b6aa60e84f3270fb95745c6031d8c501e62d5dbf
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 extern "C" {
32
33 #include <sys/types.h>
34
35 #include "main/macros.h"
36 #include "main/shaderobj.h"
37 #include "main/uniforms.h"
38 #include "program/prog_parameter.h"
39 #include "program/prog_print.h"
40 #include "program/register_allocate.h"
41 #include "program/sampler.h"
42 #include "program/hash_table.h"
43 #include "brw_context.h"
44 #include "brw_eu.h"
45 #include "brw_wm.h"
46 }
47 #include "brw_shader.h"
48 #include "brw_fs.h"
49 #include "glsl/glsl_types.h"
50 #include "glsl/ir_print_visitor.h"
51
52 #define MAX_INSTRUCTION (1 << 30)
53
54 int
55 fs_visitor::type_size(const struct glsl_type *type)
56 {
57 unsigned int size, i;
58
59 switch (type->base_type) {
60 case GLSL_TYPE_UINT:
61 case GLSL_TYPE_INT:
62 case GLSL_TYPE_FLOAT:
63 case GLSL_TYPE_BOOL:
64 return type->components();
65 case GLSL_TYPE_ARRAY:
66 return type_size(type->fields.array) * type->length;
67 case GLSL_TYPE_STRUCT:
68 size = 0;
69 for (i = 0; i < type->length; i++) {
70 size += type_size(type->fields.structure[i].type);
71 }
72 return size;
73 case GLSL_TYPE_SAMPLER:
74 /* Samplers take up no register space, since they're baked in at
75 * link time.
76 */
77 return 0;
78 default:
79 assert(!"not reached");
80 return 0;
81 }
82 }
83
84 void
85 fs_visitor::fail(const char *format, ...)
86 {
87 va_list va;
88 char *msg;
89
90 if (failed)
91 return;
92
93 failed = true;
94
95 va_start(va, format);
96 msg = ralloc_vasprintf(mem_ctx, format, va);
97 va_end(va);
98 msg = ralloc_asprintf(mem_ctx, "FS compile failed: %s\n", msg);
99
100 this->fail_msg = msg;
101
102 if (INTEL_DEBUG & DEBUG_WM) {
103 fprintf(stderr, "%s", msg);
104 }
105 }
106
107 void
108 fs_visitor::push_force_uncompressed()
109 {
110 force_uncompressed_stack++;
111 }
112
113 void
114 fs_visitor::pop_force_uncompressed()
115 {
116 force_uncompressed_stack--;
117 assert(force_uncompressed_stack >= 0);
118 }
119
120 void
121 fs_visitor::push_force_sechalf()
122 {
123 force_sechalf_stack++;
124 }
125
126 void
127 fs_visitor::pop_force_sechalf()
128 {
129 force_sechalf_stack--;
130 assert(force_sechalf_stack >= 0);
131 }
132
133 /**
134 * Returns how many MRFs an FS opcode will write over.
135 *
136 * Note that this is not the 0 or 1 implied writes in an actual gen
137 * instruction -- the FS opcodes often generate MOVs in addition.
138 */
139 int
140 fs_visitor::implied_mrf_writes(fs_inst *inst)
141 {
142 if (inst->mlen == 0)
143 return 0;
144
145 switch (inst->opcode) {
146 case SHADER_OPCODE_RCP:
147 case SHADER_OPCODE_RSQ:
148 case SHADER_OPCODE_SQRT:
149 case SHADER_OPCODE_EXP2:
150 case SHADER_OPCODE_LOG2:
151 case SHADER_OPCODE_SIN:
152 case SHADER_OPCODE_COS:
153 return 1 * c->dispatch_width / 8;
154 case SHADER_OPCODE_POW:
155 case SHADER_OPCODE_INT_QUOTIENT:
156 case SHADER_OPCODE_INT_REMAINDER:
157 return 2 * c->dispatch_width / 8;
158 case SHADER_OPCODE_TEX:
159 case FS_OPCODE_TXB:
160 case SHADER_OPCODE_TXD:
161 case SHADER_OPCODE_TXF:
162 case SHADER_OPCODE_TXL:
163 case SHADER_OPCODE_TXS:
164 return 1;
165 case FS_OPCODE_FB_WRITE:
166 return 2;
167 case FS_OPCODE_PULL_CONSTANT_LOAD:
168 case FS_OPCODE_UNSPILL:
169 return 1;
170 case FS_OPCODE_SPILL:
171 return 2;
172 default:
173 assert(!"not reached");
174 return inst->mlen;
175 }
176 }
177
178 int
179 fs_visitor::virtual_grf_alloc(int size)
180 {
181 if (virtual_grf_array_size <= virtual_grf_next) {
182 if (virtual_grf_array_size == 0)
183 virtual_grf_array_size = 16;
184 else
185 virtual_grf_array_size *= 2;
186 virtual_grf_sizes = reralloc(mem_ctx, virtual_grf_sizes, int,
187 virtual_grf_array_size);
188 }
189 virtual_grf_sizes[virtual_grf_next] = size;
190 return virtual_grf_next++;
191 }
192
193 /** Fixed HW reg constructor. */
194 fs_reg::fs_reg(enum register_file file, int reg)
195 {
196 init();
197 this->file = file;
198 this->reg = reg;
199 this->type = BRW_REGISTER_TYPE_F;
200 }
201
202 /** Fixed HW reg constructor. */
203 fs_reg::fs_reg(enum register_file file, int reg, uint32_t type)
204 {
205 init();
206 this->file = file;
207 this->reg = reg;
208 this->type = type;
209 }
210
211 /** Automatic reg constructor. */
212 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
213 {
214 init();
215
216 this->file = GRF;
217 this->reg = v->virtual_grf_alloc(v->type_size(type));
218 this->reg_offset = 0;
219 this->type = brw_type_for_base_type(type);
220 }
221
222 fs_reg *
223 fs_visitor::variable_storage(ir_variable *var)
224 {
225 return (fs_reg *)hash_table_find(this->variable_ht, var);
226 }
227
228 void
229 import_uniforms_callback(const void *key,
230 void *data,
231 void *closure)
232 {
233 struct hash_table *dst_ht = (struct hash_table *)closure;
234 const fs_reg *reg = (const fs_reg *)data;
235
236 if (reg->file != UNIFORM)
237 return;
238
239 hash_table_insert(dst_ht, data, key);
240 }
241
242 /* For 16-wide, we need to follow from the uniform setup of 8-wide dispatch.
243 * This brings in those uniform definitions
244 */
245 void
246 fs_visitor::import_uniforms(fs_visitor *v)
247 {
248 hash_table_call_foreach(v->variable_ht,
249 import_uniforms_callback,
250 variable_ht);
251 this->params_remap = v->params_remap;
252 }
253
254 /* Our support for uniforms is piggy-backed on the struct
255 * gl_fragment_program, because that's where the values actually
256 * get stored, rather than in some global gl_shader_program uniform
257 * store.
258 */
259 int
260 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
261 {
262 unsigned int offset = 0;
263
264 if (type->is_matrix()) {
265 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
266 type->vector_elements,
267 1);
268
269 for (unsigned int i = 0; i < type->matrix_columns; i++) {
270 offset += setup_uniform_values(loc + offset, column);
271 }
272
273 return offset;
274 }
275
276 switch (type->base_type) {
277 case GLSL_TYPE_FLOAT:
278 case GLSL_TYPE_UINT:
279 case GLSL_TYPE_INT:
280 case GLSL_TYPE_BOOL:
281 for (unsigned int i = 0; i < type->vector_elements; i++) {
282 unsigned int param = c->prog_data.nr_params++;
283
284 assert(param < ARRAY_SIZE(c->prog_data.param));
285
286 if (ctx->Const.NativeIntegers) {
287 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
288 } else {
289 switch (type->base_type) {
290 case GLSL_TYPE_FLOAT:
291 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
292 break;
293 case GLSL_TYPE_UINT:
294 c->prog_data.param_convert[param] = PARAM_CONVERT_F2U;
295 break;
296 case GLSL_TYPE_INT:
297 c->prog_data.param_convert[param] = PARAM_CONVERT_F2I;
298 break;
299 case GLSL_TYPE_BOOL:
300 c->prog_data.param_convert[param] = PARAM_CONVERT_F2B;
301 break;
302 default:
303 assert(!"not reached");
304 c->prog_data.param_convert[param] = PARAM_NO_CONVERT;
305 break;
306 }
307 }
308 this->param_index[param] = loc;
309 this->param_offset[param] = i;
310 }
311 return 1;
312
313 case GLSL_TYPE_STRUCT:
314 for (unsigned int i = 0; i < type->length; i++) {
315 offset += setup_uniform_values(loc + offset,
316 type->fields.structure[i].type);
317 }
318 return offset;
319
320 case GLSL_TYPE_ARRAY:
321 for (unsigned int i = 0; i < type->length; i++) {
322 offset += setup_uniform_values(loc + offset, type->fields.array);
323 }
324 return offset;
325
326 case GLSL_TYPE_SAMPLER:
327 /* The sampler takes up a slot, but we don't use any values from it. */
328 return 1;
329
330 default:
331 assert(!"not reached");
332 return 0;
333 }
334 }
335
336
337 /* Our support for builtin uniforms is even scarier than non-builtin.
338 * It sits on top of the PROG_STATE_VAR parameters that are
339 * automatically updated from GL context state.
340 */
341 void
342 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
343 {
344 const ir_state_slot *const slots = ir->state_slots;
345 assert(ir->state_slots != NULL);
346
347 for (unsigned int i = 0; i < ir->num_state_slots; i++) {
348 /* This state reference has already been setup by ir_to_mesa, but we'll
349 * get the same index back here.
350 */
351 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
352 (gl_state_index *)slots[i].tokens);
353
354 /* Add each of the unique swizzles of the element as a parameter.
355 * This'll end up matching the expected layout of the
356 * array/matrix/structure we're trying to fill in.
357 */
358 int last_swiz = -1;
359 for (unsigned int j = 0; j < 4; j++) {
360 int swiz = GET_SWZ(slots[i].swizzle, j);
361 if (swiz == last_swiz)
362 break;
363 last_swiz = swiz;
364
365 c->prog_data.param_convert[c->prog_data.nr_params] =
366 PARAM_NO_CONVERT;
367 this->param_index[c->prog_data.nr_params] = index;
368 this->param_offset[c->prog_data.nr_params] = swiz;
369 c->prog_data.nr_params++;
370 }
371 }
372 }
373
374 fs_reg *
375 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
376 {
377 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
378 fs_reg wpos = *reg;
379 bool flip = !ir->origin_upper_left ^ c->key.render_to_fbo;
380
381 /* gl_FragCoord.x */
382 if (ir->pixel_center_integer) {
383 emit(BRW_OPCODE_MOV, wpos, this->pixel_x);
384 } else {
385 emit(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f));
386 }
387 wpos.reg_offset++;
388
389 /* gl_FragCoord.y */
390 if (!flip && ir->pixel_center_integer) {
391 emit(BRW_OPCODE_MOV, wpos, this->pixel_y);
392 } else {
393 fs_reg pixel_y = this->pixel_y;
394 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
395
396 if (flip) {
397 pixel_y.negate = true;
398 offset += c->key.drawable_height - 1.0;
399 }
400
401 emit(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset));
402 }
403 wpos.reg_offset++;
404
405 /* gl_FragCoord.z */
406 if (intel->gen >= 6) {
407 emit(BRW_OPCODE_MOV, wpos,
408 fs_reg(brw_vec8_grf(c->source_depth_reg, 0)));
409 } else {
410 emit(FS_OPCODE_LINTERP, wpos,
411 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
412 this->delta_y[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
413 interp_reg(FRAG_ATTRIB_WPOS, 2));
414 }
415 wpos.reg_offset++;
416
417 /* gl_FragCoord.w: Already set up in emit_interpolation */
418 emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
419
420 return reg;
421 }
422
423 fs_reg *
424 fs_visitor::emit_general_interpolation(ir_variable *ir)
425 {
426 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
427 reg->type = brw_type_for_base_type(ir->type->get_scalar_type());
428 fs_reg attr = *reg;
429
430 unsigned int array_elements;
431 const glsl_type *type;
432
433 if (ir->type->is_array()) {
434 array_elements = ir->type->length;
435 if (array_elements == 0) {
436 fail("dereferenced array '%s' has length 0\n", ir->name);
437 }
438 type = ir->type->fields.array;
439 } else {
440 array_elements = 1;
441 type = ir->type;
442 }
443
444 glsl_interp_qualifier interpolation_mode =
445 ir->determine_interpolation_mode(c->key.flat_shade);
446
447 int location = ir->location;
448 for (unsigned int i = 0; i < array_elements; i++) {
449 for (unsigned int j = 0; j < type->matrix_columns; j++) {
450 if (urb_setup[location] == -1) {
451 /* If there's no incoming setup data for this slot, don't
452 * emit interpolation for it.
453 */
454 attr.reg_offset += type->vector_elements;
455 location++;
456 continue;
457 }
458
459 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
460 /* Constant interpolation (flat shading) case. The SF has
461 * handed us defined values in only the constant offset
462 * field of the setup reg.
463 */
464 for (unsigned int k = 0; k < type->vector_elements; k++) {
465 struct brw_reg interp = interp_reg(location, k);
466 interp = suboffset(interp, 3);
467 interp.type = reg->type;
468 emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
469 attr.reg_offset++;
470 }
471 } else {
472 /* Smooth/noperspective interpolation case. */
473 for (unsigned int k = 0; k < type->vector_elements; k++) {
474 /* FINISHME: At some point we probably want to push
475 * this farther by giving similar treatment to the
476 * other potentially constant components of the
477 * attribute, as well as making brw_vs_constval.c
478 * handle varyings other than gl_TexCoord.
479 */
480 if (location >= FRAG_ATTRIB_TEX0 &&
481 location <= FRAG_ATTRIB_TEX7 &&
482 k == 3 && !(c->key.proj_attrib_mask & (1 << location))) {
483 emit(BRW_OPCODE_MOV, attr, fs_reg(1.0f));
484 } else {
485 struct brw_reg interp = interp_reg(location, k);
486 brw_wm_barycentric_interp_mode barycoord_mode;
487 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
488 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
489 else
490 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
491 emit(FS_OPCODE_LINTERP, attr,
492 this->delta_x[barycoord_mode],
493 this->delta_y[barycoord_mode], fs_reg(interp));
494 }
495 attr.reg_offset++;
496 }
497
498 if (intel->gen < 6) {
499 attr.reg_offset -= type->vector_elements;
500 for (unsigned int k = 0; k < type->vector_elements; k++) {
501 emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
502 attr.reg_offset++;
503 }
504 }
505 }
506 location++;
507 }
508 }
509
510 return reg;
511 }
512
513 fs_reg *
514 fs_visitor::emit_frontfacing_interpolation(ir_variable *ir)
515 {
516 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
517
518 /* The frontfacing comes in as a bit in the thread payload. */
519 if (intel->gen >= 6) {
520 emit(BRW_OPCODE_ASR, *reg,
521 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
522 fs_reg(15));
523 emit(BRW_OPCODE_NOT, *reg, *reg);
524 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1));
525 } else {
526 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
527 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
528 * us front face
529 */
530 fs_inst *inst = emit(BRW_OPCODE_CMP, *reg,
531 fs_reg(r1_6ud),
532 fs_reg(1u << 31));
533 inst->conditional_mod = BRW_CONDITIONAL_L;
534 emit(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u));
535 }
536
537 return reg;
538 }
539
540 fs_inst *
541 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
542 {
543 switch (opcode) {
544 case SHADER_OPCODE_RCP:
545 case SHADER_OPCODE_RSQ:
546 case SHADER_OPCODE_SQRT:
547 case SHADER_OPCODE_EXP2:
548 case SHADER_OPCODE_LOG2:
549 case SHADER_OPCODE_SIN:
550 case SHADER_OPCODE_COS:
551 break;
552 default:
553 assert(!"not reached: bad math opcode");
554 return NULL;
555 }
556
557 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
558 * might be able to do better by doing execsize = 1 math and then
559 * expanding that result out, but we would need to be careful with
560 * masking.
561 *
562 * Gen 6 hardware ignores source modifiers (negate and abs) on math
563 * instructions, so we also move to a temp to set those up.
564 */
565 if (intel->gen == 6 && (src.file == UNIFORM ||
566 src.abs ||
567 src.negate)) {
568 fs_reg expanded = fs_reg(this, glsl_type::float_type);
569 emit(BRW_OPCODE_MOV, expanded, src);
570 src = expanded;
571 }
572
573 fs_inst *inst = emit(opcode, dst, src);
574
575 if (intel->gen < 6) {
576 inst->base_mrf = 2;
577 inst->mlen = c->dispatch_width / 8;
578 }
579
580 return inst;
581 }
582
583 fs_inst *
584 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
585 {
586 int base_mrf = 2;
587 fs_inst *inst;
588
589 switch (opcode) {
590 case SHADER_OPCODE_POW:
591 case SHADER_OPCODE_INT_QUOTIENT:
592 case SHADER_OPCODE_INT_REMAINDER:
593 break;
594 default:
595 assert(!"not reached: unsupported binary math opcode.");
596 return NULL;
597 }
598
599 if (intel->gen >= 7) {
600 inst = emit(opcode, dst, src0, src1);
601 } else if (intel->gen == 6) {
602 /* Can't do hstride == 0 args to gen6 math, so expand it out.
603 *
604 * The hardware ignores source modifiers (negate and abs) on math
605 * instructions, so we also move to a temp to set those up.
606 */
607 if (src0.file == UNIFORM || src0.abs || src0.negate) {
608 fs_reg expanded = fs_reg(this, glsl_type::float_type);
609 expanded.type = src0.type;
610 emit(BRW_OPCODE_MOV, expanded, src0);
611 src0 = expanded;
612 }
613
614 if (src1.file == UNIFORM || src1.abs || src1.negate) {
615 fs_reg expanded = fs_reg(this, glsl_type::float_type);
616 expanded.type = src1.type;
617 emit(BRW_OPCODE_MOV, expanded, src1);
618 src1 = expanded;
619 }
620
621 inst = emit(opcode, dst, src0, src1);
622 } else {
623 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
624 * "Message Payload":
625 *
626 * "Operand0[7]. For the INT DIV functions, this operand is the
627 * denominator."
628 * ...
629 * "Operand1[7]. For the INT DIV functions, this operand is the
630 * numerator."
631 */
632 bool is_int_div = opcode != SHADER_OPCODE_POW;
633 fs_reg &op0 = is_int_div ? src1 : src0;
634 fs_reg &op1 = is_int_div ? src0 : src1;
635
636 emit(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + 1, op1.type), op1);
637 inst = emit(opcode, dst, op0, reg_null_f);
638
639 inst->base_mrf = base_mrf;
640 inst->mlen = 2 * c->dispatch_width / 8;
641 }
642 return inst;
643 }
644
645 /**
646 * To be called after the last _mesa_add_state_reference() call, to
647 * set up prog_data.param[] for assign_curb_setup() and
648 * setup_pull_constants().
649 */
650 void
651 fs_visitor::setup_paramvalues_refs()
652 {
653 if (c->dispatch_width != 8)
654 return;
655
656 /* Set up the pointers to ParamValues now that that array is finalized. */
657 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
658 c->prog_data.param[i] =
659 (const float *)fp->Base.Parameters->ParameterValues[this->param_index[i]] +
660 this->param_offset[i];
661 }
662 }
663
664 void
665 fs_visitor::assign_curb_setup()
666 {
667 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
668 if (c->dispatch_width == 8) {
669 c->prog_data.first_curbe_grf = c->nr_payload_regs;
670 } else {
671 c->prog_data.first_curbe_grf_16 = c->nr_payload_regs;
672 }
673
674 /* Map the offsets in the UNIFORM file to fixed HW regs. */
675 foreach_list(node, &this->instructions) {
676 fs_inst *inst = (fs_inst *)node;
677
678 for (unsigned int i = 0; i < 3; i++) {
679 if (inst->src[i].file == UNIFORM) {
680 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
681 struct brw_reg brw_reg = brw_vec1_grf(c->nr_payload_regs +
682 constant_nr / 8,
683 constant_nr % 8);
684
685 inst->src[i].file = FIXED_HW_REG;
686 inst->src[i].fixed_hw_reg = retype(brw_reg, inst->src[i].type);
687 }
688 }
689 }
690 }
691
692 void
693 fs_visitor::calculate_urb_setup()
694 {
695 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
696 urb_setup[i] = -1;
697 }
698
699 int urb_next = 0;
700 /* Figure out where each of the incoming setup attributes lands. */
701 if (intel->gen >= 6) {
702 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
703 if (fp->Base.InputsRead & BITFIELD64_BIT(i)) {
704 urb_setup[i] = urb_next++;
705 }
706 }
707 } else {
708 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
709 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
710 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
711 int fp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
712
713 if (fp_index >= 0)
714 urb_setup[fp_index] = urb_next++;
715 }
716 }
717 }
718
719 /* Each attribute is 4 setup channels, each of which is half a reg. */
720 c->prog_data.urb_read_length = urb_next * 2;
721 }
722
723 void
724 fs_visitor::assign_urb_setup()
725 {
726 int urb_start = c->nr_payload_regs + c->prog_data.curb_read_length;
727
728 /* Offset all the urb_setup[] index by the actual position of the
729 * setup regs, now that the location of the constants has been chosen.
730 */
731 foreach_list(node, &this->instructions) {
732 fs_inst *inst = (fs_inst *)node;
733
734 if (inst->opcode == FS_OPCODE_LINTERP) {
735 assert(inst->src[2].file == FIXED_HW_REG);
736 inst->src[2].fixed_hw_reg.nr += urb_start;
737 }
738
739 if (inst->opcode == FS_OPCODE_CINTERP) {
740 assert(inst->src[0].file == FIXED_HW_REG);
741 inst->src[0].fixed_hw_reg.nr += urb_start;
742 }
743 }
744
745 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
746 }
747
748 /**
749 * Split large virtual GRFs into separate components if we can.
750 *
751 * This is mostly duplicated with what brw_fs_vector_splitting does,
752 * but that's really conservative because it's afraid of doing
753 * splitting that doesn't result in real progress after the rest of
754 * the optimization phases, which would cause infinite looping in
755 * optimization. We can do it once here, safely. This also has the
756 * opportunity to split interpolated values, or maybe even uniforms,
757 * which we don't have at the IR level.
758 *
759 * We want to split, because virtual GRFs are what we register
760 * allocate and spill (due to contiguousness requirements for some
761 * instructions), and they're what we naturally generate in the
762 * codegen process, but most virtual GRFs don't actually need to be
763 * contiguous sets of GRFs. If we split, we'll end up with reduced
764 * live intervals and better dead code elimination and coalescing.
765 */
766 void
767 fs_visitor::split_virtual_grfs()
768 {
769 int num_vars = this->virtual_grf_next;
770 bool split_grf[num_vars];
771 int new_virtual_grf[num_vars];
772
773 /* Try to split anything > 0 sized. */
774 for (int i = 0; i < num_vars; i++) {
775 if (this->virtual_grf_sizes[i] != 1)
776 split_grf[i] = true;
777 else
778 split_grf[i] = false;
779 }
780
781 if (brw->has_pln &&
782 this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF) {
783 /* PLN opcodes rely on the delta_xy being contiguous. We only have to
784 * check this for BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC, because prior to
785 * Gen6, that was the only supported interpolation mode, and since Gen6,
786 * delta_x and delta_y are in fixed hardware registers.
787 */
788 split_grf[this->delta_x[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg] =
789 false;
790 }
791
792 foreach_list(node, &this->instructions) {
793 fs_inst *inst = (fs_inst *)node;
794
795 /* Texturing produces 4 contiguous registers, so no splitting. */
796 if (inst->is_tex()) {
797 split_grf[inst->dst.reg] = false;
798 }
799 }
800
801 /* Allocate new space for split regs. Note that the virtual
802 * numbers will be contiguous.
803 */
804 for (int i = 0; i < num_vars; i++) {
805 if (split_grf[i]) {
806 new_virtual_grf[i] = virtual_grf_alloc(1);
807 for (int j = 2; j < this->virtual_grf_sizes[i]; j++) {
808 int reg = virtual_grf_alloc(1);
809 assert(reg == new_virtual_grf[i] + j - 1);
810 (void) reg;
811 }
812 this->virtual_grf_sizes[i] = 1;
813 }
814 }
815
816 foreach_list(node, &this->instructions) {
817 fs_inst *inst = (fs_inst *)node;
818
819 if (inst->dst.file == GRF &&
820 split_grf[inst->dst.reg] &&
821 inst->dst.reg_offset != 0) {
822 inst->dst.reg = (new_virtual_grf[inst->dst.reg] +
823 inst->dst.reg_offset - 1);
824 inst->dst.reg_offset = 0;
825 }
826 for (int i = 0; i < 3; i++) {
827 if (inst->src[i].file == GRF &&
828 split_grf[inst->src[i].reg] &&
829 inst->src[i].reg_offset != 0) {
830 inst->src[i].reg = (new_virtual_grf[inst->src[i].reg] +
831 inst->src[i].reg_offset - 1);
832 inst->src[i].reg_offset = 0;
833 }
834 }
835 }
836 this->live_intervals_valid = false;
837 }
838
839 bool
840 fs_visitor::remove_dead_constants()
841 {
842 if (c->dispatch_width == 8) {
843 this->params_remap = ralloc_array(mem_ctx, int, c->prog_data.nr_params);
844
845 for (unsigned int i = 0; i < c->prog_data.nr_params; i++)
846 this->params_remap[i] = -1;
847
848 /* Find which params are still in use. */
849 foreach_list(node, &this->instructions) {
850 fs_inst *inst = (fs_inst *)node;
851
852 for (int i = 0; i < 3; i++) {
853 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
854
855 if (inst->src[i].file != UNIFORM)
856 continue;
857
858 assert(constant_nr < (int)c->prog_data.nr_params);
859
860 /* For now, set this to non-negative. We'll give it the
861 * actual new number in a moment, in order to keep the
862 * register numbers nicely ordered.
863 */
864 this->params_remap[constant_nr] = 0;
865 }
866 }
867
868 /* Figure out what the new numbers for the params will be. At some
869 * point when we're doing uniform array access, we're going to want
870 * to keep the distinction between .reg and .reg_offset, but for
871 * now we don't care.
872 */
873 unsigned int new_nr_params = 0;
874 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
875 if (this->params_remap[i] != -1) {
876 this->params_remap[i] = new_nr_params++;
877 }
878 }
879
880 /* Update the list of params to be uploaded to match our new numbering. */
881 for (unsigned int i = 0; i < c->prog_data.nr_params; i++) {
882 int remapped = this->params_remap[i];
883
884 if (remapped == -1)
885 continue;
886
887 /* We've already done setup_paramvalues_refs() so no need to worry
888 * about param_index and param_offset.
889 */
890 c->prog_data.param[remapped] = c->prog_data.param[i];
891 c->prog_data.param_convert[remapped] = c->prog_data.param_convert[i];
892 }
893
894 c->prog_data.nr_params = new_nr_params;
895 } else {
896 /* This should have been generated in the 8-wide pass already. */
897 assert(this->params_remap);
898 }
899
900 /* Now do the renumbering of the shader to remove unused params. */
901 foreach_list(node, &this->instructions) {
902 fs_inst *inst = (fs_inst *)node;
903
904 for (int i = 0; i < 3; i++) {
905 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
906
907 if (inst->src[i].file != UNIFORM)
908 continue;
909
910 assert(this->params_remap[constant_nr] != -1);
911 inst->src[i].reg = this->params_remap[constant_nr];
912 inst->src[i].reg_offset = 0;
913 }
914 }
915
916 return true;
917 }
918
919 /**
920 * Choose accesses from the UNIFORM file to demote to using the pull
921 * constant buffer.
922 *
923 * We allow a fragment shader to have more than the specified minimum
924 * maximum number of fragment shader uniform components (64). If
925 * there are too many of these, they'd fill up all of register space.
926 * So, this will push some of them out to the pull constant buffer and
927 * update the program to load them.
928 */
929 void
930 fs_visitor::setup_pull_constants()
931 {
932 /* Only allow 16 registers (128 uniform components) as push constants. */
933 unsigned int max_uniform_components = 16 * 8;
934 if (c->prog_data.nr_params <= max_uniform_components)
935 return;
936
937 if (c->dispatch_width == 16) {
938 fail("Pull constants not supported in 16-wide\n");
939 return;
940 }
941
942 /* Just demote the end of the list. We could probably do better
943 * here, demoting things that are rarely used in the program first.
944 */
945 int pull_uniform_base = max_uniform_components;
946 int pull_uniform_count = c->prog_data.nr_params - pull_uniform_base;
947
948 foreach_list(node, &this->instructions) {
949 fs_inst *inst = (fs_inst *)node;
950
951 for (int i = 0; i < 3; i++) {
952 if (inst->src[i].file != UNIFORM)
953 continue;
954
955 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
956 if (uniform_nr < pull_uniform_base)
957 continue;
958
959 fs_reg dst = fs_reg(this, glsl_type::float_type);
960 fs_inst *pull = new(mem_ctx) fs_inst(FS_OPCODE_PULL_CONSTANT_LOAD,
961 dst);
962 pull->offset = ((uniform_nr - pull_uniform_base) * 4) & ~15;
963 pull->ir = inst->ir;
964 pull->annotation = inst->annotation;
965 pull->base_mrf = 14;
966 pull->mlen = 1;
967
968 inst->insert_before(pull);
969
970 inst->src[i].file = GRF;
971 inst->src[i].reg = dst.reg;
972 inst->src[i].reg_offset = 0;
973 inst->src[i].smear = (uniform_nr - pull_uniform_base) & 3;
974 }
975 }
976
977 for (int i = 0; i < pull_uniform_count; i++) {
978 c->prog_data.pull_param[i] = c->prog_data.param[pull_uniform_base + i];
979 c->prog_data.pull_param_convert[i] =
980 c->prog_data.param_convert[pull_uniform_base + i];
981 }
982 c->prog_data.nr_params -= pull_uniform_count;
983 c->prog_data.nr_pull_params = pull_uniform_count;
984 }
985
986 void
987 fs_visitor::calculate_live_intervals()
988 {
989 int num_vars = this->virtual_grf_next;
990 int *def = ralloc_array(mem_ctx, int, num_vars);
991 int *use = ralloc_array(mem_ctx, int, num_vars);
992 int loop_depth = 0;
993 int loop_start = 0;
994
995 if (this->live_intervals_valid)
996 return;
997
998 for (int i = 0; i < num_vars; i++) {
999 def[i] = MAX_INSTRUCTION;
1000 use[i] = -1;
1001 }
1002
1003 int ip = 0;
1004 foreach_list(node, &this->instructions) {
1005 fs_inst *inst = (fs_inst *)node;
1006
1007 if (inst->opcode == BRW_OPCODE_DO) {
1008 if (loop_depth++ == 0)
1009 loop_start = ip;
1010 } else if (inst->opcode == BRW_OPCODE_WHILE) {
1011 loop_depth--;
1012
1013 if (loop_depth == 0) {
1014 /* Patches up the use of vars marked for being live across
1015 * the whole loop.
1016 */
1017 for (int i = 0; i < num_vars; i++) {
1018 if (use[i] == loop_start) {
1019 use[i] = ip;
1020 }
1021 }
1022 }
1023 } else {
1024 for (unsigned int i = 0; i < 3; i++) {
1025 if (inst->src[i].file == GRF) {
1026 int reg = inst->src[i].reg;
1027
1028 if (!loop_depth) {
1029 use[reg] = ip;
1030 } else {
1031 def[reg] = MIN2(loop_start, def[reg]);
1032 use[reg] = loop_start;
1033
1034 /* Nobody else is going to go smash our start to
1035 * later in the loop now, because def[reg] now
1036 * points before the bb header.
1037 */
1038 }
1039 }
1040 }
1041 if (inst->dst.file == GRF) {
1042 int reg = inst->dst.reg;
1043
1044 if (!loop_depth) {
1045 def[reg] = MIN2(def[reg], ip);
1046 } else {
1047 def[reg] = MIN2(def[reg], loop_start);
1048 }
1049 }
1050 }
1051
1052 ip++;
1053 }
1054
1055 ralloc_free(this->virtual_grf_def);
1056 ralloc_free(this->virtual_grf_use);
1057 this->virtual_grf_def = def;
1058 this->virtual_grf_use = use;
1059
1060 this->live_intervals_valid = true;
1061 }
1062
1063 /**
1064 * Attempts to move immediate constants into the immediate
1065 * constant slot of following instructions.
1066 *
1067 * Immediate constants are a bit tricky -- they have to be in the last
1068 * operand slot, you can't do abs/negate on them,
1069 */
1070
1071 bool
1072 fs_visitor::propagate_constants()
1073 {
1074 bool progress = false;
1075
1076 calculate_live_intervals();
1077
1078 foreach_list(node, &this->instructions) {
1079 fs_inst *inst = (fs_inst *)node;
1080
1081 if (inst->opcode != BRW_OPCODE_MOV ||
1082 inst->predicated ||
1083 inst->dst.file != GRF || inst->src[0].file != IMM ||
1084 inst->dst.type != inst->src[0].type ||
1085 (c->dispatch_width == 16 &&
1086 (inst->force_uncompressed || inst->force_sechalf)))
1087 continue;
1088
1089 /* Don't bother with cases where we should have had the
1090 * operation on the constant folded in GLSL already.
1091 */
1092 if (inst->saturate)
1093 continue;
1094
1095 /* Found a move of a constant to a GRF. Find anything else using the GRF
1096 * before it's written, and replace it with the constant if we can.
1097 */
1098 for (fs_inst *scan_inst = (fs_inst *)inst->next;
1099 !scan_inst->is_tail_sentinel();
1100 scan_inst = (fs_inst *)scan_inst->next) {
1101 if (scan_inst->opcode == BRW_OPCODE_DO ||
1102 scan_inst->opcode == BRW_OPCODE_WHILE ||
1103 scan_inst->opcode == BRW_OPCODE_ELSE ||
1104 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1105 break;
1106 }
1107
1108 for (int i = 2; i >= 0; i--) {
1109 if (scan_inst->src[i].file != GRF ||
1110 scan_inst->src[i].reg != inst->dst.reg ||
1111 scan_inst->src[i].reg_offset != inst->dst.reg_offset)
1112 continue;
1113
1114 /* Don't bother with cases where we should have had the
1115 * operation on the constant folded in GLSL already.
1116 */
1117 if (scan_inst->src[i].negate || scan_inst->src[i].abs)
1118 continue;
1119
1120 switch (scan_inst->opcode) {
1121 case BRW_OPCODE_MOV:
1122 scan_inst->src[i] = inst->src[0];
1123 progress = true;
1124 break;
1125
1126 case BRW_OPCODE_MUL:
1127 case BRW_OPCODE_ADD:
1128 if (i == 1) {
1129 scan_inst->src[i] = inst->src[0];
1130 progress = true;
1131 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1132 /* Fit this constant in by commuting the operands.
1133 * Exception: we can't do this for 32-bit integer MUL
1134 * because it's asymmetric.
1135 */
1136 if (scan_inst->opcode == BRW_OPCODE_MUL &&
1137 (scan_inst->src[1].type == BRW_REGISTER_TYPE_D ||
1138 scan_inst->src[1].type == BRW_REGISTER_TYPE_UD))
1139 break;
1140 scan_inst->src[0] = scan_inst->src[1];
1141 scan_inst->src[1] = inst->src[0];
1142 progress = true;
1143 }
1144 break;
1145
1146 case BRW_OPCODE_CMP:
1147 case BRW_OPCODE_IF:
1148 if (i == 1) {
1149 scan_inst->src[i] = inst->src[0];
1150 progress = true;
1151 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1152 uint32_t new_cmod;
1153
1154 new_cmod = brw_swap_cmod(scan_inst->conditional_mod);
1155 if (new_cmod != ~0u) {
1156 /* Fit this constant in by swapping the operands and
1157 * flipping the test
1158 */
1159 scan_inst->src[0] = scan_inst->src[1];
1160 scan_inst->src[1] = inst->src[0];
1161 scan_inst->conditional_mod = new_cmod;
1162 progress = true;
1163 }
1164 }
1165 break;
1166
1167 case BRW_OPCODE_SEL:
1168 if (i == 1) {
1169 scan_inst->src[i] = inst->src[0];
1170 progress = true;
1171 } else if (i == 0 && scan_inst->src[1].file != IMM) {
1172 scan_inst->src[0] = scan_inst->src[1];
1173 scan_inst->src[1] = inst->src[0];
1174
1175 /* If this was predicated, flipping operands means
1176 * we also need to flip the predicate.
1177 */
1178 if (scan_inst->conditional_mod == BRW_CONDITIONAL_NONE) {
1179 scan_inst->predicate_inverse =
1180 !scan_inst->predicate_inverse;
1181 }
1182 progress = true;
1183 }
1184 break;
1185
1186 case SHADER_OPCODE_RCP:
1187 /* The hardware doesn't do math on immediate values
1188 * (because why are you doing that, seriously?), but
1189 * the correct answer is to just constant fold it
1190 * anyway.
1191 */
1192 assert(i == 0);
1193 if (inst->src[0].imm.f != 0.0f) {
1194 scan_inst->opcode = BRW_OPCODE_MOV;
1195 scan_inst->src[0] = inst->src[0];
1196 scan_inst->src[0].imm.f = 1.0f / scan_inst->src[0].imm.f;
1197 progress = true;
1198 }
1199 break;
1200
1201 default:
1202 break;
1203 }
1204 }
1205
1206 if (scan_inst->dst.file == GRF &&
1207 scan_inst->dst.reg == inst->dst.reg &&
1208 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1209 scan_inst->is_tex())) {
1210 break;
1211 }
1212 }
1213 }
1214
1215 if (progress)
1216 this->live_intervals_valid = false;
1217
1218 return progress;
1219 }
1220
1221
1222 /**
1223 * Attempts to move immediate constants into the immediate
1224 * constant slot of following instructions.
1225 *
1226 * Immediate constants are a bit tricky -- they have to be in the last
1227 * operand slot, you can't do abs/negate on them,
1228 */
1229
1230 bool
1231 fs_visitor::opt_algebraic()
1232 {
1233 bool progress = false;
1234
1235 calculate_live_intervals();
1236
1237 foreach_list(node, &this->instructions) {
1238 fs_inst *inst = (fs_inst *)node;
1239
1240 switch (inst->opcode) {
1241 case BRW_OPCODE_MUL:
1242 if (inst->src[1].file != IMM)
1243 continue;
1244
1245 /* a * 1.0 = a */
1246 if (inst->src[1].type == BRW_REGISTER_TYPE_F &&
1247 inst->src[1].imm.f == 1.0) {
1248 inst->opcode = BRW_OPCODE_MOV;
1249 inst->src[1] = reg_undef;
1250 progress = true;
1251 break;
1252 }
1253
1254 break;
1255 default:
1256 break;
1257 }
1258 }
1259
1260 return progress;
1261 }
1262
1263 /**
1264 * Must be called after calculate_live_intervales() to remove unused
1265 * writes to registers -- register allocation will fail otherwise
1266 * because something deffed but not used won't be considered to
1267 * interfere with other regs.
1268 */
1269 bool
1270 fs_visitor::dead_code_eliminate()
1271 {
1272 bool progress = false;
1273 int pc = 0;
1274
1275 calculate_live_intervals();
1276
1277 foreach_list_safe(node, &this->instructions) {
1278 fs_inst *inst = (fs_inst *)node;
1279
1280 if (inst->dst.file == GRF && this->virtual_grf_use[inst->dst.reg] <= pc) {
1281 inst->remove();
1282 progress = true;
1283 }
1284
1285 pc++;
1286 }
1287
1288 if (progress)
1289 live_intervals_valid = false;
1290
1291 return progress;
1292 }
1293
1294 bool
1295 fs_visitor::register_coalesce()
1296 {
1297 bool progress = false;
1298 int if_depth = 0;
1299 int loop_depth = 0;
1300
1301 foreach_list_safe(node, &this->instructions) {
1302 fs_inst *inst = (fs_inst *)node;
1303
1304 /* Make sure that we dominate the instructions we're going to
1305 * scan for interfering with our coalescing, or we won't have
1306 * scanned enough to see if anything interferes with our
1307 * coalescing. We don't dominate the following instructions if
1308 * we're in a loop or an if block.
1309 */
1310 switch (inst->opcode) {
1311 case BRW_OPCODE_DO:
1312 loop_depth++;
1313 break;
1314 case BRW_OPCODE_WHILE:
1315 loop_depth--;
1316 break;
1317 case BRW_OPCODE_IF:
1318 if_depth++;
1319 break;
1320 case BRW_OPCODE_ENDIF:
1321 if_depth--;
1322 break;
1323 default:
1324 break;
1325 }
1326 if (loop_depth || if_depth)
1327 continue;
1328
1329 if (inst->opcode != BRW_OPCODE_MOV ||
1330 inst->predicated ||
1331 inst->saturate ||
1332 inst->dst.file != GRF || (inst->src[0].file != GRF &&
1333 inst->src[0].file != UNIFORM)||
1334 inst->dst.type != inst->src[0].type)
1335 continue;
1336
1337 bool has_source_modifiers = inst->src[0].abs || inst->src[0].negate;
1338
1339 /* Found a move of a GRF to a GRF. Let's see if we can coalesce
1340 * them: check for no writes to either one until the exit of the
1341 * program.
1342 */
1343 bool interfered = false;
1344
1345 for (fs_inst *scan_inst = (fs_inst *)inst->next;
1346 !scan_inst->is_tail_sentinel();
1347 scan_inst = (fs_inst *)scan_inst->next) {
1348 if (scan_inst->dst.file == GRF) {
1349 if (scan_inst->dst.reg == inst->dst.reg &&
1350 (scan_inst->dst.reg_offset == inst->dst.reg_offset ||
1351 scan_inst->is_tex())) {
1352 interfered = true;
1353 break;
1354 }
1355 if (inst->src[0].file == GRF &&
1356 scan_inst->dst.reg == inst->src[0].reg &&
1357 (scan_inst->dst.reg_offset == inst->src[0].reg_offset ||
1358 scan_inst->is_tex())) {
1359 interfered = true;
1360 break;
1361 }
1362 }
1363
1364 /* The gen6 MATH instruction can't handle source modifiers or
1365 * unusual register regions, so avoid coalescing those for
1366 * now. We should do something more specific.
1367 */
1368 if (intel->gen >= 6 &&
1369 scan_inst->is_math() &&
1370 (has_source_modifiers || inst->src[0].file == UNIFORM)) {
1371 interfered = true;
1372 break;
1373 }
1374
1375 /* The accumulator result appears to get used for the
1376 * conditional modifier generation. When negating a UD
1377 * value, there is a 33rd bit generated for the sign in the
1378 * accumulator value, so now you can't check, for example,
1379 * equality with a 32-bit value. See piglit fs-op-neg-uint.
1380 */
1381 if (scan_inst->conditional_mod &&
1382 inst->src[0].negate &&
1383 inst->src[0].type == BRW_REGISTER_TYPE_UD) {
1384 interfered = true;
1385 break;
1386 }
1387 }
1388 if (interfered) {
1389 continue;
1390 }
1391
1392 /* Rewrite the later usage to point at the source of the move to
1393 * be removed.
1394 */
1395 for (fs_inst *scan_inst = inst;
1396 !scan_inst->is_tail_sentinel();
1397 scan_inst = (fs_inst *)scan_inst->next) {
1398 for (int i = 0; i < 3; i++) {
1399 if (scan_inst->src[i].file == GRF &&
1400 scan_inst->src[i].reg == inst->dst.reg &&
1401 scan_inst->src[i].reg_offset == inst->dst.reg_offset) {
1402 fs_reg new_src = inst->src[0];
1403 if (scan_inst->src[i].abs) {
1404 new_src.negate = 0;
1405 new_src.abs = 1;
1406 }
1407 new_src.negate ^= scan_inst->src[i].negate;
1408 scan_inst->src[i] = new_src;
1409 }
1410 }
1411 }
1412
1413 inst->remove();
1414 progress = true;
1415 }
1416
1417 if (progress)
1418 live_intervals_valid = false;
1419
1420 return progress;
1421 }
1422
1423
1424 bool
1425 fs_visitor::compute_to_mrf()
1426 {
1427 bool progress = false;
1428 int next_ip = 0;
1429
1430 calculate_live_intervals();
1431
1432 foreach_list_safe(node, &this->instructions) {
1433 fs_inst *inst = (fs_inst *)node;
1434
1435 int ip = next_ip;
1436 next_ip++;
1437
1438 if (inst->opcode != BRW_OPCODE_MOV ||
1439 inst->predicated ||
1440 inst->dst.file != MRF || inst->src[0].file != GRF ||
1441 inst->dst.type != inst->src[0].type ||
1442 inst->src[0].abs || inst->src[0].negate || inst->src[0].smear != -1)
1443 continue;
1444
1445 /* Work out which hardware MRF registers are written by this
1446 * instruction.
1447 */
1448 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
1449 int mrf_high;
1450 if (inst->dst.reg & BRW_MRF_COMPR4) {
1451 mrf_high = mrf_low + 4;
1452 } else if (c->dispatch_width == 16 &&
1453 (!inst->force_uncompressed && !inst->force_sechalf)) {
1454 mrf_high = mrf_low + 1;
1455 } else {
1456 mrf_high = mrf_low;
1457 }
1458
1459 /* Can't compute-to-MRF this GRF if someone else was going to
1460 * read it later.
1461 */
1462 if (this->virtual_grf_use[inst->src[0].reg] > ip)
1463 continue;
1464
1465 /* Found a move of a GRF to a MRF. Let's see if we can go
1466 * rewrite the thing that made this GRF to write into the MRF.
1467 */
1468 fs_inst *scan_inst;
1469 for (scan_inst = (fs_inst *)inst->prev;
1470 scan_inst->prev != NULL;
1471 scan_inst = (fs_inst *)scan_inst->prev) {
1472 if (scan_inst->dst.file == GRF &&
1473 scan_inst->dst.reg == inst->src[0].reg) {
1474 /* Found the last thing to write our reg we want to turn
1475 * into a compute-to-MRF.
1476 */
1477
1478 if (scan_inst->is_tex()) {
1479 /* texturing writes several continuous regs, so we can't
1480 * compute-to-mrf that.
1481 */
1482 break;
1483 }
1484
1485 /* If it's predicated, it (probably) didn't populate all
1486 * the channels. We might be able to rewrite everything
1487 * that writes that reg, but it would require smarter
1488 * tracking to delay the rewriting until complete success.
1489 */
1490 if (scan_inst->predicated)
1491 break;
1492
1493 /* If it's half of register setup and not the same half as
1494 * our MOV we're trying to remove, bail for now.
1495 */
1496 if (scan_inst->force_uncompressed != inst->force_uncompressed ||
1497 scan_inst->force_sechalf != inst->force_sechalf) {
1498 break;
1499 }
1500
1501 /* SEND instructions can't have MRF as a destination. */
1502 if (scan_inst->mlen)
1503 break;
1504
1505 if (intel->gen >= 6) {
1506 /* gen6 math instructions must have the destination be
1507 * GRF, so no compute-to-MRF for them.
1508 */
1509 if (scan_inst->is_math()) {
1510 break;
1511 }
1512 }
1513
1514 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
1515 /* Found the creator of our MRF's source value. */
1516 scan_inst->dst.file = MRF;
1517 scan_inst->dst.reg = inst->dst.reg;
1518 scan_inst->saturate |= inst->saturate;
1519 inst->remove();
1520 progress = true;
1521 }
1522 break;
1523 }
1524
1525 /* We don't handle flow control here. Most computation of
1526 * values that end up in MRFs are shortly before the MRF
1527 * write anyway.
1528 */
1529 if (scan_inst->opcode == BRW_OPCODE_DO ||
1530 scan_inst->opcode == BRW_OPCODE_WHILE ||
1531 scan_inst->opcode == BRW_OPCODE_ELSE ||
1532 scan_inst->opcode == BRW_OPCODE_ENDIF) {
1533 break;
1534 }
1535
1536 /* You can't read from an MRF, so if someone else reads our
1537 * MRF's source GRF that we wanted to rewrite, that stops us.
1538 */
1539 bool interfered = false;
1540 for (int i = 0; i < 3; i++) {
1541 if (scan_inst->src[i].file == GRF &&
1542 scan_inst->src[i].reg == inst->src[0].reg &&
1543 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
1544 interfered = true;
1545 }
1546 }
1547 if (interfered)
1548 break;
1549
1550 if (scan_inst->dst.file == MRF) {
1551 /* If somebody else writes our MRF here, we can't
1552 * compute-to-MRF before that.
1553 */
1554 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
1555 int scan_mrf_high;
1556
1557 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
1558 scan_mrf_high = scan_mrf_low + 4;
1559 } else if (c->dispatch_width == 16 &&
1560 (!scan_inst->force_uncompressed &&
1561 !scan_inst->force_sechalf)) {
1562 scan_mrf_high = scan_mrf_low + 1;
1563 } else {
1564 scan_mrf_high = scan_mrf_low;
1565 }
1566
1567 if (mrf_low == scan_mrf_low ||
1568 mrf_low == scan_mrf_high ||
1569 mrf_high == scan_mrf_low ||
1570 mrf_high == scan_mrf_high) {
1571 break;
1572 }
1573 }
1574
1575 if (scan_inst->mlen > 0) {
1576 /* Found a SEND instruction, which means that there are
1577 * live values in MRFs from base_mrf to base_mrf +
1578 * scan_inst->mlen - 1. Don't go pushing our MRF write up
1579 * above it.
1580 */
1581 if (mrf_low >= scan_inst->base_mrf &&
1582 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
1583 break;
1584 }
1585 if (mrf_high >= scan_inst->base_mrf &&
1586 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
1587 break;
1588 }
1589 }
1590 }
1591 }
1592
1593 return progress;
1594 }
1595
1596 /**
1597 * Walks through basic blocks, locking for repeated MRF writes and
1598 * removing the later ones.
1599 */
1600 bool
1601 fs_visitor::remove_duplicate_mrf_writes()
1602 {
1603 fs_inst *last_mrf_move[16];
1604 bool progress = false;
1605
1606 /* Need to update the MRF tracking for compressed instructions. */
1607 if (c->dispatch_width == 16)
1608 return false;
1609
1610 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1611
1612 foreach_list_safe(node, &this->instructions) {
1613 fs_inst *inst = (fs_inst *)node;
1614
1615 switch (inst->opcode) {
1616 case BRW_OPCODE_DO:
1617 case BRW_OPCODE_WHILE:
1618 case BRW_OPCODE_IF:
1619 case BRW_OPCODE_ELSE:
1620 case BRW_OPCODE_ENDIF:
1621 memset(last_mrf_move, 0, sizeof(last_mrf_move));
1622 continue;
1623 default:
1624 break;
1625 }
1626
1627 if (inst->opcode == BRW_OPCODE_MOV &&
1628 inst->dst.file == MRF) {
1629 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
1630 if (prev_inst && inst->equals(prev_inst)) {
1631 inst->remove();
1632 progress = true;
1633 continue;
1634 }
1635 }
1636
1637 /* Clear out the last-write records for MRFs that were overwritten. */
1638 if (inst->dst.file == MRF) {
1639 last_mrf_move[inst->dst.reg] = NULL;
1640 }
1641
1642 if (inst->mlen > 0) {
1643 /* Found a SEND instruction, which will include two or fewer
1644 * implied MRF writes. We could do better here.
1645 */
1646 for (int i = 0; i < implied_mrf_writes(inst); i++) {
1647 last_mrf_move[inst->base_mrf + i] = NULL;
1648 }
1649 }
1650
1651 /* Clear out any MRF move records whose sources got overwritten. */
1652 if (inst->dst.file == GRF) {
1653 for (unsigned int i = 0; i < Elements(last_mrf_move); i++) {
1654 if (last_mrf_move[i] &&
1655 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
1656 last_mrf_move[i] = NULL;
1657 }
1658 }
1659 }
1660
1661 if (inst->opcode == BRW_OPCODE_MOV &&
1662 inst->dst.file == MRF &&
1663 inst->src[0].file == GRF &&
1664 !inst->predicated) {
1665 last_mrf_move[inst->dst.reg] = inst;
1666 }
1667 }
1668
1669 return progress;
1670 }
1671
1672 bool
1673 fs_visitor::virtual_grf_interferes(int a, int b)
1674 {
1675 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
1676 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
1677
1678 /* We can't handle dead register writes here, without iterating
1679 * over the whole instruction stream to find every single dead
1680 * write to that register to compare to the live interval of the
1681 * other register. Just assert that dead_code_eliminate() has been
1682 * called.
1683 */
1684 assert((this->virtual_grf_use[a] != -1 ||
1685 this->virtual_grf_def[a] == MAX_INSTRUCTION) &&
1686 (this->virtual_grf_use[b] != -1 ||
1687 this->virtual_grf_def[b] == MAX_INSTRUCTION));
1688
1689 /* If the register is used to store 16 values of less than float
1690 * size (only the case for pixel_[xy]), then we can't allocate
1691 * another dword-sized thing to that register that would be used in
1692 * the same instruction. This is because when the GPU decodes (for
1693 * example):
1694 *
1695 * (declare (in ) vec4 gl_FragCoord@0x97766a0)
1696 * add(16) g6<1>F g6<8,8,1>UW 0.5F { align1 compr };
1697 *
1698 * it's actually processed as:
1699 * add(8) g6<1>F g6<8,8,1>UW 0.5F { align1 };
1700 * add(8) g7<1>F g6.8<8,8,1>UW 0.5F { align1 sechalf };
1701 *
1702 * so our second half values in g6 got overwritten in the first
1703 * half.
1704 */
1705 if (c->dispatch_width == 16 && (this->pixel_x.reg == a ||
1706 this->pixel_x.reg == b ||
1707 this->pixel_y.reg == a ||
1708 this->pixel_y.reg == b)) {
1709 return start <= end;
1710 }
1711
1712 return start < end;
1713 }
1714
1715 bool
1716 fs_visitor::run()
1717 {
1718 uint32_t prog_offset_16 = 0;
1719 uint32_t orig_nr_params = c->prog_data.nr_params;
1720
1721 brw_wm_payload_setup(brw, c);
1722
1723 if (c->dispatch_width == 16) {
1724 /* align to 64 byte boundary. */
1725 while ((c->func.nr_insn * sizeof(struct brw_instruction)) % 64) {
1726 brw_NOP(p);
1727 }
1728
1729 /* Save off the start of this 16-wide program in case we succeed. */
1730 prog_offset_16 = c->func.nr_insn * sizeof(struct brw_instruction);
1731
1732 brw_set_compression_control(p, BRW_COMPRESSION_COMPRESSED);
1733 }
1734
1735 if (0) {
1736 emit_dummy_fs();
1737 } else {
1738 calculate_urb_setup();
1739 if (intel->gen < 6)
1740 emit_interpolation_setup_gen4();
1741 else
1742 emit_interpolation_setup_gen6();
1743
1744 /* Generate FS IR for main(). (the visitor only descends into
1745 * functions called "main").
1746 */
1747 foreach_list(node, &*shader->ir) {
1748 ir_instruction *ir = (ir_instruction *)node;
1749 base_ir = ir;
1750 this->result = reg_undef;
1751 ir->accept(this);
1752 }
1753 if (failed)
1754 return false;
1755
1756 emit_fb_writes();
1757
1758 split_virtual_grfs();
1759
1760 setup_paramvalues_refs();
1761 setup_pull_constants();
1762
1763 bool progress;
1764 do {
1765 progress = false;
1766
1767 progress = remove_duplicate_mrf_writes() || progress;
1768
1769 progress = propagate_constants() || progress;
1770 progress = opt_algebraic() || progress;
1771 progress = register_coalesce() || progress;
1772 progress = compute_to_mrf() || progress;
1773 progress = dead_code_eliminate() || progress;
1774 } while (progress);
1775
1776 remove_dead_constants();
1777
1778 schedule_instructions();
1779
1780 assign_curb_setup();
1781 assign_urb_setup();
1782
1783 if (0) {
1784 /* Debug of register spilling: Go spill everything. */
1785 int virtual_grf_count = virtual_grf_next;
1786 for (int i = 0; i < virtual_grf_count; i++) {
1787 spill_reg(i);
1788 }
1789 }
1790
1791 if (0)
1792 assign_regs_trivial();
1793 else {
1794 while (!assign_regs()) {
1795 if (failed)
1796 break;
1797 }
1798 }
1799 }
1800 assert(force_uncompressed_stack == 0);
1801 assert(force_sechalf_stack == 0);
1802
1803 if (failed)
1804 return false;
1805
1806 generate_code();
1807
1808 if (c->dispatch_width == 8) {
1809 c->prog_data.reg_blocks = brw_register_blocks(grf_used);
1810 } else {
1811 c->prog_data.reg_blocks_16 = brw_register_blocks(grf_used);
1812 c->prog_data.prog_offset_16 = prog_offset_16;
1813
1814 /* Make sure we didn't try to sneak in an extra uniform */
1815 assert(orig_nr_params == c->prog_data.nr_params);
1816 (void) orig_nr_params;
1817 }
1818
1819 return !failed;
1820 }
1821
1822 bool
1823 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c,
1824 struct gl_shader_program *prog)
1825 {
1826 struct intel_context *intel = &brw->intel;
1827
1828 if (!prog)
1829 return false;
1830
1831 struct brw_shader *shader =
1832 (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
1833 if (!shader)
1834 return false;
1835
1836 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
1837 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
1838 _mesa_print_ir(shader->ir, NULL);
1839 printf("\n\n");
1840 }
1841
1842 /* Now the main event: Visit the shader IR and generate our FS IR for it.
1843 */
1844 c->dispatch_width = 8;
1845
1846 fs_visitor v(c, prog, shader);
1847 if (!v.run()) {
1848 prog->LinkStatus = false;
1849 ralloc_strcat(&prog->InfoLog, v.fail_msg);
1850
1851 return false;
1852 }
1853
1854 if (intel->gen >= 5 && c->prog_data.nr_pull_params == 0) {
1855 c->dispatch_width = 16;
1856 fs_visitor v2(c, prog, shader);
1857 v2.import_uniforms(&v);
1858 v2.run();
1859 }
1860
1861 c->prog_data.dispatch_width = 8;
1862
1863 return true;
1864 }
1865
1866 bool
1867 brw_fs_precompile(struct gl_context *ctx, struct gl_shader_program *prog)
1868 {
1869 struct brw_context *brw = brw_context(ctx);
1870 struct brw_wm_prog_key key;
1871
1872 if (!prog->_LinkedShaders[MESA_SHADER_FRAGMENT])
1873 return true;
1874
1875 struct gl_fragment_program *fp = (struct gl_fragment_program *)
1876 prog->_LinkedShaders[MESA_SHADER_FRAGMENT]->Program;
1877 struct brw_fragment_program *bfp = brw_fragment_program(fp);
1878
1879 memset(&key, 0, sizeof(key));
1880
1881 if (fp->UsesKill)
1882 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
1883
1884 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
1885 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
1886
1887 /* Just assume depth testing. */
1888 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
1889 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
1890
1891 key.vp_outputs_written |= BITFIELD64_BIT(FRAG_ATTRIB_WPOS);
1892 for (int i = 0; i < FRAG_ATTRIB_MAX; i++) {
1893 if (!(fp->Base.InputsRead & BITFIELD64_BIT(i)))
1894 continue;
1895
1896 key.proj_attrib_mask |= 1 << i;
1897
1898 int vp_index = _mesa_vert_result_to_frag_attrib((gl_vert_result) i);
1899
1900 if (vp_index >= 0)
1901 key.vp_outputs_written |= BITFIELD64_BIT(vp_index);
1902 }
1903
1904 key.clamp_fragment_color = true;
1905
1906 for (int i = 0; i < BRW_MAX_TEX_UNIT; i++) {
1907 if (fp->Base.ShadowSamplers & (1 << i))
1908 key.tex.compare_funcs[i] = GL_LESS;
1909
1910 /* FINISHME: depth compares might use (0,0,0,W) for example */
1911 key.tex.swizzles[i] = SWIZZLE_XYZW;
1912 }
1913
1914 if (fp->Base.InputsRead & FRAG_BIT_WPOS) {
1915 key.drawable_height = ctx->DrawBuffer->Height;
1916 key.render_to_fbo = ctx->DrawBuffer->Name != 0;
1917 }
1918
1919 key.nr_color_regions = 1;
1920
1921 key.program_string_id = bfp->id;
1922
1923 uint32_t old_prog_offset = brw->wm.prog_offset;
1924 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
1925
1926 bool success = do_wm_prog(brw, prog, bfp, &key);
1927
1928 brw->wm.prog_offset = old_prog_offset;
1929 brw->wm.prog_data = old_prog_data;
1930
1931 return success;
1932 }