i965/cs: Rework cs_emit to take a nir_shader and a brw_compiler
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cs.h"
46 #include "brw_cfg.h"
47 #include "brw_dead_control_flow.h"
48 #include "main/uniforms.h"
49 #include "brw_fs_live_variables.h"
50 #include "glsl/nir/glsl_types.h"
51 #include "program/sampler.h"
52
53 using namespace brw;
54
55 void
56 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
57 const fs_reg *src, unsigned sources)
58 {
59 memset(this, 0, sizeof(*this));
60
61 this->src = new fs_reg[MAX2(sources, 3)];
62 for (unsigned i = 0; i < sources; i++)
63 this->src[i] = src[i];
64
65 this->opcode = opcode;
66 this->dst = dst;
67 this->sources = sources;
68 this->exec_size = exec_size;
69
70 assert(dst.file != IMM && dst.file != UNIFORM);
71
72 assert(this->exec_size != 0);
73
74 this->conditional_mod = BRW_CONDITIONAL_NONE;
75
76 /* This will be the case for almost all instructions. */
77 switch (dst.file) {
78 case GRF:
79 case HW_REG:
80 case MRF:
81 case ATTR:
82 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
83 REG_SIZE);
84 break;
85 case BAD_FILE:
86 this->regs_written = 0;
87 break;
88 case IMM:
89 case UNIFORM:
90 unreachable("Invalid destination register file");
91 default:
92 unreachable("Invalid register file");
93 }
94
95 this->writes_accumulator = false;
96 }
97
98 fs_inst::fs_inst()
99 {
100 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
101 }
102
103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
104 {
105 init(opcode, exec_size, reg_undef, NULL, 0);
106 }
107
108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
109 {
110 init(opcode, exec_size, dst, NULL, 0);
111 }
112
113 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
114 const fs_reg &src0)
115 {
116 const fs_reg src[1] = { src0 };
117 init(opcode, exec_size, dst, src, 1);
118 }
119
120 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
121 const fs_reg &src0, const fs_reg &src1)
122 {
123 const fs_reg src[2] = { src0, src1 };
124 init(opcode, exec_size, dst, src, 2);
125 }
126
127 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
128 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
129 {
130 const fs_reg src[3] = { src0, src1, src2 };
131 init(opcode, exec_size, dst, src, 3);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
135 const fs_reg src[], unsigned sources)
136 {
137 init(opcode, exec_width, dst, src, sources);
138 }
139
140 fs_inst::fs_inst(const fs_inst &that)
141 {
142 memcpy(this, &that, sizeof(that));
143
144 this->src = new fs_reg[MAX2(that.sources, 3)];
145
146 for (unsigned i = 0; i < that.sources; i++)
147 this->src[i] = that.src[i];
148 }
149
150 fs_inst::~fs_inst()
151 {
152 delete[] this->src;
153 }
154
155 void
156 fs_inst::resize_sources(uint8_t num_sources)
157 {
158 if (this->sources != num_sources) {
159 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
160
161 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
162 src[i] = this->src[i];
163
164 delete[] this->src;
165 this->src = src;
166 this->sources = num_sources;
167 }
168 }
169
170 void
171 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
172 const fs_reg &dst,
173 const fs_reg &surf_index,
174 const fs_reg &varying_offset,
175 uint32_t const_offset)
176 {
177 /* We have our constant surface use a pitch of 4 bytes, so our index can
178 * be any component of a vector, and then we load 4 contiguous
179 * components starting from that.
180 *
181 * We break down the const_offset to a portion added to the variable
182 * offset and a portion done using reg_offset, which means that if you
183 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
184 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
185 * CSE can later notice that those loads are all the same and eliminate
186 * the redundant ones.
187 */
188 fs_reg vec4_offset = vgrf(glsl_type::int_type);
189 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
190
191 int scale = 1;
192 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
193 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
194 * u, v, r) as parameters, or we can just use the SIMD16 message
195 * consisting of (header, u). We choose the second, at the cost of a
196 * longer return length.
197 */
198 scale = 2;
199 }
200
201 enum opcode op;
202 if (devinfo->gen >= 7)
203 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
204 else
205 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
206
207 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
208 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written), dst.type);
209 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
210 inst->regs_written = regs_written;
211
212 if (devinfo->gen < 7) {
213 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
214 inst->header_size = 1;
215 if (devinfo->gen == 4)
216 inst->mlen = 3;
217 else
218 inst->mlen = 1 + bld.dispatch_width() / 8;
219 }
220
221 bld.MOV(dst, offset(vec4_result, bld, (const_offset & 3) * scale));
222 }
223
224 /**
225 * A helper for MOV generation for fixing up broken hardware SEND dependency
226 * handling.
227 */
228 void
229 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
230 {
231 /* The caller always wants uncompressed to emit the minimal extra
232 * dependencies, and to avoid having to deal with aligning its regs to 2.
233 */
234 const fs_builder ubld = bld.annotate("send dependency resolve")
235 .half(0);
236
237 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
238 }
239
240 bool
241 fs_inst::equals(fs_inst *inst) const
242 {
243 return (opcode == inst->opcode &&
244 dst.equals(inst->dst) &&
245 src[0].equals(inst->src[0]) &&
246 src[1].equals(inst->src[1]) &&
247 src[2].equals(inst->src[2]) &&
248 saturate == inst->saturate &&
249 predicate == inst->predicate &&
250 conditional_mod == inst->conditional_mod &&
251 mlen == inst->mlen &&
252 base_mrf == inst->base_mrf &&
253 target == inst->target &&
254 eot == inst->eot &&
255 header_size == inst->header_size &&
256 shadow_compare == inst->shadow_compare &&
257 exec_size == inst->exec_size &&
258 offset == inst->offset);
259 }
260
261 bool
262 fs_inst::overwrites_reg(const fs_reg &reg) const
263 {
264 return reg.in_range(dst, regs_written);
265 }
266
267 bool
268 fs_inst::is_send_from_grf() const
269 {
270 switch (opcode) {
271 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
274 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
275 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
276 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
277 case SHADER_OPCODE_UNTYPED_ATOMIC:
278 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
279 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
280 case SHADER_OPCODE_TYPED_ATOMIC:
281 case SHADER_OPCODE_TYPED_SURFACE_READ:
282 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
283 case SHADER_OPCODE_URB_WRITE_SIMD8:
284 return true;
285 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
286 return src[1].file == GRF;
287 case FS_OPCODE_FB_WRITE:
288 return src[0].file == GRF;
289 default:
290 if (is_tex())
291 return src[0].file == GRF;
292
293 return false;
294 }
295 }
296
297 bool
298 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
299 {
300 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
301 return false;
302
303 fs_reg reg = this->src[0];
304 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
305 return false;
306
307 if (grf_alloc.sizes[reg.reg] != this->regs_written)
308 return false;
309
310 for (int i = 0; i < this->sources; i++) {
311 reg.type = this->src[i].type;
312 if (!this->src[i].equals(reg))
313 return false;
314
315 if (i < this->header_size) {
316 reg.reg_offset += 1;
317 } else {
318 reg.reg_offset += this->exec_size / 8;
319 }
320 }
321
322 return true;
323 }
324
325 bool
326 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
327 {
328 if (devinfo->gen == 6 && is_math())
329 return false;
330
331 if (is_send_from_grf())
332 return false;
333
334 if (!backend_instruction::can_do_source_mods())
335 return false;
336
337 return true;
338 }
339
340 bool
341 fs_inst::has_side_effects() const
342 {
343 return this->eot || backend_instruction::has_side_effects();
344 }
345
346 void
347 fs_reg::init()
348 {
349 memset(this, 0, sizeof(*this));
350 stride = 1;
351 }
352
353 /** Generic unset register constructor. */
354 fs_reg::fs_reg()
355 {
356 init();
357 this->file = BAD_FILE;
358 }
359
360 /** Immediate value constructor. */
361 fs_reg::fs_reg(float f)
362 {
363 init();
364 this->file = IMM;
365 this->type = BRW_REGISTER_TYPE_F;
366 this->stride = 0;
367 this->fixed_hw_reg.dw1.f = f;
368 }
369
370 /** Immediate value constructor. */
371 fs_reg::fs_reg(int32_t i)
372 {
373 init();
374 this->file = IMM;
375 this->type = BRW_REGISTER_TYPE_D;
376 this->stride = 0;
377 this->fixed_hw_reg.dw1.d = i;
378 }
379
380 /** Immediate value constructor. */
381 fs_reg::fs_reg(uint32_t u)
382 {
383 init();
384 this->file = IMM;
385 this->type = BRW_REGISTER_TYPE_UD;
386 this->stride = 0;
387 this->fixed_hw_reg.dw1.ud = u;
388 }
389
390 /** Vector float immediate value constructor. */
391 fs_reg::fs_reg(uint8_t vf[4])
392 {
393 init();
394 this->file = IMM;
395 this->type = BRW_REGISTER_TYPE_VF;
396 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
397 }
398
399 /** Vector float immediate value constructor. */
400 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
401 {
402 init();
403 this->file = IMM;
404 this->type = BRW_REGISTER_TYPE_VF;
405 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
406 (vf1 << 8) |
407 (vf2 << 16) |
408 (vf3 << 24);
409 }
410
411 /** Fixed brw_reg. */
412 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
413 {
414 init();
415 this->file = HW_REG;
416 this->fixed_hw_reg = fixed_hw_reg;
417 this->type = fixed_hw_reg.type;
418 }
419
420 bool
421 fs_reg::equals(const fs_reg &r) const
422 {
423 return (file == r.file &&
424 reg == r.reg &&
425 reg_offset == r.reg_offset &&
426 subreg_offset == r.subreg_offset &&
427 type == r.type &&
428 negate == r.negate &&
429 abs == r.abs &&
430 !reladdr && !r.reladdr &&
431 ((file != HW_REG && file != IMM) ||
432 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
433 sizeof(fixed_hw_reg)) == 0) &&
434 stride == r.stride);
435 }
436
437 fs_reg &
438 fs_reg::set_smear(unsigned subreg)
439 {
440 assert(file != HW_REG && file != IMM);
441 subreg_offset = subreg * type_sz(type);
442 stride = 0;
443 return *this;
444 }
445
446 bool
447 fs_reg::is_contiguous() const
448 {
449 return stride == 1;
450 }
451
452 unsigned
453 fs_reg::component_size(unsigned width) const
454 {
455 const unsigned stride = (file != HW_REG ? this->stride :
456 fixed_hw_reg.hstride == 0 ? 0 :
457 1 << (fixed_hw_reg.hstride - 1));
458 return MAX2(width * stride, 1) * type_sz(type);
459 }
460
461 extern "C" int
462 type_size_scalar(const struct glsl_type *type)
463 {
464 unsigned int size, i;
465
466 switch (type->base_type) {
467 case GLSL_TYPE_UINT:
468 case GLSL_TYPE_INT:
469 case GLSL_TYPE_FLOAT:
470 case GLSL_TYPE_BOOL:
471 return type->components();
472 case GLSL_TYPE_ARRAY:
473 return type_size_scalar(type->fields.array) * type->length;
474 case GLSL_TYPE_STRUCT:
475 size = 0;
476 for (i = 0; i < type->length; i++) {
477 size += type_size_scalar(type->fields.structure[i].type);
478 }
479 return size;
480 case GLSL_TYPE_SAMPLER:
481 /* Samplers take up no register space, since they're baked in at
482 * link time.
483 */
484 return 0;
485 case GLSL_TYPE_ATOMIC_UINT:
486 return 0;
487 case GLSL_TYPE_SUBROUTINE:
488 return 1;
489 case GLSL_TYPE_IMAGE:
490 return BRW_IMAGE_PARAM_SIZE;
491 case GLSL_TYPE_VOID:
492 case GLSL_TYPE_ERROR:
493 case GLSL_TYPE_INTERFACE:
494 case GLSL_TYPE_DOUBLE:
495 unreachable("not reached");
496 }
497
498 return 0;
499 }
500
501 /**
502 * Create a MOV to read the timestamp register.
503 *
504 * The caller is responsible for emitting the MOV. The return value is
505 * the destination of the MOV, with extra parameters set.
506 */
507 fs_reg
508 fs_visitor::get_timestamp(const fs_builder &bld)
509 {
510 assert(devinfo->gen >= 7);
511
512 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
513 BRW_ARF_TIMESTAMP,
514 0),
515 BRW_REGISTER_TYPE_UD));
516
517 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
518
519 /* We want to read the 3 fields we care about even if it's not enabled in
520 * the dispatch.
521 */
522 bld.group(4, 0).exec_all().MOV(dst, ts);
523
524 /* The caller wants the low 32 bits of the timestamp. Since it's running
525 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
526 * which is plenty of time for our purposes. It is identical across the
527 * EUs, but since it's tracking GPU core speed it will increment at a
528 * varying rate as render P-states change.
529 *
530 * The caller could also check if render P-states have changed (or anything
531 * else that might disrupt timing) by setting smear to 2 and checking if
532 * that field is != 0.
533 */
534 dst.set_smear(0);
535
536 return dst;
537 }
538
539 void
540 fs_visitor::emit_shader_time_begin()
541 {
542 shader_start_time = get_timestamp(bld.annotate("shader time start"));
543 }
544
545 void
546 fs_visitor::emit_shader_time_end()
547 {
548 /* Insert our code just before the final SEND with EOT. */
549 exec_node *end = this->instructions.get_tail();
550 assert(end && ((fs_inst *) end)->eot);
551 const fs_builder ibld = bld.annotate("shader time end")
552 .exec_all().at(NULL, end);
553
554 fs_reg shader_end_time = get_timestamp(ibld);
555
556 /* Check that there weren't any timestamp reset events (assuming these
557 * were the only two timestamp reads that happened).
558 */
559 fs_reg reset = shader_end_time;
560 reset.set_smear(2);
561 set_condmod(BRW_CONDITIONAL_Z,
562 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
563 ibld.IF(BRW_PREDICATE_NORMAL);
564
565 fs_reg start = shader_start_time;
566 start.negate = true;
567 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
568 diff.set_smear(0);
569
570 const fs_builder cbld = ibld.group(1, 0);
571 cbld.group(1, 0).ADD(diff, start, shader_end_time);
572
573 /* If there were no instructions between the two timestamp gets, the diff
574 * is 2 cycles. Remove that overhead, so I can forget about that when
575 * trying to determine the time taken for single instructions.
576 */
577 cbld.ADD(diff, diff, fs_reg(-2u));
578 SHADER_TIME_ADD(cbld, 0, diff);
579 SHADER_TIME_ADD(cbld, 1, fs_reg(1u));
580 ibld.emit(BRW_OPCODE_ELSE);
581 SHADER_TIME_ADD(cbld, 2, fs_reg(1u));
582 ibld.emit(BRW_OPCODE_ENDIF);
583 }
584
585 void
586 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
587 int shader_time_subindex,
588 fs_reg value)
589 {
590 int index = shader_time_index * 3 + shader_time_subindex;
591 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
592
593 fs_reg payload;
594 if (dispatch_width == 8)
595 payload = vgrf(glsl_type::uvec2_type);
596 else
597 payload = vgrf(glsl_type::uint_type);
598
599 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
600 }
601
602 void
603 fs_visitor::vfail(const char *format, va_list va)
604 {
605 char *msg;
606
607 if (failed)
608 return;
609
610 failed = true;
611
612 msg = ralloc_vasprintf(mem_ctx, format, va);
613 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
614
615 this->fail_msg = msg;
616
617 if (debug_enabled) {
618 fprintf(stderr, "%s", msg);
619 }
620 }
621
622 void
623 fs_visitor::fail(const char *format, ...)
624 {
625 va_list va;
626
627 va_start(va, format);
628 vfail(format, va);
629 va_end(va);
630 }
631
632 /**
633 * Mark this program as impossible to compile in SIMD16 mode.
634 *
635 * During the SIMD8 compile (which happens first), we can detect and flag
636 * things that are unsupported in SIMD16 mode, so the compiler can skip
637 * the SIMD16 compile altogether.
638 *
639 * During a SIMD16 compile (if one happens anyway), this just calls fail().
640 */
641 void
642 fs_visitor::no16(const char *msg)
643 {
644 if (dispatch_width == 16) {
645 fail("%s", msg);
646 } else {
647 simd16_unsupported = true;
648
649 compiler->shader_perf_log(log_data,
650 "SIMD16 shader failed to compile: %s", msg);
651 }
652 }
653
654 /**
655 * Returns true if the instruction has a flag that means it won't
656 * update an entire destination register.
657 *
658 * For example, dead code elimination and live variable analysis want to know
659 * when a write to a variable screens off any preceding values that were in
660 * it.
661 */
662 bool
663 fs_inst::is_partial_write() const
664 {
665 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
666 (this->exec_size * type_sz(this->dst.type)) < 32 ||
667 !this->dst.is_contiguous());
668 }
669
670 unsigned
671 fs_inst::components_read(unsigned i) const
672 {
673 switch (opcode) {
674 case FS_OPCODE_LINTERP:
675 if (i == 0)
676 return 2;
677 else
678 return 1;
679
680 case FS_OPCODE_PIXEL_X:
681 case FS_OPCODE_PIXEL_Y:
682 assert(i == 0);
683 return 2;
684
685 case FS_OPCODE_FB_WRITE_LOGICAL:
686 assert(src[6].file == IMM);
687 /* First/second FB write color. */
688 if (i < 2)
689 return src[6].fixed_hw_reg.dw1.ud;
690 else
691 return 1;
692
693 case SHADER_OPCODE_TEX_LOGICAL:
694 case SHADER_OPCODE_TXD_LOGICAL:
695 case SHADER_OPCODE_TXF_LOGICAL:
696 case SHADER_OPCODE_TXL_LOGICAL:
697 case SHADER_OPCODE_TXS_LOGICAL:
698 case FS_OPCODE_TXB_LOGICAL:
699 case SHADER_OPCODE_TXF_CMS_LOGICAL:
700 case SHADER_OPCODE_TXF_UMS_LOGICAL:
701 case SHADER_OPCODE_TXF_MCS_LOGICAL:
702 case SHADER_OPCODE_LOD_LOGICAL:
703 case SHADER_OPCODE_TG4_LOGICAL:
704 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
705 assert(src[8].file == IMM && src[9].file == IMM);
706 /* Texture coordinates. */
707 if (i == 0)
708 return src[8].fixed_hw_reg.dw1.ud;
709 /* Texture derivatives. */
710 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
711 return src[9].fixed_hw_reg.dw1.ud;
712 /* Texture offset. */
713 else if (i == 7)
714 return 2;
715 else
716 return 1;
717
718 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
719 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
720 assert(src[3].file == IMM);
721 /* Surface coordinates. */
722 if (i == 0)
723 return src[3].fixed_hw_reg.dw1.ud;
724 /* Surface operation source (ignored for reads). */
725 else if (i == 1)
726 return 0;
727 else
728 return 1;
729
730 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
731 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
732 assert(src[3].file == IMM &&
733 src[4].file == IMM);
734 /* Surface coordinates. */
735 if (i == 0)
736 return src[3].fixed_hw_reg.dw1.ud;
737 /* Surface operation source. */
738 else if (i == 1)
739 return src[4].fixed_hw_reg.dw1.ud;
740 else
741 return 1;
742
743 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
744 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
745 assert(src[3].file == IMM &&
746 src[4].file == IMM);
747 const unsigned op = src[4].fixed_hw_reg.dw1.ud;
748 /* Surface coordinates. */
749 if (i == 0)
750 return src[3].fixed_hw_reg.dw1.ud;
751 /* Surface operation source. */
752 else if (i == 1 && op == BRW_AOP_CMPWR)
753 return 2;
754 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
755 op == BRW_AOP_PREDEC))
756 return 0;
757 else
758 return 1;
759 }
760
761 default:
762 return 1;
763 }
764 }
765
766 int
767 fs_inst::regs_read(int arg) const
768 {
769 switch (opcode) {
770 case FS_OPCODE_FB_WRITE:
771 case SHADER_OPCODE_URB_WRITE_SIMD8:
772 case SHADER_OPCODE_UNTYPED_ATOMIC:
773 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
774 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
775 case SHADER_OPCODE_TYPED_ATOMIC:
776 case SHADER_OPCODE_TYPED_SURFACE_READ:
777 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
778 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
779 if (arg == 0)
780 return mlen;
781 break;
782
783 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
784 /* The payload is actually stored in src1 */
785 if (arg == 1)
786 return mlen;
787 break;
788
789 case FS_OPCODE_LINTERP:
790 if (arg == 1)
791 return 1;
792 break;
793
794 case SHADER_OPCODE_LOAD_PAYLOAD:
795 if (arg < this->header_size)
796 return 1;
797 break;
798
799 case CS_OPCODE_CS_TERMINATE:
800 case SHADER_OPCODE_BARRIER:
801 return 1;
802
803 default:
804 if (is_tex() && arg == 0 && src[0].file == GRF)
805 return mlen;
806 break;
807 }
808
809 switch (src[arg].file) {
810 case BAD_FILE:
811 return 0;
812 case UNIFORM:
813 case IMM:
814 return 1;
815 case GRF:
816 case ATTR:
817 case HW_REG:
818 return DIV_ROUND_UP(components_read(arg) *
819 src[arg].component_size(exec_size),
820 REG_SIZE);
821 case MRF:
822 unreachable("MRF registers are not allowed as sources");
823 default:
824 unreachable("Invalid register file");
825 }
826 }
827
828 bool
829 fs_inst::reads_flag() const
830 {
831 return predicate;
832 }
833
834 bool
835 fs_inst::writes_flag() const
836 {
837 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
838 opcode != BRW_OPCODE_IF &&
839 opcode != BRW_OPCODE_WHILE)) ||
840 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
841 }
842
843 /**
844 * Returns how many MRFs an FS opcode will write over.
845 *
846 * Note that this is not the 0 or 1 implied writes in an actual gen
847 * instruction -- the FS opcodes often generate MOVs in addition.
848 */
849 int
850 fs_visitor::implied_mrf_writes(fs_inst *inst)
851 {
852 if (inst->mlen == 0)
853 return 0;
854
855 if (inst->base_mrf == -1)
856 return 0;
857
858 switch (inst->opcode) {
859 case SHADER_OPCODE_RCP:
860 case SHADER_OPCODE_RSQ:
861 case SHADER_OPCODE_SQRT:
862 case SHADER_OPCODE_EXP2:
863 case SHADER_OPCODE_LOG2:
864 case SHADER_OPCODE_SIN:
865 case SHADER_OPCODE_COS:
866 return 1 * dispatch_width / 8;
867 case SHADER_OPCODE_POW:
868 case SHADER_OPCODE_INT_QUOTIENT:
869 case SHADER_OPCODE_INT_REMAINDER:
870 return 2 * dispatch_width / 8;
871 case SHADER_OPCODE_TEX:
872 case FS_OPCODE_TXB:
873 case SHADER_OPCODE_TXD:
874 case SHADER_OPCODE_TXF:
875 case SHADER_OPCODE_TXF_CMS:
876 case SHADER_OPCODE_TXF_MCS:
877 case SHADER_OPCODE_TG4:
878 case SHADER_OPCODE_TG4_OFFSET:
879 case SHADER_OPCODE_TXL:
880 case SHADER_OPCODE_TXS:
881 case SHADER_OPCODE_LOD:
882 case SHADER_OPCODE_SAMPLEINFO:
883 return 1;
884 case FS_OPCODE_FB_WRITE:
885 return 2;
886 case FS_OPCODE_GET_BUFFER_SIZE:
887 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
888 case SHADER_OPCODE_GEN4_SCRATCH_READ:
889 return 1;
890 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
891 return inst->mlen;
892 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
893 return inst->mlen;
894 case SHADER_OPCODE_UNTYPED_ATOMIC:
895 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
896 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
897 case SHADER_OPCODE_TYPED_ATOMIC:
898 case SHADER_OPCODE_TYPED_SURFACE_READ:
899 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
900 case SHADER_OPCODE_URB_WRITE_SIMD8:
901 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
902 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
903 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
904 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
905 return 0;
906 default:
907 unreachable("not reached");
908 }
909 }
910
911 fs_reg
912 fs_visitor::vgrf(const glsl_type *const type)
913 {
914 int reg_width = dispatch_width / 8;
915 return fs_reg(GRF, alloc.allocate(type_size_scalar(type) * reg_width),
916 brw_type_for_base_type(type));
917 }
918
919 /** Fixed HW reg constructor. */
920 fs_reg::fs_reg(enum register_file file, int reg)
921 {
922 init();
923 this->file = file;
924 this->reg = reg;
925 this->type = BRW_REGISTER_TYPE_F;
926 this->stride = (file == UNIFORM ? 0 : 1);
927 }
928
929 /** Fixed HW reg constructor. */
930 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
931 {
932 init();
933 this->file = file;
934 this->reg = reg;
935 this->type = type;
936 this->stride = (file == UNIFORM ? 0 : 1);
937 }
938
939 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
940 * This brings in those uniform definitions
941 */
942 void
943 fs_visitor::import_uniforms(fs_visitor *v)
944 {
945 this->push_constant_loc = v->push_constant_loc;
946 this->pull_constant_loc = v->pull_constant_loc;
947 this->uniforms = v->uniforms;
948 this->param_size = v->param_size;
949 }
950
951 fs_reg *
952 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
953 bool origin_upper_left)
954 {
955 assert(stage == MESA_SHADER_FRAGMENT);
956 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
957 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
958 fs_reg wpos = *reg;
959 bool flip = !origin_upper_left ^ key->render_to_fbo;
960
961 /* gl_FragCoord.x */
962 if (pixel_center_integer) {
963 bld.MOV(wpos, this->pixel_x);
964 } else {
965 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
966 }
967 wpos = offset(wpos, bld, 1);
968
969 /* gl_FragCoord.y */
970 if (!flip && pixel_center_integer) {
971 bld.MOV(wpos, this->pixel_y);
972 } else {
973 fs_reg pixel_y = this->pixel_y;
974 float offset = (pixel_center_integer ? 0.0f : 0.5f);
975
976 if (flip) {
977 pixel_y.negate = true;
978 offset += key->drawable_height - 1.0f;
979 }
980
981 bld.ADD(wpos, pixel_y, fs_reg(offset));
982 }
983 wpos = offset(wpos, bld, 1);
984
985 /* gl_FragCoord.z */
986 if (devinfo->gen >= 6) {
987 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
988 } else {
989 bld.emit(FS_OPCODE_LINTERP, wpos,
990 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
991 interp_reg(VARYING_SLOT_POS, 2));
992 }
993 wpos = offset(wpos, bld, 1);
994
995 /* gl_FragCoord.w: Already set up in emit_interpolation */
996 bld.MOV(wpos, this->wpos_w);
997
998 return reg;
999 }
1000
1001 fs_inst *
1002 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1003 glsl_interp_qualifier interpolation_mode,
1004 bool is_centroid, bool is_sample)
1005 {
1006 brw_wm_barycentric_interp_mode barycoord_mode;
1007 if (devinfo->gen >= 6) {
1008 if (is_centroid) {
1009 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1010 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1011 else
1012 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1013 } else if (is_sample) {
1014 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1015 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1016 else
1017 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1018 } else {
1019 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1020 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1021 else
1022 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1023 }
1024 } else {
1025 /* On Ironlake and below, there is only one interpolation mode.
1026 * Centroid interpolation doesn't mean anything on this hardware --
1027 * there is no multisampling.
1028 */
1029 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1030 }
1031 return bld.emit(FS_OPCODE_LINTERP, attr,
1032 this->delta_xy[barycoord_mode], interp);
1033 }
1034
1035 void
1036 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1037 const glsl_type *type,
1038 glsl_interp_qualifier interpolation_mode,
1039 int location, bool mod_centroid,
1040 bool mod_sample)
1041 {
1042 attr.type = brw_type_for_base_type(type->get_scalar_type());
1043
1044 assert(stage == MESA_SHADER_FRAGMENT);
1045 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1046 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1047
1048 unsigned int array_elements;
1049
1050 if (type->is_array()) {
1051 array_elements = type->arrays_of_arrays_size();
1052 if (array_elements == 0) {
1053 fail("dereferenced array '%s' has length 0\n", name);
1054 }
1055 type = type->without_array();
1056 } else {
1057 array_elements = 1;
1058 }
1059
1060 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1061 bool is_gl_Color =
1062 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1063 if (key->flat_shade && is_gl_Color) {
1064 interpolation_mode = INTERP_QUALIFIER_FLAT;
1065 } else {
1066 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1067 }
1068 }
1069
1070 for (unsigned int i = 0; i < array_elements; i++) {
1071 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1072 if (prog_data->urb_setup[location] == -1) {
1073 /* If there's no incoming setup data for this slot, don't
1074 * emit interpolation for it.
1075 */
1076 attr = offset(attr, bld, type->vector_elements);
1077 location++;
1078 continue;
1079 }
1080
1081 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1082 /* Constant interpolation (flat shading) case. The SF has
1083 * handed us defined values in only the constant offset
1084 * field of the setup reg.
1085 */
1086 for (unsigned int k = 0; k < type->vector_elements; k++) {
1087 struct brw_reg interp = interp_reg(location, k);
1088 interp = suboffset(interp, 3);
1089 interp.type = attr.type;
1090 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1091 attr = offset(attr, bld, 1);
1092 }
1093 } else {
1094 /* Smooth/noperspective interpolation case. */
1095 for (unsigned int k = 0; k < type->vector_elements; k++) {
1096 struct brw_reg interp = interp_reg(location, k);
1097 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1098 /* Get the pixel/sample mask into f0 so that we know
1099 * which pixels are lit. Then, for each channel that is
1100 * unlit, replace the centroid data with non-centroid
1101 * data.
1102 */
1103 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1104
1105 fs_inst *inst;
1106 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1107 false, false);
1108 inst->predicate = BRW_PREDICATE_NORMAL;
1109 inst->predicate_inverse = true;
1110 if (devinfo->has_pln)
1111 inst->no_dd_clear = true;
1112
1113 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1114 mod_centroid && !key->persample_shading,
1115 mod_sample || key->persample_shading);
1116 inst->predicate = BRW_PREDICATE_NORMAL;
1117 inst->predicate_inverse = false;
1118 if (devinfo->has_pln)
1119 inst->no_dd_check = true;
1120
1121 } else {
1122 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1123 mod_centroid && !key->persample_shading,
1124 mod_sample || key->persample_shading);
1125 }
1126 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1127 bld.MUL(attr, attr, this->pixel_w);
1128 }
1129 attr = offset(attr, bld, 1);
1130 }
1131
1132 }
1133 location++;
1134 }
1135 }
1136 }
1137
1138 fs_reg *
1139 fs_visitor::emit_frontfacing_interpolation()
1140 {
1141 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1142
1143 if (devinfo->gen >= 6) {
1144 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1145 * a boolean result from this (~0/true or 0/false).
1146 *
1147 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1148 * this task in only one instruction:
1149 * - a negation source modifier will flip the bit; and
1150 * - a W -> D type conversion will sign extend the bit into the high
1151 * word of the destination.
1152 *
1153 * An ASR 15 fills the low word of the destination.
1154 */
1155 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1156 g0.negate = true;
1157
1158 bld.ASR(*reg, g0, fs_reg(15));
1159 } else {
1160 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1161 * a boolean result from this (1/true or 0/false).
1162 *
1163 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1164 * the negation source modifier to flip it. Unfortunately the SHR
1165 * instruction only operates on UD (or D with an abs source modifier)
1166 * sources without negation.
1167 *
1168 * Instead, use ASR (which will give ~0/true or 0/false).
1169 */
1170 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1171 g1_6.negate = true;
1172
1173 bld.ASR(*reg, g1_6, fs_reg(31));
1174 }
1175
1176 return reg;
1177 }
1178
1179 void
1180 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1181 {
1182 assert(stage == MESA_SHADER_FRAGMENT);
1183 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1184 assert(dst.type == BRW_REGISTER_TYPE_F);
1185
1186 if (key->compute_pos_offset) {
1187 /* Convert int_sample_pos to floating point */
1188 bld.MOV(dst, int_sample_pos);
1189 /* Scale to the range [0, 1] */
1190 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1191 }
1192 else {
1193 /* From ARB_sample_shading specification:
1194 * "When rendering to a non-multisample buffer, or if multisample
1195 * rasterization is disabled, gl_SamplePosition will always be
1196 * (0.5, 0.5).
1197 */
1198 bld.MOV(dst, fs_reg(0.5f));
1199 }
1200 }
1201
1202 fs_reg *
1203 fs_visitor::emit_samplepos_setup()
1204 {
1205 assert(devinfo->gen >= 6);
1206
1207 const fs_builder abld = bld.annotate("compute sample position");
1208 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1209 fs_reg pos = *reg;
1210 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1211 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1212
1213 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1214 * mode will be enabled.
1215 *
1216 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1217 * R31.1:0 Position Offset X/Y for Slot[3:0]
1218 * R31.3:2 Position Offset X/Y for Slot[7:4]
1219 * .....
1220 *
1221 * The X, Y sample positions come in as bytes in thread payload. So, read
1222 * the positions using vstride=16, width=8, hstride=2.
1223 */
1224 struct brw_reg sample_pos_reg =
1225 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1226 BRW_REGISTER_TYPE_B), 16, 8, 2);
1227
1228 if (dispatch_width == 8) {
1229 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1230 } else {
1231 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1232 abld.half(1).MOV(half(int_sample_x, 1),
1233 fs_reg(suboffset(sample_pos_reg, 16)));
1234 }
1235 /* Compute gl_SamplePosition.x */
1236 compute_sample_position(pos, int_sample_x);
1237 pos = offset(pos, abld, 1);
1238 if (dispatch_width == 8) {
1239 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1240 } else {
1241 abld.half(0).MOV(half(int_sample_y, 0),
1242 fs_reg(suboffset(sample_pos_reg, 1)));
1243 abld.half(1).MOV(half(int_sample_y, 1),
1244 fs_reg(suboffset(sample_pos_reg, 17)));
1245 }
1246 /* Compute gl_SamplePosition.y */
1247 compute_sample_position(pos, int_sample_y);
1248 return reg;
1249 }
1250
1251 fs_reg *
1252 fs_visitor::emit_sampleid_setup()
1253 {
1254 assert(stage == MESA_SHADER_FRAGMENT);
1255 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1256 assert(devinfo->gen >= 6);
1257
1258 const fs_builder abld = bld.annotate("compute sample id");
1259 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1260
1261 if (key->compute_sample_id) {
1262 fs_reg t1 = vgrf(glsl_type::int_type);
1263 fs_reg t2 = vgrf(glsl_type::int_type);
1264 t2.type = BRW_REGISTER_TYPE_UW;
1265
1266 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1267 * 8x multisampling, subspan 0 will represent sample N (where N
1268 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1269 * 7. We can find the value of N by looking at R0.0 bits 7:6
1270 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1271 * (since samples are always delivered in pairs). That is, we
1272 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1273 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1274 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1275 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1276 * populating a temporary variable with the sequence (0, 1, 2, 3),
1277 * and then reading from it using vstride=1, width=4, hstride=0.
1278 * These computations hold good for 4x multisampling as well.
1279 *
1280 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1281 * the first four slots are sample 0 of subspan 0; the next four
1282 * are sample 1 of subspan 0; the third group is sample 0 of
1283 * subspan 1, and finally sample 1 of subspan 1.
1284 */
1285 abld.exec_all()
1286 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1287 fs_reg(0xc0));
1288 abld.exec_all().SHR(t1, t1, fs_reg(5));
1289
1290 /* This works for both SIMD8 and SIMD16 */
1291 abld.exec_all()
1292 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1293
1294 /* This special instruction takes care of setting vstride=1,
1295 * width=4, hstride=0 of t2 during an ADD instruction.
1296 */
1297 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1298 } else {
1299 /* As per GL_ARB_sample_shading specification:
1300 * "When rendering to a non-multisample buffer, or if multisample
1301 * rasterization is disabled, gl_SampleID will always be zero."
1302 */
1303 abld.MOV(*reg, fs_reg(0));
1304 }
1305
1306 return reg;
1307 }
1308
1309 fs_reg
1310 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1311 {
1312 if (!src.abs && !src.negate)
1313 return src;
1314
1315 fs_reg temp = bld.vgrf(src.type);
1316 bld.MOV(temp, src);
1317
1318 return temp;
1319 }
1320
1321 void
1322 fs_visitor::emit_discard_jump()
1323 {
1324 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1325
1326 /* For performance, after a discard, jump to the end of the
1327 * shader if all relevant channels have been discarded.
1328 */
1329 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1330 discard_jump->flag_subreg = 1;
1331
1332 discard_jump->predicate = (dispatch_width == 8)
1333 ? BRW_PREDICATE_ALIGN1_ANY8H
1334 : BRW_PREDICATE_ALIGN1_ANY16H;
1335 discard_jump->predicate_inverse = true;
1336 }
1337
1338 void
1339 fs_visitor::assign_curb_setup()
1340 {
1341 if (dispatch_width == 8) {
1342 prog_data->dispatch_grf_start_reg = payload.num_regs;
1343 } else {
1344 if (stage == MESA_SHADER_FRAGMENT) {
1345 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1346 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1347 } else if (stage == MESA_SHADER_COMPUTE) {
1348 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1349 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1350 } else {
1351 unreachable("Unsupported shader type!");
1352 }
1353 }
1354
1355 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1356
1357 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1358 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1359 for (unsigned int i = 0; i < inst->sources; i++) {
1360 if (inst->src[i].file == UNIFORM) {
1361 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1362 int constant_nr;
1363 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1364 constant_nr = push_constant_loc[uniform_nr];
1365 } else {
1366 /* Section 5.11 of the OpenGL 4.1 spec says:
1367 * "Out-of-bounds reads return undefined values, which include
1368 * values from other variables of the active program or zero."
1369 * Just return the first push constant.
1370 */
1371 constant_nr = 0;
1372 }
1373
1374 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1375 constant_nr / 8,
1376 constant_nr % 8);
1377
1378 assert(inst->src[i].stride == 0);
1379 inst->src[i].file = HW_REG;
1380 inst->src[i].fixed_hw_reg = byte_offset(
1381 retype(brw_reg, inst->src[i].type),
1382 inst->src[i].subreg_offset);
1383 }
1384 }
1385 }
1386
1387 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1388 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1389 }
1390
1391 void
1392 fs_visitor::calculate_urb_setup()
1393 {
1394 assert(stage == MESA_SHADER_FRAGMENT);
1395 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1396 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1397
1398 memset(prog_data->urb_setup, -1,
1399 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1400
1401 int urb_next = 0;
1402 /* Figure out where each of the incoming setup attributes lands. */
1403 if (devinfo->gen >= 6) {
1404 if (_mesa_bitcount_64(nir->info.inputs_read &
1405 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1406 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1407 * first 16 varying inputs, so we can put them wherever we want.
1408 * Just put them in order.
1409 *
1410 * This is useful because it means that (a) inputs not used by the
1411 * fragment shader won't take up valuable register space, and (b) we
1412 * won't have to recompile the fragment shader if it gets paired with
1413 * a different vertex (or geometry) shader.
1414 */
1415 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1416 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1417 BITFIELD64_BIT(i)) {
1418 prog_data->urb_setup[i] = urb_next++;
1419 }
1420 }
1421 } else {
1422 /* We have enough input varyings that the SF/SBE pipeline stage can't
1423 * arbitrarily rearrange them to suit our whim; we have to put them
1424 * in an order that matches the output of the previous pipeline stage
1425 * (geometry or vertex shader).
1426 */
1427 struct brw_vue_map prev_stage_vue_map;
1428 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1429 key->input_slots_valid,
1430 nir->info.separate_shader);
1431 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1432 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1433 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1434 slot++) {
1435 int varying = prev_stage_vue_map.slot_to_varying[slot];
1436 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1437 * unused.
1438 */
1439 if (varying != BRW_VARYING_SLOT_COUNT &&
1440 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1441 BITFIELD64_BIT(varying))) {
1442 prog_data->urb_setup[varying] = slot - first_slot;
1443 }
1444 }
1445 urb_next = prev_stage_vue_map.num_slots - first_slot;
1446 }
1447 } else {
1448 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1449 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1450 /* Point size is packed into the header, not as a general attribute */
1451 if (i == VARYING_SLOT_PSIZ)
1452 continue;
1453
1454 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1455 /* The back color slot is skipped when the front color is
1456 * also written to. In addition, some slots can be
1457 * written in the vertex shader and not read in the
1458 * fragment shader. So the register number must always be
1459 * incremented, mapped or not.
1460 */
1461 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1462 prog_data->urb_setup[i] = urb_next;
1463 urb_next++;
1464 }
1465 }
1466
1467 /*
1468 * It's a FS only attribute, and we did interpolation for this attribute
1469 * in SF thread. So, count it here, too.
1470 *
1471 * See compile_sf_prog() for more info.
1472 */
1473 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1474 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1475 }
1476
1477 prog_data->num_varying_inputs = urb_next;
1478 }
1479
1480 void
1481 fs_visitor::assign_urb_setup()
1482 {
1483 assert(stage == MESA_SHADER_FRAGMENT);
1484 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1485
1486 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1487
1488 /* Offset all the urb_setup[] index by the actual position of the
1489 * setup regs, now that the location of the constants has been chosen.
1490 */
1491 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1492 if (inst->opcode == FS_OPCODE_LINTERP) {
1493 assert(inst->src[1].file == HW_REG);
1494 inst->src[1].fixed_hw_reg.nr += urb_start;
1495 }
1496
1497 if (inst->opcode == FS_OPCODE_CINTERP) {
1498 assert(inst->src[0].file == HW_REG);
1499 inst->src[0].fixed_hw_reg.nr += urb_start;
1500 }
1501 }
1502
1503 /* Each attribute is 4 setup channels, each of which is half a reg. */
1504 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1505 }
1506
1507 void
1508 fs_visitor::assign_vs_urb_setup()
1509 {
1510 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1511
1512 assert(stage == MESA_SHADER_VERTEX);
1513 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1514 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1515 count++;
1516
1517 /* Each attribute is 4 regs. */
1518 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1519
1520 assert(vs_prog_data->base.urb_read_length <= 15);
1521
1522 /* Rewrite all ATTR file references to the hw grf that they land in. */
1523 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1524 for (int i = 0; i < inst->sources; i++) {
1525 if (inst->src[i].file == ATTR) {
1526 int grf = payload.num_regs +
1527 prog_data->curb_read_length +
1528 inst->src[i].reg +
1529 inst->src[i].reg_offset;
1530
1531 inst->src[i].file = HW_REG;
1532 inst->src[i].fixed_hw_reg =
1533 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1534 inst->src[i].subreg_offset),
1535 inst->exec_size * inst->src[i].stride,
1536 inst->exec_size, inst->src[i].stride);
1537 }
1538 }
1539 }
1540 }
1541
1542 /**
1543 * Split large virtual GRFs into separate components if we can.
1544 *
1545 * This is mostly duplicated with what brw_fs_vector_splitting does,
1546 * but that's really conservative because it's afraid of doing
1547 * splitting that doesn't result in real progress after the rest of
1548 * the optimization phases, which would cause infinite looping in
1549 * optimization. We can do it once here, safely. This also has the
1550 * opportunity to split interpolated values, or maybe even uniforms,
1551 * which we don't have at the IR level.
1552 *
1553 * We want to split, because virtual GRFs are what we register
1554 * allocate and spill (due to contiguousness requirements for some
1555 * instructions), and they're what we naturally generate in the
1556 * codegen process, but most virtual GRFs don't actually need to be
1557 * contiguous sets of GRFs. If we split, we'll end up with reduced
1558 * live intervals and better dead code elimination and coalescing.
1559 */
1560 void
1561 fs_visitor::split_virtual_grfs()
1562 {
1563 int num_vars = this->alloc.count;
1564
1565 /* Count the total number of registers */
1566 int reg_count = 0;
1567 int vgrf_to_reg[num_vars];
1568 for (int i = 0; i < num_vars; i++) {
1569 vgrf_to_reg[i] = reg_count;
1570 reg_count += alloc.sizes[i];
1571 }
1572
1573 /* An array of "split points". For each register slot, this indicates
1574 * if this slot can be separated from the previous slot. Every time an
1575 * instruction uses multiple elements of a register (as a source or
1576 * destination), we mark the used slots as inseparable. Then we go
1577 * through and split the registers into the smallest pieces we can.
1578 */
1579 bool split_points[reg_count];
1580 memset(split_points, 0, sizeof(split_points));
1581
1582 /* Mark all used registers as fully splittable */
1583 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1584 if (inst->dst.file == GRF) {
1585 int reg = vgrf_to_reg[inst->dst.reg];
1586 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1587 split_points[reg + j] = true;
1588 }
1589
1590 for (int i = 0; i < inst->sources; i++) {
1591 if (inst->src[i].file == GRF) {
1592 int reg = vgrf_to_reg[inst->src[i].reg];
1593 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1594 split_points[reg + j] = true;
1595 }
1596 }
1597 }
1598
1599 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1600 if (inst->dst.file == GRF) {
1601 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1602 for (int j = 1; j < inst->regs_written; j++)
1603 split_points[reg + j] = false;
1604 }
1605 for (int i = 0; i < inst->sources; i++) {
1606 if (inst->src[i].file == GRF) {
1607 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1608 for (int j = 1; j < inst->regs_read(i); j++)
1609 split_points[reg + j] = false;
1610 }
1611 }
1612 }
1613
1614 int new_virtual_grf[reg_count];
1615 int new_reg_offset[reg_count];
1616
1617 int reg = 0;
1618 for (int i = 0; i < num_vars; i++) {
1619 /* The first one should always be 0 as a quick sanity check. */
1620 assert(split_points[reg] == false);
1621
1622 /* j = 0 case */
1623 new_reg_offset[reg] = 0;
1624 reg++;
1625 int offset = 1;
1626
1627 /* j > 0 case */
1628 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1629 /* If this is a split point, reset the offset to 0 and allocate a
1630 * new virtual GRF for the previous offset many registers
1631 */
1632 if (split_points[reg]) {
1633 assert(offset <= MAX_VGRF_SIZE);
1634 int grf = alloc.allocate(offset);
1635 for (int k = reg - offset; k < reg; k++)
1636 new_virtual_grf[k] = grf;
1637 offset = 0;
1638 }
1639 new_reg_offset[reg] = offset;
1640 offset++;
1641 reg++;
1642 }
1643
1644 /* The last one gets the original register number */
1645 assert(offset <= MAX_VGRF_SIZE);
1646 alloc.sizes[i] = offset;
1647 for (int k = reg - offset; k < reg; k++)
1648 new_virtual_grf[k] = i;
1649 }
1650 assert(reg == reg_count);
1651
1652 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1653 if (inst->dst.file == GRF) {
1654 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1655 inst->dst.reg = new_virtual_grf[reg];
1656 inst->dst.reg_offset = new_reg_offset[reg];
1657 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1658 }
1659 for (int i = 0; i < inst->sources; i++) {
1660 if (inst->src[i].file == GRF) {
1661 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1662 inst->src[i].reg = new_virtual_grf[reg];
1663 inst->src[i].reg_offset = new_reg_offset[reg];
1664 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1665 }
1666 }
1667 }
1668 invalidate_live_intervals();
1669 }
1670
1671 /**
1672 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1673 *
1674 * During code generation, we create tons of temporary variables, many of
1675 * which get immediately killed and are never used again. Yet, in later
1676 * optimization and analysis passes, such as compute_live_intervals, we need
1677 * to loop over all the virtual GRFs. Compacting them can save a lot of
1678 * overhead.
1679 */
1680 bool
1681 fs_visitor::compact_virtual_grfs()
1682 {
1683 bool progress = false;
1684 int remap_table[this->alloc.count];
1685 memset(remap_table, -1, sizeof(remap_table));
1686
1687 /* Mark which virtual GRFs are used. */
1688 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1689 if (inst->dst.file == GRF)
1690 remap_table[inst->dst.reg] = 0;
1691
1692 for (int i = 0; i < inst->sources; i++) {
1693 if (inst->src[i].file == GRF)
1694 remap_table[inst->src[i].reg] = 0;
1695 }
1696 }
1697
1698 /* Compact the GRF arrays. */
1699 int new_index = 0;
1700 for (unsigned i = 0; i < this->alloc.count; i++) {
1701 if (remap_table[i] == -1) {
1702 /* We just found an unused register. This means that we are
1703 * actually going to compact something.
1704 */
1705 progress = true;
1706 } else {
1707 remap_table[i] = new_index;
1708 alloc.sizes[new_index] = alloc.sizes[i];
1709 invalidate_live_intervals();
1710 ++new_index;
1711 }
1712 }
1713
1714 this->alloc.count = new_index;
1715
1716 /* Patch all the instructions to use the newly renumbered registers */
1717 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1718 if (inst->dst.file == GRF)
1719 inst->dst.reg = remap_table[inst->dst.reg];
1720
1721 for (int i = 0; i < inst->sources; i++) {
1722 if (inst->src[i].file == GRF)
1723 inst->src[i].reg = remap_table[inst->src[i].reg];
1724 }
1725 }
1726
1727 /* Patch all the references to delta_xy, since they're used in register
1728 * allocation. If they're unused, switch them to BAD_FILE so we don't
1729 * think some random VGRF is delta_xy.
1730 */
1731 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1732 if (delta_xy[i].file == GRF) {
1733 if (remap_table[delta_xy[i].reg] != -1) {
1734 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1735 } else {
1736 delta_xy[i].file = BAD_FILE;
1737 }
1738 }
1739 }
1740
1741 return progress;
1742 }
1743
1744 /**
1745 * Assign UNIFORM file registers to either push constants or pull constants.
1746 *
1747 * We allow a fragment shader to have more than the specified minimum
1748 * maximum number of fragment shader uniform components (64). If
1749 * there are too many of these, they'd fill up all of register space.
1750 * So, this will push some of them out to the pull constant buffer and
1751 * update the program to load them. We also use pull constants for all
1752 * indirect constant loads because we don't support indirect accesses in
1753 * registers yet.
1754 */
1755 void
1756 fs_visitor::assign_constant_locations()
1757 {
1758 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1759 if (dispatch_width != 8)
1760 return;
1761
1762 unsigned int num_pull_constants = 0;
1763
1764 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1765 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1766
1767 bool is_live[uniforms];
1768 memset(is_live, 0, sizeof(is_live));
1769
1770 /* First, we walk through the instructions and do two things:
1771 *
1772 * 1) Figure out which uniforms are live.
1773 *
1774 * 2) Find all indirect access of uniform arrays and flag them as needing
1775 * to go into the pull constant buffer.
1776 *
1777 * Note that we don't move constant-indexed accesses to arrays. No
1778 * testing has been done of the performance impact of this choice.
1779 */
1780 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1781 for (int i = 0 ; i < inst->sources; i++) {
1782 if (inst->src[i].file != UNIFORM)
1783 continue;
1784
1785 if (inst->src[i].reladdr) {
1786 int uniform = inst->src[i].reg;
1787
1788 /* If this array isn't already present in the pull constant buffer,
1789 * add it.
1790 */
1791 if (pull_constant_loc[uniform] == -1) {
1792 assert(param_size[uniform]);
1793 for (int j = 0; j < param_size[uniform]; j++)
1794 pull_constant_loc[uniform + j] = num_pull_constants++;
1795 }
1796 } else {
1797 /* Mark the the one accessed uniform as live */
1798 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1799 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1800 is_live[constant_nr] = true;
1801 }
1802 }
1803 }
1804
1805 /* Only allow 16 registers (128 uniform components) as push constants.
1806 *
1807 * Just demote the end of the list. We could probably do better
1808 * here, demoting things that are rarely used in the program first.
1809 *
1810 * If changing this value, note the limitation about total_regs in
1811 * brw_curbe.c.
1812 */
1813 unsigned int max_push_components = 16 * 8;
1814 unsigned int num_push_constants = 0;
1815
1816 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1817
1818 for (unsigned int i = 0; i < uniforms; i++) {
1819 if (!is_live[i] || pull_constant_loc[i] != -1) {
1820 /* This UNIFORM register is either dead, or has already been demoted
1821 * to a pull const. Mark it as no longer living in the param[] array.
1822 */
1823 push_constant_loc[i] = -1;
1824 continue;
1825 }
1826
1827 if (num_push_constants < max_push_components) {
1828 /* Retain as a push constant. Record the location in the params[]
1829 * array.
1830 */
1831 push_constant_loc[i] = num_push_constants++;
1832 } else {
1833 /* Demote to a pull constant. */
1834 push_constant_loc[i] = -1;
1835 pull_constant_loc[i] = num_pull_constants++;
1836 }
1837 }
1838
1839 stage_prog_data->nr_params = num_push_constants;
1840 stage_prog_data->nr_pull_params = num_pull_constants;
1841
1842 /* Up until now, the param[] array has been indexed by reg + reg_offset
1843 * of UNIFORM registers. Move pull constants into pull_param[] and
1844 * condense param[] to only contain the uniforms we chose to push.
1845 *
1846 * NOTE: Because we are condensing the params[] array, we know that
1847 * push_constant_loc[i] <= i and we can do it in one smooth loop without
1848 * having to make a copy.
1849 */
1850 for (unsigned int i = 0; i < uniforms; i++) {
1851 const gl_constant_value *value = stage_prog_data->param[i];
1852
1853 if (pull_constant_loc[i] != -1) {
1854 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
1855 } else if (push_constant_loc[i] != -1) {
1856 stage_prog_data->param[push_constant_loc[i]] = value;
1857 }
1858 }
1859 }
1860
1861 /**
1862 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1863 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1864 */
1865 void
1866 fs_visitor::demote_pull_constants()
1867 {
1868 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1869 for (int i = 0; i < inst->sources; i++) {
1870 if (inst->src[i].file != UNIFORM)
1871 continue;
1872
1873 int pull_index;
1874 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1875 if (location >= uniforms) /* Out of bounds access */
1876 pull_index = -1;
1877 else
1878 pull_index = pull_constant_loc[location];
1879
1880 if (pull_index == -1)
1881 continue;
1882
1883 /* Set up the annotation tracking for new generated instructions. */
1884 const fs_builder ibld(this, block, inst);
1885 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1886 fs_reg dst = vgrf(glsl_type::float_type);
1887
1888 assert(inst->src[i].stride == 0);
1889
1890 /* Generate a pull load into dst. */
1891 if (inst->src[i].reladdr) {
1892 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1893 surf_index,
1894 *inst->src[i].reladdr,
1895 pull_index);
1896 inst->src[i].reladdr = NULL;
1897 inst->src[i].stride = 1;
1898 } else {
1899 const fs_builder ubld = ibld.exec_all().group(8, 0);
1900 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1901 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1902 dst, surf_index, offset);
1903 inst->src[i].set_smear(pull_index & 3);
1904 }
1905
1906 /* Rewrite the instruction to use the temporary VGRF. */
1907 inst->src[i].file = GRF;
1908 inst->src[i].reg = dst.reg;
1909 inst->src[i].reg_offset = 0;
1910 }
1911 }
1912 invalidate_live_intervals();
1913 }
1914
1915 bool
1916 fs_visitor::opt_algebraic()
1917 {
1918 bool progress = false;
1919
1920 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1921 switch (inst->opcode) {
1922 case BRW_OPCODE_MOV:
1923 if (inst->src[0].file != IMM)
1924 break;
1925
1926 if (inst->saturate) {
1927 if (inst->dst.type != inst->src[0].type)
1928 assert(!"unimplemented: saturate mixed types");
1929
1930 if (brw_saturate_immediate(inst->dst.type,
1931 &inst->src[0].fixed_hw_reg)) {
1932 inst->saturate = false;
1933 progress = true;
1934 }
1935 }
1936 break;
1937
1938 case BRW_OPCODE_MUL:
1939 if (inst->src[1].file != IMM)
1940 continue;
1941
1942 /* a * 1.0 = a */
1943 if (inst->src[1].is_one()) {
1944 inst->opcode = BRW_OPCODE_MOV;
1945 inst->src[1] = reg_undef;
1946 progress = true;
1947 break;
1948 }
1949
1950 /* a * -1.0 = -a */
1951 if (inst->src[1].is_negative_one()) {
1952 inst->opcode = BRW_OPCODE_MOV;
1953 inst->src[0].negate = !inst->src[0].negate;
1954 inst->src[1] = reg_undef;
1955 progress = true;
1956 break;
1957 }
1958
1959 /* a * 0.0 = 0.0 */
1960 if (inst->src[1].is_zero()) {
1961 inst->opcode = BRW_OPCODE_MOV;
1962 inst->src[0] = inst->src[1];
1963 inst->src[1] = reg_undef;
1964 progress = true;
1965 break;
1966 }
1967
1968 if (inst->src[0].file == IMM) {
1969 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1970 inst->opcode = BRW_OPCODE_MOV;
1971 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1972 inst->src[1] = reg_undef;
1973 progress = true;
1974 break;
1975 }
1976 break;
1977 case BRW_OPCODE_ADD:
1978 if (inst->src[1].file != IMM)
1979 continue;
1980
1981 /* a + 0.0 = a */
1982 if (inst->src[1].is_zero()) {
1983 inst->opcode = BRW_OPCODE_MOV;
1984 inst->src[1] = reg_undef;
1985 progress = true;
1986 break;
1987 }
1988
1989 if (inst->src[0].file == IMM) {
1990 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1991 inst->opcode = BRW_OPCODE_MOV;
1992 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1993 inst->src[1] = reg_undef;
1994 progress = true;
1995 break;
1996 }
1997 break;
1998 case BRW_OPCODE_OR:
1999 if (inst->src[0].equals(inst->src[1])) {
2000 inst->opcode = BRW_OPCODE_MOV;
2001 inst->src[1] = reg_undef;
2002 progress = true;
2003 break;
2004 }
2005 break;
2006 case BRW_OPCODE_LRP:
2007 if (inst->src[1].equals(inst->src[2])) {
2008 inst->opcode = BRW_OPCODE_MOV;
2009 inst->src[0] = inst->src[1];
2010 inst->src[1] = reg_undef;
2011 inst->src[2] = reg_undef;
2012 progress = true;
2013 break;
2014 }
2015 break;
2016 case BRW_OPCODE_CMP:
2017 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2018 inst->src[0].abs &&
2019 inst->src[0].negate &&
2020 inst->src[1].is_zero()) {
2021 inst->src[0].abs = false;
2022 inst->src[0].negate = false;
2023 inst->conditional_mod = BRW_CONDITIONAL_Z;
2024 progress = true;
2025 break;
2026 }
2027 break;
2028 case BRW_OPCODE_SEL:
2029 if (inst->src[0].equals(inst->src[1])) {
2030 inst->opcode = BRW_OPCODE_MOV;
2031 inst->src[1] = reg_undef;
2032 inst->predicate = BRW_PREDICATE_NONE;
2033 inst->predicate_inverse = false;
2034 progress = true;
2035 } else if (inst->saturate && inst->src[1].file == IMM) {
2036 switch (inst->conditional_mod) {
2037 case BRW_CONDITIONAL_LE:
2038 case BRW_CONDITIONAL_L:
2039 switch (inst->src[1].type) {
2040 case BRW_REGISTER_TYPE_F:
2041 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2042 inst->opcode = BRW_OPCODE_MOV;
2043 inst->src[1] = reg_undef;
2044 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2045 progress = true;
2046 }
2047 break;
2048 default:
2049 break;
2050 }
2051 break;
2052 case BRW_CONDITIONAL_GE:
2053 case BRW_CONDITIONAL_G:
2054 switch (inst->src[1].type) {
2055 case BRW_REGISTER_TYPE_F:
2056 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2057 inst->opcode = BRW_OPCODE_MOV;
2058 inst->src[1] = reg_undef;
2059 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2060 progress = true;
2061 }
2062 break;
2063 default:
2064 break;
2065 }
2066 default:
2067 break;
2068 }
2069 }
2070 break;
2071 case BRW_OPCODE_MAD:
2072 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2073 inst->opcode = BRW_OPCODE_MOV;
2074 inst->src[1] = reg_undef;
2075 inst->src[2] = reg_undef;
2076 progress = true;
2077 } else if (inst->src[0].is_zero()) {
2078 inst->opcode = BRW_OPCODE_MUL;
2079 inst->src[0] = inst->src[2];
2080 inst->src[2] = reg_undef;
2081 progress = true;
2082 } else if (inst->src[1].is_one()) {
2083 inst->opcode = BRW_OPCODE_ADD;
2084 inst->src[1] = inst->src[2];
2085 inst->src[2] = reg_undef;
2086 progress = true;
2087 } else if (inst->src[2].is_one()) {
2088 inst->opcode = BRW_OPCODE_ADD;
2089 inst->src[2] = reg_undef;
2090 progress = true;
2091 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2092 inst->opcode = BRW_OPCODE_ADD;
2093 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2094 inst->src[2] = reg_undef;
2095 progress = true;
2096 }
2097 break;
2098 case SHADER_OPCODE_RCP: {
2099 fs_inst *prev = (fs_inst *)inst->prev;
2100 if (prev->opcode == SHADER_OPCODE_SQRT) {
2101 if (inst->src[0].equals(prev->dst)) {
2102 inst->opcode = SHADER_OPCODE_RSQ;
2103 inst->src[0] = prev->src[0];
2104 progress = true;
2105 }
2106 }
2107 break;
2108 }
2109 case SHADER_OPCODE_BROADCAST:
2110 if (is_uniform(inst->src[0])) {
2111 inst->opcode = BRW_OPCODE_MOV;
2112 inst->sources = 1;
2113 inst->force_writemask_all = true;
2114 progress = true;
2115 } else if (inst->src[1].file == IMM) {
2116 inst->opcode = BRW_OPCODE_MOV;
2117 inst->src[0] = component(inst->src[0],
2118 inst->src[1].fixed_hw_reg.dw1.ud);
2119 inst->sources = 1;
2120 inst->force_writemask_all = true;
2121 progress = true;
2122 }
2123 break;
2124
2125 default:
2126 break;
2127 }
2128
2129 /* Swap if src[0] is immediate. */
2130 if (progress && inst->is_commutative()) {
2131 if (inst->src[0].file == IMM) {
2132 fs_reg tmp = inst->src[1];
2133 inst->src[1] = inst->src[0];
2134 inst->src[0] = tmp;
2135 }
2136 }
2137 }
2138 return progress;
2139 }
2140
2141 /**
2142 * Optimize sample messages that have constant zero values for the trailing
2143 * texture coordinates. We can just reduce the message length for these
2144 * instructions instead of reserving a register for it. Trailing parameters
2145 * that aren't sent default to zero anyway. This will cause the dead code
2146 * eliminator to remove the MOV instruction that would otherwise be emitted to
2147 * set up the zero value.
2148 */
2149 bool
2150 fs_visitor::opt_zero_samples()
2151 {
2152 /* Gen4 infers the texturing opcode based on the message length so we can't
2153 * change it.
2154 */
2155 if (devinfo->gen < 5)
2156 return false;
2157
2158 bool progress = false;
2159
2160 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2161 if (!inst->is_tex())
2162 continue;
2163
2164 fs_inst *load_payload = (fs_inst *) inst->prev;
2165
2166 if (load_payload->is_head_sentinel() ||
2167 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2168 continue;
2169
2170 /* We don't want to remove the message header or the first parameter.
2171 * Removing the first parameter is not allowed, see the Haswell PRM
2172 * volume 7, page 149:
2173 *
2174 * "Parameter 0 is required except for the sampleinfo message, which
2175 * has no parameter 0"
2176 */
2177 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2178 load_payload->src[(inst->mlen - inst->header_size) /
2179 (inst->exec_size / 8) +
2180 inst->header_size - 1].is_zero()) {
2181 inst->mlen -= inst->exec_size / 8;
2182 progress = true;
2183 }
2184 }
2185
2186 if (progress)
2187 invalidate_live_intervals();
2188
2189 return progress;
2190 }
2191
2192 /**
2193 * Optimize sample messages which are followed by the final RT write.
2194 *
2195 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2196 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2197 * final texturing results copied to the framebuffer write payload and modify
2198 * them to write to the framebuffer directly.
2199 */
2200 bool
2201 fs_visitor::opt_sampler_eot()
2202 {
2203 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2204
2205 if (stage != MESA_SHADER_FRAGMENT)
2206 return false;
2207
2208 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2209 return false;
2210
2211 /* FINISHME: It should be possible to implement this optimization when there
2212 * are multiple drawbuffers.
2213 */
2214 if (key->nr_color_regions != 1)
2215 return false;
2216
2217 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2218 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2219 fs_inst *fb_write = (fs_inst *)block->end();
2220 assert(fb_write->eot);
2221 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2222
2223 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2224
2225 /* There wasn't one; nothing to do. */
2226 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2227 return false;
2228
2229 /* This optimisation doesn't seem to work for textureGather for some
2230 * reason. I can't find any documentation or known workarounds to indicate
2231 * that this is expected, but considering that it is probably pretty
2232 * unlikely that a shader would directly write out the results from
2233 * textureGather we might as well just disable it.
2234 */
2235 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2236 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2237 return false;
2238
2239 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2240 * It's very likely to be the previous instruction.
2241 */
2242 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2243 if (load_payload->is_head_sentinel() ||
2244 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2245 return false;
2246
2247 assert(!tex_inst->eot); /* We can't get here twice */
2248 assert((tex_inst->offset & (0xff << 24)) == 0);
2249
2250 const fs_builder ibld(this, block, tex_inst);
2251
2252 tex_inst->offset |= fb_write->target << 24;
2253 tex_inst->eot = true;
2254 tex_inst->dst = ibld.null_reg_ud();
2255 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2256
2257 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2258 * to create a new LOAD_PAYLOAD command with the same sources and a space
2259 * saved for the header. Using a new destination register not only makes sure
2260 * we have enough space, but it will make sure the dead code eliminator kills
2261 * the instruction that this will replace.
2262 */
2263 if (tex_inst->header_size != 0)
2264 return true;
2265
2266 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2267 load_payload->sources + 1);
2268 fs_reg *new_sources =
2269 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2270
2271 new_sources[0] = fs_reg();
2272 for (int i = 0; i < load_payload->sources; i++)
2273 new_sources[i+1] = load_payload->src[i];
2274
2275 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2276 * requires a lot of information about the sources to appropriately figure
2277 * out the number of registers needed to be used. Given this stage in our
2278 * optimization, we may not have the appropriate GRFs required by
2279 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2280 * manually emit the instruction.
2281 */
2282 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2283 load_payload->exec_size,
2284 send_header,
2285 new_sources,
2286 load_payload->sources + 1);
2287
2288 new_load_payload->regs_written = load_payload->regs_written + 1;
2289 new_load_payload->header_size = 1;
2290 tex_inst->mlen++;
2291 tex_inst->header_size = 1;
2292 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2293 tex_inst->src[0] = send_header;
2294
2295 return true;
2296 }
2297
2298 bool
2299 fs_visitor::opt_register_renaming()
2300 {
2301 bool progress = false;
2302 int depth = 0;
2303
2304 int remap[alloc.count];
2305 memset(remap, -1, sizeof(int) * alloc.count);
2306
2307 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2308 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2309 depth++;
2310 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2311 inst->opcode == BRW_OPCODE_WHILE) {
2312 depth--;
2313 }
2314
2315 /* Rewrite instruction sources. */
2316 for (int i = 0; i < inst->sources; i++) {
2317 if (inst->src[i].file == GRF &&
2318 remap[inst->src[i].reg] != -1 &&
2319 remap[inst->src[i].reg] != inst->src[i].reg) {
2320 inst->src[i].reg = remap[inst->src[i].reg];
2321 progress = true;
2322 }
2323 }
2324
2325 const int dst = inst->dst.reg;
2326
2327 if (depth == 0 &&
2328 inst->dst.file == GRF &&
2329 alloc.sizes[inst->dst.reg] == inst->exec_size / 8 &&
2330 !inst->is_partial_write()) {
2331 if (remap[dst] == -1) {
2332 remap[dst] = dst;
2333 } else {
2334 remap[dst] = alloc.allocate(inst->exec_size / 8);
2335 inst->dst.reg = remap[dst];
2336 progress = true;
2337 }
2338 } else if (inst->dst.file == GRF &&
2339 remap[dst] != -1 &&
2340 remap[dst] != dst) {
2341 inst->dst.reg = remap[dst];
2342 progress = true;
2343 }
2344 }
2345
2346 if (progress) {
2347 invalidate_live_intervals();
2348
2349 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2350 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2351 delta_xy[i].reg = remap[delta_xy[i].reg];
2352 }
2353 }
2354 }
2355
2356 return progress;
2357 }
2358
2359 /**
2360 * Remove redundant or useless discard jumps.
2361 *
2362 * For example, we can eliminate jumps in the following sequence:
2363 *
2364 * discard-jump (redundant with the next jump)
2365 * discard-jump (useless; jumps to the next instruction)
2366 * placeholder-halt
2367 */
2368 bool
2369 fs_visitor::opt_redundant_discard_jumps()
2370 {
2371 bool progress = false;
2372
2373 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2374
2375 fs_inst *placeholder_halt = NULL;
2376 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2377 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2378 placeholder_halt = inst;
2379 break;
2380 }
2381 }
2382
2383 if (!placeholder_halt)
2384 return false;
2385
2386 /* Delete any HALTs immediately before the placeholder halt. */
2387 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2388 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2389 prev = (fs_inst *) placeholder_halt->prev) {
2390 prev->remove(last_bblock);
2391 progress = true;
2392 }
2393
2394 if (progress)
2395 invalidate_live_intervals();
2396
2397 return progress;
2398 }
2399
2400 bool
2401 fs_visitor::compute_to_mrf()
2402 {
2403 bool progress = false;
2404 int next_ip = 0;
2405
2406 /* No MRFs on Gen >= 7. */
2407 if (devinfo->gen >= 7)
2408 return false;
2409
2410 calculate_live_intervals();
2411
2412 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2413 int ip = next_ip;
2414 next_ip++;
2415
2416 if (inst->opcode != BRW_OPCODE_MOV ||
2417 inst->is_partial_write() ||
2418 inst->dst.file != MRF || inst->src[0].file != GRF ||
2419 inst->dst.type != inst->src[0].type ||
2420 inst->src[0].abs || inst->src[0].negate ||
2421 !inst->src[0].is_contiguous() ||
2422 inst->src[0].subreg_offset)
2423 continue;
2424
2425 /* Work out which hardware MRF registers are written by this
2426 * instruction.
2427 */
2428 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2429 int mrf_high;
2430 if (inst->dst.reg & BRW_MRF_COMPR4) {
2431 mrf_high = mrf_low + 4;
2432 } else if (inst->exec_size == 16) {
2433 mrf_high = mrf_low + 1;
2434 } else {
2435 mrf_high = mrf_low;
2436 }
2437
2438 /* Can't compute-to-MRF this GRF if someone else was going to
2439 * read it later.
2440 */
2441 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2442 continue;
2443
2444 /* Found a move of a GRF to a MRF. Let's see if we can go
2445 * rewrite the thing that made this GRF to write into the MRF.
2446 */
2447 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2448 if (scan_inst->dst.file == GRF &&
2449 scan_inst->dst.reg == inst->src[0].reg) {
2450 /* Found the last thing to write our reg we want to turn
2451 * into a compute-to-MRF.
2452 */
2453
2454 /* If this one instruction didn't populate all the
2455 * channels, bail. We might be able to rewrite everything
2456 * that writes that reg, but it would require smarter
2457 * tracking to delay the rewriting until complete success.
2458 */
2459 if (scan_inst->is_partial_write())
2460 break;
2461
2462 /* Things returning more than one register would need us to
2463 * understand coalescing out more than one MOV at a time.
2464 */
2465 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2466 break;
2467
2468 /* SEND instructions can't have MRF as a destination. */
2469 if (scan_inst->mlen)
2470 break;
2471
2472 if (devinfo->gen == 6) {
2473 /* gen6 math instructions must have the destination be
2474 * GRF, so no compute-to-MRF for them.
2475 */
2476 if (scan_inst->is_math()) {
2477 break;
2478 }
2479 }
2480
2481 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2482 /* Found the creator of our MRF's source value. */
2483 scan_inst->dst.file = MRF;
2484 scan_inst->dst.reg = inst->dst.reg;
2485 scan_inst->saturate |= inst->saturate;
2486 inst->remove(block);
2487 progress = true;
2488 }
2489 break;
2490 }
2491
2492 /* We don't handle control flow here. Most computation of
2493 * values that end up in MRFs are shortly before the MRF
2494 * write anyway.
2495 */
2496 if (block->start() == scan_inst)
2497 break;
2498
2499 /* You can't read from an MRF, so if someone else reads our
2500 * MRF's source GRF that we wanted to rewrite, that stops us.
2501 */
2502 bool interfered = false;
2503 for (int i = 0; i < scan_inst->sources; i++) {
2504 if (scan_inst->src[i].file == GRF &&
2505 scan_inst->src[i].reg == inst->src[0].reg &&
2506 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2507 interfered = true;
2508 }
2509 }
2510 if (interfered)
2511 break;
2512
2513 if (scan_inst->dst.file == MRF) {
2514 /* If somebody else writes our MRF here, we can't
2515 * compute-to-MRF before that.
2516 */
2517 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2518 int scan_mrf_high;
2519
2520 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2521 scan_mrf_high = scan_mrf_low + 4;
2522 } else if (scan_inst->exec_size == 16) {
2523 scan_mrf_high = scan_mrf_low + 1;
2524 } else {
2525 scan_mrf_high = scan_mrf_low;
2526 }
2527
2528 if (mrf_low == scan_mrf_low ||
2529 mrf_low == scan_mrf_high ||
2530 mrf_high == scan_mrf_low ||
2531 mrf_high == scan_mrf_high) {
2532 break;
2533 }
2534 }
2535
2536 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2537 /* Found a SEND instruction, which means that there are
2538 * live values in MRFs from base_mrf to base_mrf +
2539 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2540 * above it.
2541 */
2542 if (mrf_low >= scan_inst->base_mrf &&
2543 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2544 break;
2545 }
2546 if (mrf_high >= scan_inst->base_mrf &&
2547 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2548 break;
2549 }
2550 }
2551 }
2552 }
2553
2554 if (progress)
2555 invalidate_live_intervals();
2556
2557 return progress;
2558 }
2559
2560 /**
2561 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2562 * flow. We could probably do better here with some form of divergence
2563 * analysis.
2564 */
2565 bool
2566 fs_visitor::eliminate_find_live_channel()
2567 {
2568 bool progress = false;
2569 unsigned depth = 0;
2570
2571 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2572 switch (inst->opcode) {
2573 case BRW_OPCODE_IF:
2574 case BRW_OPCODE_DO:
2575 depth++;
2576 break;
2577
2578 case BRW_OPCODE_ENDIF:
2579 case BRW_OPCODE_WHILE:
2580 depth--;
2581 break;
2582
2583 case FS_OPCODE_DISCARD_JUMP:
2584 /* This can potentially make control flow non-uniform until the end
2585 * of the program.
2586 */
2587 return progress;
2588
2589 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2590 if (depth == 0) {
2591 inst->opcode = BRW_OPCODE_MOV;
2592 inst->src[0] = fs_reg(0);
2593 inst->sources = 1;
2594 inst->force_writemask_all = true;
2595 progress = true;
2596 }
2597 break;
2598
2599 default:
2600 break;
2601 }
2602 }
2603
2604 return progress;
2605 }
2606
2607 /**
2608 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2609 * instructions to FS_OPCODE_REP_FB_WRITE.
2610 */
2611 void
2612 fs_visitor::emit_repclear_shader()
2613 {
2614 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2615 int base_mrf = 1;
2616 int color_mrf = base_mrf + 2;
2617
2618 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2619 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2620
2621 fs_inst *write;
2622 if (key->nr_color_regions == 1) {
2623 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2624 write->saturate = key->clamp_fragment_color;
2625 write->base_mrf = color_mrf;
2626 write->target = 0;
2627 write->header_size = 0;
2628 write->mlen = 1;
2629 } else {
2630 assume(key->nr_color_regions > 0);
2631 for (int i = 0; i < key->nr_color_regions; ++i) {
2632 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2633 write->saturate = key->clamp_fragment_color;
2634 write->base_mrf = base_mrf;
2635 write->target = i;
2636 write->header_size = 2;
2637 write->mlen = 3;
2638 }
2639 }
2640 write->eot = true;
2641
2642 calculate_cfg();
2643
2644 assign_constant_locations();
2645 assign_curb_setup();
2646
2647 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2648 assert(mov->src[0].file == HW_REG);
2649 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2650 }
2651
2652 /**
2653 * Walks through basic blocks, looking for repeated MRF writes and
2654 * removing the later ones.
2655 */
2656 bool
2657 fs_visitor::remove_duplicate_mrf_writes()
2658 {
2659 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2660 bool progress = false;
2661
2662 /* Need to update the MRF tracking for compressed instructions. */
2663 if (dispatch_width == 16)
2664 return false;
2665
2666 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2667
2668 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2669 if (inst->is_control_flow()) {
2670 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2671 }
2672
2673 if (inst->opcode == BRW_OPCODE_MOV &&
2674 inst->dst.file == MRF) {
2675 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2676 if (prev_inst && inst->equals(prev_inst)) {
2677 inst->remove(block);
2678 progress = true;
2679 continue;
2680 }
2681 }
2682
2683 /* Clear out the last-write records for MRFs that were overwritten. */
2684 if (inst->dst.file == MRF) {
2685 last_mrf_move[inst->dst.reg] = NULL;
2686 }
2687
2688 if (inst->mlen > 0 && inst->base_mrf != -1) {
2689 /* Found a SEND instruction, which will include two or fewer
2690 * implied MRF writes. We could do better here.
2691 */
2692 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2693 last_mrf_move[inst->base_mrf + i] = NULL;
2694 }
2695 }
2696
2697 /* Clear out any MRF move records whose sources got overwritten. */
2698 if (inst->dst.file == GRF) {
2699 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2700 if (last_mrf_move[i] &&
2701 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2702 last_mrf_move[i] = NULL;
2703 }
2704 }
2705 }
2706
2707 if (inst->opcode == BRW_OPCODE_MOV &&
2708 inst->dst.file == MRF &&
2709 inst->src[0].file == GRF &&
2710 !inst->is_partial_write()) {
2711 last_mrf_move[inst->dst.reg] = inst;
2712 }
2713 }
2714
2715 if (progress)
2716 invalidate_live_intervals();
2717
2718 return progress;
2719 }
2720
2721 static void
2722 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2723 {
2724 /* Clear the flag for registers that actually got read (as expected). */
2725 for (int i = 0; i < inst->sources; i++) {
2726 int grf;
2727 if (inst->src[i].file == GRF) {
2728 grf = inst->src[i].reg;
2729 } else if (inst->src[i].file == HW_REG &&
2730 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2731 grf = inst->src[i].fixed_hw_reg.nr;
2732 } else {
2733 continue;
2734 }
2735
2736 if (grf >= first_grf &&
2737 grf < first_grf + grf_len) {
2738 deps[grf - first_grf] = false;
2739 if (inst->exec_size == 16)
2740 deps[grf - first_grf + 1] = false;
2741 }
2742 }
2743 }
2744
2745 /**
2746 * Implements this workaround for the original 965:
2747 *
2748 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2749 * check for post destination dependencies on this instruction, software
2750 * must ensure that there is no destination hazard for the case of ‘write
2751 * followed by a posted write’ shown in the following example.
2752 *
2753 * 1. mov r3 0
2754 * 2. send r3.xy <rest of send instruction>
2755 * 3. mov r2 r3
2756 *
2757 * Due to no post-destination dependency check on the ‘send’, the above
2758 * code sequence could have two instructions (1 and 2) in flight at the
2759 * same time that both consider ‘r3’ as the target of their final writes.
2760 */
2761 void
2762 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2763 fs_inst *inst)
2764 {
2765 int write_len = inst->regs_written;
2766 int first_write_grf = inst->dst.reg;
2767 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2768 assert(write_len < (int)sizeof(needs_dep) - 1);
2769
2770 memset(needs_dep, false, sizeof(needs_dep));
2771 memset(needs_dep, true, write_len);
2772
2773 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2774
2775 /* Walk backwards looking for writes to registers we're writing which
2776 * aren't read since being written. If we hit the start of the program,
2777 * we assume that there are no outstanding dependencies on entry to the
2778 * program.
2779 */
2780 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2781 /* If we hit control flow, assume that there *are* outstanding
2782 * dependencies, and force their cleanup before our instruction.
2783 */
2784 if (block->start() == scan_inst) {
2785 for (int i = 0; i < write_len; i++) {
2786 if (needs_dep[i])
2787 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2788 first_write_grf + i);
2789 }
2790 return;
2791 }
2792
2793 /* We insert our reads as late as possible on the assumption that any
2794 * instruction but a MOV that might have left us an outstanding
2795 * dependency has more latency than a MOV.
2796 */
2797 if (scan_inst->dst.file == GRF) {
2798 for (int i = 0; i < scan_inst->regs_written; i++) {
2799 int reg = scan_inst->dst.reg + i;
2800
2801 if (reg >= first_write_grf &&
2802 reg < first_write_grf + write_len &&
2803 needs_dep[reg - first_write_grf]) {
2804 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2805 needs_dep[reg - first_write_grf] = false;
2806 if (scan_inst->exec_size == 16)
2807 needs_dep[reg - first_write_grf + 1] = false;
2808 }
2809 }
2810 }
2811
2812 /* Clear the flag for registers that actually got read (as expected). */
2813 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2814
2815 /* Continue the loop only if we haven't resolved all the dependencies */
2816 int i;
2817 for (i = 0; i < write_len; i++) {
2818 if (needs_dep[i])
2819 break;
2820 }
2821 if (i == write_len)
2822 return;
2823 }
2824 }
2825
2826 /**
2827 * Implements this workaround for the original 965:
2828 *
2829 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2830 * used as a destination register until after it has been sourced by an
2831 * instruction with a different destination register.
2832 */
2833 void
2834 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2835 {
2836 int write_len = inst->regs_written;
2837 int first_write_grf = inst->dst.reg;
2838 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2839 assert(write_len < (int)sizeof(needs_dep) - 1);
2840
2841 memset(needs_dep, false, sizeof(needs_dep));
2842 memset(needs_dep, true, write_len);
2843 /* Walk forwards looking for writes to registers we're writing which aren't
2844 * read before being written.
2845 */
2846 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2847 /* If we hit control flow, force resolve all remaining dependencies. */
2848 if (block->end() == scan_inst) {
2849 for (int i = 0; i < write_len; i++) {
2850 if (needs_dep[i])
2851 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
2852 first_write_grf + i);
2853 }
2854 return;
2855 }
2856
2857 /* Clear the flag for registers that actually got read (as expected). */
2858 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2859
2860 /* We insert our reads as late as possible since they're reading the
2861 * result of a SEND, which has massive latency.
2862 */
2863 if (scan_inst->dst.file == GRF &&
2864 scan_inst->dst.reg >= first_write_grf &&
2865 scan_inst->dst.reg < first_write_grf + write_len &&
2866 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2867 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
2868 scan_inst->dst.reg);
2869 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2870 }
2871
2872 /* Continue the loop only if we haven't resolved all the dependencies */
2873 int i;
2874 for (i = 0; i < write_len; i++) {
2875 if (needs_dep[i])
2876 break;
2877 }
2878 if (i == write_len)
2879 return;
2880 }
2881 }
2882
2883 void
2884 fs_visitor::insert_gen4_send_dependency_workarounds()
2885 {
2886 if (devinfo->gen != 4 || devinfo->is_g4x)
2887 return;
2888
2889 bool progress = false;
2890
2891 /* Note that we're done with register allocation, so GRF fs_regs always
2892 * have a .reg_offset of 0.
2893 */
2894
2895 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2896 if (inst->mlen != 0 && inst->dst.file == GRF) {
2897 insert_gen4_pre_send_dependency_workarounds(block, inst);
2898 insert_gen4_post_send_dependency_workarounds(block, inst);
2899 progress = true;
2900 }
2901 }
2902
2903 if (progress)
2904 invalidate_live_intervals();
2905 }
2906
2907 /**
2908 * Turns the generic expression-style uniform pull constant load instruction
2909 * into a hardware-specific series of instructions for loading a pull
2910 * constant.
2911 *
2912 * The expression style allows the CSE pass before this to optimize out
2913 * repeated loads from the same offset, and gives the pre-register-allocation
2914 * scheduling full flexibility, while the conversion to native instructions
2915 * allows the post-register-allocation scheduler the best information
2916 * possible.
2917 *
2918 * Note that execution masking for setting up pull constant loads is special:
2919 * the channels that need to be written are unrelated to the current execution
2920 * mask, since a later instruction will use one of the result channels as a
2921 * source operand for all 8 or 16 of its channels.
2922 */
2923 void
2924 fs_visitor::lower_uniform_pull_constant_loads()
2925 {
2926 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2927 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2928 continue;
2929
2930 if (devinfo->gen >= 7) {
2931 /* The offset arg before was a vec4-aligned byte offset. We need to
2932 * turn it into a dword offset.
2933 */
2934 fs_reg const_offset_reg = inst->src[1];
2935 assert(const_offset_reg.file == IMM &&
2936 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2937 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2938
2939 fs_reg payload, offset;
2940 if (devinfo->gen >= 9) {
2941 /* We have to use a message header on Skylake to get SIMD4x2
2942 * mode. Reserve space for the register.
2943 */
2944 offset = payload = fs_reg(GRF, alloc.allocate(2));
2945 offset.reg_offset++;
2946 inst->mlen = 2;
2947 } else {
2948 offset = payload = fs_reg(GRF, alloc.allocate(1));
2949 inst->mlen = 1;
2950 }
2951
2952 /* This is actually going to be a MOV, but since only the first dword
2953 * is accessed, we have a special opcode to do just that one. Note
2954 * that this needs to be an operation that will be considered a def
2955 * by live variable analysis, or register allocation will explode.
2956 */
2957 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2958 8, offset, const_offset_reg);
2959 setup->force_writemask_all = true;
2960
2961 setup->ir = inst->ir;
2962 setup->annotation = inst->annotation;
2963 inst->insert_before(block, setup);
2964
2965 /* Similarly, this will only populate the first 4 channels of the
2966 * result register (since we only use smear values from 0-3), but we
2967 * don't tell the optimizer.
2968 */
2969 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2970 inst->src[1] = payload;
2971 inst->base_mrf = -1;
2972
2973 invalidate_live_intervals();
2974 } else {
2975 /* Before register allocation, we didn't tell the scheduler about the
2976 * MRF we use. We know it's safe to use this MRF because nothing
2977 * else does except for register spill/unspill, which generates and
2978 * uses its MRF within a single IR instruction.
2979 */
2980 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
2981 inst->mlen = 1;
2982 }
2983 }
2984 }
2985
2986 bool
2987 fs_visitor::lower_load_payload()
2988 {
2989 bool progress = false;
2990
2991 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2992 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2993 continue;
2994
2995 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2996 assert(inst->saturate == false);
2997 fs_reg dst = inst->dst;
2998
2999 /* Get rid of COMPR4. We'll add it back in if we need it */
3000 if (dst.file == MRF)
3001 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
3002
3003 const fs_builder ibld(this, block, inst);
3004 const fs_builder hbld = ibld.exec_all().group(8, 0);
3005
3006 for (uint8_t i = 0; i < inst->header_size; i++) {
3007 if (inst->src[i].file != BAD_FILE) {
3008 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3009 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3010 hbld.MOV(mov_dst, mov_src);
3011 }
3012 dst = offset(dst, hbld, 1);
3013 }
3014
3015 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3016 inst->exec_size > 8) {
3017 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3018 * a straightforward copy. Instead, the result of the
3019 * LOAD_PAYLOAD is treated as interleaved and the first four
3020 * non-header sources are unpacked as:
3021 *
3022 * m + 0: r0
3023 * m + 1: g0
3024 * m + 2: b0
3025 * m + 3: a0
3026 * m + 4: r1
3027 * m + 5: g1
3028 * m + 6: b1
3029 * m + 7: a1
3030 *
3031 * This is used for gen <= 5 fb writes.
3032 */
3033 assert(inst->exec_size == 16);
3034 assert(inst->header_size + 4 <= inst->sources);
3035 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3036 if (inst->src[i].file != BAD_FILE) {
3037 if (devinfo->has_compr4) {
3038 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3039 compr4_dst.reg |= BRW_MRF_COMPR4;
3040 ibld.MOV(compr4_dst, inst->src[i]);
3041 } else {
3042 /* Platform doesn't have COMPR4. We have to fake it */
3043 fs_reg mov_dst = retype(dst, inst->src[i].type);
3044 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3045 mov_dst.reg += 4;
3046 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3047 }
3048 }
3049
3050 dst.reg++;
3051 }
3052
3053 /* The loop above only ever incremented us through the first set
3054 * of 4 registers. However, thanks to the magic of COMPR4, we
3055 * actually wrote to the first 8 registers, so we need to take
3056 * that into account now.
3057 */
3058 dst.reg += 4;
3059
3060 /* The COMPR4 code took care of the first 4 sources. We'll let
3061 * the regular path handle any remaining sources. Yes, we are
3062 * modifying the instruction but we're about to delete it so
3063 * this really doesn't hurt anything.
3064 */
3065 inst->header_size += 4;
3066 }
3067
3068 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3069 if (inst->src[i].file != BAD_FILE)
3070 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3071 dst = offset(dst, ibld, 1);
3072 }
3073
3074 inst->remove(block);
3075 progress = true;
3076 }
3077
3078 if (progress)
3079 invalidate_live_intervals();
3080
3081 return progress;
3082 }
3083
3084 bool
3085 fs_visitor::lower_integer_multiplication()
3086 {
3087 bool progress = false;
3088
3089 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3090 const fs_builder ibld(this, block, inst);
3091
3092 if (inst->opcode == BRW_OPCODE_MUL) {
3093 if (inst->dst.is_accumulator() ||
3094 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3095 inst->dst.type != BRW_REGISTER_TYPE_UD))
3096 continue;
3097
3098 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3099 * operation directly, but CHV/BXT cannot.
3100 */
3101 if (devinfo->gen >= 8 &&
3102 !devinfo->is_cherryview && !devinfo->is_broxton)
3103 continue;
3104
3105 if (inst->src[1].file == IMM &&
3106 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3107 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3108 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3109 * src1 are used.
3110 *
3111 * If multiplying by an immediate value that fits in 16-bits, do a
3112 * single MUL instruction with that value in the proper location.
3113 */
3114 if (devinfo->gen < 7) {
3115 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3116 inst->dst.type);
3117 ibld.MOV(imm, inst->src[1]);
3118 ibld.MUL(inst->dst, imm, inst->src[0]);
3119 } else {
3120 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3121 }
3122 } else {
3123 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3124 * do 32-bit integer multiplication in one instruction, but instead
3125 * must do a sequence (which actually calculates a 64-bit result):
3126 *
3127 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3128 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3129 * mov(8) g2<1>D acc0<8,8,1>D
3130 *
3131 * But on Gen > 6, the ability to use second accumulator register
3132 * (acc1) for non-float data types was removed, preventing a simple
3133 * implementation in SIMD16. A 16-channel result can be calculated by
3134 * executing the three instructions twice in SIMD8, once with quarter
3135 * control of 1Q for the first eight channels and again with 2Q for
3136 * the second eight channels.
3137 *
3138 * Which accumulator register is implicitly accessed (by AccWrEnable
3139 * for instance) is determined by the quarter control. Unfortunately
3140 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3141 * implicit accumulator access by an instruction with 2Q will access
3142 * acc1 regardless of whether the data type is usable in acc1.
3143 *
3144 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3145 * integer data types.
3146 *
3147 * Since we only want the low 32-bits of the result, we can do two
3148 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3149 * adjust the high result and add them (like the mach is doing):
3150 *
3151 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3152 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3153 * shl(8) g9<1>D g8<8,8,1>D 16D
3154 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3155 *
3156 * We avoid the shl instruction by realizing that we only want to add
3157 * the low 16-bits of the "high" result to the high 16-bits of the
3158 * "low" result and using proper regioning on the add:
3159 *
3160 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3161 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3162 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3163 *
3164 * Since it does not use the (single) accumulator register, we can
3165 * schedule multi-component multiplications much better.
3166 */
3167
3168 fs_reg orig_dst = inst->dst;
3169 if (orig_dst.is_null() || orig_dst.file == MRF) {
3170 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3171 inst->dst.type);
3172 }
3173 fs_reg low = inst->dst;
3174 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3175 inst->dst.type);
3176
3177 if (devinfo->gen >= 7) {
3178 fs_reg src1_0_w = inst->src[1];
3179 fs_reg src1_1_w = inst->src[1];
3180
3181 if (inst->src[1].file == IMM) {
3182 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3183 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3184 } else {
3185 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3186 if (src1_0_w.stride != 0) {
3187 assert(src1_0_w.stride == 1);
3188 src1_0_w.stride = 2;
3189 }
3190
3191 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3192 if (src1_1_w.stride != 0) {
3193 assert(src1_1_w.stride == 1);
3194 src1_1_w.stride = 2;
3195 }
3196 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3197 }
3198 ibld.MUL(low, inst->src[0], src1_0_w);
3199 ibld.MUL(high, inst->src[0], src1_1_w);
3200 } else {
3201 fs_reg src0_0_w = inst->src[0];
3202 fs_reg src0_1_w = inst->src[0];
3203
3204 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3205 if (src0_0_w.stride != 0) {
3206 assert(src0_0_w.stride == 1);
3207 src0_0_w.stride = 2;
3208 }
3209
3210 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3211 if (src0_1_w.stride != 0) {
3212 assert(src0_1_w.stride == 1);
3213 src0_1_w.stride = 2;
3214 }
3215 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3216
3217 ibld.MUL(low, src0_0_w, inst->src[1]);
3218 ibld.MUL(high, src0_1_w, inst->src[1]);
3219 }
3220
3221 fs_reg dst = inst->dst;
3222 dst.type = BRW_REGISTER_TYPE_UW;
3223 dst.subreg_offset = 2;
3224 dst.stride = 2;
3225
3226 high.type = BRW_REGISTER_TYPE_UW;
3227 high.stride = 2;
3228
3229 low.type = BRW_REGISTER_TYPE_UW;
3230 low.subreg_offset = 2;
3231 low.stride = 2;
3232
3233 ibld.ADD(dst, low, high);
3234
3235 if (inst->conditional_mod || orig_dst.file == MRF) {
3236 set_condmod(inst->conditional_mod,
3237 ibld.MOV(orig_dst, inst->dst));
3238 }
3239 }
3240
3241 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3242 /* Should have been lowered to 8-wide. */
3243 assert(inst->exec_size <= 8);
3244 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3245 inst->dst.type);
3246 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3247 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3248
3249 if (devinfo->gen >= 8) {
3250 /* Until Gen8, integer multiplies read 32-bits from one source,
3251 * and 16-bits from the other, and relying on the MACH instruction
3252 * to generate the high bits of the result.
3253 *
3254 * On Gen8, the multiply instruction does a full 32x32-bit
3255 * multiply, but in order to do a 64-bit multiply we can simulate
3256 * the previous behavior and then use a MACH instruction.
3257 *
3258 * FINISHME: Don't use source modifiers on src1.
3259 */
3260 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3261 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3262 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3263 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3264 mul->src[1].stride *= 2;
3265
3266 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3267 inst->force_sechalf) {
3268 /* Among other things the quarter control bits influence which
3269 * accumulator register is used by the hardware for instructions
3270 * that access the accumulator implicitly (e.g. MACH). A
3271 * second-half instruction would normally map to acc1, which
3272 * doesn't exist on Gen7 and up (the hardware does emulate it for
3273 * floating-point instructions *only* by taking advantage of the
3274 * extra precision of acc0 not normally used for floating point
3275 * arithmetic).
3276 *
3277 * HSW and up are careful enough not to try to access an
3278 * accumulator register that doesn't exist, but on earlier Gen7
3279 * hardware we need to make sure that the quarter control bits are
3280 * zero to avoid non-deterministic behaviour and emit an extra MOV
3281 * to get the result masked correctly according to the current
3282 * channel enables.
3283 */
3284 mach->force_sechalf = false;
3285 mach->force_writemask_all = true;
3286 mach->dst = ibld.vgrf(inst->dst.type);
3287 ibld.MOV(inst->dst, mach->dst);
3288 }
3289 } else {
3290 continue;
3291 }
3292
3293 inst->remove(block);
3294 progress = true;
3295 }
3296
3297 if (progress)
3298 invalidate_live_intervals();
3299
3300 return progress;
3301 }
3302
3303 static void
3304 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3305 fs_reg *dst, fs_reg color, unsigned components)
3306 {
3307 if (key->clamp_fragment_color) {
3308 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3309 assert(color.type == BRW_REGISTER_TYPE_F);
3310
3311 for (unsigned i = 0; i < components; i++)
3312 set_saturate(true,
3313 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3314
3315 color = tmp;
3316 }
3317
3318 for (unsigned i = 0; i < components; i++)
3319 dst[i] = offset(color, bld, i);
3320 }
3321
3322 static void
3323 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3324 const brw_wm_prog_data *prog_data,
3325 const brw_wm_prog_key *key,
3326 const fs_visitor::thread_payload &payload)
3327 {
3328 assert(inst->src[6].file == IMM);
3329 const brw_device_info *devinfo = bld.shader->devinfo;
3330 const fs_reg &color0 = inst->src[0];
3331 const fs_reg &color1 = inst->src[1];
3332 const fs_reg &src0_alpha = inst->src[2];
3333 const fs_reg &src_depth = inst->src[3];
3334 const fs_reg &dst_depth = inst->src[4];
3335 fs_reg sample_mask = inst->src[5];
3336 const unsigned components = inst->src[6].fixed_hw_reg.dw1.ud;
3337
3338 /* We can potentially have a message length of up to 15, so we have to set
3339 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3340 */
3341 fs_reg sources[15];
3342 int header_size = 2, payload_header_size;
3343 unsigned length = 0;
3344
3345 /* From the Sandy Bridge PRM, volume 4, page 198:
3346 *
3347 * "Dispatched Pixel Enables. One bit per pixel indicating
3348 * which pixels were originally enabled when the thread was
3349 * dispatched. This field is only required for the end-of-
3350 * thread message and on all dual-source messages."
3351 */
3352 if (devinfo->gen >= 6 &&
3353 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3354 color1.file == BAD_FILE &&
3355 key->nr_color_regions == 1) {
3356 header_size = 0;
3357 }
3358
3359 if (header_size != 0) {
3360 assert(header_size == 2);
3361 /* Allocate 2 registers for a header */
3362 length += 2;
3363 }
3364
3365 if (payload.aa_dest_stencil_reg) {
3366 sources[length] = fs_reg(GRF, bld.shader->alloc.allocate(1));
3367 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3368 .MOV(sources[length],
3369 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3370 length++;
3371 }
3372
3373 if (prog_data->uses_omask) {
3374 sources[length] = fs_reg(GRF, bld.shader->alloc.allocate(1),
3375 BRW_REGISTER_TYPE_UD);
3376
3377 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3378 * relevant. Since it's unsigned single words one vgrf is always
3379 * 16-wide, but only the lower or higher 8 channels will be used by the
3380 * hardware when doing a SIMD8 write depending on whether we have
3381 * selected the subspans for the first or second half respectively.
3382 */
3383 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3384 sample_mask.type = BRW_REGISTER_TYPE_UW;
3385 sample_mask.stride *= 2;
3386
3387 bld.exec_all().annotate("FB write oMask")
3388 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3389 inst->force_sechalf),
3390 sample_mask);
3391 length++;
3392 }
3393
3394 payload_header_size = length;
3395
3396 if (src0_alpha.file != BAD_FILE) {
3397 /* FIXME: This is being passed at the wrong location in the payload and
3398 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3399 * It's supposed to be immediately before oMask but there seems to be no
3400 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3401 * requires header sources to form a contiguous segment at the beginning
3402 * of the message and src0_alpha has per-channel semantics.
3403 */
3404 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3405 length++;
3406 }
3407
3408 setup_color_payload(bld, key, &sources[length], color0, components);
3409 length += 4;
3410
3411 if (color1.file != BAD_FILE) {
3412 setup_color_payload(bld, key, &sources[length], color1, components);
3413 length += 4;
3414 }
3415
3416 if (src_depth.file != BAD_FILE) {
3417 sources[length] = src_depth;
3418 length++;
3419 }
3420
3421 if (dst_depth.file != BAD_FILE) {
3422 sources[length] = dst_depth;
3423 length++;
3424 }
3425
3426 fs_inst *load;
3427 if (devinfo->gen >= 7) {
3428 /* Send from the GRF */
3429 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3430 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3431 payload.reg = bld.shader->alloc.allocate(load->regs_written);
3432 load->dst = payload;
3433
3434 inst->src[0] = payload;
3435 inst->resize_sources(1);
3436 inst->base_mrf = -1;
3437 } else {
3438 /* Send from the MRF */
3439 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3440 sources, length, payload_header_size);
3441
3442 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3443 * will do this for us if we just give it a COMPR4 destination.
3444 */
3445 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3446 load->dst.reg |= BRW_MRF_COMPR4;
3447
3448 inst->resize_sources(0);
3449 inst->base_mrf = 1;
3450 }
3451
3452 inst->opcode = FS_OPCODE_FB_WRITE;
3453 inst->mlen = load->regs_written;
3454 inst->header_size = header_size;
3455 }
3456
3457 static void
3458 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3459 const fs_reg &coordinate,
3460 const fs_reg &shadow_c,
3461 const fs_reg &lod, const fs_reg &lod2,
3462 const fs_reg &sampler,
3463 unsigned coord_components,
3464 unsigned grad_components)
3465 {
3466 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3467 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3468 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3469 fs_reg msg_end = msg_begin;
3470
3471 /* g0 header. */
3472 msg_end = offset(msg_end, bld.group(8, 0), 1);
3473
3474 for (unsigned i = 0; i < coord_components; i++)
3475 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3476 offset(coordinate, bld, i));
3477
3478 msg_end = offset(msg_end, bld, coord_components);
3479
3480 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3481 * require all three components to be present and zero if they are unused.
3482 */
3483 if (coord_components > 0 &&
3484 (has_lod || shadow_c.file != BAD_FILE ||
3485 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3486 for (unsigned i = coord_components; i < 3; i++)
3487 bld.MOV(offset(msg_end, bld, i), fs_reg(0.0f));
3488
3489 msg_end = offset(msg_end, bld, 3 - coord_components);
3490 }
3491
3492 if (op == SHADER_OPCODE_TXD) {
3493 /* TXD unsupported in SIMD16 mode. */
3494 assert(bld.dispatch_width() == 8);
3495
3496 /* the slots for u and v are always present, but r is optional */
3497 if (coord_components < 2)
3498 msg_end = offset(msg_end, bld, 2 - coord_components);
3499
3500 /* P = u, v, r
3501 * dPdx = dudx, dvdx, drdx
3502 * dPdy = dudy, dvdy, drdy
3503 *
3504 * 1-arg: Does not exist.
3505 *
3506 * 2-arg: dudx dvdx dudy dvdy
3507 * dPdx.x dPdx.y dPdy.x dPdy.y
3508 * m4 m5 m6 m7
3509 *
3510 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3511 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3512 * m5 m6 m7 m8 m9 m10
3513 */
3514 for (unsigned i = 0; i < grad_components; i++)
3515 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3516
3517 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3518
3519 for (unsigned i = 0; i < grad_components; i++)
3520 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3521
3522 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3523 }
3524
3525 if (has_lod) {
3526 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3527 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3528 */
3529 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3530 bld.dispatch_width() == 16);
3531
3532 const brw_reg_type type =
3533 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3534 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3535 bld.MOV(retype(msg_end, type), lod);
3536 msg_end = offset(msg_end, bld, 1);
3537 }
3538
3539 if (shadow_c.file != BAD_FILE) {
3540 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3541 /* There's no plain shadow compare message, so we use shadow
3542 * compare with a bias of 0.0.
3543 */
3544 bld.MOV(msg_end, fs_reg(0.0f));
3545 msg_end = offset(msg_end, bld, 1);
3546 }
3547
3548 bld.MOV(msg_end, shadow_c);
3549 msg_end = offset(msg_end, bld, 1);
3550 }
3551
3552 inst->opcode = op;
3553 inst->src[0] = reg_undef;
3554 inst->src[1] = sampler;
3555 inst->resize_sources(2);
3556 inst->base_mrf = msg_begin.reg;
3557 inst->mlen = msg_end.reg - msg_begin.reg;
3558 inst->header_size = 1;
3559 }
3560
3561 static void
3562 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3563 fs_reg coordinate,
3564 const fs_reg &shadow_c,
3565 fs_reg lod, fs_reg lod2,
3566 const fs_reg &sample_index,
3567 const fs_reg &sampler,
3568 const fs_reg &offset_value,
3569 unsigned coord_components,
3570 unsigned grad_components)
3571 {
3572 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3573 fs_reg msg_coords = message;
3574 unsigned header_size = 0;
3575
3576 if (offset_value.file != BAD_FILE) {
3577 /* The offsets set up by the visitor are in the m1 header, so we can't
3578 * go headerless.
3579 */
3580 header_size = 1;
3581 message.reg--;
3582 }
3583
3584 for (unsigned i = 0; i < coord_components; i++) {
3585 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3586 coordinate = offset(coordinate, bld, 1);
3587 }
3588 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3589 fs_reg msg_lod = offset(msg_coords, bld, 4);
3590
3591 if (shadow_c.file != BAD_FILE) {
3592 fs_reg msg_shadow = msg_lod;
3593 bld.MOV(msg_shadow, shadow_c);
3594 msg_lod = offset(msg_shadow, bld, 1);
3595 msg_end = msg_lod;
3596 }
3597
3598 switch (op) {
3599 case SHADER_OPCODE_TXL:
3600 case FS_OPCODE_TXB:
3601 bld.MOV(msg_lod, lod);
3602 msg_end = offset(msg_lod, bld, 1);
3603 break;
3604 case SHADER_OPCODE_TXD:
3605 /**
3606 * P = u, v, r
3607 * dPdx = dudx, dvdx, drdx
3608 * dPdy = dudy, dvdy, drdy
3609 *
3610 * Load up these values:
3611 * - dudx dudy dvdx dvdy drdx drdy
3612 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3613 */
3614 msg_end = msg_lod;
3615 for (unsigned i = 0; i < grad_components; i++) {
3616 bld.MOV(msg_end, lod);
3617 lod = offset(lod, bld, 1);
3618 msg_end = offset(msg_end, bld, 1);
3619
3620 bld.MOV(msg_end, lod2);
3621 lod2 = offset(lod2, bld, 1);
3622 msg_end = offset(msg_end, bld, 1);
3623 }
3624 break;
3625 case SHADER_OPCODE_TXS:
3626 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3627 bld.MOV(msg_lod, lod);
3628 msg_end = offset(msg_lod, bld, 1);
3629 break;
3630 case SHADER_OPCODE_TXF:
3631 msg_lod = offset(msg_coords, bld, 3);
3632 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3633 msg_end = offset(msg_lod, bld, 1);
3634 break;
3635 case SHADER_OPCODE_TXF_CMS:
3636 msg_lod = offset(msg_coords, bld, 3);
3637 /* lod */
3638 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
3639 /* sample index */
3640 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3641 msg_end = offset(msg_lod, bld, 2);
3642 break;
3643 default:
3644 break;
3645 }
3646
3647 inst->opcode = op;
3648 inst->src[0] = reg_undef;
3649 inst->src[1] = sampler;
3650 inst->resize_sources(2);
3651 inst->base_mrf = message.reg;
3652 inst->mlen = msg_end.reg - message.reg;
3653 inst->header_size = header_size;
3654
3655 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3656 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3657 }
3658
3659 static bool
3660 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3661 {
3662 if (devinfo->gen < 8 && !devinfo->is_haswell)
3663 return false;
3664
3665 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
3666 }
3667
3668 static void
3669 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3670 fs_reg coordinate,
3671 const fs_reg &shadow_c,
3672 fs_reg lod, fs_reg lod2,
3673 const fs_reg &sample_index,
3674 const fs_reg &mcs, const fs_reg &sampler,
3675 fs_reg offset_value,
3676 unsigned coord_components,
3677 unsigned grad_components)
3678 {
3679 const brw_device_info *devinfo = bld.shader->devinfo;
3680 int reg_width = bld.dispatch_width() / 8;
3681 unsigned header_size = 0, length = 0;
3682 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3683 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3684 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3685
3686 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3687 offset_value.file != BAD_FILE ||
3688 is_high_sampler(devinfo, sampler)) {
3689 /* For general texture offsets (no txf workaround), we need a header to
3690 * put them in. Note that we're only reserving space for it in the
3691 * message payload as it will be initialized implicitly by the
3692 * generator.
3693 *
3694 * TG4 needs to place its channel select in the header, for interaction
3695 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3696 * larger sampler numbers we need to offset the Sampler State Pointer in
3697 * the header.
3698 */
3699 header_size = 1;
3700 sources[0] = fs_reg();
3701 length++;
3702 }
3703
3704 if (shadow_c.file != BAD_FILE) {
3705 bld.MOV(sources[length], shadow_c);
3706 length++;
3707 }
3708
3709 bool coordinate_done = false;
3710
3711 /* The sampler can only meaningfully compute LOD for fragment shader
3712 * messages. For all other stages, we change the opcode to TXL and
3713 * hardcode the LOD to 0.
3714 */
3715 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3716 op == SHADER_OPCODE_TEX) {
3717 op = SHADER_OPCODE_TXL;
3718 lod = fs_reg(0.0f);
3719 }
3720
3721 /* Set up the LOD info */
3722 switch (op) {
3723 case FS_OPCODE_TXB:
3724 case SHADER_OPCODE_TXL:
3725 bld.MOV(sources[length], lod);
3726 length++;
3727 break;
3728 case SHADER_OPCODE_TXD:
3729 /* TXD should have been lowered in SIMD16 mode. */
3730 assert(bld.dispatch_width() == 8);
3731
3732 /* Load dPdx and the coordinate together:
3733 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3734 */
3735 for (unsigned i = 0; i < coord_components; i++) {
3736 bld.MOV(sources[length], coordinate);
3737 coordinate = offset(coordinate, bld, 1);
3738 length++;
3739
3740 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3741 * only derivatives for (u, v, r).
3742 */
3743 if (i < grad_components) {
3744 bld.MOV(sources[length], lod);
3745 lod = offset(lod, bld, 1);
3746 length++;
3747
3748 bld.MOV(sources[length], lod2);
3749 lod2 = offset(lod2, bld, 1);
3750 length++;
3751 }
3752 }
3753
3754 coordinate_done = true;
3755 break;
3756 case SHADER_OPCODE_TXS:
3757 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3758 length++;
3759 break;
3760 case SHADER_OPCODE_TXF:
3761 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3762 * On Gen9 they are u, v, lod, r
3763 */
3764 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3765 coordinate = offset(coordinate, bld, 1);
3766 length++;
3767
3768 if (devinfo->gen >= 9) {
3769 if (coord_components >= 2) {
3770 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3771 coordinate = offset(coordinate, bld, 1);
3772 }
3773 length++;
3774 }
3775
3776 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3777 length++;
3778
3779 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3780 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3781 coordinate = offset(coordinate, bld, 1);
3782 length++;
3783 }
3784
3785 coordinate_done = true;
3786 break;
3787 case SHADER_OPCODE_TXF_CMS:
3788 case SHADER_OPCODE_TXF_UMS:
3789 case SHADER_OPCODE_TXF_MCS:
3790 if (op == SHADER_OPCODE_TXF_UMS || op == SHADER_OPCODE_TXF_CMS) {
3791 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
3792 length++;
3793 }
3794
3795 if (op == SHADER_OPCODE_TXF_CMS) {
3796 /* Data from the multisample control surface. */
3797 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
3798 length++;
3799 }
3800
3801 /* There is no offsetting for this message; just copy in the integer
3802 * texture coordinates.
3803 */
3804 for (unsigned i = 0; i < coord_components; i++) {
3805 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3806 coordinate = offset(coordinate, bld, 1);
3807 length++;
3808 }
3809
3810 coordinate_done = true;
3811 break;
3812 case SHADER_OPCODE_TG4_OFFSET:
3813 /* gather4_po_c should have been lowered in SIMD16 mode. */
3814 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
3815
3816 /* More crazy intermixing */
3817 for (unsigned i = 0; i < 2; i++) { /* u, v */
3818 bld.MOV(sources[length], coordinate);
3819 coordinate = offset(coordinate, bld, 1);
3820 length++;
3821 }
3822
3823 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
3824 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
3825 offset_value = offset(offset_value, bld, 1);
3826 length++;
3827 }
3828
3829 if (coord_components == 3) { /* r if present */
3830 bld.MOV(sources[length], coordinate);
3831 coordinate = offset(coordinate, bld, 1);
3832 length++;
3833 }
3834
3835 coordinate_done = true;
3836 break;
3837 default:
3838 break;
3839 }
3840
3841 /* Set up the coordinate (except for cases where it was done above) */
3842 if (!coordinate_done) {
3843 for (unsigned i = 0; i < coord_components; i++) {
3844 bld.MOV(sources[length], coordinate);
3845 coordinate = offset(coordinate, bld, 1);
3846 length++;
3847 }
3848 }
3849
3850 int mlen;
3851 if (reg_width == 2)
3852 mlen = length * reg_width - header_size;
3853 else
3854 mlen = length * reg_width;
3855
3856 const fs_reg src_payload = fs_reg(GRF, bld.shader->alloc.allocate(mlen),
3857 BRW_REGISTER_TYPE_F);
3858 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
3859
3860 /* Generate the SEND. */
3861 inst->opcode = op;
3862 inst->src[0] = src_payload;
3863 inst->src[1] = sampler;
3864 inst->resize_sources(2);
3865 inst->base_mrf = -1;
3866 inst->mlen = mlen;
3867 inst->header_size = header_size;
3868
3869 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3870 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3871 }
3872
3873 static void
3874 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
3875 {
3876 const brw_device_info *devinfo = bld.shader->devinfo;
3877 const fs_reg &coordinate = inst->src[0];
3878 const fs_reg &shadow_c = inst->src[1];
3879 const fs_reg &lod = inst->src[2];
3880 const fs_reg &lod2 = inst->src[3];
3881 const fs_reg &sample_index = inst->src[4];
3882 const fs_reg &mcs = inst->src[5];
3883 const fs_reg &sampler = inst->src[6];
3884 const fs_reg &offset_value = inst->src[7];
3885 assert(inst->src[8].file == IMM && inst->src[9].file == IMM);
3886 const unsigned coord_components = inst->src[8].fixed_hw_reg.dw1.ud;
3887 const unsigned grad_components = inst->src[9].fixed_hw_reg.dw1.ud;
3888
3889 if (devinfo->gen >= 7) {
3890 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
3891 shadow_c, lod, lod2, sample_index,
3892 mcs, sampler, offset_value,
3893 coord_components, grad_components);
3894 } else if (devinfo->gen >= 5) {
3895 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
3896 shadow_c, lod, lod2, sample_index,
3897 sampler, offset_value,
3898 coord_components, grad_components);
3899 } else {
3900 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
3901 shadow_c, lod, lod2, sampler,
3902 coord_components, grad_components);
3903 }
3904 }
3905
3906 /**
3907 * Initialize the header present in some typed and untyped surface
3908 * messages.
3909 */
3910 static fs_reg
3911 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
3912 {
3913 fs_builder ubld = bld.exec_all().group(8, 0);
3914 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3915 ubld.MOV(dst, fs_reg(0));
3916 ubld.MOV(component(dst, 7), sample_mask);
3917 return dst;
3918 }
3919
3920 static void
3921 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
3922 const fs_reg &sample_mask)
3923 {
3924 /* Get the logical send arguments. */
3925 const fs_reg &addr = inst->src[0];
3926 const fs_reg &src = inst->src[1];
3927 const fs_reg &surface = inst->src[2];
3928 const UNUSED fs_reg &dims = inst->src[3];
3929 const fs_reg &arg = inst->src[4];
3930
3931 /* Calculate the total number of components of the payload. */
3932 const unsigned addr_sz = inst->components_read(0);
3933 const unsigned src_sz = inst->components_read(1);
3934 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
3935 const unsigned sz = header_sz + addr_sz + src_sz;
3936
3937 /* Allocate space for the payload. */
3938 fs_reg *const components = new fs_reg[sz];
3939 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
3940 unsigned n = 0;
3941
3942 /* Construct the payload. */
3943 if (header_sz)
3944 components[n++] = emit_surface_header(bld, sample_mask);
3945
3946 for (unsigned i = 0; i < addr_sz; i++)
3947 components[n++] = offset(addr, bld, i);
3948
3949 for (unsigned i = 0; i < src_sz; i++)
3950 components[n++] = offset(src, bld, i);
3951
3952 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
3953
3954 /* Update the original instruction. */
3955 inst->opcode = op;
3956 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
3957 inst->header_size = header_sz;
3958
3959 inst->src[0] = payload;
3960 inst->src[1] = surface;
3961 inst->src[2] = arg;
3962 inst->resize_sources(3);
3963
3964 delete[] components;
3965 }
3966
3967 bool
3968 fs_visitor::lower_logical_sends()
3969 {
3970 bool progress = false;
3971
3972 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3973 const fs_builder ibld(this, block, inst);
3974
3975 switch (inst->opcode) {
3976 case FS_OPCODE_FB_WRITE_LOGICAL:
3977 assert(stage == MESA_SHADER_FRAGMENT);
3978 lower_fb_write_logical_send(ibld, inst,
3979 (const brw_wm_prog_data *)prog_data,
3980 (const brw_wm_prog_key *)key,
3981 payload);
3982 break;
3983
3984 case SHADER_OPCODE_TEX_LOGICAL:
3985 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
3986 break;
3987
3988 case SHADER_OPCODE_TXD_LOGICAL:
3989 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
3990 break;
3991
3992 case SHADER_OPCODE_TXF_LOGICAL:
3993 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
3994 break;
3995
3996 case SHADER_OPCODE_TXL_LOGICAL:
3997 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
3998 break;
3999
4000 case SHADER_OPCODE_TXS_LOGICAL:
4001 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4002 break;
4003
4004 case FS_OPCODE_TXB_LOGICAL:
4005 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4006 break;
4007
4008 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4009 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4010 break;
4011
4012 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4013 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4014 break;
4015
4016 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4017 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4018 break;
4019
4020 case SHADER_OPCODE_LOD_LOGICAL:
4021 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4022 break;
4023
4024 case SHADER_OPCODE_TG4_LOGICAL:
4025 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4026 break;
4027
4028 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4029 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4030 break;
4031
4032 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4033 lower_surface_logical_send(ibld, inst,
4034 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4035 fs_reg(0xffff));
4036 break;
4037
4038 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4039 lower_surface_logical_send(ibld, inst,
4040 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4041 ibld.sample_mask_reg());
4042 break;
4043
4044 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4045 lower_surface_logical_send(ibld, inst,
4046 SHADER_OPCODE_UNTYPED_ATOMIC,
4047 ibld.sample_mask_reg());
4048 break;
4049
4050 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4051 lower_surface_logical_send(ibld, inst,
4052 SHADER_OPCODE_TYPED_SURFACE_READ,
4053 fs_reg(0xffff));
4054 break;
4055
4056 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4057 lower_surface_logical_send(ibld, inst,
4058 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4059 ibld.sample_mask_reg());
4060 break;
4061
4062 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4063 lower_surface_logical_send(ibld, inst,
4064 SHADER_OPCODE_TYPED_ATOMIC,
4065 ibld.sample_mask_reg());
4066 break;
4067
4068 default:
4069 continue;
4070 }
4071
4072 progress = true;
4073 }
4074
4075 if (progress)
4076 invalidate_live_intervals();
4077
4078 return progress;
4079 }
4080
4081 /**
4082 * Get the closest native SIMD width supported by the hardware for instruction
4083 * \p inst. The instruction will be left untouched by
4084 * fs_visitor::lower_simd_width() if the returned value is equal to the
4085 * original execution size.
4086 */
4087 static unsigned
4088 get_lowered_simd_width(const struct brw_device_info *devinfo,
4089 const fs_inst *inst)
4090 {
4091 switch (inst->opcode) {
4092 case BRW_OPCODE_MOV:
4093 case BRW_OPCODE_SEL:
4094 case BRW_OPCODE_NOT:
4095 case BRW_OPCODE_AND:
4096 case BRW_OPCODE_OR:
4097 case BRW_OPCODE_XOR:
4098 case BRW_OPCODE_SHR:
4099 case BRW_OPCODE_SHL:
4100 case BRW_OPCODE_ASR:
4101 case BRW_OPCODE_CMP:
4102 case BRW_OPCODE_CMPN:
4103 case BRW_OPCODE_CSEL:
4104 case BRW_OPCODE_F32TO16:
4105 case BRW_OPCODE_F16TO32:
4106 case BRW_OPCODE_BFREV:
4107 case BRW_OPCODE_BFE:
4108 case BRW_OPCODE_BFI1:
4109 case BRW_OPCODE_BFI2:
4110 case BRW_OPCODE_ADD:
4111 case BRW_OPCODE_MUL:
4112 case BRW_OPCODE_AVG:
4113 case BRW_OPCODE_FRC:
4114 case BRW_OPCODE_RNDU:
4115 case BRW_OPCODE_RNDD:
4116 case BRW_OPCODE_RNDE:
4117 case BRW_OPCODE_RNDZ:
4118 case BRW_OPCODE_LZD:
4119 case BRW_OPCODE_FBH:
4120 case BRW_OPCODE_FBL:
4121 case BRW_OPCODE_CBIT:
4122 case BRW_OPCODE_SAD2:
4123 case BRW_OPCODE_MAD:
4124 case BRW_OPCODE_LRP:
4125 case SHADER_OPCODE_RCP:
4126 case SHADER_OPCODE_RSQ:
4127 case SHADER_OPCODE_SQRT:
4128 case SHADER_OPCODE_EXP2:
4129 case SHADER_OPCODE_LOG2:
4130 case SHADER_OPCODE_POW:
4131 case SHADER_OPCODE_INT_QUOTIENT:
4132 case SHADER_OPCODE_INT_REMAINDER:
4133 case SHADER_OPCODE_SIN:
4134 case SHADER_OPCODE_COS: {
4135 /* According to the PRMs:
4136 * "A. In Direct Addressing mode, a source cannot span more than 2
4137 * adjacent GRF registers.
4138 * B. A destination cannot span more than 2 adjacent GRF registers."
4139 *
4140 * Look for the source or destination with the largest register region
4141 * which is the one that is going to limit the overal execution size of
4142 * the instruction due to this rule.
4143 */
4144 unsigned reg_count = inst->regs_written;
4145
4146 for (unsigned i = 0; i < inst->sources; i++)
4147 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4148
4149 /* Calculate the maximum execution size of the instruction based on the
4150 * factor by which it goes over the hardware limit of 2 GRFs.
4151 */
4152 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4153 }
4154 case SHADER_OPCODE_MULH:
4155 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4156 * is 8-wide on Gen7+.
4157 */
4158 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4159
4160 case FS_OPCODE_FB_WRITE_LOGICAL:
4161 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4162 * here.
4163 */
4164 assert(devinfo->gen != 6 || inst->src[3].file == BAD_FILE ||
4165 inst->exec_size == 8);
4166 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4167 return (inst->src[1].file != BAD_FILE ? 8 : inst->exec_size);
4168
4169 case SHADER_OPCODE_TXD_LOGICAL:
4170 /* TXD is unsupported in SIMD16 mode. */
4171 return 8;
4172
4173 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4174 /* gather4_po_c is unsupported in SIMD16 mode. */
4175 const fs_reg &shadow_c = inst->src[1];
4176 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4177 }
4178 case SHADER_OPCODE_TXL_LOGICAL:
4179 case FS_OPCODE_TXB_LOGICAL: {
4180 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4181 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4182 * mode because the message exceeds the maximum length of 11.
4183 */
4184 const fs_reg &shadow_c = inst->src[1];
4185 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4186 return 16;
4187 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4188 return 8;
4189 else
4190 return inst->exec_size;
4191 }
4192 case SHADER_OPCODE_TXF_LOGICAL:
4193 case SHADER_OPCODE_TXS_LOGICAL:
4194 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4195 * messages. Use SIMD16 instead.
4196 */
4197 if (devinfo->gen == 4)
4198 return 16;
4199 else
4200 return inst->exec_size;
4201
4202 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4203 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4204 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4205 return 8;
4206
4207 default:
4208 return inst->exec_size;
4209 }
4210 }
4211
4212 /**
4213 * The \p rows array of registers represents a \p num_rows by \p num_columns
4214 * matrix in row-major order, write it in column-major order into the register
4215 * passed as destination. \p stride gives the separation between matrix
4216 * elements in the input in fs_builder::dispatch_width() units.
4217 */
4218 static void
4219 emit_transpose(const fs_builder &bld,
4220 const fs_reg &dst, const fs_reg *rows,
4221 unsigned num_rows, unsigned num_columns, unsigned stride)
4222 {
4223 fs_reg *const components = new fs_reg[num_rows * num_columns];
4224
4225 for (unsigned i = 0; i < num_columns; ++i) {
4226 for (unsigned j = 0; j < num_rows; ++j)
4227 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4228 }
4229
4230 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4231
4232 delete[] components;
4233 }
4234
4235 bool
4236 fs_visitor::lower_simd_width()
4237 {
4238 bool progress = false;
4239
4240 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4241 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4242
4243 if (lower_width != inst->exec_size) {
4244 /* Builder matching the original instruction. We may also need to
4245 * emit an instruction of width larger than the original, set the
4246 * execution size of the builder to the highest of both for now so
4247 * we're sure that both cases can be handled.
4248 */
4249 const fs_builder ibld = bld.at(block, inst)
4250 .exec_all(inst->force_writemask_all)
4251 .group(MAX2(inst->exec_size, lower_width),
4252 inst->force_sechalf);
4253
4254 /* Split the copies in chunks of the execution width of either the
4255 * original or the lowered instruction, whichever is lower.
4256 */
4257 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4258 const unsigned n = inst->exec_size / copy_width;
4259 const unsigned dst_size = inst->regs_written * REG_SIZE /
4260 inst->dst.component_size(inst->exec_size);
4261 fs_reg dsts[4];
4262
4263 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4264 !inst->writes_accumulator && !inst->mlen);
4265
4266 for (unsigned i = 0; i < n; i++) {
4267 /* Emit a copy of the original instruction with the lowered width.
4268 * If the EOT flag was set throw it away except for the last
4269 * instruction to avoid killing the thread prematurely.
4270 */
4271 fs_inst split_inst = *inst;
4272 split_inst.exec_size = lower_width;
4273 split_inst.eot = inst->eot && i == n - 1;
4274
4275 /* Select the correct channel enables for the i-th group, then
4276 * transform the sources and destination and emit the lowered
4277 * instruction.
4278 */
4279 const fs_builder lbld = ibld.group(lower_width, i);
4280
4281 for (unsigned j = 0; j < inst->sources; j++) {
4282 if (inst->src[j].file != BAD_FILE &&
4283 !is_uniform(inst->src[j])) {
4284 /* Get the i-th copy_width-wide chunk of the source. */
4285 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4286 const unsigned src_size = inst->components_read(j);
4287
4288 /* Use a trivial transposition to copy one every n
4289 * copy_width-wide components of the register into a
4290 * temporary passed as source to the lowered instruction.
4291 */
4292 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4293 emit_transpose(lbld.group(copy_width, 0),
4294 split_inst.src[j], &src, 1, src_size, n);
4295 }
4296 }
4297
4298 if (inst->regs_written) {
4299 /* Allocate enough space to hold the result of the lowered
4300 * instruction and fix up the number of registers written.
4301 */
4302 split_inst.dst = dsts[i] =
4303 lbld.vgrf(inst->dst.type, dst_size);
4304 split_inst.regs_written =
4305 DIV_ROUND_UP(inst->regs_written * lower_width,
4306 inst->exec_size);
4307 }
4308
4309 lbld.emit(split_inst);
4310 }
4311
4312 if (inst->regs_written) {
4313 /* Distance between useful channels in the temporaries, skipping
4314 * garbage if the lowered instruction is wider than the original.
4315 */
4316 const unsigned m = lower_width / copy_width;
4317
4318 /* Interleave the components of the result from the lowered
4319 * instructions. We need to set exec_all() when copying more than
4320 * one half per component, because LOAD_PAYLOAD (in terms of which
4321 * emit_transpose is implemented) can only use the same channel
4322 * enable signals for all of its non-header sources.
4323 */
4324 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4325 .group(copy_width, 0),
4326 inst->dst, dsts, n, dst_size, m);
4327 }
4328
4329 inst->remove(block);
4330 progress = true;
4331 }
4332 }
4333
4334 if (progress)
4335 invalidate_live_intervals();
4336
4337 return progress;
4338 }
4339
4340 void
4341 fs_visitor::dump_instructions()
4342 {
4343 dump_instructions(NULL);
4344 }
4345
4346 void
4347 fs_visitor::dump_instructions(const char *name)
4348 {
4349 FILE *file = stderr;
4350 if (name && geteuid() != 0) {
4351 file = fopen(name, "w");
4352 if (!file)
4353 file = stderr;
4354 }
4355
4356 if (cfg) {
4357 calculate_register_pressure();
4358 int ip = 0, max_pressure = 0;
4359 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4360 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4361 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4362 dump_instruction(inst, file);
4363 ip++;
4364 }
4365 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4366 } else {
4367 int ip = 0;
4368 foreach_in_list(backend_instruction, inst, &instructions) {
4369 fprintf(file, "%4d: ", ip++);
4370 dump_instruction(inst, file);
4371 }
4372 }
4373
4374 if (file != stderr) {
4375 fclose(file);
4376 }
4377 }
4378
4379 void
4380 fs_visitor::dump_instruction(backend_instruction *be_inst)
4381 {
4382 dump_instruction(be_inst, stderr);
4383 }
4384
4385 void
4386 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4387 {
4388 fs_inst *inst = (fs_inst *)be_inst;
4389
4390 if (inst->predicate) {
4391 fprintf(file, "(%cf0.%d) ",
4392 inst->predicate_inverse ? '-' : '+',
4393 inst->flag_subreg);
4394 }
4395
4396 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4397 if (inst->saturate)
4398 fprintf(file, ".sat");
4399 if (inst->conditional_mod) {
4400 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4401 if (!inst->predicate &&
4402 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4403 inst->opcode != BRW_OPCODE_IF &&
4404 inst->opcode != BRW_OPCODE_WHILE))) {
4405 fprintf(file, ".f0.%d", inst->flag_subreg);
4406 }
4407 }
4408 fprintf(file, "(%d) ", inst->exec_size);
4409
4410 if (inst->mlen) {
4411 fprintf(file, "(mlen: %d) ", inst->mlen);
4412 }
4413
4414 switch (inst->dst.file) {
4415 case GRF:
4416 fprintf(file, "vgrf%d", inst->dst.reg);
4417 if (alloc.sizes[inst->dst.reg] != inst->regs_written ||
4418 inst->dst.subreg_offset)
4419 fprintf(file, "+%d.%d",
4420 inst->dst.reg_offset, inst->dst.subreg_offset);
4421 break;
4422 case MRF:
4423 fprintf(file, "m%d", inst->dst.reg);
4424 break;
4425 case BAD_FILE:
4426 fprintf(file, "(null)");
4427 break;
4428 case UNIFORM:
4429 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
4430 break;
4431 case ATTR:
4432 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
4433 break;
4434 case HW_REG:
4435 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
4436 switch (inst->dst.fixed_hw_reg.nr) {
4437 case BRW_ARF_NULL:
4438 fprintf(file, "null");
4439 break;
4440 case BRW_ARF_ADDRESS:
4441 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
4442 break;
4443 case BRW_ARF_ACCUMULATOR:
4444 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
4445 break;
4446 case BRW_ARF_FLAG:
4447 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
4448 inst->dst.fixed_hw_reg.subnr);
4449 break;
4450 default:
4451 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
4452 inst->dst.fixed_hw_reg.subnr);
4453 break;
4454 }
4455 } else {
4456 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
4457 }
4458 if (inst->dst.fixed_hw_reg.subnr)
4459 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
4460 break;
4461 default:
4462 fprintf(file, "???");
4463 break;
4464 }
4465 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4466
4467 for (int i = 0; i < inst->sources; i++) {
4468 if (inst->src[i].negate)
4469 fprintf(file, "-");
4470 if (inst->src[i].abs)
4471 fprintf(file, "|");
4472 switch (inst->src[i].file) {
4473 case GRF:
4474 fprintf(file, "vgrf%d", inst->src[i].reg);
4475 if (alloc.sizes[inst->src[i].reg] != (unsigned)inst->regs_read(i) ||
4476 inst->src[i].subreg_offset)
4477 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4478 inst->src[i].subreg_offset);
4479 break;
4480 case MRF:
4481 fprintf(file, "***m%d***", inst->src[i].reg);
4482 break;
4483 case ATTR:
4484 fprintf(file, "attr%d+%d", inst->src[i].reg, inst->src[i].reg_offset);
4485 break;
4486 case UNIFORM:
4487 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
4488 if (inst->src[i].reladdr) {
4489 fprintf(file, "+reladdr");
4490 } else if (inst->src[i].subreg_offset) {
4491 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4492 inst->src[i].subreg_offset);
4493 }
4494 break;
4495 case BAD_FILE:
4496 fprintf(file, "(null)");
4497 break;
4498 case IMM:
4499 switch (inst->src[i].type) {
4500 case BRW_REGISTER_TYPE_F:
4501 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
4502 break;
4503 case BRW_REGISTER_TYPE_W:
4504 case BRW_REGISTER_TYPE_D:
4505 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
4506 break;
4507 case BRW_REGISTER_TYPE_UW:
4508 case BRW_REGISTER_TYPE_UD:
4509 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
4510 break;
4511 case BRW_REGISTER_TYPE_VF:
4512 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4513 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
4514 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
4515 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
4516 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
4517 break;
4518 default:
4519 fprintf(file, "???");
4520 break;
4521 }
4522 break;
4523 case HW_REG:
4524 if (inst->src[i].fixed_hw_reg.negate)
4525 fprintf(file, "-");
4526 if (inst->src[i].fixed_hw_reg.abs)
4527 fprintf(file, "|");
4528 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
4529 switch (inst->src[i].fixed_hw_reg.nr) {
4530 case BRW_ARF_NULL:
4531 fprintf(file, "null");
4532 break;
4533 case BRW_ARF_ADDRESS:
4534 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
4535 break;
4536 case BRW_ARF_ACCUMULATOR:
4537 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
4538 break;
4539 case BRW_ARF_FLAG:
4540 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
4541 inst->src[i].fixed_hw_reg.subnr);
4542 break;
4543 default:
4544 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
4545 inst->src[i].fixed_hw_reg.subnr);
4546 break;
4547 }
4548 } else {
4549 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
4550 }
4551 if (inst->src[i].fixed_hw_reg.subnr)
4552 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
4553 if (inst->src[i].fixed_hw_reg.abs)
4554 fprintf(file, "|");
4555 break;
4556 default:
4557 fprintf(file, "???");
4558 break;
4559 }
4560 if (inst->src[i].abs)
4561 fprintf(file, "|");
4562
4563 if (inst->src[i].file != IMM) {
4564 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4565 }
4566
4567 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4568 fprintf(file, ", ");
4569 }
4570
4571 fprintf(file, " ");
4572
4573 if (dispatch_width == 16 && inst->exec_size == 8) {
4574 if (inst->force_sechalf)
4575 fprintf(file, "2ndhalf ");
4576 else
4577 fprintf(file, "1sthalf ");
4578 }
4579
4580 fprintf(file, "\n");
4581 }
4582
4583 /**
4584 * Possibly returns an instruction that set up @param reg.
4585 *
4586 * Sometimes we want to take the result of some expression/variable
4587 * dereference tree and rewrite the instruction generating the result
4588 * of the tree. When processing the tree, we know that the
4589 * instructions generated are all writing temporaries that are dead
4590 * outside of this tree. So, if we have some instructions that write
4591 * a temporary, we're free to point that temp write somewhere else.
4592 *
4593 * Note that this doesn't guarantee that the instruction generated
4594 * only reg -- it might be the size=4 destination of a texture instruction.
4595 */
4596 fs_inst *
4597 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4598 fs_inst *end,
4599 const fs_reg &reg)
4600 {
4601 if (end == start ||
4602 end->is_partial_write() ||
4603 reg.reladdr ||
4604 !reg.equals(end->dst)) {
4605 return NULL;
4606 } else {
4607 return end;
4608 }
4609 }
4610
4611 void
4612 fs_visitor::setup_payload_gen6()
4613 {
4614 bool uses_depth =
4615 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4616 unsigned barycentric_interp_modes =
4617 (stage == MESA_SHADER_FRAGMENT) ?
4618 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4619
4620 assert(devinfo->gen >= 6);
4621
4622 /* R0-1: masks, pixel X/Y coordinates. */
4623 payload.num_regs = 2;
4624 /* R2: only for 32-pixel dispatch.*/
4625
4626 /* R3-26: barycentric interpolation coordinates. These appear in the
4627 * same order that they appear in the brw_wm_barycentric_interp_mode
4628 * enum. Each set of coordinates occupies 2 registers if dispatch width
4629 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4630 * appear if they were enabled using the "Barycentric Interpolation
4631 * Mode" bits in WM_STATE.
4632 */
4633 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4634 if (barycentric_interp_modes & (1 << i)) {
4635 payload.barycentric_coord_reg[i] = payload.num_regs;
4636 payload.num_regs += 2;
4637 if (dispatch_width == 16) {
4638 payload.num_regs += 2;
4639 }
4640 }
4641 }
4642
4643 /* R27: interpolated depth if uses source depth */
4644 if (uses_depth) {
4645 payload.source_depth_reg = payload.num_regs;
4646 payload.num_regs++;
4647 if (dispatch_width == 16) {
4648 /* R28: interpolated depth if not SIMD8. */
4649 payload.num_regs++;
4650 }
4651 }
4652 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4653 if (uses_depth) {
4654 payload.source_w_reg = payload.num_regs;
4655 payload.num_regs++;
4656 if (dispatch_width == 16) {
4657 /* R30: interpolated W if not SIMD8. */
4658 payload.num_regs++;
4659 }
4660 }
4661
4662 if (stage == MESA_SHADER_FRAGMENT) {
4663 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4664 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4665 prog_data->uses_pos_offset = key->compute_pos_offset;
4666 /* R31: MSAA position offsets. */
4667 if (prog_data->uses_pos_offset) {
4668 payload.sample_pos_reg = payload.num_regs;
4669 payload.num_regs++;
4670 }
4671 }
4672
4673 /* R32: MSAA input coverage mask */
4674 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4675 assert(devinfo->gen >= 7);
4676 payload.sample_mask_in_reg = payload.num_regs;
4677 payload.num_regs++;
4678 if (dispatch_width == 16) {
4679 /* R33: input coverage mask if not SIMD8. */
4680 payload.num_regs++;
4681 }
4682 }
4683
4684 /* R34-: bary for 32-pixel. */
4685 /* R58-59: interp W for 32-pixel. */
4686
4687 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4688 source_depth_to_render_target = true;
4689 }
4690 }
4691
4692 void
4693 fs_visitor::setup_vs_payload()
4694 {
4695 /* R0: thread header, R1: urb handles */
4696 payload.num_regs = 2;
4697 }
4698
4699 /**
4700 * We are building the local ID push constant data using the simplest possible
4701 * method. We simply push the local IDs directly as they should appear in the
4702 * registers for the uvec3 gl_LocalInvocationID variable.
4703 *
4704 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4705 * registers worth of push constant space.
4706 *
4707 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4708 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4709 * to coordinated.
4710 *
4711 * FINISHME: There are a few easy optimizations to consider.
4712 *
4713 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4714 * no need for using push constant space for that dimension.
4715 *
4716 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4717 * easily use 16-bit words rather than 32-bit dwords in the push constant
4718 * data.
4719 *
4720 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4721 * conveying the data, and thereby reduce push constant usage.
4722 *
4723 */
4724 void
4725 fs_visitor::setup_cs_payload()
4726 {
4727 assert(devinfo->gen >= 7);
4728 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
4729
4730 payload.num_regs = 1;
4731
4732 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
4733 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
4734 payload.local_invocation_id_reg = payload.num_regs;
4735 payload.num_regs += prog_data->local_invocation_id_regs;
4736 }
4737 }
4738
4739 void
4740 fs_visitor::calculate_register_pressure()
4741 {
4742 invalidate_live_intervals();
4743 calculate_live_intervals();
4744
4745 unsigned num_instructions = 0;
4746 foreach_block(block, cfg)
4747 num_instructions += block->instructions.length();
4748
4749 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
4750
4751 for (unsigned reg = 0; reg < alloc.count; reg++) {
4752 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
4753 regs_live_at_ip[ip] += alloc.sizes[reg];
4754 }
4755 }
4756
4757 void
4758 fs_visitor::optimize()
4759 {
4760 /* Start by validating the shader we currently have. */
4761 validate();
4762
4763 /* bld is the common builder object pointing at the end of the program we
4764 * used to translate it into i965 IR. For the optimization and lowering
4765 * passes coming next, any code added after the end of the program without
4766 * having explicitly called fs_builder::at() clearly points at a mistake.
4767 * Ideally optimization passes wouldn't be part of the visitor so they
4768 * wouldn't have access to bld at all, but they do, so just in case some
4769 * pass forgets to ask for a location explicitly set it to NULL here to
4770 * make it trip. The dispatch width is initialized to a bogus value to
4771 * make sure that optimizations set the execution controls explicitly to
4772 * match the code they are manipulating instead of relying on the defaults.
4773 */
4774 bld = fs_builder(this, 64);
4775
4776 assign_constant_locations();
4777 demote_pull_constants();
4778
4779 validate();
4780
4781 split_virtual_grfs();
4782 validate();
4783
4784 #define OPT(pass, args...) ({ \
4785 pass_num++; \
4786 bool this_progress = pass(args); \
4787 \
4788 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
4789 char filename[64]; \
4790 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
4791 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
4792 \
4793 backend_shader::dump_instructions(filename); \
4794 } \
4795 \
4796 validate(); \
4797 \
4798 progress = progress || this_progress; \
4799 this_progress; \
4800 })
4801
4802 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
4803 char filename[64];
4804 snprintf(filename, 64, "%s%d-%s-00-start",
4805 stage_abbrev, dispatch_width, nir->info.name);
4806
4807 backend_shader::dump_instructions(filename);
4808 }
4809
4810 bool progress = false;
4811 int iteration = 0;
4812 int pass_num = 0;
4813
4814 OPT(lower_simd_width);
4815 OPT(lower_logical_sends);
4816
4817 do {
4818 progress = false;
4819 pass_num = 0;
4820 iteration++;
4821
4822 OPT(remove_duplicate_mrf_writes);
4823
4824 OPT(opt_algebraic);
4825 OPT(opt_cse);
4826 OPT(opt_copy_propagate);
4827 OPT(opt_predicated_break, this);
4828 OPT(opt_cmod_propagation);
4829 OPT(dead_code_eliminate);
4830 OPT(opt_peephole_sel);
4831 OPT(dead_control_flow_eliminate, this);
4832 OPT(opt_register_renaming);
4833 OPT(opt_redundant_discard_jumps);
4834 OPT(opt_saturate_propagation);
4835 OPT(opt_zero_samples);
4836 OPT(register_coalesce);
4837 OPT(compute_to_mrf);
4838 OPT(eliminate_find_live_channel);
4839
4840 OPT(compact_virtual_grfs);
4841 } while (progress);
4842
4843 pass_num = 0;
4844
4845 OPT(opt_sampler_eot);
4846
4847 if (OPT(lower_load_payload)) {
4848 split_virtual_grfs();
4849 OPT(register_coalesce);
4850 OPT(compute_to_mrf);
4851 OPT(dead_code_eliminate);
4852 }
4853
4854 OPT(opt_combine_constants);
4855 OPT(lower_integer_multiplication);
4856
4857 lower_uniform_pull_constant_loads();
4858
4859 validate();
4860 }
4861
4862 /**
4863 * Three source instruction must have a GRF/MRF destination register.
4864 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
4865 */
4866 void
4867 fs_visitor::fixup_3src_null_dest()
4868 {
4869 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
4870 if (inst->is_3src() && inst->dst.is_null()) {
4871 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
4872 inst->dst.type);
4873 }
4874 }
4875 }
4876
4877 void
4878 fs_visitor::allocate_registers()
4879 {
4880 bool allocated_without_spills;
4881
4882 static const enum instruction_scheduler_mode pre_modes[] = {
4883 SCHEDULE_PRE,
4884 SCHEDULE_PRE_NON_LIFO,
4885 SCHEDULE_PRE_LIFO,
4886 };
4887
4888 /* Try each scheduling heuristic to see if it can successfully register
4889 * allocate without spilling. They should be ordered by decreasing
4890 * performance but increasing likelihood of allocating.
4891 */
4892 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
4893 schedule_instructions(pre_modes[i]);
4894
4895 if (0) {
4896 assign_regs_trivial();
4897 allocated_without_spills = true;
4898 } else {
4899 allocated_without_spills = assign_regs(false);
4900 }
4901 if (allocated_without_spills)
4902 break;
4903 }
4904
4905 if (!allocated_without_spills) {
4906 /* We assume that any spilling is worse than just dropping back to
4907 * SIMD8. There's probably actually some intermediate point where
4908 * SIMD16 with a couple of spills is still better.
4909 */
4910 if (dispatch_width == 16) {
4911 fail("Failure to register allocate. Reduce number of "
4912 "live scalar values to avoid this.");
4913 } else {
4914 compiler->shader_perf_log(log_data,
4915 "%s shader triggered register spilling. "
4916 "Try reducing the number of live scalar "
4917 "values to improve performance.\n",
4918 stage_name);
4919 }
4920
4921 /* Since we're out of heuristics, just go spill registers until we
4922 * get an allocation.
4923 */
4924 while (!assign_regs(true)) {
4925 if (failed)
4926 break;
4927 }
4928 }
4929
4930 /* This must come after all optimization and register allocation, since
4931 * it inserts dead code that happens to have side effects, and it does
4932 * so based on the actual physical registers in use.
4933 */
4934 insert_gen4_send_dependency_workarounds();
4935
4936 if (failed)
4937 return;
4938
4939 if (!allocated_without_spills)
4940 schedule_instructions(SCHEDULE_POST);
4941
4942 if (last_scratch > 0)
4943 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
4944 }
4945
4946 bool
4947 fs_visitor::run_vs(gl_clip_plane *clip_planes)
4948 {
4949 assert(stage == MESA_SHADER_VERTEX);
4950
4951 setup_vs_payload();
4952
4953 if (shader_time_index >= 0)
4954 emit_shader_time_begin();
4955
4956 emit_nir_code();
4957
4958 if (failed)
4959 return false;
4960
4961 compute_clip_distance(clip_planes);
4962
4963 emit_urb_writes();
4964
4965 if (shader_time_index >= 0)
4966 emit_shader_time_end();
4967
4968 calculate_cfg();
4969
4970 optimize();
4971
4972 assign_curb_setup();
4973 assign_vs_urb_setup();
4974
4975 fixup_3src_null_dest();
4976 allocate_registers();
4977
4978 return !failed;
4979 }
4980
4981 bool
4982 fs_visitor::run_fs(bool do_rep_send)
4983 {
4984 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
4985 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
4986
4987 assert(stage == MESA_SHADER_FRAGMENT);
4988
4989 if (devinfo->gen >= 6)
4990 setup_payload_gen6();
4991 else
4992 setup_payload_gen4();
4993
4994 if (0) {
4995 emit_dummy_fs();
4996 } else if (do_rep_send) {
4997 assert(dispatch_width == 16);
4998 emit_repclear_shader();
4999 } else {
5000 if (shader_time_index >= 0)
5001 emit_shader_time_begin();
5002
5003 calculate_urb_setup();
5004 if (nir->info.inputs_read > 0) {
5005 if (devinfo->gen < 6)
5006 emit_interpolation_setup_gen4();
5007 else
5008 emit_interpolation_setup_gen6();
5009 }
5010
5011 /* We handle discards by keeping track of the still-live pixels in f0.1.
5012 * Initialize it with the dispatched pixels.
5013 */
5014 if (wm_prog_data->uses_kill) {
5015 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5016 discard_init->flag_subreg = 1;
5017 }
5018
5019 /* Generate FS IR for main(). (the visitor only descends into
5020 * functions called "main").
5021 */
5022 emit_nir_code();
5023
5024 if (failed)
5025 return false;
5026
5027 if (wm_prog_data->uses_kill)
5028 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5029
5030 if (wm_key->alpha_test_func)
5031 emit_alpha_test();
5032
5033 emit_fb_writes();
5034
5035 if (shader_time_index >= 0)
5036 emit_shader_time_end();
5037
5038 calculate_cfg();
5039
5040 optimize();
5041
5042 assign_curb_setup();
5043 assign_urb_setup();
5044
5045 fixup_3src_null_dest();
5046 allocate_registers();
5047
5048 if (failed)
5049 return false;
5050 }
5051
5052 if (dispatch_width == 8)
5053 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5054 else
5055 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5056
5057 return !failed;
5058 }
5059
5060 bool
5061 fs_visitor::run_cs()
5062 {
5063 assert(stage == MESA_SHADER_COMPUTE);
5064
5065 setup_cs_payload();
5066
5067 if (shader_time_index >= 0)
5068 emit_shader_time_begin();
5069
5070 emit_nir_code();
5071
5072 if (failed)
5073 return false;
5074
5075 emit_cs_terminate();
5076
5077 if (shader_time_index >= 0)
5078 emit_shader_time_end();
5079
5080 calculate_cfg();
5081
5082 optimize();
5083
5084 assign_curb_setup();
5085
5086 fixup_3src_null_dest();
5087 allocate_registers();
5088
5089 if (failed)
5090 return false;
5091
5092 return !failed;
5093 }
5094
5095 const unsigned *
5096 brw_wm_fs_emit(const struct brw_compiler *compiler, void *log_data,
5097 void *mem_ctx,
5098 const struct brw_wm_prog_key *key,
5099 struct brw_wm_prog_data *prog_data,
5100 const nir_shader *shader,
5101 struct gl_program *prog,
5102 int shader_time_index8, int shader_time_index16,
5103 bool use_rep_send,
5104 unsigned *final_assembly_size,
5105 char **error_str)
5106 {
5107 fs_visitor v(compiler, log_data, mem_ctx, key,
5108 &prog_data->base, prog, shader, 8,
5109 shader_time_index8);
5110 if (!v.run_fs(false /* do_rep_send */)) {
5111 if (error_str)
5112 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5113
5114 return NULL;
5115 }
5116
5117 cfg_t *simd16_cfg = NULL;
5118 fs_visitor v2(compiler, log_data, mem_ctx, key,
5119 &prog_data->base, prog, shader, 16,
5120 shader_time_index16);
5121 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5122 if (!v.simd16_unsupported) {
5123 /* Try a SIMD16 compile */
5124 v2.import_uniforms(&v);
5125 if (!v2.run_fs(use_rep_send)) {
5126 compiler->shader_perf_log(log_data,
5127 "SIMD16 shader failed to compile: %s",
5128 v2.fail_msg);
5129 } else {
5130 simd16_cfg = v2.cfg;
5131 }
5132 }
5133 }
5134
5135 cfg_t *simd8_cfg;
5136 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5137 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5138 simd8_cfg = NULL;
5139 prog_data->no_8 = true;
5140 } else {
5141 simd8_cfg = v.cfg;
5142 prog_data->no_8 = false;
5143 }
5144
5145 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5146 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5147
5148 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5149 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5150 shader->info.label ? shader->info.label :
5151 "unnamed",
5152 shader->info.name));
5153 }
5154
5155 if (simd8_cfg)
5156 g.generate_code(simd8_cfg, 8);
5157 if (simd16_cfg)
5158 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5159
5160 return g.get_assembly(final_assembly_size);
5161 }
5162
5163 void
5164 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5165 void *buffer, uint32_t threads, uint32_t stride)
5166 {
5167 if (prog_data->local_invocation_id_regs == 0)
5168 return;
5169
5170 /* 'stride' should be an integer number of registers, that is, a multiple
5171 * of 32 bytes.
5172 */
5173 assert(stride % 32 == 0);
5174
5175 unsigned x = 0, y = 0, z = 0;
5176 for (unsigned t = 0; t < threads; t++) {
5177 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5178
5179 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5180 param[0 * prog_data->simd_size + i] = x;
5181 param[1 * prog_data->simd_size + i] = y;
5182 param[2 * prog_data->simd_size + i] = z;
5183
5184 x++;
5185 if (x == prog_data->local_size[0]) {
5186 x = 0;
5187 y++;
5188 if (y == prog_data->local_size[1]) {
5189 y = 0;
5190 z++;
5191 if (z == prog_data->local_size[2])
5192 z = 0;
5193 }
5194 }
5195 }
5196 }
5197 }
5198
5199 fs_reg *
5200 fs_visitor::emit_cs_local_invocation_id_setup()
5201 {
5202 assert(stage == MESA_SHADER_COMPUTE);
5203
5204 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5205
5206 struct brw_reg src =
5207 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5208 src = retype(src, BRW_REGISTER_TYPE_UD);
5209 bld.MOV(*reg, src);
5210 src.nr += dispatch_width / 8;
5211 bld.MOV(offset(*reg, bld, 1), src);
5212 src.nr += dispatch_width / 8;
5213 bld.MOV(offset(*reg, bld, 2), src);
5214
5215 return reg;
5216 }
5217
5218 fs_reg *
5219 fs_visitor::emit_cs_work_group_id_setup()
5220 {
5221 assert(stage == MESA_SHADER_COMPUTE);
5222
5223 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5224
5225 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5226 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5227 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5228
5229 bld.MOV(*reg, r0_1);
5230 bld.MOV(offset(*reg, bld, 1), r0_6);
5231 bld.MOV(offset(*reg, bld, 2), r0_7);
5232
5233 return reg;
5234 }
5235
5236 const unsigned *
5237 brw_cs_emit(const struct brw_compiler *compiler, void *log_data,
5238 void *mem_ctx,
5239 const struct brw_cs_prog_key *key,
5240 struct brw_cs_prog_data *prog_data,
5241 const nir_shader *shader,
5242 int shader_time_index,
5243 unsigned *final_assembly_size,
5244 char **error_str)
5245 {
5246 prog_data->local_size[0] = shader->info.cs.local_size[0];
5247 prog_data->local_size[1] = shader->info.cs.local_size[1];
5248 prog_data->local_size[2] = shader->info.cs.local_size[2];
5249 unsigned local_workgroup_size =
5250 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5251 shader->info.cs.local_size[2];
5252
5253 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5254
5255 cfg_t *cfg = NULL;
5256 const char *fail_msg = NULL;
5257
5258 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5259 */
5260 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5261 NULL, /* Never used in core profile */
5262 shader, 8, shader_time_index);
5263 if (!v8.run_cs()) {
5264 fail_msg = v8.fail_msg;
5265 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5266 cfg = v8.cfg;
5267 prog_data->simd_size = 8;
5268 }
5269
5270 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5271 NULL, /* Never used in core profile */
5272 shader, 16, shader_time_index);
5273 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5274 !fail_msg && !v8.simd16_unsupported &&
5275 local_workgroup_size <= 16 * max_cs_threads) {
5276 /* Try a SIMD16 compile */
5277 v16.import_uniforms(&v8);
5278 if (!v16.run_cs()) {
5279 compiler->shader_perf_log(log_data,
5280 "SIMD16 shader failed to compile: %s",
5281 v16.fail_msg);
5282 if (!cfg) {
5283 fail_msg =
5284 "Couldn't generate SIMD16 program and not "
5285 "enough threads for SIMD8";
5286 }
5287 } else {
5288 cfg = v16.cfg;
5289 prog_data->simd_size = 16;
5290 }
5291 }
5292
5293 if (unlikely(cfg == NULL)) {
5294 assert(fail_msg);
5295 if (error_str)
5296 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5297
5298 return NULL;
5299 }
5300
5301 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5302 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5303 if (INTEL_DEBUG & DEBUG_CS) {
5304 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5305 shader->info.label ? shader->info.label :
5306 "unnamed",
5307 shader->info.name);
5308 g.enable_debug(name);
5309 }
5310
5311 g.generate_code(cfg, prog_data->simd_size);
5312
5313 return g.get_assembly(final_assembly_size);
5314 }