADD(invocation_id, instance_times_8, channels_ud);
5938 }
5939
5940 /* Fix the disptach mask */
5941 if (nir->info->tcs.vertices_out % 8) {
5942 bld.CMP(bld.null_reg_ud(), invocation_id,
5943 brw_imm_ud(nir->info->tcs.vertices_out), BRW_CONDITIONAL_L);
5944 bld.IF(BRW_PREDICATE_NORMAL);
5945 }
5946
5947 emit_nir_code();
5948
5949 if (nir->info->tcs.vertices_out % 8) {
5950 bld.emit(BRW_OPCODE_ENDIF);
5951 }
5952
5953 /* Emit EOT write; set TR DS Cache bit */
5954 fs_reg srcs[3] = {
5955 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5956 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5957 fs_reg(brw_imm_ud(0)),
5958 };
5959 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5960 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5961
5962 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5963 bld.null_reg_ud(), payload);
5964 inst->mlen = 3;
5965 inst->eot = true;
5966
5967 if (shader_time_index >= 0)
5968 emit_shader_time_end();
5969
5970 if (failed)
5971 return false;
5972
5973 calculate_cfg();
5974
5975 optimize();
5976
5977 assign_curb_setup();
5978 assign_tcs_single_patch_urb_setup();
5979
5980 fixup_3src_null_dest();
5981 allocate_registers(true);
5982
5983 return !failed;
5984 }
5985
5986 bool
5987 fs_visitor::run_tes()
5988 {
5989 assert(stage == MESA_SHADER_TESS_EVAL);
5990
5991 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5992 payload.num_regs = 5;
5993
5994 if (shader_time_index >= 0)
5995 emit_shader_time_begin();
5996
5997 emit_nir_code();
5998
5999 if (failed)
6000 return false;
6001
6002 emit_urb_writes();
6003
6004 if (shader_time_index >= 0)
6005 emit_shader_time_end();
6006
6007 calculate_cfg();
6008
6009 optimize();
6010
6011 assign_curb_setup();
6012 assign_tes_urb_setup();
6013
6014 fixup_3src_null_dest();
6015 allocate_registers(true);
6016
6017 return !failed;
6018 }
6019
6020 bool
6021 fs_visitor::run_gs()
6022 {
6023 assert(stage == MESA_SHADER_GEOMETRY);
6024
6025 setup_gs_payload();
6026
6027 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6028
6029 if (gs_compile->control_data_header_size_bits > 0) {
6030 /* Create a VGRF to store accumulated control data bits. */
6031 this->control_data_bits = vgrf(glsl_type::uint_type);
6032
6033 /* If we're outputting more than 32 control data bits, then EmitVertex()
6034 * will set control_data_bits to 0 after emitting the first vertex.
6035 * Otherwise, we need to initialize it to 0 here.
6036 */
6037 if (gs_compile->control_data_header_size_bits <= 32) {
6038 const fs_builder abld = bld.annotate("initialize control data bits");
6039 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6040 }
6041 }
6042
6043 if (shader_time_index >= 0)
6044 emit_shader_time_begin();
6045
6046 emit_nir_code();
6047
6048 emit_gs_thread_end();
6049
6050 if (shader_time_index >= 0)
6051 emit_shader_time_end();
6052
6053 if (failed)
6054 return false;
6055
6056 calculate_cfg();
6057
6058 optimize();
6059
6060 assign_curb_setup();
6061 assign_gs_urb_setup();
6062
6063 fixup_3src_null_dest();
6064 allocate_registers(true);
6065
6066 return !failed;
6067 }
6068
6069 bool
6070 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6071 {
6072 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6073 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6074
6075 assert(stage == MESA_SHADER_FRAGMENT);
6076
6077 if (devinfo->gen >= 6)
6078 setup_fs_payload_gen6();
6079 else
6080 setup_fs_payload_gen4();
6081
6082 if (0) {
6083 emit_dummy_fs();
6084 } else if (do_rep_send) {
6085 assert(dispatch_width == 16);
6086 emit_repclear_shader();
6087 } else {
6088 if (shader_time_index >= 0)
6089 emit_shader_time_begin();
6090
6091 calculate_urb_setup();
6092 if (nir->info->inputs_read > 0 ||
6093 (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6094 if (devinfo->gen < 6)
6095 emit_interpolation_setup_gen4();
6096 else
6097 emit_interpolation_setup_gen6();
6098 }
6099
6100 /* We handle discards by keeping track of the still-live pixels in f0.1.
6101 * Initialize it with the dispatched pixels.
6102 */
6103 if (wm_prog_data->uses_kill) {
6104 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6105 discard_init->flag_subreg = 1;
6106 }
6107
6108 /* Generate FS IR for main(). (the visitor only descends into
6109 * functions called "main").
6110 */
6111 emit_nir_code();
6112
6113 if (failed)
6114 return false;
6115
6116 if (wm_prog_data->uses_kill)
6117 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6118
6119 if (wm_key->alpha_test_func)
6120 emit_alpha_test();
6121
6122 emit_fb_writes();
6123
6124 if (shader_time_index >= 0)
6125 emit_shader_time_end();
6126
6127 calculate_cfg();
6128
6129 optimize();
6130
6131 assign_curb_setup();
6132 assign_urb_setup();
6133
6134 fixup_3src_null_dest();
6135 allocate_registers(allow_spilling);
6136
6137 if (failed)
6138 return false;
6139 }
6140
6141 return !failed;
6142 }
6143
6144 bool
6145 fs_visitor::run_cs()
6146 {
6147 assert(stage == MESA_SHADER_COMPUTE);
6148
6149 setup_cs_payload();
6150
6151 if (shader_time_index >= 0)
6152 emit_shader_time_begin();
6153
6154 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6155 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6156 const fs_builder abld = bld.exec_all().group(1, 0);
6157 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6158 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6159 }
6160
6161 emit_nir_code();
6162
6163 if (failed)
6164 return false;
6165
6166 emit_cs_terminate();
6167
6168 if (shader_time_index >= 0)
6169 emit_shader_time_end();
6170
6171 calculate_cfg();
6172
6173 optimize();
6174
6175 assign_curb_setup();
6176
6177 fixup_3src_null_dest();
6178 allocate_registers(true);
6179
6180 if (failed)
6181 return false;
6182
6183 return !failed;
6184 }
6185
6186 /**
6187 * Return a bitfield where bit n is set if barycentric interpolation mode n
6188 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6189 *
6190 * We examine the load_barycentric intrinsics rather than looking at input
6191 * variables so that we catch interpolateAtCentroid() messages too, which
6192 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6193 */
6194 static unsigned
6195 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6196 const nir_shader *shader)
6197 {
6198 unsigned barycentric_interp_modes = 0;
6199
6200 nir_foreach_function(f, shader) {
6201 if (!f->impl)
6202 continue;
6203
6204 nir_foreach_block(block, f->impl) {
6205 nir_foreach_instr(instr, block) {
6206 if (instr->type != nir_instr_type_intrinsic)
6207 continue;
6208
6209 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6210 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6211 continue;
6212
6213 /* Ignore WPOS; it doesn't require interpolation. */
6214 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6215 continue;
6216
6217 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6218 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6219 nir_intrinsic_interp_mode(intrin);
6220 nir_intrinsic_op bary_op = intrin->intrinsic;
6221 enum brw_barycentric_mode bary =
6222 brw_barycentric_mode(interp, bary_op);
6223
6224 barycentric_interp_modes |= 1 << bary;
6225
6226 if (devinfo->needs_unlit_centroid_workaround &&
6227 bary_op == nir_intrinsic_load_barycentric_centroid)
6228 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6229 }
6230 }
6231 }
6232
6233 return barycentric_interp_modes;
6234 }
6235
6236 static void
6237 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6238 const nir_shader *shader)
6239 {
6240 prog_data->flat_inputs = 0;
6241
6242 nir_foreach_variable(var, &shader->inputs) {
6243 int input_index = prog_data->urb_setup[var->data.location];
6244
6245 if (input_index < 0)
6246 continue;
6247
6248 /* flat shading */
6249 if (var->data.interpolation == INTERP_MODE_FLAT)
6250 prog_data->flat_inputs |= (1 << input_index);
6251 }
6252 }
6253
6254 static uint8_t
6255 computed_depth_mode(const nir_shader *shader)
6256 {
6257 if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6258 switch (shader->info->fs.depth_layout) {
6259 case FRAG_DEPTH_LAYOUT_NONE:
6260 case FRAG_DEPTH_LAYOUT_ANY:
6261 return BRW_PSCDEPTH_ON;
6262 case FRAG_DEPTH_LAYOUT_GREATER:
6263 return BRW_PSCDEPTH_ON_GE;
6264 case FRAG_DEPTH_LAYOUT_LESS:
6265 return BRW_PSCDEPTH_ON_LE;
6266 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6267 return BRW_PSCDEPTH_OFF;
6268 }
6269 }
6270 return BRW_PSCDEPTH_OFF;
6271 }
6272
6273 /**
6274 * Move load_interpolated_input with simple (payload-based) barycentric modes
6275 * to the top of the program so we don't emit multiple PLNs for the same input.
6276 *
6277 * This works around CSE not being able to handle non-dominating cases
6278 * such as:
6279 *
6280 * if (...) {
6281 * interpolate input
6282 * } else {
6283 * interpolate the same exact input
6284 * }
6285 *
6286 * This should be replaced by global value numbering someday.
6287 */
6288 void
6289 move_interpolation_to_top(nir_shader *nir)
6290 {
6291 nir_foreach_function(f, nir) {
6292 if (!f->impl)
6293 continue;
6294
6295 nir_block *top = nir_start_block(f->impl);
6296 exec_node *cursor_node = NULL;
6297
6298 nir_foreach_block(block, f->impl) {
6299 if (block == top)
6300 continue;
6301
6302 nir_foreach_instr_safe(instr, block) {
6303 if (instr->type != nir_instr_type_intrinsic)
6304 continue;
6305
6306 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6307 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6308 continue;
6309 nir_intrinsic_instr *bary_intrinsic =
6310 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6311 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6312
6313 /* Leave interpolateAtSample/Offset() where they are. */
6314 if (op == nir_intrinsic_load_barycentric_at_sample ||
6315 op == nir_intrinsic_load_barycentric_at_offset)
6316 continue;
6317
6318 nir_instr *move[3] = {
6319 &bary_intrinsic->instr,
6320 intrin->src[1].ssa->parent_instr,
6321 instr
6322 };
6323
6324 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6325 if (move[i]->block != top) {
6326 move[i]->block = top;
6327 exec_node_remove(&move[i]->node);
6328 if (cursor_node) {
6329 exec_node_insert_after(cursor_node, &move[i]->node);
6330 } else {
6331 exec_list_push_head(&top->instr_list, &move[i]->node);
6332 }
6333 cursor_node = &move[i]->node;
6334 }
6335 }
6336 }
6337 }
6338 nir_metadata_preserve(f->impl, (nir_metadata)
6339 ((unsigned) nir_metadata_block_index |
6340 (unsigned) nir_metadata_dominance));
6341 }
6342 }
6343
6344 /**
6345 * Demote per-sample barycentric intrinsics to centroid.
6346 *
6347 * Useful when rendering to a non-multisampled buffer.
6348 */
6349 static void
6350 demote_sample_qualifiers(nir_shader *nir)
6351 {
6352 nir_foreach_function(f, nir) {
6353 if (!f->impl)
6354 continue;
6355
6356 nir_builder b;
6357 nir_builder_init(&b, f->impl);
6358
6359 nir_foreach_block(block, f->impl) {
6360 nir_foreach_instr_safe(instr, block) {
6361 if (instr->type != nir_instr_type_intrinsic)
6362 continue;
6363
6364 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6365 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6366 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6367 continue;
6368
6369 b.cursor = nir_before_instr(instr);
6370 nir_ssa_def *centroid =
6371 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6372 nir_intrinsic_interp_mode(intrin));
6373 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6374 nir_src_for_ssa(centroid));
6375 nir_instr_remove(instr);
6376 }
6377 }
6378
6379 nir_metadata_preserve(f->impl, (nir_metadata)
6380 ((unsigned) nir_metadata_block_index |
6381 (unsigned) nir_metadata_dominance));
6382 }
6383 }
6384
6385 const unsigned *
6386 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6387 void *mem_ctx,
6388 const struct brw_wm_prog_key *key,
6389 struct brw_wm_prog_data *prog_data,
6390 const nir_shader *src_shader,
6391 struct gl_program *prog,
6392 int shader_time_index8, int shader_time_index16,
6393 bool allow_spilling,
6394 bool use_rep_send, struct brw_vue_map *vue_map,
6395 unsigned *final_assembly_size,
6396 char **error_str)
6397 {
6398 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6399 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6400 true);
6401 brw_nir_lower_fs_inputs(shader, vue_map, prog, compiler->devinfo, key);
6402 brw_nir_lower_fs_outputs(shader);
6403 if (!key->multisample_fbo)
6404 NIR_PASS_V(shader, demote_sample_qualifiers);
6405 NIR_PASS_V(shader, move_interpolation_to_top);
6406 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6407
6408 /* key->alpha_test_func means simulating alpha testing via discards,
6409 * so the shader definitely kills pixels.
6410 */
6411 prog_data->uses_kill = shader->info->fs.uses_discard ||
6412 key->alpha_test_func;
6413 prog_data->uses_omask = key->multisample_fbo &&
6414 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6415 prog_data->computed_depth_mode = computed_depth_mode(shader);
6416 prog_data->computed_stencil =
6417 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6418
6419 prog_data->persample_dispatch =
6420 key->multisample_fbo &&
6421 (key->persample_interp ||
6422 (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6423 SYSTEM_BIT_SAMPLE_POS)) ||
6424 shader->info->fs.uses_sample_qualifier ||
6425 shader->info->outputs_read);
6426
6427 prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6428 prog_data->post_depth_coverage = shader->info->fs.post_depth_coverage;
6429 prog_data->inner_coverage = shader->info->fs.inner_coverage;
6430
6431 prog_data->barycentric_interp_modes =
6432 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6433
6434 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6435 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6436 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6437
6438 fs_visitor v8(compiler, log_data, mem_ctx, key,
6439 &prog_data->base, prog, shader, 8,
6440 shader_time_index8);
6441 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6442 if (error_str)
6443 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6444
6445 return NULL;
6446 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6447 simd8_cfg = v8.cfg;
6448 simd8_grf_start = v8.payload.num_regs;
6449 simd8_grf_used = v8.grf_used;
6450 }
6451
6452 if (v8.max_dispatch_width >= 16 &&
6453 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6454 /* Try a SIMD16 compile */
6455 fs_visitor v16(compiler, log_data, mem_ctx, key,
6456 &prog_data->base, prog, shader, 16,
6457 shader_time_index16);
6458 v16.import_uniforms(&v8);
6459 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6460 compiler->shader_perf_log(log_data,
6461 "SIMD16 shader failed to compile: %s",
6462 v16.fail_msg);
6463 } else {
6464 simd16_cfg = v16.cfg;
6465 simd16_grf_start = v16.payload.num_regs;
6466 simd16_grf_used = v16.grf_used;
6467 }
6468 }
6469
6470 /* When the caller requests a repclear shader, they want SIMD16-only */
6471 if (use_rep_send)
6472 simd8_cfg = NULL;
6473
6474 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6475 * at the top to select the shader. We've never implemented that.
6476 * Instead, we just give them exactly one shader and we pick the widest one
6477 * available.
6478 */
6479 if (compiler->devinfo->gen < 5 && simd16_cfg)
6480 simd8_cfg = NULL;
6481
6482 if (prog_data->persample_dispatch) {
6483 /* Starting with SandyBridge (where we first get MSAA), the different
6484 * pixel dispatch combinations are grouped into classifications A
6485 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6486 * generations, the only configurations supporting persample dispatch
6487 * are are this in which only one dispatch width is enabled.
6488 *
6489 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6490 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6491 */
6492 if (compiler->devinfo->gen == 6 &&
6493 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6494 simd16_cfg = NULL;
6495 } else if (simd16_cfg) {
6496 simd8_cfg = NULL;
6497 }
6498 }
6499
6500 /* We have to compute the flat inputs after the visitor is finished running
6501 * because it relies on prog_data->urb_setup which is computed in
6502 * fs_visitor::calculate_urb_setup().
6503 */
6504 brw_compute_flat_inputs(prog_data, shader);
6505
6506 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6507 v8.promoted_constants, v8.runtime_check_aads_emit,
6508 MESA_SHADER_FRAGMENT);
6509
6510 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6511 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6512 shader->info->label ?
6513 shader->info->label : "unnamed",
6514 shader->info->name));
6515 }
6516
6517 if (simd8_cfg) {
6518 prog_data->dispatch_8 = true;
6519 g.generate_code(simd8_cfg, 8);
6520 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6521 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6522
6523 if (simd16_cfg) {
6524 prog_data->dispatch_16 = true;
6525 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6526 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6527 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6528 }
6529 } else if (simd16_cfg) {
6530 prog_data->dispatch_16 = true;
6531 g.generate_code(simd16_cfg, 16);
6532 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6533 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6534 }
6535
6536 return g.get_assembly(final_assembly_size);
6537 }
6538
6539 fs_reg *
6540 fs_visitor::emit_cs_work_group_id_setup()
6541 {
6542 assert(stage == MESA_SHADER_COMPUTE);
6543
6544 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6545
6546 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6547 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6548 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6549
6550 bld.MOV(*reg, r0_1);
6551 bld.MOV(offset(*reg, bld, 1), r0_6);
6552 bld.MOV(offset(*reg, bld, 2), r0_7);
6553
6554 return reg;
6555 }
6556
6557 static void
6558 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6559 {
6560 block->dwords = dwords;
6561 block->regs = DIV_ROUND_UP(dwords, 8);
6562 block->size = block->regs * 32;
6563 }
6564
6565 static void
6566 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6567 struct brw_cs_prog_data *cs_prog_data)
6568 {
6569 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6570 bool fill_thread_id =
6571 cs_prog_data->thread_local_id_index >= 0 &&
6572 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6573 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6574
6575 /* The thread ID should be stored in the last param dword */
6576 assert(prog_data->nr_params > 0 || !fill_thread_id);
6577 assert(!fill_thread_id ||
6578 cs_prog_data->thread_local_id_index ==
6579 (int)prog_data->nr_params - 1);
6580
6581 unsigned cross_thread_dwords, per_thread_dwords;
6582 if (!cross_thread_supported) {
6583 cross_thread_dwords = 0u;
6584 per_thread_dwords = prog_data->nr_params;
6585 } else if (fill_thread_id) {
6586 /* Fill all but the last register with cross-thread payload */
6587 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6588 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6589 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6590 } else {
6591 /* Fill all data using cross-thread payload */
6592 cross_thread_dwords = prog_data->nr_params;
6593 per_thread_dwords = 0u;
6594 }
6595
6596 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6597 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6598
6599 unsigned total_dwords =
6600 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6601 cs_prog_data->push.cross_thread.size) / 4;
6602 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6603
6604 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6605 cs_prog_data->push.per_thread.size == 0);
6606 assert(cs_prog_data->push.cross_thread.dwords +
6607 cs_prog_data->push.per_thread.dwords ==
6608 prog_data->nr_params);
6609 }
6610
6611 static void
6612 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6613 {
6614 cs_prog_data->simd_size = size;
6615 unsigned group_size = cs_prog_data->local_size[0] *
6616 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6617 cs_prog_data->threads = (group_size + size - 1) / size;
6618 }
6619
6620 const unsigned *
6621 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6622 void *mem_ctx,
6623 const struct brw_cs_prog_key *key,
6624 struct brw_cs_prog_data *prog_data,
6625 const nir_shader *src_shader,
6626 int shader_time_index,
6627 unsigned *final_assembly_size,
6628 char **error_str)
6629 {
6630 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6631 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6632 true);
6633 brw_nir_lower_cs_shared(shader);
6634 prog_data->base.total_shared += shader->num_shared;
6635
6636 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6637 * the thread_local_id_index.
6638 */
6639 assert(prog_data->thread_local_id_index >= 0);
6640 shader->num_uniforms =
6641 MAX2(shader->num_uniforms,
6642 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6643
6644 brw_nir_lower_intrinsics(shader, &prog_data->base);
6645 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6646
6647 prog_data->local_size[0] = shader->info->cs.local_size[0];
6648 prog_data->local_size[1] = shader->info->cs.local_size[1];
6649 prog_data->local_size[2] = shader->info->cs.local_size[2];
6650 unsigned local_workgroup_size =
6651 shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6652 shader->info->cs.local_size[2];
6653
6654 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6655 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6656
6657 cfg_t *cfg = NULL;
6658 const char *fail_msg = NULL;
6659
6660 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6661 */
6662 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6663 NULL, /* Never used in core profile */
6664 shader, 8, shader_time_index);
6665 if (simd_required <= 8) {
6666 if (!v8.run_cs()) {
6667 fail_msg = v8.fail_msg;
6668 } else {
6669 cfg = v8.cfg;
6670 cs_set_simd_size(prog_data, 8);
6671 cs_fill_push_const_info(compiler->devinfo, prog_data);
6672 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6673 }
6674 }
6675
6676 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6677 NULL, /* Never used in core profile */
6678 shader, 16, shader_time_index);
6679 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6680 !fail_msg && v8.max_dispatch_width >= 16 &&
6681 simd_required <= 16) {
6682 /* Try a SIMD16 compile */
6683 if (simd_required <= 8)
6684 v16.import_uniforms(&v8);
6685 if (!v16.run_cs()) {
6686 compiler->shader_perf_log(log_data,
6687 "SIMD16 shader failed to compile: %s",
6688 v16.fail_msg);
6689 if (!cfg) {
6690 fail_msg =
6691 "Couldn't generate SIMD16 program and not "
6692 "enough threads for SIMD8";
6693 }
6694 } else {
6695 cfg = v16.cfg;
6696 cs_set_simd_size(prog_data, 16);
6697 cs_fill_push_const_info(compiler->devinfo, prog_data);
6698 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6699 }
6700 }
6701
6702 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6703 NULL, /* Never used in core profile */
6704 shader, 32, shader_time_index);
6705 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6706 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6707 /* Try a SIMD32 compile */
6708 if (simd_required <= 8)
6709 v32.import_uniforms(&v8);
6710 else if (simd_required <= 16)
6711 v32.import_uniforms(&v16);
6712
6713 if (!v32.run_cs()) {
6714 compiler->shader_perf_log(log_data,
6715 "SIMD32 shader failed to compile: %s",
6716 v16.fail_msg);
6717 if (!cfg) {
6718 fail_msg =
6719 "Couldn't generate SIMD32 program and not "
6720 "enough threads for SIMD16";
6721 }
6722 } else {
6723 cfg = v32.cfg;
6724 cs_set_simd_size(prog_data, 32);
6725 cs_fill_push_const_info(compiler->devinfo, prog_data);
6726 }
6727 }
6728
6729 if (unlikely(cfg == NULL)) {
6730 assert(fail_msg);
6731 if (error_str)
6732 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6733
6734 return NULL;
6735 }
6736
6737 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6738 v8.promoted_constants, v8.runtime_check_aads_emit,
6739 MESA_SHADER_COMPUTE);
6740 if (INTEL_DEBUG & DEBUG_CS) {
6741 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6742 shader->info->label ? shader->info->label :
6743 "unnamed",
6744 shader->info->name);
6745 g.enable_debug(name);
6746 }
6747
6748 g.generate_code(cfg, prog_data->simd_size);
6749
6750 return g.get_assembly(final_assembly_size);
6751 }
6752
6753 /**
6754 * Test the dispatch mask packing assumptions of
6755 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6756 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6757 * executed with an unexpected dispatch mask.
6758 */
6759 static UNUSED void
6760 brw_fs_test_dispatch_packing(const fs_builder &bld)
6761 {
6762 const gl_shader_stage stage = bld.shader->stage;
6763
6764 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6765 bld.shader->stage_prog_data)) {
6766 const fs_builder ubld = bld.exec_all().group(1, 0);
6767 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6768 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6769 brw_dmask_reg());
6770
6771 ubld.ADD(tmp, mask, brw_imm_ud(1));
6772 ubld.AND(tmp, mask, tmp);
6773
6774 /* This will loop forever if the dispatch mask doesn't have the expected
6775 * form '2^n-1', in which case tmp will be non-zero.
6776 */
6777 bld.emit(BRW_OPCODE_DO);
6778 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6779 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6780 }
6781 }