f23608966a0fc559ba5be3f3d252fd08b20d57b5
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct brw_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
80 REG_SIZE);
81 break;
82 case BAD_FILE:
83 this->regs_written = 0;
84 break;
85 case IMM:
86 case UNIFORM:
87 unreachable("Invalid destination register file");
88 }
89
90 this->writes_accumulator = false;
91 }
92
93 fs_inst::fs_inst()
94 {
95 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
96 }
97
98 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
99 {
100 init(opcode, exec_size, reg_undef, NULL, 0);
101 }
102
103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
104 {
105 init(opcode, exec_size, dst, NULL, 0);
106 }
107
108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
109 const fs_reg &src0)
110 {
111 const fs_reg src[1] = { src0 };
112 init(opcode, exec_size, dst, src, 1);
113 }
114
115 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
116 const fs_reg &src0, const fs_reg &src1)
117 {
118 const fs_reg src[2] = { src0, src1 };
119 init(opcode, exec_size, dst, src, 2);
120 }
121
122 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
123 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
124 {
125 const fs_reg src[3] = { src0, src1, src2 };
126 init(opcode, exec_size, dst, src, 3);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
130 const fs_reg src[], unsigned sources)
131 {
132 init(opcode, exec_width, dst, src, sources);
133 }
134
135 fs_inst::fs_inst(const fs_inst &that)
136 {
137 memcpy(this, &that, sizeof(that));
138
139 this->src = new fs_reg[MAX2(that.sources, 3)];
140
141 for (unsigned i = 0; i < that.sources; i++)
142 this->src[i] = that.src[i];
143 }
144
145 fs_inst::~fs_inst()
146 {
147 delete[] this->src;
148 }
149
150 void
151 fs_inst::resize_sources(uint8_t num_sources)
152 {
153 if (this->sources != num_sources) {
154 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
155
156 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
157 src[i] = this->src[i];
158
159 delete[] this->src;
160 this->src = src;
161 this->sources = num_sources;
162 }
163 }
164
165 void
166 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
167 const fs_reg &dst,
168 const fs_reg &surf_index,
169 const fs_reg &varying_offset,
170 uint32_t const_offset)
171 {
172 /* We have our constant surface use a pitch of 4 bytes, so our index can
173 * be any component of a vector, and then we load 4 contiguous
174 * components starting from that.
175 *
176 * We break down the const_offset to a portion added to the variable
177 * offset and a portion done using reg_offset, which means that if you
178 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
179 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
180 * CSE can later notice that those loads are all the same and eliminate
181 * the redundant ones.
182 */
183 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
184 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
185
186 /* The pull load message will load a vec4 (16 bytes). If we are loading
187 * a double this means we are only loading 2 elements worth of data.
188 * We also want to use a 32-bit data type for the dst of the load operation
189 * so other parts of the driver don't get confused about the size of the
190 * result.
191 */
192 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
193 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
194 vec4_result, surf_index, vec4_offset);
195 inst->regs_written = 4 * bld.dispatch_width() / 8;
196
197 if (type_sz(dst.type) == 8) {
198 shuffle_32bit_load_result_to_64bit_data(
199 bld, retype(vec4_result, dst.type), vec4_result, 2);
200 }
201
202 vec4_result.type = dst.type;
203 bld.MOV(dst, offset(vec4_result, bld,
204 (const_offset & 0xf) / type_sz(vec4_result.type)));
205 }
206
207 /**
208 * A helper for MOV generation for fixing up broken hardware SEND dependency
209 * handling.
210 */
211 void
212 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
213 {
214 /* The caller always wants uncompressed to emit the minimal extra
215 * dependencies, and to avoid having to deal with aligning its regs to 2.
216 */
217 const fs_builder ubld = bld.annotate("send dependency resolve")
218 .half(0);
219
220 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
221 }
222
223 bool
224 fs_inst::equals(fs_inst *inst) const
225 {
226 return (opcode == inst->opcode &&
227 dst.equals(inst->dst) &&
228 src[0].equals(inst->src[0]) &&
229 src[1].equals(inst->src[1]) &&
230 src[2].equals(inst->src[2]) &&
231 saturate == inst->saturate &&
232 predicate == inst->predicate &&
233 conditional_mod == inst->conditional_mod &&
234 mlen == inst->mlen &&
235 base_mrf == inst->base_mrf &&
236 target == inst->target &&
237 eot == inst->eot &&
238 header_size == inst->header_size &&
239 shadow_compare == inst->shadow_compare &&
240 exec_size == inst->exec_size &&
241 offset == inst->offset);
242 }
243
244 bool
245 fs_inst::overwrites_reg(const fs_reg &reg) const
246 {
247 return reg.in_range(dst, regs_written);
248 }
249
250 bool
251 fs_inst::is_send_from_grf() const
252 {
253 switch (opcode) {
254 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
255 case SHADER_OPCODE_SHADER_TIME_ADD:
256 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
257 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
258 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
259 case SHADER_OPCODE_UNTYPED_ATOMIC:
260 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
261 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
262 case SHADER_OPCODE_TYPED_ATOMIC:
263 case SHADER_OPCODE_TYPED_SURFACE_READ:
264 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
265 case SHADER_OPCODE_URB_WRITE_SIMD8:
266 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
267 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
268 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
269 case SHADER_OPCODE_URB_READ_SIMD8:
270 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
271 return true;
272 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
273 return src[1].file == VGRF;
274 case FS_OPCODE_FB_WRITE:
275 return src[0].file == VGRF;
276 default:
277 if (is_tex())
278 return src[0].file == VGRF;
279
280 return false;
281 }
282 }
283
284 /**
285 * Returns true if this instruction's sources and destinations cannot
286 * safely be the same register.
287 *
288 * In most cases, a register can be written over safely by the same
289 * instruction that is its last use. For a single instruction, the
290 * sources are dereferenced before writing of the destination starts
291 * (naturally).
292 *
293 * However, there are a few cases where this can be problematic:
294 *
295 * - Virtual opcodes that translate to multiple instructions in the
296 * code generator: if src == dst and one instruction writes the
297 * destination before a later instruction reads the source, then
298 * src will have been clobbered.
299 *
300 * - SIMD16 compressed instructions with certain regioning (see below).
301 *
302 * The register allocator uses this information to set up conflicts between
303 * GRF sources and the destination.
304 */
305 bool
306 fs_inst::has_source_and_destination_hazard() const
307 {
308 switch (opcode) {
309 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
310 /* Multiple partial writes to the destination */
311 return true;
312 default:
313 /* The SIMD16 compressed instruction
314 *
315 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
316 *
317 * is actually decoded in hardware as:
318 *
319 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
320 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
321 *
322 * Which is safe. However, if we have uniform accesses
323 * happening, we get into trouble:
324 *
325 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
326 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
327 *
328 * Now our destination for the first instruction overwrote the
329 * second instruction's src0, and we get garbage for those 8
330 * pixels. There's a similar issue for the pre-gen6
331 * pixel_x/pixel_y, which are registers of 16-bit values and thus
332 * would get stomped by the first decode as well.
333 */
334 if (exec_size == 16) {
335 for (int i = 0; i < sources; i++) {
336 if (src[i].file == VGRF && (src[i].stride == 0 ||
337 src[i].type == BRW_REGISTER_TYPE_UW ||
338 src[i].type == BRW_REGISTER_TYPE_W ||
339 src[i].type == BRW_REGISTER_TYPE_UB ||
340 src[i].type == BRW_REGISTER_TYPE_B)) {
341 return true;
342 }
343 }
344 }
345 return false;
346 }
347 }
348
349 bool
350 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
351 {
352 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
353 return false;
354
355 fs_reg reg = this->src[0];
356 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
357 return false;
358
359 if (grf_alloc.sizes[reg.nr] != this->regs_written)
360 return false;
361
362 for (int i = 0; i < this->sources; i++) {
363 reg.type = this->src[i].type;
364 if (!this->src[i].equals(reg))
365 return false;
366
367 if (i < this->header_size) {
368 reg.reg_offset += 1;
369 } else {
370 reg = horiz_offset(reg, this->exec_size);
371 }
372 }
373
374 return true;
375 }
376
377 bool
378 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
379 {
380 if (devinfo->gen == 6 && is_math())
381 return false;
382
383 if (is_send_from_grf())
384 return false;
385
386 if (!backend_instruction::can_do_source_mods())
387 return false;
388
389 return true;
390 }
391
392 bool
393 fs_inst::can_change_types() const
394 {
395 return dst.type == src[0].type &&
396 !src[0].abs && !src[0].negate && !saturate &&
397 (opcode == BRW_OPCODE_MOV ||
398 (opcode == BRW_OPCODE_SEL &&
399 dst.type == src[1].type &&
400 predicate != BRW_PREDICATE_NONE &&
401 !src[1].abs && !src[1].negate));
402 }
403
404 bool
405 fs_inst::has_side_effects() const
406 {
407 return this->eot || backend_instruction::has_side_effects();
408 }
409
410 void
411 fs_reg::init()
412 {
413 memset(this, 0, sizeof(*this));
414 stride = 1;
415 }
416
417 /** Generic unset register constructor. */
418 fs_reg::fs_reg()
419 {
420 init();
421 this->file = BAD_FILE;
422 }
423
424 fs_reg::fs_reg(struct ::brw_reg reg) :
425 backend_reg(reg)
426 {
427 this->reg_offset = 0;
428 this->subreg_offset = 0;
429 this->stride = 1;
430 if (this->file == IMM &&
431 (this->type != BRW_REGISTER_TYPE_V &&
432 this->type != BRW_REGISTER_TYPE_UV &&
433 this->type != BRW_REGISTER_TYPE_VF)) {
434 this->stride = 0;
435 }
436 }
437
438 bool
439 fs_reg::equals(const fs_reg &r) const
440 {
441 return (this->backend_reg::equals(r) &&
442 subreg_offset == r.subreg_offset &&
443 stride == r.stride);
444 }
445
446 fs_reg &
447 fs_reg::set_smear(unsigned subreg)
448 {
449 assert(file != ARF && file != FIXED_GRF && file != IMM);
450 subreg_offset = subreg * type_sz(type);
451 stride = 0;
452 return *this;
453 }
454
455 bool
456 fs_reg::is_contiguous() const
457 {
458 return stride == 1;
459 }
460
461 unsigned
462 fs_reg::component_size(unsigned width) const
463 {
464 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
465 hstride == 0 ? 0 :
466 1 << (hstride - 1));
467 return MAX2(width * stride, 1) * type_sz(type);
468 }
469
470 extern "C" int
471 type_size_scalar(const struct glsl_type *type)
472 {
473 unsigned int size, i;
474
475 switch (type->base_type) {
476 case GLSL_TYPE_UINT:
477 case GLSL_TYPE_INT:
478 case GLSL_TYPE_FLOAT:
479 case GLSL_TYPE_BOOL:
480 return type->components();
481 case GLSL_TYPE_DOUBLE:
482 return type->components() * 2;
483 case GLSL_TYPE_ARRAY:
484 return type_size_scalar(type->fields.array) * type->length;
485 case GLSL_TYPE_STRUCT:
486 size = 0;
487 for (i = 0; i < type->length; i++) {
488 size += type_size_scalar(type->fields.structure[i].type);
489 }
490 return size;
491 case GLSL_TYPE_SAMPLER:
492 /* Samplers take up no register space, since they're baked in at
493 * link time.
494 */
495 return 0;
496 case GLSL_TYPE_ATOMIC_UINT:
497 return 0;
498 case GLSL_TYPE_SUBROUTINE:
499 return 1;
500 case GLSL_TYPE_IMAGE:
501 return BRW_IMAGE_PARAM_SIZE;
502 case GLSL_TYPE_VOID:
503 case GLSL_TYPE_ERROR:
504 case GLSL_TYPE_INTERFACE:
505 case GLSL_TYPE_FUNCTION:
506 unreachable("not reached");
507 }
508
509 return 0;
510 }
511
512 /**
513 * Returns the number of scalar components needed to store type, assuming
514 * that vectors are padded out to vec4.
515 *
516 * This has the packing rules of type_size_vec4(), but counts components
517 * similar to type_size_scalar().
518 */
519 extern "C" int
520 type_size_vec4_times_4(const struct glsl_type *type)
521 {
522 return 4 * type_size_vec4(type);
523 }
524
525 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
526 * except for double-precision types, which are loaded as one dvec4.
527 */
528 extern "C" int
529 type_size_vs_input(const struct glsl_type *type)
530 {
531 if (type->is_double()) {
532 return type_size_dvec4(type);
533 } else {
534 return type_size_vec4(type);
535 }
536 }
537
538 /**
539 * Create a MOV to read the timestamp register.
540 *
541 * The caller is responsible for emitting the MOV. The return value is
542 * the destination of the MOV, with extra parameters set.
543 */
544 fs_reg
545 fs_visitor::get_timestamp(const fs_builder &bld)
546 {
547 assert(devinfo->gen >= 7);
548
549 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
550 BRW_ARF_TIMESTAMP,
551 0),
552 BRW_REGISTER_TYPE_UD));
553
554 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
555
556 /* We want to read the 3 fields we care about even if it's not enabled in
557 * the dispatch.
558 */
559 bld.group(4, 0).exec_all().MOV(dst, ts);
560
561 return dst;
562 }
563
564 void
565 fs_visitor::emit_shader_time_begin()
566 {
567 shader_start_time = get_timestamp(bld.annotate("shader time start"));
568
569 /* We want only the low 32 bits of the timestamp. Since it's running
570 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
571 * which is plenty of time for our purposes. It is identical across the
572 * EUs, but since it's tracking GPU core speed it will increment at a
573 * varying rate as render P-states change.
574 */
575 shader_start_time.set_smear(0);
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 /* Insert our code just before the final SEND with EOT. */
582 exec_node *end = this->instructions.get_tail();
583 assert(end && ((fs_inst *) end)->eot);
584 const fs_builder ibld = bld.annotate("shader time end")
585 .exec_all().at(NULL, end);
586
587 fs_reg shader_end_time = get_timestamp(ibld);
588
589 /* We only use the low 32 bits of the timestamp - see
590 * emit_shader_time_begin()).
591 *
592 * We could also check if render P-states have changed (or anything
593 * else that might disrupt timing) by setting smear to 2 and checking if
594 * that field is != 0.
595 */
596 shader_end_time.set_smear(0);
597
598 /* Check that there weren't any timestamp reset events (assuming these
599 * were the only two timestamp reads that happened).
600 */
601 fs_reg reset = shader_end_time;
602 reset.set_smear(2);
603 set_condmod(BRW_CONDITIONAL_Z,
604 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
605 ibld.IF(BRW_PREDICATE_NORMAL);
606
607 fs_reg start = shader_start_time;
608 start.negate = true;
609 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
610 diff.set_smear(0);
611
612 const fs_builder cbld = ibld.group(1, 0);
613 cbld.group(1, 0).ADD(diff, start, shader_end_time);
614
615 /* If there were no instructions between the two timestamp gets, the diff
616 * is 2 cycles. Remove that overhead, so I can forget about that when
617 * trying to determine the time taken for single instructions.
618 */
619 cbld.ADD(diff, diff, brw_imm_ud(-2u));
620 SHADER_TIME_ADD(cbld, 0, diff);
621 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
622 ibld.emit(BRW_OPCODE_ELSE);
623 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
624 ibld.emit(BRW_OPCODE_ENDIF);
625 }
626
627 void
628 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
629 int shader_time_subindex,
630 fs_reg value)
631 {
632 int index = shader_time_index * 3 + shader_time_subindex;
633 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
634
635 fs_reg payload;
636 if (dispatch_width == 8)
637 payload = vgrf(glsl_type::uvec2_type);
638 else
639 payload = vgrf(glsl_type::uint_type);
640
641 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
642 }
643
644 void
645 fs_visitor::vfail(const char *format, va_list va)
646 {
647 char *msg;
648
649 if (failed)
650 return;
651
652 failed = true;
653
654 msg = ralloc_vasprintf(mem_ctx, format, va);
655 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
656
657 this->fail_msg = msg;
658
659 if (debug_enabled) {
660 fprintf(stderr, "%s", msg);
661 }
662 }
663
664 void
665 fs_visitor::fail(const char *format, ...)
666 {
667 va_list va;
668
669 va_start(va, format);
670 vfail(format, va);
671 va_end(va);
672 }
673
674 /**
675 * Mark this program as impossible to compile with dispatch width greater
676 * than n.
677 *
678 * During the SIMD8 compile (which happens first), we can detect and flag
679 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
680 * SIMD16+ compile altogether.
681 *
682 * During a compile of dispatch width greater than n (if one happens anyway),
683 * this just calls fail().
684 */
685 void
686 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
687 {
688 if (dispatch_width > n) {
689 fail("%s", msg);
690 } else {
691 max_dispatch_width = n;
692 compiler->shader_perf_log(log_data,
693 "Shader dispatch width limited to SIMD%d: %s",
694 n, msg);
695 }
696 }
697
698 /**
699 * Returns true if the instruction has a flag that means it won't
700 * update an entire destination register.
701 *
702 * For example, dead code elimination and live variable analysis want to know
703 * when a write to a variable screens off any preceding values that were in
704 * it.
705 */
706 bool
707 fs_inst::is_partial_write() const
708 {
709 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
710 (this->exec_size * type_sz(this->dst.type)) < 32 ||
711 !this->dst.is_contiguous() ||
712 this->dst.subreg_offset > 0);
713 }
714
715 unsigned
716 fs_inst::components_read(unsigned i) const
717 {
718 switch (opcode) {
719 case FS_OPCODE_LINTERP:
720 if (i == 0)
721 return 2;
722 else
723 return 1;
724
725 case FS_OPCODE_PIXEL_X:
726 case FS_OPCODE_PIXEL_Y:
727 assert(i == 0);
728 return 2;
729
730 case FS_OPCODE_FB_WRITE_LOGICAL:
731 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
732 /* First/second FB write color. */
733 if (i < 2)
734 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
735 else
736 return 1;
737
738 case SHADER_OPCODE_TEX_LOGICAL:
739 case SHADER_OPCODE_TXD_LOGICAL:
740 case SHADER_OPCODE_TXF_LOGICAL:
741 case SHADER_OPCODE_TXL_LOGICAL:
742 case SHADER_OPCODE_TXS_LOGICAL:
743 case FS_OPCODE_TXB_LOGICAL:
744 case SHADER_OPCODE_TXF_CMS_LOGICAL:
745 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
746 case SHADER_OPCODE_TXF_UMS_LOGICAL:
747 case SHADER_OPCODE_TXF_MCS_LOGICAL:
748 case SHADER_OPCODE_LOD_LOGICAL:
749 case SHADER_OPCODE_TG4_LOGICAL:
750 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
751 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
752 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
753 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
754 /* Texture coordinates. */
755 if (i == TEX_LOGICAL_SRC_COORDINATE)
756 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
757 /* Texture derivatives. */
758 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
759 opcode == SHADER_OPCODE_TXD_LOGICAL)
760 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
761 /* Texture offset. */
762 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
763 return 2;
764 /* MCS */
765 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
766 return 2;
767 else
768 return 1;
769
770 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
771 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
772 assert(src[3].file == IMM);
773 /* Surface coordinates. */
774 if (i == 0)
775 return src[3].ud;
776 /* Surface operation source (ignored for reads). */
777 else if (i == 1)
778 return 0;
779 else
780 return 1;
781
782 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
783 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
784 assert(src[3].file == IMM &&
785 src[4].file == IMM);
786 /* Surface coordinates. */
787 if (i == 0)
788 return src[3].ud;
789 /* Surface operation source. */
790 else if (i == 1)
791 return src[4].ud;
792 else
793 return 1;
794
795 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
796 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
797 assert(src[3].file == IMM &&
798 src[4].file == IMM);
799 const unsigned op = src[4].ud;
800 /* Surface coordinates. */
801 if (i == 0)
802 return src[3].ud;
803 /* Surface operation source. */
804 else if (i == 1 && op == BRW_AOP_CMPWR)
805 return 2;
806 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
807 op == BRW_AOP_PREDEC))
808 return 0;
809 else
810 return 1;
811 }
812
813 default:
814 return 1;
815 }
816 }
817
818 int
819 fs_inst::regs_read(int arg) const
820 {
821 switch (opcode) {
822 case FS_OPCODE_FB_WRITE:
823 case SHADER_OPCODE_URB_WRITE_SIMD8:
824 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
825 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
826 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
827 case SHADER_OPCODE_URB_READ_SIMD8:
828 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
829 case SHADER_OPCODE_UNTYPED_ATOMIC:
830 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
831 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
832 case SHADER_OPCODE_TYPED_ATOMIC:
833 case SHADER_OPCODE_TYPED_SURFACE_READ:
834 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
835 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
836 if (arg == 0)
837 return mlen;
838 break;
839
840 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
841 /* The payload is actually stored in src1 */
842 if (arg == 1)
843 return mlen;
844 break;
845
846 case FS_OPCODE_LINTERP:
847 if (arg == 1)
848 return 1;
849 break;
850
851 case SHADER_OPCODE_LOAD_PAYLOAD:
852 if (arg < this->header_size)
853 return 1;
854 break;
855
856 case CS_OPCODE_CS_TERMINATE:
857 case SHADER_OPCODE_BARRIER:
858 return 1;
859
860 case SHADER_OPCODE_MOV_INDIRECT:
861 if (arg == 0) {
862 assert(src[2].file == IMM);
863 unsigned region_length = src[2].ud;
864
865 if (src[0].file == UNIFORM) {
866 assert(region_length % 4 == 0);
867 return region_length / 4;
868 } else if (src[0].file == FIXED_GRF) {
869 /* If the start of the region is not register aligned, then
870 * there's some portion of the register that's technically
871 * unread at the beginning.
872 *
873 * However, the register allocator works in terms of whole
874 * registers, and does not use subnr. It assumes that the
875 * read starts at the beginning of the register, and extends
876 * regs_read() whole registers beyond that.
877 *
878 * To compensate, we extend the region length to include this
879 * unread portion at the beginning.
880 */
881 if (src[0].subnr)
882 region_length += src[0].subnr;
883
884 return DIV_ROUND_UP(region_length, REG_SIZE);
885 } else {
886 assert(!"Invalid register file");
887 }
888 }
889 break;
890
891 default:
892 if (is_tex() && arg == 0 && src[0].file == VGRF)
893 return mlen;
894 break;
895 }
896
897 switch (src[arg].file) {
898 case BAD_FILE:
899 return 0;
900 case UNIFORM:
901 case IMM:
902 return 1;
903 case ARF:
904 case FIXED_GRF:
905 case VGRF:
906 case ATTR:
907 return DIV_ROUND_UP(components_read(arg) *
908 src[arg].component_size(exec_size),
909 REG_SIZE);
910 case MRF:
911 unreachable("MRF registers are not allowed as sources");
912 }
913 return 0;
914 }
915
916 namespace {
917 /* Return the subset of flag registers that an instruction could
918 * potentially read or write based on the execution controls and flag
919 * subregister number of the instruction.
920 */
921 unsigned
922 flag_mask(const fs_inst *inst)
923 {
924 const unsigned start = inst->flag_subreg * 16 + inst->group;
925 const unsigned end = start + inst->exec_size;
926 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
927 }
928 }
929
930 unsigned
931 fs_inst::flags_read(const brw_device_info *devinfo) const
932 {
933 /* XXX - This doesn't consider explicit uses of the flag register as source
934 * region.
935 */
936 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
937 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
938 /* The vertical predication modes combine corresponding bits from
939 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
940 */
941 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
942 return flag_mask(this) << shift | flag_mask(this);
943 } else if (predicate) {
944 return flag_mask(this);
945 } else {
946 return 0;
947 }
948 }
949
950 unsigned
951 fs_inst::flags_written() const
952 {
953 /* XXX - This doesn't consider explicit uses of the flag register as
954 * destination region.
955 */
956 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
957 opcode != BRW_OPCODE_IF &&
958 opcode != BRW_OPCODE_WHILE)) ||
959 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
960 return flag_mask(this);
961 } else {
962 return 0;
963 }
964 }
965
966 /**
967 * Returns how many MRFs an FS opcode will write over.
968 *
969 * Note that this is not the 0 or 1 implied writes in an actual gen
970 * instruction -- the FS opcodes often generate MOVs in addition.
971 */
972 int
973 fs_visitor::implied_mrf_writes(fs_inst *inst)
974 {
975 if (inst->mlen == 0)
976 return 0;
977
978 if (inst->base_mrf == -1)
979 return 0;
980
981 switch (inst->opcode) {
982 case SHADER_OPCODE_RCP:
983 case SHADER_OPCODE_RSQ:
984 case SHADER_OPCODE_SQRT:
985 case SHADER_OPCODE_EXP2:
986 case SHADER_OPCODE_LOG2:
987 case SHADER_OPCODE_SIN:
988 case SHADER_OPCODE_COS:
989 return 1 * dispatch_width / 8;
990 case SHADER_OPCODE_POW:
991 case SHADER_OPCODE_INT_QUOTIENT:
992 case SHADER_OPCODE_INT_REMAINDER:
993 return 2 * dispatch_width / 8;
994 case SHADER_OPCODE_TEX:
995 case FS_OPCODE_TXB:
996 case SHADER_OPCODE_TXD:
997 case SHADER_OPCODE_TXF:
998 case SHADER_OPCODE_TXF_CMS:
999 case SHADER_OPCODE_TXF_MCS:
1000 case SHADER_OPCODE_TG4:
1001 case SHADER_OPCODE_TG4_OFFSET:
1002 case SHADER_OPCODE_TXL:
1003 case SHADER_OPCODE_TXS:
1004 case SHADER_OPCODE_LOD:
1005 case SHADER_OPCODE_SAMPLEINFO:
1006 return 1;
1007 case FS_OPCODE_FB_WRITE:
1008 return 2;
1009 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1010 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1011 return 1;
1012 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
1013 return inst->mlen;
1014 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1015 return inst->mlen;
1016 default:
1017 unreachable("not reached");
1018 }
1019 }
1020
1021 fs_reg
1022 fs_visitor::vgrf(const glsl_type *const type)
1023 {
1024 int reg_width = dispatch_width / 8;
1025 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
1026 brw_type_for_base_type(type));
1027 }
1028
1029 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1030 {
1031 init();
1032 this->file = file;
1033 this->nr = nr;
1034 this->type = BRW_REGISTER_TYPE_F;
1035 this->stride = (file == UNIFORM ? 0 : 1);
1036 }
1037
1038 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1039 {
1040 init();
1041 this->file = file;
1042 this->nr = nr;
1043 this->type = type;
1044 this->stride = (file == UNIFORM ? 0 : 1);
1045 }
1046
1047 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1048 * This brings in those uniform definitions
1049 */
1050 void
1051 fs_visitor::import_uniforms(fs_visitor *v)
1052 {
1053 this->push_constant_loc = v->push_constant_loc;
1054 this->pull_constant_loc = v->pull_constant_loc;
1055 this->uniforms = v->uniforms;
1056 }
1057
1058 void
1059 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1060 {
1061 assert(stage == MESA_SHADER_FRAGMENT);
1062
1063 /* gl_FragCoord.x */
1064 bld.MOV(wpos, this->pixel_x);
1065 wpos = offset(wpos, bld, 1);
1066
1067 /* gl_FragCoord.y */
1068 bld.MOV(wpos, this->pixel_y);
1069 wpos = offset(wpos, bld, 1);
1070
1071 /* gl_FragCoord.z */
1072 if (devinfo->gen >= 6) {
1073 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1074 } else {
1075 bld.emit(FS_OPCODE_LINTERP, wpos,
1076 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1077 interp_reg(VARYING_SLOT_POS, 2));
1078 }
1079 wpos = offset(wpos, bld, 1);
1080
1081 /* gl_FragCoord.w: Already set up in emit_interpolation */
1082 bld.MOV(wpos, this->wpos_w);
1083 }
1084
1085 enum brw_barycentric_mode
1086 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1087 {
1088 /* Barycentric modes don't make sense for flat inputs. */
1089 assert(mode != INTERP_MODE_FLAT);
1090
1091 unsigned bary;
1092 switch (op) {
1093 case nir_intrinsic_load_barycentric_pixel:
1094 case nir_intrinsic_load_barycentric_at_offset:
1095 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1096 break;
1097 case nir_intrinsic_load_barycentric_centroid:
1098 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1099 break;
1100 case nir_intrinsic_load_barycentric_sample:
1101 case nir_intrinsic_load_barycentric_at_sample:
1102 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1103 break;
1104 default:
1105 unreachable("invalid intrinsic");
1106 }
1107
1108 if (mode == INTERP_MODE_NOPERSPECTIVE)
1109 bary += 3;
1110
1111 return (enum brw_barycentric_mode) bary;
1112 }
1113
1114 /**
1115 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1116 */
1117 static enum brw_barycentric_mode
1118 centroid_to_pixel(enum brw_barycentric_mode bary)
1119 {
1120 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1121 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1122 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1123 }
1124
1125 fs_reg *
1126 fs_visitor::emit_frontfacing_interpolation()
1127 {
1128 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1129
1130 if (devinfo->gen >= 6) {
1131 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1132 * a boolean result from this (~0/true or 0/false).
1133 *
1134 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1135 * this task in only one instruction:
1136 * - a negation source modifier will flip the bit; and
1137 * - a W -> D type conversion will sign extend the bit into the high
1138 * word of the destination.
1139 *
1140 * An ASR 15 fills the low word of the destination.
1141 */
1142 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1143 g0.negate = true;
1144
1145 bld.ASR(*reg, g0, brw_imm_d(15));
1146 } else {
1147 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1148 * a boolean result from this (1/true or 0/false).
1149 *
1150 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1151 * the negation source modifier to flip it. Unfortunately the SHR
1152 * instruction only operates on UD (or D with an abs source modifier)
1153 * sources without negation.
1154 *
1155 * Instead, use ASR (which will give ~0/true or 0/false).
1156 */
1157 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1158 g1_6.negate = true;
1159
1160 bld.ASR(*reg, g1_6, brw_imm_d(31));
1161 }
1162
1163 return reg;
1164 }
1165
1166 void
1167 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1168 {
1169 assert(stage == MESA_SHADER_FRAGMENT);
1170 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1171 assert(dst.type == BRW_REGISTER_TYPE_F);
1172
1173 if (wm_prog_data->persample_dispatch) {
1174 /* Convert int_sample_pos to floating point */
1175 bld.MOV(dst, int_sample_pos);
1176 /* Scale to the range [0, 1] */
1177 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1178 }
1179 else {
1180 /* From ARB_sample_shading specification:
1181 * "When rendering to a non-multisample buffer, or if multisample
1182 * rasterization is disabled, gl_SamplePosition will always be
1183 * (0.5, 0.5).
1184 */
1185 bld.MOV(dst, brw_imm_f(0.5f));
1186 }
1187 }
1188
1189 fs_reg *
1190 fs_visitor::emit_samplepos_setup()
1191 {
1192 assert(devinfo->gen >= 6);
1193
1194 const fs_builder abld = bld.annotate("compute sample position");
1195 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1196 fs_reg pos = *reg;
1197 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1198 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1199
1200 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1201 * mode will be enabled.
1202 *
1203 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1204 * R31.1:0 Position Offset X/Y for Slot[3:0]
1205 * R31.3:2 Position Offset X/Y for Slot[7:4]
1206 * .....
1207 *
1208 * The X, Y sample positions come in as bytes in thread payload. So, read
1209 * the positions using vstride=16, width=8, hstride=2.
1210 */
1211 struct brw_reg sample_pos_reg =
1212 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1213 BRW_REGISTER_TYPE_B), 16, 8, 2);
1214
1215 if (dispatch_width == 8) {
1216 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1217 } else {
1218 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1219 abld.half(1).MOV(half(int_sample_x, 1),
1220 fs_reg(suboffset(sample_pos_reg, 16)));
1221 }
1222 /* Compute gl_SamplePosition.x */
1223 compute_sample_position(pos, int_sample_x);
1224 pos = offset(pos, abld, 1);
1225 if (dispatch_width == 8) {
1226 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1227 } else {
1228 abld.half(0).MOV(half(int_sample_y, 0),
1229 fs_reg(suboffset(sample_pos_reg, 1)));
1230 abld.half(1).MOV(half(int_sample_y, 1),
1231 fs_reg(suboffset(sample_pos_reg, 17)));
1232 }
1233 /* Compute gl_SamplePosition.y */
1234 compute_sample_position(pos, int_sample_y);
1235 return reg;
1236 }
1237
1238 fs_reg *
1239 fs_visitor::emit_sampleid_setup()
1240 {
1241 assert(stage == MESA_SHADER_FRAGMENT);
1242 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1243 assert(devinfo->gen >= 6);
1244
1245 const fs_builder abld = bld.annotate("compute sample id");
1246 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1247
1248 if (!key->multisample_fbo) {
1249 /* As per GL_ARB_sample_shading specification:
1250 * "When rendering to a non-multisample buffer, or if multisample
1251 * rasterization is disabled, gl_SampleID will always be zero."
1252 */
1253 abld.MOV(*reg, brw_imm_d(0));
1254 } else if (devinfo->gen >= 8) {
1255 /* Sample ID comes in as 4-bit numbers in g1.0:
1256 *
1257 * 15:12 Slot 3 SampleID (only used in SIMD16)
1258 * 11:8 Slot 2 SampleID (only used in SIMD16)
1259 * 7:4 Slot 1 SampleID
1260 * 3:0 Slot 0 SampleID
1261 *
1262 * Each slot corresponds to four channels, so we want to replicate each
1263 * half-byte value to 4 channels in a row:
1264 *
1265 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1266 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1267 *
1268 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1269 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1270 *
1271 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1272 * channels to read the first byte (7:0), and the second group of 8
1273 * channels to read the second byte (15:8). Then, we shift right by
1274 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1275 * values into place. Finally, we AND with 0xf to keep the low nibble.
1276 *
1277 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1278 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1279 *
1280 * TODO: These payload bits exist on Gen7 too, but they appear to always
1281 * be zero, so this code fails to work. We should find out why.
1282 */
1283 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1284
1285 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1286 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1287 brw_imm_v(0x44440000));
1288 abld.AND(*reg, tmp, brw_imm_w(0xf));
1289 } else {
1290 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1291 t1.set_smear(0);
1292 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1293
1294 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1295 * 8x multisampling, subspan 0 will represent sample N (where N
1296 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1297 * 7. We can find the value of N by looking at R0.0 bits 7:6
1298 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1299 * (since samples are always delivered in pairs). That is, we
1300 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1301 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1302 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1303 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1304 * populating a temporary variable with the sequence (0, 1, 2, 3),
1305 * and then reading from it using vstride=1, width=4, hstride=0.
1306 * These computations hold good for 4x multisampling as well.
1307 *
1308 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1309 * the first four slots are sample 0 of subspan 0; the next four
1310 * are sample 1 of subspan 0; the third group is sample 0 of
1311 * subspan 1, and finally sample 1 of subspan 1.
1312 */
1313
1314 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1315 * accomodate 16x MSAA.
1316 */
1317 abld.exec_all().group(1, 0)
1318 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1319 brw_imm_ud(0xc0));
1320 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1321
1322 /* This works for both SIMD8 and SIMD16 */
1323 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1324
1325 /* This special instruction takes care of setting vstride=1,
1326 * width=4, hstride=0 of t2 during an ADD instruction.
1327 */
1328 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1329 }
1330
1331 return reg;
1332 }
1333
1334 fs_reg *
1335 fs_visitor::emit_samplemaskin_setup()
1336 {
1337 assert(stage == MESA_SHADER_FRAGMENT);
1338 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
1339 assert(devinfo->gen >= 6);
1340
1341 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1342
1343 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1344 BRW_REGISTER_TYPE_D));
1345
1346 if (wm_prog_data->persample_dispatch) {
1347 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1348 * and a mask representing which sample is being processed by the
1349 * current shader invocation.
1350 *
1351 * From the OES_sample_variables specification:
1352 * "When per-sample shading is active due to the use of a fragment input
1353 * qualified by "sample" or due to the use of the gl_SampleID or
1354 * gl_SamplePosition variables, only the bit for the current sample is
1355 * set in gl_SampleMaskIn."
1356 */
1357 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1358
1359 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1360 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1361
1362 fs_reg one = vgrf(glsl_type::int_type);
1363 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1364 abld.MOV(one, brw_imm_d(1));
1365 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1366 abld.AND(*reg, enabled_mask, coverage_mask);
1367 } else {
1368 /* In per-pixel mode, the coverage mask is sufficient. */
1369 *reg = coverage_mask;
1370 }
1371 return reg;
1372 }
1373
1374 fs_reg
1375 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1376 {
1377 if (!src.abs && !src.negate)
1378 return src;
1379
1380 fs_reg temp = bld.vgrf(src.type);
1381 bld.MOV(temp, src);
1382
1383 return temp;
1384 }
1385
1386 void
1387 fs_visitor::emit_discard_jump()
1388 {
1389 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1390
1391 /* For performance, after a discard, jump to the end of the
1392 * shader if all relevant channels have been discarded.
1393 */
1394 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1395 discard_jump->flag_subreg = 1;
1396
1397 discard_jump->predicate = (dispatch_width == 8)
1398 ? BRW_PREDICATE_ALIGN1_ANY8H
1399 : BRW_PREDICATE_ALIGN1_ANY16H;
1400 discard_jump->predicate_inverse = true;
1401 }
1402
1403 void
1404 fs_visitor::emit_gs_thread_end()
1405 {
1406 assert(stage == MESA_SHADER_GEOMETRY);
1407
1408 struct brw_gs_prog_data *gs_prog_data =
1409 (struct brw_gs_prog_data *) prog_data;
1410
1411 if (gs_compile->control_data_header_size_bits > 0) {
1412 emit_gs_control_data_bits(this->final_gs_vertex_count);
1413 }
1414
1415 const fs_builder abld = bld.annotate("thread end");
1416 fs_inst *inst;
1417
1418 if (gs_prog_data->static_vertex_count != -1) {
1419 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1420 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1421 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1422 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1423 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1424 prev->eot = true;
1425
1426 /* Delete now dead instructions. */
1427 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1428 if (dead == prev)
1429 break;
1430 dead->remove();
1431 }
1432 return;
1433 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1434 break;
1435 }
1436 }
1437 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1438 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1439 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1440 inst->mlen = 1;
1441 } else {
1442 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1443 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1444 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1445 sources[1] = this->final_gs_vertex_count;
1446 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1447 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1448 inst->mlen = 2;
1449 }
1450 inst->eot = true;
1451 inst->offset = 0;
1452 }
1453
1454 void
1455 fs_visitor::assign_curb_setup()
1456 {
1457 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1458
1459 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1460 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1461 for (unsigned int i = 0; i < inst->sources; i++) {
1462 if (inst->src[i].file == UNIFORM) {
1463 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1464 int constant_nr;
1465 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1466 constant_nr = push_constant_loc[uniform_nr];
1467 } else {
1468 /* Section 5.11 of the OpenGL 4.1 spec says:
1469 * "Out-of-bounds reads return undefined values, which include
1470 * values from other variables of the active program or zero."
1471 * Just return the first push constant.
1472 */
1473 constant_nr = 0;
1474 }
1475
1476 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1477 constant_nr / 8,
1478 constant_nr % 8);
1479 brw_reg.abs = inst->src[i].abs;
1480 brw_reg.negate = inst->src[i].negate;
1481
1482 assert(inst->src[i].stride == 0);
1483 inst->src[i] = byte_offset(
1484 retype(brw_reg, inst->src[i].type),
1485 inst->src[i].subreg_offset);
1486 }
1487 }
1488 }
1489
1490 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1491 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1492 }
1493
1494 void
1495 fs_visitor::calculate_urb_setup()
1496 {
1497 assert(stage == MESA_SHADER_FRAGMENT);
1498 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1499 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1500
1501 memset(prog_data->urb_setup, -1,
1502 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1503
1504 int urb_next = 0;
1505 /* Figure out where each of the incoming setup attributes lands. */
1506 if (devinfo->gen >= 6) {
1507 if (_mesa_bitcount_64(nir->info.inputs_read &
1508 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1509 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1510 * first 16 varying inputs, so we can put them wherever we want.
1511 * Just put them in order.
1512 *
1513 * This is useful because it means that (a) inputs not used by the
1514 * fragment shader won't take up valuable register space, and (b) we
1515 * won't have to recompile the fragment shader if it gets paired with
1516 * a different vertex (or geometry) shader.
1517 */
1518 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1519 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1520 BITFIELD64_BIT(i)) {
1521 prog_data->urb_setup[i] = urb_next++;
1522 }
1523 }
1524 } else {
1525 bool include_vue_header =
1526 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1527
1528 /* We have enough input varyings that the SF/SBE pipeline stage can't
1529 * arbitrarily rearrange them to suit our whim; we have to put them
1530 * in an order that matches the output of the previous pipeline stage
1531 * (geometry or vertex shader).
1532 */
1533 struct brw_vue_map prev_stage_vue_map;
1534 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1535 key->input_slots_valid,
1536 nir->info.separate_shader);
1537 int first_slot =
1538 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1539
1540 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1541 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1542 slot++) {
1543 int varying = prev_stage_vue_map.slot_to_varying[slot];
1544 if (varying != BRW_VARYING_SLOT_PAD &&
1545 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1546 BITFIELD64_BIT(varying))) {
1547 prog_data->urb_setup[varying] = slot - first_slot;
1548 }
1549 }
1550 urb_next = prev_stage_vue_map.num_slots - first_slot;
1551 }
1552 } else {
1553 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1554 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1555 /* Point size is packed into the header, not as a general attribute */
1556 if (i == VARYING_SLOT_PSIZ)
1557 continue;
1558
1559 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1560 /* The back color slot is skipped when the front color is
1561 * also written to. In addition, some slots can be
1562 * written in the vertex shader and not read in the
1563 * fragment shader. So the register number must always be
1564 * incremented, mapped or not.
1565 */
1566 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1567 prog_data->urb_setup[i] = urb_next;
1568 urb_next++;
1569 }
1570 }
1571
1572 /*
1573 * It's a FS only attribute, and we did interpolation for this attribute
1574 * in SF thread. So, count it here, too.
1575 *
1576 * See compile_sf_prog() for more info.
1577 */
1578 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1579 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1580 }
1581
1582 prog_data->num_varying_inputs = urb_next;
1583 }
1584
1585 void
1586 fs_visitor::assign_urb_setup()
1587 {
1588 assert(stage == MESA_SHADER_FRAGMENT);
1589 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1590
1591 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1592
1593 /* Offset all the urb_setup[] index by the actual position of the
1594 * setup regs, now that the location of the constants has been chosen.
1595 */
1596 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1597 if (inst->opcode == FS_OPCODE_LINTERP) {
1598 assert(inst->src[1].file == FIXED_GRF);
1599 inst->src[1].nr += urb_start;
1600 }
1601
1602 if (inst->opcode == FS_OPCODE_CINTERP) {
1603 assert(inst->src[0].file == FIXED_GRF);
1604 inst->src[0].nr += urb_start;
1605 }
1606 }
1607
1608 /* Each attribute is 4 setup channels, each of which is half a reg. */
1609 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1610 }
1611
1612 void
1613 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1614 {
1615 for (int i = 0; i < inst->sources; i++) {
1616 if (inst->src[i].file == ATTR) {
1617 int grf = payload.num_regs +
1618 prog_data->curb_read_length +
1619 inst->src[i].nr +
1620 inst->src[i].reg_offset;
1621
1622 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1623 *
1624 * VertStride must be used to cross GRF register boundaries. This
1625 * rule implies that elements within a 'Width' cannot cross GRF
1626 * boundaries.
1627 *
1628 * So, for registers that are large enough, we have to split the exec
1629 * size in two and trust the compression state to sort it out.
1630 */
1631 unsigned total_size = inst->exec_size *
1632 inst->src[i].stride *
1633 type_sz(inst->src[i].type);
1634
1635 assert(total_size <= 2 * REG_SIZE);
1636 const unsigned exec_size =
1637 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1638
1639 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1640 struct brw_reg reg =
1641 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1642 inst->src[i].subreg_offset),
1643 exec_size * inst->src[i].stride,
1644 width, inst->src[i].stride);
1645 reg.abs = inst->src[i].abs;
1646 reg.negate = inst->src[i].negate;
1647
1648 inst->src[i] = reg;
1649 }
1650 }
1651 }
1652
1653 void
1654 fs_visitor::assign_vs_urb_setup()
1655 {
1656 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1657
1658 assert(stage == MESA_SHADER_VERTEX);
1659
1660 /* Each attribute is 4 regs. */
1661 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1662
1663 assert(vs_prog_data->base.urb_read_length <= 15);
1664
1665 /* Rewrite all ATTR file references to the hw grf that they land in. */
1666 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1667 convert_attr_sources_to_hw_regs(inst);
1668 }
1669 }
1670
1671 void
1672 fs_visitor::assign_tcs_single_patch_urb_setup()
1673 {
1674 assert(stage == MESA_SHADER_TESS_CTRL);
1675
1676 /* Rewrite all ATTR file references to HW_REGs. */
1677 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1678 convert_attr_sources_to_hw_regs(inst);
1679 }
1680 }
1681
1682 void
1683 fs_visitor::assign_tes_urb_setup()
1684 {
1685 assert(stage == MESA_SHADER_TESS_EVAL);
1686
1687 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1688
1689 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1690
1691 /* Rewrite all ATTR file references to HW_REGs. */
1692 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1693 convert_attr_sources_to_hw_regs(inst);
1694 }
1695 }
1696
1697 void
1698 fs_visitor::assign_gs_urb_setup()
1699 {
1700 assert(stage == MESA_SHADER_GEOMETRY);
1701
1702 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1703
1704 first_non_payload_grf +=
1705 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1706
1707 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1708 /* Rewrite all ATTR file references to GRFs. */
1709 convert_attr_sources_to_hw_regs(inst);
1710 }
1711 }
1712
1713
1714 /**
1715 * Split large virtual GRFs into separate components if we can.
1716 *
1717 * This is mostly duplicated with what brw_fs_vector_splitting does,
1718 * but that's really conservative because it's afraid of doing
1719 * splitting that doesn't result in real progress after the rest of
1720 * the optimization phases, which would cause infinite looping in
1721 * optimization. We can do it once here, safely. This also has the
1722 * opportunity to split interpolated values, or maybe even uniforms,
1723 * which we don't have at the IR level.
1724 *
1725 * We want to split, because virtual GRFs are what we register
1726 * allocate and spill (due to contiguousness requirements for some
1727 * instructions), and they're what we naturally generate in the
1728 * codegen process, but most virtual GRFs don't actually need to be
1729 * contiguous sets of GRFs. If we split, we'll end up with reduced
1730 * live intervals and better dead code elimination and coalescing.
1731 */
1732 void
1733 fs_visitor::split_virtual_grfs()
1734 {
1735 int num_vars = this->alloc.count;
1736
1737 /* Count the total number of registers */
1738 int reg_count = 0;
1739 int vgrf_to_reg[num_vars];
1740 for (int i = 0; i < num_vars; i++) {
1741 vgrf_to_reg[i] = reg_count;
1742 reg_count += alloc.sizes[i];
1743 }
1744
1745 /* An array of "split points". For each register slot, this indicates
1746 * if this slot can be separated from the previous slot. Every time an
1747 * instruction uses multiple elements of a register (as a source or
1748 * destination), we mark the used slots as inseparable. Then we go
1749 * through and split the registers into the smallest pieces we can.
1750 */
1751 bool split_points[reg_count];
1752 memset(split_points, 0, sizeof(split_points));
1753
1754 /* Mark all used registers as fully splittable */
1755 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1756 if (inst->dst.file == VGRF) {
1757 int reg = vgrf_to_reg[inst->dst.nr];
1758 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1759 split_points[reg + j] = true;
1760 }
1761
1762 for (int i = 0; i < inst->sources; i++) {
1763 if (inst->src[i].file == VGRF) {
1764 int reg = vgrf_to_reg[inst->src[i].nr];
1765 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1766 split_points[reg + j] = true;
1767 }
1768 }
1769 }
1770
1771 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1772 if (inst->dst.file == VGRF) {
1773 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1774 for (int j = 1; j < inst->regs_written; j++)
1775 split_points[reg + j] = false;
1776 }
1777 for (int i = 0; i < inst->sources; i++) {
1778 if (inst->src[i].file == VGRF) {
1779 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1780 for (int j = 1; j < inst->regs_read(i); j++)
1781 split_points[reg + j] = false;
1782 }
1783 }
1784 }
1785
1786 int new_virtual_grf[reg_count];
1787 int new_reg_offset[reg_count];
1788
1789 int reg = 0;
1790 for (int i = 0; i < num_vars; i++) {
1791 /* The first one should always be 0 as a quick sanity check. */
1792 assert(split_points[reg] == false);
1793
1794 /* j = 0 case */
1795 new_reg_offset[reg] = 0;
1796 reg++;
1797 int offset = 1;
1798
1799 /* j > 0 case */
1800 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1801 /* If this is a split point, reset the offset to 0 and allocate a
1802 * new virtual GRF for the previous offset many registers
1803 */
1804 if (split_points[reg]) {
1805 assert(offset <= MAX_VGRF_SIZE);
1806 int grf = alloc.allocate(offset);
1807 for (int k = reg - offset; k < reg; k++)
1808 new_virtual_grf[k] = grf;
1809 offset = 0;
1810 }
1811 new_reg_offset[reg] = offset;
1812 offset++;
1813 reg++;
1814 }
1815
1816 /* The last one gets the original register number */
1817 assert(offset <= MAX_VGRF_SIZE);
1818 alloc.sizes[i] = offset;
1819 for (int k = reg - offset; k < reg; k++)
1820 new_virtual_grf[k] = i;
1821 }
1822 assert(reg == reg_count);
1823
1824 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1825 if (inst->dst.file == VGRF) {
1826 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1827 inst->dst.nr = new_virtual_grf[reg];
1828 inst->dst.reg_offset = new_reg_offset[reg];
1829 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1830 }
1831 for (int i = 0; i < inst->sources; i++) {
1832 if (inst->src[i].file == VGRF) {
1833 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1834 inst->src[i].nr = new_virtual_grf[reg];
1835 inst->src[i].reg_offset = new_reg_offset[reg];
1836 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1837 }
1838 }
1839 }
1840 invalidate_live_intervals();
1841 }
1842
1843 /**
1844 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1845 *
1846 * During code generation, we create tons of temporary variables, many of
1847 * which get immediately killed and are never used again. Yet, in later
1848 * optimization and analysis passes, such as compute_live_intervals, we need
1849 * to loop over all the virtual GRFs. Compacting them can save a lot of
1850 * overhead.
1851 */
1852 bool
1853 fs_visitor::compact_virtual_grfs()
1854 {
1855 bool progress = false;
1856 int remap_table[this->alloc.count];
1857 memset(remap_table, -1, sizeof(remap_table));
1858
1859 /* Mark which virtual GRFs are used. */
1860 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1861 if (inst->dst.file == VGRF)
1862 remap_table[inst->dst.nr] = 0;
1863
1864 for (int i = 0; i < inst->sources; i++) {
1865 if (inst->src[i].file == VGRF)
1866 remap_table[inst->src[i].nr] = 0;
1867 }
1868 }
1869
1870 /* Compact the GRF arrays. */
1871 int new_index = 0;
1872 for (unsigned i = 0; i < this->alloc.count; i++) {
1873 if (remap_table[i] == -1) {
1874 /* We just found an unused register. This means that we are
1875 * actually going to compact something.
1876 */
1877 progress = true;
1878 } else {
1879 remap_table[i] = new_index;
1880 alloc.sizes[new_index] = alloc.sizes[i];
1881 invalidate_live_intervals();
1882 ++new_index;
1883 }
1884 }
1885
1886 this->alloc.count = new_index;
1887
1888 /* Patch all the instructions to use the newly renumbered registers */
1889 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1890 if (inst->dst.file == VGRF)
1891 inst->dst.nr = remap_table[inst->dst.nr];
1892
1893 for (int i = 0; i < inst->sources; i++) {
1894 if (inst->src[i].file == VGRF)
1895 inst->src[i].nr = remap_table[inst->src[i].nr];
1896 }
1897 }
1898
1899 /* Patch all the references to delta_xy, since they're used in register
1900 * allocation. If they're unused, switch them to BAD_FILE so we don't
1901 * think some random VGRF is delta_xy.
1902 */
1903 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1904 if (delta_xy[i].file == VGRF) {
1905 if (remap_table[delta_xy[i].nr] != -1) {
1906 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1907 } else {
1908 delta_xy[i].file = BAD_FILE;
1909 }
1910 }
1911 }
1912
1913 return progress;
1914 }
1915
1916 static void
1917 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1918 int *push_constant_loc, int *pull_constant_loc,
1919 unsigned *num_push_constants,
1920 unsigned *num_pull_constants,
1921 const unsigned max_push_components,
1922 const unsigned max_chunk_size,
1923 struct brw_stage_prog_data *stage_prog_data)
1924 {
1925 /* This is the first live uniform in the chunk */
1926 if (*chunk_start < 0)
1927 *chunk_start = uniform;
1928
1929 /* If this element does not need to be contiguous with the next, we
1930 * split at this point and everything between chunk_start and u forms a
1931 * single chunk.
1932 */
1933 if (!contiguous) {
1934 unsigned chunk_size = uniform - *chunk_start + 1;
1935
1936 /* Decide whether we should push or pull this parameter. In the
1937 * Vulkan driver, push constants are explicitly exposed via the API
1938 * so we push everything. In GL, we only push small arrays.
1939 */
1940 if (stage_prog_data->pull_param == NULL ||
1941 (*num_push_constants + chunk_size <= max_push_components &&
1942 chunk_size <= max_chunk_size)) {
1943 assert(*num_push_constants + chunk_size <= max_push_components);
1944 for (unsigned j = *chunk_start; j <= uniform; j++)
1945 push_constant_loc[j] = (*num_push_constants)++;
1946 } else {
1947 for (unsigned j = *chunk_start; j <= uniform; j++)
1948 pull_constant_loc[j] = (*num_pull_constants)++;
1949 }
1950
1951 *chunk_start = -1;
1952 }
1953 }
1954
1955 /**
1956 * Assign UNIFORM file registers to either push constants or pull constants.
1957 *
1958 * We allow a fragment shader to have more than the specified minimum
1959 * maximum number of fragment shader uniform components (64). If
1960 * there are too many of these, they'd fill up all of register space.
1961 * So, this will push some of them out to the pull constant buffer and
1962 * update the program to load them.
1963 */
1964 void
1965 fs_visitor::assign_constant_locations()
1966 {
1967 /* Only the first compile gets to decide on locations. */
1968 if (dispatch_width != min_dispatch_width)
1969 return;
1970
1971 bool is_live[uniforms];
1972 memset(is_live, 0, sizeof(is_live));
1973 bool is_live_64bit[uniforms];
1974 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1975
1976 /* For each uniform slot, a value of true indicates that the given slot and
1977 * the next slot must remain contiguous. This is used to keep us from
1978 * splitting arrays apart.
1979 */
1980 bool contiguous[uniforms];
1981 memset(contiguous, 0, sizeof(contiguous));
1982
1983 int thread_local_id_index =
1984 (stage == MESA_SHADER_COMPUTE) ?
1985 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index : -1;
1986
1987 /* First, we walk through the instructions and do two things:
1988 *
1989 * 1) Figure out which uniforms are live.
1990 *
1991 * 2) Mark any indirectly used ranges of registers as contiguous.
1992 *
1993 * Note that we don't move constant-indexed accesses to arrays. No
1994 * testing has been done of the performance impact of this choice.
1995 */
1996 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1997 for (int i = 0 ; i < inst->sources; i++) {
1998 if (inst->src[i].file != UNIFORM)
1999 continue;
2000
2001 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
2002
2003 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
2004 assert(inst->src[2].ud % 4 == 0);
2005 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
2006 assert(last < uniforms);
2007
2008 for (unsigned j = constant_nr; j < last; j++) {
2009 is_live[j] = true;
2010 contiguous[j] = true;
2011 if (type_sz(inst->src[i].type) == 8) {
2012 is_live_64bit[j] = true;
2013 }
2014 }
2015 is_live[last] = true;
2016 } else {
2017 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
2018 int regs_read = inst->components_read(i) *
2019 type_sz(inst->src[i].type) / 4;
2020 for (int j = 0; j < regs_read; j++) {
2021 is_live[constant_nr + j] = true;
2022 if (type_sz(inst->src[i].type) == 8) {
2023 is_live_64bit[constant_nr + j] = true;
2024 }
2025 }
2026 }
2027 }
2028 }
2029 }
2030
2031 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
2032 thread_local_id_index = -1;
2033
2034 /* Only allow 16 registers (128 uniform components) as push constants.
2035 *
2036 * Just demote the end of the list. We could probably do better
2037 * here, demoting things that are rarely used in the program first.
2038 *
2039 * If changing this value, note the limitation about total_regs in
2040 * brw_curbe.c.
2041 */
2042 unsigned int max_push_components = 16 * 8;
2043 if (thread_local_id_index >= 0)
2044 max_push_components--; /* Save a slot for the thread ID */
2045
2046 /* We push small arrays, but no bigger than 16 floats. This is big enough
2047 * for a vec4 but hopefully not large enough to push out other stuff. We
2048 * should probably use a better heuristic at some point.
2049 */
2050 const unsigned int max_chunk_size = 16;
2051
2052 unsigned int num_push_constants = 0;
2053 unsigned int num_pull_constants = 0;
2054
2055 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2056 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2057
2058 /* Default to -1 meaning no location */
2059 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2060 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2061
2062 int chunk_start = -1;
2063
2064 /* First push 64-bit uniforms to ensure they are properly aligned */
2065 for (unsigned u = 0; u < uniforms; u++) {
2066 if (!is_live[u] || !is_live_64bit[u])
2067 continue;
2068
2069 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2070 push_constant_loc, pull_constant_loc,
2071 &num_push_constants, &num_pull_constants,
2072 max_push_components, max_chunk_size,
2073 stage_prog_data);
2074
2075 }
2076
2077 /* Then push the rest of uniforms */
2078 for (unsigned u = 0; u < uniforms; u++) {
2079 if (!is_live[u] || is_live_64bit[u])
2080 continue;
2081
2082 /* Skip thread_local_id_index to put it in the last push register. */
2083 if (thread_local_id_index == (int)u)
2084 continue;
2085
2086 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2087 push_constant_loc, pull_constant_loc,
2088 &num_push_constants, &num_pull_constants,
2089 max_push_components, max_chunk_size,
2090 stage_prog_data);
2091 }
2092
2093 /* Add the CS local thread ID uniform at the end of the push constants */
2094 if (thread_local_id_index >= 0)
2095 push_constant_loc[thread_local_id_index] = num_push_constants++;
2096
2097 /* As the uniforms are going to be reordered, take the data from a temporary
2098 * copy of the original param[].
2099 */
2100 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2101 stage_prog_data->nr_params);
2102 memcpy(param, stage_prog_data->param,
2103 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2104 stage_prog_data->nr_params = num_push_constants;
2105 stage_prog_data->nr_pull_params = num_pull_constants;
2106
2107 /* Up until now, the param[] array has been indexed by reg + reg_offset
2108 * of UNIFORM registers. Move pull constants into pull_param[] and
2109 * condense param[] to only contain the uniforms we chose to push.
2110 *
2111 * NOTE: Because we are condensing the params[] array, we know that
2112 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2113 * having to make a copy.
2114 */
2115 int new_thread_local_id_index = -1;
2116 for (unsigned int i = 0; i < uniforms; i++) {
2117 const gl_constant_value *value = param[i];
2118
2119 if (pull_constant_loc[i] != -1) {
2120 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2121 } else if (push_constant_loc[i] != -1) {
2122 stage_prog_data->param[push_constant_loc[i]] = value;
2123 if (thread_local_id_index == (int)i)
2124 new_thread_local_id_index = push_constant_loc[i];
2125 }
2126 }
2127 ralloc_free(param);
2128
2129 if (stage == MESA_SHADER_COMPUTE)
2130 ((brw_cs_prog_data*)stage_prog_data)->thread_local_id_index =
2131 new_thread_local_id_index;
2132 }
2133
2134 /**
2135 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2136 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2137 */
2138 void
2139 fs_visitor::lower_constant_loads()
2140 {
2141 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2142
2143 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2144 /* Set up the annotation tracking for new generated instructions. */
2145 const fs_builder ibld(this, block, inst);
2146
2147 for (int i = 0; i < inst->sources; i++) {
2148 if (inst->src[i].file != UNIFORM)
2149 continue;
2150
2151 /* We'll handle this case later */
2152 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2153 continue;
2154
2155 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2156 if (location >= uniforms)
2157 continue; /* Out of bounds access */
2158
2159 int pull_index = pull_constant_loc[location];
2160
2161 if (pull_index == -1)
2162 continue;
2163
2164 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2165 fs_reg dst;
2166
2167 if (type_sz(inst->src[i].type) <= 4)
2168 dst = vgrf(glsl_type::float_type);
2169 else
2170 dst = vgrf(glsl_type::double_type);
2171
2172 assert(inst->src[i].stride == 0);
2173
2174 const fs_builder ubld = ibld.exec_all().group(8, 0);
2175 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2176 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2177 dst, brw_imm_ud(index), offset);
2178
2179 /* Rewrite the instruction to use the temporary VGRF. */
2180 inst->src[i].file = VGRF;
2181 inst->src[i].nr = dst.nr;
2182 inst->src[i].reg_offset = 0;
2183 inst->src[i].set_smear((pull_index & 3) * 4 /
2184 type_sz(inst->src[i].type));
2185
2186 brw_mark_surface_used(prog_data, index);
2187 }
2188
2189 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2190 inst->src[0].file == UNIFORM) {
2191
2192 unsigned location = inst->src[0].nr + inst->src[0].reg_offset;
2193 if (location >= uniforms)
2194 continue; /* Out of bounds access */
2195
2196 int pull_index = pull_constant_loc[location];
2197
2198 if (pull_index == -1)
2199 continue;
2200
2201 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2202 brw_imm_ud(index),
2203 inst->src[1],
2204 pull_index * 4);
2205 inst->remove(block);
2206
2207 brw_mark_surface_used(prog_data, index);
2208 }
2209 }
2210 invalidate_live_intervals();
2211 }
2212
2213 bool
2214 fs_visitor::opt_algebraic()
2215 {
2216 bool progress = false;
2217
2218 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2219 switch (inst->opcode) {
2220 case BRW_OPCODE_MOV:
2221 if (inst->src[0].file != IMM)
2222 break;
2223
2224 if (inst->saturate) {
2225 if (inst->dst.type != inst->src[0].type)
2226 assert(!"unimplemented: saturate mixed types");
2227
2228 if (brw_saturate_immediate(inst->dst.type,
2229 &inst->src[0].as_brw_reg())) {
2230 inst->saturate = false;
2231 progress = true;
2232 }
2233 }
2234 break;
2235
2236 case BRW_OPCODE_MUL:
2237 if (inst->src[1].file != IMM)
2238 continue;
2239
2240 /* a * 1.0 = a */
2241 if (inst->src[1].is_one()) {
2242 inst->opcode = BRW_OPCODE_MOV;
2243 inst->src[1] = reg_undef;
2244 progress = true;
2245 break;
2246 }
2247
2248 /* a * -1.0 = -a */
2249 if (inst->src[1].is_negative_one()) {
2250 inst->opcode = BRW_OPCODE_MOV;
2251 inst->src[0].negate = !inst->src[0].negate;
2252 inst->src[1] = reg_undef;
2253 progress = true;
2254 break;
2255 }
2256
2257 /* a * 0.0 = 0.0 */
2258 if (inst->src[1].is_zero()) {
2259 inst->opcode = BRW_OPCODE_MOV;
2260 inst->src[0] = inst->src[1];
2261 inst->src[1] = reg_undef;
2262 progress = true;
2263 break;
2264 }
2265
2266 if (inst->src[0].file == IMM) {
2267 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2268 inst->opcode = BRW_OPCODE_MOV;
2269 inst->src[0].f *= inst->src[1].f;
2270 inst->src[1] = reg_undef;
2271 progress = true;
2272 break;
2273 }
2274 break;
2275 case BRW_OPCODE_ADD:
2276 if (inst->src[1].file != IMM)
2277 continue;
2278
2279 /* a + 0.0 = a */
2280 if (inst->src[1].is_zero()) {
2281 inst->opcode = BRW_OPCODE_MOV;
2282 inst->src[1] = reg_undef;
2283 progress = true;
2284 break;
2285 }
2286
2287 if (inst->src[0].file == IMM) {
2288 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2289 inst->opcode = BRW_OPCODE_MOV;
2290 inst->src[0].f += inst->src[1].f;
2291 inst->src[1] = reg_undef;
2292 progress = true;
2293 break;
2294 }
2295 break;
2296 case BRW_OPCODE_OR:
2297 if (inst->src[0].equals(inst->src[1])) {
2298 inst->opcode = BRW_OPCODE_MOV;
2299 inst->src[1] = reg_undef;
2300 progress = true;
2301 break;
2302 }
2303 break;
2304 case BRW_OPCODE_LRP:
2305 if (inst->src[1].equals(inst->src[2])) {
2306 inst->opcode = BRW_OPCODE_MOV;
2307 inst->src[0] = inst->src[1];
2308 inst->src[1] = reg_undef;
2309 inst->src[2] = reg_undef;
2310 progress = true;
2311 break;
2312 }
2313 break;
2314 case BRW_OPCODE_CMP:
2315 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2316 inst->src[0].abs &&
2317 inst->src[0].negate &&
2318 inst->src[1].is_zero()) {
2319 inst->src[0].abs = false;
2320 inst->src[0].negate = false;
2321 inst->conditional_mod = BRW_CONDITIONAL_Z;
2322 progress = true;
2323 break;
2324 }
2325 break;
2326 case BRW_OPCODE_SEL:
2327 if (inst->src[0].equals(inst->src[1])) {
2328 inst->opcode = BRW_OPCODE_MOV;
2329 inst->src[1] = reg_undef;
2330 inst->predicate = BRW_PREDICATE_NONE;
2331 inst->predicate_inverse = false;
2332 progress = true;
2333 } else if (inst->saturate && inst->src[1].file == IMM) {
2334 switch (inst->conditional_mod) {
2335 case BRW_CONDITIONAL_LE:
2336 case BRW_CONDITIONAL_L:
2337 switch (inst->src[1].type) {
2338 case BRW_REGISTER_TYPE_F:
2339 if (inst->src[1].f >= 1.0f) {
2340 inst->opcode = BRW_OPCODE_MOV;
2341 inst->src[1] = reg_undef;
2342 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2343 progress = true;
2344 }
2345 break;
2346 default:
2347 break;
2348 }
2349 break;
2350 case BRW_CONDITIONAL_GE:
2351 case BRW_CONDITIONAL_G:
2352 switch (inst->src[1].type) {
2353 case BRW_REGISTER_TYPE_F:
2354 if (inst->src[1].f <= 0.0f) {
2355 inst->opcode = BRW_OPCODE_MOV;
2356 inst->src[1] = reg_undef;
2357 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2358 progress = true;
2359 }
2360 break;
2361 default:
2362 break;
2363 }
2364 default:
2365 break;
2366 }
2367 }
2368 break;
2369 case BRW_OPCODE_MAD:
2370 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2371 inst->opcode = BRW_OPCODE_MOV;
2372 inst->src[1] = reg_undef;
2373 inst->src[2] = reg_undef;
2374 progress = true;
2375 } else if (inst->src[0].is_zero()) {
2376 inst->opcode = BRW_OPCODE_MUL;
2377 inst->src[0] = inst->src[2];
2378 inst->src[2] = reg_undef;
2379 progress = true;
2380 } else if (inst->src[1].is_one()) {
2381 inst->opcode = BRW_OPCODE_ADD;
2382 inst->src[1] = inst->src[2];
2383 inst->src[2] = reg_undef;
2384 progress = true;
2385 } else if (inst->src[2].is_one()) {
2386 inst->opcode = BRW_OPCODE_ADD;
2387 inst->src[2] = reg_undef;
2388 progress = true;
2389 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2390 inst->opcode = BRW_OPCODE_ADD;
2391 inst->src[1].f *= inst->src[2].f;
2392 inst->src[2] = reg_undef;
2393 progress = true;
2394 }
2395 break;
2396 case SHADER_OPCODE_BROADCAST:
2397 if (is_uniform(inst->src[0])) {
2398 inst->opcode = BRW_OPCODE_MOV;
2399 inst->sources = 1;
2400 inst->force_writemask_all = true;
2401 progress = true;
2402 } else if (inst->src[1].file == IMM) {
2403 inst->opcode = BRW_OPCODE_MOV;
2404 inst->src[0] = component(inst->src[0],
2405 inst->src[1].ud);
2406 inst->sources = 1;
2407 inst->force_writemask_all = true;
2408 progress = true;
2409 }
2410 break;
2411
2412 default:
2413 break;
2414 }
2415
2416 /* Swap if src[0] is immediate. */
2417 if (progress && inst->is_commutative()) {
2418 if (inst->src[0].file == IMM) {
2419 fs_reg tmp = inst->src[1];
2420 inst->src[1] = inst->src[0];
2421 inst->src[0] = tmp;
2422 }
2423 }
2424 }
2425 return progress;
2426 }
2427
2428 /**
2429 * Optimize sample messages that have constant zero values for the trailing
2430 * texture coordinates. We can just reduce the message length for these
2431 * instructions instead of reserving a register for it. Trailing parameters
2432 * that aren't sent default to zero anyway. This will cause the dead code
2433 * eliminator to remove the MOV instruction that would otherwise be emitted to
2434 * set up the zero value.
2435 */
2436 bool
2437 fs_visitor::opt_zero_samples()
2438 {
2439 /* Gen4 infers the texturing opcode based on the message length so we can't
2440 * change it.
2441 */
2442 if (devinfo->gen < 5)
2443 return false;
2444
2445 bool progress = false;
2446
2447 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2448 if (!inst->is_tex())
2449 continue;
2450
2451 fs_inst *load_payload = (fs_inst *) inst->prev;
2452
2453 if (load_payload->is_head_sentinel() ||
2454 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2455 continue;
2456
2457 /* We don't want to remove the message header or the first parameter.
2458 * Removing the first parameter is not allowed, see the Haswell PRM
2459 * volume 7, page 149:
2460 *
2461 * "Parameter 0 is required except for the sampleinfo message, which
2462 * has no parameter 0"
2463 */
2464 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2465 load_payload->src[(inst->mlen - inst->header_size) /
2466 (inst->exec_size / 8) +
2467 inst->header_size - 1].is_zero()) {
2468 inst->mlen -= inst->exec_size / 8;
2469 progress = true;
2470 }
2471 }
2472
2473 if (progress)
2474 invalidate_live_intervals();
2475
2476 return progress;
2477 }
2478
2479 /**
2480 * Optimize sample messages which are followed by the final RT write.
2481 *
2482 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2483 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2484 * final texturing results copied to the framebuffer write payload and modify
2485 * them to write to the framebuffer directly.
2486 */
2487 bool
2488 fs_visitor::opt_sampler_eot()
2489 {
2490 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2491
2492 if (stage != MESA_SHADER_FRAGMENT)
2493 return false;
2494
2495 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2496 return false;
2497
2498 /* FINISHME: It should be possible to implement this optimization when there
2499 * are multiple drawbuffers.
2500 */
2501 if (key->nr_color_regions != 1)
2502 return false;
2503
2504 /* Requires emitting a bunch of saturating MOV instructions during logical
2505 * send lowering to clamp the color payload, which the sampler unit isn't
2506 * going to do for us.
2507 */
2508 if (key->clamp_fragment_color)
2509 return false;
2510
2511 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2512 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2513 fs_inst *fb_write = (fs_inst *)block->end();
2514 assert(fb_write->eot);
2515 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2516
2517 /* There wasn't one; nothing to do. */
2518 if (unlikely(fb_write->prev->is_head_sentinel()))
2519 return false;
2520
2521 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2522
2523 /* 3D Sampler » Messages » Message Format
2524 *
2525 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2526 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2527 */
2528 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2529 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2530 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2531 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2532 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2533 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2534 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2535 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2536 return false;
2537
2538 /* XXX - This shouldn't be necessary. */
2539 if (tex_inst->prev->is_head_sentinel())
2540 return false;
2541
2542 /* Check that the FB write sources are fully initialized by the single
2543 * texturing instruction.
2544 */
2545 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2546 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2547 if (!fb_write->src[i].equals(tex_inst->dst) ||
2548 fb_write->regs_read(i) != tex_inst->regs_written)
2549 return false;
2550 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2551 if (fb_write->src[i].file != BAD_FILE)
2552 return false;
2553 }
2554 }
2555
2556 assert(!tex_inst->eot); /* We can't get here twice */
2557 assert((tex_inst->offset & (0xff << 24)) == 0);
2558
2559 const fs_builder ibld(this, block, tex_inst);
2560
2561 tex_inst->offset |= fb_write->target << 24;
2562 tex_inst->eot = true;
2563 tex_inst->dst = ibld.null_reg_ud();
2564 tex_inst->regs_written = 0;
2565 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2566
2567 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2568 * flag and submit a header together with the sampler message as required
2569 * by the hardware.
2570 */
2571 invalidate_live_intervals();
2572 return true;
2573 }
2574
2575 bool
2576 fs_visitor::opt_register_renaming()
2577 {
2578 bool progress = false;
2579 int depth = 0;
2580
2581 int remap[alloc.count];
2582 memset(remap, -1, sizeof(int) * alloc.count);
2583
2584 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2585 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2586 depth++;
2587 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2588 inst->opcode == BRW_OPCODE_WHILE) {
2589 depth--;
2590 }
2591
2592 /* Rewrite instruction sources. */
2593 for (int i = 0; i < inst->sources; i++) {
2594 if (inst->src[i].file == VGRF &&
2595 remap[inst->src[i].nr] != -1 &&
2596 remap[inst->src[i].nr] != inst->src[i].nr) {
2597 inst->src[i].nr = remap[inst->src[i].nr];
2598 progress = true;
2599 }
2600 }
2601
2602 const int dst = inst->dst.nr;
2603
2604 if (depth == 0 &&
2605 inst->dst.file == VGRF &&
2606 alloc.sizes[inst->dst.nr] == inst->regs_written &&
2607 !inst->is_partial_write()) {
2608 if (remap[dst] == -1) {
2609 remap[dst] = dst;
2610 } else {
2611 remap[dst] = alloc.allocate(inst->regs_written);
2612 inst->dst.nr = remap[dst];
2613 progress = true;
2614 }
2615 } else if (inst->dst.file == VGRF &&
2616 remap[dst] != -1 &&
2617 remap[dst] != dst) {
2618 inst->dst.nr = remap[dst];
2619 progress = true;
2620 }
2621 }
2622
2623 if (progress) {
2624 invalidate_live_intervals();
2625
2626 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2627 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2628 delta_xy[i].nr = remap[delta_xy[i].nr];
2629 }
2630 }
2631 }
2632
2633 return progress;
2634 }
2635
2636 /**
2637 * Remove redundant or useless discard jumps.
2638 *
2639 * For example, we can eliminate jumps in the following sequence:
2640 *
2641 * discard-jump (redundant with the next jump)
2642 * discard-jump (useless; jumps to the next instruction)
2643 * placeholder-halt
2644 */
2645 bool
2646 fs_visitor::opt_redundant_discard_jumps()
2647 {
2648 bool progress = false;
2649
2650 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2651
2652 fs_inst *placeholder_halt = NULL;
2653 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2654 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2655 placeholder_halt = inst;
2656 break;
2657 }
2658 }
2659
2660 if (!placeholder_halt)
2661 return false;
2662
2663 /* Delete any HALTs immediately before the placeholder halt. */
2664 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2665 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2666 prev = (fs_inst *) placeholder_halt->prev) {
2667 prev->remove(last_bblock);
2668 progress = true;
2669 }
2670
2671 if (progress)
2672 invalidate_live_intervals();
2673
2674 return progress;
2675 }
2676
2677 /**
2678 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2679 * from \p r which overlaps the region starting at \p r and spanning \p n GRF
2680 * units.
2681 */
2682 static inline unsigned
2683 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned n)
2684 {
2685 const int rel_offset = (reg_offset(s) - reg_offset(r)) / REG_SIZE;
2686 assert(reg_space(r) == reg_space(s) &&
2687 rel_offset >= 0 && rel_offset < int(8 * sizeof(unsigned)));
2688 return ((1 << n) - 1) << rel_offset;
2689 }
2690
2691 bool
2692 fs_visitor::compute_to_mrf()
2693 {
2694 bool progress = false;
2695 int next_ip = 0;
2696
2697 /* No MRFs on Gen >= 7. */
2698 if (devinfo->gen >= 7)
2699 return false;
2700
2701 calculate_live_intervals();
2702
2703 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2704 int ip = next_ip;
2705 next_ip++;
2706
2707 if (inst->opcode != BRW_OPCODE_MOV ||
2708 inst->is_partial_write() ||
2709 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2710 inst->dst.type != inst->src[0].type ||
2711 inst->src[0].abs || inst->src[0].negate ||
2712 !inst->src[0].is_contiguous() ||
2713 inst->src[0].subreg_offset)
2714 continue;
2715
2716 /* Can't compute-to-MRF this GRF if someone else was going to
2717 * read it later.
2718 */
2719 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2720 continue;
2721
2722 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2723 * things that computed the value of all GRFs of the source region. The
2724 * regs_left bitset keeps track of the registers we haven't yet found a
2725 * generating instruction for.
2726 */
2727 unsigned regs_left = (1 << inst->regs_read(0)) - 1;
2728
2729 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2730 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2731 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2732 /* Found the last thing to write our reg we want to turn
2733 * into a compute-to-MRF.
2734 */
2735
2736 /* If this one instruction didn't populate all the
2737 * channels, bail. We might be able to rewrite everything
2738 * that writes that reg, but it would require smarter
2739 * tracking.
2740 */
2741 if (scan_inst->is_partial_write())
2742 break;
2743
2744 /* Handling things not fully contained in the source of the copy
2745 * would need us to understand coalescing out more than one MOV at
2746 * a time.
2747 */
2748 if (scan_inst->dst.reg_offset < inst->src[0].reg_offset ||
2749 scan_inst->dst.reg_offset + scan_inst->regs_written >
2750 inst->src[0].reg_offset + inst->regs_read(0))
2751 break;
2752
2753 /* SEND instructions can't have MRF as a destination. */
2754 if (scan_inst->mlen)
2755 break;
2756
2757 if (devinfo->gen == 6) {
2758 /* gen6 math instructions must have the destination be
2759 * GRF, so no compute-to-MRF for them.
2760 */
2761 if (scan_inst->is_math()) {
2762 break;
2763 }
2764 }
2765
2766 /* Clear the bits for any registers this instruction overwrites. */
2767 regs_left &= ~mask_relative_to(
2768 inst->src[0], scan_inst->dst, scan_inst->regs_written);
2769 if (!regs_left)
2770 break;
2771 }
2772
2773 /* We don't handle control flow here. Most computation of
2774 * values that end up in MRFs are shortly before the MRF
2775 * write anyway.
2776 */
2777 if (block->start() == scan_inst)
2778 break;
2779
2780 /* You can't read from an MRF, so if someone else reads our
2781 * MRF's source GRF that we wanted to rewrite, that stops us.
2782 */
2783 bool interfered = false;
2784 for (int i = 0; i < scan_inst->sources; i++) {
2785 if (regions_overlap(scan_inst->src[i], scan_inst->regs_read(i) * REG_SIZE,
2786 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2787 interfered = true;
2788 }
2789 }
2790 if (interfered)
2791 break;
2792
2793 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2794 inst->dst, inst->regs_written * REG_SIZE)) {
2795 /* If somebody else writes our MRF here, we can't
2796 * compute-to-MRF before that.
2797 */
2798 break;
2799 }
2800
2801 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2802 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2803 inst->dst, inst->regs_written * REG_SIZE)) {
2804 /* Found a SEND instruction, which means that there are
2805 * live values in MRFs from base_mrf to base_mrf +
2806 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2807 * above it.
2808 */
2809 break;
2810 }
2811 }
2812
2813 if (regs_left)
2814 continue;
2815
2816 /* Found all generating instructions of our MRF's source value, so it
2817 * should be safe to rewrite them to point to the MRF directly.
2818 */
2819 regs_left = (1 << inst->regs_read(0)) - 1;
2820
2821 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2822 if (regions_overlap(scan_inst->dst, scan_inst->regs_written * REG_SIZE,
2823 inst->src[0], inst->regs_read(0) * REG_SIZE)) {
2824 /* Clear the bits for any registers this instruction overwrites. */
2825 regs_left &= ~mask_relative_to(
2826 inst->src[0], scan_inst->dst, scan_inst->regs_written);
2827
2828 const unsigned rel_offset = (reg_offset(scan_inst->dst) -
2829 reg_offset(inst->src[0])) / REG_SIZE;
2830
2831 if (inst->dst.nr & BRW_MRF_COMPR4) {
2832 /* Apply the same address transformation done by the hardware
2833 * for COMPR4 MRF writes.
2834 */
2835 assert(rel_offset < 2);
2836 scan_inst->dst.nr = inst->dst.nr + rel_offset * 4;
2837
2838 /* Clear the COMPR4 bit if the generating instruction is not
2839 * compressed.
2840 */
2841 if (scan_inst->regs_written < 2)
2842 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2843
2844 } else {
2845 /* Calculate the MRF number the result of this instruction is
2846 * ultimately written to.
2847 */
2848 scan_inst->dst.nr = inst->dst.nr + rel_offset;
2849 }
2850
2851 scan_inst->dst.file = MRF;
2852 scan_inst->dst.reg_offset = 0;
2853 scan_inst->saturate |= inst->saturate;
2854 if (!regs_left)
2855 break;
2856 }
2857 }
2858
2859 assert(!regs_left);
2860 inst->remove(block);
2861 progress = true;
2862 }
2863
2864 if (progress)
2865 invalidate_live_intervals();
2866
2867 return progress;
2868 }
2869
2870 /**
2871 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2872 * flow. We could probably do better here with some form of divergence
2873 * analysis.
2874 */
2875 bool
2876 fs_visitor::eliminate_find_live_channel()
2877 {
2878 bool progress = false;
2879 unsigned depth = 0;
2880
2881 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2882 switch (inst->opcode) {
2883 case BRW_OPCODE_IF:
2884 case BRW_OPCODE_DO:
2885 depth++;
2886 break;
2887
2888 case BRW_OPCODE_ENDIF:
2889 case BRW_OPCODE_WHILE:
2890 depth--;
2891 break;
2892
2893 case FS_OPCODE_DISCARD_JUMP:
2894 /* This can potentially make control flow non-uniform until the end
2895 * of the program.
2896 */
2897 return progress;
2898
2899 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2900 if (depth == 0) {
2901 inst->opcode = BRW_OPCODE_MOV;
2902 inst->src[0] = brw_imm_ud(0u);
2903 inst->sources = 1;
2904 inst->force_writemask_all = true;
2905 progress = true;
2906 }
2907 break;
2908
2909 default:
2910 break;
2911 }
2912 }
2913
2914 return progress;
2915 }
2916
2917 /**
2918 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2919 * instructions to FS_OPCODE_REP_FB_WRITE.
2920 */
2921 void
2922 fs_visitor::emit_repclear_shader()
2923 {
2924 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2925 int base_mrf = 0;
2926 int color_mrf = base_mrf + 2;
2927 fs_inst *mov;
2928
2929 if (uniforms > 0) {
2930 mov = bld.exec_all().group(4, 0)
2931 .MOV(brw_message_reg(color_mrf),
2932 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2933 } else {
2934 struct brw_reg reg =
2935 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2936 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2937 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2938
2939 mov = bld.exec_all().group(4, 0)
2940 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2941 }
2942
2943 fs_inst *write;
2944 if (key->nr_color_regions == 1) {
2945 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2946 write->saturate = key->clamp_fragment_color;
2947 write->base_mrf = color_mrf;
2948 write->target = 0;
2949 write->header_size = 0;
2950 write->mlen = 1;
2951 } else {
2952 assume(key->nr_color_regions > 0);
2953 for (int i = 0; i < key->nr_color_regions; ++i) {
2954 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2955 write->saturate = key->clamp_fragment_color;
2956 write->base_mrf = base_mrf;
2957 write->target = i;
2958 write->header_size = 2;
2959 write->mlen = 3;
2960 }
2961 }
2962 write->eot = true;
2963
2964 calculate_cfg();
2965
2966 assign_constant_locations();
2967 assign_curb_setup();
2968
2969 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2970 if (uniforms > 0) {
2971 assert(mov->src[0].file == FIXED_GRF);
2972 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2973 }
2974 }
2975
2976 /**
2977 * Walks through basic blocks, looking for repeated MRF writes and
2978 * removing the later ones.
2979 */
2980 bool
2981 fs_visitor::remove_duplicate_mrf_writes()
2982 {
2983 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2984 bool progress = false;
2985
2986 /* Need to update the MRF tracking for compressed instructions. */
2987 if (dispatch_width >= 16)
2988 return false;
2989
2990 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2991
2992 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2993 if (inst->is_control_flow()) {
2994 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2995 }
2996
2997 if (inst->opcode == BRW_OPCODE_MOV &&
2998 inst->dst.file == MRF) {
2999 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
3000 if (prev_inst && inst->equals(prev_inst)) {
3001 inst->remove(block);
3002 progress = true;
3003 continue;
3004 }
3005 }
3006
3007 /* Clear out the last-write records for MRFs that were overwritten. */
3008 if (inst->dst.file == MRF) {
3009 last_mrf_move[inst->dst.nr] = NULL;
3010 }
3011
3012 if (inst->mlen > 0 && inst->base_mrf != -1) {
3013 /* Found a SEND instruction, which will include two or fewer
3014 * implied MRF writes. We could do better here.
3015 */
3016 for (int i = 0; i < implied_mrf_writes(inst); i++) {
3017 last_mrf_move[inst->base_mrf + i] = NULL;
3018 }
3019 }
3020
3021 /* Clear out any MRF move records whose sources got overwritten. */
3022 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
3023 if (last_mrf_move[i] &&
3024 regions_overlap(inst->dst, inst->regs_written * REG_SIZE,
3025 last_mrf_move[i]->src[0],
3026 last_mrf_move[i]->regs_read(0) * REG_SIZE)) {
3027 last_mrf_move[i] = NULL;
3028 }
3029 }
3030
3031 if (inst->opcode == BRW_OPCODE_MOV &&
3032 inst->dst.file == MRF &&
3033 inst->src[0].file != ARF &&
3034 !inst->is_partial_write()) {
3035 last_mrf_move[inst->dst.nr] = inst;
3036 }
3037 }
3038
3039 if (progress)
3040 invalidate_live_intervals();
3041
3042 return progress;
3043 }
3044
3045 static void
3046 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3047 {
3048 /* Clear the flag for registers that actually got read (as expected). */
3049 for (int i = 0; i < inst->sources; i++) {
3050 int grf;
3051 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3052 grf = inst->src[i].nr;
3053 } else {
3054 continue;
3055 }
3056
3057 if (grf >= first_grf &&
3058 grf < first_grf + grf_len) {
3059 deps[grf - first_grf] = false;
3060 if (inst->exec_size == 16)
3061 deps[grf - first_grf + 1] = false;
3062 }
3063 }
3064 }
3065
3066 /**
3067 * Implements this workaround for the original 965:
3068 *
3069 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3070 * check for post destination dependencies on this instruction, software
3071 * must ensure that there is no destination hazard for the case of ‘write
3072 * followed by a posted write’ shown in the following example.
3073 *
3074 * 1. mov r3 0
3075 * 2. send r3.xy <rest of send instruction>
3076 * 3. mov r2 r3
3077 *
3078 * Due to no post-destination dependency check on the ‘send’, the above
3079 * code sequence could have two instructions (1 and 2) in flight at the
3080 * same time that both consider ‘r3’ as the target of their final writes.
3081 */
3082 void
3083 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3084 fs_inst *inst)
3085 {
3086 int write_len = inst->regs_written;
3087 int first_write_grf = inst->dst.nr;
3088 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3089 assert(write_len < (int)sizeof(needs_dep) - 1);
3090
3091 memset(needs_dep, false, sizeof(needs_dep));
3092 memset(needs_dep, true, write_len);
3093
3094 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3095
3096 /* Walk backwards looking for writes to registers we're writing which
3097 * aren't read since being written. If we hit the start of the program,
3098 * we assume that there are no outstanding dependencies on entry to the
3099 * program.
3100 */
3101 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3102 /* If we hit control flow, assume that there *are* outstanding
3103 * dependencies, and force their cleanup before our instruction.
3104 */
3105 if (block->start() == scan_inst && block->num != 0) {
3106 for (int i = 0; i < write_len; i++) {
3107 if (needs_dep[i])
3108 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3109 first_write_grf + i);
3110 }
3111 return;
3112 }
3113
3114 /* We insert our reads as late as possible on the assumption that any
3115 * instruction but a MOV that might have left us an outstanding
3116 * dependency has more latency than a MOV.
3117 */
3118 if (scan_inst->dst.file == VGRF) {
3119 for (int i = 0; i < scan_inst->regs_written; i++) {
3120 int reg = scan_inst->dst.nr + i;
3121
3122 if (reg >= first_write_grf &&
3123 reg < first_write_grf + write_len &&
3124 needs_dep[reg - first_write_grf]) {
3125 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3126 needs_dep[reg - first_write_grf] = false;
3127 if (scan_inst->exec_size == 16)
3128 needs_dep[reg - first_write_grf + 1] = false;
3129 }
3130 }
3131 }
3132
3133 /* Clear the flag for registers that actually got read (as expected). */
3134 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3135
3136 /* Continue the loop only if we haven't resolved all the dependencies */
3137 int i;
3138 for (i = 0; i < write_len; i++) {
3139 if (needs_dep[i])
3140 break;
3141 }
3142 if (i == write_len)
3143 return;
3144 }
3145 }
3146
3147 /**
3148 * Implements this workaround for the original 965:
3149 *
3150 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3151 * used as a destination register until after it has been sourced by an
3152 * instruction with a different destination register.
3153 */
3154 void
3155 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3156 {
3157 int write_len = inst->regs_written;
3158 int first_write_grf = inst->dst.nr;
3159 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3160 assert(write_len < (int)sizeof(needs_dep) - 1);
3161
3162 memset(needs_dep, false, sizeof(needs_dep));
3163 memset(needs_dep, true, write_len);
3164 /* Walk forwards looking for writes to registers we're writing which aren't
3165 * read before being written.
3166 */
3167 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3168 /* If we hit control flow, force resolve all remaining dependencies. */
3169 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3170 for (int i = 0; i < write_len; i++) {
3171 if (needs_dep[i])
3172 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3173 first_write_grf + i);
3174 }
3175 return;
3176 }
3177
3178 /* Clear the flag for registers that actually got read (as expected). */
3179 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3180
3181 /* We insert our reads as late as possible since they're reading the
3182 * result of a SEND, which has massive latency.
3183 */
3184 if (scan_inst->dst.file == VGRF &&
3185 scan_inst->dst.nr >= first_write_grf &&
3186 scan_inst->dst.nr < first_write_grf + write_len &&
3187 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3188 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3189 scan_inst->dst.nr);
3190 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3191 }
3192
3193 /* Continue the loop only if we haven't resolved all the dependencies */
3194 int i;
3195 for (i = 0; i < write_len; i++) {
3196 if (needs_dep[i])
3197 break;
3198 }
3199 if (i == write_len)
3200 return;
3201 }
3202 }
3203
3204 void
3205 fs_visitor::insert_gen4_send_dependency_workarounds()
3206 {
3207 if (devinfo->gen != 4 || devinfo->is_g4x)
3208 return;
3209
3210 bool progress = false;
3211
3212 /* Note that we're done with register allocation, so GRF fs_regs always
3213 * have a .reg_offset of 0.
3214 */
3215
3216 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3217 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3218 insert_gen4_pre_send_dependency_workarounds(block, inst);
3219 insert_gen4_post_send_dependency_workarounds(block, inst);
3220 progress = true;
3221 }
3222 }
3223
3224 if (progress)
3225 invalidate_live_intervals();
3226 }
3227
3228 /**
3229 * Turns the generic expression-style uniform pull constant load instruction
3230 * into a hardware-specific series of instructions for loading a pull
3231 * constant.
3232 *
3233 * The expression style allows the CSE pass before this to optimize out
3234 * repeated loads from the same offset, and gives the pre-register-allocation
3235 * scheduling full flexibility, while the conversion to native instructions
3236 * allows the post-register-allocation scheduler the best information
3237 * possible.
3238 *
3239 * Note that execution masking for setting up pull constant loads is special:
3240 * the channels that need to be written are unrelated to the current execution
3241 * mask, since a later instruction will use one of the result channels as a
3242 * source operand for all 8 or 16 of its channels.
3243 */
3244 void
3245 fs_visitor::lower_uniform_pull_constant_loads()
3246 {
3247 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3248 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3249 continue;
3250
3251 if (devinfo->gen >= 7) {
3252 /* The offset arg is a vec4-aligned immediate byte offset. */
3253 fs_reg const_offset_reg = inst->src[1];
3254 assert(const_offset_reg.file == IMM &&
3255 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3256 assert(const_offset_reg.ud % 16 == 0);
3257
3258 fs_reg payload, offset;
3259 if (devinfo->gen >= 9) {
3260 /* We have to use a message header on Skylake to get SIMD4x2
3261 * mode. Reserve space for the register.
3262 */
3263 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3264 offset.reg_offset++;
3265 inst->mlen = 2;
3266 } else {
3267 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3268 inst->mlen = 1;
3269 }
3270
3271 /* This is actually going to be a MOV, but since only the first dword
3272 * is accessed, we have a special opcode to do just that one. Note
3273 * that this needs to be an operation that will be considered a def
3274 * by live variable analysis, or register allocation will explode.
3275 */
3276 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3277 8, offset, const_offset_reg);
3278 setup->force_writemask_all = true;
3279
3280 setup->ir = inst->ir;
3281 setup->annotation = inst->annotation;
3282 inst->insert_before(block, setup);
3283
3284 /* Similarly, this will only populate the first 4 channels of the
3285 * result register (since we only use smear values from 0-3), but we
3286 * don't tell the optimizer.
3287 */
3288 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3289 inst->src[1] = payload;
3290
3291 invalidate_live_intervals();
3292 } else {
3293 /* Before register allocation, we didn't tell the scheduler about the
3294 * MRF we use. We know it's safe to use this MRF because nothing
3295 * else does except for register spill/unspill, which generates and
3296 * uses its MRF within a single IR instruction.
3297 */
3298 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3299 inst->mlen = 1;
3300 }
3301 }
3302 }
3303
3304 bool
3305 fs_visitor::lower_load_payload()
3306 {
3307 bool progress = false;
3308
3309 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3310 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3311 continue;
3312
3313 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3314 assert(inst->saturate == false);
3315 fs_reg dst = inst->dst;
3316
3317 /* Get rid of COMPR4. We'll add it back in if we need it */
3318 if (dst.file == MRF)
3319 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3320
3321 const fs_builder ibld(this, block, inst);
3322 const fs_builder hbld = ibld.exec_all().group(8, 0);
3323
3324 for (uint8_t i = 0; i < inst->header_size; i++) {
3325 if (inst->src[i].file != BAD_FILE) {
3326 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3327 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3328 hbld.MOV(mov_dst, mov_src);
3329 }
3330 dst = offset(dst, hbld, 1);
3331 }
3332
3333 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3334 inst->exec_size > 8) {
3335 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3336 * a straightforward copy. Instead, the result of the
3337 * LOAD_PAYLOAD is treated as interleaved and the first four
3338 * non-header sources are unpacked as:
3339 *
3340 * m + 0: r0
3341 * m + 1: g0
3342 * m + 2: b0
3343 * m + 3: a0
3344 * m + 4: r1
3345 * m + 5: g1
3346 * m + 6: b1
3347 * m + 7: a1
3348 *
3349 * This is used for gen <= 5 fb writes.
3350 */
3351 assert(inst->exec_size == 16);
3352 assert(inst->header_size + 4 <= inst->sources);
3353 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3354 if (inst->src[i].file != BAD_FILE) {
3355 if (devinfo->has_compr4) {
3356 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3357 compr4_dst.nr |= BRW_MRF_COMPR4;
3358 ibld.MOV(compr4_dst, inst->src[i]);
3359 } else {
3360 /* Platform doesn't have COMPR4. We have to fake it */
3361 fs_reg mov_dst = retype(dst, inst->src[i].type);
3362 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3363 mov_dst.nr += 4;
3364 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3365 }
3366 }
3367
3368 dst.nr++;
3369 }
3370
3371 /* The loop above only ever incremented us through the first set
3372 * of 4 registers. However, thanks to the magic of COMPR4, we
3373 * actually wrote to the first 8 registers, so we need to take
3374 * that into account now.
3375 */
3376 dst.nr += 4;
3377
3378 /* The COMPR4 code took care of the first 4 sources. We'll let
3379 * the regular path handle any remaining sources. Yes, we are
3380 * modifying the instruction but we're about to delete it so
3381 * this really doesn't hurt anything.
3382 */
3383 inst->header_size += 4;
3384 }
3385
3386 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3387 if (inst->src[i].file != BAD_FILE)
3388 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3389 dst = offset(dst, ibld, 1);
3390 }
3391
3392 inst->remove(block);
3393 progress = true;
3394 }
3395
3396 if (progress)
3397 invalidate_live_intervals();
3398
3399 return progress;
3400 }
3401
3402 bool
3403 fs_visitor::lower_integer_multiplication()
3404 {
3405 bool progress = false;
3406
3407 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3408 const fs_builder ibld(this, block, inst);
3409
3410 if (inst->opcode == BRW_OPCODE_MUL) {
3411 if (inst->dst.is_accumulator() ||
3412 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3413 inst->dst.type != BRW_REGISTER_TYPE_UD))
3414 continue;
3415
3416 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3417 * operation directly, but CHV/BXT cannot.
3418 */
3419 if (devinfo->gen >= 8 &&
3420 !devinfo->is_cherryview && !devinfo->is_broxton)
3421 continue;
3422
3423 if (inst->src[1].file == IMM &&
3424 inst->src[1].ud < (1 << 16)) {
3425 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3426 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3427 * src1 are used.
3428 *
3429 * If multiplying by an immediate value that fits in 16-bits, do a
3430 * single MUL instruction with that value in the proper location.
3431 */
3432 if (devinfo->gen < 7) {
3433 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3434 inst->dst.type);
3435 ibld.MOV(imm, inst->src[1]);
3436 ibld.MUL(inst->dst, imm, inst->src[0]);
3437 } else {
3438 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3439 ibld.MUL(inst->dst, inst->src[0],
3440 ud ? brw_imm_uw(inst->src[1].ud)
3441 : brw_imm_w(inst->src[1].d));
3442 }
3443 } else {
3444 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3445 * do 32-bit integer multiplication in one instruction, but instead
3446 * must do a sequence (which actually calculates a 64-bit result):
3447 *
3448 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3449 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3450 * mov(8) g2<1>D acc0<8,8,1>D
3451 *
3452 * But on Gen > 6, the ability to use second accumulator register
3453 * (acc1) for non-float data types was removed, preventing a simple
3454 * implementation in SIMD16. A 16-channel result can be calculated by
3455 * executing the three instructions twice in SIMD8, once with quarter
3456 * control of 1Q for the first eight channels and again with 2Q for
3457 * the second eight channels.
3458 *
3459 * Which accumulator register is implicitly accessed (by AccWrEnable
3460 * for instance) is determined by the quarter control. Unfortunately
3461 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3462 * implicit accumulator access by an instruction with 2Q will access
3463 * acc1 regardless of whether the data type is usable in acc1.
3464 *
3465 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3466 * integer data types.
3467 *
3468 * Since we only want the low 32-bits of the result, we can do two
3469 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3470 * adjust the high result and add them (like the mach is doing):
3471 *
3472 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3473 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3474 * shl(8) g9<1>D g8<8,8,1>D 16D
3475 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3476 *
3477 * We avoid the shl instruction by realizing that we only want to add
3478 * the low 16-bits of the "high" result to the high 16-bits of the
3479 * "low" result and using proper regioning on the add:
3480 *
3481 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3482 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3483 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3484 *
3485 * Since it does not use the (single) accumulator register, we can
3486 * schedule multi-component multiplications much better.
3487 */
3488
3489 fs_reg orig_dst = inst->dst;
3490 if (orig_dst.is_null() || orig_dst.file == MRF) {
3491 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3492 inst->dst.type);
3493 }
3494 fs_reg low = inst->dst;
3495 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3496 inst->dst.type);
3497
3498 if (devinfo->gen >= 7) {
3499 fs_reg src1_0_w = inst->src[1];
3500 fs_reg src1_1_w = inst->src[1];
3501
3502 if (inst->src[1].file == IMM) {
3503 src1_0_w.ud &= 0xffff;
3504 src1_1_w.ud >>= 16;
3505 } else {
3506 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3507 if (src1_0_w.stride != 0) {
3508 assert(src1_0_w.stride == 1);
3509 src1_0_w.stride = 2;
3510 }
3511
3512 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3513 if (src1_1_w.stride != 0) {
3514 assert(src1_1_w.stride == 1);
3515 src1_1_w.stride = 2;
3516 }
3517 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3518 }
3519 ibld.MUL(low, inst->src[0], src1_0_w);
3520 ibld.MUL(high, inst->src[0], src1_1_w);
3521 } else {
3522 fs_reg src0_0_w = inst->src[0];
3523 fs_reg src0_1_w = inst->src[0];
3524
3525 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3526 if (src0_0_w.stride != 0) {
3527 assert(src0_0_w.stride == 1);
3528 src0_0_w.stride = 2;
3529 }
3530
3531 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3532 if (src0_1_w.stride != 0) {
3533 assert(src0_1_w.stride == 1);
3534 src0_1_w.stride = 2;
3535 }
3536 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3537
3538 ibld.MUL(low, src0_0_w, inst->src[1]);
3539 ibld.MUL(high, src0_1_w, inst->src[1]);
3540 }
3541
3542 fs_reg dst = inst->dst;
3543 dst.type = BRW_REGISTER_TYPE_UW;
3544 dst.subreg_offset = 2;
3545 dst.stride = 2;
3546
3547 high.type = BRW_REGISTER_TYPE_UW;
3548 high.stride = 2;
3549
3550 low.type = BRW_REGISTER_TYPE_UW;
3551 low.subreg_offset = 2;
3552 low.stride = 2;
3553
3554 ibld.ADD(dst, low, high);
3555
3556 if (inst->conditional_mod || orig_dst.file == MRF) {
3557 set_condmod(inst->conditional_mod,
3558 ibld.MOV(orig_dst, inst->dst));
3559 }
3560 }
3561
3562 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3563 /* Should have been lowered to 8-wide. */
3564 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3565 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3566 inst->dst.type);
3567 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3568 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3569
3570 if (devinfo->gen >= 8) {
3571 /* Until Gen8, integer multiplies read 32-bits from one source,
3572 * and 16-bits from the other, and relying on the MACH instruction
3573 * to generate the high bits of the result.
3574 *
3575 * On Gen8, the multiply instruction does a full 32x32-bit
3576 * multiply, but in order to do a 64-bit multiply we can simulate
3577 * the previous behavior and then use a MACH instruction.
3578 *
3579 * FINISHME: Don't use source modifiers on src1.
3580 */
3581 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3582 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3583 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3584 mul->src[1].stride *= 2;
3585
3586 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3587 inst->group > 0) {
3588 /* Among other things the quarter control bits influence which
3589 * accumulator register is used by the hardware for instructions
3590 * that access the accumulator implicitly (e.g. MACH). A
3591 * second-half instruction would normally map to acc1, which
3592 * doesn't exist on Gen7 and up (the hardware does emulate it for
3593 * floating-point instructions *only* by taking advantage of the
3594 * extra precision of acc0 not normally used for floating point
3595 * arithmetic).
3596 *
3597 * HSW and up are careful enough not to try to access an
3598 * accumulator register that doesn't exist, but on earlier Gen7
3599 * hardware we need to make sure that the quarter control bits are
3600 * zero to avoid non-deterministic behaviour and emit an extra MOV
3601 * to get the result masked correctly according to the current
3602 * channel enables.
3603 */
3604 mach->group = 0;
3605 mach->force_writemask_all = true;
3606 mach->dst = ibld.vgrf(inst->dst.type);
3607 ibld.MOV(inst->dst, mach->dst);
3608 }
3609 } else {
3610 continue;
3611 }
3612
3613 inst->remove(block);
3614 progress = true;
3615 }
3616
3617 if (progress)
3618 invalidate_live_intervals();
3619
3620 return progress;
3621 }
3622
3623 bool
3624 fs_visitor::lower_minmax()
3625 {
3626 assert(devinfo->gen < 6);
3627
3628 bool progress = false;
3629
3630 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3631 const fs_builder ibld(this, block, inst);
3632
3633 if (inst->opcode == BRW_OPCODE_SEL &&
3634 inst->predicate == BRW_PREDICATE_NONE) {
3635 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3636 * the original SEL.L/GE instruction
3637 */
3638 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3639 inst->conditional_mod);
3640 inst->predicate = BRW_PREDICATE_NORMAL;
3641 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3642
3643 progress = true;
3644 }
3645 }
3646
3647 if (progress)
3648 invalidate_live_intervals();
3649
3650 return progress;
3651 }
3652
3653 static void
3654 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3655 fs_reg *dst, fs_reg color, unsigned components)
3656 {
3657 if (key->clamp_fragment_color) {
3658 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3659 assert(color.type == BRW_REGISTER_TYPE_F);
3660
3661 for (unsigned i = 0; i < components; i++)
3662 set_saturate(true,
3663 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3664
3665 color = tmp;
3666 }
3667
3668 for (unsigned i = 0; i < components; i++)
3669 dst[i] = offset(color, bld, i);
3670 }
3671
3672 static void
3673 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3674 const brw_wm_prog_data *prog_data,
3675 const brw_wm_prog_key *key,
3676 const fs_visitor::thread_payload &payload)
3677 {
3678 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3679 const brw_device_info *devinfo = bld.shader->devinfo;
3680 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3681 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3682 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3683 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3684 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3685 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3686 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3687 const unsigned components =
3688 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3689
3690 /* We can potentially have a message length of up to 15, so we have to set
3691 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3692 */
3693 fs_reg sources[15];
3694 int header_size = 2, payload_header_size;
3695 unsigned length = 0;
3696
3697 /* From the Sandy Bridge PRM, volume 4, page 198:
3698 *
3699 * "Dispatched Pixel Enables. One bit per pixel indicating
3700 * which pixels were originally enabled when the thread was
3701 * dispatched. This field is only required for the end-of-
3702 * thread message and on all dual-source messages."
3703 */
3704 if (devinfo->gen >= 6 &&
3705 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3706 color1.file == BAD_FILE &&
3707 key->nr_color_regions == 1) {
3708 header_size = 0;
3709 }
3710
3711 if (header_size != 0) {
3712 assert(header_size == 2);
3713 /* Allocate 2 registers for a header */
3714 length += 2;
3715 }
3716
3717 if (payload.aa_dest_stencil_reg) {
3718 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3719 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3720 .MOV(sources[length],
3721 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3722 length++;
3723 }
3724
3725 if (sample_mask.file != BAD_FILE) {
3726 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3727 BRW_REGISTER_TYPE_UD);
3728
3729 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3730 * relevant. Since it's unsigned single words one vgrf is always
3731 * 16-wide, but only the lower or higher 8 channels will be used by the
3732 * hardware when doing a SIMD8 write depending on whether we have
3733 * selected the subspans for the first or second half respectively.
3734 */
3735 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3736 sample_mask.type = BRW_REGISTER_TYPE_UW;
3737 sample_mask.stride *= 2;
3738
3739 bld.exec_all().annotate("FB write oMask")
3740 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3741 inst->group),
3742 sample_mask);
3743 length++;
3744 }
3745
3746 payload_header_size = length;
3747
3748 if (src0_alpha.file != BAD_FILE) {
3749 /* FIXME: This is being passed at the wrong location in the payload and
3750 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3751 * It's supposed to be immediately before oMask but there seems to be no
3752 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3753 * requires header sources to form a contiguous segment at the beginning
3754 * of the message and src0_alpha has per-channel semantics.
3755 */
3756 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3757 length++;
3758 }
3759
3760 setup_color_payload(bld, key, &sources[length], color0, components);
3761 length += 4;
3762
3763 if (color1.file != BAD_FILE) {
3764 setup_color_payload(bld, key, &sources[length], color1, components);
3765 length += 4;
3766 }
3767
3768 if (src_depth.file != BAD_FILE) {
3769 sources[length] = src_depth;
3770 length++;
3771 }
3772
3773 if (dst_depth.file != BAD_FILE) {
3774 sources[length] = dst_depth;
3775 length++;
3776 }
3777
3778 if (src_stencil.file != BAD_FILE) {
3779 assert(devinfo->gen >= 9);
3780 assert(bld.dispatch_width() != 16);
3781
3782 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3783 * available on gen9+. As such it's impossible to have both enabled at the
3784 * same time and therefore length cannot overrun the array.
3785 */
3786 assert(length < 15);
3787
3788 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3789 bld.exec_all().annotate("FB write OS")
3790 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3791 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3792 length++;
3793 }
3794
3795 fs_inst *load;
3796 if (devinfo->gen >= 7) {
3797 /* Send from the GRF */
3798 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3799 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3800 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3801 load->dst = payload;
3802
3803 inst->src[0] = payload;
3804 inst->resize_sources(1);
3805 } else {
3806 /* Send from the MRF */
3807 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3808 sources, length, payload_header_size);
3809
3810 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3811 * will do this for us if we just give it a COMPR4 destination.
3812 */
3813 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3814 load->dst.nr |= BRW_MRF_COMPR4;
3815
3816 inst->resize_sources(0);
3817 inst->base_mrf = 1;
3818 }
3819
3820 inst->opcode = FS_OPCODE_FB_WRITE;
3821 inst->mlen = load->regs_written;
3822 inst->header_size = header_size;
3823 }
3824
3825 static void
3826 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3827 const fs_reg &coordinate,
3828 const fs_reg &shadow_c,
3829 const fs_reg &lod, const fs_reg &lod2,
3830 const fs_reg &surface,
3831 const fs_reg &sampler,
3832 unsigned coord_components,
3833 unsigned grad_components)
3834 {
3835 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3836 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3837 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3838 fs_reg msg_end = msg_begin;
3839
3840 /* g0 header. */
3841 msg_end = offset(msg_end, bld.group(8, 0), 1);
3842
3843 for (unsigned i = 0; i < coord_components; i++)
3844 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3845 offset(coordinate, bld, i));
3846
3847 msg_end = offset(msg_end, bld, coord_components);
3848
3849 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3850 * require all three components to be present and zero if they are unused.
3851 */
3852 if (coord_components > 0 &&
3853 (has_lod || shadow_c.file != BAD_FILE ||
3854 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3855 for (unsigned i = coord_components; i < 3; i++)
3856 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3857
3858 msg_end = offset(msg_end, bld, 3 - coord_components);
3859 }
3860
3861 if (op == SHADER_OPCODE_TXD) {
3862 /* TXD unsupported in SIMD16 mode. */
3863 assert(bld.dispatch_width() == 8);
3864
3865 /* the slots for u and v are always present, but r is optional */
3866 if (coord_components < 2)
3867 msg_end = offset(msg_end, bld, 2 - coord_components);
3868
3869 /* P = u, v, r
3870 * dPdx = dudx, dvdx, drdx
3871 * dPdy = dudy, dvdy, drdy
3872 *
3873 * 1-arg: Does not exist.
3874 *
3875 * 2-arg: dudx dvdx dudy dvdy
3876 * dPdx.x dPdx.y dPdy.x dPdy.y
3877 * m4 m5 m6 m7
3878 *
3879 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3880 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3881 * m5 m6 m7 m8 m9 m10
3882 */
3883 for (unsigned i = 0; i < grad_components; i++)
3884 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3885
3886 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3887
3888 for (unsigned i = 0; i < grad_components; i++)
3889 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3890
3891 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3892 }
3893
3894 if (has_lod) {
3895 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3896 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3897 */
3898 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3899 bld.dispatch_width() == 16);
3900
3901 const brw_reg_type type =
3902 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3903 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3904 bld.MOV(retype(msg_end, type), lod);
3905 msg_end = offset(msg_end, bld, 1);
3906 }
3907
3908 if (shadow_c.file != BAD_FILE) {
3909 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3910 /* There's no plain shadow compare message, so we use shadow
3911 * compare with a bias of 0.0.
3912 */
3913 bld.MOV(msg_end, brw_imm_f(0.0f));
3914 msg_end = offset(msg_end, bld, 1);
3915 }
3916
3917 bld.MOV(msg_end, shadow_c);
3918 msg_end = offset(msg_end, bld, 1);
3919 }
3920
3921 inst->opcode = op;
3922 inst->src[0] = reg_undef;
3923 inst->src[1] = surface;
3924 inst->src[2] = sampler;
3925 inst->resize_sources(3);
3926 inst->base_mrf = msg_begin.nr;
3927 inst->mlen = msg_end.nr - msg_begin.nr;
3928 inst->header_size = 1;
3929 }
3930
3931 static void
3932 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3933 const fs_reg &coordinate,
3934 const fs_reg &shadow_c,
3935 const fs_reg &lod, const fs_reg &lod2,
3936 const fs_reg &sample_index,
3937 const fs_reg &surface,
3938 const fs_reg &sampler,
3939 const fs_reg &offset_value,
3940 unsigned coord_components,
3941 unsigned grad_components)
3942 {
3943 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3944 fs_reg msg_coords = message;
3945 unsigned header_size = 0;
3946
3947 if (offset_value.file != BAD_FILE) {
3948 /* The offsets set up by the visitor are in the m1 header, so we can't
3949 * go headerless.
3950 */
3951 header_size = 1;
3952 message.nr--;
3953 }
3954
3955 for (unsigned i = 0; i < coord_components; i++)
3956 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3957 offset(coordinate, bld, i));
3958
3959 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3960 fs_reg msg_lod = offset(msg_coords, bld, 4);
3961
3962 if (shadow_c.file != BAD_FILE) {
3963 fs_reg msg_shadow = msg_lod;
3964 bld.MOV(msg_shadow, shadow_c);
3965 msg_lod = offset(msg_shadow, bld, 1);
3966 msg_end = msg_lod;
3967 }
3968
3969 switch (op) {
3970 case SHADER_OPCODE_TXL:
3971 case FS_OPCODE_TXB:
3972 bld.MOV(msg_lod, lod);
3973 msg_end = offset(msg_lod, bld, 1);
3974 break;
3975 case SHADER_OPCODE_TXD:
3976 /**
3977 * P = u, v, r
3978 * dPdx = dudx, dvdx, drdx
3979 * dPdy = dudy, dvdy, drdy
3980 *
3981 * Load up these values:
3982 * - dudx dudy dvdx dvdy drdx drdy
3983 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3984 */
3985 msg_end = msg_lod;
3986 for (unsigned i = 0; i < grad_components; i++) {
3987 bld.MOV(msg_end, offset(lod, bld, i));
3988 msg_end = offset(msg_end, bld, 1);
3989
3990 bld.MOV(msg_end, offset(lod2, bld, i));
3991 msg_end = offset(msg_end, bld, 1);
3992 }
3993 break;
3994 case SHADER_OPCODE_TXS:
3995 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3996 bld.MOV(msg_lod, lod);
3997 msg_end = offset(msg_lod, bld, 1);
3998 break;
3999 case SHADER_OPCODE_TXF:
4000 msg_lod = offset(msg_coords, bld, 3);
4001 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
4002 msg_end = offset(msg_lod, bld, 1);
4003 break;
4004 case SHADER_OPCODE_TXF_CMS:
4005 msg_lod = offset(msg_coords, bld, 3);
4006 /* lod */
4007 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
4008 /* sample index */
4009 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
4010 msg_end = offset(msg_lod, bld, 2);
4011 break;
4012 default:
4013 break;
4014 }
4015
4016 inst->opcode = op;
4017 inst->src[0] = reg_undef;
4018 inst->src[1] = surface;
4019 inst->src[2] = sampler;
4020 inst->resize_sources(3);
4021 inst->base_mrf = message.nr;
4022 inst->mlen = msg_end.nr - message.nr;
4023 inst->header_size = header_size;
4024
4025 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4026 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4027 }
4028
4029 static bool
4030 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
4031 {
4032 if (devinfo->gen < 8 && !devinfo->is_haswell)
4033 return false;
4034
4035 return sampler.file != IMM || sampler.ud >= 16;
4036 }
4037
4038 static void
4039 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
4040 const fs_reg &coordinate,
4041 const fs_reg &shadow_c,
4042 fs_reg lod, const fs_reg &lod2,
4043 const fs_reg &sample_index,
4044 const fs_reg &mcs,
4045 const fs_reg &surface,
4046 const fs_reg &sampler,
4047 const fs_reg &offset_value,
4048 unsigned coord_components,
4049 unsigned grad_components)
4050 {
4051 const brw_device_info *devinfo = bld.shader->devinfo;
4052 int reg_width = bld.dispatch_width() / 8;
4053 unsigned header_size = 0, length = 0;
4054 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
4055 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
4056 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
4057
4058 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
4059 offset_value.file != BAD_FILE || inst->eot ||
4060 op == SHADER_OPCODE_SAMPLEINFO ||
4061 is_high_sampler(devinfo, sampler)) {
4062 /* For general texture offsets (no txf workaround), we need a header to
4063 * put them in. Note that we're only reserving space for it in the
4064 * message payload as it will be initialized implicitly by the
4065 * generator.
4066 *
4067 * TG4 needs to place its channel select in the header, for interaction
4068 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4069 * larger sampler numbers we need to offset the Sampler State Pointer in
4070 * the header.
4071 */
4072 header_size = 1;
4073 sources[0] = fs_reg();
4074 length++;
4075
4076 /* If we're requesting fewer than four channels worth of response,
4077 * and we have an explicit header, we need to set up the sampler
4078 * writemask. It's reversed from normal: 1 means "don't write".
4079 */
4080 if (!inst->eot && inst->regs_written != 4 * reg_width) {
4081 assert((inst->regs_written % reg_width) == 0);
4082 unsigned mask = ~((1 << (inst->regs_written / reg_width)) - 1) & 0xf;
4083 inst->offset |= mask << 12;
4084 }
4085 }
4086
4087 if (shadow_c.file != BAD_FILE) {
4088 bld.MOV(sources[length], shadow_c);
4089 length++;
4090 }
4091
4092 bool coordinate_done = false;
4093
4094 /* Set up the LOD info */
4095 switch (op) {
4096 case FS_OPCODE_TXB:
4097 case SHADER_OPCODE_TXL:
4098 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4099 op = SHADER_OPCODE_TXL_LZ;
4100 break;
4101 }
4102 bld.MOV(sources[length], lod);
4103 length++;
4104 break;
4105 case SHADER_OPCODE_TXD:
4106 /* TXD should have been lowered in SIMD16 mode. */
4107 assert(bld.dispatch_width() == 8);
4108
4109 /* Load dPdx and the coordinate together:
4110 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4111 */
4112 for (unsigned i = 0; i < coord_components; i++) {
4113 bld.MOV(sources[length++], offset(coordinate, bld, i));
4114
4115 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4116 * only derivatives for (u, v, r).
4117 */
4118 if (i < grad_components) {
4119 bld.MOV(sources[length++], offset(lod, bld, i));
4120 bld.MOV(sources[length++], offset(lod2, bld, i));
4121 }
4122 }
4123
4124 coordinate_done = true;
4125 break;
4126 case SHADER_OPCODE_TXS:
4127 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4128 length++;
4129 break;
4130 case SHADER_OPCODE_TXF:
4131 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4132 * On Gen9 they are u, v, lod, r
4133 */
4134 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4135
4136 if (devinfo->gen >= 9) {
4137 if (coord_components >= 2) {
4138 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4139 offset(coordinate, bld, 1));
4140 } else {
4141 sources[length] = brw_imm_d(0);
4142 }
4143 length++;
4144 }
4145
4146 if (devinfo->gen >= 9 && lod.is_zero()) {
4147 op = SHADER_OPCODE_TXF_LZ;
4148 } else {
4149 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4150 length++;
4151 }
4152
4153 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4154 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4155 offset(coordinate, bld, i));
4156
4157 coordinate_done = true;
4158 break;
4159
4160 case SHADER_OPCODE_TXF_CMS:
4161 case SHADER_OPCODE_TXF_CMS_W:
4162 case SHADER_OPCODE_TXF_UMS:
4163 case SHADER_OPCODE_TXF_MCS:
4164 if (op == SHADER_OPCODE_TXF_UMS ||
4165 op == SHADER_OPCODE_TXF_CMS ||
4166 op == SHADER_OPCODE_TXF_CMS_W) {
4167 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4168 length++;
4169 }
4170
4171 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4172 /* Data from the multisample control surface. */
4173 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4174 length++;
4175
4176 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4177 * the MCS data.
4178 */
4179 if (op == SHADER_OPCODE_TXF_CMS_W) {
4180 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4181 mcs.file == IMM ?
4182 mcs :
4183 offset(mcs, bld, 1));
4184 length++;
4185 }
4186 }
4187
4188 /* There is no offsetting for this message; just copy in the integer
4189 * texture coordinates.
4190 */
4191 for (unsigned i = 0; i < coord_components; i++)
4192 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4193 offset(coordinate, bld, i));
4194
4195 coordinate_done = true;
4196 break;
4197 case SHADER_OPCODE_TG4_OFFSET:
4198 /* gather4_po_c should have been lowered in SIMD16 mode. */
4199 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4200
4201 /* More crazy intermixing */
4202 for (unsigned i = 0; i < 2; i++) /* u, v */
4203 bld.MOV(sources[length++], offset(coordinate, bld, i));
4204
4205 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4206 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4207 offset(offset_value, bld, i));
4208
4209 if (coord_components == 3) /* r if present */
4210 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4211
4212 coordinate_done = true;
4213 break;
4214 default:
4215 break;
4216 }
4217
4218 /* Set up the coordinate (except for cases where it was done above) */
4219 if (!coordinate_done) {
4220 for (unsigned i = 0; i < coord_components; i++)
4221 bld.MOV(sources[length++], offset(coordinate, bld, i));
4222 }
4223
4224 int mlen;
4225 if (reg_width == 2)
4226 mlen = length * reg_width - header_size;
4227 else
4228 mlen = length * reg_width;
4229
4230 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4231 BRW_REGISTER_TYPE_F);
4232 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4233
4234 /* Generate the SEND. */
4235 inst->opcode = op;
4236 inst->src[0] = src_payload;
4237 inst->src[1] = surface;
4238 inst->src[2] = sampler;
4239 inst->resize_sources(3);
4240 inst->mlen = mlen;
4241 inst->header_size = header_size;
4242
4243 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4244 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4245 }
4246
4247 static void
4248 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4249 {
4250 const brw_device_info *devinfo = bld.shader->devinfo;
4251 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4252 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4253 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4254 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4255 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4256 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4257 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4258 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4259 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4260 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4261 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4262 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4263 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4264
4265 if (devinfo->gen >= 7) {
4266 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4267 shadow_c, lod, lod2, sample_index,
4268 mcs, surface, sampler, offset_value,
4269 coord_components, grad_components);
4270 } else if (devinfo->gen >= 5) {
4271 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4272 shadow_c, lod, lod2, sample_index,
4273 surface, sampler, offset_value,
4274 coord_components, grad_components);
4275 } else {
4276 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4277 shadow_c, lod, lod2,
4278 surface, sampler,
4279 coord_components, grad_components);
4280 }
4281 }
4282
4283 /**
4284 * Initialize the header present in some typed and untyped surface
4285 * messages.
4286 */
4287 static fs_reg
4288 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4289 {
4290 fs_builder ubld = bld.exec_all().group(8, 0);
4291 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4292 ubld.MOV(dst, brw_imm_d(0));
4293 ubld.MOV(component(dst, 7), sample_mask);
4294 return dst;
4295 }
4296
4297 static void
4298 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4299 const fs_reg &sample_mask)
4300 {
4301 /* Get the logical send arguments. */
4302 const fs_reg &addr = inst->src[0];
4303 const fs_reg &src = inst->src[1];
4304 const fs_reg &surface = inst->src[2];
4305 const UNUSED fs_reg &dims = inst->src[3];
4306 const fs_reg &arg = inst->src[4];
4307
4308 /* Calculate the total number of components of the payload. */
4309 const unsigned addr_sz = inst->components_read(0);
4310 const unsigned src_sz = inst->components_read(1);
4311 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4312 const unsigned sz = header_sz + addr_sz + src_sz;
4313
4314 /* Allocate space for the payload. */
4315 fs_reg *const components = new fs_reg[sz];
4316 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4317 unsigned n = 0;
4318
4319 /* Construct the payload. */
4320 if (header_sz)
4321 components[n++] = emit_surface_header(bld, sample_mask);
4322
4323 for (unsigned i = 0; i < addr_sz; i++)
4324 components[n++] = offset(addr, bld, i);
4325
4326 for (unsigned i = 0; i < src_sz; i++)
4327 components[n++] = offset(src, bld, i);
4328
4329 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4330
4331 /* Update the original instruction. */
4332 inst->opcode = op;
4333 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4334 inst->header_size = header_sz;
4335
4336 inst->src[0] = payload;
4337 inst->src[1] = surface;
4338 inst->src[2] = arg;
4339 inst->resize_sources(3);
4340
4341 delete[] components;
4342 }
4343
4344 static void
4345 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4346 {
4347 const brw_device_info *devinfo = bld.shader->devinfo;
4348
4349 if (devinfo->gen >= 7) {
4350 /* We are switching the instruction from an ALU-like instruction to a
4351 * send-from-grf instruction. Since sends can't handle strides or
4352 * source modifiers, we have to make a copy of the offset source.
4353 */
4354 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4355 bld.MOV(tmp, inst->src[1]);
4356 inst->src[1] = tmp;
4357
4358 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4359
4360 } else {
4361 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4362 BRW_REGISTER_TYPE_UD);
4363
4364 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4365
4366 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4367 inst->resize_sources(1);
4368 inst->base_mrf = payload.nr;
4369 inst->header_size = 1;
4370 inst->mlen = 1 + inst->exec_size / 8;
4371 }
4372 }
4373
4374 static void
4375 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4376 {
4377 assert(bld.shader->devinfo->gen < 6);
4378
4379 inst->base_mrf = 2;
4380 inst->mlen = inst->sources * inst->exec_size / 8;
4381
4382 if (inst->sources > 1) {
4383 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4384 * "Message Payload":
4385 *
4386 * "Operand0[7]. For the INT DIV functions, this operand is the
4387 * denominator."
4388 * ...
4389 * "Operand1[7]. For the INT DIV functions, this operand is the
4390 * numerator."
4391 */
4392 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4393 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4394 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4395
4396 inst->resize_sources(1);
4397 inst->src[0] = src0;
4398
4399 assert(inst->exec_size == 8);
4400 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4401 }
4402 }
4403
4404 bool
4405 fs_visitor::lower_logical_sends()
4406 {
4407 bool progress = false;
4408
4409 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4410 const fs_builder ibld(this, block, inst);
4411
4412 switch (inst->opcode) {
4413 case FS_OPCODE_FB_WRITE_LOGICAL:
4414 assert(stage == MESA_SHADER_FRAGMENT);
4415 lower_fb_write_logical_send(ibld, inst,
4416 (const brw_wm_prog_data *)prog_data,
4417 (const brw_wm_prog_key *)key,
4418 payload);
4419 break;
4420
4421 case SHADER_OPCODE_TEX_LOGICAL:
4422 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4423 break;
4424
4425 case SHADER_OPCODE_TXD_LOGICAL:
4426 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4427 break;
4428
4429 case SHADER_OPCODE_TXF_LOGICAL:
4430 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4431 break;
4432
4433 case SHADER_OPCODE_TXL_LOGICAL:
4434 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4435 break;
4436
4437 case SHADER_OPCODE_TXS_LOGICAL:
4438 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4439 break;
4440
4441 case FS_OPCODE_TXB_LOGICAL:
4442 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4443 break;
4444
4445 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4446 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4447 break;
4448
4449 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4450 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4451 break;
4452
4453 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4454 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4455 break;
4456
4457 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4458 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4459 break;
4460
4461 case SHADER_OPCODE_LOD_LOGICAL:
4462 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4463 break;
4464
4465 case SHADER_OPCODE_TG4_LOGICAL:
4466 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4467 break;
4468
4469 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4470 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4471 break;
4472
4473 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4474 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4475 break;
4476
4477 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4478 lower_surface_logical_send(ibld, inst,
4479 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4480 fs_reg());
4481 break;
4482
4483 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4484 lower_surface_logical_send(ibld, inst,
4485 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4486 ibld.sample_mask_reg());
4487 break;
4488
4489 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4490 lower_surface_logical_send(ibld, inst,
4491 SHADER_OPCODE_UNTYPED_ATOMIC,
4492 ibld.sample_mask_reg());
4493 break;
4494
4495 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4496 lower_surface_logical_send(ibld, inst,
4497 SHADER_OPCODE_TYPED_SURFACE_READ,
4498 brw_imm_d(0xffff));
4499 break;
4500
4501 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4502 lower_surface_logical_send(ibld, inst,
4503 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4504 ibld.sample_mask_reg());
4505 break;
4506
4507 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4508 lower_surface_logical_send(ibld, inst,
4509 SHADER_OPCODE_TYPED_ATOMIC,
4510 ibld.sample_mask_reg());
4511 break;
4512
4513 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4514 lower_varying_pull_constant_logical_send(ibld, inst);
4515 break;
4516
4517 case SHADER_OPCODE_RCP:
4518 case SHADER_OPCODE_RSQ:
4519 case SHADER_OPCODE_SQRT:
4520 case SHADER_OPCODE_EXP2:
4521 case SHADER_OPCODE_LOG2:
4522 case SHADER_OPCODE_SIN:
4523 case SHADER_OPCODE_COS:
4524 case SHADER_OPCODE_POW:
4525 case SHADER_OPCODE_INT_QUOTIENT:
4526 case SHADER_OPCODE_INT_REMAINDER:
4527 /* The math opcodes are overloaded for the send-like and
4528 * expression-like instructions which seems kind of icky. Gen6+ has
4529 * a native (but rather quirky) MATH instruction so we don't need to
4530 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4531 * logical instructions (which we can easily recognize because they
4532 * have mlen = 0) into send-like virtual instructions.
4533 */
4534 if (devinfo->gen < 6 && inst->mlen == 0) {
4535 lower_math_logical_send(ibld, inst);
4536 break;
4537
4538 } else {
4539 continue;
4540 }
4541
4542 default:
4543 continue;
4544 }
4545
4546 progress = true;
4547 }
4548
4549 if (progress)
4550 invalidate_live_intervals();
4551
4552 return progress;
4553 }
4554
4555 /**
4556 * Get the closest allowed SIMD width for instruction \p inst accounting for
4557 * some common regioning and execution control restrictions that apply to FPU
4558 * instructions. These restrictions don't necessarily have any relevance to
4559 * instructions not executed by the FPU pipeline like extended math, control
4560 * flow or send message instructions.
4561 *
4562 * For virtual opcodes it's really up to the instruction -- In some cases
4563 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4564 * instructions) it may simplify virtual instruction lowering if we can
4565 * enforce FPU-like regioning restrictions already on the virtual instruction,
4566 * in other cases (e.g. virtual send-like instructions) this may be
4567 * excessively restrictive.
4568 */
4569 static unsigned
4570 get_fpu_lowered_simd_width(const struct brw_device_info *devinfo,
4571 const fs_inst *inst)
4572 {
4573 /* Maximum execution size representable in the instruction controls. */
4574 unsigned max_width = MIN2(32, inst->exec_size);
4575
4576 /* According to the PRMs:
4577 * "A. In Direct Addressing mode, a source cannot span more than 2
4578 * adjacent GRF registers.
4579 * B. A destination cannot span more than 2 adjacent GRF registers."
4580 *
4581 * Look for the source or destination with the largest register region
4582 * which is the one that is going to limit the overall execution size of
4583 * the instruction due to this rule.
4584 */
4585 unsigned reg_count = inst->regs_written;
4586
4587 for (unsigned i = 0; i < inst->sources; i++)
4588 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4589
4590 /* Calculate the maximum execution size of the instruction based on the
4591 * factor by which it goes over the hardware limit of 2 GRFs.
4592 */
4593 if (reg_count > 2)
4594 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4595
4596 /* According to the IVB PRMs:
4597 * "When destination spans two registers, the source MUST span two
4598 * registers. The exception to the above rule:
4599 *
4600 * - When source is scalar, the source registers are not incremented.
4601 * - When source is packed integer Word and destination is packed
4602 * integer DWord, the source register is not incremented but the
4603 * source sub register is incremented."
4604 *
4605 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4606 * restrictions. The code below intentionally doesn't check whether the
4607 * destination type is integer because empirically the hardware doesn't
4608 * seem to care what the actual type is as long as it's dword-aligned.
4609 */
4610 if (devinfo->gen < 8) {
4611 for (unsigned i = 0; i < inst->sources; i++) {
4612 if (inst->regs_written == 2 &&
4613 inst->regs_read(i) != 0 && inst->regs_read(i) != 2 &&
4614 !is_uniform(inst->src[i]) &&
4615 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4616 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1))
4617 max_width = MIN2(max_width, inst->exec_size /
4618 inst->regs_written);
4619 }
4620 }
4621
4622 /* From the IVB PRMs:
4623 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4624 * are applied for both halves of the SIMD32 instruction. If different
4625 * execution mask channels are required, split the instruction into two
4626 * SIMD16 instructions."
4627 *
4628 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4629 * 32-wide control flow support in hardware and will behave similarly.
4630 */
4631 if (devinfo->gen < 8 && !inst->force_writemask_all)
4632 max_width = MIN2(max_width, 16);
4633
4634 /* From the IVB PRMs (applies to HSW too):
4635 * "Instructions with condition modifiers must not use SIMD32."
4636 *
4637 * From the BDW PRMs (applies to later hardware too):
4638 * "Ternary instruction with condition modifiers must not use SIMD32."
4639 */
4640 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4641 max_width = MIN2(max_width, 16);
4642
4643 /* From the IVB PRMs (applies to other devices that don't have the
4644 * brw_device_info::supports_simd16_3src flag set):
4645 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4646 * SIMD8 is not allowed for DF operations."
4647 */
4648 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4649 max_width = MIN2(max_width, inst->exec_size / reg_count);
4650
4651 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4652 * the 8-bit quarter of the execution mask signals specified in the
4653 * instruction control fields) for the second compressed half of any
4654 * single-precision instruction (for double-precision instructions
4655 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4656 * the EU will apply the wrong execution controls for the second
4657 * sequential GRF write if the number of channels per GRF is not exactly
4658 * eight in single-precision mode (or four in double-float mode).
4659 *
4660 * In this situation we calculate the maximum size of the split
4661 * instructions so they only ever write to a single register.
4662 */
4663 if (devinfo->gen < 8 && inst->regs_written > 1 &&
4664 !inst->force_writemask_all) {
4665 const unsigned channels_per_grf = inst->exec_size / inst->regs_written;
4666 unsigned exec_type_size = 0;
4667 for (int i = 0; i < inst->sources; i++) {
4668 if (inst->src[i].file != BAD_FILE)
4669 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4670 }
4671 assert(exec_type_size);
4672
4673 /* The hardware shifts exactly 8 channels per compressed half of the
4674 * instruction in single-precision mode and exactly 4 in double-precision.
4675 */
4676 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4677 max_width = MIN2(max_width, channels_per_grf);
4678 }
4679
4680 /* Only power-of-two execution sizes are representable in the instruction
4681 * control fields.
4682 */
4683 return 1 << _mesa_logbase2(max_width);
4684 }
4685
4686 /**
4687 * Get the closest native SIMD width supported by the hardware for instruction
4688 * \p inst. The instruction will be left untouched by
4689 * fs_visitor::lower_simd_width() if the returned value is equal to the
4690 * original execution size.
4691 */
4692 static unsigned
4693 get_lowered_simd_width(const struct brw_device_info *devinfo,
4694 const fs_inst *inst)
4695 {
4696 switch (inst->opcode) {
4697 case BRW_OPCODE_MOV:
4698 case BRW_OPCODE_SEL:
4699 case BRW_OPCODE_NOT:
4700 case BRW_OPCODE_AND:
4701 case BRW_OPCODE_OR:
4702 case BRW_OPCODE_XOR:
4703 case BRW_OPCODE_SHR:
4704 case BRW_OPCODE_SHL:
4705 case BRW_OPCODE_ASR:
4706 case BRW_OPCODE_CMPN:
4707 case BRW_OPCODE_CSEL:
4708 case BRW_OPCODE_F32TO16:
4709 case BRW_OPCODE_F16TO32:
4710 case BRW_OPCODE_BFREV:
4711 case BRW_OPCODE_BFE:
4712 case BRW_OPCODE_ADD:
4713 case BRW_OPCODE_MUL:
4714 case BRW_OPCODE_AVG:
4715 case BRW_OPCODE_FRC:
4716 case BRW_OPCODE_RNDU:
4717 case BRW_OPCODE_RNDD:
4718 case BRW_OPCODE_RNDE:
4719 case BRW_OPCODE_RNDZ:
4720 case BRW_OPCODE_LZD:
4721 case BRW_OPCODE_FBH:
4722 case BRW_OPCODE_FBL:
4723 case BRW_OPCODE_CBIT:
4724 case BRW_OPCODE_SAD2:
4725 case BRW_OPCODE_MAD:
4726 case BRW_OPCODE_LRP:
4727 case FS_OPCODE_PACK:
4728 return get_fpu_lowered_simd_width(devinfo, inst);
4729
4730 case BRW_OPCODE_CMP: {
4731 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4732 * when the destination is a GRF the dependency-clear bit on the flag
4733 * register is cleared early.
4734 *
4735 * Suggested workarounds are to disable coissuing CMP instructions
4736 * or to split CMP(16) instructions into two CMP(8) instructions.
4737 *
4738 * We choose to split into CMP(8) instructions since disabling
4739 * coissuing would affect CMP instructions not otherwise affected by
4740 * the errata.
4741 */
4742 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4743 !inst->dst.is_null() ? 8 : ~0);
4744 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4745 }
4746 case BRW_OPCODE_BFI1:
4747 case BRW_OPCODE_BFI2:
4748 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4749 * should
4750 * "Force BFI instructions to be executed always in SIMD8."
4751 */
4752 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4753 get_fpu_lowered_simd_width(devinfo, inst));
4754
4755 case BRW_OPCODE_IF:
4756 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4757 return inst->exec_size;
4758
4759 case SHADER_OPCODE_RCP:
4760 case SHADER_OPCODE_RSQ:
4761 case SHADER_OPCODE_SQRT:
4762 case SHADER_OPCODE_EXP2:
4763 case SHADER_OPCODE_LOG2:
4764 case SHADER_OPCODE_SIN:
4765 case SHADER_OPCODE_COS:
4766 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4767 * Gen6.
4768 */
4769 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4770 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4771 MIN2(8, inst->exec_size));
4772
4773 case SHADER_OPCODE_POW:
4774 /* SIMD16 is only allowed on Gen7+. */
4775 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4776 MIN2(8, inst->exec_size));
4777
4778 case SHADER_OPCODE_INT_QUOTIENT:
4779 case SHADER_OPCODE_INT_REMAINDER:
4780 /* Integer division is limited to SIMD8 on all generations. */
4781 return MIN2(8, inst->exec_size);
4782
4783 case FS_OPCODE_LINTERP:
4784 case FS_OPCODE_GET_BUFFER_SIZE:
4785 case FS_OPCODE_DDX_COARSE:
4786 case FS_OPCODE_DDX_FINE:
4787 case FS_OPCODE_DDY_COARSE:
4788 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4789 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4790 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4791 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4792 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4793 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4794 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4795 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4796 return MIN2(16, inst->exec_size);
4797
4798 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4799 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4800 * message used to implement varying pull constant loads, so expand it
4801 * to SIMD16. An alternative with longer message payload length but
4802 * shorter return payload would be to use the SIMD8 sampler message that
4803 * takes (header, u, v, r) as parameters instead of (header, u).
4804 */
4805 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4806
4807 case FS_OPCODE_DDY_FINE:
4808 /* The implementation of this virtual opcode may require emitting
4809 * compressed Align16 instructions, which are severely limited on some
4810 * generations.
4811 *
4812 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4813 * Region Restrictions):
4814 *
4815 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4816 * and SIMD8 is not allowed for DF operations."
4817 *
4818 * In this context, "DW operations" means "operations acting on 32-bit
4819 * values", so it includes operations on floats.
4820 *
4821 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4822 * (Instruction Compression -> Rules and Restrictions):
4823 *
4824 * "A compressed instruction must be in Align1 access mode. Align16
4825 * mode instructions cannot be compressed."
4826 *
4827 * Similar text exists in the g45 PRM.
4828 *
4829 * Empirically, compressed align16 instructions using odd register
4830 * numbers don't appear to work on Sandybridge either.
4831 */
4832 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4833 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4834 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4835
4836 case SHADER_OPCODE_MULH:
4837 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4838 * is 8-wide on Gen7+.
4839 */
4840 return (devinfo->gen >= 7 ? 8 :
4841 get_fpu_lowered_simd_width(devinfo, inst));
4842
4843 case FS_OPCODE_FB_WRITE_LOGICAL:
4844 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4845 * here.
4846 */
4847 assert(devinfo->gen != 6 ||
4848 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4849 inst->exec_size == 8);
4850 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4851 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4852 8 : MIN2(16, inst->exec_size));
4853
4854 case SHADER_OPCODE_TEX_LOGICAL:
4855 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4856 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4857 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4858 case SHADER_OPCODE_LOD_LOGICAL:
4859 case SHADER_OPCODE_TG4_LOGICAL:
4860 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4861 return MIN2(16, inst->exec_size);
4862
4863 case SHADER_OPCODE_TXD_LOGICAL:
4864 /* TXD is unsupported in SIMD16 mode. */
4865 return 8;
4866
4867 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4868 /* gather4_po_c is unsupported in SIMD16 mode. */
4869 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4870 return (shadow_c.file != BAD_FILE ? 8 : MIN2(16, inst->exec_size));
4871 }
4872 case SHADER_OPCODE_TXL_LOGICAL:
4873 case FS_OPCODE_TXB_LOGICAL: {
4874 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4875 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4876 * mode because the message exceeds the maximum length of 11.
4877 */
4878 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4879 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4880 return 16;
4881 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4882 return 8;
4883 else
4884 return MIN2(16, inst->exec_size);
4885 }
4886 case SHADER_OPCODE_TXF_LOGICAL:
4887 case SHADER_OPCODE_TXS_LOGICAL:
4888 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4889 * messages. Use SIMD16 instead.
4890 */
4891 if (devinfo->gen == 4)
4892 return 16;
4893 else
4894 return MIN2(16, inst->exec_size);
4895
4896 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4897 /* This opcode can take up to 6 arguments which means that in some
4898 * circumstances it can end up with a message that is too long in SIMD16
4899 * mode.
4900 */
4901 const unsigned coord_components =
4902 inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4903 /* First three arguments are the sample index and the two arguments for
4904 * the MCS data.
4905 */
4906 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4907 return 8;
4908 else
4909 return MIN2(16, inst->exec_size);
4910 }
4911
4912 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4913 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4914 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4915 return 8;
4916
4917 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4918 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4919 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4920 return MIN2(16, inst->exec_size);
4921
4922 case SHADER_OPCODE_URB_READ_SIMD8:
4923 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4924 case SHADER_OPCODE_URB_WRITE_SIMD8:
4925 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4926 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4927 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4928 return MIN2(8, inst->exec_size);
4929
4930 case SHADER_OPCODE_MOV_INDIRECT:
4931 /* Prior to Broadwell, we only have 8 address subregisters */
4932 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4933 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4934 inst->exec_size);
4935
4936 case SHADER_OPCODE_LOAD_PAYLOAD: {
4937 const unsigned reg_count =
4938 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4939
4940 if (reg_count > 2) {
4941 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4942 * can be easily lowered (which excludes headers and heterogeneous
4943 * types).
4944 */
4945 assert(!inst->header_size);
4946 for (unsigned i = 0; i < inst->sources; i++)
4947 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4948 inst->src[i].file == BAD_FILE);
4949
4950 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4951 } else {
4952 return inst->exec_size;
4953 }
4954 }
4955 default:
4956 return inst->exec_size;
4957 }
4958 }
4959
4960 /**
4961 * Return true if splitting out the group of channels of instruction \p inst
4962 * given by lbld.group() requires allocating a temporary for the i-th source
4963 * of the lowered instruction.
4964 */
4965 static inline bool
4966 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4967 {
4968 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4969 (inst->components_read(i) == 1 &&
4970 lbld.dispatch_width() <= inst->exec_size));
4971 }
4972
4973 /**
4974 * Extract the data that would be consumed by the channel group given by
4975 * lbld.group() from the i-th source region of instruction \p inst and return
4976 * it as result in packed form. If any copy instructions are required they
4977 * will be emitted before the given \p inst in \p block.
4978 */
4979 static fs_reg
4980 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4981 unsigned i)
4982 {
4983 /* Specified channel group from the source region. */
4984 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4985
4986 if (needs_src_copy(lbld, inst, i)) {
4987 /* Builder of the right width to perform the copy avoiding uninitialized
4988 * data if the lowered execution size is greater than the original
4989 * execution size of the instruction.
4990 */
4991 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4992 inst->exec_size), 0);
4993 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4994
4995 for (unsigned k = 0; k < inst->components_read(i); ++k)
4996 cbld.at(block, inst)
4997 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4998
4999 return tmp;
5000
5001 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
5002 /* The source is invariant for all dispatch_width-wide groups of the
5003 * original region.
5004 */
5005 return inst->src[i];
5006
5007 } else {
5008 /* We can just point the lowered instruction at the right channel group
5009 * from the original region.
5010 */
5011 return src;
5012 }
5013 }
5014
5015 /**
5016 * Return true if splitting out the group of channels of instruction \p inst
5017 * given by lbld.group() requires allocating a temporary for the destination
5018 * of the lowered instruction and copying the data back to the original
5019 * destination region.
5020 */
5021 static inline bool
5022 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5023 {
5024 /* If the instruction writes more than one component we'll have to shuffle
5025 * the results of multiple lowered instructions in order to make sure that
5026 * they end up arranged correctly in the original destination region.
5027 */
5028 if (inst->regs_written * REG_SIZE >
5029 inst->dst.component_size(inst->exec_size))
5030 return true;
5031
5032 /* If the lowered execution size is larger than the original the result of
5033 * the instruction won't fit in the original destination, so we'll have to
5034 * allocate a temporary in any case.
5035 */
5036 if (lbld.dispatch_width() > inst->exec_size)
5037 return true;
5038
5039 for (unsigned i = 0; i < inst->sources; i++) {
5040 /* If we already made a copy of the source for other reasons there won't
5041 * be any overlap with the destination.
5042 */
5043 if (needs_src_copy(lbld, inst, i))
5044 continue;
5045
5046 /* In order to keep the logic simple we emit a copy whenever the
5047 * destination region doesn't exactly match an overlapping source, which
5048 * may point at the source and destination not being aligned group by
5049 * group which could cause one of the lowered instructions to overwrite
5050 * the data read from the same source by other lowered instructions.
5051 */
5052 if (regions_overlap(inst->dst, inst->regs_written * REG_SIZE,
5053 inst->src[i], inst->regs_read(i) * REG_SIZE) &&
5054 !inst->dst.equals(inst->src[i]))
5055 return true;
5056 }
5057
5058 return false;
5059 }
5060
5061 /**
5062 * Insert data from a packed temporary into the channel group given by
5063 * lbld.group() of the destination region of instruction \p inst and return
5064 * the temporary as result. If any copy instructions are required they will
5065 * be emitted around the given \p inst in \p block.
5066 */
5067 static fs_reg
5068 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5069 {
5070 /* Builder of the right width to perform the copy avoiding uninitialized
5071 * data if the lowered execution size is greater than the original
5072 * execution size of the instruction.
5073 */
5074 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5075 inst->exec_size), 0);
5076
5077 /* Specified channel group from the destination region. */
5078 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5079 const unsigned dst_size = inst->regs_written * REG_SIZE /
5080 inst->dst.component_size(inst->exec_size);
5081
5082 if (needs_dst_copy(lbld, inst)) {
5083 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5084
5085 if (inst->predicate) {
5086 /* Handle predication by copying the original contents of
5087 * the destination into the temporary before emitting the
5088 * lowered instruction.
5089 */
5090 for (unsigned k = 0; k < dst_size; ++k)
5091 cbld.at(block, inst)
5092 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5093 }
5094
5095 for (unsigned k = 0; k < dst_size; ++k)
5096 cbld.at(block, inst->next)
5097 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5098
5099 return tmp;
5100
5101 } else {
5102 /* No need to allocate a temporary for the lowered instruction, just
5103 * take the right group of channels from the original region.
5104 */
5105 return dst;
5106 }
5107 }
5108
5109 bool
5110 fs_visitor::lower_simd_width()
5111 {
5112 bool progress = false;
5113
5114 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5115 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5116
5117 if (lower_width != inst->exec_size) {
5118 /* Builder matching the original instruction. We may also need to
5119 * emit an instruction of width larger than the original, set the
5120 * execution size of the builder to the highest of both for now so
5121 * we're sure that both cases can be handled.
5122 */
5123 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5124 const fs_builder ibld = bld.at(block, inst)
5125 .exec_all(inst->force_writemask_all)
5126 .group(max_width, inst->group / max_width);
5127
5128 /* Split the copies in chunks of the execution width of either the
5129 * original or the lowered instruction, whichever is lower.
5130 */
5131 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5132 const unsigned dst_size = inst->regs_written * REG_SIZE /
5133 inst->dst.component_size(inst->exec_size);
5134
5135 assert(!inst->writes_accumulator && !inst->mlen);
5136
5137 for (unsigned i = 0; i < n; i++) {
5138 /* Emit a copy of the original instruction with the lowered width.
5139 * If the EOT flag was set throw it away except for the last
5140 * instruction to avoid killing the thread prematurely.
5141 */
5142 fs_inst split_inst = *inst;
5143 split_inst.exec_size = lower_width;
5144 split_inst.eot = inst->eot && i == n - 1;
5145
5146 /* Select the correct channel enables for the i-th group, then
5147 * transform the sources and destination and emit the lowered
5148 * instruction.
5149 */
5150 const fs_builder lbld = ibld.group(lower_width, i);
5151
5152 for (unsigned j = 0; j < inst->sources; j++)
5153 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5154
5155 split_inst.dst = emit_zip(lbld, block, inst);
5156 split_inst.regs_written = DIV_ROUND_UP(
5157 split_inst.dst.component_size(lower_width) * dst_size,
5158 REG_SIZE);
5159
5160 lbld.emit(split_inst);
5161 }
5162
5163 inst->remove(block);
5164 progress = true;
5165 }
5166 }
5167
5168 if (progress)
5169 invalidate_live_intervals();
5170
5171 return progress;
5172 }
5173
5174 void
5175 fs_visitor::dump_instructions()
5176 {
5177 dump_instructions(NULL);
5178 }
5179
5180 void
5181 fs_visitor::dump_instructions(const char *name)
5182 {
5183 FILE *file = stderr;
5184 if (name && geteuid() != 0) {
5185 file = fopen(name, "w");
5186 if (!file)
5187 file = stderr;
5188 }
5189
5190 if (cfg) {
5191 calculate_register_pressure();
5192 int ip = 0, max_pressure = 0;
5193 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5194 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5195 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5196 dump_instruction(inst, file);
5197 ip++;
5198 }
5199 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5200 } else {
5201 int ip = 0;
5202 foreach_in_list(backend_instruction, inst, &instructions) {
5203 fprintf(file, "%4d: ", ip++);
5204 dump_instruction(inst, file);
5205 }
5206 }
5207
5208 if (file != stderr) {
5209 fclose(file);
5210 }
5211 }
5212
5213 void
5214 fs_visitor::dump_instruction(backend_instruction *be_inst)
5215 {
5216 dump_instruction(be_inst, stderr);
5217 }
5218
5219 void
5220 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5221 {
5222 fs_inst *inst = (fs_inst *)be_inst;
5223
5224 if (inst->predicate) {
5225 fprintf(file, "(%cf0.%d) ",
5226 inst->predicate_inverse ? '-' : '+',
5227 inst->flag_subreg);
5228 }
5229
5230 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5231 if (inst->saturate)
5232 fprintf(file, ".sat");
5233 if (inst->conditional_mod) {
5234 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5235 if (!inst->predicate &&
5236 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5237 inst->opcode != BRW_OPCODE_IF &&
5238 inst->opcode != BRW_OPCODE_WHILE))) {
5239 fprintf(file, ".f0.%d", inst->flag_subreg);
5240 }
5241 }
5242 fprintf(file, "(%d) ", inst->exec_size);
5243
5244 if (inst->mlen) {
5245 fprintf(file, "(mlen: %d) ", inst->mlen);
5246 }
5247
5248 if (inst->eot) {
5249 fprintf(file, "(EOT) ");
5250 }
5251
5252 switch (inst->dst.file) {
5253 case VGRF:
5254 fprintf(file, "vgrf%d", inst->dst.nr);
5255 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
5256 inst->dst.subreg_offset)
5257 fprintf(file, "+%d.%d",
5258 inst->dst.reg_offset, inst->dst.subreg_offset);
5259 break;
5260 case FIXED_GRF:
5261 fprintf(file, "g%d", inst->dst.nr);
5262 break;
5263 case MRF:
5264 fprintf(file, "m%d", inst->dst.nr);
5265 break;
5266 case BAD_FILE:
5267 fprintf(file, "(null)");
5268 break;
5269 case UNIFORM:
5270 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
5271 break;
5272 case ATTR:
5273 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
5274 break;
5275 case ARF:
5276 switch (inst->dst.nr) {
5277 case BRW_ARF_NULL:
5278 fprintf(file, "null");
5279 break;
5280 case BRW_ARF_ADDRESS:
5281 fprintf(file, "a0.%d", inst->dst.subnr);
5282 break;
5283 case BRW_ARF_ACCUMULATOR:
5284 fprintf(file, "acc%d", inst->dst.subnr);
5285 break;
5286 case BRW_ARF_FLAG:
5287 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5288 break;
5289 default:
5290 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5291 break;
5292 }
5293 if (inst->dst.subnr)
5294 fprintf(file, "+%d", inst->dst.subnr);
5295 break;
5296 case IMM:
5297 unreachable("not reached");
5298 }
5299 if (inst->dst.stride != 1)
5300 fprintf(file, "<%u>", inst->dst.stride);
5301 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5302
5303 for (int i = 0; i < inst->sources; i++) {
5304 if (inst->src[i].negate)
5305 fprintf(file, "-");
5306 if (inst->src[i].abs)
5307 fprintf(file, "|");
5308 switch (inst->src[i].file) {
5309 case VGRF:
5310 fprintf(file, "vgrf%d", inst->src[i].nr);
5311 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
5312 inst->src[i].subreg_offset)
5313 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
5314 inst->src[i].subreg_offset);
5315 break;
5316 case FIXED_GRF:
5317 fprintf(file, "g%d", inst->src[i].nr);
5318 break;
5319 case MRF:
5320 fprintf(file, "***m%d***", inst->src[i].nr);
5321 break;
5322 case ATTR:
5323 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
5324 break;
5325 case UNIFORM:
5326 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
5327 if (inst->src[i].subreg_offset) {
5328 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
5329 inst->src[i].subreg_offset);
5330 }
5331 break;
5332 case BAD_FILE:
5333 fprintf(file, "(null)");
5334 break;
5335 case IMM:
5336 switch (inst->src[i].type) {
5337 case BRW_REGISTER_TYPE_F:
5338 fprintf(file, "%-gf", inst->src[i].f);
5339 break;
5340 case BRW_REGISTER_TYPE_DF:
5341 fprintf(file, "%fdf", inst->src[i].df);
5342 break;
5343 case BRW_REGISTER_TYPE_W:
5344 case BRW_REGISTER_TYPE_D:
5345 fprintf(file, "%dd", inst->src[i].d);
5346 break;
5347 case BRW_REGISTER_TYPE_UW:
5348 case BRW_REGISTER_TYPE_UD:
5349 fprintf(file, "%uu", inst->src[i].ud);
5350 break;
5351 case BRW_REGISTER_TYPE_VF:
5352 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5353 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5354 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5355 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5356 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5357 break;
5358 default:
5359 fprintf(file, "???");
5360 break;
5361 }
5362 break;
5363 case ARF:
5364 switch (inst->src[i].nr) {
5365 case BRW_ARF_NULL:
5366 fprintf(file, "null");
5367 break;
5368 case BRW_ARF_ADDRESS:
5369 fprintf(file, "a0.%d", inst->src[i].subnr);
5370 break;
5371 case BRW_ARF_ACCUMULATOR:
5372 fprintf(file, "acc%d", inst->src[i].subnr);
5373 break;
5374 case BRW_ARF_FLAG:
5375 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5376 break;
5377 default:
5378 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5379 break;
5380 }
5381 if (inst->src[i].subnr)
5382 fprintf(file, "+%d", inst->src[i].subnr);
5383 break;
5384 }
5385 if (inst->src[i].abs)
5386 fprintf(file, "|");
5387
5388 if (inst->src[i].file != IMM) {
5389 unsigned stride;
5390 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5391 unsigned hstride = inst->src[i].hstride;
5392 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5393 } else {
5394 stride = inst->src[i].stride;
5395 }
5396 if (stride != 1)
5397 fprintf(file, "<%u>", stride);
5398
5399 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5400 }
5401
5402 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5403 fprintf(file, ", ");
5404 }
5405
5406 fprintf(file, " ");
5407
5408 if (inst->force_writemask_all)
5409 fprintf(file, "NoMask ");
5410
5411 if (inst->exec_size != dispatch_width)
5412 fprintf(file, "group%d ", inst->group);
5413
5414 fprintf(file, "\n");
5415 }
5416
5417 /**
5418 * Possibly returns an instruction that set up @param reg.
5419 *
5420 * Sometimes we want to take the result of some expression/variable
5421 * dereference tree and rewrite the instruction generating the result
5422 * of the tree. When processing the tree, we know that the
5423 * instructions generated are all writing temporaries that are dead
5424 * outside of this tree. So, if we have some instructions that write
5425 * a temporary, we're free to point that temp write somewhere else.
5426 *
5427 * Note that this doesn't guarantee that the instruction generated
5428 * only reg -- it might be the size=4 destination of a texture instruction.
5429 */
5430 fs_inst *
5431 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5432 fs_inst *end,
5433 const fs_reg &reg)
5434 {
5435 if (end == start ||
5436 end->is_partial_write() ||
5437 !reg.equals(end->dst)) {
5438 return NULL;
5439 } else {
5440 return end;
5441 }
5442 }
5443
5444 void
5445 fs_visitor::setup_fs_payload_gen6()
5446 {
5447 assert(stage == MESA_SHADER_FRAGMENT);
5448 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
5449
5450 unsigned barycentric_interp_modes =
5451 (stage == MESA_SHADER_FRAGMENT) ?
5452 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
5453
5454 assert(devinfo->gen >= 6);
5455
5456 /* R0-1: masks, pixel X/Y coordinates. */
5457 payload.num_regs = 2;
5458 /* R2: only for 32-pixel dispatch.*/
5459
5460 /* R3-26: barycentric interpolation coordinates. These appear in the
5461 * same order that they appear in the brw_barycentric_mode
5462 * enum. Each set of coordinates occupies 2 registers if dispatch width
5463 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5464 * appear if they were enabled using the "Barycentric Interpolation
5465 * Mode" bits in WM_STATE.
5466 */
5467 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5468 if (barycentric_interp_modes & (1 << i)) {
5469 payload.barycentric_coord_reg[i] = payload.num_regs;
5470 payload.num_regs += 2;
5471 if (dispatch_width == 16) {
5472 payload.num_regs += 2;
5473 }
5474 }
5475 }
5476
5477 /* R27: interpolated depth if uses source depth */
5478 prog_data->uses_src_depth =
5479 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5480 if (prog_data->uses_src_depth) {
5481 payload.source_depth_reg = payload.num_regs;
5482 payload.num_regs++;
5483 if (dispatch_width == 16) {
5484 /* R28: interpolated depth if not SIMD8. */
5485 payload.num_regs++;
5486 }
5487 }
5488
5489 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5490 prog_data->uses_src_w =
5491 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5492 if (prog_data->uses_src_w) {
5493 payload.source_w_reg = payload.num_regs;
5494 payload.num_regs++;
5495 if (dispatch_width == 16) {
5496 /* R30: interpolated W if not SIMD8. */
5497 payload.num_regs++;
5498 }
5499 }
5500
5501 /* R31: MSAA position offsets. */
5502 if (prog_data->persample_dispatch &&
5503 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5504 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5505 *
5506 * "MSDISPMODE_PERSAMPLE is required in order to select
5507 * POSOFFSET_SAMPLE"
5508 *
5509 * So we can only really get sample positions if we are doing real
5510 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5511 * persample dispatch, we hard-code it to 0.5.
5512 */
5513 prog_data->uses_pos_offset = true;
5514 payload.sample_pos_reg = payload.num_regs;
5515 payload.num_regs++;
5516 }
5517
5518 /* R32: MSAA input coverage mask */
5519 prog_data->uses_sample_mask =
5520 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5521 if (prog_data->uses_sample_mask) {
5522 assert(devinfo->gen >= 7);
5523 payload.sample_mask_in_reg = payload.num_regs;
5524 payload.num_regs++;
5525 if (dispatch_width == 16) {
5526 /* R33: input coverage mask if not SIMD8. */
5527 payload.num_regs++;
5528 }
5529 }
5530
5531 /* R34-: bary for 32-pixel. */
5532 /* R58-59: interp W for 32-pixel. */
5533
5534 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5535 source_depth_to_render_target = true;
5536 }
5537 }
5538
5539 void
5540 fs_visitor::setup_vs_payload()
5541 {
5542 /* R0: thread header, R1: urb handles */
5543 payload.num_regs = 2;
5544 }
5545
5546 void
5547 fs_visitor::setup_gs_payload()
5548 {
5549 assert(stage == MESA_SHADER_GEOMETRY);
5550
5551 struct brw_gs_prog_data *gs_prog_data =
5552 (struct brw_gs_prog_data *) prog_data;
5553 struct brw_vue_prog_data *vue_prog_data =
5554 (struct brw_vue_prog_data *) prog_data;
5555
5556 /* R0: thread header, R1: output URB handles */
5557 payload.num_regs = 2;
5558
5559 if (gs_prog_data->include_primitive_id) {
5560 /* R2: Primitive ID 0..7 */
5561 payload.num_regs++;
5562 }
5563
5564 /* Use a maximum of 24 registers for push-model inputs. */
5565 const unsigned max_push_components = 24;
5566
5567 /* If pushing our inputs would take too many registers, reduce the URB read
5568 * length (which is in HWords, or 8 registers), and resort to pulling.
5569 *
5570 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5571 * have to multiply by VerticesIn to obtain the total storage requirement.
5572 */
5573 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5574 max_push_components || gs_prog_data->invocations > 1) {
5575 gs_prog_data->base.include_vue_handles = true;
5576
5577 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5578 payload.num_regs += nir->info.gs.vertices_in;
5579
5580 vue_prog_data->urb_read_length =
5581 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5582 }
5583 }
5584
5585 void
5586 fs_visitor::setup_cs_payload()
5587 {
5588 assert(devinfo->gen >= 7);
5589 payload.num_regs = 1;
5590 }
5591
5592 void
5593 fs_visitor::calculate_register_pressure()
5594 {
5595 invalidate_live_intervals();
5596 calculate_live_intervals();
5597
5598 unsigned num_instructions = 0;
5599 foreach_block(block, cfg)
5600 num_instructions += block->instructions.length();
5601
5602 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5603
5604 for (unsigned reg = 0; reg < alloc.count; reg++) {
5605 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5606 regs_live_at_ip[ip] += alloc.sizes[reg];
5607 }
5608 }
5609
5610 /**
5611 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5612 *
5613 * The needs_unlit_centroid_workaround ends up producing one of these per
5614 * channel of centroid input, so it's good to clean them up.
5615 *
5616 * An assumption here is that nothing ever modifies the dispatched pixels
5617 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5618 * dictates that anyway.
5619 */
5620 bool
5621 fs_visitor::opt_drop_redundant_mov_to_flags()
5622 {
5623 bool flag_mov_found[2] = {false};
5624 bool progress = false;
5625
5626 /* Instructions removed by this pass can only be added if this were true */
5627 if (!devinfo->needs_unlit_centroid_workaround)
5628 return false;
5629
5630 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5631 if (inst->is_control_flow()) {
5632 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5633 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5634 if (!flag_mov_found[inst->flag_subreg]) {
5635 flag_mov_found[inst->flag_subreg] = true;
5636 } else {
5637 inst->remove(block);
5638 progress = true;
5639 }
5640 } else if (inst->flags_written()) {
5641 flag_mov_found[inst->flag_subreg] = false;
5642 }
5643 }
5644
5645 return progress;
5646 }
5647
5648 void
5649 fs_visitor::optimize()
5650 {
5651 /* Start by validating the shader we currently have. */
5652 validate();
5653
5654 /* bld is the common builder object pointing at the end of the program we
5655 * used to translate it into i965 IR. For the optimization and lowering
5656 * passes coming next, any code added after the end of the program without
5657 * having explicitly called fs_builder::at() clearly points at a mistake.
5658 * Ideally optimization passes wouldn't be part of the visitor so they
5659 * wouldn't have access to bld at all, but they do, so just in case some
5660 * pass forgets to ask for a location explicitly set it to NULL here to
5661 * make it trip. The dispatch width is initialized to a bogus value to
5662 * make sure that optimizations set the execution controls explicitly to
5663 * match the code they are manipulating instead of relying on the defaults.
5664 */
5665 bld = fs_builder(this, 64);
5666
5667 assign_constant_locations();
5668 lower_constant_loads();
5669
5670 validate();
5671
5672 split_virtual_grfs();
5673 validate();
5674
5675 #define OPT(pass, args...) ({ \
5676 pass_num++; \
5677 bool this_progress = pass(args); \
5678 \
5679 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5680 char filename[64]; \
5681 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5682 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5683 \
5684 backend_shader::dump_instructions(filename); \
5685 } \
5686 \
5687 validate(); \
5688 \
5689 progress = progress || this_progress; \
5690 this_progress; \
5691 })
5692
5693 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5694 char filename[64];
5695 snprintf(filename, 64, "%s%d-%s-00-00-start",
5696 stage_abbrev, dispatch_width, nir->info.name);
5697
5698 backend_shader::dump_instructions(filename);
5699 }
5700
5701 bool progress = false;
5702 int iteration = 0;
5703 int pass_num = 0;
5704
5705 OPT(opt_drop_redundant_mov_to_flags);
5706
5707 do {
5708 progress = false;
5709 pass_num = 0;
5710 iteration++;
5711
5712 OPT(remove_duplicate_mrf_writes);
5713
5714 OPT(opt_algebraic);
5715 OPT(opt_cse);
5716 OPT(opt_copy_propagate);
5717 OPT(opt_predicated_break, this);
5718 OPT(opt_cmod_propagation);
5719 OPT(dead_code_eliminate);
5720 OPT(opt_peephole_sel);
5721 OPT(dead_control_flow_eliminate, this);
5722 OPT(opt_register_renaming);
5723 OPT(opt_saturate_propagation);
5724 OPT(register_coalesce);
5725 OPT(compute_to_mrf);
5726 OPT(eliminate_find_live_channel);
5727
5728 OPT(compact_virtual_grfs);
5729 } while (progress);
5730
5731 progress = false;
5732 pass_num = 0;
5733
5734 if (OPT(lower_pack)) {
5735 OPT(register_coalesce);
5736 OPT(dead_code_eliminate);
5737 }
5738
5739 if (OPT(lower_d2x)) {
5740 OPT(opt_copy_propagate);
5741 OPT(dead_code_eliminate);
5742 }
5743
5744 OPT(lower_simd_width);
5745
5746 /* After SIMD lowering just in case we had to unroll the EOT send. */
5747 OPT(opt_sampler_eot);
5748
5749 OPT(lower_logical_sends);
5750
5751 if (progress) {
5752 OPT(opt_copy_propagate);
5753 /* Only run after logical send lowering because it's easier to implement
5754 * in terms of physical sends.
5755 */
5756 if (OPT(opt_zero_samples))
5757 OPT(opt_copy_propagate);
5758 /* Run after logical send lowering to give it a chance to CSE the
5759 * LOAD_PAYLOAD instructions created to construct the payloads of
5760 * e.g. texturing messages in cases where it wasn't possible to CSE the
5761 * whole logical instruction.
5762 */
5763 OPT(opt_cse);
5764 OPT(register_coalesce);
5765 OPT(compute_to_mrf);
5766 OPT(dead_code_eliminate);
5767 OPT(remove_duplicate_mrf_writes);
5768 OPT(opt_peephole_sel);
5769 }
5770
5771 OPT(opt_redundant_discard_jumps);
5772
5773 if (OPT(lower_load_payload)) {
5774 split_virtual_grfs();
5775 OPT(register_coalesce);
5776 OPT(compute_to_mrf);
5777 OPT(dead_code_eliminate);
5778 }
5779
5780 OPT(opt_combine_constants);
5781 OPT(lower_integer_multiplication);
5782
5783 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5784 OPT(opt_cmod_propagation);
5785 OPT(opt_cse);
5786 OPT(opt_copy_propagate);
5787 OPT(dead_code_eliminate);
5788 }
5789
5790 lower_uniform_pull_constant_loads();
5791
5792 validate();
5793 }
5794
5795 /**
5796 * Three source instruction must have a GRF/MRF destination register.
5797 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5798 */
5799 void
5800 fs_visitor::fixup_3src_null_dest()
5801 {
5802 bool progress = false;
5803
5804 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5805 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5806 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5807 inst->dst.type);
5808 progress = true;
5809 }
5810 }
5811
5812 if (progress)
5813 invalidate_live_intervals();
5814 }
5815
5816 void
5817 fs_visitor::allocate_registers(bool allow_spilling)
5818 {
5819 bool allocated_without_spills;
5820
5821 static const enum instruction_scheduler_mode pre_modes[] = {
5822 SCHEDULE_PRE,
5823 SCHEDULE_PRE_NON_LIFO,
5824 SCHEDULE_PRE_LIFO,
5825 };
5826
5827 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5828
5829 /* Try each scheduling heuristic to see if it can successfully register
5830 * allocate without spilling. They should be ordered by decreasing
5831 * performance but increasing likelihood of allocating.
5832 */
5833 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5834 schedule_instructions(pre_modes[i]);
5835
5836 if (0) {
5837 assign_regs_trivial();
5838 allocated_without_spills = true;
5839 } else {
5840 allocated_without_spills = assign_regs(false, spill_all);
5841 }
5842 if (allocated_without_spills)
5843 break;
5844 }
5845
5846 if (!allocated_without_spills) {
5847 /* We assume that any spilling is worse than just dropping back to
5848 * SIMD8. There's probably actually some intermediate point where
5849 * SIMD16 with a couple of spills is still better.
5850 */
5851 if (dispatch_width > min_dispatch_width) {
5852 fail("Failure to register allocate. Reduce number of "
5853 "live scalar values to avoid this.");
5854 } else {
5855 compiler->shader_perf_log(log_data,
5856 "%s shader triggered register spilling. "
5857 "Try reducing the number of live scalar "
5858 "values to improve performance.\n",
5859 stage_name);
5860 }
5861
5862 /* Since we're out of heuristics, just go spill registers until we
5863 * get an allocation.
5864 */
5865 while (!assign_regs(true, spill_all)) {
5866 if (failed)
5867 break;
5868 }
5869 }
5870
5871 assert(last_scratch == 0 || allow_spilling);
5872
5873 /* This must come after all optimization and register allocation, since
5874 * it inserts dead code that happens to have side effects, and it does
5875 * so based on the actual physical registers in use.
5876 */
5877 insert_gen4_send_dependency_workarounds();
5878
5879 if (failed)
5880 return;
5881
5882 schedule_instructions(SCHEDULE_POST);
5883
5884 if (last_scratch > 0) {
5885 unsigned max_scratch_size = 2 * 1024 * 1024;
5886
5887 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5888
5889 if (stage == MESA_SHADER_COMPUTE) {
5890 if (devinfo->is_haswell) {
5891 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5892 * field documentation, Haswell supports a minimum of 2kB of
5893 * scratch space for compute shaders, unlike every other stage
5894 * and platform.
5895 */
5896 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5897 } else if (devinfo->gen <= 7) {
5898 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5899 * field documentation, platforms prior to Haswell measure scratch
5900 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5901 */
5902 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5903 max_scratch_size = 12 * 1024;
5904 }
5905 }
5906
5907 /* We currently only support up to 2MB of scratch space. If we
5908 * need to support more eventually, the documentation suggests
5909 * that we could allocate a larger buffer, and partition it out
5910 * ourselves. We'd just have to undo the hardware's address
5911 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5912 * and then add FFTID * (Larger Per Thread Scratch Space).
5913 *
5914 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5915 * Thread Group Tracking > Local Memory/Scratch Space.
5916 */
5917 assert(prog_data->total_scratch < max_scratch_size);
5918 }
5919 }
5920
5921 bool
5922 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5923 {
5924 assert(stage == MESA_SHADER_VERTEX);
5925
5926 setup_vs_payload();
5927
5928 if (shader_time_index >= 0)
5929 emit_shader_time_begin();
5930
5931 emit_nir_code();
5932
5933 if (failed)
5934 return false;
5935
5936 compute_clip_distance(clip_planes);
5937
5938 emit_urb_writes();
5939
5940 if (shader_time_index >= 0)
5941 emit_shader_time_end();
5942
5943 calculate_cfg();
5944
5945 optimize();
5946
5947 assign_curb_setup();
5948 assign_vs_urb_setup();
5949
5950 fixup_3src_null_dest();
5951 allocate_registers(true);
5952
5953 return !failed;
5954 }
5955
5956 bool
5957 fs_visitor::run_tcs_single_patch()
5958 {
5959 assert(stage == MESA_SHADER_TESS_CTRL);
5960
5961 struct brw_tcs_prog_data *tcs_prog_data =
5962 (struct brw_tcs_prog_data *) prog_data;
5963
5964 /* r1-r4 contain the ICP handles. */
5965 payload.num_regs = 5;
5966
5967 if (shader_time_index >= 0)
5968 emit_shader_time_begin();
5969
5970 /* Initialize gl_InvocationID */
5971 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5972 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5973 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5974 bld.MOV(channels_ud, channels_uw);
5975
5976 if (tcs_prog_data->instances == 1) {
5977 invocation_id = channels_ud;
5978 } else {
5979 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5980
5981 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5982 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5983 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5984 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5985 brw_imm_ud(INTEL_MASK(23, 17)));
5986 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5987
5988 bld.ADD(invocation_id, instance_times_8, channels_ud);
5989 }
5990
5991 /* Fix the disptach mask */
5992 if (nir->info.tcs.vertices_out % 8) {
5993 bld.CMP(bld.null_reg_ud(), invocation_id,
5994 brw_imm_ud(nir->info.tcs.vertices_out), BRW_CONDITIONAL_L);
5995 bld.IF(BRW_PREDICATE_NORMAL);
5996 }
5997
5998 emit_nir_code();
5999
6000 if (nir->info.tcs.vertices_out % 8) {
6001 bld.emit(BRW_OPCODE_ENDIF);
6002 }
6003
6004 /* Emit EOT write; set TR DS Cache bit */
6005 fs_reg srcs[3] = {
6006 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
6007 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
6008 fs_reg(brw_imm_ud(0)),
6009 };
6010 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
6011 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
6012
6013 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
6014 bld.null_reg_ud(), payload);
6015 inst->mlen = 3;
6016 inst->eot = true;
6017
6018 if (shader_time_index >= 0)
6019 emit_shader_time_end();
6020
6021 if (failed)
6022 return false;
6023
6024 calculate_cfg();
6025
6026 optimize();
6027
6028 assign_curb_setup();
6029 assign_tcs_single_patch_urb_setup();
6030
6031 fixup_3src_null_dest();
6032 allocate_registers(true);
6033
6034 return !failed;
6035 }
6036
6037 bool
6038 fs_visitor::run_tes()
6039 {
6040 assert(stage == MESA_SHADER_TESS_EVAL);
6041
6042 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6043 payload.num_regs = 5;
6044
6045 if (shader_time_index >= 0)
6046 emit_shader_time_begin();
6047
6048 emit_nir_code();
6049
6050 if (failed)
6051 return false;
6052
6053 emit_urb_writes();
6054
6055 if (shader_time_index >= 0)
6056 emit_shader_time_end();
6057
6058 calculate_cfg();
6059
6060 optimize();
6061
6062 assign_curb_setup();
6063 assign_tes_urb_setup();
6064
6065 fixup_3src_null_dest();
6066 allocate_registers(true);
6067
6068 return !failed;
6069 }
6070
6071 bool
6072 fs_visitor::run_gs()
6073 {
6074 assert(stage == MESA_SHADER_GEOMETRY);
6075
6076 setup_gs_payload();
6077
6078 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6079
6080 if (gs_compile->control_data_header_size_bits > 0) {
6081 /* Create a VGRF to store accumulated control data bits. */
6082 this->control_data_bits = vgrf(glsl_type::uint_type);
6083
6084 /* If we're outputting more than 32 control data bits, then EmitVertex()
6085 * will set control_data_bits to 0 after emitting the first vertex.
6086 * Otherwise, we need to initialize it to 0 here.
6087 */
6088 if (gs_compile->control_data_header_size_bits <= 32) {
6089 const fs_builder abld = bld.annotate("initialize control data bits");
6090 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6091 }
6092 }
6093
6094 if (shader_time_index >= 0)
6095 emit_shader_time_begin();
6096
6097 emit_nir_code();
6098
6099 emit_gs_thread_end();
6100
6101 if (shader_time_index >= 0)
6102 emit_shader_time_end();
6103
6104 if (failed)
6105 return false;
6106
6107 calculate_cfg();
6108
6109 optimize();
6110
6111 assign_curb_setup();
6112 assign_gs_urb_setup();
6113
6114 fixup_3src_null_dest();
6115 allocate_registers(true);
6116
6117 return !failed;
6118 }
6119
6120 bool
6121 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6122 {
6123 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
6124 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6125
6126 assert(stage == MESA_SHADER_FRAGMENT);
6127
6128 if (devinfo->gen >= 6)
6129 setup_fs_payload_gen6();
6130 else
6131 setup_fs_payload_gen4();
6132
6133 if (0) {
6134 emit_dummy_fs();
6135 } else if (do_rep_send) {
6136 assert(dispatch_width == 16);
6137 emit_repclear_shader();
6138 } else {
6139 if (shader_time_index >= 0)
6140 emit_shader_time_begin();
6141
6142 calculate_urb_setup();
6143 if (nir->info.inputs_read > 0) {
6144 if (devinfo->gen < 6)
6145 emit_interpolation_setup_gen4();
6146 else
6147 emit_interpolation_setup_gen6();
6148 }
6149
6150 /* We handle discards by keeping track of the still-live pixels in f0.1.
6151 * Initialize it with the dispatched pixels.
6152 */
6153 if (wm_prog_data->uses_kill) {
6154 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6155 discard_init->flag_subreg = 1;
6156 }
6157
6158 /* Generate FS IR for main(). (the visitor only descends into
6159 * functions called "main").
6160 */
6161 emit_nir_code();
6162
6163 if (failed)
6164 return false;
6165
6166 if (wm_prog_data->uses_kill)
6167 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6168
6169 if (wm_key->alpha_test_func)
6170 emit_alpha_test();
6171
6172 emit_fb_writes();
6173
6174 if (shader_time_index >= 0)
6175 emit_shader_time_end();
6176
6177 calculate_cfg();
6178
6179 optimize();
6180
6181 assign_curb_setup();
6182 assign_urb_setup();
6183
6184 fixup_3src_null_dest();
6185 allocate_registers(allow_spilling);
6186
6187 if (failed)
6188 return false;
6189 }
6190
6191 return !failed;
6192 }
6193
6194 bool
6195 fs_visitor::run_cs()
6196 {
6197 assert(stage == MESA_SHADER_COMPUTE);
6198
6199 setup_cs_payload();
6200
6201 if (shader_time_index >= 0)
6202 emit_shader_time_begin();
6203
6204 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6205 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6206 const fs_builder abld = bld.exec_all().group(1, 0);
6207 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
6208 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6209 }
6210
6211 emit_nir_code();
6212
6213 if (failed)
6214 return false;
6215
6216 emit_cs_terminate();
6217
6218 if (shader_time_index >= 0)
6219 emit_shader_time_end();
6220
6221 calculate_cfg();
6222
6223 optimize();
6224
6225 assign_curb_setup();
6226
6227 fixup_3src_null_dest();
6228 allocate_registers(true);
6229
6230 if (failed)
6231 return false;
6232
6233 return !failed;
6234 }
6235
6236 /**
6237 * Return a bitfield where bit n is set if barycentric interpolation mode n
6238 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6239 *
6240 * We examine the load_barycentric intrinsics rather than looking at input
6241 * variables so that we catch interpolateAtCentroid() messages too, which
6242 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6243 */
6244 static unsigned
6245 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
6246 const nir_shader *shader)
6247 {
6248 unsigned barycentric_interp_modes = 0;
6249
6250 nir_foreach_function(f, shader) {
6251 if (!f->impl)
6252 continue;
6253
6254 nir_foreach_block(block, f->impl) {
6255 nir_foreach_instr(instr, block) {
6256 if (instr->type != nir_instr_type_intrinsic)
6257 continue;
6258
6259 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6260 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6261 continue;
6262
6263 /* Ignore WPOS; it doesn't require interpolation. */
6264 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6265 continue;
6266
6267 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6268 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6269 nir_intrinsic_interp_mode(intrin);
6270 nir_intrinsic_op bary_op = intrin->intrinsic;
6271 enum brw_barycentric_mode bary =
6272 brw_barycentric_mode(interp, bary_op);
6273
6274 barycentric_interp_modes |= 1 << bary;
6275
6276 if (devinfo->needs_unlit_centroid_workaround &&
6277 bary_op == nir_intrinsic_load_barycentric_centroid)
6278 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6279 }
6280 }
6281 }
6282
6283 return barycentric_interp_modes;
6284 }
6285
6286 static void
6287 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6288 const nir_shader *shader)
6289 {
6290 prog_data->flat_inputs = 0;
6291
6292 nir_foreach_variable(var, &shader->inputs) {
6293 int input_index = prog_data->urb_setup[var->data.location];
6294
6295 if (input_index < 0)
6296 continue;
6297
6298 /* flat shading */
6299 if (var->data.interpolation == INTERP_MODE_FLAT)
6300 prog_data->flat_inputs |= (1 << input_index);
6301 }
6302 }
6303
6304 static uint8_t
6305 computed_depth_mode(const nir_shader *shader)
6306 {
6307 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6308 switch (shader->info.fs.depth_layout) {
6309 case FRAG_DEPTH_LAYOUT_NONE:
6310 case FRAG_DEPTH_LAYOUT_ANY:
6311 return BRW_PSCDEPTH_ON;
6312 case FRAG_DEPTH_LAYOUT_GREATER:
6313 return BRW_PSCDEPTH_ON_GE;
6314 case FRAG_DEPTH_LAYOUT_LESS:
6315 return BRW_PSCDEPTH_ON_LE;
6316 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6317 return BRW_PSCDEPTH_OFF;
6318 }
6319 }
6320 return BRW_PSCDEPTH_OFF;
6321 }
6322
6323 /**
6324 * Move load_interpolated_input with simple (payload-based) barycentric modes
6325 * to the top of the program so we don't emit multiple PLNs for the same input.
6326 *
6327 * This works around CSE not being able to handle non-dominating cases
6328 * such as:
6329 *
6330 * if (...) {
6331 * interpolate input
6332 * } else {
6333 * interpolate the same exact input
6334 * }
6335 *
6336 * This should be replaced by global value numbering someday.
6337 */
6338 void
6339 move_interpolation_to_top(nir_shader *nir)
6340 {
6341 nir_foreach_function(f, nir) {
6342 if (!f->impl)
6343 continue;
6344
6345 nir_block *top = nir_start_block(f->impl);
6346 exec_node *cursor_node = NULL;
6347
6348 nir_foreach_block(block, f->impl) {
6349 if (block == top)
6350 continue;
6351
6352 nir_foreach_instr_safe(instr, block) {
6353 if (instr->type != nir_instr_type_intrinsic)
6354 continue;
6355
6356 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6357 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6358 continue;
6359 nir_intrinsic_instr *bary_intrinsic =
6360 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6361 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6362
6363 /* Leave interpolateAtSample/Offset() where they are. */
6364 if (op == nir_intrinsic_load_barycentric_at_sample ||
6365 op == nir_intrinsic_load_barycentric_at_offset)
6366 continue;
6367
6368 nir_instr *move[3] = {
6369 &bary_intrinsic->instr,
6370 intrin->src[1].ssa->parent_instr,
6371 instr
6372 };
6373
6374 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6375 if (move[i]->block != top) {
6376 move[i]->block = top;
6377 exec_node_remove(&move[i]->node);
6378 if (cursor_node) {
6379 exec_node_insert_after(cursor_node, &move[i]->node);
6380 } else {
6381 exec_list_push_head(&top->instr_list, &move[i]->node);
6382 }
6383 cursor_node = &move[i]->node;
6384 }
6385 }
6386 }
6387 }
6388 nir_metadata_preserve(f->impl, (nir_metadata)
6389 ((unsigned) nir_metadata_block_index |
6390 (unsigned) nir_metadata_dominance));
6391 }
6392 }
6393
6394 /**
6395 * Apply default interpolation settings to FS inputs which don't specify any.
6396 */
6397 static void
6398 brw_nir_set_default_interpolation(const struct brw_device_info *devinfo,
6399 struct nir_shader *nir,
6400 bool api_flat_shade,
6401 bool per_sample_interpolation)
6402 {
6403 assert(nir->stage == MESA_SHADER_FRAGMENT);
6404
6405 nir_foreach_variable(var, &nir->inputs) {
6406 /* Apply default interpolation mode.
6407 *
6408 * Everything defaults to smooth except for the legacy GL color
6409 * built-in variables, which might be flat depending on API state.
6410 */
6411 if (var->data.interpolation == INTERP_MODE_NONE) {
6412 const bool flat = api_flat_shade &&
6413 (var->data.location == VARYING_SLOT_COL0 ||
6414 var->data.location == VARYING_SLOT_COL1);
6415
6416 var->data.interpolation = flat ? INTERP_MODE_FLAT
6417 : INTERP_MODE_SMOOTH;
6418 }
6419
6420 /* Apply 'sample' if necessary for API state. */
6421 if (per_sample_interpolation &&
6422 var->data.interpolation != INTERP_MODE_FLAT) {
6423 var->data.centroid = false;
6424 var->data.sample = true;
6425 }
6426
6427 /* On Ironlake and below, there is only one interpolation mode.
6428 * Centroid interpolation doesn't mean anything on this hardware --
6429 * there is no multisampling.
6430 */
6431 if (devinfo->gen < 6) {
6432 var->data.centroid = false;
6433 var->data.sample = false;
6434 }
6435 }
6436 }
6437
6438 /**
6439 * Demote per-sample barycentric intrinsics to centroid.
6440 *
6441 * Useful when rendering to a non-multisampled buffer.
6442 */
6443 static void
6444 demote_sample_qualifiers(nir_shader *nir)
6445 {
6446 nir_foreach_function(f, nir) {
6447 if (!f->impl)
6448 continue;
6449
6450 nir_builder b;
6451 nir_builder_init(&b, f->impl);
6452
6453 nir_foreach_block(block, f->impl) {
6454 nir_foreach_instr_safe(instr, block) {
6455 if (instr->type != nir_instr_type_intrinsic)
6456 continue;
6457
6458 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6459 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6460 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6461 continue;
6462
6463 b.cursor = nir_before_instr(instr);
6464 nir_ssa_def *centroid =
6465 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6466 nir_intrinsic_interp_mode(intrin));
6467 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6468 nir_src_for_ssa(centroid));
6469 nir_instr_remove(instr);
6470 }
6471 }
6472
6473 nir_metadata_preserve(f->impl, (nir_metadata)
6474 ((unsigned) nir_metadata_block_index |
6475 (unsigned) nir_metadata_dominance));
6476 }
6477 }
6478
6479 const unsigned *
6480 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6481 void *mem_ctx,
6482 const struct brw_wm_prog_key *key,
6483 struct brw_wm_prog_data *prog_data,
6484 const nir_shader *src_shader,
6485 struct gl_program *prog,
6486 int shader_time_index8, int shader_time_index16,
6487 bool allow_spilling,
6488 bool use_rep_send,
6489 unsigned *final_assembly_size,
6490 char **error_str)
6491 {
6492 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6493 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6494 true);
6495 brw_nir_set_default_interpolation(compiler->devinfo, shader,
6496 key->flat_shade, key->persample_interp);
6497 brw_nir_lower_fs_inputs(shader);
6498 brw_nir_lower_fs_outputs(shader);
6499 if (!key->multisample_fbo)
6500 NIR_PASS_V(shader, demote_sample_qualifiers);
6501 NIR_PASS_V(shader, move_interpolation_to_top);
6502 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6503
6504 /* key->alpha_test_func means simulating alpha testing via discards,
6505 * so the shader definitely kills pixels.
6506 */
6507 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
6508 prog_data->uses_omask = key->multisample_fbo &&
6509 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6510 prog_data->computed_depth_mode = computed_depth_mode(shader);
6511 prog_data->computed_stencil =
6512 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6513
6514 prog_data->persample_dispatch =
6515 key->multisample_fbo &&
6516 (key->persample_interp ||
6517 (shader->info.system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6518 SYSTEM_BIT_SAMPLE_POS)) ||
6519 shader->info.fs.uses_sample_qualifier);
6520
6521 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
6522
6523 prog_data->barycentric_interp_modes =
6524 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6525
6526 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6527 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6528 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6529
6530 fs_visitor v8(compiler, log_data, mem_ctx, key,
6531 &prog_data->base, prog, shader, 8,
6532 shader_time_index8);
6533 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6534 if (error_str)
6535 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6536
6537 return NULL;
6538 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6539 simd8_cfg = v8.cfg;
6540 simd8_grf_start = v8.payload.num_regs;
6541 simd8_grf_used = v8.grf_used;
6542 }
6543
6544 if (v8.max_dispatch_width >= 16 &&
6545 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6546 /* Try a SIMD16 compile */
6547 fs_visitor v16(compiler, log_data, mem_ctx, key,
6548 &prog_data->base, prog, shader, 16,
6549 shader_time_index16);
6550 v16.import_uniforms(&v8);
6551 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6552 compiler->shader_perf_log(log_data,
6553 "SIMD16 shader failed to compile: %s",
6554 v16.fail_msg);
6555 } else {
6556 simd16_cfg = v16.cfg;
6557 simd16_grf_start = v16.payload.num_regs;
6558 simd16_grf_used = v16.grf_used;
6559 }
6560 }
6561
6562 /* When the caller requests a repclear shader, they want SIMD16-only */
6563 if (use_rep_send)
6564 simd8_cfg = NULL;
6565
6566 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6567 * at the top to select the shader. We've never implemented that.
6568 * Instead, we just give them exactly one shader and we pick the widest one
6569 * available.
6570 */
6571 if (compiler->devinfo->gen < 5 && simd16_cfg)
6572 simd8_cfg = NULL;
6573
6574 if (prog_data->persample_dispatch) {
6575 /* Starting with SandyBridge (where we first get MSAA), the different
6576 * pixel dispatch combinations are grouped into classifications A
6577 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6578 * generations, the only configurations supporting persample dispatch
6579 * are are this in which only one dispatch width is enabled.
6580 *
6581 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6582 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6583 */
6584 if (compiler->devinfo->gen == 6 &&
6585 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6586 simd16_cfg = NULL;
6587 } else if (simd16_cfg) {
6588 simd8_cfg = NULL;
6589 }
6590 }
6591
6592 /* We have to compute the flat inputs after the visitor is finished running
6593 * because it relies on prog_data->urb_setup which is computed in
6594 * fs_visitor::calculate_urb_setup().
6595 */
6596 brw_compute_flat_inputs(prog_data, shader);
6597
6598 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6599 v8.promoted_constants, v8.runtime_check_aads_emit,
6600 MESA_SHADER_FRAGMENT);
6601
6602 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6603 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6604 shader->info.label ? shader->info.label :
6605 "unnamed",
6606 shader->info.name));
6607 }
6608
6609 if (simd8_cfg) {
6610 prog_data->dispatch_8 = true;
6611 g.generate_code(simd8_cfg, 8);
6612 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6613 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6614
6615 if (simd16_cfg) {
6616 prog_data->dispatch_16 = true;
6617 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6618 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6619 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6620 }
6621 } else if (simd16_cfg) {
6622 prog_data->dispatch_16 = true;
6623 g.generate_code(simd16_cfg, 16);
6624 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6625 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6626 }
6627
6628 return g.get_assembly(final_assembly_size);
6629 }
6630
6631 fs_reg *
6632 fs_visitor::emit_cs_work_group_id_setup()
6633 {
6634 assert(stage == MESA_SHADER_COMPUTE);
6635
6636 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6637
6638 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6639 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6640 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6641
6642 bld.MOV(*reg, r0_1);
6643 bld.MOV(offset(*reg, bld, 1), r0_6);
6644 bld.MOV(offset(*reg, bld, 2), r0_7);
6645
6646 return reg;
6647 }
6648
6649 static void
6650 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6651 {
6652 block->dwords = dwords;
6653 block->regs = DIV_ROUND_UP(dwords, 8);
6654 block->size = block->regs * 32;
6655 }
6656
6657 static void
6658 cs_fill_push_const_info(const struct brw_device_info *devinfo,
6659 struct brw_cs_prog_data *cs_prog_data)
6660 {
6661 const struct brw_stage_prog_data *prog_data =
6662 (struct brw_stage_prog_data*) cs_prog_data;
6663 bool fill_thread_id =
6664 cs_prog_data->thread_local_id_index >= 0 &&
6665 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6666 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6667
6668 /* The thread ID should be stored in the last param dword */
6669 assert(prog_data->nr_params > 0 || !fill_thread_id);
6670 assert(!fill_thread_id ||
6671 cs_prog_data->thread_local_id_index ==
6672 (int)prog_data->nr_params - 1);
6673
6674 unsigned cross_thread_dwords, per_thread_dwords;
6675 if (!cross_thread_supported) {
6676 cross_thread_dwords = 0u;
6677 per_thread_dwords = prog_data->nr_params;
6678 } else if (fill_thread_id) {
6679 /* Fill all but the last register with cross-thread payload */
6680 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6681 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6682 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6683 } else {
6684 /* Fill all data using cross-thread payload */
6685 cross_thread_dwords = prog_data->nr_params;
6686 per_thread_dwords = 0u;
6687 }
6688
6689 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6690 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6691
6692 unsigned total_dwords =
6693 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6694 cs_prog_data->push.cross_thread.size) / 4;
6695 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6696
6697 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6698 cs_prog_data->push.per_thread.size == 0);
6699 assert(cs_prog_data->push.cross_thread.dwords +
6700 cs_prog_data->push.per_thread.dwords ==
6701 prog_data->nr_params);
6702 }
6703
6704 static void
6705 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6706 {
6707 cs_prog_data->simd_size = size;
6708 unsigned group_size = cs_prog_data->local_size[0] *
6709 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6710 cs_prog_data->threads = (group_size + size - 1) / size;
6711 }
6712
6713 const unsigned *
6714 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6715 void *mem_ctx,
6716 const struct brw_cs_prog_key *key,
6717 struct brw_cs_prog_data *prog_data,
6718 const nir_shader *src_shader,
6719 int shader_time_index,
6720 unsigned *final_assembly_size,
6721 char **error_str)
6722 {
6723 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6724 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6725 true);
6726 brw_nir_lower_cs_shared(shader);
6727 prog_data->base.total_shared += shader->num_shared;
6728
6729 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6730 * the thread_local_id_index.
6731 */
6732 assert(prog_data->thread_local_id_index >= 0);
6733 shader->num_uniforms =
6734 MAX2(shader->num_uniforms,
6735 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6736
6737 brw_nir_lower_intrinsics(shader, &prog_data->base);
6738 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6739
6740 prog_data->local_size[0] = shader->info.cs.local_size[0];
6741 prog_data->local_size[1] = shader->info.cs.local_size[1];
6742 prog_data->local_size[2] = shader->info.cs.local_size[2];
6743 unsigned local_workgroup_size =
6744 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
6745 shader->info.cs.local_size[2];
6746
6747 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6748 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6749
6750 cfg_t *cfg = NULL;
6751 const char *fail_msg = NULL;
6752
6753 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6754 */
6755 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6756 NULL, /* Never used in core profile */
6757 shader, 8, shader_time_index);
6758 if (simd_required <= 8) {
6759 if (!v8.run_cs()) {
6760 fail_msg = v8.fail_msg;
6761 } else {
6762 cfg = v8.cfg;
6763 cs_set_simd_size(prog_data, 8);
6764 cs_fill_push_const_info(compiler->devinfo, prog_data);
6765 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6766 }
6767 }
6768
6769 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6770 NULL, /* Never used in core profile */
6771 shader, 16, shader_time_index);
6772 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6773 !fail_msg && v8.max_dispatch_width >= 16 &&
6774 simd_required <= 16) {
6775 /* Try a SIMD16 compile */
6776 if (simd_required <= 8)
6777 v16.import_uniforms(&v8);
6778 if (!v16.run_cs()) {
6779 compiler->shader_perf_log(log_data,
6780 "SIMD16 shader failed to compile: %s",
6781 v16.fail_msg);
6782 if (!cfg) {
6783 fail_msg =
6784 "Couldn't generate SIMD16 program and not "
6785 "enough threads for SIMD8";
6786 }
6787 } else {
6788 cfg = v16.cfg;
6789 cs_set_simd_size(prog_data, 16);
6790 cs_fill_push_const_info(compiler->devinfo, prog_data);
6791 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6792 }
6793 }
6794
6795 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6796 NULL, /* Never used in core profile */
6797 shader, 32, shader_time_index);
6798 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6799 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6800 /* Try a SIMD32 compile */
6801 if (simd_required <= 8)
6802 v32.import_uniforms(&v8);
6803 else if (simd_required <= 16)
6804 v32.import_uniforms(&v16);
6805
6806 if (!v32.run_cs()) {
6807 compiler->shader_perf_log(log_data,
6808 "SIMD32 shader failed to compile: %s",
6809 v16.fail_msg);
6810 if (!cfg) {
6811 fail_msg =
6812 "Couldn't generate SIMD32 program and not "
6813 "enough threads for SIMD16";
6814 }
6815 } else {
6816 cfg = v32.cfg;
6817 cs_set_simd_size(prog_data, 32);
6818 cs_fill_push_const_info(compiler->devinfo, prog_data);
6819 }
6820 }
6821
6822 if (unlikely(cfg == NULL)) {
6823 assert(fail_msg);
6824 if (error_str)
6825 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6826
6827 return NULL;
6828 }
6829
6830 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6831 v8.promoted_constants, v8.runtime_check_aads_emit,
6832 MESA_SHADER_COMPUTE);
6833 if (INTEL_DEBUG & DEBUG_CS) {
6834 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6835 shader->info.label ? shader->info.label :
6836 "unnamed",
6837 shader->info.name);
6838 g.enable_debug(name);
6839 }
6840
6841 g.generate_code(cfg, prog_data->simd_size);
6842
6843 return g.get_assembly(final_assembly_size);
6844 }