i965/fs: use SSA values directly
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 unreachable("not reached");
529 }
530
531 return 0;
532 }
533
534 /**
535 * Create a MOV to read the timestamp register.
536 *
537 * The caller is responsible for emitting the MOV. The return value is
538 * the destination of the MOV, with extra parameters set.
539 */
540 fs_reg
541 fs_visitor::get_timestamp(const fs_builder &bld)
542 {
543 assert(devinfo->gen >= 7);
544
545 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
546 BRW_ARF_TIMESTAMP,
547 0),
548 BRW_REGISTER_TYPE_UD));
549
550 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
551
552 /* We want to read the 3 fields we care about even if it's not enabled in
553 * the dispatch.
554 */
555 bld.exec_all().MOV(dst, ts);
556
557 /* The caller wants the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 *
563 * The caller could also check if render P-states have changed (or anything
564 * else that might disrupt timing) by setting smear to 2 and checking if
565 * that field is != 0.
566 */
567 dst.set_smear(0);
568
569 return dst;
570 }
571
572 void
573 fs_visitor::emit_shader_time_begin()
574 {
575 shader_start_time = get_timestamp(bld.annotate("shader time start"));
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 /* Insert our code just before the final SEND with EOT. */
582 exec_node *end = this->instructions.get_tail();
583 assert(end && ((fs_inst *) end)->eot);
584 const fs_builder ibld = bld.annotate("shader time end")
585 .exec_all().at(NULL, end);
586
587 fs_reg shader_end_time = get_timestamp(ibld);
588
589 /* Check that there weren't any timestamp reset events (assuming these
590 * were the only two timestamp reads that happened).
591 */
592 fs_reg reset = shader_end_time;
593 reset.set_smear(2);
594 set_condmod(BRW_CONDITIONAL_Z,
595 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
596 ibld.IF(BRW_PREDICATE_NORMAL);
597
598 fs_reg start = shader_start_time;
599 start.negate = true;
600 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
601 diff.set_smear(0);
602 ibld.ADD(diff, start, shader_end_time);
603
604 /* If there were no instructions between the two timestamp gets, the diff
605 * is 2 cycles. Remove that overhead, so I can forget about that when
606 * trying to determine the time taken for single instructions.
607 */
608 ibld.ADD(diff, diff, fs_reg(-2u));
609 SHADER_TIME_ADD(ibld, 0, diff);
610 SHADER_TIME_ADD(ibld, 1, fs_reg(1u));
611 ibld.emit(BRW_OPCODE_ELSE);
612 SHADER_TIME_ADD(ibld, 2, fs_reg(1u));
613 ibld.emit(BRW_OPCODE_ENDIF);
614 }
615
616 void
617 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
618 int shader_time_subindex,
619 fs_reg value)
620 {
621 int index = shader_time_index * 3 + shader_time_subindex;
622 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
623
624 fs_reg payload;
625 if (dispatch_width == 8)
626 payload = vgrf(glsl_type::uvec2_type);
627 else
628 payload = vgrf(glsl_type::uint_type);
629
630 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
631 }
632
633 void
634 fs_visitor::vfail(const char *format, va_list va)
635 {
636 char *msg;
637
638 if (failed)
639 return;
640
641 failed = true;
642
643 msg = ralloc_vasprintf(mem_ctx, format, va);
644 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
645
646 this->fail_msg = msg;
647
648 if (debug_enabled) {
649 fprintf(stderr, "%s", msg);
650 }
651 }
652
653 void
654 fs_visitor::fail(const char *format, ...)
655 {
656 va_list va;
657
658 va_start(va, format);
659 vfail(format, va);
660 va_end(va);
661 }
662
663 /**
664 * Mark this program as impossible to compile in SIMD16 mode.
665 *
666 * During the SIMD8 compile (which happens first), we can detect and flag
667 * things that are unsupported in SIMD16 mode, so the compiler can skip
668 * the SIMD16 compile altogether.
669 *
670 * During a SIMD16 compile (if one happens anyway), this just calls fail().
671 */
672 void
673 fs_visitor::no16(const char *msg)
674 {
675 if (dispatch_width == 16) {
676 fail("%s", msg);
677 } else {
678 simd16_unsupported = true;
679
680 compiler->shader_perf_log(log_data,
681 "SIMD16 shader failed to compile: %s", msg);
682 }
683 }
684
685 /**
686 * Returns true if the instruction has a flag that means it won't
687 * update an entire destination register.
688 *
689 * For example, dead code elimination and live variable analysis want to know
690 * when a write to a variable screens off any preceding values that were in
691 * it.
692 */
693 bool
694 fs_inst::is_partial_write() const
695 {
696 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
697 (this->dst.width * type_sz(this->dst.type)) < 32 ||
698 !this->dst.is_contiguous());
699 }
700
701 int
702 fs_inst::regs_read(int arg) const
703 {
704 if (is_tex() && arg == 0 && src[0].file == GRF) {
705 return mlen;
706 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
707 return mlen;
708 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
709 return mlen;
710 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
711 return mlen;
712 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
713 return mlen;
714 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE && arg == 0) {
715 return mlen;
716 } else if (opcode == SHADER_OPCODE_TYPED_ATOMIC && arg == 0) {
717 return mlen;
718 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_READ && arg == 0) {
719 return mlen;
720 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE && arg == 0) {
721 return mlen;
722 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
723 return mlen;
724 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
725 return exec_size / 4;
726 }
727
728 switch (src[arg].file) {
729 case BAD_FILE:
730 case UNIFORM:
731 case IMM:
732 return 1;
733 case GRF:
734 case HW_REG:
735 if (src[arg].stride == 0) {
736 return 1;
737 } else {
738 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
739 return (size + 31) / 32;
740 }
741 case MRF:
742 unreachable("MRF registers are not allowed as sources");
743 default:
744 unreachable("Invalid register file");
745 }
746 }
747
748 bool
749 fs_inst::reads_flag() const
750 {
751 return predicate;
752 }
753
754 bool
755 fs_inst::writes_flag() const
756 {
757 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
758 opcode != BRW_OPCODE_IF &&
759 opcode != BRW_OPCODE_WHILE)) ||
760 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
761 }
762
763 /**
764 * Returns how many MRFs an FS opcode will write over.
765 *
766 * Note that this is not the 0 or 1 implied writes in an actual gen
767 * instruction -- the FS opcodes often generate MOVs in addition.
768 */
769 int
770 fs_visitor::implied_mrf_writes(fs_inst *inst)
771 {
772 if (inst->mlen == 0)
773 return 0;
774
775 if (inst->base_mrf == -1)
776 return 0;
777
778 switch (inst->opcode) {
779 case SHADER_OPCODE_RCP:
780 case SHADER_OPCODE_RSQ:
781 case SHADER_OPCODE_SQRT:
782 case SHADER_OPCODE_EXP2:
783 case SHADER_OPCODE_LOG2:
784 case SHADER_OPCODE_SIN:
785 case SHADER_OPCODE_COS:
786 return 1 * dispatch_width / 8;
787 case SHADER_OPCODE_POW:
788 case SHADER_OPCODE_INT_QUOTIENT:
789 case SHADER_OPCODE_INT_REMAINDER:
790 return 2 * dispatch_width / 8;
791 case SHADER_OPCODE_TEX:
792 case FS_OPCODE_TXB:
793 case SHADER_OPCODE_TXD:
794 case SHADER_OPCODE_TXF:
795 case SHADER_OPCODE_TXF_CMS:
796 case SHADER_OPCODE_TXF_MCS:
797 case SHADER_OPCODE_TG4:
798 case SHADER_OPCODE_TG4_OFFSET:
799 case SHADER_OPCODE_TXL:
800 case SHADER_OPCODE_TXS:
801 case SHADER_OPCODE_LOD:
802 return 1;
803 case FS_OPCODE_FB_WRITE:
804 return 2;
805 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
806 case SHADER_OPCODE_GEN4_SCRATCH_READ:
807 return 1;
808 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
809 return inst->mlen;
810 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
811 return inst->mlen;
812 case SHADER_OPCODE_UNTYPED_ATOMIC:
813 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
814 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
815 case SHADER_OPCODE_TYPED_ATOMIC:
816 case SHADER_OPCODE_TYPED_SURFACE_READ:
817 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
818 case SHADER_OPCODE_URB_WRITE_SIMD8:
819 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
820 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
821 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
822 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
823 return 0;
824 default:
825 unreachable("not reached");
826 }
827 }
828
829 fs_reg
830 fs_visitor::vgrf(const glsl_type *const type)
831 {
832 int reg_width = dispatch_width / 8;
833 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
834 brw_type_for_base_type(type), dispatch_width);
835 }
836
837 /** Fixed HW reg constructor. */
838 fs_reg::fs_reg(enum register_file file, int reg)
839 {
840 init();
841 this->file = file;
842 this->reg = reg;
843 this->type = BRW_REGISTER_TYPE_F;
844
845 switch (file) {
846 case UNIFORM:
847 this->width = 1;
848 break;
849 default:
850 this->width = 8;
851 }
852 }
853
854 /** Fixed HW reg constructor. */
855 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
856 {
857 init();
858 this->file = file;
859 this->reg = reg;
860 this->type = type;
861
862 switch (file) {
863 case UNIFORM:
864 this->width = 1;
865 break;
866 default:
867 this->width = 8;
868 }
869 }
870
871 /** Fixed HW reg constructor. */
872 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
873 uint8_t width)
874 {
875 init();
876 this->file = file;
877 this->reg = reg;
878 this->type = type;
879 this->width = width;
880 }
881
882 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
883 * This brings in those uniform definitions
884 */
885 void
886 fs_visitor::import_uniforms(fs_visitor *v)
887 {
888 this->push_constant_loc = v->push_constant_loc;
889 this->pull_constant_loc = v->pull_constant_loc;
890 this->uniforms = v->uniforms;
891 this->param_size = v->param_size;
892 }
893
894 fs_reg *
895 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
896 bool origin_upper_left)
897 {
898 assert(stage == MESA_SHADER_FRAGMENT);
899 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
900 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
901 fs_reg wpos = *reg;
902 bool flip = !origin_upper_left ^ key->render_to_fbo;
903
904 /* gl_FragCoord.x */
905 if (pixel_center_integer) {
906 bld.MOV(wpos, this->pixel_x);
907 } else {
908 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
909 }
910 wpos = offset(wpos, 1);
911
912 /* gl_FragCoord.y */
913 if (!flip && pixel_center_integer) {
914 bld.MOV(wpos, this->pixel_y);
915 } else {
916 fs_reg pixel_y = this->pixel_y;
917 float offset = (pixel_center_integer ? 0.0 : 0.5);
918
919 if (flip) {
920 pixel_y.negate = true;
921 offset += key->drawable_height - 1.0;
922 }
923
924 bld.ADD(wpos, pixel_y, fs_reg(offset));
925 }
926 wpos = offset(wpos, 1);
927
928 /* gl_FragCoord.z */
929 if (devinfo->gen >= 6) {
930 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
931 } else {
932 bld.emit(FS_OPCODE_LINTERP, wpos,
933 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
934 interp_reg(VARYING_SLOT_POS, 2));
935 }
936 wpos = offset(wpos, 1);
937
938 /* gl_FragCoord.w: Already set up in emit_interpolation */
939 bld.MOV(wpos, this->wpos_w);
940
941 return reg;
942 }
943
944 fs_inst *
945 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
946 glsl_interp_qualifier interpolation_mode,
947 bool is_centroid, bool is_sample)
948 {
949 brw_wm_barycentric_interp_mode barycoord_mode;
950 if (devinfo->gen >= 6) {
951 if (is_centroid) {
952 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
953 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
954 else
955 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
956 } else if (is_sample) {
957 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
958 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
959 else
960 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
961 } else {
962 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
963 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
964 else
965 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
966 }
967 } else {
968 /* On Ironlake and below, there is only one interpolation mode.
969 * Centroid interpolation doesn't mean anything on this hardware --
970 * there is no multisampling.
971 */
972 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
973 }
974 return bld.emit(FS_OPCODE_LINTERP, attr,
975 this->delta_xy[barycoord_mode], interp);
976 }
977
978 void
979 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
980 const glsl_type *type,
981 glsl_interp_qualifier interpolation_mode,
982 int location, bool mod_centroid,
983 bool mod_sample)
984 {
985 attr.type = brw_type_for_base_type(type->get_scalar_type());
986
987 assert(stage == MESA_SHADER_FRAGMENT);
988 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
989 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
990
991 unsigned int array_elements;
992
993 if (type->is_array()) {
994 array_elements = type->length;
995 if (array_elements == 0) {
996 fail("dereferenced array '%s' has length 0\n", name);
997 }
998 type = type->fields.array;
999 } else {
1000 array_elements = 1;
1001 }
1002
1003 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1004 bool is_gl_Color =
1005 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1006 if (key->flat_shade && is_gl_Color) {
1007 interpolation_mode = INTERP_QUALIFIER_FLAT;
1008 } else {
1009 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1010 }
1011 }
1012
1013 for (unsigned int i = 0; i < array_elements; i++) {
1014 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1015 if (prog_data->urb_setup[location] == -1) {
1016 /* If there's no incoming setup data for this slot, don't
1017 * emit interpolation for it.
1018 */
1019 attr = offset(attr, type->vector_elements);
1020 location++;
1021 continue;
1022 }
1023
1024 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1025 /* Constant interpolation (flat shading) case. The SF has
1026 * handed us defined values in only the constant offset
1027 * field of the setup reg.
1028 */
1029 for (unsigned int k = 0; k < type->vector_elements; k++) {
1030 struct brw_reg interp = interp_reg(location, k);
1031 interp = suboffset(interp, 3);
1032 interp.type = attr.type;
1033 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1034 attr = offset(attr, 1);
1035 }
1036 } else {
1037 /* Smooth/noperspective interpolation case. */
1038 for (unsigned int k = 0; k < type->vector_elements; k++) {
1039 struct brw_reg interp = interp_reg(location, k);
1040 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1041 /* Get the pixel/sample mask into f0 so that we know
1042 * which pixels are lit. Then, for each channel that is
1043 * unlit, replace the centroid data with non-centroid
1044 * data.
1045 */
1046 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1047
1048 fs_inst *inst;
1049 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1050 false, false);
1051 inst->predicate = BRW_PREDICATE_NORMAL;
1052 inst->predicate_inverse = true;
1053 if (devinfo->has_pln)
1054 inst->no_dd_clear = true;
1055
1056 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1057 mod_centroid && !key->persample_shading,
1058 mod_sample || key->persample_shading);
1059 inst->predicate = BRW_PREDICATE_NORMAL;
1060 inst->predicate_inverse = false;
1061 if (devinfo->has_pln)
1062 inst->no_dd_check = true;
1063
1064 } else {
1065 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1066 mod_centroid && !key->persample_shading,
1067 mod_sample || key->persample_shading);
1068 }
1069 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1070 bld.MUL(attr, attr, this->pixel_w);
1071 }
1072 attr = offset(attr, 1);
1073 }
1074
1075 }
1076 location++;
1077 }
1078 }
1079 }
1080
1081 fs_reg *
1082 fs_visitor::emit_frontfacing_interpolation()
1083 {
1084 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1085
1086 if (devinfo->gen >= 6) {
1087 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1088 * a boolean result from this (~0/true or 0/false).
1089 *
1090 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1091 * this task in only one instruction:
1092 * - a negation source modifier will flip the bit; and
1093 * - a W -> D type conversion will sign extend the bit into the high
1094 * word of the destination.
1095 *
1096 * An ASR 15 fills the low word of the destination.
1097 */
1098 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1099 g0.negate = true;
1100
1101 bld.ASR(*reg, g0, fs_reg(15));
1102 } else {
1103 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1104 * a boolean result from this (1/true or 0/false).
1105 *
1106 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1107 * the negation source modifier to flip it. Unfortunately the SHR
1108 * instruction only operates on UD (or D with an abs source modifier)
1109 * sources without negation.
1110 *
1111 * Instead, use ASR (which will give ~0/true or 0/false).
1112 */
1113 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1114 g1_6.negate = true;
1115
1116 bld.ASR(*reg, g1_6, fs_reg(31));
1117 }
1118
1119 return reg;
1120 }
1121
1122 void
1123 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1124 {
1125 assert(stage == MESA_SHADER_FRAGMENT);
1126 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1127 assert(dst.type == BRW_REGISTER_TYPE_F);
1128
1129 if (key->compute_pos_offset) {
1130 /* Convert int_sample_pos to floating point */
1131 bld.MOV(dst, int_sample_pos);
1132 /* Scale to the range [0, 1] */
1133 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1134 }
1135 else {
1136 /* From ARB_sample_shading specification:
1137 * "When rendering to a non-multisample buffer, or if multisample
1138 * rasterization is disabled, gl_SamplePosition will always be
1139 * (0.5, 0.5).
1140 */
1141 bld.MOV(dst, fs_reg(0.5f));
1142 }
1143 }
1144
1145 fs_reg *
1146 fs_visitor::emit_samplepos_setup()
1147 {
1148 assert(devinfo->gen >= 6);
1149
1150 const fs_builder abld = bld.annotate("compute sample position");
1151 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1152 fs_reg pos = *reg;
1153 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1154 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1155
1156 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1157 * mode will be enabled.
1158 *
1159 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1160 * R31.1:0 Position Offset X/Y for Slot[3:0]
1161 * R31.3:2 Position Offset X/Y for Slot[7:4]
1162 * .....
1163 *
1164 * The X, Y sample positions come in as bytes in thread payload. So, read
1165 * the positions using vstride=16, width=8, hstride=2.
1166 */
1167 struct brw_reg sample_pos_reg =
1168 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1169 BRW_REGISTER_TYPE_B), 16, 8, 2);
1170
1171 if (dispatch_width == 8) {
1172 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1173 } else {
1174 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1175 abld.half(1).MOV(half(int_sample_x, 1),
1176 fs_reg(suboffset(sample_pos_reg, 16)));
1177 }
1178 /* Compute gl_SamplePosition.x */
1179 compute_sample_position(pos, int_sample_x);
1180 pos = offset(pos, 1);
1181 if (dispatch_width == 8) {
1182 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1183 } else {
1184 abld.half(0).MOV(half(int_sample_y, 0),
1185 fs_reg(suboffset(sample_pos_reg, 1)));
1186 abld.half(1).MOV(half(int_sample_y, 1),
1187 fs_reg(suboffset(sample_pos_reg, 17)));
1188 }
1189 /* Compute gl_SamplePosition.y */
1190 compute_sample_position(pos, int_sample_y);
1191 return reg;
1192 }
1193
1194 fs_reg *
1195 fs_visitor::emit_sampleid_setup()
1196 {
1197 assert(stage == MESA_SHADER_FRAGMENT);
1198 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1199 assert(devinfo->gen >= 6);
1200
1201 const fs_builder abld = bld.annotate("compute sample id");
1202 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1203
1204 if (key->compute_sample_id) {
1205 fs_reg t1 = vgrf(glsl_type::int_type);
1206 fs_reg t2 = vgrf(glsl_type::int_type);
1207 t2.type = BRW_REGISTER_TYPE_UW;
1208
1209 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1210 * 8x multisampling, subspan 0 will represent sample N (where N
1211 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1212 * 7. We can find the value of N by looking at R0.0 bits 7:6
1213 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1214 * (since samples are always delivered in pairs). That is, we
1215 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1216 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1217 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1218 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1219 * populating a temporary variable with the sequence (0, 1, 2, 3),
1220 * and then reading from it using vstride=1, width=4, hstride=0.
1221 * These computations hold good for 4x multisampling as well.
1222 *
1223 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1224 * the first four slots are sample 0 of subspan 0; the next four
1225 * are sample 1 of subspan 0; the third group is sample 0 of
1226 * subspan 1, and finally sample 1 of subspan 1.
1227 */
1228 abld.exec_all()
1229 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1230 fs_reg(0xc0));
1231 abld.exec_all().SHR(t1, t1, fs_reg(5));
1232
1233 /* This works for both SIMD8 and SIMD16 */
1234 abld.exec_all()
1235 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1236
1237 /* This special instruction takes care of setting vstride=1,
1238 * width=4, hstride=0 of t2 during an ADD instruction.
1239 */
1240 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1241 } else {
1242 /* As per GL_ARB_sample_shading specification:
1243 * "When rendering to a non-multisample buffer, or if multisample
1244 * rasterization is disabled, gl_SampleID will always be zero."
1245 */
1246 abld.MOV(*reg, fs_reg(0));
1247 }
1248
1249 return reg;
1250 }
1251
1252 void
1253 fs_visitor::resolve_source_modifiers(fs_reg *src)
1254 {
1255 if (!src->abs && !src->negate)
1256 return;
1257
1258 fs_reg temp = bld.vgrf(src->type);
1259 bld.MOV(temp, *src);
1260 *src = temp;
1261 }
1262
1263 void
1264 fs_visitor::emit_discard_jump()
1265 {
1266 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1267
1268 /* For performance, after a discard, jump to the end of the
1269 * shader if all relevant channels have been discarded.
1270 */
1271 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1272 discard_jump->flag_subreg = 1;
1273
1274 discard_jump->predicate = (dispatch_width == 8)
1275 ? BRW_PREDICATE_ALIGN1_ANY8H
1276 : BRW_PREDICATE_ALIGN1_ANY16H;
1277 discard_jump->predicate_inverse = true;
1278 }
1279
1280 void
1281 fs_visitor::assign_curb_setup()
1282 {
1283 if (dispatch_width == 8) {
1284 prog_data->dispatch_grf_start_reg = payload.num_regs;
1285 } else {
1286 if (stage == MESA_SHADER_FRAGMENT) {
1287 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1288 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1289 } else if (stage == MESA_SHADER_COMPUTE) {
1290 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1291 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1292 } else {
1293 unreachable("Unsupported shader type!");
1294 }
1295 }
1296
1297 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1298
1299 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1300 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1301 for (unsigned int i = 0; i < inst->sources; i++) {
1302 if (inst->src[i].file == UNIFORM) {
1303 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1304 int constant_nr;
1305 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1306 constant_nr = push_constant_loc[uniform_nr];
1307 } else {
1308 /* Section 5.11 of the OpenGL 4.1 spec says:
1309 * "Out-of-bounds reads return undefined values, which include
1310 * values from other variables of the active program or zero."
1311 * Just return the first push constant.
1312 */
1313 constant_nr = 0;
1314 }
1315
1316 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1317 constant_nr / 8,
1318 constant_nr % 8);
1319
1320 inst->src[i].file = HW_REG;
1321 inst->src[i].fixed_hw_reg = byte_offset(
1322 retype(brw_reg, inst->src[i].type),
1323 inst->src[i].subreg_offset);
1324 }
1325 }
1326 }
1327 }
1328
1329 void
1330 fs_visitor::calculate_urb_setup()
1331 {
1332 assert(stage == MESA_SHADER_FRAGMENT);
1333 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1334 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1335
1336 memset(prog_data->urb_setup, -1,
1337 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1338
1339 int urb_next = 0;
1340 /* Figure out where each of the incoming setup attributes lands. */
1341 if (devinfo->gen >= 6) {
1342 if (_mesa_bitcount_64(prog->InputsRead &
1343 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1344 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1345 * first 16 varying inputs, so we can put them wherever we want.
1346 * Just put them in order.
1347 *
1348 * This is useful because it means that (a) inputs not used by the
1349 * fragment shader won't take up valuable register space, and (b) we
1350 * won't have to recompile the fragment shader if it gets paired with
1351 * a different vertex (or geometry) shader.
1352 */
1353 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1354 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1355 BITFIELD64_BIT(i)) {
1356 prog_data->urb_setup[i] = urb_next++;
1357 }
1358 }
1359 } else {
1360 /* We have enough input varyings that the SF/SBE pipeline stage can't
1361 * arbitrarily rearrange them to suit our whim; we have to put them
1362 * in an order that matches the output of the previous pipeline stage
1363 * (geometry or vertex shader).
1364 */
1365 struct brw_vue_map prev_stage_vue_map;
1366 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1367 key->input_slots_valid);
1368 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1369 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1370 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1371 slot++) {
1372 int varying = prev_stage_vue_map.slot_to_varying[slot];
1373 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1374 * unused.
1375 */
1376 if (varying != BRW_VARYING_SLOT_COUNT &&
1377 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1378 BITFIELD64_BIT(varying))) {
1379 prog_data->urb_setup[varying] = slot - first_slot;
1380 }
1381 }
1382 urb_next = prev_stage_vue_map.num_slots - first_slot;
1383 }
1384 } else {
1385 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1386 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1387 /* Point size is packed into the header, not as a general attribute */
1388 if (i == VARYING_SLOT_PSIZ)
1389 continue;
1390
1391 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1392 /* The back color slot is skipped when the front color is
1393 * also written to. In addition, some slots can be
1394 * written in the vertex shader and not read in the
1395 * fragment shader. So the register number must always be
1396 * incremented, mapped or not.
1397 */
1398 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1399 prog_data->urb_setup[i] = urb_next;
1400 urb_next++;
1401 }
1402 }
1403
1404 /*
1405 * It's a FS only attribute, and we did interpolation for this attribute
1406 * in SF thread. So, count it here, too.
1407 *
1408 * See compile_sf_prog() for more info.
1409 */
1410 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1411 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1412 }
1413
1414 prog_data->num_varying_inputs = urb_next;
1415 }
1416
1417 void
1418 fs_visitor::assign_urb_setup()
1419 {
1420 assert(stage == MESA_SHADER_FRAGMENT);
1421 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1422
1423 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1424
1425 /* Offset all the urb_setup[] index by the actual position of the
1426 * setup regs, now that the location of the constants has been chosen.
1427 */
1428 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1429 if (inst->opcode == FS_OPCODE_LINTERP) {
1430 assert(inst->src[1].file == HW_REG);
1431 inst->src[1].fixed_hw_reg.nr += urb_start;
1432 }
1433
1434 if (inst->opcode == FS_OPCODE_CINTERP) {
1435 assert(inst->src[0].file == HW_REG);
1436 inst->src[0].fixed_hw_reg.nr += urb_start;
1437 }
1438 }
1439
1440 /* Each attribute is 4 setup channels, each of which is half a reg. */
1441 this->first_non_payload_grf =
1442 urb_start + prog_data->num_varying_inputs * 2;
1443 }
1444
1445 void
1446 fs_visitor::assign_vs_urb_setup()
1447 {
1448 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1449 int grf, count, slot, channel, attr;
1450
1451 assert(stage == MESA_SHADER_VERTEX);
1452 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1453 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1454 count++;
1455
1456 /* Each attribute is 4 regs. */
1457 this->first_non_payload_grf =
1458 payload.num_regs + prog_data->curb_read_length + count * 4;
1459
1460 unsigned vue_entries =
1461 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1462
1463 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1464 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1465
1466 assert(vs_prog_data->base.urb_read_length <= 15);
1467
1468 /* Rewrite all ATTR file references to the hw grf that they land in. */
1469 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1470 for (int i = 0; i < inst->sources; i++) {
1471 if (inst->src[i].file == ATTR) {
1472
1473 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1474 slot = count - 1;
1475 } else {
1476 /* Attributes come in in a contiguous block, ordered by their
1477 * gl_vert_attrib value. That means we can compute the slot
1478 * number for an attribute by masking out the enabled
1479 * attributes before it and counting the bits.
1480 */
1481 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1482 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1483 BITFIELD64_MASK(attr));
1484 }
1485
1486 channel = inst->src[i].reg_offset & 3;
1487
1488 grf = payload.num_regs +
1489 prog_data->curb_read_length +
1490 slot * 4 + channel;
1491
1492 inst->src[i].file = HW_REG;
1493 inst->src[i].fixed_hw_reg =
1494 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1495 }
1496 }
1497 }
1498 }
1499
1500 /**
1501 * Split large virtual GRFs into separate components if we can.
1502 *
1503 * This is mostly duplicated with what brw_fs_vector_splitting does,
1504 * but that's really conservative because it's afraid of doing
1505 * splitting that doesn't result in real progress after the rest of
1506 * the optimization phases, which would cause infinite looping in
1507 * optimization. We can do it once here, safely. This also has the
1508 * opportunity to split interpolated values, or maybe even uniforms,
1509 * which we don't have at the IR level.
1510 *
1511 * We want to split, because virtual GRFs are what we register
1512 * allocate and spill (due to contiguousness requirements for some
1513 * instructions), and they're what we naturally generate in the
1514 * codegen process, but most virtual GRFs don't actually need to be
1515 * contiguous sets of GRFs. If we split, we'll end up with reduced
1516 * live intervals and better dead code elimination and coalescing.
1517 */
1518 void
1519 fs_visitor::split_virtual_grfs()
1520 {
1521 int num_vars = this->alloc.count;
1522
1523 /* Count the total number of registers */
1524 int reg_count = 0;
1525 int vgrf_to_reg[num_vars];
1526 for (int i = 0; i < num_vars; i++) {
1527 vgrf_to_reg[i] = reg_count;
1528 reg_count += alloc.sizes[i];
1529 }
1530
1531 /* An array of "split points". For each register slot, this indicates
1532 * if this slot can be separated from the previous slot. Every time an
1533 * instruction uses multiple elements of a register (as a source or
1534 * destination), we mark the used slots as inseparable. Then we go
1535 * through and split the registers into the smallest pieces we can.
1536 */
1537 bool split_points[reg_count];
1538 memset(split_points, 0, sizeof(split_points));
1539
1540 /* Mark all used registers as fully splittable */
1541 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1542 if (inst->dst.file == GRF) {
1543 int reg = vgrf_to_reg[inst->dst.reg];
1544 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1545 split_points[reg + j] = true;
1546 }
1547
1548 for (int i = 0; i < inst->sources; i++) {
1549 if (inst->src[i].file == GRF) {
1550 int reg = vgrf_to_reg[inst->src[i].reg];
1551 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1552 split_points[reg + j] = true;
1553 }
1554 }
1555 }
1556
1557 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1558 if (inst->dst.file == GRF) {
1559 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1560 for (int j = 1; j < inst->regs_written; j++)
1561 split_points[reg + j] = false;
1562 }
1563 for (int i = 0; i < inst->sources; i++) {
1564 if (inst->src[i].file == GRF) {
1565 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1566 for (int j = 1; j < inst->regs_read(i); j++)
1567 split_points[reg + j] = false;
1568 }
1569 }
1570 }
1571
1572 int new_virtual_grf[reg_count];
1573 int new_reg_offset[reg_count];
1574
1575 int reg = 0;
1576 for (int i = 0; i < num_vars; i++) {
1577 /* The first one should always be 0 as a quick sanity check. */
1578 assert(split_points[reg] == false);
1579
1580 /* j = 0 case */
1581 new_reg_offset[reg] = 0;
1582 reg++;
1583 int offset = 1;
1584
1585 /* j > 0 case */
1586 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1587 /* If this is a split point, reset the offset to 0 and allocate a
1588 * new virtual GRF for the previous offset many registers
1589 */
1590 if (split_points[reg]) {
1591 assert(offset <= MAX_VGRF_SIZE);
1592 int grf = alloc.allocate(offset);
1593 for (int k = reg - offset; k < reg; k++)
1594 new_virtual_grf[k] = grf;
1595 offset = 0;
1596 }
1597 new_reg_offset[reg] = offset;
1598 offset++;
1599 reg++;
1600 }
1601
1602 /* The last one gets the original register number */
1603 assert(offset <= MAX_VGRF_SIZE);
1604 alloc.sizes[i] = offset;
1605 for (int k = reg - offset; k < reg; k++)
1606 new_virtual_grf[k] = i;
1607 }
1608 assert(reg == reg_count);
1609
1610 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1611 if (inst->dst.file == GRF) {
1612 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1613 inst->dst.reg = new_virtual_grf[reg];
1614 inst->dst.reg_offset = new_reg_offset[reg];
1615 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1616 }
1617 for (int i = 0; i < inst->sources; i++) {
1618 if (inst->src[i].file == GRF) {
1619 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1620 inst->src[i].reg = new_virtual_grf[reg];
1621 inst->src[i].reg_offset = new_reg_offset[reg];
1622 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1623 }
1624 }
1625 }
1626 invalidate_live_intervals();
1627 }
1628
1629 /**
1630 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1631 *
1632 * During code generation, we create tons of temporary variables, many of
1633 * which get immediately killed and are never used again. Yet, in later
1634 * optimization and analysis passes, such as compute_live_intervals, we need
1635 * to loop over all the virtual GRFs. Compacting them can save a lot of
1636 * overhead.
1637 */
1638 bool
1639 fs_visitor::compact_virtual_grfs()
1640 {
1641 bool progress = false;
1642 int remap_table[this->alloc.count];
1643 memset(remap_table, -1, sizeof(remap_table));
1644
1645 /* Mark which virtual GRFs are used. */
1646 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1647 if (inst->dst.file == GRF)
1648 remap_table[inst->dst.reg] = 0;
1649
1650 for (int i = 0; i < inst->sources; i++) {
1651 if (inst->src[i].file == GRF)
1652 remap_table[inst->src[i].reg] = 0;
1653 }
1654 }
1655
1656 /* Compact the GRF arrays. */
1657 int new_index = 0;
1658 for (unsigned i = 0; i < this->alloc.count; i++) {
1659 if (remap_table[i] == -1) {
1660 /* We just found an unused register. This means that we are
1661 * actually going to compact something.
1662 */
1663 progress = true;
1664 } else {
1665 remap_table[i] = new_index;
1666 alloc.sizes[new_index] = alloc.sizes[i];
1667 invalidate_live_intervals();
1668 ++new_index;
1669 }
1670 }
1671
1672 this->alloc.count = new_index;
1673
1674 /* Patch all the instructions to use the newly renumbered registers */
1675 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1676 if (inst->dst.file == GRF)
1677 inst->dst.reg = remap_table[inst->dst.reg];
1678
1679 for (int i = 0; i < inst->sources; i++) {
1680 if (inst->src[i].file == GRF)
1681 inst->src[i].reg = remap_table[inst->src[i].reg];
1682 }
1683 }
1684
1685 /* Patch all the references to delta_xy, since they're used in register
1686 * allocation. If they're unused, switch them to BAD_FILE so we don't
1687 * think some random VGRF is delta_xy.
1688 */
1689 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1690 if (delta_xy[i].file == GRF) {
1691 if (remap_table[delta_xy[i].reg] != -1) {
1692 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1693 } else {
1694 delta_xy[i].file = BAD_FILE;
1695 }
1696 }
1697 }
1698
1699 return progress;
1700 }
1701
1702 /*
1703 * Implements array access of uniforms by inserting a
1704 * PULL_CONSTANT_LOAD instruction.
1705 *
1706 * Unlike temporary GRF array access (where we don't support it due to
1707 * the difficulty of doing relative addressing on instruction
1708 * destinations), we could potentially do array access of uniforms
1709 * that were loaded in GRF space as push constants. In real-world
1710 * usage we've seen, though, the arrays being used are always larger
1711 * than we could load as push constants, so just always move all
1712 * uniform array access out to a pull constant buffer.
1713 */
1714 void
1715 fs_visitor::move_uniform_array_access_to_pull_constants()
1716 {
1717 if (dispatch_width != 8)
1718 return;
1719
1720 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1721 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1722
1723 /* Walk through and find array access of uniforms. Put a copy of that
1724 * uniform in the pull constant buffer.
1725 *
1726 * Note that we don't move constant-indexed accesses to arrays. No
1727 * testing has been done of the performance impact of this choice.
1728 */
1729 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1730 for (int i = 0 ; i < inst->sources; i++) {
1731 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1732 continue;
1733
1734 int uniform = inst->src[i].reg;
1735
1736 /* If this array isn't already present in the pull constant buffer,
1737 * add it.
1738 */
1739 if (pull_constant_loc[uniform] == -1) {
1740 const gl_constant_value **values = &stage_prog_data->param[uniform];
1741
1742 assert(param_size[uniform]);
1743
1744 for (int j = 0; j < param_size[uniform]; j++) {
1745 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1746
1747 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1748 values[j];
1749 }
1750 }
1751 }
1752 }
1753 }
1754
1755 /**
1756 * Assign UNIFORM file registers to either push constants or pull constants.
1757 *
1758 * We allow a fragment shader to have more than the specified minimum
1759 * maximum number of fragment shader uniform components (64). If
1760 * there are too many of these, they'd fill up all of register space.
1761 * So, this will push some of them out to the pull constant buffer and
1762 * update the program to load them.
1763 */
1764 void
1765 fs_visitor::assign_constant_locations()
1766 {
1767 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1768 if (dispatch_width != 8)
1769 return;
1770
1771 /* Find which UNIFORM registers are still in use. */
1772 bool is_live[uniforms];
1773 for (unsigned int i = 0; i < uniforms; i++) {
1774 is_live[i] = false;
1775 }
1776
1777 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1778 for (int i = 0; i < inst->sources; i++) {
1779 if (inst->src[i].file != UNIFORM)
1780 continue;
1781
1782 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1783 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1784 is_live[constant_nr] = true;
1785 }
1786 }
1787
1788 /* Only allow 16 registers (128 uniform components) as push constants.
1789 *
1790 * Just demote the end of the list. We could probably do better
1791 * here, demoting things that are rarely used in the program first.
1792 *
1793 * If changing this value, note the limitation about total_regs in
1794 * brw_curbe.c.
1795 */
1796 unsigned int max_push_components = 16 * 8;
1797 unsigned int num_push_constants = 0;
1798
1799 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1800
1801 for (unsigned int i = 0; i < uniforms; i++) {
1802 if (!is_live[i] || pull_constant_loc[i] != -1) {
1803 /* This UNIFORM register is either dead, or has already been demoted
1804 * to a pull const. Mark it as no longer living in the param[] array.
1805 */
1806 push_constant_loc[i] = -1;
1807 continue;
1808 }
1809
1810 if (num_push_constants < max_push_components) {
1811 /* Retain as a push constant. Record the location in the params[]
1812 * array.
1813 */
1814 push_constant_loc[i] = num_push_constants++;
1815 } else {
1816 /* Demote to a pull constant. */
1817 push_constant_loc[i] = -1;
1818
1819 int pull_index = stage_prog_data->nr_pull_params++;
1820 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1821 pull_constant_loc[i] = pull_index;
1822 }
1823 }
1824
1825 stage_prog_data->nr_params = num_push_constants;
1826
1827 /* Up until now, the param[] array has been indexed by reg + reg_offset
1828 * of UNIFORM registers. Condense it to only contain the uniforms we
1829 * chose to upload as push constants.
1830 */
1831 for (unsigned int i = 0; i < uniforms; i++) {
1832 int remapped = push_constant_loc[i];
1833
1834 if (remapped == -1)
1835 continue;
1836
1837 assert(remapped <= (int)i);
1838 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1839 }
1840 }
1841
1842 /**
1843 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1844 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1845 */
1846 void
1847 fs_visitor::demote_pull_constants()
1848 {
1849 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1850 for (int i = 0; i < inst->sources; i++) {
1851 if (inst->src[i].file != UNIFORM)
1852 continue;
1853
1854 int pull_index;
1855 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1856 if (location >= uniforms) /* Out of bounds access */
1857 pull_index = -1;
1858 else
1859 pull_index = pull_constant_loc[location];
1860
1861 if (pull_index == -1)
1862 continue;
1863
1864 /* Set up the annotation tracking for new generated instructions. */
1865 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1866 .at(block, inst);
1867 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1868 fs_reg dst = vgrf(glsl_type::float_type);
1869
1870 /* Generate a pull load into dst. */
1871 if (inst->src[i].reladdr) {
1872 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1873 surf_index,
1874 *inst->src[i].reladdr,
1875 pull_index);
1876 inst->src[i].reladdr = NULL;
1877 } else {
1878 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1879 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1880 dst, surf_index, offset);
1881 inst->src[i].set_smear(pull_index & 3);
1882 }
1883
1884 /* Rewrite the instruction to use the temporary VGRF. */
1885 inst->src[i].file = GRF;
1886 inst->src[i].reg = dst.reg;
1887 inst->src[i].reg_offset = 0;
1888 inst->src[i].width = dispatch_width;
1889 }
1890 }
1891 invalidate_live_intervals();
1892 }
1893
1894 bool
1895 fs_visitor::opt_algebraic()
1896 {
1897 bool progress = false;
1898
1899 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1900 switch (inst->opcode) {
1901 case BRW_OPCODE_MOV:
1902 if (inst->src[0].file != IMM)
1903 break;
1904
1905 if (inst->saturate) {
1906 if (inst->dst.type != inst->src[0].type)
1907 assert(!"unimplemented: saturate mixed types");
1908
1909 if (brw_saturate_immediate(inst->dst.type,
1910 &inst->src[0].fixed_hw_reg)) {
1911 inst->saturate = false;
1912 progress = true;
1913 }
1914 }
1915 break;
1916
1917 case BRW_OPCODE_MUL:
1918 if (inst->src[1].file != IMM)
1919 continue;
1920
1921 /* a * 1.0 = a */
1922 if (inst->src[1].is_one()) {
1923 inst->opcode = BRW_OPCODE_MOV;
1924 inst->src[1] = reg_undef;
1925 progress = true;
1926 break;
1927 }
1928
1929 /* a * -1.0 = -a */
1930 if (inst->src[1].is_negative_one()) {
1931 inst->opcode = BRW_OPCODE_MOV;
1932 inst->src[0].negate = !inst->src[0].negate;
1933 inst->src[1] = reg_undef;
1934 progress = true;
1935 break;
1936 }
1937
1938 /* a * 0.0 = 0.0 */
1939 if (inst->src[1].is_zero()) {
1940 inst->opcode = BRW_OPCODE_MOV;
1941 inst->src[0] = inst->src[1];
1942 inst->src[1] = reg_undef;
1943 progress = true;
1944 break;
1945 }
1946
1947 if (inst->src[0].file == IMM) {
1948 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1949 inst->opcode = BRW_OPCODE_MOV;
1950 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1951 inst->src[1] = reg_undef;
1952 progress = true;
1953 break;
1954 }
1955 break;
1956 case BRW_OPCODE_ADD:
1957 if (inst->src[1].file != IMM)
1958 continue;
1959
1960 /* a + 0.0 = a */
1961 if (inst->src[1].is_zero()) {
1962 inst->opcode = BRW_OPCODE_MOV;
1963 inst->src[1] = reg_undef;
1964 progress = true;
1965 break;
1966 }
1967
1968 if (inst->src[0].file == IMM) {
1969 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1970 inst->opcode = BRW_OPCODE_MOV;
1971 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1972 inst->src[1] = reg_undef;
1973 progress = true;
1974 break;
1975 }
1976 break;
1977 case BRW_OPCODE_OR:
1978 if (inst->src[0].equals(inst->src[1])) {
1979 inst->opcode = BRW_OPCODE_MOV;
1980 inst->src[1] = reg_undef;
1981 progress = true;
1982 break;
1983 }
1984 break;
1985 case BRW_OPCODE_LRP:
1986 if (inst->src[1].equals(inst->src[2])) {
1987 inst->opcode = BRW_OPCODE_MOV;
1988 inst->src[0] = inst->src[1];
1989 inst->src[1] = reg_undef;
1990 inst->src[2] = reg_undef;
1991 progress = true;
1992 break;
1993 }
1994 break;
1995 case BRW_OPCODE_CMP:
1996 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
1997 inst->src[0].abs &&
1998 inst->src[0].negate &&
1999 inst->src[1].is_zero()) {
2000 inst->src[0].abs = false;
2001 inst->src[0].negate = false;
2002 inst->conditional_mod = BRW_CONDITIONAL_Z;
2003 progress = true;
2004 break;
2005 }
2006 break;
2007 case BRW_OPCODE_SEL:
2008 if (inst->src[0].equals(inst->src[1])) {
2009 inst->opcode = BRW_OPCODE_MOV;
2010 inst->src[1] = reg_undef;
2011 inst->predicate = BRW_PREDICATE_NONE;
2012 inst->predicate_inverse = false;
2013 progress = true;
2014 } else if (inst->saturate && inst->src[1].file == IMM) {
2015 switch (inst->conditional_mod) {
2016 case BRW_CONDITIONAL_LE:
2017 case BRW_CONDITIONAL_L:
2018 switch (inst->src[1].type) {
2019 case BRW_REGISTER_TYPE_F:
2020 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2021 inst->opcode = BRW_OPCODE_MOV;
2022 inst->src[1] = reg_undef;
2023 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2024 progress = true;
2025 }
2026 break;
2027 default:
2028 break;
2029 }
2030 break;
2031 case BRW_CONDITIONAL_GE:
2032 case BRW_CONDITIONAL_G:
2033 switch (inst->src[1].type) {
2034 case BRW_REGISTER_TYPE_F:
2035 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2036 inst->opcode = BRW_OPCODE_MOV;
2037 inst->src[1] = reg_undef;
2038 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2039 progress = true;
2040 }
2041 break;
2042 default:
2043 break;
2044 }
2045 default:
2046 break;
2047 }
2048 }
2049 break;
2050 case BRW_OPCODE_MAD:
2051 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2052 inst->opcode = BRW_OPCODE_MOV;
2053 inst->src[1] = reg_undef;
2054 inst->src[2] = reg_undef;
2055 progress = true;
2056 } else if (inst->src[0].is_zero()) {
2057 inst->opcode = BRW_OPCODE_MUL;
2058 inst->src[0] = inst->src[2];
2059 inst->src[2] = reg_undef;
2060 progress = true;
2061 } else if (inst->src[1].is_one()) {
2062 inst->opcode = BRW_OPCODE_ADD;
2063 inst->src[1] = inst->src[2];
2064 inst->src[2] = reg_undef;
2065 progress = true;
2066 } else if (inst->src[2].is_one()) {
2067 inst->opcode = BRW_OPCODE_ADD;
2068 inst->src[2] = reg_undef;
2069 progress = true;
2070 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2071 inst->opcode = BRW_OPCODE_ADD;
2072 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2073 inst->src[2] = reg_undef;
2074 progress = true;
2075 }
2076 break;
2077 case SHADER_OPCODE_RCP: {
2078 fs_inst *prev = (fs_inst *)inst->prev;
2079 if (prev->opcode == SHADER_OPCODE_SQRT) {
2080 if (inst->src[0].equals(prev->dst)) {
2081 inst->opcode = SHADER_OPCODE_RSQ;
2082 inst->src[0] = prev->src[0];
2083 progress = true;
2084 }
2085 }
2086 break;
2087 }
2088 case SHADER_OPCODE_BROADCAST:
2089 if (is_uniform(inst->src[0])) {
2090 inst->opcode = BRW_OPCODE_MOV;
2091 inst->sources = 1;
2092 inst->force_writemask_all = true;
2093 progress = true;
2094 } else if (inst->src[1].file == IMM) {
2095 inst->opcode = BRW_OPCODE_MOV;
2096 inst->src[0] = component(inst->src[0],
2097 inst->src[1].fixed_hw_reg.dw1.ud);
2098 inst->sources = 1;
2099 inst->force_writemask_all = true;
2100 progress = true;
2101 }
2102 break;
2103
2104 default:
2105 break;
2106 }
2107
2108 /* Swap if src[0] is immediate. */
2109 if (progress && inst->is_commutative()) {
2110 if (inst->src[0].file == IMM) {
2111 fs_reg tmp = inst->src[1];
2112 inst->src[1] = inst->src[0];
2113 inst->src[0] = tmp;
2114 }
2115 }
2116 }
2117 return progress;
2118 }
2119
2120 /**
2121 * Optimize sample messages that have constant zero values for the trailing
2122 * texture coordinates. We can just reduce the message length for these
2123 * instructions instead of reserving a register for it. Trailing parameters
2124 * that aren't sent default to zero anyway. This will cause the dead code
2125 * eliminator to remove the MOV instruction that would otherwise be emitted to
2126 * set up the zero value.
2127 */
2128 bool
2129 fs_visitor::opt_zero_samples()
2130 {
2131 /* Gen4 infers the texturing opcode based on the message length so we can't
2132 * change it.
2133 */
2134 if (devinfo->gen < 5)
2135 return false;
2136
2137 bool progress = false;
2138
2139 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2140 if (!inst->is_tex())
2141 continue;
2142
2143 fs_inst *load_payload = (fs_inst *) inst->prev;
2144
2145 if (load_payload->is_head_sentinel() ||
2146 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2147 continue;
2148
2149 /* We don't want to remove the message header or the first parameter.
2150 * Removing the first parameter is not allowed, see the Haswell PRM
2151 * volume 7, page 149:
2152 *
2153 * "Parameter 0 is required except for the sampleinfo message, which
2154 * has no parameter 0"
2155 */
2156 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2157 load_payload->src[(inst->mlen - inst->header_size) /
2158 (dispatch_width / 8) +
2159 inst->header_size - 1].is_zero()) {
2160 inst->mlen -= dispatch_width / 8;
2161 progress = true;
2162 }
2163 }
2164
2165 if (progress)
2166 invalidate_live_intervals();
2167
2168 return progress;
2169 }
2170
2171 /**
2172 * Optimize sample messages which are followed by the final RT write.
2173 *
2174 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2175 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2176 * final texturing results copied to the framebuffer write payload and modify
2177 * them to write to the framebuffer directly.
2178 */
2179 bool
2180 fs_visitor::opt_sampler_eot()
2181 {
2182 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2183
2184 if (stage != MESA_SHADER_FRAGMENT)
2185 return false;
2186
2187 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2188 return false;
2189
2190 /* FINISHME: It should be possible to implement this optimization when there
2191 * are multiple drawbuffers.
2192 */
2193 if (key->nr_color_regions != 1)
2194 return false;
2195
2196 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2197 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2198 assert(fb_write->eot);
2199 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2200
2201 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2202
2203 /* There wasn't one; nothing to do. */
2204 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2205 return false;
2206
2207 /* This optimisation doesn't seem to work for textureGather for some
2208 * reason. I can't find any documentation or known workarounds to indicate
2209 * that this is expected, but considering that it is probably pretty
2210 * unlikely that a shader would directly write out the results from
2211 * textureGather we might as well just disable it.
2212 */
2213 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2214 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2215 return false;
2216
2217 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2218 * It's very likely to be the previous instruction.
2219 */
2220 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2221 if (load_payload->is_head_sentinel() ||
2222 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2223 return false;
2224
2225 assert(!tex_inst->eot); /* We can't get here twice */
2226 assert((tex_inst->offset & (0xff << 24)) == 0);
2227
2228 tex_inst->offset |= fb_write->target << 24;
2229 tex_inst->eot = true;
2230 tex_inst->dst = bld.null_reg_ud();
2231 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2232
2233 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2234 * to create a new LOAD_PAYLOAD command with the same sources and a space
2235 * saved for the header. Using a new destination register not only makes sure
2236 * we have enough space, but it will make sure the dead code eliminator kills
2237 * the instruction that this will replace.
2238 */
2239 if (tex_inst->header_size != 0)
2240 return true;
2241
2242 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2243 load_payload->sources + 1);
2244 fs_reg *new_sources =
2245 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2246
2247 new_sources[0] = fs_reg();
2248 for (int i = 0; i < load_payload->sources; i++)
2249 new_sources[i+1] = load_payload->src[i];
2250
2251 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2252 * requires a lot of information about the sources to appropriately figure
2253 * out the number of registers needed to be used. Given this stage in our
2254 * optimization, we may not have the appropriate GRFs required by
2255 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2256 * manually emit the instruction.
2257 */
2258 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2259 load_payload->exec_size,
2260 send_header,
2261 new_sources,
2262 load_payload->sources + 1);
2263
2264 new_load_payload->regs_written = load_payload->regs_written + 1;
2265 new_load_payload->header_size = 1;
2266 tex_inst->mlen++;
2267 tex_inst->header_size = 1;
2268 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2269 tex_inst->src[0] = send_header;
2270
2271 return true;
2272 }
2273
2274 bool
2275 fs_visitor::opt_register_renaming()
2276 {
2277 bool progress = false;
2278 int depth = 0;
2279
2280 int remap[alloc.count];
2281 memset(remap, -1, sizeof(int) * alloc.count);
2282
2283 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2284 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2285 depth++;
2286 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2287 inst->opcode == BRW_OPCODE_WHILE) {
2288 depth--;
2289 }
2290
2291 /* Rewrite instruction sources. */
2292 for (int i = 0; i < inst->sources; i++) {
2293 if (inst->src[i].file == GRF &&
2294 remap[inst->src[i].reg] != -1 &&
2295 remap[inst->src[i].reg] != inst->src[i].reg) {
2296 inst->src[i].reg = remap[inst->src[i].reg];
2297 progress = true;
2298 }
2299 }
2300
2301 const int dst = inst->dst.reg;
2302
2303 if (depth == 0 &&
2304 inst->dst.file == GRF &&
2305 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2306 !inst->is_partial_write()) {
2307 if (remap[dst] == -1) {
2308 remap[dst] = dst;
2309 } else {
2310 remap[dst] = alloc.allocate(inst->dst.width / 8);
2311 inst->dst.reg = remap[dst];
2312 progress = true;
2313 }
2314 } else if (inst->dst.file == GRF &&
2315 remap[dst] != -1 &&
2316 remap[dst] != dst) {
2317 inst->dst.reg = remap[dst];
2318 progress = true;
2319 }
2320 }
2321
2322 if (progress) {
2323 invalidate_live_intervals();
2324
2325 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2326 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2327 delta_xy[i].reg = remap[delta_xy[i].reg];
2328 }
2329 }
2330 }
2331
2332 return progress;
2333 }
2334
2335 /**
2336 * Remove redundant or useless discard jumps.
2337 *
2338 * For example, we can eliminate jumps in the following sequence:
2339 *
2340 * discard-jump (redundant with the next jump)
2341 * discard-jump (useless; jumps to the next instruction)
2342 * placeholder-halt
2343 */
2344 bool
2345 fs_visitor::opt_redundant_discard_jumps()
2346 {
2347 bool progress = false;
2348
2349 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2350
2351 fs_inst *placeholder_halt = NULL;
2352 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2353 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2354 placeholder_halt = inst;
2355 break;
2356 }
2357 }
2358
2359 if (!placeholder_halt)
2360 return false;
2361
2362 /* Delete any HALTs immediately before the placeholder halt. */
2363 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2364 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2365 prev = (fs_inst *) placeholder_halt->prev) {
2366 prev->remove(last_bblock);
2367 progress = true;
2368 }
2369
2370 if (progress)
2371 invalidate_live_intervals();
2372
2373 return progress;
2374 }
2375
2376 bool
2377 fs_visitor::compute_to_mrf()
2378 {
2379 bool progress = false;
2380 int next_ip = 0;
2381
2382 /* No MRFs on Gen >= 7. */
2383 if (devinfo->gen >= 7)
2384 return false;
2385
2386 calculate_live_intervals();
2387
2388 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2389 int ip = next_ip;
2390 next_ip++;
2391
2392 if (inst->opcode != BRW_OPCODE_MOV ||
2393 inst->is_partial_write() ||
2394 inst->dst.file != MRF || inst->src[0].file != GRF ||
2395 inst->dst.type != inst->src[0].type ||
2396 inst->src[0].abs || inst->src[0].negate ||
2397 !inst->src[0].is_contiguous() ||
2398 inst->src[0].subreg_offset)
2399 continue;
2400
2401 /* Work out which hardware MRF registers are written by this
2402 * instruction.
2403 */
2404 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2405 int mrf_high;
2406 if (inst->dst.reg & BRW_MRF_COMPR4) {
2407 mrf_high = mrf_low + 4;
2408 } else if (inst->exec_size == 16) {
2409 mrf_high = mrf_low + 1;
2410 } else {
2411 mrf_high = mrf_low;
2412 }
2413
2414 /* Can't compute-to-MRF this GRF if someone else was going to
2415 * read it later.
2416 */
2417 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2418 continue;
2419
2420 /* Found a move of a GRF to a MRF. Let's see if we can go
2421 * rewrite the thing that made this GRF to write into the MRF.
2422 */
2423 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2424 if (scan_inst->dst.file == GRF &&
2425 scan_inst->dst.reg == inst->src[0].reg) {
2426 /* Found the last thing to write our reg we want to turn
2427 * into a compute-to-MRF.
2428 */
2429
2430 /* If this one instruction didn't populate all the
2431 * channels, bail. We might be able to rewrite everything
2432 * that writes that reg, but it would require smarter
2433 * tracking to delay the rewriting until complete success.
2434 */
2435 if (scan_inst->is_partial_write())
2436 break;
2437
2438 /* Things returning more than one register would need us to
2439 * understand coalescing out more than one MOV at a time.
2440 */
2441 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2442 break;
2443
2444 /* SEND instructions can't have MRF as a destination. */
2445 if (scan_inst->mlen)
2446 break;
2447
2448 if (devinfo->gen == 6) {
2449 /* gen6 math instructions must have the destination be
2450 * GRF, so no compute-to-MRF for them.
2451 */
2452 if (scan_inst->is_math()) {
2453 break;
2454 }
2455 }
2456
2457 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2458 /* Found the creator of our MRF's source value. */
2459 scan_inst->dst.file = MRF;
2460 scan_inst->dst.reg = inst->dst.reg;
2461 scan_inst->saturate |= inst->saturate;
2462 inst->remove(block);
2463 progress = true;
2464 }
2465 break;
2466 }
2467
2468 /* We don't handle control flow here. Most computation of
2469 * values that end up in MRFs are shortly before the MRF
2470 * write anyway.
2471 */
2472 if (block->start() == scan_inst)
2473 break;
2474
2475 /* You can't read from an MRF, so if someone else reads our
2476 * MRF's source GRF that we wanted to rewrite, that stops us.
2477 */
2478 bool interfered = false;
2479 for (int i = 0; i < scan_inst->sources; i++) {
2480 if (scan_inst->src[i].file == GRF &&
2481 scan_inst->src[i].reg == inst->src[0].reg &&
2482 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2483 interfered = true;
2484 }
2485 }
2486 if (interfered)
2487 break;
2488
2489 if (scan_inst->dst.file == MRF) {
2490 /* If somebody else writes our MRF here, we can't
2491 * compute-to-MRF before that.
2492 */
2493 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2494 int scan_mrf_high;
2495
2496 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2497 scan_mrf_high = scan_mrf_low + 4;
2498 } else if (scan_inst->exec_size == 16) {
2499 scan_mrf_high = scan_mrf_low + 1;
2500 } else {
2501 scan_mrf_high = scan_mrf_low;
2502 }
2503
2504 if (mrf_low == scan_mrf_low ||
2505 mrf_low == scan_mrf_high ||
2506 mrf_high == scan_mrf_low ||
2507 mrf_high == scan_mrf_high) {
2508 break;
2509 }
2510 }
2511
2512 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2513 /* Found a SEND instruction, which means that there are
2514 * live values in MRFs from base_mrf to base_mrf +
2515 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2516 * above it.
2517 */
2518 if (mrf_low >= scan_inst->base_mrf &&
2519 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2520 break;
2521 }
2522 if (mrf_high >= scan_inst->base_mrf &&
2523 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2524 break;
2525 }
2526 }
2527 }
2528 }
2529
2530 if (progress)
2531 invalidate_live_intervals();
2532
2533 return progress;
2534 }
2535
2536 /**
2537 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2538 * flow. We could probably do better here with some form of divergence
2539 * analysis.
2540 */
2541 bool
2542 fs_visitor::eliminate_find_live_channel()
2543 {
2544 bool progress = false;
2545 unsigned depth = 0;
2546
2547 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2548 switch (inst->opcode) {
2549 case BRW_OPCODE_IF:
2550 case BRW_OPCODE_DO:
2551 depth++;
2552 break;
2553
2554 case BRW_OPCODE_ENDIF:
2555 case BRW_OPCODE_WHILE:
2556 depth--;
2557 break;
2558
2559 case FS_OPCODE_DISCARD_JUMP:
2560 /* This can potentially make control flow non-uniform until the end
2561 * of the program.
2562 */
2563 return progress;
2564
2565 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2566 if (depth == 0) {
2567 inst->opcode = BRW_OPCODE_MOV;
2568 inst->src[0] = fs_reg(0);
2569 inst->sources = 1;
2570 inst->force_writemask_all = true;
2571 progress = true;
2572 }
2573 break;
2574
2575 default:
2576 break;
2577 }
2578 }
2579
2580 return progress;
2581 }
2582
2583 /**
2584 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2585 * instructions to FS_OPCODE_REP_FB_WRITE.
2586 */
2587 void
2588 fs_visitor::emit_repclear_shader()
2589 {
2590 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2591 int base_mrf = 1;
2592 int color_mrf = base_mrf + 2;
2593
2594 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2595 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2596
2597 fs_inst *write;
2598 if (key->nr_color_regions == 1) {
2599 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2600 write->saturate = key->clamp_fragment_color;
2601 write->base_mrf = color_mrf;
2602 write->target = 0;
2603 write->header_size = 0;
2604 write->mlen = 1;
2605 } else {
2606 assume(key->nr_color_regions > 0);
2607 for (int i = 0; i < key->nr_color_regions; ++i) {
2608 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2609 write->saturate = key->clamp_fragment_color;
2610 write->base_mrf = base_mrf;
2611 write->target = i;
2612 write->header_size = 2;
2613 write->mlen = 3;
2614 }
2615 }
2616 write->eot = true;
2617
2618 calculate_cfg();
2619
2620 assign_constant_locations();
2621 assign_curb_setup();
2622
2623 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2624 assert(mov->src[0].file == HW_REG);
2625 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2626 }
2627
2628 /**
2629 * Walks through basic blocks, looking for repeated MRF writes and
2630 * removing the later ones.
2631 */
2632 bool
2633 fs_visitor::remove_duplicate_mrf_writes()
2634 {
2635 fs_inst *last_mrf_move[16];
2636 bool progress = false;
2637
2638 /* Need to update the MRF tracking for compressed instructions. */
2639 if (dispatch_width == 16)
2640 return false;
2641
2642 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2643
2644 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2645 if (inst->is_control_flow()) {
2646 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2647 }
2648
2649 if (inst->opcode == BRW_OPCODE_MOV &&
2650 inst->dst.file == MRF) {
2651 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2652 if (prev_inst && inst->equals(prev_inst)) {
2653 inst->remove(block);
2654 progress = true;
2655 continue;
2656 }
2657 }
2658
2659 /* Clear out the last-write records for MRFs that were overwritten. */
2660 if (inst->dst.file == MRF) {
2661 last_mrf_move[inst->dst.reg] = NULL;
2662 }
2663
2664 if (inst->mlen > 0 && inst->base_mrf != -1) {
2665 /* Found a SEND instruction, which will include two or fewer
2666 * implied MRF writes. We could do better here.
2667 */
2668 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2669 last_mrf_move[inst->base_mrf + i] = NULL;
2670 }
2671 }
2672
2673 /* Clear out any MRF move records whose sources got overwritten. */
2674 if (inst->dst.file == GRF) {
2675 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2676 if (last_mrf_move[i] &&
2677 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2678 last_mrf_move[i] = NULL;
2679 }
2680 }
2681 }
2682
2683 if (inst->opcode == BRW_OPCODE_MOV &&
2684 inst->dst.file == MRF &&
2685 inst->src[0].file == GRF &&
2686 !inst->is_partial_write()) {
2687 last_mrf_move[inst->dst.reg] = inst;
2688 }
2689 }
2690
2691 if (progress)
2692 invalidate_live_intervals();
2693
2694 return progress;
2695 }
2696
2697 static void
2698 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2699 {
2700 /* Clear the flag for registers that actually got read (as expected). */
2701 for (int i = 0; i < inst->sources; i++) {
2702 int grf;
2703 if (inst->src[i].file == GRF) {
2704 grf = inst->src[i].reg;
2705 } else if (inst->src[i].file == HW_REG &&
2706 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2707 grf = inst->src[i].fixed_hw_reg.nr;
2708 } else {
2709 continue;
2710 }
2711
2712 if (grf >= first_grf &&
2713 grf < first_grf + grf_len) {
2714 deps[grf - first_grf] = false;
2715 if (inst->exec_size == 16)
2716 deps[grf - first_grf + 1] = false;
2717 }
2718 }
2719 }
2720
2721 /**
2722 * Implements this workaround for the original 965:
2723 *
2724 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2725 * check for post destination dependencies on this instruction, software
2726 * must ensure that there is no destination hazard for the case of ‘write
2727 * followed by a posted write’ shown in the following example.
2728 *
2729 * 1. mov r3 0
2730 * 2. send r3.xy <rest of send instruction>
2731 * 3. mov r2 r3
2732 *
2733 * Due to no post-destination dependency check on the ‘send’, the above
2734 * code sequence could have two instructions (1 and 2) in flight at the
2735 * same time that both consider ‘r3’ as the target of their final writes.
2736 */
2737 void
2738 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2739 fs_inst *inst)
2740 {
2741 int write_len = inst->regs_written;
2742 int first_write_grf = inst->dst.reg;
2743 bool needs_dep[BRW_MAX_MRF];
2744 assert(write_len < (int)sizeof(needs_dep) - 1);
2745
2746 memset(needs_dep, false, sizeof(needs_dep));
2747 memset(needs_dep, true, write_len);
2748
2749 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2750
2751 /* Walk backwards looking for writes to registers we're writing which
2752 * aren't read since being written. If we hit the start of the program,
2753 * we assume that there are no outstanding dependencies on entry to the
2754 * program.
2755 */
2756 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2757 /* If we hit control flow, assume that there *are* outstanding
2758 * dependencies, and force their cleanup before our instruction.
2759 */
2760 if (block->start() == scan_inst) {
2761 for (int i = 0; i < write_len; i++) {
2762 if (needs_dep[i])
2763 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2764 }
2765 return;
2766 }
2767
2768 /* We insert our reads as late as possible on the assumption that any
2769 * instruction but a MOV that might have left us an outstanding
2770 * dependency has more latency than a MOV.
2771 */
2772 if (scan_inst->dst.file == GRF) {
2773 for (int i = 0; i < scan_inst->regs_written; i++) {
2774 int reg = scan_inst->dst.reg + i;
2775
2776 if (reg >= first_write_grf &&
2777 reg < first_write_grf + write_len &&
2778 needs_dep[reg - first_write_grf]) {
2779 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2780 needs_dep[reg - first_write_grf] = false;
2781 if (scan_inst->exec_size == 16)
2782 needs_dep[reg - first_write_grf + 1] = false;
2783 }
2784 }
2785 }
2786
2787 /* Clear the flag for registers that actually got read (as expected). */
2788 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2789
2790 /* Continue the loop only if we haven't resolved all the dependencies */
2791 int i;
2792 for (i = 0; i < write_len; i++) {
2793 if (needs_dep[i])
2794 break;
2795 }
2796 if (i == write_len)
2797 return;
2798 }
2799 }
2800
2801 /**
2802 * Implements this workaround for the original 965:
2803 *
2804 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2805 * used as a destination register until after it has been sourced by an
2806 * instruction with a different destination register.
2807 */
2808 void
2809 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2810 {
2811 int write_len = inst->regs_written;
2812 int first_write_grf = inst->dst.reg;
2813 bool needs_dep[BRW_MAX_MRF];
2814 assert(write_len < (int)sizeof(needs_dep) - 1);
2815
2816 memset(needs_dep, false, sizeof(needs_dep));
2817 memset(needs_dep, true, write_len);
2818 /* Walk forwards looking for writes to registers we're writing which aren't
2819 * read before being written.
2820 */
2821 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2822 /* If we hit control flow, force resolve all remaining dependencies. */
2823 if (block->end() == scan_inst) {
2824 for (int i = 0; i < write_len; i++) {
2825 if (needs_dep[i])
2826 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2827 }
2828 return;
2829 }
2830
2831 /* Clear the flag for registers that actually got read (as expected). */
2832 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2833
2834 /* We insert our reads as late as possible since they're reading the
2835 * result of a SEND, which has massive latency.
2836 */
2837 if (scan_inst->dst.file == GRF &&
2838 scan_inst->dst.reg >= first_write_grf &&
2839 scan_inst->dst.reg < first_write_grf + write_len &&
2840 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2841 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2842 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2843 }
2844
2845 /* Continue the loop only if we haven't resolved all the dependencies */
2846 int i;
2847 for (i = 0; i < write_len; i++) {
2848 if (needs_dep[i])
2849 break;
2850 }
2851 if (i == write_len)
2852 return;
2853 }
2854 }
2855
2856 void
2857 fs_visitor::insert_gen4_send_dependency_workarounds()
2858 {
2859 if (devinfo->gen != 4 || devinfo->is_g4x)
2860 return;
2861
2862 bool progress = false;
2863
2864 /* Note that we're done with register allocation, so GRF fs_regs always
2865 * have a .reg_offset of 0.
2866 */
2867
2868 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2869 if (inst->mlen != 0 && inst->dst.file == GRF) {
2870 insert_gen4_pre_send_dependency_workarounds(block, inst);
2871 insert_gen4_post_send_dependency_workarounds(block, inst);
2872 progress = true;
2873 }
2874 }
2875
2876 if (progress)
2877 invalidate_live_intervals();
2878 }
2879
2880 /**
2881 * Turns the generic expression-style uniform pull constant load instruction
2882 * into a hardware-specific series of instructions for loading a pull
2883 * constant.
2884 *
2885 * The expression style allows the CSE pass before this to optimize out
2886 * repeated loads from the same offset, and gives the pre-register-allocation
2887 * scheduling full flexibility, while the conversion to native instructions
2888 * allows the post-register-allocation scheduler the best information
2889 * possible.
2890 *
2891 * Note that execution masking for setting up pull constant loads is special:
2892 * the channels that need to be written are unrelated to the current execution
2893 * mask, since a later instruction will use one of the result channels as a
2894 * source operand for all 8 or 16 of its channels.
2895 */
2896 void
2897 fs_visitor::lower_uniform_pull_constant_loads()
2898 {
2899 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2900 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2901 continue;
2902
2903 if (devinfo->gen >= 7) {
2904 /* The offset arg before was a vec4-aligned byte offset. We need to
2905 * turn it into a dword offset.
2906 */
2907 fs_reg const_offset_reg = inst->src[1];
2908 assert(const_offset_reg.file == IMM &&
2909 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2910 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2911 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
2912
2913 /* We have to use a message header on Skylake to get SIMD4x2 mode.
2914 * Reserve space for the register.
2915 */
2916 if (devinfo->gen >= 9) {
2917 payload.reg_offset++;
2918 alloc.sizes[payload.reg] = 2;
2919 }
2920
2921 /* This is actually going to be a MOV, but since only the first dword
2922 * is accessed, we have a special opcode to do just that one. Note
2923 * that this needs to be an operation that will be considered a def
2924 * by live variable analysis, or register allocation will explode.
2925 */
2926 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2927 8, payload, const_offset_reg);
2928 setup->force_writemask_all = true;
2929
2930 setup->ir = inst->ir;
2931 setup->annotation = inst->annotation;
2932 inst->insert_before(block, setup);
2933
2934 /* Similarly, this will only populate the first 4 channels of the
2935 * result register (since we only use smear values from 0-3), but we
2936 * don't tell the optimizer.
2937 */
2938 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2939 inst->src[1] = payload;
2940
2941 invalidate_live_intervals();
2942 } else {
2943 /* Before register allocation, we didn't tell the scheduler about the
2944 * MRF we use. We know it's safe to use this MRF because nothing
2945 * else does except for register spill/unspill, which generates and
2946 * uses its MRF within a single IR instruction.
2947 */
2948 inst->base_mrf = 14;
2949 inst->mlen = 1;
2950 }
2951 }
2952 }
2953
2954 bool
2955 fs_visitor::lower_load_payload()
2956 {
2957 bool progress = false;
2958
2959 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2960 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2961 continue;
2962
2963 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2964 assert(inst->saturate == false);
2965
2966 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
2967 .exec_all(inst->force_writemask_all)
2968 .at(block, inst);
2969 fs_reg dst = inst->dst;
2970
2971 /* Get rid of COMPR4. We'll add it back in if we need it */
2972 if (dst.file == MRF)
2973 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
2974
2975 dst.width = 8;
2976 for (uint8_t i = 0; i < inst->header_size; i++) {
2977 if (inst->src[i].file != BAD_FILE) {
2978 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
2979 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
2980 mov_src.width = 8;
2981 ibld.exec_all().MOV(mov_dst, mov_src);
2982 }
2983 dst = offset(dst, 1);
2984 }
2985
2986 dst.width = inst->exec_size;
2987 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
2988 inst->exec_size > 8) {
2989 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
2990 * a straightforward copy. Instead, the result of the
2991 * LOAD_PAYLOAD is treated as interleaved and the first four
2992 * non-header sources are unpacked as:
2993 *
2994 * m + 0: r0
2995 * m + 1: g0
2996 * m + 2: b0
2997 * m + 3: a0
2998 * m + 4: r1
2999 * m + 5: g1
3000 * m + 6: b1
3001 * m + 7: a1
3002 *
3003 * This is used for gen <= 5 fb writes.
3004 */
3005 assert(inst->exec_size == 16);
3006 assert(inst->header_size + 4 <= inst->sources);
3007 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3008 if (inst->src[i].file != BAD_FILE) {
3009 if (devinfo->has_compr4) {
3010 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3011 compr4_dst.reg |= BRW_MRF_COMPR4;
3012 ibld.MOV(compr4_dst, inst->src[i]);
3013 } else {
3014 /* Platform doesn't have COMPR4. We have to fake it */
3015 fs_reg mov_dst = retype(dst, inst->src[i].type);
3016 mov_dst.width = 8;
3017 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3018 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3019 }
3020 }
3021
3022 dst.reg++;
3023 }
3024
3025 /* The loop above only ever incremented us through the first set
3026 * of 4 registers. However, thanks to the magic of COMPR4, we
3027 * actually wrote to the first 8 registers, so we need to take
3028 * that into account now.
3029 */
3030 dst.reg += 4;
3031
3032 /* The COMPR4 code took care of the first 4 sources. We'll let
3033 * the regular path handle any remaining sources. Yes, we are
3034 * modifying the instruction but we're about to delete it so
3035 * this really doesn't hurt anything.
3036 */
3037 inst->header_size += 4;
3038 }
3039
3040 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3041 if (inst->src[i].file != BAD_FILE)
3042 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3043 dst = offset(dst, 1);
3044 }
3045
3046 inst->remove(block);
3047 progress = true;
3048 }
3049
3050 if (progress)
3051 invalidate_live_intervals();
3052
3053 return progress;
3054 }
3055
3056 bool
3057 fs_visitor::lower_integer_multiplication()
3058 {
3059 bool progress = false;
3060
3061 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3062 * directly, but Cherryview cannot.
3063 */
3064 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3065 return false;
3066
3067 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3068 if (inst->opcode != BRW_OPCODE_MUL ||
3069 inst->dst.is_accumulator() ||
3070 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3071 inst->dst.type != BRW_REGISTER_TYPE_UD))
3072 continue;
3073
3074 const fs_builder ibld = bld.at(block, inst);
3075
3076 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3077 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3078 * src1 are used.
3079 *
3080 * If multiplying by an immediate value that fits in 16-bits, do a
3081 * single MUL instruction with that value in the proper location.
3082 */
3083 if (inst->src[1].file == IMM &&
3084 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3085 if (devinfo->gen < 7) {
3086 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3087 inst->dst.type, dispatch_width);
3088 ibld.MOV(imm, inst->src[1]);
3089 ibld.MUL(inst->dst, imm, inst->src[0]);
3090 } else {
3091 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3092 }
3093 } else {
3094 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3095 * do 32-bit integer multiplication in one instruction, but instead
3096 * must do a sequence (which actually calculates a 64-bit result):
3097 *
3098 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3099 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3100 * mov(8) g2<1>D acc0<8,8,1>D
3101 *
3102 * But on Gen > 6, the ability to use second accumulator register
3103 * (acc1) for non-float data types was removed, preventing a simple
3104 * implementation in SIMD16. A 16-channel result can be calculated by
3105 * executing the three instructions twice in SIMD8, once with quarter
3106 * control of 1Q for the first eight channels and again with 2Q for
3107 * the second eight channels.
3108 *
3109 * Which accumulator register is implicitly accessed (by AccWrEnable
3110 * for instance) is determined by the quarter control. Unfortunately
3111 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3112 * implicit accumulator access by an instruction with 2Q will access
3113 * acc1 regardless of whether the data type is usable in acc1.
3114 *
3115 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3116 * integer data types.
3117 *
3118 * Since we only want the low 32-bits of the result, we can do two
3119 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3120 * adjust the high result and add them (like the mach is doing):
3121 *
3122 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3123 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3124 * shl(8) g9<1>D g8<8,8,1>D 16D
3125 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3126 *
3127 * We avoid the shl instruction by realizing that we only want to add
3128 * the low 16-bits of the "high" result to the high 16-bits of the
3129 * "low" result and using proper regioning on the add:
3130 *
3131 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3132 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3133 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3134 *
3135 * Since it does not use the (single) accumulator register, we can
3136 * schedule multi-component multiplications much better.
3137 */
3138
3139 if (inst->conditional_mod && inst->dst.is_null()) {
3140 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3141 inst->dst.type, dispatch_width);
3142 }
3143 fs_reg low = inst->dst;
3144 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3145 inst->dst.type, dispatch_width);
3146
3147 if (devinfo->gen >= 7) {
3148 fs_reg src1_0_w = inst->src[1];
3149 fs_reg src1_1_w = inst->src[1];
3150
3151 if (inst->src[1].file == IMM) {
3152 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3153 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3154 } else {
3155 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3156 if (src1_0_w.stride != 0) {
3157 assert(src1_0_w.stride == 1);
3158 src1_0_w.stride = 2;
3159 }
3160
3161 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3162 if (src1_1_w.stride != 0) {
3163 assert(src1_1_w.stride == 1);
3164 src1_1_w.stride = 2;
3165 }
3166 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3167 }
3168 ibld.MUL(low, inst->src[0], src1_0_w);
3169 ibld.MUL(high, inst->src[0], src1_1_w);
3170 } else {
3171 fs_reg src0_0_w = inst->src[0];
3172 fs_reg src0_1_w = inst->src[0];
3173
3174 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3175 if (src0_0_w.stride != 0) {
3176 assert(src0_0_w.stride == 1);
3177 src0_0_w.stride = 2;
3178 }
3179
3180 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3181 if (src0_1_w.stride != 0) {
3182 assert(src0_1_w.stride == 1);
3183 src0_1_w.stride = 2;
3184 }
3185 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3186
3187 ibld.MUL(low, src0_0_w, inst->src[1]);
3188 ibld.MUL(high, src0_1_w, inst->src[1]);
3189 }
3190
3191 fs_reg dst = inst->dst;
3192 dst.type = BRW_REGISTER_TYPE_UW;
3193 dst.subreg_offset = 2;
3194 dst.stride = 2;
3195
3196 high.type = BRW_REGISTER_TYPE_UW;
3197 high.stride = 2;
3198
3199 low.type = BRW_REGISTER_TYPE_UW;
3200 low.subreg_offset = 2;
3201 low.stride = 2;
3202
3203 ibld.ADD(dst, low, high);
3204
3205 if (inst->conditional_mod) {
3206 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3207 set_condmod(inst->conditional_mod,
3208 ibld.MOV(null, inst->dst));
3209 }
3210 }
3211
3212 inst->remove(block);
3213 progress = true;
3214 }
3215
3216 if (progress)
3217 invalidate_live_intervals();
3218
3219 return progress;
3220 }
3221
3222 void
3223 fs_visitor::dump_instructions()
3224 {
3225 dump_instructions(NULL);
3226 }
3227
3228 void
3229 fs_visitor::dump_instructions(const char *name)
3230 {
3231 FILE *file = stderr;
3232 if (name && geteuid() != 0) {
3233 file = fopen(name, "w");
3234 if (!file)
3235 file = stderr;
3236 }
3237
3238 if (cfg) {
3239 calculate_register_pressure();
3240 int ip = 0, max_pressure = 0;
3241 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3242 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3243 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3244 dump_instruction(inst, file);
3245 ip++;
3246 }
3247 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3248 } else {
3249 int ip = 0;
3250 foreach_in_list(backend_instruction, inst, &instructions) {
3251 fprintf(file, "%4d: ", ip++);
3252 dump_instruction(inst, file);
3253 }
3254 }
3255
3256 if (file != stderr) {
3257 fclose(file);
3258 }
3259 }
3260
3261 void
3262 fs_visitor::dump_instruction(backend_instruction *be_inst)
3263 {
3264 dump_instruction(be_inst, stderr);
3265 }
3266
3267 void
3268 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3269 {
3270 fs_inst *inst = (fs_inst *)be_inst;
3271
3272 if (inst->predicate) {
3273 fprintf(file, "(%cf0.%d) ",
3274 inst->predicate_inverse ? '-' : '+',
3275 inst->flag_subreg);
3276 }
3277
3278 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3279 if (inst->saturate)
3280 fprintf(file, ".sat");
3281 if (inst->conditional_mod) {
3282 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3283 if (!inst->predicate &&
3284 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3285 inst->opcode != BRW_OPCODE_IF &&
3286 inst->opcode != BRW_OPCODE_WHILE))) {
3287 fprintf(file, ".f0.%d", inst->flag_subreg);
3288 }
3289 }
3290 fprintf(file, "(%d) ", inst->exec_size);
3291
3292 if (inst->mlen) {
3293 fprintf(file, "(mlen: %d) ", inst->mlen);
3294 }
3295
3296 switch (inst->dst.file) {
3297 case GRF:
3298 fprintf(file, "vgrf%d", inst->dst.reg);
3299 if (inst->dst.width != dispatch_width)
3300 fprintf(file, "@%d", inst->dst.width);
3301 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3302 inst->dst.subreg_offset)
3303 fprintf(file, "+%d.%d",
3304 inst->dst.reg_offset, inst->dst.subreg_offset);
3305 break;
3306 case MRF:
3307 fprintf(file, "m%d", inst->dst.reg);
3308 break;
3309 case BAD_FILE:
3310 fprintf(file, "(null)");
3311 break;
3312 case UNIFORM:
3313 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3314 break;
3315 case ATTR:
3316 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3317 break;
3318 case HW_REG:
3319 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3320 switch (inst->dst.fixed_hw_reg.nr) {
3321 case BRW_ARF_NULL:
3322 fprintf(file, "null");
3323 break;
3324 case BRW_ARF_ADDRESS:
3325 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3326 break;
3327 case BRW_ARF_ACCUMULATOR:
3328 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3329 break;
3330 case BRW_ARF_FLAG:
3331 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3332 inst->dst.fixed_hw_reg.subnr);
3333 break;
3334 default:
3335 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3336 inst->dst.fixed_hw_reg.subnr);
3337 break;
3338 }
3339 } else {
3340 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3341 }
3342 if (inst->dst.fixed_hw_reg.subnr)
3343 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3344 break;
3345 default:
3346 fprintf(file, "???");
3347 break;
3348 }
3349 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3350
3351 for (int i = 0; i < inst->sources; i++) {
3352 if (inst->src[i].negate)
3353 fprintf(file, "-");
3354 if (inst->src[i].abs)
3355 fprintf(file, "|");
3356 switch (inst->src[i].file) {
3357 case GRF:
3358 fprintf(file, "vgrf%d", inst->src[i].reg);
3359 if (inst->src[i].width != dispatch_width)
3360 fprintf(file, "@%d", inst->src[i].width);
3361 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3362 inst->src[i].subreg_offset)
3363 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3364 inst->src[i].subreg_offset);
3365 break;
3366 case MRF:
3367 fprintf(file, "***m%d***", inst->src[i].reg);
3368 break;
3369 case ATTR:
3370 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3371 break;
3372 case UNIFORM:
3373 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3374 if (inst->src[i].reladdr) {
3375 fprintf(file, "+reladdr");
3376 } else if (inst->src[i].subreg_offset) {
3377 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3378 inst->src[i].subreg_offset);
3379 }
3380 break;
3381 case BAD_FILE:
3382 fprintf(file, "(null)");
3383 break;
3384 case IMM:
3385 switch (inst->src[i].type) {
3386 case BRW_REGISTER_TYPE_F:
3387 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3388 break;
3389 case BRW_REGISTER_TYPE_W:
3390 case BRW_REGISTER_TYPE_D:
3391 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3392 break;
3393 case BRW_REGISTER_TYPE_UW:
3394 case BRW_REGISTER_TYPE_UD:
3395 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3396 break;
3397 case BRW_REGISTER_TYPE_VF:
3398 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3399 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3400 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3401 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3402 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3403 break;
3404 default:
3405 fprintf(file, "???");
3406 break;
3407 }
3408 break;
3409 case HW_REG:
3410 if (inst->src[i].fixed_hw_reg.negate)
3411 fprintf(file, "-");
3412 if (inst->src[i].fixed_hw_reg.abs)
3413 fprintf(file, "|");
3414 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3415 switch (inst->src[i].fixed_hw_reg.nr) {
3416 case BRW_ARF_NULL:
3417 fprintf(file, "null");
3418 break;
3419 case BRW_ARF_ADDRESS:
3420 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3421 break;
3422 case BRW_ARF_ACCUMULATOR:
3423 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3424 break;
3425 case BRW_ARF_FLAG:
3426 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3427 inst->src[i].fixed_hw_reg.subnr);
3428 break;
3429 default:
3430 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3431 inst->src[i].fixed_hw_reg.subnr);
3432 break;
3433 }
3434 } else {
3435 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3436 }
3437 if (inst->src[i].fixed_hw_reg.subnr)
3438 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3439 if (inst->src[i].fixed_hw_reg.abs)
3440 fprintf(file, "|");
3441 break;
3442 default:
3443 fprintf(file, "???");
3444 break;
3445 }
3446 if (inst->src[i].abs)
3447 fprintf(file, "|");
3448
3449 if (inst->src[i].file != IMM) {
3450 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3451 }
3452
3453 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3454 fprintf(file, ", ");
3455 }
3456
3457 fprintf(file, " ");
3458
3459 if (dispatch_width == 16 && inst->exec_size == 8) {
3460 if (inst->force_sechalf)
3461 fprintf(file, "2ndhalf ");
3462 else
3463 fprintf(file, "1sthalf ");
3464 }
3465
3466 fprintf(file, "\n");
3467 }
3468
3469 /**
3470 * Possibly returns an instruction that set up @param reg.
3471 *
3472 * Sometimes we want to take the result of some expression/variable
3473 * dereference tree and rewrite the instruction generating the result
3474 * of the tree. When processing the tree, we know that the
3475 * instructions generated are all writing temporaries that are dead
3476 * outside of this tree. So, if we have some instructions that write
3477 * a temporary, we're free to point that temp write somewhere else.
3478 *
3479 * Note that this doesn't guarantee that the instruction generated
3480 * only reg -- it might be the size=4 destination of a texture instruction.
3481 */
3482 fs_inst *
3483 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3484 fs_inst *end,
3485 const fs_reg &reg)
3486 {
3487 if (end == start ||
3488 end->is_partial_write() ||
3489 reg.reladdr ||
3490 !reg.equals(end->dst)) {
3491 return NULL;
3492 } else {
3493 return end;
3494 }
3495 }
3496
3497 void
3498 fs_visitor::setup_payload_gen6()
3499 {
3500 bool uses_depth =
3501 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3502 unsigned barycentric_interp_modes =
3503 (stage == MESA_SHADER_FRAGMENT) ?
3504 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3505
3506 assert(devinfo->gen >= 6);
3507
3508 /* R0-1: masks, pixel X/Y coordinates. */
3509 payload.num_regs = 2;
3510 /* R2: only for 32-pixel dispatch.*/
3511
3512 /* R3-26: barycentric interpolation coordinates. These appear in the
3513 * same order that they appear in the brw_wm_barycentric_interp_mode
3514 * enum. Each set of coordinates occupies 2 registers if dispatch width
3515 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3516 * appear if they were enabled using the "Barycentric Interpolation
3517 * Mode" bits in WM_STATE.
3518 */
3519 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3520 if (barycentric_interp_modes & (1 << i)) {
3521 payload.barycentric_coord_reg[i] = payload.num_regs;
3522 payload.num_regs += 2;
3523 if (dispatch_width == 16) {
3524 payload.num_regs += 2;
3525 }
3526 }
3527 }
3528
3529 /* R27: interpolated depth if uses source depth */
3530 if (uses_depth) {
3531 payload.source_depth_reg = payload.num_regs;
3532 payload.num_regs++;
3533 if (dispatch_width == 16) {
3534 /* R28: interpolated depth if not SIMD8. */
3535 payload.num_regs++;
3536 }
3537 }
3538 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3539 if (uses_depth) {
3540 payload.source_w_reg = payload.num_regs;
3541 payload.num_regs++;
3542 if (dispatch_width == 16) {
3543 /* R30: interpolated W if not SIMD8. */
3544 payload.num_regs++;
3545 }
3546 }
3547
3548 if (stage == MESA_SHADER_FRAGMENT) {
3549 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3550 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3551 prog_data->uses_pos_offset = key->compute_pos_offset;
3552 /* R31: MSAA position offsets. */
3553 if (prog_data->uses_pos_offset) {
3554 payload.sample_pos_reg = payload.num_regs;
3555 payload.num_regs++;
3556 }
3557 }
3558
3559 /* R32: MSAA input coverage mask */
3560 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3561 assert(devinfo->gen >= 7);
3562 payload.sample_mask_in_reg = payload.num_regs;
3563 payload.num_regs++;
3564 if (dispatch_width == 16) {
3565 /* R33: input coverage mask if not SIMD8. */
3566 payload.num_regs++;
3567 }
3568 }
3569
3570 /* R34-: bary for 32-pixel. */
3571 /* R58-59: interp W for 32-pixel. */
3572
3573 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3574 source_depth_to_render_target = true;
3575 }
3576 }
3577
3578 void
3579 fs_visitor::setup_vs_payload()
3580 {
3581 /* R0: thread header, R1: urb handles */
3582 payload.num_regs = 2;
3583 }
3584
3585 void
3586 fs_visitor::setup_cs_payload()
3587 {
3588 assert(devinfo->gen >= 7);
3589
3590 payload.num_regs = 1;
3591 }
3592
3593 void
3594 fs_visitor::assign_binding_table_offsets()
3595 {
3596 assert(stage == MESA_SHADER_FRAGMENT);
3597 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3598 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3599 uint32_t next_binding_table_offset = 0;
3600
3601 /* If there are no color regions, we still perform an FB write to a null
3602 * renderbuffer, which we place at surface index 0.
3603 */
3604 prog_data->binding_table.render_target_start = next_binding_table_offset;
3605 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3606
3607 assign_common_binding_table_offsets(next_binding_table_offset);
3608 }
3609
3610 void
3611 fs_visitor::calculate_register_pressure()
3612 {
3613 invalidate_live_intervals();
3614 calculate_live_intervals();
3615
3616 unsigned num_instructions = 0;
3617 foreach_block(block, cfg)
3618 num_instructions += block->instructions.length();
3619
3620 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3621
3622 for (unsigned reg = 0; reg < alloc.count; reg++) {
3623 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3624 regs_live_at_ip[ip] += alloc.sizes[reg];
3625 }
3626 }
3627
3628 void
3629 fs_visitor::optimize()
3630 {
3631 /* bld is the common builder object pointing at the end of the program we
3632 * used to translate it into i965 IR. For the optimization and lowering
3633 * passes coming next, any code added after the end of the program without
3634 * having explicitly called fs_builder::at() clearly points at a mistake.
3635 * Ideally optimization passes wouldn't be part of the visitor so they
3636 * wouldn't have access to bld at all, but they do, so just in case some
3637 * pass forgets to ask for a location explicitly set it to NULL here to
3638 * make it trip.
3639 */
3640 bld = bld.at(NULL, NULL);
3641
3642 split_virtual_grfs();
3643
3644 move_uniform_array_access_to_pull_constants();
3645 assign_constant_locations();
3646 demote_pull_constants();
3647
3648 #define OPT(pass, args...) ({ \
3649 pass_num++; \
3650 bool this_progress = pass(args); \
3651 \
3652 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3653 char filename[64]; \
3654 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3655 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3656 \
3657 backend_shader::dump_instructions(filename); \
3658 } \
3659 \
3660 progress = progress || this_progress; \
3661 this_progress; \
3662 })
3663
3664 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3665 char filename[64];
3666 snprintf(filename, 64, "%s%d-%04d-00-start",
3667 stage_abbrev, dispatch_width,
3668 shader_prog ? shader_prog->Name : 0);
3669
3670 backend_shader::dump_instructions(filename);
3671 }
3672
3673 bool progress;
3674 int iteration = 0;
3675 int pass_num = 0;
3676 do {
3677 progress = false;
3678 pass_num = 0;
3679 iteration++;
3680
3681 OPT(remove_duplicate_mrf_writes);
3682
3683 OPT(opt_algebraic);
3684 OPT(opt_cse);
3685 OPT(opt_copy_propagate);
3686 OPT(opt_peephole_predicated_break);
3687 OPT(opt_cmod_propagation);
3688 OPT(dead_code_eliminate);
3689 OPT(opt_peephole_sel);
3690 OPT(dead_control_flow_eliminate, this);
3691 OPT(opt_register_renaming);
3692 OPT(opt_redundant_discard_jumps);
3693 OPT(opt_saturate_propagation);
3694 OPT(opt_zero_samples);
3695 OPT(register_coalesce);
3696 OPT(compute_to_mrf);
3697 OPT(eliminate_find_live_channel);
3698
3699 OPT(compact_virtual_grfs);
3700 } while (progress);
3701
3702 pass_num = 0;
3703
3704 OPT(opt_sampler_eot);
3705
3706 if (OPT(lower_load_payload)) {
3707 split_virtual_grfs();
3708 OPT(register_coalesce);
3709 OPT(compute_to_mrf);
3710 OPT(dead_code_eliminate);
3711 }
3712
3713 OPT(opt_combine_constants);
3714 OPT(lower_integer_multiplication);
3715
3716 lower_uniform_pull_constant_loads();
3717 }
3718
3719 /**
3720 * Three source instruction must have a GRF/MRF destination register.
3721 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3722 */
3723 void
3724 fs_visitor::fixup_3src_null_dest()
3725 {
3726 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3727 if (inst->is_3src() && inst->dst.is_null()) {
3728 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3729 inst->dst.type);
3730 }
3731 }
3732 }
3733
3734 void
3735 fs_visitor::allocate_registers()
3736 {
3737 bool allocated_without_spills;
3738
3739 static const enum instruction_scheduler_mode pre_modes[] = {
3740 SCHEDULE_PRE,
3741 SCHEDULE_PRE_NON_LIFO,
3742 SCHEDULE_PRE_LIFO,
3743 };
3744
3745 /* Try each scheduling heuristic to see if it can successfully register
3746 * allocate without spilling. They should be ordered by decreasing
3747 * performance but increasing likelihood of allocating.
3748 */
3749 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3750 schedule_instructions(pre_modes[i]);
3751
3752 if (0) {
3753 assign_regs_trivial();
3754 allocated_without_spills = true;
3755 } else {
3756 allocated_without_spills = assign_regs(false);
3757 }
3758 if (allocated_without_spills)
3759 break;
3760 }
3761
3762 if (!allocated_without_spills) {
3763 /* We assume that any spilling is worse than just dropping back to
3764 * SIMD8. There's probably actually some intermediate point where
3765 * SIMD16 with a couple of spills is still better.
3766 */
3767 if (dispatch_width == 16) {
3768 fail("Failure to register allocate. Reduce number of "
3769 "live scalar values to avoid this.");
3770 } else {
3771 compiler->shader_perf_log(log_data,
3772 "%s shader triggered register spilling. "
3773 "Try reducing the number of live scalar "
3774 "values to improve performance.\n",
3775 stage_name);
3776 }
3777
3778 /* Since we're out of heuristics, just go spill registers until we
3779 * get an allocation.
3780 */
3781 while (!assign_regs(true)) {
3782 if (failed)
3783 break;
3784 }
3785 }
3786
3787 /* This must come after all optimization and register allocation, since
3788 * it inserts dead code that happens to have side effects, and it does
3789 * so based on the actual physical registers in use.
3790 */
3791 insert_gen4_send_dependency_workarounds();
3792
3793 if (failed)
3794 return;
3795
3796 if (!allocated_without_spills)
3797 schedule_instructions(SCHEDULE_POST);
3798
3799 if (last_scratch > 0)
3800 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3801 }
3802
3803 bool
3804 fs_visitor::run_vs(gl_clip_plane *clip_planes)
3805 {
3806 assert(stage == MESA_SHADER_VERTEX);
3807
3808 assign_common_binding_table_offsets(0);
3809 setup_vs_payload();
3810
3811 if (shader_time_index >= 0)
3812 emit_shader_time_begin();
3813
3814 emit_nir_code();
3815
3816 if (failed)
3817 return false;
3818
3819 compute_clip_distance(clip_planes);
3820
3821 emit_urb_writes();
3822
3823 if (shader_time_index >= 0)
3824 emit_shader_time_end();
3825
3826 calculate_cfg();
3827
3828 optimize();
3829
3830 assign_curb_setup();
3831 assign_vs_urb_setup();
3832
3833 fixup_3src_null_dest();
3834 allocate_registers();
3835
3836 return !failed;
3837 }
3838
3839 bool
3840 fs_visitor::run_fs(bool do_rep_send)
3841 {
3842 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3843 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3844
3845 assert(stage == MESA_SHADER_FRAGMENT);
3846
3847 sanity_param_count = prog->Parameters->NumParameters;
3848
3849 assign_binding_table_offsets();
3850
3851 if (devinfo->gen >= 6)
3852 setup_payload_gen6();
3853 else
3854 setup_payload_gen4();
3855
3856 if (0) {
3857 emit_dummy_fs();
3858 } else if (do_rep_send) {
3859 assert(dispatch_width == 16);
3860 emit_repclear_shader();
3861 } else {
3862 if (shader_time_index >= 0)
3863 emit_shader_time_begin();
3864
3865 calculate_urb_setup();
3866 if (prog->InputsRead > 0) {
3867 if (devinfo->gen < 6)
3868 emit_interpolation_setup_gen4();
3869 else
3870 emit_interpolation_setup_gen6();
3871 }
3872
3873 /* We handle discards by keeping track of the still-live pixels in f0.1.
3874 * Initialize it with the dispatched pixels.
3875 */
3876 if (wm_prog_data->uses_kill) {
3877 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3878 discard_init->flag_subreg = 1;
3879 }
3880
3881 /* Generate FS IR for main(). (the visitor only descends into
3882 * functions called "main").
3883 */
3884 emit_nir_code();
3885
3886 if (failed)
3887 return false;
3888
3889 if (wm_prog_data->uses_kill)
3890 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3891
3892 if (wm_key->alpha_test_func)
3893 emit_alpha_test();
3894
3895 emit_fb_writes();
3896
3897 if (shader_time_index >= 0)
3898 emit_shader_time_end();
3899
3900 calculate_cfg();
3901
3902 optimize();
3903
3904 assign_curb_setup();
3905 assign_urb_setup();
3906
3907 fixup_3src_null_dest();
3908 allocate_registers();
3909
3910 if (failed)
3911 return false;
3912 }
3913
3914 if (dispatch_width == 8)
3915 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3916 else
3917 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3918
3919 /* If any state parameters were appended, then ParameterValues could have
3920 * been realloced, in which case the driver uniform storage set up by
3921 * _mesa_associate_uniform_storage() would point to freed memory. Make
3922 * sure that didn't happen.
3923 */
3924 assert(sanity_param_count == prog->Parameters->NumParameters);
3925
3926 return !failed;
3927 }
3928
3929 bool
3930 fs_visitor::run_cs()
3931 {
3932 assert(stage == MESA_SHADER_COMPUTE);
3933 assert(shader);
3934
3935 sanity_param_count = prog->Parameters->NumParameters;
3936
3937 assign_common_binding_table_offsets(0);
3938
3939 setup_cs_payload();
3940
3941 if (shader_time_index >= 0)
3942 emit_shader_time_begin();
3943
3944 emit_nir_code();
3945
3946 if (failed)
3947 return false;
3948
3949 emit_cs_terminate();
3950
3951 if (shader_time_index >= 0)
3952 emit_shader_time_end();
3953
3954 calculate_cfg();
3955
3956 optimize();
3957
3958 assign_curb_setup();
3959
3960 fixup_3src_null_dest();
3961 allocate_registers();
3962
3963 if (failed)
3964 return false;
3965
3966 /* If any state parameters were appended, then ParameterValues could have
3967 * been realloced, in which case the driver uniform storage set up by
3968 * _mesa_associate_uniform_storage() would point to freed memory. Make
3969 * sure that didn't happen.
3970 */
3971 assert(sanity_param_count == prog->Parameters->NumParameters);
3972
3973 return !failed;
3974 }
3975
3976 const unsigned *
3977 brw_wm_fs_emit(struct brw_context *brw,
3978 void *mem_ctx,
3979 const struct brw_wm_prog_key *key,
3980 struct brw_wm_prog_data *prog_data,
3981 struct gl_fragment_program *fp,
3982 struct gl_shader_program *prog,
3983 unsigned *final_assembly_size)
3984 {
3985 bool start_busy = false;
3986 double start_time = 0;
3987
3988 if (unlikely(brw->perf_debug)) {
3989 start_busy = (brw->batch.last_bo &&
3990 drm_intel_bo_busy(brw->batch.last_bo));
3991 start_time = get_time();
3992 }
3993
3994 struct brw_shader *shader = NULL;
3995 if (prog)
3996 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3997
3998 if (unlikely(INTEL_DEBUG & DEBUG_WM))
3999 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4000
4001 int st_index8 = -1, st_index16 = -1;
4002 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4003 st_index8 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS8);
4004 st_index16 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS16);
4005 }
4006
4007 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4008 */
4009 fs_visitor v(brw->intelScreen->compiler, brw,
4010 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4011 prog, &fp->Base, 8, st_index8);
4012 if (!v.run_fs(false /* do_rep_send */)) {
4013 if (prog) {
4014 prog->LinkStatus = false;
4015 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4016 }
4017
4018 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4019 v.fail_msg);
4020
4021 return NULL;
4022 }
4023
4024 cfg_t *simd16_cfg = NULL;
4025 fs_visitor v2(brw->intelScreen->compiler, brw,
4026 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4027 prog, &fp->Base, 16, st_index16);
4028 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4029 if (!v.simd16_unsupported) {
4030 /* Try a SIMD16 compile */
4031 v2.import_uniforms(&v);
4032 if (!v2.run_fs(brw->use_rep_send)) {
4033 perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
4034 } else {
4035 simd16_cfg = v2.cfg;
4036 }
4037 }
4038 }
4039
4040 cfg_t *simd8_cfg;
4041 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4042 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4043 simd8_cfg = NULL;
4044 prog_data->no_8 = true;
4045 } else {
4046 simd8_cfg = v.cfg;
4047 prog_data->no_8 = false;
4048 }
4049
4050 fs_generator g(brw->intelScreen->compiler, brw,
4051 mem_ctx, (void *) key, &prog_data->base,
4052 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4053
4054 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4055 char *name;
4056 if (prog)
4057 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4058 prog->Label ? prog->Label : "unnamed",
4059 prog->Name);
4060 else
4061 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4062
4063 g.enable_debug(name);
4064 }
4065
4066 if (simd8_cfg)
4067 g.generate_code(simd8_cfg, 8);
4068 if (simd16_cfg)
4069 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4070
4071 if (unlikely(brw->perf_debug) && shader) {
4072 if (shader->compiled_once)
4073 brw_wm_debug_recompile(brw, prog, key);
4074 shader->compiled_once = true;
4075
4076 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4077 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4078 (get_time() - start_time) * 1000);
4079 }
4080 }
4081
4082 return g.get_assembly(final_assembly_size);
4083 }
4084
4085 extern "C" bool
4086 brw_fs_precompile(struct gl_context *ctx,
4087 struct gl_shader_program *shader_prog,
4088 struct gl_program *prog)
4089 {
4090 struct brw_context *brw = brw_context(ctx);
4091 struct brw_wm_prog_key key;
4092
4093 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4094 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4095 bool program_uses_dfdy = fp->UsesDFdy;
4096
4097 memset(&key, 0, sizeof(key));
4098
4099 if (brw->gen < 6) {
4100 if (fp->UsesKill)
4101 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4102
4103 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4104 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4105
4106 /* Just assume depth testing. */
4107 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4108 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4109 }
4110
4111 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4112 BRW_FS_VARYING_INPUT_MASK) > 16)
4113 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4114
4115 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4116
4117 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4118 key.drawable_height = ctx->DrawBuffer->Height;
4119 }
4120
4121 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4122 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4123 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4124
4125 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4126 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4127 key.nr_color_regions > 1;
4128 }
4129
4130 key.program_string_id = bfp->id;
4131
4132 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4133 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4134
4135 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4136
4137 brw->wm.base.prog_offset = old_prog_offset;
4138 brw->wm.prog_data = old_prog_data;
4139
4140 return success;
4141 }
4142
4143 void
4144 brw_setup_tex_for_precompile(struct brw_context *brw,
4145 struct brw_sampler_prog_key_data *tex,
4146 struct gl_program *prog)
4147 {
4148 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4149 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4150 for (unsigned i = 0; i < sampler_count; i++) {
4151 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4152 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4153 tex->swizzles[i] =
4154 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4155 } else {
4156 /* Color sampler: assume no swizzling. */
4157 tex->swizzles[i] = SWIZZLE_XYZW;
4158 }
4159 }
4160 }