vk: Add four unit tests for our lock-free data-structures
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 case GLSL_TYPE_FUNCTION:
529 unreachable("not reached");
530 }
531
532 return 0;
533 }
534
535 /**
536 * Create a MOV to read the timestamp register.
537 *
538 * The caller is responsible for emitting the MOV. The return value is
539 * the destination of the MOV, with extra parameters set.
540 */
541 fs_reg
542 fs_visitor::get_timestamp(const fs_builder &bld)
543 {
544 assert(devinfo->gen >= 7);
545
546 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
547 BRW_ARF_TIMESTAMP,
548 0),
549 BRW_REGISTER_TYPE_UD));
550
551 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
552
553 /* We want to read the 3 fields we care about even if it's not enabled in
554 * the dispatch.
555 */
556 bld.exec_all().MOV(dst, ts);
557
558 /* The caller wants the low 32 bits of the timestamp. Since it's running
559 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
560 * which is plenty of time for our purposes. It is identical across the
561 * EUs, but since it's tracking GPU core speed it will increment at a
562 * varying rate as render P-states change.
563 *
564 * The caller could also check if render P-states have changed (or anything
565 * else that might disrupt timing) by setting smear to 2 and checking if
566 * that field is != 0.
567 */
568 dst.set_smear(0);
569
570 return dst;
571 }
572
573 void
574 fs_visitor::emit_shader_time_begin()
575 {
576 shader_start_time = get_timestamp(bld.annotate("shader time start"));
577 }
578
579 void
580 fs_visitor::emit_shader_time_end()
581 {
582 /* Insert our code just before the final SEND with EOT. */
583 exec_node *end = this->instructions.get_tail();
584 assert(end && ((fs_inst *) end)->eot);
585 const fs_builder ibld = bld.annotate("shader time end")
586 .exec_all().at(NULL, end);
587
588 fs_reg shader_end_time = get_timestamp(ibld);
589
590 /* Check that there weren't any timestamp reset events (assuming these
591 * were the only two timestamp reads that happened).
592 */
593 fs_reg reset = shader_end_time;
594 reset.set_smear(2);
595 set_condmod(BRW_CONDITIONAL_Z,
596 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
597 ibld.IF(BRW_PREDICATE_NORMAL);
598
599 fs_reg start = shader_start_time;
600 start.negate = true;
601 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
602 diff.set_smear(0);
603 ibld.ADD(diff, start, shader_end_time);
604
605 /* If there were no instructions between the two timestamp gets, the diff
606 * is 2 cycles. Remove that overhead, so I can forget about that when
607 * trying to determine the time taken for single instructions.
608 */
609 ibld.ADD(diff, diff, fs_reg(-2u));
610 SHADER_TIME_ADD(ibld, 0, diff);
611 SHADER_TIME_ADD(ibld, 1, fs_reg(1u));
612 ibld.emit(BRW_OPCODE_ELSE);
613 SHADER_TIME_ADD(ibld, 2, fs_reg(1u));
614 ibld.emit(BRW_OPCODE_ENDIF);
615 }
616
617 void
618 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
619 int shader_time_subindex,
620 fs_reg value)
621 {
622 int index = shader_time_index * 3 + shader_time_subindex;
623 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
624
625 fs_reg payload;
626 if (dispatch_width == 8)
627 payload = vgrf(glsl_type::uvec2_type);
628 else
629 payload = vgrf(glsl_type::uint_type);
630
631 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
632 }
633
634 void
635 fs_visitor::vfail(const char *format, va_list va)
636 {
637 char *msg;
638
639 if (failed)
640 return;
641
642 failed = true;
643
644 msg = ralloc_vasprintf(mem_ctx, format, va);
645 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
646
647 this->fail_msg = msg;
648
649 if (debug_enabled) {
650 fprintf(stderr, "%s", msg);
651 }
652 }
653
654 void
655 fs_visitor::fail(const char *format, ...)
656 {
657 va_list va;
658
659 va_start(va, format);
660 vfail(format, va);
661 va_end(va);
662 }
663
664 /**
665 * Mark this program as impossible to compile in SIMD16 mode.
666 *
667 * During the SIMD8 compile (which happens first), we can detect and flag
668 * things that are unsupported in SIMD16 mode, so the compiler can skip
669 * the SIMD16 compile altogether.
670 *
671 * During a SIMD16 compile (if one happens anyway), this just calls fail().
672 */
673 void
674 fs_visitor::no16(const char *msg)
675 {
676 if (dispatch_width == 16) {
677 fail("%s", msg);
678 } else {
679 simd16_unsupported = true;
680
681 compiler->shader_perf_log(log_data,
682 "SIMD16 shader failed to compile: %s", msg);
683 }
684 }
685
686 /**
687 * Returns true if the instruction has a flag that means it won't
688 * update an entire destination register.
689 *
690 * For example, dead code elimination and live variable analysis want to know
691 * when a write to a variable screens off any preceding values that were in
692 * it.
693 */
694 bool
695 fs_inst::is_partial_write() const
696 {
697 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
698 (this->dst.width * type_sz(this->dst.type)) < 32 ||
699 !this->dst.is_contiguous());
700 }
701
702 int
703 fs_inst::regs_read(int arg) const
704 {
705 if (is_tex() && arg == 0 && src[0].file == GRF) {
706 return mlen;
707 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
708 return mlen;
709 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
710 return mlen;
711 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
712 return mlen;
713 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
714 return mlen;
715 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE && arg == 0) {
716 return mlen;
717 } else if (opcode == SHADER_OPCODE_TYPED_ATOMIC && arg == 0) {
718 return mlen;
719 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_READ && arg == 0) {
720 return mlen;
721 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE && arg == 0) {
722 return mlen;
723 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
724 return mlen;
725 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
726 return exec_size / 4;
727 }
728
729 switch (src[arg].file) {
730 case BAD_FILE:
731 case UNIFORM:
732 case IMM:
733 return 1;
734 case GRF:
735 case HW_REG:
736 if (src[arg].stride == 0) {
737 return 1;
738 } else {
739 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
740 return (size + 31) / 32;
741 }
742 case MRF:
743 unreachable("MRF registers are not allowed as sources");
744 default:
745 unreachable("Invalid register file");
746 }
747 }
748
749 bool
750 fs_inst::reads_flag() const
751 {
752 return predicate;
753 }
754
755 bool
756 fs_inst::writes_flag() const
757 {
758 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
759 opcode != BRW_OPCODE_IF &&
760 opcode != BRW_OPCODE_WHILE)) ||
761 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
762 }
763
764 /**
765 * Returns how many MRFs an FS opcode will write over.
766 *
767 * Note that this is not the 0 or 1 implied writes in an actual gen
768 * instruction -- the FS opcodes often generate MOVs in addition.
769 */
770 int
771 fs_visitor::implied_mrf_writes(fs_inst *inst)
772 {
773 if (inst->mlen == 0)
774 return 0;
775
776 if (inst->base_mrf == -1)
777 return 0;
778
779 switch (inst->opcode) {
780 case SHADER_OPCODE_RCP:
781 case SHADER_OPCODE_RSQ:
782 case SHADER_OPCODE_SQRT:
783 case SHADER_OPCODE_EXP2:
784 case SHADER_OPCODE_LOG2:
785 case SHADER_OPCODE_SIN:
786 case SHADER_OPCODE_COS:
787 return 1 * dispatch_width / 8;
788 case SHADER_OPCODE_POW:
789 case SHADER_OPCODE_INT_QUOTIENT:
790 case SHADER_OPCODE_INT_REMAINDER:
791 return 2 * dispatch_width / 8;
792 case SHADER_OPCODE_TEX:
793 case FS_OPCODE_TXB:
794 case SHADER_OPCODE_TXD:
795 case SHADER_OPCODE_TXF:
796 case SHADER_OPCODE_TXF_CMS:
797 case SHADER_OPCODE_TXF_MCS:
798 case SHADER_OPCODE_TG4:
799 case SHADER_OPCODE_TG4_OFFSET:
800 case SHADER_OPCODE_TXL:
801 case SHADER_OPCODE_TXS:
802 case SHADER_OPCODE_LOD:
803 return 1;
804 case FS_OPCODE_FB_WRITE:
805 return 2;
806 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
807 case SHADER_OPCODE_GEN4_SCRATCH_READ:
808 return 1;
809 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
810 return inst->mlen;
811 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
812 return inst->mlen;
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case SHADER_OPCODE_URB_WRITE_SIMD8:
820 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
821 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
822 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
823 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
824 return 0;
825 default:
826 unreachable("not reached");
827 }
828 }
829
830 fs_reg
831 fs_visitor::vgrf(const glsl_type *const type)
832 {
833 int reg_width = dispatch_width / 8;
834 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
835 brw_type_for_base_type(type), dispatch_width);
836 }
837
838 /** Fixed HW reg constructor. */
839 fs_reg::fs_reg(enum register_file file, int reg)
840 {
841 init();
842 this->file = file;
843 this->reg = reg;
844 this->type = BRW_REGISTER_TYPE_F;
845
846 switch (file) {
847 case UNIFORM:
848 this->width = 1;
849 break;
850 default:
851 this->width = 8;
852 }
853 }
854
855 /** Fixed HW reg constructor. */
856 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
857 {
858 init();
859 this->file = file;
860 this->reg = reg;
861 this->type = type;
862
863 switch (file) {
864 case UNIFORM:
865 this->width = 1;
866 break;
867 default:
868 this->width = 8;
869 }
870 }
871
872 /** Fixed HW reg constructor. */
873 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
874 uint8_t width)
875 {
876 init();
877 this->file = file;
878 this->reg = reg;
879 this->type = type;
880 this->width = width;
881 }
882
883 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
884 * This brings in those uniform definitions
885 */
886 void
887 fs_visitor::import_uniforms(fs_visitor *v)
888 {
889 this->push_constant_loc = v->push_constant_loc;
890 this->pull_constant_loc = v->pull_constant_loc;
891 this->uniforms = v->uniforms;
892 this->param_size = v->param_size;
893 }
894
895 fs_reg *
896 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
897 bool origin_upper_left)
898 {
899 assert(stage == MESA_SHADER_FRAGMENT);
900 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
901 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
902 fs_reg wpos = *reg;
903 bool flip = !origin_upper_left ^ key->render_to_fbo;
904
905 /* gl_FragCoord.x */
906 if (pixel_center_integer) {
907 bld.MOV(wpos, this->pixel_x);
908 } else {
909 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
910 }
911 wpos = offset(wpos, 1);
912
913 /* gl_FragCoord.y */
914 if (!flip && pixel_center_integer) {
915 bld.MOV(wpos, this->pixel_y);
916 } else {
917 fs_reg pixel_y = this->pixel_y;
918 float offset = (pixel_center_integer ? 0.0 : 0.5);
919
920 if (flip) {
921 pixel_y.negate = true;
922 offset += key->drawable_height - 1.0;
923 }
924
925 bld.ADD(wpos, pixel_y, fs_reg(offset));
926 }
927 wpos = offset(wpos, 1);
928
929 /* gl_FragCoord.z */
930 if (devinfo->gen >= 6) {
931 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
932 } else {
933 bld.emit(FS_OPCODE_LINTERP, wpos,
934 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
935 interp_reg(VARYING_SLOT_POS, 2));
936 }
937 wpos = offset(wpos, 1);
938
939 /* gl_FragCoord.w: Already set up in emit_interpolation */
940 bld.MOV(wpos, this->wpos_w);
941
942 return reg;
943 }
944
945 fs_inst *
946 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
947 glsl_interp_qualifier interpolation_mode,
948 bool is_centroid, bool is_sample)
949 {
950 brw_wm_barycentric_interp_mode barycoord_mode;
951 if (devinfo->gen >= 6) {
952 if (is_centroid) {
953 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
954 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
955 else
956 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
957 } else if (is_sample) {
958 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
959 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
960 else
961 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
962 } else {
963 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
964 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
965 else
966 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
967 }
968 } else {
969 /* On Ironlake and below, there is only one interpolation mode.
970 * Centroid interpolation doesn't mean anything on this hardware --
971 * there is no multisampling.
972 */
973 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
974 }
975 return bld.emit(FS_OPCODE_LINTERP, attr,
976 this->delta_xy[barycoord_mode], interp);
977 }
978
979 void
980 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
981 const glsl_type *type,
982 glsl_interp_qualifier interpolation_mode,
983 int location, bool mod_centroid,
984 bool mod_sample)
985 {
986 attr.type = brw_type_for_base_type(type->get_scalar_type());
987
988 assert(stage == MESA_SHADER_FRAGMENT);
989 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
990 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
991
992 unsigned int array_elements;
993
994 if (type->is_array()) {
995 array_elements = type->length;
996 if (array_elements == 0) {
997 fail("dereferenced array '%s' has length 0\n", name);
998 }
999 type = type->fields.array;
1000 } else {
1001 array_elements = 1;
1002 }
1003
1004 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1005 bool is_gl_Color =
1006 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1007 if (key->flat_shade && is_gl_Color) {
1008 interpolation_mode = INTERP_QUALIFIER_FLAT;
1009 } else {
1010 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1011 }
1012 }
1013
1014 for (unsigned int i = 0; i < array_elements; i++) {
1015 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1016 if (prog_data->urb_setup[location] == -1) {
1017 /* If there's no incoming setup data for this slot, don't
1018 * emit interpolation for it.
1019 */
1020 attr = offset(attr, type->vector_elements);
1021 location++;
1022 continue;
1023 }
1024
1025 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1026 /* Constant interpolation (flat shading) case. The SF has
1027 * handed us defined values in only the constant offset
1028 * field of the setup reg.
1029 */
1030 for (unsigned int k = 0; k < type->vector_elements; k++) {
1031 struct brw_reg interp = interp_reg(location, k);
1032 interp = suboffset(interp, 3);
1033 interp.type = attr.type;
1034 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1035 attr = offset(attr, 1);
1036 }
1037 } else {
1038 /* Smooth/noperspective interpolation case. */
1039 for (unsigned int k = 0; k < type->vector_elements; k++) {
1040 struct brw_reg interp = interp_reg(location, k);
1041 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1042 /* Get the pixel/sample mask into f0 so that we know
1043 * which pixels are lit. Then, for each channel that is
1044 * unlit, replace the centroid data with non-centroid
1045 * data.
1046 */
1047 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1048
1049 fs_inst *inst;
1050 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1051 false, false);
1052 inst->predicate = BRW_PREDICATE_NORMAL;
1053 inst->predicate_inverse = true;
1054 if (devinfo->has_pln)
1055 inst->no_dd_clear = true;
1056
1057 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1058 mod_centroid && !key->persample_shading,
1059 mod_sample || key->persample_shading);
1060 inst->predicate = BRW_PREDICATE_NORMAL;
1061 inst->predicate_inverse = false;
1062 if (devinfo->has_pln)
1063 inst->no_dd_check = true;
1064
1065 } else {
1066 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1067 mod_centroid && !key->persample_shading,
1068 mod_sample || key->persample_shading);
1069 }
1070 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1071 bld.MUL(attr, attr, this->pixel_w);
1072 }
1073 attr = offset(attr, 1);
1074 }
1075
1076 }
1077 location++;
1078 }
1079 }
1080 }
1081
1082 fs_reg *
1083 fs_visitor::emit_frontfacing_interpolation()
1084 {
1085 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1086
1087 if (devinfo->gen >= 6) {
1088 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1089 * a boolean result from this (~0/true or 0/false).
1090 *
1091 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1092 * this task in only one instruction:
1093 * - a negation source modifier will flip the bit; and
1094 * - a W -> D type conversion will sign extend the bit into the high
1095 * word of the destination.
1096 *
1097 * An ASR 15 fills the low word of the destination.
1098 */
1099 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1100 g0.negate = true;
1101
1102 bld.ASR(*reg, g0, fs_reg(15));
1103 } else {
1104 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1105 * a boolean result from this (1/true or 0/false).
1106 *
1107 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1108 * the negation source modifier to flip it. Unfortunately the SHR
1109 * instruction only operates on UD (or D with an abs source modifier)
1110 * sources without negation.
1111 *
1112 * Instead, use ASR (which will give ~0/true or 0/false).
1113 */
1114 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1115 g1_6.negate = true;
1116
1117 bld.ASR(*reg, g1_6, fs_reg(31));
1118 }
1119
1120 return reg;
1121 }
1122
1123 void
1124 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1125 {
1126 assert(stage == MESA_SHADER_FRAGMENT);
1127 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1128 assert(dst.type == BRW_REGISTER_TYPE_F);
1129
1130 if (key->compute_pos_offset) {
1131 /* Convert int_sample_pos to floating point */
1132 bld.MOV(dst, int_sample_pos);
1133 /* Scale to the range [0, 1] */
1134 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1135 }
1136 else {
1137 /* From ARB_sample_shading specification:
1138 * "When rendering to a non-multisample buffer, or if multisample
1139 * rasterization is disabled, gl_SamplePosition will always be
1140 * (0.5, 0.5).
1141 */
1142 bld.MOV(dst, fs_reg(0.5f));
1143 }
1144 }
1145
1146 fs_reg *
1147 fs_visitor::emit_samplepos_setup()
1148 {
1149 assert(devinfo->gen >= 6);
1150
1151 const fs_builder abld = bld.annotate("compute sample position");
1152 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1153 fs_reg pos = *reg;
1154 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1155 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1156
1157 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1158 * mode will be enabled.
1159 *
1160 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1161 * R31.1:0 Position Offset X/Y for Slot[3:0]
1162 * R31.3:2 Position Offset X/Y for Slot[7:4]
1163 * .....
1164 *
1165 * The X, Y sample positions come in as bytes in thread payload. So, read
1166 * the positions using vstride=16, width=8, hstride=2.
1167 */
1168 struct brw_reg sample_pos_reg =
1169 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1170 BRW_REGISTER_TYPE_B), 16, 8, 2);
1171
1172 if (dispatch_width == 8) {
1173 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1174 } else {
1175 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1176 abld.half(1).MOV(half(int_sample_x, 1),
1177 fs_reg(suboffset(sample_pos_reg, 16)));
1178 }
1179 /* Compute gl_SamplePosition.x */
1180 compute_sample_position(pos, int_sample_x);
1181 pos = offset(pos, 1);
1182 if (dispatch_width == 8) {
1183 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1184 } else {
1185 abld.half(0).MOV(half(int_sample_y, 0),
1186 fs_reg(suboffset(sample_pos_reg, 1)));
1187 abld.half(1).MOV(half(int_sample_y, 1),
1188 fs_reg(suboffset(sample_pos_reg, 17)));
1189 }
1190 /* Compute gl_SamplePosition.y */
1191 compute_sample_position(pos, int_sample_y);
1192 return reg;
1193 }
1194
1195 fs_reg *
1196 fs_visitor::emit_sampleid_setup()
1197 {
1198 assert(stage == MESA_SHADER_FRAGMENT);
1199 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1200 assert(devinfo->gen >= 6);
1201
1202 const fs_builder abld = bld.annotate("compute sample id");
1203 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1204
1205 if (key->compute_sample_id) {
1206 fs_reg t1 = vgrf(glsl_type::int_type);
1207 fs_reg t2 = vgrf(glsl_type::int_type);
1208 t2.type = BRW_REGISTER_TYPE_UW;
1209
1210 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1211 * 8x multisampling, subspan 0 will represent sample N (where N
1212 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1213 * 7. We can find the value of N by looking at R0.0 bits 7:6
1214 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1215 * (since samples are always delivered in pairs). That is, we
1216 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1217 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1218 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1219 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1220 * populating a temporary variable with the sequence (0, 1, 2, 3),
1221 * and then reading from it using vstride=1, width=4, hstride=0.
1222 * These computations hold good for 4x multisampling as well.
1223 *
1224 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1225 * the first four slots are sample 0 of subspan 0; the next four
1226 * are sample 1 of subspan 0; the third group is sample 0 of
1227 * subspan 1, and finally sample 1 of subspan 1.
1228 */
1229 abld.exec_all()
1230 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1231 fs_reg(0xc0));
1232 abld.exec_all().SHR(t1, t1, fs_reg(5));
1233
1234 /* This works for both SIMD8 and SIMD16 */
1235 abld.exec_all()
1236 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1237
1238 /* This special instruction takes care of setting vstride=1,
1239 * width=4, hstride=0 of t2 during an ADD instruction.
1240 */
1241 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1242 } else {
1243 /* As per GL_ARB_sample_shading specification:
1244 * "When rendering to a non-multisample buffer, or if multisample
1245 * rasterization is disabled, gl_SampleID will always be zero."
1246 */
1247 abld.MOV(*reg, fs_reg(0));
1248 }
1249
1250 return reg;
1251 }
1252
1253 void
1254 fs_visitor::resolve_source_modifiers(fs_reg *src)
1255 {
1256 if (!src->abs && !src->negate)
1257 return;
1258
1259 fs_reg temp = bld.vgrf(src->type);
1260 bld.MOV(temp, *src);
1261 *src = temp;
1262 }
1263
1264 void
1265 fs_visitor::emit_discard_jump()
1266 {
1267 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1268
1269 /* For performance, after a discard, jump to the end of the
1270 * shader if all relevant channels have been discarded.
1271 */
1272 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1273 discard_jump->flag_subreg = 1;
1274
1275 discard_jump->predicate = (dispatch_width == 8)
1276 ? BRW_PREDICATE_ALIGN1_ANY8H
1277 : BRW_PREDICATE_ALIGN1_ANY16H;
1278 discard_jump->predicate_inverse = true;
1279 }
1280
1281 void
1282 fs_visitor::assign_curb_setup()
1283 {
1284 if (dispatch_width == 8) {
1285 prog_data->dispatch_grf_start_reg = payload.num_regs;
1286 } else {
1287 if (stage == MESA_SHADER_FRAGMENT) {
1288 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1289 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1290 } else if (stage == MESA_SHADER_COMPUTE) {
1291 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1292 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1293 } else {
1294 unreachable("Unsupported shader type!");
1295 }
1296 }
1297
1298 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1299
1300 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1301 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1302 for (unsigned int i = 0; i < inst->sources; i++) {
1303 if (inst->src[i].file == UNIFORM) {
1304 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1305 int constant_nr;
1306 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1307 constant_nr = push_constant_loc[uniform_nr];
1308 } else {
1309 /* Section 5.11 of the OpenGL 4.1 spec says:
1310 * "Out-of-bounds reads return undefined values, which include
1311 * values from other variables of the active program or zero."
1312 * Just return the first push constant.
1313 */
1314 constant_nr = 0;
1315 }
1316
1317 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1318 constant_nr / 8,
1319 constant_nr % 8);
1320
1321 inst->src[i].file = HW_REG;
1322 inst->src[i].fixed_hw_reg = byte_offset(
1323 retype(brw_reg, inst->src[i].type),
1324 inst->src[i].subreg_offset);
1325 }
1326 }
1327 }
1328 }
1329
1330 void
1331 fs_visitor::calculate_urb_setup()
1332 {
1333 assert(stage == MESA_SHADER_FRAGMENT);
1334 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1335 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1336
1337 memset(prog_data->urb_setup, -1,
1338 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1339
1340 int urb_next = 0;
1341 /* Figure out where each of the incoming setup attributes lands. */
1342 if (devinfo->gen >= 6) {
1343 if (_mesa_bitcount_64(prog->InputsRead &
1344 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1345 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1346 * first 16 varying inputs, so we can put them wherever we want.
1347 * Just put them in order.
1348 *
1349 * This is useful because it means that (a) inputs not used by the
1350 * fragment shader won't take up valuable register space, and (b) we
1351 * won't have to recompile the fragment shader if it gets paired with
1352 * a different vertex (or geometry) shader.
1353 */
1354 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1355 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1356 BITFIELD64_BIT(i)) {
1357 prog_data->urb_setup[i] = urb_next++;
1358 }
1359 }
1360 } else {
1361 /* We have enough input varyings that the SF/SBE pipeline stage can't
1362 * arbitrarily rearrange them to suit our whim; we have to put them
1363 * in an order that matches the output of the previous pipeline stage
1364 * (geometry or vertex shader).
1365 */
1366 struct brw_vue_map prev_stage_vue_map;
1367 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1368 key->input_slots_valid);
1369 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1370 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1371 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1372 slot++) {
1373 int varying = prev_stage_vue_map.slot_to_varying[slot];
1374 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1375 * unused.
1376 */
1377 if (varying != BRW_VARYING_SLOT_COUNT &&
1378 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1379 BITFIELD64_BIT(varying))) {
1380 prog_data->urb_setup[varying] = slot - first_slot;
1381 }
1382 }
1383 urb_next = prev_stage_vue_map.num_slots - first_slot;
1384 }
1385 } else {
1386 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1387 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1388 /* Point size is packed into the header, not as a general attribute */
1389 if (i == VARYING_SLOT_PSIZ)
1390 continue;
1391
1392 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1393 /* The back color slot is skipped when the front color is
1394 * also written to. In addition, some slots can be
1395 * written in the vertex shader and not read in the
1396 * fragment shader. So the register number must always be
1397 * incremented, mapped or not.
1398 */
1399 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1400 prog_data->urb_setup[i] = urb_next;
1401 urb_next++;
1402 }
1403 }
1404
1405 /*
1406 * It's a FS only attribute, and we did interpolation for this attribute
1407 * in SF thread. So, count it here, too.
1408 *
1409 * See compile_sf_prog() for more info.
1410 */
1411 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1412 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1413 }
1414
1415 prog_data->num_varying_inputs = urb_next;
1416 }
1417
1418 void
1419 fs_visitor::assign_urb_setup()
1420 {
1421 assert(stage == MESA_SHADER_FRAGMENT);
1422 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1423
1424 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1425
1426 /* Offset all the urb_setup[] index by the actual position of the
1427 * setup regs, now that the location of the constants has been chosen.
1428 */
1429 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1430 if (inst->opcode == FS_OPCODE_LINTERP) {
1431 assert(inst->src[1].file == HW_REG);
1432 inst->src[1].fixed_hw_reg.nr += urb_start;
1433 }
1434
1435 if (inst->opcode == FS_OPCODE_CINTERP) {
1436 assert(inst->src[0].file == HW_REG);
1437 inst->src[0].fixed_hw_reg.nr += urb_start;
1438 }
1439 }
1440
1441 /* Each attribute is 4 setup channels, each of which is half a reg. */
1442 this->first_non_payload_grf =
1443 urb_start + prog_data->num_varying_inputs * 2;
1444 }
1445
1446 void
1447 fs_visitor::assign_vs_urb_setup()
1448 {
1449 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1450 int grf, count, slot, channel, attr;
1451
1452 assert(stage == MESA_SHADER_VERTEX);
1453 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1454 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1455 count++;
1456
1457 /* Each attribute is 4 regs. */
1458 this->first_non_payload_grf =
1459 payload.num_regs + prog_data->curb_read_length + count * 4;
1460
1461 unsigned vue_entries =
1462 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1463
1464 /* URB entry size is counted in units of 64 bytes (for the 3DSTATE_URB_VS
1465 * command). Each attribute is 16 bytes (4 floats/dwords), so each unit
1466 * fits four attributes.
1467 */
1468 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1469 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1470
1471 assert(vs_prog_data->base.urb_read_length <= 15);
1472
1473 /* Rewrite all ATTR file references to the hw grf that they land in. */
1474 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1475 for (int i = 0; i < inst->sources; i++) {
1476 if (inst->src[i].file == ATTR) {
1477
1478 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1479 slot = count - 1;
1480 } else {
1481 /* Attributes come in in a contiguous block, ordered by their
1482 * gl_vert_attrib value. That means we can compute the slot
1483 * number for an attribute by masking out the enabled
1484 * attributes before it and counting the bits.
1485 */
1486 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1487 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1488 BITFIELD64_MASK(attr));
1489 }
1490
1491 channel = inst->src[i].reg_offset & 3;
1492
1493 grf = payload.num_regs +
1494 prog_data->curb_read_length +
1495 slot * 4 + channel;
1496
1497 inst->src[i].file = HW_REG;
1498 inst->src[i].fixed_hw_reg =
1499 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1500 }
1501 }
1502 }
1503 }
1504
1505 /**
1506 * Split large virtual GRFs into separate components if we can.
1507 *
1508 * This is mostly duplicated with what brw_fs_vector_splitting does,
1509 * but that's really conservative because it's afraid of doing
1510 * splitting that doesn't result in real progress after the rest of
1511 * the optimization phases, which would cause infinite looping in
1512 * optimization. We can do it once here, safely. This also has the
1513 * opportunity to split interpolated values, or maybe even uniforms,
1514 * which we don't have at the IR level.
1515 *
1516 * We want to split, because virtual GRFs are what we register
1517 * allocate and spill (due to contiguousness requirements for some
1518 * instructions), and they're what we naturally generate in the
1519 * codegen process, but most virtual GRFs don't actually need to be
1520 * contiguous sets of GRFs. If we split, we'll end up with reduced
1521 * live intervals and better dead code elimination and coalescing.
1522 */
1523 void
1524 fs_visitor::split_virtual_grfs()
1525 {
1526 int num_vars = this->alloc.count;
1527
1528 /* Count the total number of registers */
1529 int reg_count = 0;
1530 int vgrf_to_reg[num_vars];
1531 for (int i = 0; i < num_vars; i++) {
1532 vgrf_to_reg[i] = reg_count;
1533 reg_count += alloc.sizes[i];
1534 }
1535
1536 /* An array of "split points". For each register slot, this indicates
1537 * if this slot can be separated from the previous slot. Every time an
1538 * instruction uses multiple elements of a register (as a source or
1539 * destination), we mark the used slots as inseparable. Then we go
1540 * through and split the registers into the smallest pieces we can.
1541 */
1542 bool split_points[reg_count];
1543 memset(split_points, 0, sizeof(split_points));
1544
1545 /* Mark all used registers as fully splittable */
1546 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1547 if (inst->dst.file == GRF) {
1548 int reg = vgrf_to_reg[inst->dst.reg];
1549 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1550 split_points[reg + j] = true;
1551 }
1552
1553 for (int i = 0; i < inst->sources; i++) {
1554 if (inst->src[i].file == GRF) {
1555 int reg = vgrf_to_reg[inst->src[i].reg];
1556 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1557 split_points[reg + j] = true;
1558 }
1559 }
1560 }
1561
1562 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1563 if (inst->dst.file == GRF) {
1564 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1565 for (int j = 1; j < inst->regs_written; j++)
1566 split_points[reg + j] = false;
1567 }
1568 for (int i = 0; i < inst->sources; i++) {
1569 if (inst->src[i].file == GRF) {
1570 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1571 for (int j = 1; j < inst->regs_read(i); j++)
1572 split_points[reg + j] = false;
1573 }
1574 }
1575 }
1576
1577 int new_virtual_grf[reg_count];
1578 int new_reg_offset[reg_count];
1579
1580 int reg = 0;
1581 for (int i = 0; i < num_vars; i++) {
1582 /* The first one should always be 0 as a quick sanity check. */
1583 assert(split_points[reg] == false);
1584
1585 /* j = 0 case */
1586 new_reg_offset[reg] = 0;
1587 reg++;
1588 int offset = 1;
1589
1590 /* j > 0 case */
1591 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1592 /* If this is a split point, reset the offset to 0 and allocate a
1593 * new virtual GRF for the previous offset many registers
1594 */
1595 if (split_points[reg]) {
1596 assert(offset <= MAX_VGRF_SIZE);
1597 int grf = alloc.allocate(offset);
1598 for (int k = reg - offset; k < reg; k++)
1599 new_virtual_grf[k] = grf;
1600 offset = 0;
1601 }
1602 new_reg_offset[reg] = offset;
1603 offset++;
1604 reg++;
1605 }
1606
1607 /* The last one gets the original register number */
1608 assert(offset <= MAX_VGRF_SIZE);
1609 alloc.sizes[i] = offset;
1610 for (int k = reg - offset; k < reg; k++)
1611 new_virtual_grf[k] = i;
1612 }
1613 assert(reg == reg_count);
1614
1615 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1616 if (inst->dst.file == GRF) {
1617 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1618 inst->dst.reg = new_virtual_grf[reg];
1619 inst->dst.reg_offset = new_reg_offset[reg];
1620 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1621 }
1622 for (int i = 0; i < inst->sources; i++) {
1623 if (inst->src[i].file == GRF) {
1624 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1625 inst->src[i].reg = new_virtual_grf[reg];
1626 inst->src[i].reg_offset = new_reg_offset[reg];
1627 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1628 }
1629 }
1630 }
1631 invalidate_live_intervals();
1632 }
1633
1634 /**
1635 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1636 *
1637 * During code generation, we create tons of temporary variables, many of
1638 * which get immediately killed and are never used again. Yet, in later
1639 * optimization and analysis passes, such as compute_live_intervals, we need
1640 * to loop over all the virtual GRFs. Compacting them can save a lot of
1641 * overhead.
1642 */
1643 bool
1644 fs_visitor::compact_virtual_grfs()
1645 {
1646 bool progress = false;
1647 int remap_table[this->alloc.count];
1648 memset(remap_table, -1, sizeof(remap_table));
1649
1650 /* Mark which virtual GRFs are used. */
1651 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1652 if (inst->dst.file == GRF)
1653 remap_table[inst->dst.reg] = 0;
1654
1655 for (int i = 0; i < inst->sources; i++) {
1656 if (inst->src[i].file == GRF)
1657 remap_table[inst->src[i].reg] = 0;
1658 }
1659 }
1660
1661 /* Compact the GRF arrays. */
1662 int new_index = 0;
1663 for (unsigned i = 0; i < this->alloc.count; i++) {
1664 if (remap_table[i] == -1) {
1665 /* We just found an unused register. This means that we are
1666 * actually going to compact something.
1667 */
1668 progress = true;
1669 } else {
1670 remap_table[i] = new_index;
1671 alloc.sizes[new_index] = alloc.sizes[i];
1672 invalidate_live_intervals();
1673 ++new_index;
1674 }
1675 }
1676
1677 this->alloc.count = new_index;
1678
1679 /* Patch all the instructions to use the newly renumbered registers */
1680 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1681 if (inst->dst.file == GRF)
1682 inst->dst.reg = remap_table[inst->dst.reg];
1683
1684 for (int i = 0; i < inst->sources; i++) {
1685 if (inst->src[i].file == GRF)
1686 inst->src[i].reg = remap_table[inst->src[i].reg];
1687 }
1688 }
1689
1690 /* Patch all the references to delta_xy, since they're used in register
1691 * allocation. If they're unused, switch them to BAD_FILE so we don't
1692 * think some random VGRF is delta_xy.
1693 */
1694 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1695 if (delta_xy[i].file == GRF) {
1696 if (remap_table[delta_xy[i].reg] != -1) {
1697 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1698 } else {
1699 delta_xy[i].file = BAD_FILE;
1700 }
1701 }
1702 }
1703
1704 return progress;
1705 }
1706
1707 /*
1708 * Implements array access of uniforms by inserting a
1709 * PULL_CONSTANT_LOAD instruction.
1710 *
1711 * Unlike temporary GRF array access (where we don't support it due to
1712 * the difficulty of doing relative addressing on instruction
1713 * destinations), we could potentially do array access of uniforms
1714 * that were loaded in GRF space as push constants. In real-world
1715 * usage we've seen, though, the arrays being used are always larger
1716 * than we could load as push constants, so just always move all
1717 * uniform array access out to a pull constant buffer.
1718 */
1719 void
1720 fs_visitor::move_uniform_array_access_to_pull_constants()
1721 {
1722 if (dispatch_width != 8)
1723 return;
1724
1725 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1726 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1727
1728 /* Walk through and find array access of uniforms. Put a copy of that
1729 * uniform in the pull constant buffer.
1730 *
1731 * Note that we don't move constant-indexed accesses to arrays. No
1732 * testing has been done of the performance impact of this choice.
1733 */
1734 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1735 for (int i = 0 ; i < inst->sources; i++) {
1736 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1737 continue;
1738
1739 int uniform = inst->src[i].reg;
1740
1741 /* If this array isn't already present in the pull constant buffer,
1742 * add it.
1743 */
1744 if (pull_constant_loc[uniform] == -1) {
1745 const gl_constant_value **values = &stage_prog_data->param[uniform];
1746
1747 assert(param_size[uniform]);
1748
1749 for (int j = 0; j < param_size[uniform]; j++) {
1750 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1751
1752 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1753 values[j];
1754 }
1755 }
1756 }
1757 }
1758 }
1759
1760 /**
1761 * Assign UNIFORM file registers to either push constants or pull constants.
1762 *
1763 * We allow a fragment shader to have more than the specified minimum
1764 * maximum number of fragment shader uniform components (64). If
1765 * there are too many of these, they'd fill up all of register space.
1766 * So, this will push some of them out to the pull constant buffer and
1767 * update the program to load them.
1768 */
1769 void
1770 fs_visitor::assign_constant_locations()
1771 {
1772 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1773 if (dispatch_width != 8)
1774 return;
1775
1776 /* Find which UNIFORM registers are still in use. */
1777 bool is_live[uniforms];
1778 for (unsigned int i = 0; i < uniforms; i++) {
1779 is_live[i] = false;
1780 }
1781
1782 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1783 for (int i = 0; i < inst->sources; i++) {
1784 if (inst->src[i].file != UNIFORM)
1785 continue;
1786
1787 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1788 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1789 is_live[constant_nr] = true;
1790 }
1791 }
1792
1793 /* Only allow 16 registers (128 uniform components) as push constants.
1794 *
1795 * Just demote the end of the list. We could probably do better
1796 * here, demoting things that are rarely used in the program first.
1797 *
1798 * If changing this value, note the limitation about total_regs in
1799 * brw_curbe.c.
1800 */
1801 unsigned int max_push_components = 16 * 8;
1802 unsigned int num_push_constants = 0;
1803
1804 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1805
1806 for (unsigned int i = 0; i < uniforms; i++) {
1807 if (!is_live[i] || pull_constant_loc[i] != -1) {
1808 /* This UNIFORM register is either dead, or has already been demoted
1809 * to a pull const. Mark it as no longer living in the param[] array.
1810 */
1811 push_constant_loc[i] = -1;
1812 continue;
1813 }
1814
1815 if (num_push_constants < max_push_components) {
1816 /* Retain as a push constant. Record the location in the params[]
1817 * array.
1818 */
1819 push_constant_loc[i] = num_push_constants++;
1820 } else {
1821 /* Demote to a pull constant. */
1822 push_constant_loc[i] = -1;
1823
1824 int pull_index = stage_prog_data->nr_pull_params++;
1825 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1826 pull_constant_loc[i] = pull_index;
1827 }
1828 }
1829
1830 stage_prog_data->nr_params = num_push_constants;
1831
1832 /* Up until now, the param[] array has been indexed by reg + reg_offset
1833 * of UNIFORM registers. Condense it to only contain the uniforms we
1834 * chose to upload as push constants.
1835 */
1836 for (unsigned int i = 0; i < uniforms; i++) {
1837 int remapped = push_constant_loc[i];
1838
1839 if (remapped == -1)
1840 continue;
1841
1842 assert(remapped <= (int)i);
1843 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1844 }
1845 }
1846
1847 /**
1848 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1849 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1850 */
1851 void
1852 fs_visitor::demote_pull_constants()
1853 {
1854 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1855 for (int i = 0; i < inst->sources; i++) {
1856 if (inst->src[i].file != UNIFORM)
1857 continue;
1858
1859 int pull_index;
1860 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1861 if (location >= uniforms) /* Out of bounds access */
1862 pull_index = -1;
1863 else
1864 pull_index = pull_constant_loc[location];
1865
1866 if (pull_index == -1)
1867 continue;
1868
1869 /* Set up the annotation tracking for new generated instructions. */
1870 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1871 .at(block, inst);
1872 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1873 fs_reg dst = vgrf(glsl_type::float_type);
1874
1875 /* Generate a pull load into dst. */
1876 if (inst->src[i].reladdr) {
1877 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1878 surf_index,
1879 *inst->src[i].reladdr,
1880 pull_index);
1881 inst->src[i].reladdr = NULL;
1882 } else {
1883 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1884 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1885 dst, surf_index, offset);
1886 inst->src[i].set_smear(pull_index & 3);
1887 }
1888
1889 /* Rewrite the instruction to use the temporary VGRF. */
1890 inst->src[i].file = GRF;
1891 inst->src[i].reg = dst.reg;
1892 inst->src[i].reg_offset = 0;
1893 inst->src[i].width = dispatch_width;
1894 }
1895 }
1896 invalidate_live_intervals();
1897 }
1898
1899 bool
1900 fs_visitor::opt_algebraic()
1901 {
1902 bool progress = false;
1903
1904 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1905 switch (inst->opcode) {
1906 case BRW_OPCODE_MOV:
1907 if (inst->src[0].file != IMM)
1908 break;
1909
1910 if (inst->saturate) {
1911 if (inst->dst.type != inst->src[0].type)
1912 assert(!"unimplemented: saturate mixed types");
1913
1914 if (brw_saturate_immediate(inst->dst.type,
1915 &inst->src[0].fixed_hw_reg)) {
1916 inst->saturate = false;
1917 progress = true;
1918 }
1919 }
1920 break;
1921
1922 case BRW_OPCODE_MUL:
1923 if (inst->src[1].file != IMM)
1924 continue;
1925
1926 /* a * 1.0 = a */
1927 if (inst->src[1].is_one()) {
1928 inst->opcode = BRW_OPCODE_MOV;
1929 inst->src[1] = reg_undef;
1930 progress = true;
1931 break;
1932 }
1933
1934 /* a * -1.0 = -a */
1935 if (inst->src[1].is_negative_one()) {
1936 inst->opcode = BRW_OPCODE_MOV;
1937 inst->src[0].negate = !inst->src[0].negate;
1938 inst->src[1] = reg_undef;
1939 progress = true;
1940 break;
1941 }
1942
1943 /* a * 0.0 = 0.0 */
1944 if (inst->src[1].is_zero()) {
1945 inst->opcode = BRW_OPCODE_MOV;
1946 inst->src[0] = inst->src[1];
1947 inst->src[1] = reg_undef;
1948 progress = true;
1949 break;
1950 }
1951
1952 if (inst->src[0].file == IMM) {
1953 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1954 inst->opcode = BRW_OPCODE_MOV;
1955 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1956 inst->src[1] = reg_undef;
1957 progress = true;
1958 break;
1959 }
1960 break;
1961 case BRW_OPCODE_ADD:
1962 if (inst->src[1].file != IMM)
1963 continue;
1964
1965 /* a + 0.0 = a */
1966 if (inst->src[1].is_zero()) {
1967 inst->opcode = BRW_OPCODE_MOV;
1968 inst->src[1] = reg_undef;
1969 progress = true;
1970 break;
1971 }
1972
1973 if (inst->src[0].file == IMM) {
1974 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1975 inst->opcode = BRW_OPCODE_MOV;
1976 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1977 inst->src[1] = reg_undef;
1978 progress = true;
1979 break;
1980 }
1981 break;
1982 case BRW_OPCODE_OR:
1983 if (inst->src[0].equals(inst->src[1])) {
1984 inst->opcode = BRW_OPCODE_MOV;
1985 inst->src[1] = reg_undef;
1986 progress = true;
1987 break;
1988 }
1989 break;
1990 case BRW_OPCODE_LRP:
1991 if (inst->src[1].equals(inst->src[2])) {
1992 inst->opcode = BRW_OPCODE_MOV;
1993 inst->src[0] = inst->src[1];
1994 inst->src[1] = reg_undef;
1995 inst->src[2] = reg_undef;
1996 progress = true;
1997 break;
1998 }
1999 break;
2000 case BRW_OPCODE_CMP:
2001 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2002 inst->src[0].abs &&
2003 inst->src[0].negate &&
2004 inst->src[1].is_zero()) {
2005 inst->src[0].abs = false;
2006 inst->src[0].negate = false;
2007 inst->conditional_mod = BRW_CONDITIONAL_Z;
2008 progress = true;
2009 break;
2010 }
2011 break;
2012 case BRW_OPCODE_SEL:
2013 if (inst->src[0].equals(inst->src[1])) {
2014 inst->opcode = BRW_OPCODE_MOV;
2015 inst->src[1] = reg_undef;
2016 inst->predicate = BRW_PREDICATE_NONE;
2017 inst->predicate_inverse = false;
2018 progress = true;
2019 } else if (inst->saturate && inst->src[1].file == IMM) {
2020 switch (inst->conditional_mod) {
2021 case BRW_CONDITIONAL_LE:
2022 case BRW_CONDITIONAL_L:
2023 switch (inst->src[1].type) {
2024 case BRW_REGISTER_TYPE_F:
2025 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2026 inst->opcode = BRW_OPCODE_MOV;
2027 inst->src[1] = reg_undef;
2028 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2029 progress = true;
2030 }
2031 break;
2032 default:
2033 break;
2034 }
2035 break;
2036 case BRW_CONDITIONAL_GE:
2037 case BRW_CONDITIONAL_G:
2038 switch (inst->src[1].type) {
2039 case BRW_REGISTER_TYPE_F:
2040 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2041 inst->opcode = BRW_OPCODE_MOV;
2042 inst->src[1] = reg_undef;
2043 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2044 progress = true;
2045 }
2046 break;
2047 default:
2048 break;
2049 }
2050 default:
2051 break;
2052 }
2053 }
2054 break;
2055 case BRW_OPCODE_MAD:
2056 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2057 inst->opcode = BRW_OPCODE_MOV;
2058 inst->src[1] = reg_undef;
2059 inst->src[2] = reg_undef;
2060 progress = true;
2061 } else if (inst->src[0].is_zero()) {
2062 inst->opcode = BRW_OPCODE_MUL;
2063 inst->src[0] = inst->src[2];
2064 inst->src[2] = reg_undef;
2065 progress = true;
2066 } else if (inst->src[1].is_one()) {
2067 inst->opcode = BRW_OPCODE_ADD;
2068 inst->src[1] = inst->src[2];
2069 inst->src[2] = reg_undef;
2070 progress = true;
2071 } else if (inst->src[2].is_one()) {
2072 inst->opcode = BRW_OPCODE_ADD;
2073 inst->src[2] = reg_undef;
2074 progress = true;
2075 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2076 inst->opcode = BRW_OPCODE_ADD;
2077 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2078 inst->src[2] = reg_undef;
2079 progress = true;
2080 }
2081 break;
2082 case SHADER_OPCODE_RCP: {
2083 fs_inst *prev = (fs_inst *)inst->prev;
2084 if (prev->opcode == SHADER_OPCODE_SQRT) {
2085 if (inst->src[0].equals(prev->dst)) {
2086 inst->opcode = SHADER_OPCODE_RSQ;
2087 inst->src[0] = prev->src[0];
2088 progress = true;
2089 }
2090 }
2091 break;
2092 }
2093 case SHADER_OPCODE_BROADCAST:
2094 if (is_uniform(inst->src[0])) {
2095 inst->opcode = BRW_OPCODE_MOV;
2096 inst->sources = 1;
2097 inst->force_writemask_all = true;
2098 progress = true;
2099 } else if (inst->src[1].file == IMM) {
2100 inst->opcode = BRW_OPCODE_MOV;
2101 inst->src[0] = component(inst->src[0],
2102 inst->src[1].fixed_hw_reg.dw1.ud);
2103 inst->sources = 1;
2104 inst->force_writemask_all = true;
2105 progress = true;
2106 }
2107 break;
2108
2109 default:
2110 break;
2111 }
2112
2113 /* Swap if src[0] is immediate. */
2114 if (progress && inst->is_commutative()) {
2115 if (inst->src[0].file == IMM) {
2116 fs_reg tmp = inst->src[1];
2117 inst->src[1] = inst->src[0];
2118 inst->src[0] = tmp;
2119 }
2120 }
2121 }
2122 return progress;
2123 }
2124
2125 /**
2126 * Optimize sample messages that have constant zero values for the trailing
2127 * texture coordinates. We can just reduce the message length for these
2128 * instructions instead of reserving a register for it. Trailing parameters
2129 * that aren't sent default to zero anyway. This will cause the dead code
2130 * eliminator to remove the MOV instruction that would otherwise be emitted to
2131 * set up the zero value.
2132 */
2133 bool
2134 fs_visitor::opt_zero_samples()
2135 {
2136 /* Gen4 infers the texturing opcode based on the message length so we can't
2137 * change it.
2138 */
2139 if (devinfo->gen < 5)
2140 return false;
2141
2142 bool progress = false;
2143
2144 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2145 if (!inst->is_tex())
2146 continue;
2147
2148 fs_inst *load_payload = (fs_inst *) inst->prev;
2149
2150 if (load_payload->is_head_sentinel() ||
2151 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2152 continue;
2153
2154 /* We don't want to remove the message header or the first parameter.
2155 * Removing the first parameter is not allowed, see the Haswell PRM
2156 * volume 7, page 149:
2157 *
2158 * "Parameter 0 is required except for the sampleinfo message, which
2159 * has no parameter 0"
2160 */
2161 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2162 load_payload->src[(inst->mlen - inst->header_size) /
2163 (dispatch_width / 8) +
2164 inst->header_size - 1].is_zero()) {
2165 inst->mlen -= dispatch_width / 8;
2166 progress = true;
2167 }
2168 }
2169
2170 if (progress)
2171 invalidate_live_intervals();
2172
2173 return progress;
2174 }
2175
2176 /**
2177 * Optimize sample messages which are followed by the final RT write.
2178 *
2179 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2180 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2181 * final texturing results copied to the framebuffer write payload and modify
2182 * them to write to the framebuffer directly.
2183 */
2184 bool
2185 fs_visitor::opt_sampler_eot()
2186 {
2187 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2188
2189 if (stage != MESA_SHADER_FRAGMENT)
2190 return false;
2191
2192 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2193 return false;
2194
2195 /* FINISHME: It should be possible to implement this optimization when there
2196 * are multiple drawbuffers.
2197 */
2198 if (key->nr_color_regions != 1)
2199 return false;
2200
2201 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2202 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2203 assert(fb_write->eot);
2204 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2205
2206 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2207
2208 /* There wasn't one; nothing to do. */
2209 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2210 return false;
2211
2212 /* This optimisation doesn't seem to work for textureGather for some
2213 * reason. I can't find any documentation or known workarounds to indicate
2214 * that this is expected, but considering that it is probably pretty
2215 * unlikely that a shader would directly write out the results from
2216 * textureGather we might as well just disable it.
2217 */
2218 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2219 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2220 return false;
2221
2222 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2223 * It's very likely to be the previous instruction.
2224 */
2225 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2226 if (load_payload->is_head_sentinel() ||
2227 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2228 return false;
2229
2230 assert(!tex_inst->eot); /* We can't get here twice */
2231 assert((tex_inst->offset & (0xff << 24)) == 0);
2232
2233 tex_inst->offset |= fb_write->target << 24;
2234 tex_inst->eot = true;
2235 tex_inst->dst = bld.null_reg_ud();
2236 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2237
2238 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2239 * to create a new LOAD_PAYLOAD command with the same sources and a space
2240 * saved for the header. Using a new destination register not only makes sure
2241 * we have enough space, but it will make sure the dead code eliminator kills
2242 * the instruction that this will replace.
2243 */
2244 if (tex_inst->header_size != 0)
2245 return true;
2246
2247 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2248 load_payload->sources + 1);
2249 fs_reg *new_sources =
2250 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2251
2252 new_sources[0] = fs_reg();
2253 for (int i = 0; i < load_payload->sources; i++)
2254 new_sources[i+1] = load_payload->src[i];
2255
2256 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2257 * requires a lot of information about the sources to appropriately figure
2258 * out the number of registers needed to be used. Given this stage in our
2259 * optimization, we may not have the appropriate GRFs required by
2260 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2261 * manually emit the instruction.
2262 */
2263 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2264 load_payload->exec_size,
2265 send_header,
2266 new_sources,
2267 load_payload->sources + 1);
2268
2269 new_load_payload->regs_written = load_payload->regs_written + 1;
2270 new_load_payload->header_size = 1;
2271 tex_inst->mlen++;
2272 tex_inst->header_size = 1;
2273 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2274 tex_inst->src[0] = send_header;
2275
2276 return true;
2277 }
2278
2279 bool
2280 fs_visitor::opt_register_renaming()
2281 {
2282 bool progress = false;
2283 int depth = 0;
2284
2285 int remap[alloc.count];
2286 memset(remap, -1, sizeof(int) * alloc.count);
2287
2288 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2289 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2290 depth++;
2291 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2292 inst->opcode == BRW_OPCODE_WHILE) {
2293 depth--;
2294 }
2295
2296 /* Rewrite instruction sources. */
2297 for (int i = 0; i < inst->sources; i++) {
2298 if (inst->src[i].file == GRF &&
2299 remap[inst->src[i].reg] != -1 &&
2300 remap[inst->src[i].reg] != inst->src[i].reg) {
2301 inst->src[i].reg = remap[inst->src[i].reg];
2302 progress = true;
2303 }
2304 }
2305
2306 const int dst = inst->dst.reg;
2307
2308 if (depth == 0 &&
2309 inst->dst.file == GRF &&
2310 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2311 !inst->is_partial_write()) {
2312 if (remap[dst] == -1) {
2313 remap[dst] = dst;
2314 } else {
2315 remap[dst] = alloc.allocate(inst->dst.width / 8);
2316 inst->dst.reg = remap[dst];
2317 progress = true;
2318 }
2319 } else if (inst->dst.file == GRF &&
2320 remap[dst] != -1 &&
2321 remap[dst] != dst) {
2322 inst->dst.reg = remap[dst];
2323 progress = true;
2324 }
2325 }
2326
2327 if (progress) {
2328 invalidate_live_intervals();
2329
2330 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2331 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2332 delta_xy[i].reg = remap[delta_xy[i].reg];
2333 }
2334 }
2335 }
2336
2337 return progress;
2338 }
2339
2340 /**
2341 * Remove redundant or useless discard jumps.
2342 *
2343 * For example, we can eliminate jumps in the following sequence:
2344 *
2345 * discard-jump (redundant with the next jump)
2346 * discard-jump (useless; jumps to the next instruction)
2347 * placeholder-halt
2348 */
2349 bool
2350 fs_visitor::opt_redundant_discard_jumps()
2351 {
2352 bool progress = false;
2353
2354 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2355
2356 fs_inst *placeholder_halt = NULL;
2357 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2358 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2359 placeholder_halt = inst;
2360 break;
2361 }
2362 }
2363
2364 if (!placeholder_halt)
2365 return false;
2366
2367 /* Delete any HALTs immediately before the placeholder halt. */
2368 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2369 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2370 prev = (fs_inst *) placeholder_halt->prev) {
2371 prev->remove(last_bblock);
2372 progress = true;
2373 }
2374
2375 if (progress)
2376 invalidate_live_intervals();
2377
2378 return progress;
2379 }
2380
2381 bool
2382 fs_visitor::compute_to_mrf()
2383 {
2384 bool progress = false;
2385 int next_ip = 0;
2386
2387 /* No MRFs on Gen >= 7. */
2388 if (devinfo->gen >= 7)
2389 return false;
2390
2391 calculate_live_intervals();
2392
2393 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2394 int ip = next_ip;
2395 next_ip++;
2396
2397 if (inst->opcode != BRW_OPCODE_MOV ||
2398 inst->is_partial_write() ||
2399 inst->dst.file != MRF || inst->src[0].file != GRF ||
2400 inst->dst.type != inst->src[0].type ||
2401 inst->src[0].abs || inst->src[0].negate ||
2402 !inst->src[0].is_contiguous() ||
2403 inst->src[0].subreg_offset)
2404 continue;
2405
2406 /* Work out which hardware MRF registers are written by this
2407 * instruction.
2408 */
2409 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2410 int mrf_high;
2411 if (inst->dst.reg & BRW_MRF_COMPR4) {
2412 mrf_high = mrf_low + 4;
2413 } else if (inst->exec_size == 16) {
2414 mrf_high = mrf_low + 1;
2415 } else {
2416 mrf_high = mrf_low;
2417 }
2418
2419 /* Can't compute-to-MRF this GRF if someone else was going to
2420 * read it later.
2421 */
2422 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2423 continue;
2424
2425 /* Found a move of a GRF to a MRF. Let's see if we can go
2426 * rewrite the thing that made this GRF to write into the MRF.
2427 */
2428 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2429 if (scan_inst->dst.file == GRF &&
2430 scan_inst->dst.reg == inst->src[0].reg) {
2431 /* Found the last thing to write our reg we want to turn
2432 * into a compute-to-MRF.
2433 */
2434
2435 /* If this one instruction didn't populate all the
2436 * channels, bail. We might be able to rewrite everything
2437 * that writes that reg, but it would require smarter
2438 * tracking to delay the rewriting until complete success.
2439 */
2440 if (scan_inst->is_partial_write())
2441 break;
2442
2443 /* Things returning more than one register would need us to
2444 * understand coalescing out more than one MOV at a time.
2445 */
2446 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2447 break;
2448
2449 /* SEND instructions can't have MRF as a destination. */
2450 if (scan_inst->mlen)
2451 break;
2452
2453 if (devinfo->gen == 6) {
2454 /* gen6 math instructions must have the destination be
2455 * GRF, so no compute-to-MRF for them.
2456 */
2457 if (scan_inst->is_math()) {
2458 break;
2459 }
2460 }
2461
2462 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2463 /* Found the creator of our MRF's source value. */
2464 scan_inst->dst.file = MRF;
2465 scan_inst->dst.reg = inst->dst.reg;
2466 scan_inst->saturate |= inst->saturate;
2467 inst->remove(block);
2468 progress = true;
2469 }
2470 break;
2471 }
2472
2473 /* We don't handle control flow here. Most computation of
2474 * values that end up in MRFs are shortly before the MRF
2475 * write anyway.
2476 */
2477 if (block->start() == scan_inst)
2478 break;
2479
2480 /* You can't read from an MRF, so if someone else reads our
2481 * MRF's source GRF that we wanted to rewrite, that stops us.
2482 */
2483 bool interfered = false;
2484 for (int i = 0; i < scan_inst->sources; i++) {
2485 if (scan_inst->src[i].file == GRF &&
2486 scan_inst->src[i].reg == inst->src[0].reg &&
2487 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2488 interfered = true;
2489 }
2490 }
2491 if (interfered)
2492 break;
2493
2494 if (scan_inst->dst.file == MRF) {
2495 /* If somebody else writes our MRF here, we can't
2496 * compute-to-MRF before that.
2497 */
2498 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2499 int scan_mrf_high;
2500
2501 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2502 scan_mrf_high = scan_mrf_low + 4;
2503 } else if (scan_inst->exec_size == 16) {
2504 scan_mrf_high = scan_mrf_low + 1;
2505 } else {
2506 scan_mrf_high = scan_mrf_low;
2507 }
2508
2509 if (mrf_low == scan_mrf_low ||
2510 mrf_low == scan_mrf_high ||
2511 mrf_high == scan_mrf_low ||
2512 mrf_high == scan_mrf_high) {
2513 break;
2514 }
2515 }
2516
2517 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2518 /* Found a SEND instruction, which means that there are
2519 * live values in MRFs from base_mrf to base_mrf +
2520 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2521 * above it.
2522 */
2523 if (mrf_low >= scan_inst->base_mrf &&
2524 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2525 break;
2526 }
2527 if (mrf_high >= scan_inst->base_mrf &&
2528 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2529 break;
2530 }
2531 }
2532 }
2533 }
2534
2535 if (progress)
2536 invalidate_live_intervals();
2537
2538 return progress;
2539 }
2540
2541 /**
2542 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2543 * flow. We could probably do better here with some form of divergence
2544 * analysis.
2545 */
2546 bool
2547 fs_visitor::eliminate_find_live_channel()
2548 {
2549 bool progress = false;
2550 unsigned depth = 0;
2551
2552 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2553 switch (inst->opcode) {
2554 case BRW_OPCODE_IF:
2555 case BRW_OPCODE_DO:
2556 depth++;
2557 break;
2558
2559 case BRW_OPCODE_ENDIF:
2560 case BRW_OPCODE_WHILE:
2561 depth--;
2562 break;
2563
2564 case FS_OPCODE_DISCARD_JUMP:
2565 /* This can potentially make control flow non-uniform until the end
2566 * of the program.
2567 */
2568 return progress;
2569
2570 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2571 if (depth == 0) {
2572 inst->opcode = BRW_OPCODE_MOV;
2573 inst->src[0] = fs_reg(0);
2574 inst->sources = 1;
2575 inst->force_writemask_all = true;
2576 progress = true;
2577 }
2578 break;
2579
2580 default:
2581 break;
2582 }
2583 }
2584
2585 return progress;
2586 }
2587
2588 /**
2589 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2590 * instructions to FS_OPCODE_REP_FB_WRITE.
2591 */
2592 void
2593 fs_visitor::emit_repclear_shader()
2594 {
2595 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2596 int base_mrf = 1;
2597 int color_mrf = base_mrf + 2;
2598 fs_inst *mov;
2599
2600 if (uniforms == 1) {
2601 mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2602 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2603 } else {
2604 struct brw_reg reg =
2605 brw_reg(BRW_GENERAL_REGISTER_FILE,
2606 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2607 BRW_VERTICAL_STRIDE_8,
2608 BRW_WIDTH_2,
2609 BRW_HORIZONTAL_STRIDE_4, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2610
2611 mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2612 fs_reg(reg));
2613 }
2614
2615 fs_inst *write;
2616 if (key->nr_color_regions == 1) {
2617 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2618 write->saturate = key->clamp_fragment_color;
2619 write->base_mrf = color_mrf;
2620 write->target = 0;
2621 write->header_size = 0;
2622 write->mlen = 1;
2623 } else {
2624 assume(key->nr_color_regions > 0);
2625 for (int i = 0; i < key->nr_color_regions; ++i) {
2626 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2627 write->saturate = key->clamp_fragment_color;
2628 write->base_mrf = base_mrf;
2629 write->target = i;
2630 write->header_size = 2;
2631 write->mlen = 3;
2632 }
2633 }
2634 write->eot = true;
2635
2636 calculate_cfg();
2637
2638 assign_constant_locations();
2639 assign_curb_setup();
2640
2641 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2642 if (uniforms == 1) {
2643 assert(mov->src[0].file == HW_REG);
2644 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2645 }
2646 }
2647
2648 /**
2649 * Walks through basic blocks, looking for repeated MRF writes and
2650 * removing the later ones.
2651 */
2652 bool
2653 fs_visitor::remove_duplicate_mrf_writes()
2654 {
2655 fs_inst *last_mrf_move[16];
2656 bool progress = false;
2657
2658 /* Need to update the MRF tracking for compressed instructions. */
2659 if (dispatch_width == 16)
2660 return false;
2661
2662 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2663
2664 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2665 if (inst->is_control_flow()) {
2666 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2667 }
2668
2669 if (inst->opcode == BRW_OPCODE_MOV &&
2670 inst->dst.file == MRF) {
2671 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2672 if (prev_inst && inst->equals(prev_inst)) {
2673 inst->remove(block);
2674 progress = true;
2675 continue;
2676 }
2677 }
2678
2679 /* Clear out the last-write records for MRFs that were overwritten. */
2680 if (inst->dst.file == MRF) {
2681 last_mrf_move[inst->dst.reg] = NULL;
2682 }
2683
2684 if (inst->mlen > 0 && inst->base_mrf != -1) {
2685 /* Found a SEND instruction, which will include two or fewer
2686 * implied MRF writes. We could do better here.
2687 */
2688 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2689 last_mrf_move[inst->base_mrf + i] = NULL;
2690 }
2691 }
2692
2693 /* Clear out any MRF move records whose sources got overwritten. */
2694 if (inst->dst.file == GRF) {
2695 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2696 if (last_mrf_move[i] &&
2697 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2698 last_mrf_move[i] = NULL;
2699 }
2700 }
2701 }
2702
2703 if (inst->opcode == BRW_OPCODE_MOV &&
2704 inst->dst.file == MRF &&
2705 inst->src[0].file == GRF &&
2706 !inst->is_partial_write()) {
2707 last_mrf_move[inst->dst.reg] = inst;
2708 }
2709 }
2710
2711 if (progress)
2712 invalidate_live_intervals();
2713
2714 return progress;
2715 }
2716
2717 static void
2718 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2719 {
2720 /* Clear the flag for registers that actually got read (as expected). */
2721 for (int i = 0; i < inst->sources; i++) {
2722 int grf;
2723 if (inst->src[i].file == GRF) {
2724 grf = inst->src[i].reg;
2725 } else if (inst->src[i].file == HW_REG &&
2726 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2727 grf = inst->src[i].fixed_hw_reg.nr;
2728 } else {
2729 continue;
2730 }
2731
2732 if (grf >= first_grf &&
2733 grf < first_grf + grf_len) {
2734 deps[grf - first_grf] = false;
2735 if (inst->exec_size == 16)
2736 deps[grf - first_grf + 1] = false;
2737 }
2738 }
2739 }
2740
2741 /**
2742 * Implements this workaround for the original 965:
2743 *
2744 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2745 * check for post destination dependencies on this instruction, software
2746 * must ensure that there is no destination hazard for the case of ‘write
2747 * followed by a posted write’ shown in the following example.
2748 *
2749 * 1. mov r3 0
2750 * 2. send r3.xy <rest of send instruction>
2751 * 3. mov r2 r3
2752 *
2753 * Due to no post-destination dependency check on the ‘send’, the above
2754 * code sequence could have two instructions (1 and 2) in flight at the
2755 * same time that both consider ‘r3’ as the target of their final writes.
2756 */
2757 void
2758 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2759 fs_inst *inst)
2760 {
2761 int write_len = inst->regs_written;
2762 int first_write_grf = inst->dst.reg;
2763 bool needs_dep[BRW_MAX_MRF];
2764 assert(write_len < (int)sizeof(needs_dep) - 1);
2765
2766 memset(needs_dep, false, sizeof(needs_dep));
2767 memset(needs_dep, true, write_len);
2768
2769 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2770
2771 /* Walk backwards looking for writes to registers we're writing which
2772 * aren't read since being written. If we hit the start of the program,
2773 * we assume that there are no outstanding dependencies on entry to the
2774 * program.
2775 */
2776 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2777 /* If we hit control flow, assume that there *are* outstanding
2778 * dependencies, and force their cleanup before our instruction.
2779 */
2780 if (block->start() == scan_inst) {
2781 for (int i = 0; i < write_len; i++) {
2782 if (needs_dep[i])
2783 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2784 }
2785 return;
2786 }
2787
2788 /* We insert our reads as late as possible on the assumption that any
2789 * instruction but a MOV that might have left us an outstanding
2790 * dependency has more latency than a MOV.
2791 */
2792 if (scan_inst->dst.file == GRF) {
2793 for (int i = 0; i < scan_inst->regs_written; i++) {
2794 int reg = scan_inst->dst.reg + i;
2795
2796 if (reg >= first_write_grf &&
2797 reg < first_write_grf + write_len &&
2798 needs_dep[reg - first_write_grf]) {
2799 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2800 needs_dep[reg - first_write_grf] = false;
2801 if (scan_inst->exec_size == 16)
2802 needs_dep[reg - first_write_grf + 1] = false;
2803 }
2804 }
2805 }
2806
2807 /* Clear the flag for registers that actually got read (as expected). */
2808 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2809
2810 /* Continue the loop only if we haven't resolved all the dependencies */
2811 int i;
2812 for (i = 0; i < write_len; i++) {
2813 if (needs_dep[i])
2814 break;
2815 }
2816 if (i == write_len)
2817 return;
2818 }
2819 }
2820
2821 /**
2822 * Implements this workaround for the original 965:
2823 *
2824 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2825 * used as a destination register until after it has been sourced by an
2826 * instruction with a different destination register.
2827 */
2828 void
2829 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2830 {
2831 int write_len = inst->regs_written;
2832 int first_write_grf = inst->dst.reg;
2833 bool needs_dep[BRW_MAX_MRF];
2834 assert(write_len < (int)sizeof(needs_dep) - 1);
2835
2836 memset(needs_dep, false, sizeof(needs_dep));
2837 memset(needs_dep, true, write_len);
2838 /* Walk forwards looking for writes to registers we're writing which aren't
2839 * read before being written.
2840 */
2841 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2842 /* If we hit control flow, force resolve all remaining dependencies. */
2843 if (block->end() == scan_inst) {
2844 for (int i = 0; i < write_len; i++) {
2845 if (needs_dep[i])
2846 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2847 }
2848 return;
2849 }
2850
2851 /* Clear the flag for registers that actually got read (as expected). */
2852 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2853
2854 /* We insert our reads as late as possible since they're reading the
2855 * result of a SEND, which has massive latency.
2856 */
2857 if (scan_inst->dst.file == GRF &&
2858 scan_inst->dst.reg >= first_write_grf &&
2859 scan_inst->dst.reg < first_write_grf + write_len &&
2860 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2861 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2862 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2863 }
2864
2865 /* Continue the loop only if we haven't resolved all the dependencies */
2866 int i;
2867 for (i = 0; i < write_len; i++) {
2868 if (needs_dep[i])
2869 break;
2870 }
2871 if (i == write_len)
2872 return;
2873 }
2874 }
2875
2876 void
2877 fs_visitor::insert_gen4_send_dependency_workarounds()
2878 {
2879 if (devinfo->gen != 4 || devinfo->is_g4x)
2880 return;
2881
2882 bool progress = false;
2883
2884 /* Note that we're done with register allocation, so GRF fs_regs always
2885 * have a .reg_offset of 0.
2886 */
2887
2888 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2889 if (inst->mlen != 0 && inst->dst.file == GRF) {
2890 insert_gen4_pre_send_dependency_workarounds(block, inst);
2891 insert_gen4_post_send_dependency_workarounds(block, inst);
2892 progress = true;
2893 }
2894 }
2895
2896 if (progress)
2897 invalidate_live_intervals();
2898 }
2899
2900 /**
2901 * Turns the generic expression-style uniform pull constant load instruction
2902 * into a hardware-specific series of instructions for loading a pull
2903 * constant.
2904 *
2905 * The expression style allows the CSE pass before this to optimize out
2906 * repeated loads from the same offset, and gives the pre-register-allocation
2907 * scheduling full flexibility, while the conversion to native instructions
2908 * allows the post-register-allocation scheduler the best information
2909 * possible.
2910 *
2911 * Note that execution masking for setting up pull constant loads is special:
2912 * the channels that need to be written are unrelated to the current execution
2913 * mask, since a later instruction will use one of the result channels as a
2914 * source operand for all 8 or 16 of its channels.
2915 */
2916 void
2917 fs_visitor::lower_uniform_pull_constant_loads()
2918 {
2919 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2920 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2921 continue;
2922
2923 if (devinfo->gen >= 7) {
2924 /* The offset arg before was a vec4-aligned byte offset. We need to
2925 * turn it into a dword offset.
2926 */
2927 fs_reg const_offset_reg = inst->src[1];
2928 assert(const_offset_reg.file == IMM &&
2929 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2930 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2931 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
2932
2933 /* We have to use a message header on Skylake to get SIMD4x2 mode.
2934 * Reserve space for the register.
2935 */
2936 if (devinfo->gen >= 9) {
2937 payload.reg_offset++;
2938 alloc.sizes[payload.reg] = 2;
2939 }
2940
2941 /* This is actually going to be a MOV, but since only the first dword
2942 * is accessed, we have a special opcode to do just that one. Note
2943 * that this needs to be an operation that will be considered a def
2944 * by live variable analysis, or register allocation will explode.
2945 */
2946 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2947 8, payload, const_offset_reg);
2948 setup->force_writemask_all = true;
2949
2950 setup->ir = inst->ir;
2951 setup->annotation = inst->annotation;
2952 inst->insert_before(block, setup);
2953
2954 /* Similarly, this will only populate the first 4 channels of the
2955 * result register (since we only use smear values from 0-3), but we
2956 * don't tell the optimizer.
2957 */
2958 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2959 inst->src[1] = payload;
2960
2961 invalidate_live_intervals();
2962 } else {
2963 /* Before register allocation, we didn't tell the scheduler about the
2964 * MRF we use. We know it's safe to use this MRF because nothing
2965 * else does except for register spill/unspill, which generates and
2966 * uses its MRF within a single IR instruction.
2967 */
2968 inst->base_mrf = 14;
2969 inst->mlen = 1;
2970 }
2971 }
2972 }
2973
2974 bool
2975 fs_visitor::lower_load_payload()
2976 {
2977 bool progress = false;
2978
2979 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2980 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2981 continue;
2982
2983 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2984 assert(inst->saturate == false);
2985
2986 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
2987 .exec_all(inst->force_writemask_all)
2988 .at(block, inst);
2989 fs_reg dst = inst->dst;
2990
2991 /* Get rid of COMPR4. We'll add it back in if we need it */
2992 if (dst.file == MRF)
2993 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
2994
2995 dst.width = 8;
2996 for (uint8_t i = 0; i < inst->header_size; i++) {
2997 if (inst->src[i].file != BAD_FILE) {
2998 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
2999 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3000 mov_src.width = 8;
3001 ibld.exec_all().MOV(mov_dst, mov_src);
3002 }
3003 dst = offset(dst, 1);
3004 }
3005
3006 dst.width = inst->exec_size;
3007 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3008 inst->exec_size > 8) {
3009 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3010 * a straightforward copy. Instead, the result of the
3011 * LOAD_PAYLOAD is treated as interleaved and the first four
3012 * non-header sources are unpacked as:
3013 *
3014 * m + 0: r0
3015 * m + 1: g0
3016 * m + 2: b0
3017 * m + 3: a0
3018 * m + 4: r1
3019 * m + 5: g1
3020 * m + 6: b1
3021 * m + 7: a1
3022 *
3023 * This is used for gen <= 5 fb writes.
3024 */
3025 assert(inst->exec_size == 16);
3026 assert(inst->header_size + 4 <= inst->sources);
3027 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3028 if (inst->src[i].file != BAD_FILE) {
3029 if (devinfo->has_compr4) {
3030 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3031 compr4_dst.reg |= BRW_MRF_COMPR4;
3032 ibld.MOV(compr4_dst, inst->src[i]);
3033 } else {
3034 /* Platform doesn't have COMPR4. We have to fake it */
3035 fs_reg mov_dst = retype(dst, inst->src[i].type);
3036 mov_dst.width = 8;
3037 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3038 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3039 }
3040 }
3041
3042 dst.reg++;
3043 }
3044
3045 /* The loop above only ever incremented us through the first set
3046 * of 4 registers. However, thanks to the magic of COMPR4, we
3047 * actually wrote to the first 8 registers, so we need to take
3048 * that into account now.
3049 */
3050 dst.reg += 4;
3051
3052 /* The COMPR4 code took care of the first 4 sources. We'll let
3053 * the regular path handle any remaining sources. Yes, we are
3054 * modifying the instruction but we're about to delete it so
3055 * this really doesn't hurt anything.
3056 */
3057 inst->header_size += 4;
3058 }
3059
3060 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3061 if (inst->src[i].file != BAD_FILE)
3062 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3063 dst = offset(dst, 1);
3064 }
3065
3066 inst->remove(block);
3067 progress = true;
3068 }
3069
3070 if (progress)
3071 invalidate_live_intervals();
3072
3073 return progress;
3074 }
3075
3076 bool
3077 fs_visitor::lower_integer_multiplication()
3078 {
3079 bool progress = false;
3080
3081 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3082 * directly, but Cherryview cannot.
3083 */
3084 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3085 return false;
3086
3087 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3088 if (inst->opcode != BRW_OPCODE_MUL ||
3089 inst->dst.is_accumulator() ||
3090 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3091 inst->dst.type != BRW_REGISTER_TYPE_UD))
3092 continue;
3093
3094 const fs_builder ibld = bld.at(block, inst);
3095
3096 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3097 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3098 * src1 are used.
3099 *
3100 * If multiplying by an immediate value that fits in 16-bits, do a
3101 * single MUL instruction with that value in the proper location.
3102 */
3103 if (inst->src[1].file == IMM &&
3104 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3105 if (devinfo->gen < 7) {
3106 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3107 inst->dst.type, dispatch_width);
3108 ibld.MOV(imm, inst->src[1]);
3109 ibld.MUL(inst->dst, imm, inst->src[0]);
3110 } else {
3111 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3112 }
3113 } else {
3114 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3115 * do 32-bit integer multiplication in one instruction, but instead
3116 * must do a sequence (which actually calculates a 64-bit result):
3117 *
3118 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3119 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3120 * mov(8) g2<1>D acc0<8,8,1>D
3121 *
3122 * But on Gen > 6, the ability to use second accumulator register
3123 * (acc1) for non-float data types was removed, preventing a simple
3124 * implementation in SIMD16. A 16-channel result can be calculated by
3125 * executing the three instructions twice in SIMD8, once with quarter
3126 * control of 1Q for the first eight channels and again with 2Q for
3127 * the second eight channels.
3128 *
3129 * Which accumulator register is implicitly accessed (by AccWrEnable
3130 * for instance) is determined by the quarter control. Unfortunately
3131 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3132 * implicit accumulator access by an instruction with 2Q will access
3133 * acc1 regardless of whether the data type is usable in acc1.
3134 *
3135 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3136 * integer data types.
3137 *
3138 * Since we only want the low 32-bits of the result, we can do two
3139 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3140 * adjust the high result and add them (like the mach is doing):
3141 *
3142 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3143 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3144 * shl(8) g9<1>D g8<8,8,1>D 16D
3145 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3146 *
3147 * We avoid the shl instruction by realizing that we only want to add
3148 * the low 16-bits of the "high" result to the high 16-bits of the
3149 * "low" result and using proper regioning on the add:
3150 *
3151 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3152 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3153 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3154 *
3155 * Since it does not use the (single) accumulator register, we can
3156 * schedule multi-component multiplications much better.
3157 */
3158
3159 if (inst->conditional_mod && inst->dst.is_null()) {
3160 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3161 inst->dst.type, dispatch_width);
3162 }
3163 fs_reg low = inst->dst;
3164 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3165 inst->dst.type, dispatch_width);
3166
3167 if (devinfo->gen >= 7) {
3168 fs_reg src1_0_w = inst->src[1];
3169 fs_reg src1_1_w = inst->src[1];
3170
3171 if (inst->src[1].file == IMM) {
3172 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3173 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3174 } else {
3175 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3176 if (src1_0_w.stride != 0) {
3177 assert(src1_0_w.stride == 1);
3178 src1_0_w.stride = 2;
3179 }
3180
3181 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3182 if (src1_1_w.stride != 0) {
3183 assert(src1_1_w.stride == 1);
3184 src1_1_w.stride = 2;
3185 }
3186 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3187 }
3188 ibld.MUL(low, inst->src[0], src1_0_w);
3189 ibld.MUL(high, inst->src[0], src1_1_w);
3190 } else {
3191 fs_reg src0_0_w = inst->src[0];
3192 fs_reg src0_1_w = inst->src[0];
3193
3194 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3195 if (src0_0_w.stride != 0) {
3196 assert(src0_0_w.stride == 1);
3197 src0_0_w.stride = 2;
3198 }
3199
3200 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3201 if (src0_1_w.stride != 0) {
3202 assert(src0_1_w.stride == 1);
3203 src0_1_w.stride = 2;
3204 }
3205 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3206
3207 ibld.MUL(low, src0_0_w, inst->src[1]);
3208 ibld.MUL(high, src0_1_w, inst->src[1]);
3209 }
3210
3211 fs_reg dst = inst->dst;
3212 dst.type = BRW_REGISTER_TYPE_UW;
3213 dst.subreg_offset = 2;
3214 dst.stride = 2;
3215
3216 high.type = BRW_REGISTER_TYPE_UW;
3217 high.stride = 2;
3218
3219 low.type = BRW_REGISTER_TYPE_UW;
3220 low.subreg_offset = 2;
3221 low.stride = 2;
3222
3223 ibld.ADD(dst, low, high);
3224
3225 if (inst->conditional_mod) {
3226 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3227 set_condmod(inst->conditional_mod,
3228 ibld.MOV(null, inst->dst));
3229 }
3230 }
3231
3232 inst->remove(block);
3233 progress = true;
3234 }
3235
3236 if (progress)
3237 invalidate_live_intervals();
3238
3239 return progress;
3240 }
3241
3242 void
3243 fs_visitor::dump_instructions()
3244 {
3245 dump_instructions(NULL);
3246 }
3247
3248 void
3249 fs_visitor::dump_instructions(const char *name)
3250 {
3251 FILE *file = stderr;
3252 if (name && geteuid() != 0) {
3253 file = fopen(name, "w");
3254 if (!file)
3255 file = stderr;
3256 }
3257
3258 if (cfg) {
3259 calculate_register_pressure();
3260 int ip = 0, max_pressure = 0;
3261 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3262 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3263 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3264 dump_instruction(inst, file);
3265 ip++;
3266 }
3267 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3268 } else {
3269 int ip = 0;
3270 foreach_in_list(backend_instruction, inst, &instructions) {
3271 fprintf(file, "%4d: ", ip++);
3272 dump_instruction(inst, file);
3273 }
3274 }
3275
3276 if (file != stderr) {
3277 fclose(file);
3278 }
3279 }
3280
3281 void
3282 fs_visitor::dump_instruction(backend_instruction *be_inst)
3283 {
3284 dump_instruction(be_inst, stderr);
3285 }
3286
3287 void
3288 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3289 {
3290 fs_inst *inst = (fs_inst *)be_inst;
3291
3292 if (inst->predicate) {
3293 fprintf(file, "(%cf0.%d) ",
3294 inst->predicate_inverse ? '-' : '+',
3295 inst->flag_subreg);
3296 }
3297
3298 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3299 if (inst->saturate)
3300 fprintf(file, ".sat");
3301 if (inst->conditional_mod) {
3302 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3303 if (!inst->predicate &&
3304 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3305 inst->opcode != BRW_OPCODE_IF &&
3306 inst->opcode != BRW_OPCODE_WHILE))) {
3307 fprintf(file, ".f0.%d", inst->flag_subreg);
3308 }
3309 }
3310 fprintf(file, "(%d) ", inst->exec_size);
3311
3312 if (inst->mlen) {
3313 fprintf(file, "(mlen: %d) ", inst->mlen);
3314 }
3315
3316 switch (inst->dst.file) {
3317 case GRF:
3318 fprintf(file, "vgrf%d", inst->dst.reg);
3319 if (inst->dst.width != dispatch_width)
3320 fprintf(file, "@%d", inst->dst.width);
3321 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3322 inst->dst.subreg_offset)
3323 fprintf(file, "+%d.%d",
3324 inst->dst.reg_offset, inst->dst.subreg_offset);
3325 break;
3326 case MRF:
3327 fprintf(file, "m%d", inst->dst.reg);
3328 break;
3329 case BAD_FILE:
3330 fprintf(file, "(null)");
3331 break;
3332 case UNIFORM:
3333 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3334 break;
3335 case ATTR:
3336 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3337 break;
3338 case HW_REG:
3339 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3340 switch (inst->dst.fixed_hw_reg.nr) {
3341 case BRW_ARF_NULL:
3342 fprintf(file, "null");
3343 break;
3344 case BRW_ARF_ADDRESS:
3345 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3346 break;
3347 case BRW_ARF_ACCUMULATOR:
3348 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3349 break;
3350 case BRW_ARF_FLAG:
3351 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3352 inst->dst.fixed_hw_reg.subnr);
3353 break;
3354 default:
3355 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3356 inst->dst.fixed_hw_reg.subnr);
3357 break;
3358 }
3359 } else {
3360 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3361 }
3362 if (inst->dst.fixed_hw_reg.subnr)
3363 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3364 break;
3365 default:
3366 fprintf(file, "???");
3367 break;
3368 }
3369 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3370
3371 for (int i = 0; i < inst->sources; i++) {
3372 if (inst->src[i].negate)
3373 fprintf(file, "-");
3374 if (inst->src[i].abs)
3375 fprintf(file, "|");
3376 switch (inst->src[i].file) {
3377 case GRF:
3378 fprintf(file, "vgrf%d", inst->src[i].reg);
3379 if (inst->src[i].width != dispatch_width)
3380 fprintf(file, "@%d", inst->src[i].width);
3381 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3382 inst->src[i].subreg_offset)
3383 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3384 inst->src[i].subreg_offset);
3385 break;
3386 case MRF:
3387 fprintf(file, "***m%d***", inst->src[i].reg);
3388 break;
3389 case ATTR:
3390 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3391 break;
3392 case UNIFORM:
3393 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3394 if (inst->src[i].reladdr) {
3395 fprintf(file, "+reladdr");
3396 } else if (inst->src[i].subreg_offset) {
3397 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3398 inst->src[i].subreg_offset);
3399 }
3400 break;
3401 case BAD_FILE:
3402 fprintf(file, "(null)");
3403 break;
3404 case IMM:
3405 switch (inst->src[i].type) {
3406 case BRW_REGISTER_TYPE_F:
3407 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3408 break;
3409 case BRW_REGISTER_TYPE_W:
3410 case BRW_REGISTER_TYPE_D:
3411 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3412 break;
3413 case BRW_REGISTER_TYPE_UW:
3414 case BRW_REGISTER_TYPE_UD:
3415 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3416 break;
3417 case BRW_REGISTER_TYPE_VF:
3418 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3419 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3420 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3421 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3422 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3423 break;
3424 default:
3425 fprintf(file, "???");
3426 break;
3427 }
3428 break;
3429 case HW_REG:
3430 if (inst->src[i].fixed_hw_reg.negate)
3431 fprintf(file, "-");
3432 if (inst->src[i].fixed_hw_reg.abs)
3433 fprintf(file, "|");
3434 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3435 switch (inst->src[i].fixed_hw_reg.nr) {
3436 case BRW_ARF_NULL:
3437 fprintf(file, "null");
3438 break;
3439 case BRW_ARF_ADDRESS:
3440 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3441 break;
3442 case BRW_ARF_ACCUMULATOR:
3443 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3444 break;
3445 case BRW_ARF_FLAG:
3446 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3447 inst->src[i].fixed_hw_reg.subnr);
3448 break;
3449 default:
3450 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3451 inst->src[i].fixed_hw_reg.subnr);
3452 break;
3453 }
3454 } else {
3455 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3456 }
3457 if (inst->src[i].fixed_hw_reg.subnr)
3458 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3459 if (inst->src[i].fixed_hw_reg.abs)
3460 fprintf(file, "|");
3461 break;
3462 default:
3463 fprintf(file, "???");
3464 break;
3465 }
3466 if (inst->src[i].abs)
3467 fprintf(file, "|");
3468
3469 if (inst->src[i].file != IMM) {
3470 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3471 }
3472
3473 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3474 fprintf(file, ", ");
3475 }
3476
3477 fprintf(file, " ");
3478
3479 if (dispatch_width == 16 && inst->exec_size == 8) {
3480 if (inst->force_sechalf)
3481 fprintf(file, "2ndhalf ");
3482 else
3483 fprintf(file, "1sthalf ");
3484 }
3485
3486 fprintf(file, "\n");
3487 }
3488
3489 /**
3490 * Possibly returns an instruction that set up @param reg.
3491 *
3492 * Sometimes we want to take the result of some expression/variable
3493 * dereference tree and rewrite the instruction generating the result
3494 * of the tree. When processing the tree, we know that the
3495 * instructions generated are all writing temporaries that are dead
3496 * outside of this tree. So, if we have some instructions that write
3497 * a temporary, we're free to point that temp write somewhere else.
3498 *
3499 * Note that this doesn't guarantee that the instruction generated
3500 * only reg -- it might be the size=4 destination of a texture instruction.
3501 */
3502 fs_inst *
3503 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3504 fs_inst *end,
3505 const fs_reg &reg)
3506 {
3507 if (end == start ||
3508 end->is_partial_write() ||
3509 reg.reladdr ||
3510 !reg.equals(end->dst)) {
3511 return NULL;
3512 } else {
3513 return end;
3514 }
3515 }
3516
3517 void
3518 fs_visitor::setup_payload_gen6()
3519 {
3520 bool uses_depth =
3521 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3522 unsigned barycentric_interp_modes =
3523 (stage == MESA_SHADER_FRAGMENT) ?
3524 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3525
3526 assert(devinfo->gen >= 6);
3527
3528 /* R0-1: masks, pixel X/Y coordinates. */
3529 payload.num_regs = 2;
3530 /* R2: only for 32-pixel dispatch.*/
3531
3532 /* R3-26: barycentric interpolation coordinates. These appear in the
3533 * same order that they appear in the brw_wm_barycentric_interp_mode
3534 * enum. Each set of coordinates occupies 2 registers if dispatch width
3535 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3536 * appear if they were enabled using the "Barycentric Interpolation
3537 * Mode" bits in WM_STATE.
3538 */
3539 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3540 if (barycentric_interp_modes & (1 << i)) {
3541 payload.barycentric_coord_reg[i] = payload.num_regs;
3542 payload.num_regs += 2;
3543 if (dispatch_width == 16) {
3544 payload.num_regs += 2;
3545 }
3546 }
3547 }
3548
3549 /* R27: interpolated depth if uses source depth */
3550 if (uses_depth) {
3551 payload.source_depth_reg = payload.num_regs;
3552 payload.num_regs++;
3553 if (dispatch_width == 16) {
3554 /* R28: interpolated depth if not SIMD8. */
3555 payload.num_regs++;
3556 }
3557 }
3558 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3559 if (uses_depth) {
3560 payload.source_w_reg = payload.num_regs;
3561 payload.num_regs++;
3562 if (dispatch_width == 16) {
3563 /* R30: interpolated W if not SIMD8. */
3564 payload.num_regs++;
3565 }
3566 }
3567
3568 if (stage == MESA_SHADER_FRAGMENT) {
3569 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3570 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3571 prog_data->uses_pos_offset = key->compute_pos_offset;
3572 /* R31: MSAA position offsets. */
3573 if (prog_data->uses_pos_offset) {
3574 payload.sample_pos_reg = payload.num_regs;
3575 payload.num_regs++;
3576 }
3577 }
3578
3579 /* R32: MSAA input coverage mask */
3580 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3581 assert(devinfo->gen >= 7);
3582 payload.sample_mask_in_reg = payload.num_regs;
3583 payload.num_regs++;
3584 if (dispatch_width == 16) {
3585 /* R33: input coverage mask if not SIMD8. */
3586 payload.num_regs++;
3587 }
3588 }
3589
3590 /* R34-: bary for 32-pixel. */
3591 /* R58-59: interp W for 32-pixel. */
3592
3593 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3594 source_depth_to_render_target = true;
3595 }
3596 }
3597
3598 void
3599 fs_visitor::setup_vs_payload()
3600 {
3601 /* R0: thread header, R1: urb handles */
3602 payload.num_regs = 2;
3603 }
3604
3605 void
3606 fs_visitor::setup_cs_payload()
3607 {
3608 assert(devinfo->gen >= 7);
3609
3610 payload.num_regs = 1;
3611 }
3612
3613 void
3614 fs_visitor::assign_binding_table_offsets()
3615 {
3616 assert(stage == MESA_SHADER_FRAGMENT);
3617 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3618 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3619 uint32_t next_binding_table_offset = 0;
3620
3621 /* If there are no color regions, we still perform an FB write to a null
3622 * renderbuffer, which we place at surface index 0.
3623 */
3624 prog_data->binding_table.render_target_start = next_binding_table_offset;
3625 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3626
3627 assign_common_binding_table_offsets(next_binding_table_offset);
3628 }
3629
3630 void
3631 fs_visitor::calculate_register_pressure()
3632 {
3633 invalidate_live_intervals();
3634 calculate_live_intervals();
3635
3636 unsigned num_instructions = 0;
3637 foreach_block(block, cfg)
3638 num_instructions += block->instructions.length();
3639
3640 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3641
3642 for (unsigned reg = 0; reg < alloc.count; reg++) {
3643 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3644 regs_live_at_ip[ip] += alloc.sizes[reg];
3645 }
3646 }
3647
3648 void
3649 fs_visitor::optimize()
3650 {
3651 /* bld is the common builder object pointing at the end of the program we
3652 * used to translate it into i965 IR. For the optimization and lowering
3653 * passes coming next, any code added after the end of the program without
3654 * having explicitly called fs_builder::at() clearly points at a mistake.
3655 * Ideally optimization passes wouldn't be part of the visitor so they
3656 * wouldn't have access to bld at all, but they do, so just in case some
3657 * pass forgets to ask for a location explicitly set it to NULL here to
3658 * make it trip.
3659 */
3660 bld = bld.at(NULL, NULL);
3661
3662 split_virtual_grfs();
3663
3664 move_uniform_array_access_to_pull_constants();
3665 assign_constant_locations();
3666 demote_pull_constants();
3667
3668 #define OPT(pass, args...) ({ \
3669 pass_num++; \
3670 bool this_progress = pass(args); \
3671 \
3672 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3673 char filename[64]; \
3674 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3675 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3676 \
3677 backend_shader::dump_instructions(filename); \
3678 } \
3679 \
3680 progress = progress || this_progress; \
3681 this_progress; \
3682 })
3683
3684 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3685 char filename[64];
3686 snprintf(filename, 64, "%s%d-%04d-00-start",
3687 stage_abbrev, dispatch_width,
3688 shader_prog ? shader_prog->Name : 0);
3689
3690 backend_shader::dump_instructions(filename);
3691 }
3692
3693 bool progress;
3694 int iteration = 0;
3695 int pass_num = 0;
3696 do {
3697 progress = false;
3698 pass_num = 0;
3699 iteration++;
3700
3701 OPT(remove_duplicate_mrf_writes);
3702
3703 OPT(opt_algebraic);
3704 OPT(opt_cse);
3705 OPT(opt_copy_propagate);
3706 OPT(opt_peephole_predicated_break);
3707 OPT(opt_cmod_propagation);
3708 OPT(dead_code_eliminate);
3709 OPT(opt_peephole_sel);
3710 OPT(dead_control_flow_eliminate, this);
3711 OPT(opt_register_renaming);
3712 OPT(opt_redundant_discard_jumps);
3713 OPT(opt_saturate_propagation);
3714 OPT(opt_zero_samples);
3715 OPT(register_coalesce);
3716 OPT(compute_to_mrf);
3717 OPT(eliminate_find_live_channel);
3718
3719 OPT(compact_virtual_grfs);
3720 } while (progress);
3721
3722 pass_num = 0;
3723
3724 OPT(opt_sampler_eot);
3725
3726 if (OPT(lower_load_payload)) {
3727 split_virtual_grfs();
3728 OPT(register_coalesce);
3729 OPT(compute_to_mrf);
3730 OPT(dead_code_eliminate);
3731 }
3732
3733 OPT(opt_combine_constants);
3734 OPT(lower_integer_multiplication);
3735
3736 lower_uniform_pull_constant_loads();
3737 }
3738
3739 /**
3740 * Three source instruction must have a GRF/MRF destination register.
3741 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3742 */
3743 void
3744 fs_visitor::fixup_3src_null_dest()
3745 {
3746 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3747 if (inst->is_3src() && inst->dst.is_null()) {
3748 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3749 inst->dst.type);
3750 }
3751 }
3752 }
3753
3754 void
3755 fs_visitor::allocate_registers()
3756 {
3757 bool allocated_without_spills;
3758
3759 static const enum instruction_scheduler_mode pre_modes[] = {
3760 SCHEDULE_PRE,
3761 SCHEDULE_PRE_NON_LIFO,
3762 SCHEDULE_PRE_LIFO,
3763 };
3764
3765 /* Try each scheduling heuristic to see if it can successfully register
3766 * allocate without spilling. They should be ordered by decreasing
3767 * performance but increasing likelihood of allocating.
3768 */
3769 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3770 schedule_instructions(pre_modes[i]);
3771
3772 if (0) {
3773 assign_regs_trivial();
3774 allocated_without_spills = true;
3775 } else {
3776 allocated_without_spills = assign_regs(false);
3777 }
3778 if (allocated_without_spills)
3779 break;
3780 }
3781
3782 if (!allocated_without_spills) {
3783 /* We assume that any spilling is worse than just dropping back to
3784 * SIMD8. There's probably actually some intermediate point where
3785 * SIMD16 with a couple of spills is still better.
3786 */
3787 if (dispatch_width == 16) {
3788 fail("Failure to register allocate. Reduce number of "
3789 "live scalar values to avoid this.");
3790 } else {
3791 compiler->shader_perf_log(log_data,
3792 "%s shader triggered register spilling. "
3793 "Try reducing the number of live scalar "
3794 "values to improve performance.\n",
3795 stage_name);
3796 }
3797
3798 /* Since we're out of heuristics, just go spill registers until we
3799 * get an allocation.
3800 */
3801 while (!assign_regs(true)) {
3802 if (failed)
3803 break;
3804 }
3805 }
3806
3807 /* This must come after all optimization and register allocation, since
3808 * it inserts dead code that happens to have side effects, and it does
3809 * so based on the actual physical registers in use.
3810 */
3811 insert_gen4_send_dependency_workarounds();
3812
3813 if (failed)
3814 return;
3815
3816 if (!allocated_without_spills)
3817 schedule_instructions(SCHEDULE_POST);
3818
3819 if (last_scratch > 0)
3820 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3821 }
3822
3823 bool
3824 fs_visitor::run_vs(gl_clip_plane *clip_planes)
3825 {
3826 assert(stage == MESA_SHADER_VERTEX);
3827
3828 if (prog_data->map_entries == NULL)
3829 assign_common_binding_table_offsets(0);
3830 setup_vs_payload();
3831
3832 if (shader_time_index >= 0)
3833 emit_shader_time_begin();
3834
3835 emit_nir_code();
3836
3837 if (failed)
3838 return false;
3839
3840 emit_urb_writes(clip_planes);
3841
3842 if (shader_time_index >= 0)
3843 emit_shader_time_end();
3844
3845 calculate_cfg();
3846
3847 optimize();
3848
3849 assign_curb_setup();
3850 assign_vs_urb_setup();
3851
3852 fixup_3src_null_dest();
3853 allocate_registers();
3854
3855 return !failed;
3856 }
3857
3858 bool
3859 fs_visitor::run_fs(bool do_rep_send)
3860 {
3861 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3862 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3863
3864 assert(stage == MESA_SHADER_FRAGMENT);
3865
3866 if (prog_data->map_entries == NULL)
3867 assign_binding_table_offsets();
3868
3869 if (devinfo->gen >= 6)
3870 setup_payload_gen6();
3871 else
3872 setup_payload_gen4();
3873
3874 if (0) {
3875 emit_dummy_fs();
3876 } else if (do_rep_send) {
3877 assert(dispatch_width == 16);
3878 emit_repclear_shader();
3879 } else {
3880 if (shader_time_index >= 0)
3881 emit_shader_time_begin();
3882
3883 calculate_urb_setup();
3884 if (prog->InputsRead > 0) {
3885 if (devinfo->gen < 6)
3886 emit_interpolation_setup_gen4();
3887 else
3888 emit_interpolation_setup_gen6();
3889 }
3890
3891 /* We handle discards by keeping track of the still-live pixels in f0.1.
3892 * Initialize it with the dispatched pixels.
3893 */
3894 if (wm_prog_data->uses_kill) {
3895 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3896 discard_init->flag_subreg = 1;
3897 }
3898
3899 /* Generate FS IR for main(). (the visitor only descends into
3900 * functions called "main").
3901 */
3902 emit_nir_code();
3903
3904 if (failed)
3905 return false;
3906
3907 if (wm_prog_data->uses_kill)
3908 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3909
3910 if (wm_key->alpha_test_func)
3911 emit_alpha_test();
3912
3913 emit_fb_writes();
3914
3915 if (shader_time_index >= 0)
3916 emit_shader_time_end();
3917
3918 calculate_cfg();
3919
3920 optimize();
3921
3922 assign_curb_setup();
3923 assign_urb_setup();
3924
3925 fixup_3src_null_dest();
3926 allocate_registers();
3927
3928 if (failed)
3929 return false;
3930 }
3931
3932 if (dispatch_width == 8)
3933 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3934 else
3935 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3936
3937 return !failed;
3938 }
3939
3940 bool
3941 fs_visitor::run_cs()
3942 {
3943 assert(stage == MESA_SHADER_COMPUTE);
3944 assert(shader);
3945
3946 sanity_param_count = prog->Parameters->NumParameters;
3947
3948 assign_common_binding_table_offsets(0);
3949
3950 setup_cs_payload();
3951
3952 if (shader_time_index >= 0)
3953 emit_shader_time_begin();
3954
3955 emit_nir_code();
3956
3957 if (failed)
3958 return false;
3959
3960 emit_cs_terminate();
3961
3962 if (shader_time_index >= 0)
3963 emit_shader_time_end();
3964
3965 calculate_cfg();
3966
3967 optimize();
3968
3969 assign_curb_setup();
3970
3971 fixup_3src_null_dest();
3972 allocate_registers();
3973
3974 if (failed)
3975 return false;
3976
3977 /* If any state parameters were appended, then ParameterValues could have
3978 * been realloced, in which case the driver uniform storage set up by
3979 * _mesa_associate_uniform_storage() would point to freed memory. Make
3980 * sure that didn't happen.
3981 */
3982 assert(sanity_param_count == prog->Parameters->NumParameters);
3983
3984 return !failed;
3985 }
3986
3987 const unsigned *
3988 brw_wm_fs_emit(struct brw_context *brw,
3989 void *mem_ctx,
3990 const struct brw_wm_prog_key *key,
3991 struct brw_wm_prog_data *prog_data,
3992 struct gl_fragment_program *fp,
3993 struct gl_shader_program *prog,
3994 unsigned *final_assembly_size)
3995 {
3996 bool start_busy = false;
3997 double start_time = 0;
3998
3999 if (unlikely(brw->perf_debug)) {
4000 start_busy = (brw->batch.last_bo &&
4001 drm_intel_bo_busy(brw->batch.last_bo));
4002 start_time = get_time();
4003 }
4004
4005 struct brw_shader *shader = NULL;
4006 if (prog)
4007 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4008
4009 if (unlikely(INTEL_DEBUG & DEBUG_WM) && shader->base.ir)
4010 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4011
4012 int st_index8 = -1, st_index16 = -1;
4013 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4014 st_index8 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS8);
4015 st_index16 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS16);
4016 }
4017
4018 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4019 */
4020 fs_visitor v(brw->intelScreen->compiler, brw,
4021 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4022 prog, &fp->Base, 8, st_index8);
4023 if (!v.run_fs(false /* do_rep_send */)) {
4024 if (prog) {
4025 prog->LinkStatus = false;
4026 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4027 }
4028
4029 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4030 v.fail_msg);
4031
4032 return NULL;
4033 }
4034
4035 cfg_t *simd16_cfg = NULL;
4036 fs_visitor v2(brw->intelScreen->compiler, brw,
4037 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4038 prog, &fp->Base, 16, st_index16);
4039 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4040 if (!v.simd16_unsupported) {
4041 /* Try a SIMD16 compile */
4042 v2.import_uniforms(&v);
4043 if (!v2.run_fs(brw->use_rep_send)) {
4044 perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
4045 } else {
4046 simd16_cfg = v2.cfg;
4047 }
4048 }
4049 }
4050
4051 cfg_t *simd8_cfg;
4052 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4053 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4054 simd8_cfg = NULL;
4055 prog_data->no_8 = true;
4056 } else {
4057 simd8_cfg = v.cfg;
4058 prog_data->no_8 = false;
4059 }
4060
4061 fs_generator g(brw->intelScreen->compiler, brw,
4062 mem_ctx, (void *) key, &prog_data->base,
4063 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4064
4065 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4066 char *name;
4067 if (prog)
4068 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4069 prog->Label ? prog->Label : "unnamed",
4070 prog->Name);
4071 else
4072 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4073
4074 g.enable_debug(name);
4075 }
4076
4077 if (simd8_cfg)
4078 g.generate_code(simd8_cfg, 8);
4079 if (simd16_cfg)
4080 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4081
4082 if (unlikely(brw->perf_debug) && shader) {
4083 if (shader->compiled_once)
4084 brw_wm_debug_recompile(brw, prog, key);
4085 shader->compiled_once = true;
4086
4087 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4088 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4089 (get_time() - start_time) * 1000);
4090 }
4091 }
4092
4093 return g.get_assembly(final_assembly_size);
4094 }
4095
4096 extern "C" bool
4097 brw_fs_precompile(struct gl_context *ctx,
4098 struct gl_shader_program *shader_prog,
4099 struct gl_program *prog)
4100 {
4101 struct brw_context *brw = brw_context(ctx);
4102 struct brw_wm_prog_key key;
4103
4104 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4105 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4106 bool program_uses_dfdy = fp->UsesDFdy;
4107
4108 memset(&key, 0, sizeof(key));
4109
4110 if (brw->gen < 6) {
4111 if (fp->UsesKill)
4112 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4113
4114 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4115 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4116
4117 /* Just assume depth testing. */
4118 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4119 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4120 }
4121
4122 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4123 BRW_FS_VARYING_INPUT_MASK) > 16)
4124 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4125
4126 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4127
4128 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4129 key.drawable_height = ctx->DrawBuffer->Height;
4130 }
4131
4132 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4133 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4134 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4135
4136 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4137 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4138 key.nr_color_regions > 1;
4139 }
4140
4141 key.program_string_id = bfp->id;
4142
4143 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4144 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4145
4146 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4147
4148 brw->wm.base.prog_offset = old_prog_offset;
4149 brw->wm.prog_data = old_prog_data;
4150
4151 return success;
4152 }
4153
4154 void
4155 brw_setup_tex_for_precompile(struct brw_context *brw,
4156 struct brw_sampler_prog_key_data *tex,
4157 struct gl_program *prog)
4158 {
4159 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4160 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4161 for (unsigned i = 0; i < sampler_count; i++) {
4162 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4163 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4164 tex->swizzles[i] =
4165 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4166 } else {
4167 /* Color sampler: assume no swizzling. */
4168 tex->swizzles[i] = SWIZZLE_XYZW;
4169 }
4170 }
4171 }