f9a72903ef1bf702a8aedfa6e0bbdda2eb48f5bc
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "glsl/nir/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::int_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->reladdr = NULL;
437 this->stride = 1;
438 if (this->file == IMM &&
439 (this->type != BRW_REGISTER_TYPE_V &&
440 this->type != BRW_REGISTER_TYPE_UV &&
441 this->type != BRW_REGISTER_TYPE_VF)) {
442 this->stride = 0;
443 }
444 }
445
446 bool
447 fs_reg::equals(const fs_reg &r) const
448 {
449 return (this->backend_reg::equals(r) &&
450 subreg_offset == r.subreg_offset &&
451 !reladdr && !r.reladdr &&
452 stride == r.stride);
453 }
454
455 fs_reg &
456 fs_reg::set_smear(unsigned subreg)
457 {
458 assert(file != ARF && file != FIXED_GRF && file != IMM);
459 subreg_offset = subreg * type_sz(type);
460 stride = 0;
461 return *this;
462 }
463
464 bool
465 fs_reg::is_contiguous() const
466 {
467 return stride == 1;
468 }
469
470 unsigned
471 fs_reg::component_size(unsigned width) const
472 {
473 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
474 hstride == 0 ? 0 :
475 1 << (hstride - 1));
476 return MAX2(width * stride, 1) * type_sz(type);
477 }
478
479 extern "C" int
480 type_size_scalar(const struct glsl_type *type)
481 {
482 unsigned int size, i;
483
484 switch (type->base_type) {
485 case GLSL_TYPE_UINT:
486 case GLSL_TYPE_INT:
487 case GLSL_TYPE_FLOAT:
488 case GLSL_TYPE_BOOL:
489 return type->components();
490 case GLSL_TYPE_ARRAY:
491 return type_size_scalar(type->fields.array) * type->length;
492 case GLSL_TYPE_STRUCT:
493 size = 0;
494 for (i = 0; i < type->length; i++) {
495 size += type_size_scalar(type->fields.structure[i].type);
496 }
497 return size;
498 case GLSL_TYPE_SAMPLER:
499 /* Samplers take up no register space, since they're baked in at
500 * link time.
501 */
502 return 0;
503 case GLSL_TYPE_ATOMIC_UINT:
504 return 0;
505 case GLSL_TYPE_SUBROUTINE:
506 return 1;
507 case GLSL_TYPE_IMAGE:
508 return BRW_IMAGE_PARAM_SIZE;
509 case GLSL_TYPE_VOID:
510 case GLSL_TYPE_ERROR:
511 case GLSL_TYPE_INTERFACE:
512 case GLSL_TYPE_DOUBLE:
513 case GLSL_TYPE_FUNCTION:
514 unreachable("not reached");
515 }
516
517 return 0;
518 }
519
520 /**
521 * Returns the number of scalar components needed to store type, assuming
522 * that vectors are padded out to vec4.
523 *
524 * This has the packing rules of type_size_vec4(), but counts components
525 * similar to type_size_scalar().
526 */
527 extern "C" int
528 type_size_vec4_times_4(const struct glsl_type *type)
529 {
530 return 4 * type_size_vec4(type);
531 }
532
533 /**
534 * Create a MOV to read the timestamp register.
535 *
536 * The caller is responsible for emitting the MOV. The return value is
537 * the destination of the MOV, with extra parameters set.
538 */
539 fs_reg
540 fs_visitor::get_timestamp(const fs_builder &bld)
541 {
542 assert(devinfo->gen >= 7);
543
544 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
545 BRW_ARF_TIMESTAMP,
546 0),
547 BRW_REGISTER_TYPE_UD));
548
549 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
550
551 /* We want to read the 3 fields we care about even if it's not enabled in
552 * the dispatch.
553 */
554 bld.group(4, 0).exec_all().MOV(dst, ts);
555
556 return dst;
557 }
558
559 void
560 fs_visitor::emit_shader_time_begin()
561 {
562 shader_start_time = get_timestamp(bld.annotate("shader time start"));
563
564 /* We want only the low 32 bits of the timestamp. Since it's running
565 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
566 * which is plenty of time for our purposes. It is identical across the
567 * EUs, but since it's tracking GPU core speed it will increment at a
568 * varying rate as render P-states change.
569 */
570 shader_start_time.set_smear(0);
571 }
572
573 void
574 fs_visitor::emit_shader_time_end()
575 {
576 /* Insert our code just before the final SEND with EOT. */
577 exec_node *end = this->instructions.get_tail();
578 assert(end && ((fs_inst *) end)->eot);
579 const fs_builder ibld = bld.annotate("shader time end")
580 .exec_all().at(NULL, end);
581
582 fs_reg shader_end_time = get_timestamp(ibld);
583
584 /* We only use the low 32 bits of the timestamp - see
585 * emit_shader_time_begin()).
586 *
587 * We could also check if render P-states have changed (or anything
588 * else that might disrupt timing) by setting smear to 2 and checking if
589 * that field is != 0.
590 */
591 shader_end_time.set_smear(0);
592
593 /* Check that there weren't any timestamp reset events (assuming these
594 * were the only two timestamp reads that happened).
595 */
596 fs_reg reset = shader_end_time;
597 reset.set_smear(2);
598 set_condmod(BRW_CONDITIONAL_Z,
599 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
600 ibld.IF(BRW_PREDICATE_NORMAL);
601
602 fs_reg start = shader_start_time;
603 start.negate = true;
604 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
605 diff.set_smear(0);
606
607 const fs_builder cbld = ibld.group(1, 0);
608 cbld.group(1, 0).ADD(diff, start, shader_end_time);
609
610 /* If there were no instructions between the two timestamp gets, the diff
611 * is 2 cycles. Remove that overhead, so I can forget about that when
612 * trying to determine the time taken for single instructions.
613 */
614 cbld.ADD(diff, diff, brw_imm_ud(-2u));
615 SHADER_TIME_ADD(cbld, 0, diff);
616 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ELSE);
618 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
619 ibld.emit(BRW_OPCODE_ENDIF);
620 }
621
622 void
623 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
624 int shader_time_subindex,
625 fs_reg value)
626 {
627 int index = shader_time_index * 3 + shader_time_subindex;
628 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
629
630 fs_reg payload;
631 if (dispatch_width == 8)
632 payload = vgrf(glsl_type::uvec2_type);
633 else
634 payload = vgrf(glsl_type::uint_type);
635
636 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
637 }
638
639 void
640 fs_visitor::vfail(const char *format, va_list va)
641 {
642 char *msg;
643
644 if (failed)
645 return;
646
647 failed = true;
648
649 msg = ralloc_vasprintf(mem_ctx, format, va);
650 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
651
652 this->fail_msg = msg;
653
654 if (debug_enabled) {
655 fprintf(stderr, "%s", msg);
656 }
657 }
658
659 void
660 fs_visitor::fail(const char *format, ...)
661 {
662 va_list va;
663
664 va_start(va, format);
665 vfail(format, va);
666 va_end(va);
667 }
668
669 /**
670 * Mark this program as impossible to compile in SIMD16 mode.
671 *
672 * During the SIMD8 compile (which happens first), we can detect and flag
673 * things that are unsupported in SIMD16 mode, so the compiler can skip
674 * the SIMD16 compile altogether.
675 *
676 * During a SIMD16 compile (if one happens anyway), this just calls fail().
677 */
678 void
679 fs_visitor::no16(const char *msg)
680 {
681 if (dispatch_width == 16) {
682 fail("%s", msg);
683 } else {
684 simd16_unsupported = true;
685
686 compiler->shader_perf_log(log_data,
687 "SIMD16 shader failed to compile: %s", msg);
688 }
689 }
690
691 /**
692 * Returns true if the instruction has a flag that means it won't
693 * update an entire destination register.
694 *
695 * For example, dead code elimination and live variable analysis want to know
696 * when a write to a variable screens off any preceding values that were in
697 * it.
698 */
699 bool
700 fs_inst::is_partial_write() const
701 {
702 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
703 (this->exec_size * type_sz(this->dst.type)) < 32 ||
704 !this->dst.is_contiguous());
705 }
706
707 unsigned
708 fs_inst::components_read(unsigned i) const
709 {
710 switch (opcode) {
711 case FS_OPCODE_LINTERP:
712 if (i == 0)
713 return 2;
714 else
715 return 1;
716
717 case FS_OPCODE_PIXEL_X:
718 case FS_OPCODE_PIXEL_Y:
719 assert(i == 0);
720 return 2;
721
722 case FS_OPCODE_FB_WRITE_LOGICAL:
723 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
724 /* First/second FB write color. */
725 if (i < 2)
726 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
727 else
728 return 1;
729
730 case SHADER_OPCODE_TEX_LOGICAL:
731 case SHADER_OPCODE_TXD_LOGICAL:
732 case SHADER_OPCODE_TXF_LOGICAL:
733 case SHADER_OPCODE_TXL_LOGICAL:
734 case SHADER_OPCODE_TXS_LOGICAL:
735 case FS_OPCODE_TXB_LOGICAL:
736 case SHADER_OPCODE_TXF_CMS_LOGICAL:
737 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
738 case SHADER_OPCODE_TXF_UMS_LOGICAL:
739 case SHADER_OPCODE_TXF_MCS_LOGICAL:
740 case SHADER_OPCODE_LOD_LOGICAL:
741 case SHADER_OPCODE_TG4_LOGICAL:
742 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
743 assert(src[9].file == IMM && src[10].file == IMM);
744 /* Texture coordinates. */
745 if (i == 0)
746 return src[9].ud;
747 /* Texture derivatives. */
748 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
749 return src[10].ud;
750 /* Texture offset. */
751 else if (i == 8)
752 return 2;
753 /* MCS */
754 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
755 return 2;
756 else
757 return 1;
758
759 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
760 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
761 assert(src[3].file == IMM);
762 /* Surface coordinates. */
763 if (i == 0)
764 return src[3].ud;
765 /* Surface operation source (ignored for reads). */
766 else if (i == 1)
767 return 0;
768 else
769 return 1;
770
771 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
772 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
773 assert(src[3].file == IMM &&
774 src[4].file == IMM);
775 /* Surface coordinates. */
776 if (i == 0)
777 return src[3].ud;
778 /* Surface operation source. */
779 else if (i == 1)
780 return src[4].ud;
781 else
782 return 1;
783
784 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
785 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
786 assert(src[3].file == IMM &&
787 src[4].file == IMM);
788 const unsigned op = src[4].ud;
789 /* Surface coordinates. */
790 if (i == 0)
791 return src[3].ud;
792 /* Surface operation source. */
793 else if (i == 1 && op == BRW_AOP_CMPWR)
794 return 2;
795 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
796 op == BRW_AOP_PREDEC))
797 return 0;
798 else
799 return 1;
800 }
801
802 default:
803 return 1;
804 }
805 }
806
807 int
808 fs_inst::regs_read(int arg) const
809 {
810 switch (opcode) {
811 case FS_OPCODE_FB_WRITE:
812 case SHADER_OPCODE_URB_WRITE_SIMD8:
813 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
814 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
815 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
816 case SHADER_OPCODE_URB_READ_SIMD8:
817 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
818 case SHADER_OPCODE_UNTYPED_ATOMIC:
819 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
820 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
821 case SHADER_OPCODE_TYPED_ATOMIC:
822 case SHADER_OPCODE_TYPED_SURFACE_READ:
823 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
824 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
825 if (arg == 0)
826 return mlen;
827 break;
828
829 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
830 /* The payload is actually stored in src1 */
831 if (arg == 1)
832 return mlen;
833 break;
834
835 case FS_OPCODE_LINTERP:
836 if (arg == 1)
837 return 1;
838 break;
839
840 case SHADER_OPCODE_LOAD_PAYLOAD:
841 if (arg < this->header_size)
842 return 1;
843 break;
844
845 case CS_OPCODE_CS_TERMINATE:
846 case SHADER_OPCODE_BARRIER:
847 return 1;
848
849 case SHADER_OPCODE_MOV_INDIRECT:
850 if (arg == 0) {
851 assert(src[2].file == IMM);
852 unsigned region_length = src[2].ud;
853
854 if (src[0].file == FIXED_GRF) {
855 /* If the start of the region is not register aligned, then
856 * there's some portion of the register that's technically
857 * unread at the beginning.
858 *
859 * However, the register allocator works in terms of whole
860 * registers, and does not use subnr. It assumes that the
861 * read starts at the beginning of the register, and extends
862 * regs_read() whole registers beyond that.
863 *
864 * To compensate, we extend the region length to include this
865 * unread portion at the beginning.
866 */
867 if (src[0].subnr)
868 region_length += src[0].subnr * type_sz(src[0].type);
869
870 return DIV_ROUND_UP(region_length, REG_SIZE);
871 } else {
872 assert(!"Invalid register file");
873 }
874 }
875 break;
876
877 default:
878 if (is_tex() && arg == 0 && src[0].file == VGRF)
879 return mlen;
880 break;
881 }
882
883 switch (src[arg].file) {
884 case BAD_FILE:
885 return 0;
886 case UNIFORM:
887 case IMM:
888 return 1;
889 case ARF:
890 case FIXED_GRF:
891 case VGRF:
892 case ATTR:
893 return DIV_ROUND_UP(components_read(arg) *
894 src[arg].component_size(exec_size),
895 REG_SIZE);
896 case MRF:
897 unreachable("MRF registers are not allowed as sources");
898 }
899 return 0;
900 }
901
902 bool
903 fs_inst::reads_flag() const
904 {
905 return predicate;
906 }
907
908 bool
909 fs_inst::writes_flag() const
910 {
911 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
912 opcode != BRW_OPCODE_IF &&
913 opcode != BRW_OPCODE_WHILE)) ||
914 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
915 }
916
917 /**
918 * Returns how many MRFs an FS opcode will write over.
919 *
920 * Note that this is not the 0 or 1 implied writes in an actual gen
921 * instruction -- the FS opcodes often generate MOVs in addition.
922 */
923 int
924 fs_visitor::implied_mrf_writes(fs_inst *inst)
925 {
926 if (inst->mlen == 0)
927 return 0;
928
929 if (inst->base_mrf == -1)
930 return 0;
931
932 switch (inst->opcode) {
933 case SHADER_OPCODE_RCP:
934 case SHADER_OPCODE_RSQ:
935 case SHADER_OPCODE_SQRT:
936 case SHADER_OPCODE_EXP2:
937 case SHADER_OPCODE_LOG2:
938 case SHADER_OPCODE_SIN:
939 case SHADER_OPCODE_COS:
940 return 1 * dispatch_width / 8;
941 case SHADER_OPCODE_POW:
942 case SHADER_OPCODE_INT_QUOTIENT:
943 case SHADER_OPCODE_INT_REMAINDER:
944 return 2 * dispatch_width / 8;
945 case SHADER_OPCODE_TEX:
946 case FS_OPCODE_TXB:
947 case SHADER_OPCODE_TXD:
948 case SHADER_OPCODE_TXF:
949 case SHADER_OPCODE_TXF_CMS:
950 case SHADER_OPCODE_TXF_CMS_W:
951 case SHADER_OPCODE_TXF_MCS:
952 case SHADER_OPCODE_TG4:
953 case SHADER_OPCODE_TG4_OFFSET:
954 case SHADER_OPCODE_TXL:
955 case SHADER_OPCODE_TXS:
956 case SHADER_OPCODE_LOD:
957 case SHADER_OPCODE_SAMPLEINFO:
958 return 1;
959 case FS_OPCODE_FB_WRITE:
960 return 2;
961 case FS_OPCODE_GET_BUFFER_SIZE:
962 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
963 case SHADER_OPCODE_GEN4_SCRATCH_READ:
964 return 1;
965 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
966 return inst->mlen;
967 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
968 return inst->mlen;
969 case SHADER_OPCODE_UNTYPED_ATOMIC:
970 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
971 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
972 case SHADER_OPCODE_TYPED_ATOMIC:
973 case SHADER_OPCODE_TYPED_SURFACE_READ:
974 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
975 case SHADER_OPCODE_URB_WRITE_SIMD8:
976 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
979 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
980 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
981 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
982 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
983 return 0;
984 default:
985 unreachable("not reached");
986 }
987 }
988
989 fs_reg
990 fs_visitor::vgrf(const glsl_type *const type)
991 {
992 int reg_width = dispatch_width / 8;
993 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
994 brw_type_for_base_type(type));
995 }
996
997 fs_reg::fs_reg(enum brw_reg_file file, int nr)
998 {
999 init();
1000 this->file = file;
1001 this->nr = nr;
1002 this->type = BRW_REGISTER_TYPE_F;
1003 this->stride = (file == UNIFORM ? 0 : 1);
1004 }
1005
1006 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1007 {
1008 init();
1009 this->file = file;
1010 this->nr = nr;
1011 this->type = type;
1012 this->stride = (file == UNIFORM ? 0 : 1);
1013 }
1014
1015 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1016 * This brings in those uniform definitions
1017 */
1018 void
1019 fs_visitor::import_uniforms(fs_visitor *v)
1020 {
1021 this->push_constant_loc = v->push_constant_loc;
1022 this->pull_constant_loc = v->pull_constant_loc;
1023 this->uniforms = v->uniforms;
1024 this->param_size = v->param_size;
1025 }
1026
1027 fs_reg *
1028 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1029 bool origin_upper_left)
1030 {
1031 assert(stage == MESA_SHADER_FRAGMENT);
1032 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1033 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1034 fs_reg wpos = *reg;
1035 bool flip = !origin_upper_left ^ key->render_to_fbo;
1036
1037 /* gl_FragCoord.x */
1038 if (pixel_center_integer) {
1039 bld.MOV(wpos, this->pixel_x);
1040 } else {
1041 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1042 }
1043 wpos = offset(wpos, bld, 1);
1044
1045 /* gl_FragCoord.y */
1046 if (!flip && pixel_center_integer) {
1047 bld.MOV(wpos, this->pixel_y);
1048 } else {
1049 fs_reg pixel_y = this->pixel_y;
1050 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1051
1052 if (flip) {
1053 pixel_y.negate = true;
1054 offset += key->drawable_height - 1.0f;
1055 }
1056
1057 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1058 }
1059 wpos = offset(wpos, bld, 1);
1060
1061 /* gl_FragCoord.z */
1062 if (devinfo->gen >= 6) {
1063 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1064 } else {
1065 bld.emit(FS_OPCODE_LINTERP, wpos,
1066 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1067 interp_reg(VARYING_SLOT_POS, 2));
1068 }
1069 wpos = offset(wpos, bld, 1);
1070
1071 /* gl_FragCoord.w: Already set up in emit_interpolation */
1072 bld.MOV(wpos, this->wpos_w);
1073
1074 return reg;
1075 }
1076
1077 fs_inst *
1078 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1079 glsl_interp_qualifier interpolation_mode,
1080 bool is_centroid, bool is_sample)
1081 {
1082 brw_wm_barycentric_interp_mode barycoord_mode;
1083 if (devinfo->gen >= 6) {
1084 if (is_centroid) {
1085 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1086 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1087 else
1088 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1089 } else if (is_sample) {
1090 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1091 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1092 else
1093 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1094 } else {
1095 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1096 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1097 else
1098 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1099 }
1100 } else {
1101 /* On Ironlake and below, there is only one interpolation mode.
1102 * Centroid interpolation doesn't mean anything on this hardware --
1103 * there is no multisampling.
1104 */
1105 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1106 }
1107 return bld.emit(FS_OPCODE_LINTERP, attr,
1108 this->delta_xy[barycoord_mode], interp);
1109 }
1110
1111 void
1112 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1113 const glsl_type *type,
1114 glsl_interp_qualifier interpolation_mode,
1115 int *location, bool mod_centroid,
1116 bool mod_sample)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1120 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1121
1122 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1123 bool is_gl_Color =
1124 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1125 if (key->flat_shade && is_gl_Color) {
1126 interpolation_mode = INTERP_QUALIFIER_FLAT;
1127 } else {
1128 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1129 }
1130 }
1131
1132 if (type->is_array() || type->is_matrix()) {
1133 const glsl_type *elem_type = glsl_get_array_element(type);
1134 const unsigned length = glsl_get_length(type);
1135
1136 for (unsigned i = 0; i < length; i++) {
1137 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1138 location, mod_centroid, mod_sample);
1139 }
1140 } else if (type->is_record()) {
1141 for (unsigned i = 0; i < type->length; i++) {
1142 const glsl_type *field_type = type->fields.structure[i].type;
1143 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1144 location, mod_centroid, mod_sample);
1145 }
1146 } else {
1147 assert(type->is_scalar() || type->is_vector());
1148
1149 if (prog_data->urb_setup[*location] == -1) {
1150 /* If there's no incoming setup data for this slot, don't
1151 * emit interpolation for it.
1152 */
1153 *attr = offset(*attr, bld, type->vector_elements);
1154 (*location)++;
1155 return;
1156 }
1157
1158 attr->type = brw_type_for_base_type(type->get_scalar_type());
1159
1160 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1161 /* Constant interpolation (flat shading) case. The SF has
1162 * handed us defined values in only the constant offset
1163 * field of the setup reg.
1164 */
1165 for (unsigned int i = 0; i < type->vector_elements; i++) {
1166 struct brw_reg interp = interp_reg(*location, i);
1167 interp = suboffset(interp, 3);
1168 interp.type = attr->type;
1169 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1170 *attr = offset(*attr, bld, 1);
1171 }
1172 } else {
1173 /* Smooth/noperspective interpolation case. */
1174 for (unsigned int i = 0; i < type->vector_elements; i++) {
1175 struct brw_reg interp = interp_reg(*location, i);
1176 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1177 /* Get the pixel/sample mask into f0 so that we know
1178 * which pixels are lit. Then, for each channel that is
1179 * unlit, replace the centroid data with non-centroid
1180 * data.
1181 */
1182 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1183
1184 fs_inst *inst;
1185 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1186 false, false);
1187 inst->predicate = BRW_PREDICATE_NORMAL;
1188 inst->predicate_inverse = true;
1189 if (devinfo->has_pln)
1190 inst->no_dd_clear = true;
1191
1192 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1193 mod_centroid && !key->persample_shading,
1194 mod_sample || key->persample_shading);
1195 inst->predicate = BRW_PREDICATE_NORMAL;
1196 inst->predicate_inverse = false;
1197 if (devinfo->has_pln)
1198 inst->no_dd_check = true;
1199
1200 } else {
1201 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1202 mod_centroid && !key->persample_shading,
1203 mod_sample || key->persample_shading);
1204 }
1205 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1206 bld.MUL(*attr, *attr, this->pixel_w);
1207 }
1208 *attr = offset(*attr, bld, 1);
1209 }
1210 }
1211 (*location)++;
1212 }
1213 }
1214
1215 fs_reg *
1216 fs_visitor::emit_frontfacing_interpolation()
1217 {
1218 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1219
1220 if (devinfo->gen >= 6) {
1221 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1222 * a boolean result from this (~0/true or 0/false).
1223 *
1224 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1225 * this task in only one instruction:
1226 * - a negation source modifier will flip the bit; and
1227 * - a W -> D type conversion will sign extend the bit into the high
1228 * word of the destination.
1229 *
1230 * An ASR 15 fills the low word of the destination.
1231 */
1232 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1233 g0.negate = true;
1234
1235 bld.ASR(*reg, g0, brw_imm_d(15));
1236 } else {
1237 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1238 * a boolean result from this (1/true or 0/false).
1239 *
1240 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1241 * the negation source modifier to flip it. Unfortunately the SHR
1242 * instruction only operates on UD (or D with an abs source modifier)
1243 * sources without negation.
1244 *
1245 * Instead, use ASR (which will give ~0/true or 0/false).
1246 */
1247 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1248 g1_6.negate = true;
1249
1250 bld.ASR(*reg, g1_6, brw_imm_d(31));
1251 }
1252
1253 return reg;
1254 }
1255
1256 void
1257 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1258 {
1259 assert(stage == MESA_SHADER_FRAGMENT);
1260 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1261 assert(dst.type == BRW_REGISTER_TYPE_F);
1262
1263 if (key->compute_pos_offset) {
1264 /* Convert int_sample_pos to floating point */
1265 bld.MOV(dst, int_sample_pos);
1266 /* Scale to the range [0, 1] */
1267 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1268 }
1269 else {
1270 /* From ARB_sample_shading specification:
1271 * "When rendering to a non-multisample buffer, or if multisample
1272 * rasterization is disabled, gl_SamplePosition will always be
1273 * (0.5, 0.5).
1274 */
1275 bld.MOV(dst, brw_imm_f(0.5f));
1276 }
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplepos_setup()
1281 {
1282 assert(devinfo->gen >= 6);
1283
1284 const fs_builder abld = bld.annotate("compute sample position");
1285 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1286 fs_reg pos = *reg;
1287 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1288 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1289
1290 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1291 * mode will be enabled.
1292 *
1293 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1294 * R31.1:0 Position Offset X/Y for Slot[3:0]
1295 * R31.3:2 Position Offset X/Y for Slot[7:4]
1296 * .....
1297 *
1298 * The X, Y sample positions come in as bytes in thread payload. So, read
1299 * the positions using vstride=16, width=8, hstride=2.
1300 */
1301 struct brw_reg sample_pos_reg =
1302 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1303 BRW_REGISTER_TYPE_B), 16, 8, 2);
1304
1305 if (dispatch_width == 8) {
1306 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1307 } else {
1308 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1309 abld.half(1).MOV(half(int_sample_x, 1),
1310 fs_reg(suboffset(sample_pos_reg, 16)));
1311 }
1312 /* Compute gl_SamplePosition.x */
1313 compute_sample_position(pos, int_sample_x);
1314 pos = offset(pos, abld, 1);
1315 if (dispatch_width == 8) {
1316 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1317 } else {
1318 abld.half(0).MOV(half(int_sample_y, 0),
1319 fs_reg(suboffset(sample_pos_reg, 1)));
1320 abld.half(1).MOV(half(int_sample_y, 1),
1321 fs_reg(suboffset(sample_pos_reg, 17)));
1322 }
1323 /* Compute gl_SamplePosition.y */
1324 compute_sample_position(pos, int_sample_y);
1325 return reg;
1326 }
1327
1328 fs_reg *
1329 fs_visitor::emit_sampleid_setup()
1330 {
1331 assert(stage == MESA_SHADER_FRAGMENT);
1332 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1333 assert(devinfo->gen >= 6);
1334
1335 const fs_builder abld = bld.annotate("compute sample id");
1336 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1337
1338 if (key->compute_sample_id) {
1339 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1340 t1.set_smear(0);
1341 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1342
1343 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1344 * 8x multisampling, subspan 0 will represent sample N (where N
1345 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1346 * 7. We can find the value of N by looking at R0.0 bits 7:6
1347 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1348 * (since samples are always delivered in pairs). That is, we
1349 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1350 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1351 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1352 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1353 * populating a temporary variable with the sequence (0, 1, 2, 3),
1354 * and then reading from it using vstride=1, width=4, hstride=0.
1355 * These computations hold good for 4x multisampling as well.
1356 *
1357 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1358 * the first four slots are sample 0 of subspan 0; the next four
1359 * are sample 1 of subspan 0; the third group is sample 0 of
1360 * subspan 1, and finally sample 1 of subspan 1.
1361 */
1362
1363 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1364 * accomodate 16x MSAA.
1365 */
1366 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1367
1368 abld.exec_all().group(1, 0)
1369 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1370 brw_imm_ud(sspi_mask));
1371 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1372
1373 /* This works for both SIMD8 and SIMD16 */
1374 abld.exec_all().group(4, 0)
1375 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1376
1377 /* This special instruction takes care of setting vstride=1,
1378 * width=4, hstride=0 of t2 during an ADD instruction.
1379 */
1380 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1381 } else {
1382 /* As per GL_ARB_sample_shading specification:
1383 * "When rendering to a non-multisample buffer, or if multisample
1384 * rasterization is disabled, gl_SampleID will always be zero."
1385 */
1386 abld.MOV(*reg, brw_imm_d(0));
1387 }
1388
1389 return reg;
1390 }
1391
1392 fs_reg
1393 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1394 {
1395 if (!src.abs && !src.negate)
1396 return src;
1397
1398 fs_reg temp = bld.vgrf(src.type);
1399 bld.MOV(temp, src);
1400
1401 return temp;
1402 }
1403
1404 void
1405 fs_visitor::emit_discard_jump()
1406 {
1407 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1408
1409 /* For performance, after a discard, jump to the end of the
1410 * shader if all relevant channels have been discarded.
1411 */
1412 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1413 discard_jump->flag_subreg = 1;
1414
1415 discard_jump->predicate = (dispatch_width == 8)
1416 ? BRW_PREDICATE_ALIGN1_ANY8H
1417 : BRW_PREDICATE_ALIGN1_ANY16H;
1418 discard_jump->predicate_inverse = true;
1419 }
1420
1421 void
1422 fs_visitor::emit_gs_thread_end()
1423 {
1424 assert(stage == MESA_SHADER_GEOMETRY);
1425
1426 struct brw_gs_prog_data *gs_prog_data =
1427 (struct brw_gs_prog_data *) prog_data;
1428
1429 if (gs_compile->control_data_header_size_bits > 0) {
1430 emit_gs_control_data_bits(this->final_gs_vertex_count);
1431 }
1432
1433 const fs_builder abld = bld.annotate("thread end");
1434 fs_inst *inst;
1435
1436 if (gs_prog_data->static_vertex_count != -1) {
1437 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1438 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1439 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1440 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1441 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1442 prev->eot = true;
1443
1444 /* Delete now dead instructions. */
1445 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1446 if (dead == prev)
1447 break;
1448 dead->remove();
1449 }
1450 return;
1451 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1452 break;
1453 }
1454 }
1455 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1456 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1457 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1458 inst->mlen = 1;
1459 } else {
1460 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1461 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1462 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1463 sources[1] = this->final_gs_vertex_count;
1464 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1465 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1466 inst->mlen = 2;
1467 }
1468 inst->eot = true;
1469 inst->offset = 0;
1470 }
1471
1472 void
1473 fs_visitor::assign_curb_setup()
1474 {
1475 if (dispatch_width == 8) {
1476 prog_data->dispatch_grf_start_reg = payload.num_regs;
1477 } else {
1478 if (stage == MESA_SHADER_FRAGMENT) {
1479 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1480 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1481 } else if (stage == MESA_SHADER_COMPUTE) {
1482 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1483 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1484 } else {
1485 unreachable("Unsupported shader type!");
1486 }
1487 }
1488
1489 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1490
1491 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1492 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1493 for (unsigned int i = 0; i < inst->sources; i++) {
1494 if (inst->src[i].file == UNIFORM) {
1495 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1496 int constant_nr;
1497 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1498 constant_nr = push_constant_loc[uniform_nr];
1499 } else {
1500 /* Section 5.11 of the OpenGL 4.1 spec says:
1501 * "Out-of-bounds reads return undefined values, which include
1502 * values from other variables of the active program or zero."
1503 * Just return the first push constant.
1504 */
1505 constant_nr = 0;
1506 }
1507
1508 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1509 constant_nr / 8,
1510 constant_nr % 8);
1511 brw_reg.abs = inst->src[i].abs;
1512 brw_reg.negate = inst->src[i].negate;
1513
1514 assert(inst->src[i].stride == 0);
1515 inst->src[i] = byte_offset(
1516 retype(brw_reg, inst->src[i].type),
1517 inst->src[i].subreg_offset);
1518 }
1519 }
1520 }
1521
1522 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1523 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1524 }
1525
1526 void
1527 fs_visitor::calculate_urb_setup()
1528 {
1529 assert(stage == MESA_SHADER_FRAGMENT);
1530 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1531 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1532
1533 memset(prog_data->urb_setup, -1,
1534 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1535
1536 int urb_next = 0;
1537 /* Figure out where each of the incoming setup attributes lands. */
1538 if (devinfo->gen >= 6) {
1539 if (_mesa_bitcount_64(nir->info.inputs_read &
1540 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1541 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1542 * first 16 varying inputs, so we can put them wherever we want.
1543 * Just put them in order.
1544 *
1545 * This is useful because it means that (a) inputs not used by the
1546 * fragment shader won't take up valuable register space, and (b) we
1547 * won't have to recompile the fragment shader if it gets paired with
1548 * a different vertex (or geometry) shader.
1549 */
1550 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1551 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1552 BITFIELD64_BIT(i)) {
1553 prog_data->urb_setup[i] = urb_next++;
1554 }
1555 }
1556 } else {
1557 bool include_vue_header =
1558 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1559
1560 /* We have enough input varyings that the SF/SBE pipeline stage can't
1561 * arbitrarily rearrange them to suit our whim; we have to put them
1562 * in an order that matches the output of the previous pipeline stage
1563 * (geometry or vertex shader).
1564 */
1565 struct brw_vue_map prev_stage_vue_map;
1566 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1567 key->input_slots_valid,
1568 nir->info.separate_shader);
1569 int first_slot =
1570 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1571
1572 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1573 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1574 slot++) {
1575 int varying = prev_stage_vue_map.slot_to_varying[slot];
1576 if (varying != BRW_VARYING_SLOT_PAD &&
1577 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1578 BITFIELD64_BIT(varying))) {
1579 prog_data->urb_setup[varying] = slot - first_slot;
1580 }
1581 }
1582 urb_next = prev_stage_vue_map.num_slots - first_slot;
1583 }
1584 } else {
1585 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1586 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1587 /* Point size is packed into the header, not as a general attribute */
1588 if (i == VARYING_SLOT_PSIZ)
1589 continue;
1590
1591 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1592 /* The back color slot is skipped when the front color is
1593 * also written to. In addition, some slots can be
1594 * written in the vertex shader and not read in the
1595 * fragment shader. So the register number must always be
1596 * incremented, mapped or not.
1597 */
1598 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1599 prog_data->urb_setup[i] = urb_next;
1600 urb_next++;
1601 }
1602 }
1603
1604 /*
1605 * It's a FS only attribute, and we did interpolation for this attribute
1606 * in SF thread. So, count it here, too.
1607 *
1608 * See compile_sf_prog() for more info.
1609 */
1610 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1611 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1612 }
1613
1614 prog_data->num_varying_inputs = urb_next;
1615 }
1616
1617 void
1618 fs_visitor::assign_urb_setup()
1619 {
1620 assert(stage == MESA_SHADER_FRAGMENT);
1621 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1622
1623 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1624
1625 /* Offset all the urb_setup[] index by the actual position of the
1626 * setup regs, now that the location of the constants has been chosen.
1627 */
1628 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1629 if (inst->opcode == FS_OPCODE_LINTERP) {
1630 assert(inst->src[1].file == FIXED_GRF);
1631 inst->src[1].nr += urb_start;
1632 }
1633
1634 if (inst->opcode == FS_OPCODE_CINTERP) {
1635 assert(inst->src[0].file == FIXED_GRF);
1636 inst->src[0].nr += urb_start;
1637 }
1638 }
1639
1640 /* Each attribute is 4 setup channels, each of which is half a reg. */
1641 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1642 }
1643
1644 void
1645 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1646 {
1647 for (int i = 0; i < inst->sources; i++) {
1648 if (inst->src[i].file == ATTR) {
1649 int grf = payload.num_regs +
1650 prog_data->curb_read_length +
1651 inst->src[i].nr +
1652 inst->src[i].reg_offset;
1653
1654 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1655 struct brw_reg reg =
1656 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1657 inst->src[i].subreg_offset),
1658 inst->exec_size * inst->src[i].stride,
1659 width, inst->src[i].stride);
1660 reg.abs = inst->src[i].abs;
1661 reg.negate = inst->src[i].negate;
1662
1663 inst->src[i] = reg;
1664 }
1665 }
1666 }
1667
1668 void
1669 fs_visitor::assign_vs_urb_setup()
1670 {
1671 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1672
1673 assert(stage == MESA_SHADER_VERTEX);
1674 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1675 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1676 count++;
1677
1678 /* Each attribute is 4 regs. */
1679 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1680
1681 assert(vs_prog_data->base.urb_read_length <= 15);
1682
1683 /* Rewrite all ATTR file references to the hw grf that they land in. */
1684 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1685 convert_attr_sources_to_hw_regs(inst);
1686 }
1687 }
1688
1689 void
1690 fs_visitor::assign_tes_urb_setup()
1691 {
1692 assert(stage == MESA_SHADER_TESS_EVAL);
1693
1694 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1695
1696 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1697
1698 /* Rewrite all ATTR file references to HW_REGs. */
1699 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1700 convert_attr_sources_to_hw_regs(inst);
1701 }
1702 }
1703
1704 void
1705 fs_visitor::assign_gs_urb_setup()
1706 {
1707 assert(stage == MESA_SHADER_GEOMETRY);
1708
1709 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1710
1711 first_non_payload_grf +=
1712 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1713
1714 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1715 /* Rewrite all ATTR file references to GRFs. */
1716 convert_attr_sources_to_hw_regs(inst);
1717 }
1718 }
1719
1720
1721 /**
1722 * Split large virtual GRFs into separate components if we can.
1723 *
1724 * This is mostly duplicated with what brw_fs_vector_splitting does,
1725 * but that's really conservative because it's afraid of doing
1726 * splitting that doesn't result in real progress after the rest of
1727 * the optimization phases, which would cause infinite looping in
1728 * optimization. We can do it once here, safely. This also has the
1729 * opportunity to split interpolated values, or maybe even uniforms,
1730 * which we don't have at the IR level.
1731 *
1732 * We want to split, because virtual GRFs are what we register
1733 * allocate and spill (due to contiguousness requirements for some
1734 * instructions), and they're what we naturally generate in the
1735 * codegen process, but most virtual GRFs don't actually need to be
1736 * contiguous sets of GRFs. If we split, we'll end up with reduced
1737 * live intervals and better dead code elimination and coalescing.
1738 */
1739 void
1740 fs_visitor::split_virtual_grfs()
1741 {
1742 int num_vars = this->alloc.count;
1743
1744 /* Count the total number of registers */
1745 int reg_count = 0;
1746 int vgrf_to_reg[num_vars];
1747 for (int i = 0; i < num_vars; i++) {
1748 vgrf_to_reg[i] = reg_count;
1749 reg_count += alloc.sizes[i];
1750 }
1751
1752 /* An array of "split points". For each register slot, this indicates
1753 * if this slot can be separated from the previous slot. Every time an
1754 * instruction uses multiple elements of a register (as a source or
1755 * destination), we mark the used slots as inseparable. Then we go
1756 * through and split the registers into the smallest pieces we can.
1757 */
1758 bool split_points[reg_count];
1759 memset(split_points, 0, sizeof(split_points));
1760
1761 /* Mark all used registers as fully splittable */
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr];
1765 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1766 split_points[reg + j] = true;
1767 }
1768
1769 for (int i = 0; i < inst->sources; i++) {
1770 if (inst->src[i].file == VGRF) {
1771 int reg = vgrf_to_reg[inst->src[i].nr];
1772 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1773 split_points[reg + j] = true;
1774 }
1775 }
1776 }
1777
1778 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1779 if (inst->dst.file == VGRF) {
1780 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1781 for (int j = 1; j < inst->regs_written; j++)
1782 split_points[reg + j] = false;
1783 }
1784 for (int i = 0; i < inst->sources; i++) {
1785 if (inst->src[i].file == VGRF) {
1786 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1787 for (int j = 1; j < inst->regs_read(i); j++)
1788 split_points[reg + j] = false;
1789 }
1790 }
1791 }
1792
1793 int new_virtual_grf[reg_count];
1794 int new_reg_offset[reg_count];
1795
1796 int reg = 0;
1797 for (int i = 0; i < num_vars; i++) {
1798 /* The first one should always be 0 as a quick sanity check. */
1799 assert(split_points[reg] == false);
1800
1801 /* j = 0 case */
1802 new_reg_offset[reg] = 0;
1803 reg++;
1804 int offset = 1;
1805
1806 /* j > 0 case */
1807 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1808 /* If this is a split point, reset the offset to 0 and allocate a
1809 * new virtual GRF for the previous offset many registers
1810 */
1811 if (split_points[reg]) {
1812 assert(offset <= MAX_VGRF_SIZE);
1813 int grf = alloc.allocate(offset);
1814 for (int k = reg - offset; k < reg; k++)
1815 new_virtual_grf[k] = grf;
1816 offset = 0;
1817 }
1818 new_reg_offset[reg] = offset;
1819 offset++;
1820 reg++;
1821 }
1822
1823 /* The last one gets the original register number */
1824 assert(offset <= MAX_VGRF_SIZE);
1825 alloc.sizes[i] = offset;
1826 for (int k = reg - offset; k < reg; k++)
1827 new_virtual_grf[k] = i;
1828 }
1829 assert(reg == reg_count);
1830
1831 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1832 if (inst->dst.file == VGRF) {
1833 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1834 inst->dst.nr = new_virtual_grf[reg];
1835 inst->dst.reg_offset = new_reg_offset[reg];
1836 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1837 }
1838 for (int i = 0; i < inst->sources; i++) {
1839 if (inst->src[i].file == VGRF) {
1840 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1841 inst->src[i].nr = new_virtual_grf[reg];
1842 inst->src[i].reg_offset = new_reg_offset[reg];
1843 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1844 }
1845 }
1846 }
1847 invalidate_live_intervals();
1848 }
1849
1850 /**
1851 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1852 *
1853 * During code generation, we create tons of temporary variables, many of
1854 * which get immediately killed and are never used again. Yet, in later
1855 * optimization and analysis passes, such as compute_live_intervals, we need
1856 * to loop over all the virtual GRFs. Compacting them can save a lot of
1857 * overhead.
1858 */
1859 bool
1860 fs_visitor::compact_virtual_grfs()
1861 {
1862 bool progress = false;
1863 int remap_table[this->alloc.count];
1864 memset(remap_table, -1, sizeof(remap_table));
1865
1866 /* Mark which virtual GRFs are used. */
1867 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1868 if (inst->dst.file == VGRF)
1869 remap_table[inst->dst.nr] = 0;
1870
1871 for (int i = 0; i < inst->sources; i++) {
1872 if (inst->src[i].file == VGRF)
1873 remap_table[inst->src[i].nr] = 0;
1874 }
1875 }
1876
1877 /* Compact the GRF arrays. */
1878 int new_index = 0;
1879 for (unsigned i = 0; i < this->alloc.count; i++) {
1880 if (remap_table[i] == -1) {
1881 /* We just found an unused register. This means that we are
1882 * actually going to compact something.
1883 */
1884 progress = true;
1885 } else {
1886 remap_table[i] = new_index;
1887 alloc.sizes[new_index] = alloc.sizes[i];
1888 invalidate_live_intervals();
1889 ++new_index;
1890 }
1891 }
1892
1893 this->alloc.count = new_index;
1894
1895 /* Patch all the instructions to use the newly renumbered registers */
1896 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1897 if (inst->dst.file == VGRF)
1898 inst->dst.nr = remap_table[inst->dst.nr];
1899
1900 for (int i = 0; i < inst->sources; i++) {
1901 if (inst->src[i].file == VGRF)
1902 inst->src[i].nr = remap_table[inst->src[i].nr];
1903 }
1904 }
1905
1906 /* Patch all the references to delta_xy, since they're used in register
1907 * allocation. If they're unused, switch them to BAD_FILE so we don't
1908 * think some random VGRF is delta_xy.
1909 */
1910 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1911 if (delta_xy[i].file == VGRF) {
1912 if (remap_table[delta_xy[i].nr] != -1) {
1913 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1914 } else {
1915 delta_xy[i].file = BAD_FILE;
1916 }
1917 }
1918 }
1919
1920 return progress;
1921 }
1922
1923 /**
1924 * Assign UNIFORM file registers to either push constants or pull constants.
1925 *
1926 * We allow a fragment shader to have more than the specified minimum
1927 * maximum number of fragment shader uniform components (64). If
1928 * there are too many of these, they'd fill up all of register space.
1929 * So, this will push some of them out to the pull constant buffer and
1930 * update the program to load them. We also use pull constants for all
1931 * indirect constant loads because we don't support indirect accesses in
1932 * registers yet.
1933 */
1934 void
1935 fs_visitor::assign_constant_locations()
1936 {
1937 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1938 if (dispatch_width != 8)
1939 return;
1940
1941 unsigned int num_pull_constants = 0;
1942
1943 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1944 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1945
1946 bool is_live[uniforms];
1947 memset(is_live, 0, sizeof(is_live));
1948
1949 /* First, we walk through the instructions and do two things:
1950 *
1951 * 1) Figure out which uniforms are live.
1952 *
1953 * 2) Find all indirect access of uniform arrays and flag them as needing
1954 * to go into the pull constant buffer.
1955 *
1956 * Note that we don't move constant-indexed accesses to arrays. No
1957 * testing has been done of the performance impact of this choice.
1958 */
1959 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1960 for (int i = 0 ; i < inst->sources; i++) {
1961 if (inst->src[i].file != UNIFORM)
1962 continue;
1963
1964 if (inst->src[i].reladdr) {
1965 int uniform = inst->src[i].nr;
1966
1967 /* If this array isn't already present in the pull constant buffer,
1968 * add it.
1969 */
1970 if (pull_constant_loc[uniform] == -1) {
1971 assert(param_size[uniform]);
1972 for (int j = 0; j < param_size[uniform]; j++)
1973 pull_constant_loc[uniform + j] = num_pull_constants++;
1974 }
1975 } else {
1976 /* Mark the the one accessed uniform as live */
1977 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1978 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1979 is_live[constant_nr] = true;
1980 }
1981 }
1982 }
1983
1984 /* Only allow 16 registers (128 uniform components) as push constants.
1985 *
1986 * Just demote the end of the list. We could probably do better
1987 * here, demoting things that are rarely used in the program first.
1988 *
1989 * If changing this value, note the limitation about total_regs in
1990 * brw_curbe.c.
1991 */
1992 unsigned int max_push_components = 16 * 8;
1993 unsigned int num_push_constants = 0;
1994
1995 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1996
1997 for (unsigned int i = 0; i < uniforms; i++) {
1998 if (!is_live[i] || pull_constant_loc[i] != -1) {
1999 /* This UNIFORM register is either dead, or has already been demoted
2000 * to a pull const. Mark it as no longer living in the param[] array.
2001 */
2002 push_constant_loc[i] = -1;
2003 continue;
2004 }
2005
2006 if (num_push_constants < max_push_components) {
2007 /* Retain as a push constant. Record the location in the params[]
2008 * array.
2009 */
2010 push_constant_loc[i] = num_push_constants++;
2011 } else {
2012 /* Demote to a pull constant. */
2013 push_constant_loc[i] = -1;
2014 pull_constant_loc[i] = num_pull_constants++;
2015 }
2016 }
2017
2018 stage_prog_data->nr_params = num_push_constants;
2019 stage_prog_data->nr_pull_params = num_pull_constants;
2020
2021 /* Up until now, the param[] array has been indexed by reg + reg_offset
2022 * of UNIFORM registers. Move pull constants into pull_param[] and
2023 * condense param[] to only contain the uniforms we chose to push.
2024 *
2025 * NOTE: Because we are condensing the params[] array, we know that
2026 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2027 * having to make a copy.
2028 */
2029 for (unsigned int i = 0; i < uniforms; i++) {
2030 const gl_constant_value *value = stage_prog_data->param[i];
2031
2032 if (pull_constant_loc[i] != -1) {
2033 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2034 } else if (push_constant_loc[i] != -1) {
2035 stage_prog_data->param[push_constant_loc[i]] = value;
2036 }
2037 }
2038 }
2039
2040 /**
2041 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2042 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2043 */
2044 void
2045 fs_visitor::demote_pull_constants()
2046 {
2047 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2048 for (int i = 0; i < inst->sources; i++) {
2049 if (inst->src[i].file != UNIFORM)
2050 continue;
2051
2052 int pull_index;
2053 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2054 if (location >= uniforms) /* Out of bounds access */
2055 pull_index = -1;
2056 else
2057 pull_index = pull_constant_loc[location];
2058
2059 if (pull_index == -1)
2060 continue;
2061
2062 /* Set up the annotation tracking for new generated instructions. */
2063 const fs_builder ibld(this, block, inst);
2064 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2065 fs_reg dst = vgrf(glsl_type::float_type);
2066
2067 assert(inst->src[i].stride == 0);
2068
2069 /* Generate a pull load into dst. */
2070 if (inst->src[i].reladdr) {
2071 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2072 brw_imm_ud(index),
2073 *inst->src[i].reladdr,
2074 pull_index * 4);
2075 inst->src[i].reladdr = NULL;
2076 inst->src[i].stride = 1;
2077 } else {
2078 const fs_builder ubld = ibld.exec_all().group(8, 0);
2079 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2080 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2081 dst, brw_imm_ud(index), offset);
2082 inst->src[i].set_smear(pull_index & 3);
2083 }
2084 brw_mark_surface_used(prog_data, index);
2085
2086 /* Rewrite the instruction to use the temporary VGRF. */
2087 inst->src[i].file = VGRF;
2088 inst->src[i].nr = dst.nr;
2089 inst->src[i].reg_offset = 0;
2090 }
2091 }
2092 invalidate_live_intervals();
2093 }
2094
2095 bool
2096 fs_visitor::opt_algebraic()
2097 {
2098 bool progress = false;
2099
2100 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2101 switch (inst->opcode) {
2102 case BRW_OPCODE_MOV:
2103 if (inst->src[0].file != IMM)
2104 break;
2105
2106 if (inst->saturate) {
2107 if (inst->dst.type != inst->src[0].type)
2108 assert(!"unimplemented: saturate mixed types");
2109
2110 if (brw_saturate_immediate(inst->dst.type,
2111 &inst->src[0].as_brw_reg())) {
2112 inst->saturate = false;
2113 progress = true;
2114 }
2115 }
2116 break;
2117
2118 case BRW_OPCODE_MUL:
2119 if (inst->src[1].file != IMM)
2120 continue;
2121
2122 /* a * 1.0 = a */
2123 if (inst->src[1].is_one()) {
2124 inst->opcode = BRW_OPCODE_MOV;
2125 inst->src[1] = reg_undef;
2126 progress = true;
2127 break;
2128 }
2129
2130 /* a * -1.0 = -a */
2131 if (inst->src[1].is_negative_one()) {
2132 inst->opcode = BRW_OPCODE_MOV;
2133 inst->src[0].negate = !inst->src[0].negate;
2134 inst->src[1] = reg_undef;
2135 progress = true;
2136 break;
2137 }
2138
2139 /* a * 0.0 = 0.0 */
2140 if (inst->src[1].is_zero()) {
2141 inst->opcode = BRW_OPCODE_MOV;
2142 inst->src[0] = inst->src[1];
2143 inst->src[1] = reg_undef;
2144 progress = true;
2145 break;
2146 }
2147
2148 if (inst->src[0].file == IMM) {
2149 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2150 inst->opcode = BRW_OPCODE_MOV;
2151 inst->src[0].f *= inst->src[1].f;
2152 inst->src[1] = reg_undef;
2153 progress = true;
2154 break;
2155 }
2156 break;
2157 case BRW_OPCODE_ADD:
2158 if (inst->src[1].file != IMM)
2159 continue;
2160
2161 /* a + 0.0 = a */
2162 if (inst->src[1].is_zero()) {
2163 inst->opcode = BRW_OPCODE_MOV;
2164 inst->src[1] = reg_undef;
2165 progress = true;
2166 break;
2167 }
2168
2169 if (inst->src[0].file == IMM) {
2170 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2171 inst->opcode = BRW_OPCODE_MOV;
2172 inst->src[0].f += inst->src[1].f;
2173 inst->src[1] = reg_undef;
2174 progress = true;
2175 break;
2176 }
2177 break;
2178 case BRW_OPCODE_OR:
2179 if (inst->src[0].equals(inst->src[1])) {
2180 inst->opcode = BRW_OPCODE_MOV;
2181 inst->src[1] = reg_undef;
2182 progress = true;
2183 break;
2184 }
2185 break;
2186 case BRW_OPCODE_LRP:
2187 if (inst->src[1].equals(inst->src[2])) {
2188 inst->opcode = BRW_OPCODE_MOV;
2189 inst->src[0] = inst->src[1];
2190 inst->src[1] = reg_undef;
2191 inst->src[2] = reg_undef;
2192 progress = true;
2193 break;
2194 }
2195 break;
2196 case BRW_OPCODE_CMP:
2197 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2198 inst->src[0].abs &&
2199 inst->src[0].negate &&
2200 inst->src[1].is_zero()) {
2201 inst->src[0].abs = false;
2202 inst->src[0].negate = false;
2203 inst->conditional_mod = BRW_CONDITIONAL_Z;
2204 progress = true;
2205 break;
2206 }
2207 break;
2208 case BRW_OPCODE_SEL:
2209 if (inst->src[0].equals(inst->src[1])) {
2210 inst->opcode = BRW_OPCODE_MOV;
2211 inst->src[1] = reg_undef;
2212 inst->predicate = BRW_PREDICATE_NONE;
2213 inst->predicate_inverse = false;
2214 progress = true;
2215 } else if (inst->saturate && inst->src[1].file == IMM) {
2216 switch (inst->conditional_mod) {
2217 case BRW_CONDITIONAL_LE:
2218 case BRW_CONDITIONAL_L:
2219 switch (inst->src[1].type) {
2220 case BRW_REGISTER_TYPE_F:
2221 if (inst->src[1].f >= 1.0f) {
2222 inst->opcode = BRW_OPCODE_MOV;
2223 inst->src[1] = reg_undef;
2224 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2225 progress = true;
2226 }
2227 break;
2228 default:
2229 break;
2230 }
2231 break;
2232 case BRW_CONDITIONAL_GE:
2233 case BRW_CONDITIONAL_G:
2234 switch (inst->src[1].type) {
2235 case BRW_REGISTER_TYPE_F:
2236 if (inst->src[1].f <= 0.0f) {
2237 inst->opcode = BRW_OPCODE_MOV;
2238 inst->src[1] = reg_undef;
2239 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2240 progress = true;
2241 }
2242 break;
2243 default:
2244 break;
2245 }
2246 default:
2247 break;
2248 }
2249 }
2250 break;
2251 case BRW_OPCODE_MAD:
2252 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2253 inst->opcode = BRW_OPCODE_MOV;
2254 inst->src[1] = reg_undef;
2255 inst->src[2] = reg_undef;
2256 progress = true;
2257 } else if (inst->src[0].is_zero()) {
2258 inst->opcode = BRW_OPCODE_MUL;
2259 inst->src[0] = inst->src[2];
2260 inst->src[2] = reg_undef;
2261 progress = true;
2262 } else if (inst->src[1].is_one()) {
2263 inst->opcode = BRW_OPCODE_ADD;
2264 inst->src[1] = inst->src[2];
2265 inst->src[2] = reg_undef;
2266 progress = true;
2267 } else if (inst->src[2].is_one()) {
2268 inst->opcode = BRW_OPCODE_ADD;
2269 inst->src[2] = reg_undef;
2270 progress = true;
2271 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2272 inst->opcode = BRW_OPCODE_ADD;
2273 inst->src[1].f *= inst->src[2].f;
2274 inst->src[2] = reg_undef;
2275 progress = true;
2276 }
2277 break;
2278 case SHADER_OPCODE_RCP: {
2279 fs_inst *prev = (fs_inst *)inst->prev;
2280 if (prev->opcode == SHADER_OPCODE_SQRT) {
2281 if (inst->src[0].equals(prev->dst)) {
2282 inst->opcode = SHADER_OPCODE_RSQ;
2283 inst->src[0] = prev->src[0];
2284 progress = true;
2285 }
2286 }
2287 break;
2288 }
2289 case SHADER_OPCODE_BROADCAST:
2290 if (is_uniform(inst->src[0])) {
2291 inst->opcode = BRW_OPCODE_MOV;
2292 inst->sources = 1;
2293 inst->force_writemask_all = true;
2294 progress = true;
2295 } else if (inst->src[1].file == IMM) {
2296 inst->opcode = BRW_OPCODE_MOV;
2297 inst->src[0] = component(inst->src[0],
2298 inst->src[1].ud);
2299 inst->sources = 1;
2300 inst->force_writemask_all = true;
2301 progress = true;
2302 }
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 /* Swap if src[0] is immediate. */
2310 if (progress && inst->is_commutative()) {
2311 if (inst->src[0].file == IMM) {
2312 fs_reg tmp = inst->src[1];
2313 inst->src[1] = inst->src[0];
2314 inst->src[0] = tmp;
2315 }
2316 }
2317 }
2318 return progress;
2319 }
2320
2321 /**
2322 * Optimize sample messages that have constant zero values for the trailing
2323 * texture coordinates. We can just reduce the message length for these
2324 * instructions instead of reserving a register for it. Trailing parameters
2325 * that aren't sent default to zero anyway. This will cause the dead code
2326 * eliminator to remove the MOV instruction that would otherwise be emitted to
2327 * set up the zero value.
2328 */
2329 bool
2330 fs_visitor::opt_zero_samples()
2331 {
2332 /* Gen4 infers the texturing opcode based on the message length so we can't
2333 * change it.
2334 */
2335 if (devinfo->gen < 5)
2336 return false;
2337
2338 bool progress = false;
2339
2340 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2341 if (!inst->is_tex())
2342 continue;
2343
2344 fs_inst *load_payload = (fs_inst *) inst->prev;
2345
2346 if (load_payload->is_head_sentinel() ||
2347 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2348 continue;
2349
2350 /* We don't want to remove the message header or the first parameter.
2351 * Removing the first parameter is not allowed, see the Haswell PRM
2352 * volume 7, page 149:
2353 *
2354 * "Parameter 0 is required except for the sampleinfo message, which
2355 * has no parameter 0"
2356 */
2357 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2358 load_payload->src[(inst->mlen - inst->header_size) /
2359 (inst->exec_size / 8) +
2360 inst->header_size - 1].is_zero()) {
2361 inst->mlen -= inst->exec_size / 8;
2362 progress = true;
2363 }
2364 }
2365
2366 if (progress)
2367 invalidate_live_intervals();
2368
2369 return progress;
2370 }
2371
2372 /**
2373 * Optimize sample messages which are followed by the final RT write.
2374 *
2375 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2376 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2377 * final texturing results copied to the framebuffer write payload and modify
2378 * them to write to the framebuffer directly.
2379 */
2380 bool
2381 fs_visitor::opt_sampler_eot()
2382 {
2383 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2384
2385 if (stage != MESA_SHADER_FRAGMENT)
2386 return false;
2387
2388 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2389 return false;
2390
2391 /* FINISHME: It should be possible to implement this optimization when there
2392 * are multiple drawbuffers.
2393 */
2394 if (key->nr_color_regions != 1)
2395 return false;
2396
2397 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2398 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2399 fs_inst *fb_write = (fs_inst *)block->end();
2400 assert(fb_write->eot);
2401 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2402
2403 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2404
2405 /* There wasn't one; nothing to do. */
2406 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2407 return false;
2408
2409 /* 3D Sampler » Messages » Message Format
2410 *
2411 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2412 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2413 */
2414 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2415 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2416 tex_inst->opcode == SHADER_OPCODE_LOD ||
2417 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2418 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2419 return false;
2420
2421 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2422 * It's very likely to be the previous instruction.
2423 */
2424 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2425 if (load_payload->is_head_sentinel() ||
2426 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2427 return false;
2428
2429 assert(!tex_inst->eot); /* We can't get here twice */
2430 assert((tex_inst->offset & (0xff << 24)) == 0);
2431
2432 const fs_builder ibld(this, block, tex_inst);
2433
2434 tex_inst->offset |= fb_write->target << 24;
2435 tex_inst->eot = true;
2436 tex_inst->dst = ibld.null_reg_ud();
2437 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2438
2439 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2440 * to create a new LOAD_PAYLOAD command with the same sources and a space
2441 * saved for the header. Using a new destination register not only makes sure
2442 * we have enough space, but it will make sure the dead code eliminator kills
2443 * the instruction that this will replace.
2444 */
2445 if (tex_inst->header_size != 0)
2446 return true;
2447
2448 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2449 load_payload->sources + 1);
2450 fs_reg *new_sources =
2451 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2452
2453 new_sources[0] = fs_reg();
2454 for (int i = 0; i < load_payload->sources; i++)
2455 new_sources[i+1] = load_payload->src[i];
2456
2457 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2458 * requires a lot of information about the sources to appropriately figure
2459 * out the number of registers needed to be used. Given this stage in our
2460 * optimization, we may not have the appropriate GRFs required by
2461 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2462 * manually emit the instruction.
2463 */
2464 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2465 load_payload->exec_size,
2466 send_header,
2467 new_sources,
2468 load_payload->sources + 1);
2469
2470 new_load_payload->regs_written = load_payload->regs_written + 1;
2471 new_load_payload->header_size = 1;
2472 tex_inst->mlen++;
2473 tex_inst->header_size = 1;
2474 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2475 tex_inst->src[0] = send_header;
2476
2477 return true;
2478 }
2479
2480 bool
2481 fs_visitor::opt_register_renaming()
2482 {
2483 bool progress = false;
2484 int depth = 0;
2485
2486 int remap[alloc.count];
2487 memset(remap, -1, sizeof(int) * alloc.count);
2488
2489 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2490 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2491 depth++;
2492 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2493 inst->opcode == BRW_OPCODE_WHILE) {
2494 depth--;
2495 }
2496
2497 /* Rewrite instruction sources. */
2498 for (int i = 0; i < inst->sources; i++) {
2499 if (inst->src[i].file == VGRF &&
2500 remap[inst->src[i].nr] != -1 &&
2501 remap[inst->src[i].nr] != inst->src[i].nr) {
2502 inst->src[i].nr = remap[inst->src[i].nr];
2503 progress = true;
2504 }
2505 }
2506
2507 const int dst = inst->dst.nr;
2508
2509 if (depth == 0 &&
2510 inst->dst.file == VGRF &&
2511 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2512 !inst->is_partial_write()) {
2513 if (remap[dst] == -1) {
2514 remap[dst] = dst;
2515 } else {
2516 remap[dst] = alloc.allocate(inst->exec_size / 8);
2517 inst->dst.nr = remap[dst];
2518 progress = true;
2519 }
2520 } else if (inst->dst.file == VGRF &&
2521 remap[dst] != -1 &&
2522 remap[dst] != dst) {
2523 inst->dst.nr = remap[dst];
2524 progress = true;
2525 }
2526 }
2527
2528 if (progress) {
2529 invalidate_live_intervals();
2530
2531 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2532 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2533 delta_xy[i].nr = remap[delta_xy[i].nr];
2534 }
2535 }
2536 }
2537
2538 return progress;
2539 }
2540
2541 /**
2542 * Remove redundant or useless discard jumps.
2543 *
2544 * For example, we can eliminate jumps in the following sequence:
2545 *
2546 * discard-jump (redundant with the next jump)
2547 * discard-jump (useless; jumps to the next instruction)
2548 * placeholder-halt
2549 */
2550 bool
2551 fs_visitor::opt_redundant_discard_jumps()
2552 {
2553 bool progress = false;
2554
2555 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2556
2557 fs_inst *placeholder_halt = NULL;
2558 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2559 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2560 placeholder_halt = inst;
2561 break;
2562 }
2563 }
2564
2565 if (!placeholder_halt)
2566 return false;
2567
2568 /* Delete any HALTs immediately before the placeholder halt. */
2569 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2570 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2571 prev = (fs_inst *) placeholder_halt->prev) {
2572 prev->remove(last_bblock);
2573 progress = true;
2574 }
2575
2576 if (progress)
2577 invalidate_live_intervals();
2578
2579 return progress;
2580 }
2581
2582 bool
2583 fs_visitor::compute_to_mrf()
2584 {
2585 bool progress = false;
2586 int next_ip = 0;
2587
2588 /* No MRFs on Gen >= 7. */
2589 if (devinfo->gen >= 7)
2590 return false;
2591
2592 calculate_live_intervals();
2593
2594 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2595 int ip = next_ip;
2596 next_ip++;
2597
2598 if (inst->opcode != BRW_OPCODE_MOV ||
2599 inst->is_partial_write() ||
2600 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2601 inst->dst.type != inst->src[0].type ||
2602 inst->src[0].abs || inst->src[0].negate ||
2603 !inst->src[0].is_contiguous() ||
2604 inst->src[0].subreg_offset)
2605 continue;
2606
2607 /* Work out which hardware MRF registers are written by this
2608 * instruction.
2609 */
2610 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2611 int mrf_high;
2612 if (inst->dst.nr & BRW_MRF_COMPR4) {
2613 mrf_high = mrf_low + 4;
2614 } else if (inst->exec_size == 16) {
2615 mrf_high = mrf_low + 1;
2616 } else {
2617 mrf_high = mrf_low;
2618 }
2619
2620 /* Can't compute-to-MRF this GRF if someone else was going to
2621 * read it later.
2622 */
2623 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2624 continue;
2625
2626 /* Found a move of a GRF to a MRF. Let's see if we can go
2627 * rewrite the thing that made this GRF to write into the MRF.
2628 */
2629 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2630 if (scan_inst->dst.file == VGRF &&
2631 scan_inst->dst.nr == inst->src[0].nr) {
2632 /* Found the last thing to write our reg we want to turn
2633 * into a compute-to-MRF.
2634 */
2635
2636 /* If this one instruction didn't populate all the
2637 * channels, bail. We might be able to rewrite everything
2638 * that writes that reg, but it would require smarter
2639 * tracking to delay the rewriting until complete success.
2640 */
2641 if (scan_inst->is_partial_write())
2642 break;
2643
2644 /* Things returning more than one register would need us to
2645 * understand coalescing out more than one MOV at a time.
2646 */
2647 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2648 break;
2649
2650 /* SEND instructions can't have MRF as a destination. */
2651 if (scan_inst->mlen)
2652 break;
2653
2654 if (devinfo->gen == 6) {
2655 /* gen6 math instructions must have the destination be
2656 * GRF, so no compute-to-MRF for them.
2657 */
2658 if (scan_inst->is_math()) {
2659 break;
2660 }
2661 }
2662
2663 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2664 /* Found the creator of our MRF's source value. */
2665 scan_inst->dst.file = MRF;
2666 scan_inst->dst.nr = inst->dst.nr;
2667 scan_inst->saturate |= inst->saturate;
2668 inst->remove(block);
2669 progress = true;
2670 }
2671 break;
2672 }
2673
2674 /* We don't handle control flow here. Most computation of
2675 * values that end up in MRFs are shortly before the MRF
2676 * write anyway.
2677 */
2678 if (block->start() == scan_inst)
2679 break;
2680
2681 /* You can't read from an MRF, so if someone else reads our
2682 * MRF's source GRF that we wanted to rewrite, that stops us.
2683 */
2684 bool interfered = false;
2685 for (int i = 0; i < scan_inst->sources; i++) {
2686 if (scan_inst->src[i].file == VGRF &&
2687 scan_inst->src[i].nr == inst->src[0].nr &&
2688 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2689 interfered = true;
2690 }
2691 }
2692 if (interfered)
2693 break;
2694
2695 if (scan_inst->dst.file == MRF) {
2696 /* If somebody else writes our MRF here, we can't
2697 * compute-to-MRF before that.
2698 */
2699 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2700 int scan_mrf_high;
2701
2702 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2703 scan_mrf_high = scan_mrf_low + 4;
2704 } else if (scan_inst->exec_size == 16) {
2705 scan_mrf_high = scan_mrf_low + 1;
2706 } else {
2707 scan_mrf_high = scan_mrf_low;
2708 }
2709
2710 if (mrf_low == scan_mrf_low ||
2711 mrf_low == scan_mrf_high ||
2712 mrf_high == scan_mrf_low ||
2713 mrf_high == scan_mrf_high) {
2714 break;
2715 }
2716 }
2717
2718 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2719 /* Found a SEND instruction, which means that there are
2720 * live values in MRFs from base_mrf to base_mrf +
2721 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2722 * above it.
2723 */
2724 if (mrf_low >= scan_inst->base_mrf &&
2725 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2726 break;
2727 }
2728 if (mrf_high >= scan_inst->base_mrf &&
2729 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2730 break;
2731 }
2732 }
2733 }
2734 }
2735
2736 if (progress)
2737 invalidate_live_intervals();
2738
2739 return progress;
2740 }
2741
2742 /**
2743 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2744 * flow. We could probably do better here with some form of divergence
2745 * analysis.
2746 */
2747 bool
2748 fs_visitor::eliminate_find_live_channel()
2749 {
2750 bool progress = false;
2751 unsigned depth = 0;
2752
2753 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2754 switch (inst->opcode) {
2755 case BRW_OPCODE_IF:
2756 case BRW_OPCODE_DO:
2757 depth++;
2758 break;
2759
2760 case BRW_OPCODE_ENDIF:
2761 case BRW_OPCODE_WHILE:
2762 depth--;
2763 break;
2764
2765 case FS_OPCODE_DISCARD_JUMP:
2766 /* This can potentially make control flow non-uniform until the end
2767 * of the program.
2768 */
2769 return progress;
2770
2771 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2772 if (depth == 0) {
2773 inst->opcode = BRW_OPCODE_MOV;
2774 inst->src[0] = brw_imm_ud(0u);
2775 inst->sources = 1;
2776 inst->force_writemask_all = true;
2777 progress = true;
2778 }
2779 break;
2780
2781 default:
2782 break;
2783 }
2784 }
2785
2786 return progress;
2787 }
2788
2789 /**
2790 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2791 * instructions to FS_OPCODE_REP_FB_WRITE.
2792 */
2793 void
2794 fs_visitor::emit_repclear_shader()
2795 {
2796 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2797 int base_mrf = 1;
2798 int color_mrf = base_mrf + 2;
2799 fs_inst *mov;
2800
2801 if (uniforms == 1) {
2802 mov = bld.exec_all().group(4, 0)
2803 .MOV(brw_message_reg(color_mrf),
2804 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2805 } else {
2806 struct brw_reg reg =
2807 brw_reg(BRW_GENERAL_REGISTER_FILE,
2808 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2809 BRW_VERTICAL_STRIDE_8,
2810 BRW_WIDTH_2,
2811 BRW_HORIZONTAL_STRIDE_4, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2812
2813 mov = bld.exec_all().group(4, 0)
2814 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2815 }
2816
2817 fs_inst *write;
2818 if (key->nr_color_regions == 1) {
2819 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2820 write->saturate = key->clamp_fragment_color;
2821 write->base_mrf = color_mrf;
2822 write->target = 0;
2823 write->header_size = 0;
2824 write->mlen = 1;
2825 } else {
2826 assume(key->nr_color_regions > 0);
2827 for (int i = 0; i < key->nr_color_regions; ++i) {
2828 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2829 write->saturate = key->clamp_fragment_color;
2830 write->base_mrf = base_mrf;
2831 write->target = i;
2832 write->header_size = 2;
2833 write->mlen = 3;
2834 }
2835 }
2836 write->eot = true;
2837
2838 calculate_cfg();
2839
2840 assign_constant_locations();
2841 assign_curb_setup();
2842
2843 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2844 if (uniforms == 1) {
2845 assert(mov->src[0].file == FIXED_GRF);
2846 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2847 }
2848 }
2849
2850 /**
2851 * Walks through basic blocks, looking for repeated MRF writes and
2852 * removing the later ones.
2853 */
2854 bool
2855 fs_visitor::remove_duplicate_mrf_writes()
2856 {
2857 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2858 bool progress = false;
2859
2860 /* Need to update the MRF tracking for compressed instructions. */
2861 if (dispatch_width == 16)
2862 return false;
2863
2864 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2865
2866 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2867 if (inst->is_control_flow()) {
2868 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2869 }
2870
2871 if (inst->opcode == BRW_OPCODE_MOV &&
2872 inst->dst.file == MRF) {
2873 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2874 if (prev_inst && inst->equals(prev_inst)) {
2875 inst->remove(block);
2876 progress = true;
2877 continue;
2878 }
2879 }
2880
2881 /* Clear out the last-write records for MRFs that were overwritten. */
2882 if (inst->dst.file == MRF) {
2883 last_mrf_move[inst->dst.nr] = NULL;
2884 }
2885
2886 if (inst->mlen > 0 && inst->base_mrf != -1) {
2887 /* Found a SEND instruction, which will include two or fewer
2888 * implied MRF writes. We could do better here.
2889 */
2890 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2891 last_mrf_move[inst->base_mrf + i] = NULL;
2892 }
2893 }
2894
2895 /* Clear out any MRF move records whose sources got overwritten. */
2896 if (inst->dst.file == VGRF) {
2897 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2898 if (last_mrf_move[i] &&
2899 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2900 last_mrf_move[i] = NULL;
2901 }
2902 }
2903 }
2904
2905 if (inst->opcode == BRW_OPCODE_MOV &&
2906 inst->dst.file == MRF &&
2907 inst->src[0].file == VGRF &&
2908 !inst->is_partial_write()) {
2909 last_mrf_move[inst->dst.nr] = inst;
2910 }
2911 }
2912
2913 if (progress)
2914 invalidate_live_intervals();
2915
2916 return progress;
2917 }
2918
2919 static void
2920 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2921 {
2922 /* Clear the flag for registers that actually got read (as expected). */
2923 for (int i = 0; i < inst->sources; i++) {
2924 int grf;
2925 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2926 grf = inst->src[i].nr;
2927 } else {
2928 continue;
2929 }
2930
2931 if (grf >= first_grf &&
2932 grf < first_grf + grf_len) {
2933 deps[grf - first_grf] = false;
2934 if (inst->exec_size == 16)
2935 deps[grf - first_grf + 1] = false;
2936 }
2937 }
2938 }
2939
2940 /**
2941 * Implements this workaround for the original 965:
2942 *
2943 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2944 * check for post destination dependencies on this instruction, software
2945 * must ensure that there is no destination hazard for the case of ‘write
2946 * followed by a posted write’ shown in the following example.
2947 *
2948 * 1. mov r3 0
2949 * 2. send r3.xy <rest of send instruction>
2950 * 3. mov r2 r3
2951 *
2952 * Due to no post-destination dependency check on the ‘send’, the above
2953 * code sequence could have two instructions (1 and 2) in flight at the
2954 * same time that both consider ‘r3’ as the target of their final writes.
2955 */
2956 void
2957 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2958 fs_inst *inst)
2959 {
2960 int write_len = inst->regs_written;
2961 int first_write_grf = inst->dst.nr;
2962 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2963 assert(write_len < (int)sizeof(needs_dep) - 1);
2964
2965 memset(needs_dep, false, sizeof(needs_dep));
2966 memset(needs_dep, true, write_len);
2967
2968 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2969
2970 /* Walk backwards looking for writes to registers we're writing which
2971 * aren't read since being written. If we hit the start of the program,
2972 * we assume that there are no outstanding dependencies on entry to the
2973 * program.
2974 */
2975 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2976 /* If we hit control flow, assume that there *are* outstanding
2977 * dependencies, and force their cleanup before our instruction.
2978 */
2979 if (block->start() == scan_inst) {
2980 for (int i = 0; i < write_len; i++) {
2981 if (needs_dep[i])
2982 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2983 first_write_grf + i);
2984 }
2985 return;
2986 }
2987
2988 /* We insert our reads as late as possible on the assumption that any
2989 * instruction but a MOV that might have left us an outstanding
2990 * dependency has more latency than a MOV.
2991 */
2992 if (scan_inst->dst.file == VGRF) {
2993 for (int i = 0; i < scan_inst->regs_written; i++) {
2994 int reg = scan_inst->dst.nr + i;
2995
2996 if (reg >= first_write_grf &&
2997 reg < first_write_grf + write_len &&
2998 needs_dep[reg - first_write_grf]) {
2999 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3000 needs_dep[reg - first_write_grf] = false;
3001 if (scan_inst->exec_size == 16)
3002 needs_dep[reg - first_write_grf + 1] = false;
3003 }
3004 }
3005 }
3006
3007 /* Clear the flag for registers that actually got read (as expected). */
3008 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3009
3010 /* Continue the loop only if we haven't resolved all the dependencies */
3011 int i;
3012 for (i = 0; i < write_len; i++) {
3013 if (needs_dep[i])
3014 break;
3015 }
3016 if (i == write_len)
3017 return;
3018 }
3019 }
3020
3021 /**
3022 * Implements this workaround for the original 965:
3023 *
3024 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3025 * used as a destination register until after it has been sourced by an
3026 * instruction with a different destination register.
3027 */
3028 void
3029 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3030 {
3031 int write_len = inst->regs_written;
3032 int first_write_grf = inst->dst.nr;
3033 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3034 assert(write_len < (int)sizeof(needs_dep) - 1);
3035
3036 memset(needs_dep, false, sizeof(needs_dep));
3037 memset(needs_dep, true, write_len);
3038 /* Walk forwards looking for writes to registers we're writing which aren't
3039 * read before being written.
3040 */
3041 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3042 /* If we hit control flow, force resolve all remaining dependencies. */
3043 if (block->end() == scan_inst) {
3044 for (int i = 0; i < write_len; i++) {
3045 if (needs_dep[i])
3046 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3047 first_write_grf + i);
3048 }
3049 return;
3050 }
3051
3052 /* Clear the flag for registers that actually got read (as expected). */
3053 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3054
3055 /* We insert our reads as late as possible since they're reading the
3056 * result of a SEND, which has massive latency.
3057 */
3058 if (scan_inst->dst.file == VGRF &&
3059 scan_inst->dst.nr >= first_write_grf &&
3060 scan_inst->dst.nr < first_write_grf + write_len &&
3061 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3062 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3063 scan_inst->dst.nr);
3064 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3065 }
3066
3067 /* Continue the loop only if we haven't resolved all the dependencies */
3068 int i;
3069 for (i = 0; i < write_len; i++) {
3070 if (needs_dep[i])
3071 break;
3072 }
3073 if (i == write_len)
3074 return;
3075 }
3076 }
3077
3078 void
3079 fs_visitor::insert_gen4_send_dependency_workarounds()
3080 {
3081 if (devinfo->gen != 4 || devinfo->is_g4x)
3082 return;
3083
3084 bool progress = false;
3085
3086 /* Note that we're done with register allocation, so GRF fs_regs always
3087 * have a .reg_offset of 0.
3088 */
3089
3090 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3091 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3092 insert_gen4_pre_send_dependency_workarounds(block, inst);
3093 insert_gen4_post_send_dependency_workarounds(block, inst);
3094 progress = true;
3095 }
3096 }
3097
3098 if (progress)
3099 invalidate_live_intervals();
3100 }
3101
3102 /**
3103 * Turns the generic expression-style uniform pull constant load instruction
3104 * into a hardware-specific series of instructions for loading a pull
3105 * constant.
3106 *
3107 * The expression style allows the CSE pass before this to optimize out
3108 * repeated loads from the same offset, and gives the pre-register-allocation
3109 * scheduling full flexibility, while the conversion to native instructions
3110 * allows the post-register-allocation scheduler the best information
3111 * possible.
3112 *
3113 * Note that execution masking for setting up pull constant loads is special:
3114 * the channels that need to be written are unrelated to the current execution
3115 * mask, since a later instruction will use one of the result channels as a
3116 * source operand for all 8 or 16 of its channels.
3117 */
3118 void
3119 fs_visitor::lower_uniform_pull_constant_loads()
3120 {
3121 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3122 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3123 continue;
3124
3125 if (devinfo->gen >= 7) {
3126 /* The offset arg is a vec4-aligned immediate byte offset. */
3127 fs_reg const_offset_reg = inst->src[1];
3128 assert(const_offset_reg.file == IMM &&
3129 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3130 assert(const_offset_reg.ud % 16 == 0);
3131
3132 fs_reg payload, offset;
3133 if (devinfo->gen >= 9) {
3134 /* We have to use a message header on Skylake to get SIMD4x2
3135 * mode. Reserve space for the register.
3136 */
3137 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3138 offset.reg_offset++;
3139 inst->mlen = 2;
3140 } else {
3141 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3142 inst->mlen = 1;
3143 }
3144
3145 /* This is actually going to be a MOV, but since only the first dword
3146 * is accessed, we have a special opcode to do just that one. Note
3147 * that this needs to be an operation that will be considered a def
3148 * by live variable analysis, or register allocation will explode.
3149 */
3150 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3151 8, offset, const_offset_reg);
3152 setup->force_writemask_all = true;
3153
3154 setup->ir = inst->ir;
3155 setup->annotation = inst->annotation;
3156 inst->insert_before(block, setup);
3157
3158 /* Similarly, this will only populate the first 4 channels of the
3159 * result register (since we only use smear values from 0-3), but we
3160 * don't tell the optimizer.
3161 */
3162 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3163 inst->src[1] = payload;
3164 inst->base_mrf = -1;
3165
3166 invalidate_live_intervals();
3167 } else {
3168 /* Before register allocation, we didn't tell the scheduler about the
3169 * MRF we use. We know it's safe to use this MRF because nothing
3170 * else does except for register spill/unspill, which generates and
3171 * uses its MRF within a single IR instruction.
3172 */
3173 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3174 inst->mlen = 1;
3175 }
3176 }
3177 }
3178
3179 bool
3180 fs_visitor::lower_load_payload()
3181 {
3182 bool progress = false;
3183
3184 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3185 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3186 continue;
3187
3188 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3189 assert(inst->saturate == false);
3190 fs_reg dst = inst->dst;
3191
3192 /* Get rid of COMPR4. We'll add it back in if we need it */
3193 if (dst.file == MRF)
3194 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3195
3196 const fs_builder ibld(this, block, inst);
3197 const fs_builder hbld = ibld.exec_all().group(8, 0);
3198
3199 for (uint8_t i = 0; i < inst->header_size; i++) {
3200 if (inst->src[i].file != BAD_FILE) {
3201 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3202 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3203 hbld.MOV(mov_dst, mov_src);
3204 }
3205 dst = offset(dst, hbld, 1);
3206 }
3207
3208 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3209 inst->exec_size > 8) {
3210 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3211 * a straightforward copy. Instead, the result of the
3212 * LOAD_PAYLOAD is treated as interleaved and the first four
3213 * non-header sources are unpacked as:
3214 *
3215 * m + 0: r0
3216 * m + 1: g0
3217 * m + 2: b0
3218 * m + 3: a0
3219 * m + 4: r1
3220 * m + 5: g1
3221 * m + 6: b1
3222 * m + 7: a1
3223 *
3224 * This is used for gen <= 5 fb writes.
3225 */
3226 assert(inst->exec_size == 16);
3227 assert(inst->header_size + 4 <= inst->sources);
3228 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3229 if (inst->src[i].file != BAD_FILE) {
3230 if (devinfo->has_compr4) {
3231 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3232 compr4_dst.nr |= BRW_MRF_COMPR4;
3233 ibld.MOV(compr4_dst, inst->src[i]);
3234 } else {
3235 /* Platform doesn't have COMPR4. We have to fake it */
3236 fs_reg mov_dst = retype(dst, inst->src[i].type);
3237 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3238 mov_dst.nr += 4;
3239 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3240 }
3241 }
3242
3243 dst.nr++;
3244 }
3245
3246 /* The loop above only ever incremented us through the first set
3247 * of 4 registers. However, thanks to the magic of COMPR4, we
3248 * actually wrote to the first 8 registers, so we need to take
3249 * that into account now.
3250 */
3251 dst.nr += 4;
3252
3253 /* The COMPR4 code took care of the first 4 sources. We'll let
3254 * the regular path handle any remaining sources. Yes, we are
3255 * modifying the instruction but we're about to delete it so
3256 * this really doesn't hurt anything.
3257 */
3258 inst->header_size += 4;
3259 }
3260
3261 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3262 if (inst->src[i].file != BAD_FILE)
3263 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3264 dst = offset(dst, ibld, 1);
3265 }
3266
3267 inst->remove(block);
3268 progress = true;
3269 }
3270
3271 if (progress)
3272 invalidate_live_intervals();
3273
3274 return progress;
3275 }
3276
3277 bool
3278 fs_visitor::lower_integer_multiplication()
3279 {
3280 bool progress = false;
3281
3282 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3283 const fs_builder ibld(this, block, inst);
3284
3285 if (inst->opcode == BRW_OPCODE_MUL) {
3286 if (inst->dst.is_accumulator() ||
3287 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3288 inst->dst.type != BRW_REGISTER_TYPE_UD))
3289 continue;
3290
3291 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3292 * operation directly, but CHV/BXT cannot.
3293 */
3294 if (devinfo->gen >= 8 &&
3295 !devinfo->is_cherryview && !devinfo->is_broxton)
3296 continue;
3297
3298 if (inst->src[1].file == IMM &&
3299 inst->src[1].ud < (1 << 16)) {
3300 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3301 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3302 * src1 are used.
3303 *
3304 * If multiplying by an immediate value that fits in 16-bits, do a
3305 * single MUL instruction with that value in the proper location.
3306 */
3307 if (devinfo->gen < 7) {
3308 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3309 inst->dst.type);
3310 ibld.MOV(imm, inst->src[1]);
3311 ibld.MUL(inst->dst, imm, inst->src[0]);
3312 } else {
3313 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3314 }
3315 } else {
3316 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3317 * do 32-bit integer multiplication in one instruction, but instead
3318 * must do a sequence (which actually calculates a 64-bit result):
3319 *
3320 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3321 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3322 * mov(8) g2<1>D acc0<8,8,1>D
3323 *
3324 * But on Gen > 6, the ability to use second accumulator register
3325 * (acc1) for non-float data types was removed, preventing a simple
3326 * implementation in SIMD16. A 16-channel result can be calculated by
3327 * executing the three instructions twice in SIMD8, once with quarter
3328 * control of 1Q for the first eight channels and again with 2Q for
3329 * the second eight channels.
3330 *
3331 * Which accumulator register is implicitly accessed (by AccWrEnable
3332 * for instance) is determined by the quarter control. Unfortunately
3333 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3334 * implicit accumulator access by an instruction with 2Q will access
3335 * acc1 regardless of whether the data type is usable in acc1.
3336 *
3337 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3338 * integer data types.
3339 *
3340 * Since we only want the low 32-bits of the result, we can do two
3341 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3342 * adjust the high result and add them (like the mach is doing):
3343 *
3344 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3345 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3346 * shl(8) g9<1>D g8<8,8,1>D 16D
3347 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3348 *
3349 * We avoid the shl instruction by realizing that we only want to add
3350 * the low 16-bits of the "high" result to the high 16-bits of the
3351 * "low" result and using proper regioning on the add:
3352 *
3353 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3354 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3355 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3356 *
3357 * Since it does not use the (single) accumulator register, we can
3358 * schedule multi-component multiplications much better.
3359 */
3360
3361 fs_reg orig_dst = inst->dst;
3362 if (orig_dst.is_null() || orig_dst.file == MRF) {
3363 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3364 inst->dst.type);
3365 }
3366 fs_reg low = inst->dst;
3367 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3368 inst->dst.type);
3369
3370 if (devinfo->gen >= 7) {
3371 fs_reg src1_0_w = inst->src[1];
3372 fs_reg src1_1_w = inst->src[1];
3373
3374 if (inst->src[1].file == IMM) {
3375 src1_0_w.ud &= 0xffff;
3376 src1_1_w.ud >>= 16;
3377 } else {
3378 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3379 if (src1_0_w.stride != 0) {
3380 assert(src1_0_w.stride == 1);
3381 src1_0_w.stride = 2;
3382 }
3383
3384 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3385 if (src1_1_w.stride != 0) {
3386 assert(src1_1_w.stride == 1);
3387 src1_1_w.stride = 2;
3388 }
3389 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3390 }
3391 ibld.MUL(low, inst->src[0], src1_0_w);
3392 ibld.MUL(high, inst->src[0], src1_1_w);
3393 } else {
3394 fs_reg src0_0_w = inst->src[0];
3395 fs_reg src0_1_w = inst->src[0];
3396
3397 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3398 if (src0_0_w.stride != 0) {
3399 assert(src0_0_w.stride == 1);
3400 src0_0_w.stride = 2;
3401 }
3402
3403 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3404 if (src0_1_w.stride != 0) {
3405 assert(src0_1_w.stride == 1);
3406 src0_1_w.stride = 2;
3407 }
3408 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3409
3410 ibld.MUL(low, src0_0_w, inst->src[1]);
3411 ibld.MUL(high, src0_1_w, inst->src[1]);
3412 }
3413
3414 fs_reg dst = inst->dst;
3415 dst.type = BRW_REGISTER_TYPE_UW;
3416 dst.subreg_offset = 2;
3417 dst.stride = 2;
3418
3419 high.type = BRW_REGISTER_TYPE_UW;
3420 high.stride = 2;
3421
3422 low.type = BRW_REGISTER_TYPE_UW;
3423 low.subreg_offset = 2;
3424 low.stride = 2;
3425
3426 ibld.ADD(dst, low, high);
3427
3428 if (inst->conditional_mod || orig_dst.file == MRF) {
3429 set_condmod(inst->conditional_mod,
3430 ibld.MOV(orig_dst, inst->dst));
3431 }
3432 }
3433
3434 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3435 /* Should have been lowered to 8-wide. */
3436 assert(inst->exec_size <= 8);
3437 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3438 inst->dst.type);
3439 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3440 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3441
3442 if (devinfo->gen >= 8) {
3443 /* Until Gen8, integer multiplies read 32-bits from one source,
3444 * and 16-bits from the other, and relying on the MACH instruction
3445 * to generate the high bits of the result.
3446 *
3447 * On Gen8, the multiply instruction does a full 32x32-bit
3448 * multiply, but in order to do a 64-bit multiply we can simulate
3449 * the previous behavior and then use a MACH instruction.
3450 *
3451 * FINISHME: Don't use source modifiers on src1.
3452 */
3453 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3454 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3455 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3456 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3457 mul->src[1].stride *= 2;
3458
3459 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3460 inst->force_sechalf) {
3461 /* Among other things the quarter control bits influence which
3462 * accumulator register is used by the hardware for instructions
3463 * that access the accumulator implicitly (e.g. MACH). A
3464 * second-half instruction would normally map to acc1, which
3465 * doesn't exist on Gen7 and up (the hardware does emulate it for
3466 * floating-point instructions *only* by taking advantage of the
3467 * extra precision of acc0 not normally used for floating point
3468 * arithmetic).
3469 *
3470 * HSW and up are careful enough not to try to access an
3471 * accumulator register that doesn't exist, but on earlier Gen7
3472 * hardware we need to make sure that the quarter control bits are
3473 * zero to avoid non-deterministic behaviour and emit an extra MOV
3474 * to get the result masked correctly according to the current
3475 * channel enables.
3476 */
3477 mach->force_sechalf = false;
3478 mach->force_writemask_all = true;
3479 mach->dst = ibld.vgrf(inst->dst.type);
3480 ibld.MOV(inst->dst, mach->dst);
3481 }
3482 } else {
3483 continue;
3484 }
3485
3486 inst->remove(block);
3487 progress = true;
3488 }
3489
3490 if (progress)
3491 invalidate_live_intervals();
3492
3493 return progress;
3494 }
3495
3496 static void
3497 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3498 fs_reg *dst, fs_reg color, unsigned components)
3499 {
3500 if (key->clamp_fragment_color) {
3501 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3502 assert(color.type == BRW_REGISTER_TYPE_F);
3503
3504 for (unsigned i = 0; i < components; i++)
3505 set_saturate(true,
3506 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3507
3508 color = tmp;
3509 }
3510
3511 for (unsigned i = 0; i < components; i++)
3512 dst[i] = offset(color, bld, i);
3513 }
3514
3515 static void
3516 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3517 const brw_wm_prog_data *prog_data,
3518 const brw_wm_prog_key *key,
3519 const fs_visitor::thread_payload &payload)
3520 {
3521 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3522 const brw_device_info *devinfo = bld.shader->devinfo;
3523 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3524 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3525 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3526 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3527 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3528 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3529 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3530 const unsigned components =
3531 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3532
3533 /* We can potentially have a message length of up to 15, so we have to set
3534 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3535 */
3536 fs_reg sources[15];
3537 int header_size = 2, payload_header_size;
3538 unsigned length = 0;
3539
3540 /* From the Sandy Bridge PRM, volume 4, page 198:
3541 *
3542 * "Dispatched Pixel Enables. One bit per pixel indicating
3543 * which pixels were originally enabled when the thread was
3544 * dispatched. This field is only required for the end-of-
3545 * thread message and on all dual-source messages."
3546 */
3547 if (devinfo->gen >= 6 &&
3548 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3549 color1.file == BAD_FILE &&
3550 key->nr_color_regions == 1) {
3551 header_size = 0;
3552 }
3553
3554 if (header_size != 0) {
3555 assert(header_size == 2);
3556 /* Allocate 2 registers for a header */
3557 length += 2;
3558 }
3559
3560 if (payload.aa_dest_stencil_reg) {
3561 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3562 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3563 .MOV(sources[length],
3564 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3565 length++;
3566 }
3567
3568 if (prog_data->uses_omask) {
3569 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3570 BRW_REGISTER_TYPE_UD);
3571
3572 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3573 * relevant. Since it's unsigned single words one vgrf is always
3574 * 16-wide, but only the lower or higher 8 channels will be used by the
3575 * hardware when doing a SIMD8 write depending on whether we have
3576 * selected the subspans for the first or second half respectively.
3577 */
3578 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3579 sample_mask.type = BRW_REGISTER_TYPE_UW;
3580 sample_mask.stride *= 2;
3581
3582 bld.exec_all().annotate("FB write oMask")
3583 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3584 inst->force_sechalf),
3585 sample_mask);
3586 length++;
3587 }
3588
3589 payload_header_size = length;
3590
3591 if (src0_alpha.file != BAD_FILE) {
3592 /* FIXME: This is being passed at the wrong location in the payload and
3593 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3594 * It's supposed to be immediately before oMask but there seems to be no
3595 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3596 * requires header sources to form a contiguous segment at the beginning
3597 * of the message and src0_alpha has per-channel semantics.
3598 */
3599 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3600 length++;
3601 }
3602
3603 setup_color_payload(bld, key, &sources[length], color0, components);
3604 length += 4;
3605
3606 if (color1.file != BAD_FILE) {
3607 setup_color_payload(bld, key, &sources[length], color1, components);
3608 length += 4;
3609 }
3610
3611 if (src_depth.file != BAD_FILE) {
3612 sources[length] = src_depth;
3613 length++;
3614 }
3615
3616 if (dst_depth.file != BAD_FILE) {
3617 sources[length] = dst_depth;
3618 length++;
3619 }
3620
3621 if (src_stencil.file != BAD_FILE) {
3622 assert(devinfo->gen >= 9);
3623 assert(bld.dispatch_width() != 16);
3624
3625 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3626 * available on gen9+. As such it's impossible to have both enabled at the
3627 * same time and therefore length cannot overrun the array.
3628 */
3629 assert(length < 15);
3630
3631 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3632 bld.exec_all().annotate("FB write OS")
3633 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3634 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3635 length++;
3636 }
3637
3638 fs_inst *load;
3639 if (devinfo->gen >= 7) {
3640 /* Send from the GRF */
3641 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3642 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3643 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3644 load->dst = payload;
3645
3646 inst->src[0] = payload;
3647 inst->resize_sources(1);
3648 inst->base_mrf = -1;
3649 } else {
3650 /* Send from the MRF */
3651 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3652 sources, length, payload_header_size);
3653
3654 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3655 * will do this for us if we just give it a COMPR4 destination.
3656 */
3657 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3658 load->dst.nr |= BRW_MRF_COMPR4;
3659
3660 inst->resize_sources(0);
3661 inst->base_mrf = 1;
3662 }
3663
3664 inst->opcode = FS_OPCODE_FB_WRITE;
3665 inst->mlen = load->regs_written;
3666 inst->header_size = header_size;
3667 }
3668
3669 static void
3670 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3671 const fs_reg &coordinate,
3672 const fs_reg &shadow_c,
3673 const fs_reg &lod, const fs_reg &lod2,
3674 const fs_reg &surface,
3675 const fs_reg &sampler,
3676 unsigned coord_components,
3677 unsigned grad_components)
3678 {
3679 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3680 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3681 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3682 fs_reg msg_end = msg_begin;
3683
3684 /* g0 header. */
3685 msg_end = offset(msg_end, bld.group(8, 0), 1);
3686
3687 for (unsigned i = 0; i < coord_components; i++)
3688 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3689 offset(coordinate, bld, i));
3690
3691 msg_end = offset(msg_end, bld, coord_components);
3692
3693 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3694 * require all three components to be present and zero if they are unused.
3695 */
3696 if (coord_components > 0 &&
3697 (has_lod || shadow_c.file != BAD_FILE ||
3698 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3699 for (unsigned i = coord_components; i < 3; i++)
3700 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3701
3702 msg_end = offset(msg_end, bld, 3 - coord_components);
3703 }
3704
3705 if (op == SHADER_OPCODE_TXD) {
3706 /* TXD unsupported in SIMD16 mode. */
3707 assert(bld.dispatch_width() == 8);
3708
3709 /* the slots for u and v are always present, but r is optional */
3710 if (coord_components < 2)
3711 msg_end = offset(msg_end, bld, 2 - coord_components);
3712
3713 /* P = u, v, r
3714 * dPdx = dudx, dvdx, drdx
3715 * dPdy = dudy, dvdy, drdy
3716 *
3717 * 1-arg: Does not exist.
3718 *
3719 * 2-arg: dudx dvdx dudy dvdy
3720 * dPdx.x dPdx.y dPdy.x dPdy.y
3721 * m4 m5 m6 m7
3722 *
3723 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3724 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3725 * m5 m6 m7 m8 m9 m10
3726 */
3727 for (unsigned i = 0; i < grad_components; i++)
3728 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3729
3730 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3731
3732 for (unsigned i = 0; i < grad_components; i++)
3733 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3734
3735 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3736 }
3737
3738 if (has_lod) {
3739 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3740 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3741 */
3742 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3743 bld.dispatch_width() == 16);
3744
3745 const brw_reg_type type =
3746 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3747 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3748 bld.MOV(retype(msg_end, type), lod);
3749 msg_end = offset(msg_end, bld, 1);
3750 }
3751
3752 if (shadow_c.file != BAD_FILE) {
3753 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3754 /* There's no plain shadow compare message, so we use shadow
3755 * compare with a bias of 0.0.
3756 */
3757 bld.MOV(msg_end, brw_imm_f(0.0f));
3758 msg_end = offset(msg_end, bld, 1);
3759 }
3760
3761 bld.MOV(msg_end, shadow_c);
3762 msg_end = offset(msg_end, bld, 1);
3763 }
3764
3765 inst->opcode = op;
3766 inst->src[0] = reg_undef;
3767 inst->src[1] = surface;
3768 inst->src[2] = sampler;
3769 inst->resize_sources(3);
3770 inst->base_mrf = msg_begin.nr;
3771 inst->mlen = msg_end.nr - msg_begin.nr;
3772 inst->header_size = 1;
3773 }
3774
3775 static void
3776 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3777 fs_reg coordinate,
3778 const fs_reg &shadow_c,
3779 fs_reg lod, fs_reg lod2,
3780 const fs_reg &sample_index,
3781 const fs_reg &surface,
3782 const fs_reg &sampler,
3783 const fs_reg &offset_value,
3784 unsigned coord_components,
3785 unsigned grad_components)
3786 {
3787 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3788 fs_reg msg_coords = message;
3789 unsigned header_size = 0;
3790
3791 if (offset_value.file != BAD_FILE) {
3792 /* The offsets set up by the visitor are in the m1 header, so we can't
3793 * go headerless.
3794 */
3795 header_size = 1;
3796 message.nr--;
3797 }
3798
3799 for (unsigned i = 0; i < coord_components; i++) {
3800 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3801 coordinate = offset(coordinate, bld, 1);
3802 }
3803 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3804 fs_reg msg_lod = offset(msg_coords, bld, 4);
3805
3806 if (shadow_c.file != BAD_FILE) {
3807 fs_reg msg_shadow = msg_lod;
3808 bld.MOV(msg_shadow, shadow_c);
3809 msg_lod = offset(msg_shadow, bld, 1);
3810 msg_end = msg_lod;
3811 }
3812
3813 switch (op) {
3814 case SHADER_OPCODE_TXL:
3815 case FS_OPCODE_TXB:
3816 bld.MOV(msg_lod, lod);
3817 msg_end = offset(msg_lod, bld, 1);
3818 break;
3819 case SHADER_OPCODE_TXD:
3820 /**
3821 * P = u, v, r
3822 * dPdx = dudx, dvdx, drdx
3823 * dPdy = dudy, dvdy, drdy
3824 *
3825 * Load up these values:
3826 * - dudx dudy dvdx dvdy drdx drdy
3827 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3828 */
3829 msg_end = msg_lod;
3830 for (unsigned i = 0; i < grad_components; i++) {
3831 bld.MOV(msg_end, lod);
3832 lod = offset(lod, bld, 1);
3833 msg_end = offset(msg_end, bld, 1);
3834
3835 bld.MOV(msg_end, lod2);
3836 lod2 = offset(lod2, bld, 1);
3837 msg_end = offset(msg_end, bld, 1);
3838 }
3839 break;
3840 case SHADER_OPCODE_TXS:
3841 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3842 bld.MOV(msg_lod, lod);
3843 msg_end = offset(msg_lod, bld, 1);
3844 break;
3845 case SHADER_OPCODE_TXF:
3846 msg_lod = offset(msg_coords, bld, 3);
3847 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3848 msg_end = offset(msg_lod, bld, 1);
3849 break;
3850 case SHADER_OPCODE_TXF_CMS:
3851 msg_lod = offset(msg_coords, bld, 3);
3852 /* lod */
3853 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3854 /* sample index */
3855 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3856 msg_end = offset(msg_lod, bld, 2);
3857 break;
3858 default:
3859 break;
3860 }
3861
3862 inst->opcode = op;
3863 inst->src[0] = reg_undef;
3864 inst->src[1] = surface;
3865 inst->src[2] = sampler;
3866 inst->resize_sources(3);
3867 inst->base_mrf = message.nr;
3868 inst->mlen = msg_end.nr - message.nr;
3869 inst->header_size = header_size;
3870
3871 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3872 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3873 }
3874
3875 static bool
3876 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3877 {
3878 if (devinfo->gen < 8 && !devinfo->is_haswell)
3879 return false;
3880
3881 return sampler.file != IMM || sampler.ud >= 16;
3882 }
3883
3884 static void
3885 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3886 fs_reg coordinate,
3887 const fs_reg &shadow_c,
3888 fs_reg lod, fs_reg lod2,
3889 const fs_reg &sample_index,
3890 const fs_reg &mcs,
3891 const fs_reg &surface,
3892 const fs_reg &sampler,
3893 fs_reg offset_value,
3894 unsigned coord_components,
3895 unsigned grad_components)
3896 {
3897 const brw_device_info *devinfo = bld.shader->devinfo;
3898 int reg_width = bld.dispatch_width() / 8;
3899 unsigned header_size = 0, length = 0;
3900 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3901 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3902 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3903
3904 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3905 offset_value.file != BAD_FILE ||
3906 is_high_sampler(devinfo, sampler)) {
3907 /* For general texture offsets (no txf workaround), we need a header to
3908 * put them in. Note that we're only reserving space for it in the
3909 * message payload as it will be initialized implicitly by the
3910 * generator.
3911 *
3912 * TG4 needs to place its channel select in the header, for interaction
3913 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3914 * larger sampler numbers we need to offset the Sampler State Pointer in
3915 * the header.
3916 */
3917 header_size = 1;
3918 sources[0] = fs_reg();
3919 length++;
3920 }
3921
3922 if (shadow_c.file != BAD_FILE) {
3923 bld.MOV(sources[length], shadow_c);
3924 length++;
3925 }
3926
3927 bool coordinate_done = false;
3928
3929 /* The sampler can only meaningfully compute LOD for fragment shader
3930 * messages. For all other stages, we change the opcode to TXL and
3931 * hardcode the LOD to 0.
3932 */
3933 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3934 op == SHADER_OPCODE_TEX) {
3935 op = SHADER_OPCODE_TXL;
3936 lod = brw_imm_f(0.0f);
3937 }
3938
3939 /* Set up the LOD info */
3940 switch (op) {
3941 case FS_OPCODE_TXB:
3942 case SHADER_OPCODE_TXL:
3943 bld.MOV(sources[length], lod);
3944 length++;
3945 break;
3946 case SHADER_OPCODE_TXD:
3947 /* TXD should have been lowered in SIMD16 mode. */
3948 assert(bld.dispatch_width() == 8);
3949
3950 /* Load dPdx and the coordinate together:
3951 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3952 */
3953 for (unsigned i = 0; i < coord_components; i++) {
3954 bld.MOV(sources[length], coordinate);
3955 coordinate = offset(coordinate, bld, 1);
3956 length++;
3957
3958 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3959 * only derivatives for (u, v, r).
3960 */
3961 if (i < grad_components) {
3962 bld.MOV(sources[length], lod);
3963 lod = offset(lod, bld, 1);
3964 length++;
3965
3966 bld.MOV(sources[length], lod2);
3967 lod2 = offset(lod2, bld, 1);
3968 length++;
3969 }
3970 }
3971
3972 coordinate_done = true;
3973 break;
3974 case SHADER_OPCODE_TXS:
3975 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3976 length++;
3977 break;
3978 case SHADER_OPCODE_TXF:
3979 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3980 * On Gen9 they are u, v, lod, r
3981 */
3982 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3983 coordinate = offset(coordinate, bld, 1);
3984 length++;
3985
3986 if (devinfo->gen >= 9) {
3987 if (coord_components >= 2) {
3988 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3989 coordinate = offset(coordinate, bld, 1);
3990 }
3991 length++;
3992 }
3993
3994 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3995 length++;
3996
3997 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3998 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3999 coordinate = offset(coordinate, bld, 1);
4000 length++;
4001 }
4002
4003 coordinate_done = true;
4004 break;
4005 case SHADER_OPCODE_TXF_CMS:
4006 case SHADER_OPCODE_TXF_CMS_W:
4007 case SHADER_OPCODE_TXF_UMS:
4008 case SHADER_OPCODE_TXF_MCS:
4009 if (op == SHADER_OPCODE_TXF_UMS ||
4010 op == SHADER_OPCODE_TXF_CMS ||
4011 op == SHADER_OPCODE_TXF_CMS_W) {
4012 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4013 length++;
4014 }
4015
4016 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4017 /* Data from the multisample control surface. */
4018 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4019 length++;
4020
4021 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4022 * the MCS data.
4023 */
4024 if (op == SHADER_OPCODE_TXF_CMS_W) {
4025 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4026 mcs.file == IMM ?
4027 mcs :
4028 offset(mcs, bld, 1));
4029 length++;
4030 }
4031 }
4032
4033 /* There is no offsetting for this message; just copy in the integer
4034 * texture coordinates.
4035 */
4036 for (unsigned i = 0; i < coord_components; i++) {
4037 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4038 coordinate = offset(coordinate, bld, 1);
4039 length++;
4040 }
4041
4042 coordinate_done = true;
4043 break;
4044 case SHADER_OPCODE_TG4_OFFSET:
4045 /* gather4_po_c should have been lowered in SIMD16 mode. */
4046 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4047
4048 /* More crazy intermixing */
4049 for (unsigned i = 0; i < 2; i++) { /* u, v */
4050 bld.MOV(sources[length], coordinate);
4051 coordinate = offset(coordinate, bld, 1);
4052 length++;
4053 }
4054
4055 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4056 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4057 offset_value = offset(offset_value, bld, 1);
4058 length++;
4059 }
4060
4061 if (coord_components == 3) { /* r if present */
4062 bld.MOV(sources[length], coordinate);
4063 coordinate = offset(coordinate, bld, 1);
4064 length++;
4065 }
4066
4067 coordinate_done = true;
4068 break;
4069 default:
4070 break;
4071 }
4072
4073 /* Set up the coordinate (except for cases where it was done above) */
4074 if (!coordinate_done) {
4075 for (unsigned i = 0; i < coord_components; i++) {
4076 bld.MOV(sources[length], coordinate);
4077 coordinate = offset(coordinate, bld, 1);
4078 length++;
4079 }
4080 }
4081
4082 int mlen;
4083 if (reg_width == 2)
4084 mlen = length * reg_width - header_size;
4085 else
4086 mlen = length * reg_width;
4087
4088 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4089 BRW_REGISTER_TYPE_F);
4090 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4091
4092 /* Generate the SEND. */
4093 inst->opcode = op;
4094 inst->src[0] = src_payload;
4095 inst->src[1] = surface;
4096 inst->src[2] = sampler;
4097 inst->resize_sources(3);
4098 inst->base_mrf = -1;
4099 inst->mlen = mlen;
4100 inst->header_size = header_size;
4101
4102 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4103 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4104 }
4105
4106 static void
4107 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4108 {
4109 const brw_device_info *devinfo = bld.shader->devinfo;
4110 const fs_reg &coordinate = inst->src[0];
4111 const fs_reg &shadow_c = inst->src[1];
4112 const fs_reg &lod = inst->src[2];
4113 const fs_reg &lod2 = inst->src[3];
4114 const fs_reg &sample_index = inst->src[4];
4115 const fs_reg &mcs = inst->src[5];
4116 const fs_reg &surface = inst->src[6];
4117 const fs_reg &sampler = inst->src[7];
4118 const fs_reg &offset_value = inst->src[8];
4119 assert(inst->src[9].file == IMM && inst->src[10].file == IMM);
4120 const unsigned coord_components = inst->src[9].ud;
4121 const unsigned grad_components = inst->src[10].ud;
4122
4123 if (devinfo->gen >= 7) {
4124 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4125 shadow_c, lod, lod2, sample_index,
4126 mcs, surface, sampler, offset_value,
4127 coord_components, grad_components);
4128 } else if (devinfo->gen >= 5) {
4129 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4130 shadow_c, lod, lod2, sample_index,
4131 surface, sampler, offset_value,
4132 coord_components, grad_components);
4133 } else {
4134 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4135 shadow_c, lod, lod2,
4136 surface, sampler,
4137 coord_components, grad_components);
4138 }
4139 }
4140
4141 /**
4142 * Initialize the header present in some typed and untyped surface
4143 * messages.
4144 */
4145 static fs_reg
4146 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4147 {
4148 fs_builder ubld = bld.exec_all().group(8, 0);
4149 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4150 ubld.MOV(dst, brw_imm_d(0));
4151 ubld.MOV(component(dst, 7), sample_mask);
4152 return dst;
4153 }
4154
4155 static void
4156 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4157 const fs_reg &sample_mask)
4158 {
4159 /* Get the logical send arguments. */
4160 const fs_reg &addr = inst->src[0];
4161 const fs_reg &src = inst->src[1];
4162 const fs_reg &surface = inst->src[2];
4163 const UNUSED fs_reg &dims = inst->src[3];
4164 const fs_reg &arg = inst->src[4];
4165
4166 /* Calculate the total number of components of the payload. */
4167 const unsigned addr_sz = inst->components_read(0);
4168 const unsigned src_sz = inst->components_read(1);
4169 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4170 const unsigned sz = header_sz + addr_sz + src_sz;
4171
4172 /* Allocate space for the payload. */
4173 fs_reg *const components = new fs_reg[sz];
4174 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4175 unsigned n = 0;
4176
4177 /* Construct the payload. */
4178 if (header_sz)
4179 components[n++] = emit_surface_header(bld, sample_mask);
4180
4181 for (unsigned i = 0; i < addr_sz; i++)
4182 components[n++] = offset(addr, bld, i);
4183
4184 for (unsigned i = 0; i < src_sz; i++)
4185 components[n++] = offset(src, bld, i);
4186
4187 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4188
4189 /* Update the original instruction. */
4190 inst->opcode = op;
4191 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4192 inst->header_size = header_sz;
4193
4194 inst->src[0] = payload;
4195 inst->src[1] = surface;
4196 inst->src[2] = arg;
4197 inst->resize_sources(3);
4198
4199 delete[] components;
4200 }
4201
4202 bool
4203 fs_visitor::lower_logical_sends()
4204 {
4205 bool progress = false;
4206
4207 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4208 const fs_builder ibld(this, block, inst);
4209
4210 switch (inst->opcode) {
4211 case FS_OPCODE_FB_WRITE_LOGICAL:
4212 assert(stage == MESA_SHADER_FRAGMENT);
4213 lower_fb_write_logical_send(ibld, inst,
4214 (const brw_wm_prog_data *)prog_data,
4215 (const brw_wm_prog_key *)key,
4216 payload);
4217 break;
4218
4219 case SHADER_OPCODE_TEX_LOGICAL:
4220 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4221 break;
4222
4223 case SHADER_OPCODE_TXD_LOGICAL:
4224 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4225 break;
4226
4227 case SHADER_OPCODE_TXF_LOGICAL:
4228 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4229 break;
4230
4231 case SHADER_OPCODE_TXL_LOGICAL:
4232 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4233 break;
4234
4235 case SHADER_OPCODE_TXS_LOGICAL:
4236 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4237 break;
4238
4239 case FS_OPCODE_TXB_LOGICAL:
4240 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4241 break;
4242
4243 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4244 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4245 break;
4246
4247 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4248 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4249 break;
4250
4251 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4252 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4253 break;
4254
4255 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4256 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4257 break;
4258
4259 case SHADER_OPCODE_LOD_LOGICAL:
4260 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4261 break;
4262
4263 case SHADER_OPCODE_TG4_LOGICAL:
4264 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4265 break;
4266
4267 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4268 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4269 break;
4270
4271 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4272 lower_surface_logical_send(ibld, inst,
4273 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4274 fs_reg());
4275 break;
4276
4277 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4278 lower_surface_logical_send(ibld, inst,
4279 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4280 ibld.sample_mask_reg());
4281 break;
4282
4283 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4284 lower_surface_logical_send(ibld, inst,
4285 SHADER_OPCODE_UNTYPED_ATOMIC,
4286 ibld.sample_mask_reg());
4287 break;
4288
4289 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4290 lower_surface_logical_send(ibld, inst,
4291 SHADER_OPCODE_TYPED_SURFACE_READ,
4292 brw_imm_d(0xffff));
4293 break;
4294
4295 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4296 lower_surface_logical_send(ibld, inst,
4297 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4298 ibld.sample_mask_reg());
4299 break;
4300
4301 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4302 lower_surface_logical_send(ibld, inst,
4303 SHADER_OPCODE_TYPED_ATOMIC,
4304 ibld.sample_mask_reg());
4305 break;
4306
4307 default:
4308 continue;
4309 }
4310
4311 progress = true;
4312 }
4313
4314 if (progress)
4315 invalidate_live_intervals();
4316
4317 return progress;
4318 }
4319
4320 /**
4321 * Get the closest native SIMD width supported by the hardware for instruction
4322 * \p inst. The instruction will be left untouched by
4323 * fs_visitor::lower_simd_width() if the returned value is equal to the
4324 * original execution size.
4325 */
4326 static unsigned
4327 get_lowered_simd_width(const struct brw_device_info *devinfo,
4328 const fs_inst *inst)
4329 {
4330 switch (inst->opcode) {
4331 case BRW_OPCODE_MOV:
4332 case BRW_OPCODE_SEL:
4333 case BRW_OPCODE_NOT:
4334 case BRW_OPCODE_AND:
4335 case BRW_OPCODE_OR:
4336 case BRW_OPCODE_XOR:
4337 case BRW_OPCODE_SHR:
4338 case BRW_OPCODE_SHL:
4339 case BRW_OPCODE_ASR:
4340 case BRW_OPCODE_CMP:
4341 case BRW_OPCODE_CMPN:
4342 case BRW_OPCODE_CSEL:
4343 case BRW_OPCODE_F32TO16:
4344 case BRW_OPCODE_F16TO32:
4345 case BRW_OPCODE_BFREV:
4346 case BRW_OPCODE_BFE:
4347 case BRW_OPCODE_BFI1:
4348 case BRW_OPCODE_BFI2:
4349 case BRW_OPCODE_ADD:
4350 case BRW_OPCODE_MUL:
4351 case BRW_OPCODE_AVG:
4352 case BRW_OPCODE_FRC:
4353 case BRW_OPCODE_RNDU:
4354 case BRW_OPCODE_RNDD:
4355 case BRW_OPCODE_RNDE:
4356 case BRW_OPCODE_RNDZ:
4357 case BRW_OPCODE_LZD:
4358 case BRW_OPCODE_FBH:
4359 case BRW_OPCODE_FBL:
4360 case BRW_OPCODE_CBIT:
4361 case BRW_OPCODE_SAD2:
4362 case BRW_OPCODE_MAD:
4363 case BRW_OPCODE_LRP:
4364 case SHADER_OPCODE_RCP:
4365 case SHADER_OPCODE_RSQ:
4366 case SHADER_OPCODE_SQRT:
4367 case SHADER_OPCODE_EXP2:
4368 case SHADER_OPCODE_LOG2:
4369 case SHADER_OPCODE_POW:
4370 case SHADER_OPCODE_INT_QUOTIENT:
4371 case SHADER_OPCODE_INT_REMAINDER:
4372 case SHADER_OPCODE_SIN:
4373 case SHADER_OPCODE_COS: {
4374 /* According to the PRMs:
4375 * "A. In Direct Addressing mode, a source cannot span more than 2
4376 * adjacent GRF registers.
4377 * B. A destination cannot span more than 2 adjacent GRF registers."
4378 *
4379 * Look for the source or destination with the largest register region
4380 * which is the one that is going to limit the overal execution size of
4381 * the instruction due to this rule.
4382 */
4383 unsigned reg_count = inst->regs_written;
4384
4385 for (unsigned i = 0; i < inst->sources; i++)
4386 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4387
4388 /* Calculate the maximum execution size of the instruction based on the
4389 * factor by which it goes over the hardware limit of 2 GRFs.
4390 */
4391 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4392 }
4393 case SHADER_OPCODE_MULH:
4394 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4395 * is 8-wide on Gen7+.
4396 */
4397 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4398
4399 case FS_OPCODE_FB_WRITE_LOGICAL:
4400 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4401 * here.
4402 */
4403 assert(devinfo->gen != 6 ||
4404 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4405 inst->exec_size == 8);
4406 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4407 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4408 8 : inst->exec_size);
4409
4410 case SHADER_OPCODE_TXD_LOGICAL:
4411 /* TXD is unsupported in SIMD16 mode. */
4412 return 8;
4413
4414 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4415 /* gather4_po_c is unsupported in SIMD16 mode. */
4416 const fs_reg &shadow_c = inst->src[1];
4417 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4418 }
4419 case SHADER_OPCODE_TXL_LOGICAL:
4420 case FS_OPCODE_TXB_LOGICAL: {
4421 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4422 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4423 * mode because the message exceeds the maximum length of 11.
4424 */
4425 const fs_reg &shadow_c = inst->src[1];
4426 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4427 return 16;
4428 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4429 return 8;
4430 else
4431 return inst->exec_size;
4432 }
4433 case SHADER_OPCODE_TXF_LOGICAL:
4434 case SHADER_OPCODE_TXS_LOGICAL:
4435 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4436 * messages. Use SIMD16 instead.
4437 */
4438 if (devinfo->gen == 4)
4439 return 16;
4440 else
4441 return inst->exec_size;
4442
4443 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4444 /* This opcode can take up to 6 arguments which means that in some
4445 * circumstances it can end up with a message that is too long in SIMD16
4446 * mode.
4447 */
4448 const unsigned coord_components = inst->src[8].ud;
4449 /* First three arguments are the sample index and the two arguments for
4450 * the MCS data.
4451 */
4452 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4453 return 8;
4454 else
4455 return inst->exec_size;
4456 }
4457
4458 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4459 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4460 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4461 return 8;
4462
4463 default:
4464 return inst->exec_size;
4465 }
4466 }
4467
4468 /**
4469 * The \p rows array of registers represents a \p num_rows by \p num_columns
4470 * matrix in row-major order, write it in column-major order into the register
4471 * passed as destination. \p stride gives the separation between matrix
4472 * elements in the input in fs_builder::dispatch_width() units.
4473 */
4474 static void
4475 emit_transpose(const fs_builder &bld,
4476 const fs_reg &dst, const fs_reg *rows,
4477 unsigned num_rows, unsigned num_columns, unsigned stride)
4478 {
4479 fs_reg *const components = new fs_reg[num_rows * num_columns];
4480
4481 for (unsigned i = 0; i < num_columns; ++i) {
4482 for (unsigned j = 0; j < num_rows; ++j)
4483 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4484 }
4485
4486 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4487
4488 delete[] components;
4489 }
4490
4491 bool
4492 fs_visitor::lower_simd_width()
4493 {
4494 bool progress = false;
4495
4496 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4497 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4498
4499 if (lower_width != inst->exec_size) {
4500 /* Builder matching the original instruction. We may also need to
4501 * emit an instruction of width larger than the original, set the
4502 * execution size of the builder to the highest of both for now so
4503 * we're sure that both cases can be handled.
4504 */
4505 const fs_builder ibld = bld.at(block, inst)
4506 .exec_all(inst->force_writemask_all)
4507 .group(MAX2(inst->exec_size, lower_width),
4508 inst->force_sechalf);
4509
4510 /* Split the copies in chunks of the execution width of either the
4511 * original or the lowered instruction, whichever is lower.
4512 */
4513 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4514 const unsigned n = inst->exec_size / copy_width;
4515 const unsigned dst_size = inst->regs_written * REG_SIZE /
4516 inst->dst.component_size(inst->exec_size);
4517 fs_reg dsts[4];
4518
4519 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4520 !inst->writes_accumulator && !inst->mlen);
4521
4522 for (unsigned i = 0; i < n; i++) {
4523 /* Emit a copy of the original instruction with the lowered width.
4524 * If the EOT flag was set throw it away except for the last
4525 * instruction to avoid killing the thread prematurely.
4526 */
4527 fs_inst split_inst = *inst;
4528 split_inst.exec_size = lower_width;
4529 split_inst.eot = inst->eot && i == n - 1;
4530
4531 /* Select the correct channel enables for the i-th group, then
4532 * transform the sources and destination and emit the lowered
4533 * instruction.
4534 */
4535 const fs_builder lbld = ibld.group(lower_width, i);
4536
4537 for (unsigned j = 0; j < inst->sources; j++) {
4538 if (inst->src[j].file != BAD_FILE &&
4539 !is_uniform(inst->src[j])) {
4540 /* Get the i-th copy_width-wide chunk of the source. */
4541 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4542 const unsigned src_size = inst->components_read(j);
4543
4544 /* Use a trivial transposition to copy one every n
4545 * copy_width-wide components of the register into a
4546 * temporary passed as source to the lowered instruction.
4547 */
4548 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4549 emit_transpose(lbld.group(copy_width, 0),
4550 split_inst.src[j], &src, 1, src_size, n);
4551 }
4552 }
4553
4554 if (inst->regs_written) {
4555 /* Allocate enough space to hold the result of the lowered
4556 * instruction and fix up the number of registers written.
4557 */
4558 split_inst.dst = dsts[i] =
4559 lbld.vgrf(inst->dst.type, dst_size);
4560 split_inst.regs_written =
4561 DIV_ROUND_UP(inst->regs_written * lower_width,
4562 inst->exec_size);
4563 }
4564
4565 lbld.emit(split_inst);
4566 }
4567
4568 if (inst->regs_written) {
4569 /* Distance between useful channels in the temporaries, skipping
4570 * garbage if the lowered instruction is wider than the original.
4571 */
4572 const unsigned m = lower_width / copy_width;
4573
4574 /* Interleave the components of the result from the lowered
4575 * instructions. We need to set exec_all() when copying more than
4576 * one half per component, because LOAD_PAYLOAD (in terms of which
4577 * emit_transpose is implemented) can only use the same channel
4578 * enable signals for all of its non-header sources.
4579 */
4580 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4581 .group(copy_width, 0),
4582 inst->dst, dsts, n, dst_size, m);
4583 }
4584
4585 inst->remove(block);
4586 progress = true;
4587 }
4588 }
4589
4590 if (progress)
4591 invalidate_live_intervals();
4592
4593 return progress;
4594 }
4595
4596 void
4597 fs_visitor::dump_instructions()
4598 {
4599 dump_instructions(NULL);
4600 }
4601
4602 void
4603 fs_visitor::dump_instructions(const char *name)
4604 {
4605 FILE *file = stderr;
4606 if (name && geteuid() != 0) {
4607 file = fopen(name, "w");
4608 if (!file)
4609 file = stderr;
4610 }
4611
4612 if (cfg) {
4613 calculate_register_pressure();
4614 int ip = 0, max_pressure = 0;
4615 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4616 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4617 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4618 dump_instruction(inst, file);
4619 ip++;
4620 }
4621 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4622 } else {
4623 int ip = 0;
4624 foreach_in_list(backend_instruction, inst, &instructions) {
4625 fprintf(file, "%4d: ", ip++);
4626 dump_instruction(inst, file);
4627 }
4628 }
4629
4630 if (file != stderr) {
4631 fclose(file);
4632 }
4633 }
4634
4635 void
4636 fs_visitor::dump_instruction(backend_instruction *be_inst)
4637 {
4638 dump_instruction(be_inst, stderr);
4639 }
4640
4641 void
4642 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4643 {
4644 fs_inst *inst = (fs_inst *)be_inst;
4645
4646 if (inst->predicate) {
4647 fprintf(file, "(%cf0.%d) ",
4648 inst->predicate_inverse ? '-' : '+',
4649 inst->flag_subreg);
4650 }
4651
4652 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4653 if (inst->saturate)
4654 fprintf(file, ".sat");
4655 if (inst->conditional_mod) {
4656 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4657 if (!inst->predicate &&
4658 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4659 inst->opcode != BRW_OPCODE_IF &&
4660 inst->opcode != BRW_OPCODE_WHILE))) {
4661 fprintf(file, ".f0.%d", inst->flag_subreg);
4662 }
4663 }
4664 fprintf(file, "(%d) ", inst->exec_size);
4665
4666 if (inst->mlen) {
4667 fprintf(file, "(mlen: %d) ", inst->mlen);
4668 }
4669
4670 switch (inst->dst.file) {
4671 case VGRF:
4672 fprintf(file, "vgrf%d", inst->dst.nr);
4673 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4674 inst->dst.subreg_offset)
4675 fprintf(file, "+%d.%d",
4676 inst->dst.reg_offset, inst->dst.subreg_offset);
4677 break;
4678 case FIXED_GRF:
4679 fprintf(file, "g%d", inst->dst.nr);
4680 break;
4681 case MRF:
4682 fprintf(file, "m%d", inst->dst.nr);
4683 break;
4684 case BAD_FILE:
4685 fprintf(file, "(null)");
4686 break;
4687 case UNIFORM:
4688 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4689 break;
4690 case ATTR:
4691 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4692 break;
4693 case ARF:
4694 switch (inst->dst.nr) {
4695 case BRW_ARF_NULL:
4696 fprintf(file, "null");
4697 break;
4698 case BRW_ARF_ADDRESS:
4699 fprintf(file, "a0.%d", inst->dst.subnr);
4700 break;
4701 case BRW_ARF_ACCUMULATOR:
4702 fprintf(file, "acc%d", inst->dst.subnr);
4703 break;
4704 case BRW_ARF_FLAG:
4705 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4706 break;
4707 default:
4708 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4709 break;
4710 }
4711 if (inst->dst.subnr)
4712 fprintf(file, "+%d", inst->dst.subnr);
4713 break;
4714 case IMM:
4715 unreachable("not reached");
4716 }
4717 if (inst->dst.stride != 1)
4718 fprintf(file, "<%u>", inst->dst.stride);
4719 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4720
4721 for (int i = 0; i < inst->sources; i++) {
4722 if (inst->src[i].negate)
4723 fprintf(file, "-");
4724 if (inst->src[i].abs)
4725 fprintf(file, "|");
4726 switch (inst->src[i].file) {
4727 case VGRF:
4728 fprintf(file, "vgrf%d", inst->src[i].nr);
4729 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4730 inst->src[i].subreg_offset)
4731 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4732 inst->src[i].subreg_offset);
4733 break;
4734 case FIXED_GRF:
4735 fprintf(file, "g%d", inst->src[i].nr);
4736 break;
4737 case MRF:
4738 fprintf(file, "***m%d***", inst->src[i].nr);
4739 break;
4740 case ATTR:
4741 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4742 break;
4743 case UNIFORM:
4744 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4745 if (inst->src[i].reladdr) {
4746 fprintf(file, "+reladdr");
4747 } else if (inst->src[i].subreg_offset) {
4748 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4749 inst->src[i].subreg_offset);
4750 }
4751 break;
4752 case BAD_FILE:
4753 fprintf(file, "(null)");
4754 break;
4755 case IMM:
4756 switch (inst->src[i].type) {
4757 case BRW_REGISTER_TYPE_F:
4758 fprintf(file, "%ff", inst->src[i].f);
4759 break;
4760 case BRW_REGISTER_TYPE_W:
4761 case BRW_REGISTER_TYPE_D:
4762 fprintf(file, "%dd", inst->src[i].d);
4763 break;
4764 case BRW_REGISTER_TYPE_UW:
4765 case BRW_REGISTER_TYPE_UD:
4766 fprintf(file, "%uu", inst->src[i].ud);
4767 break;
4768 case BRW_REGISTER_TYPE_VF:
4769 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4770 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4771 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4772 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4773 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4774 break;
4775 default:
4776 fprintf(file, "???");
4777 break;
4778 }
4779 break;
4780 case ARF:
4781 switch (inst->src[i].nr) {
4782 case BRW_ARF_NULL:
4783 fprintf(file, "null");
4784 break;
4785 case BRW_ARF_ADDRESS:
4786 fprintf(file, "a0.%d", inst->src[i].subnr);
4787 break;
4788 case BRW_ARF_ACCUMULATOR:
4789 fprintf(file, "acc%d", inst->src[i].subnr);
4790 break;
4791 case BRW_ARF_FLAG:
4792 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4793 break;
4794 default:
4795 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4796 break;
4797 }
4798 if (inst->src[i].subnr)
4799 fprintf(file, "+%d", inst->src[i].subnr);
4800 break;
4801 }
4802 if (inst->src[i].abs)
4803 fprintf(file, "|");
4804
4805 if (inst->src[i].file != IMM) {
4806 unsigned stride;
4807 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4808 unsigned hstride = inst->src[i].hstride;
4809 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4810 } else {
4811 stride = inst->src[i].stride;
4812 }
4813 if (stride != 1)
4814 fprintf(file, "<%u>", stride);
4815
4816 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4817 }
4818
4819 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4820 fprintf(file, ", ");
4821 }
4822
4823 fprintf(file, " ");
4824
4825 if (inst->force_writemask_all)
4826 fprintf(file, "NoMask ");
4827
4828 if (dispatch_width == 16 && inst->exec_size == 8) {
4829 if (inst->force_sechalf)
4830 fprintf(file, "2ndhalf ");
4831 else
4832 fprintf(file, "1sthalf ");
4833 }
4834
4835 fprintf(file, "\n");
4836 }
4837
4838 /**
4839 * Possibly returns an instruction that set up @param reg.
4840 *
4841 * Sometimes we want to take the result of some expression/variable
4842 * dereference tree and rewrite the instruction generating the result
4843 * of the tree. When processing the tree, we know that the
4844 * instructions generated are all writing temporaries that are dead
4845 * outside of this tree. So, if we have some instructions that write
4846 * a temporary, we're free to point that temp write somewhere else.
4847 *
4848 * Note that this doesn't guarantee that the instruction generated
4849 * only reg -- it might be the size=4 destination of a texture instruction.
4850 */
4851 fs_inst *
4852 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4853 fs_inst *end,
4854 const fs_reg &reg)
4855 {
4856 if (end == start ||
4857 end->is_partial_write() ||
4858 reg.reladdr ||
4859 !reg.equals(end->dst)) {
4860 return NULL;
4861 } else {
4862 return end;
4863 }
4864 }
4865
4866 void
4867 fs_visitor::setup_payload_gen6()
4868 {
4869 bool uses_depth =
4870 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4871 unsigned barycentric_interp_modes =
4872 (stage == MESA_SHADER_FRAGMENT) ?
4873 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4874
4875 assert(devinfo->gen >= 6);
4876
4877 /* R0-1: masks, pixel X/Y coordinates. */
4878 payload.num_regs = 2;
4879 /* R2: only for 32-pixel dispatch.*/
4880
4881 /* R3-26: barycentric interpolation coordinates. These appear in the
4882 * same order that they appear in the brw_wm_barycentric_interp_mode
4883 * enum. Each set of coordinates occupies 2 registers if dispatch width
4884 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4885 * appear if they were enabled using the "Barycentric Interpolation
4886 * Mode" bits in WM_STATE.
4887 */
4888 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4889 if (barycentric_interp_modes & (1 << i)) {
4890 payload.barycentric_coord_reg[i] = payload.num_regs;
4891 payload.num_regs += 2;
4892 if (dispatch_width == 16) {
4893 payload.num_regs += 2;
4894 }
4895 }
4896 }
4897
4898 /* R27: interpolated depth if uses source depth */
4899 if (uses_depth) {
4900 payload.source_depth_reg = payload.num_regs;
4901 payload.num_regs++;
4902 if (dispatch_width == 16) {
4903 /* R28: interpolated depth if not SIMD8. */
4904 payload.num_regs++;
4905 }
4906 }
4907 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4908 if (uses_depth) {
4909 payload.source_w_reg = payload.num_regs;
4910 payload.num_regs++;
4911 if (dispatch_width == 16) {
4912 /* R30: interpolated W if not SIMD8. */
4913 payload.num_regs++;
4914 }
4915 }
4916
4917 if (stage == MESA_SHADER_FRAGMENT) {
4918 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4919 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4920 prog_data->uses_pos_offset = key->compute_pos_offset;
4921 /* R31: MSAA position offsets. */
4922 if (prog_data->uses_pos_offset) {
4923 payload.sample_pos_reg = payload.num_regs;
4924 payload.num_regs++;
4925 }
4926 }
4927
4928 /* R32: MSAA input coverage mask */
4929 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4930 assert(devinfo->gen >= 7);
4931 payload.sample_mask_in_reg = payload.num_regs;
4932 payload.num_regs++;
4933 if (dispatch_width == 16) {
4934 /* R33: input coverage mask if not SIMD8. */
4935 payload.num_regs++;
4936 }
4937 }
4938
4939 /* R34-: bary for 32-pixel. */
4940 /* R58-59: interp W for 32-pixel. */
4941
4942 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4943 source_depth_to_render_target = true;
4944 }
4945 }
4946
4947 void
4948 fs_visitor::setup_vs_payload()
4949 {
4950 /* R0: thread header, R1: urb handles */
4951 payload.num_regs = 2;
4952 }
4953
4954 /**
4955 * We are building the local ID push constant data using the simplest possible
4956 * method. We simply push the local IDs directly as they should appear in the
4957 * registers for the uvec3 gl_LocalInvocationID variable.
4958 *
4959 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4960 * registers worth of push constant space.
4961 *
4962 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4963 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4964 * to coordinated.
4965 *
4966 * FINISHME: There are a few easy optimizations to consider.
4967 *
4968 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4969 * no need for using push constant space for that dimension.
4970 *
4971 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4972 * easily use 16-bit words rather than 32-bit dwords in the push constant
4973 * data.
4974 *
4975 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4976 * conveying the data, and thereby reduce push constant usage.
4977 *
4978 */
4979 void
4980 fs_visitor::setup_gs_payload()
4981 {
4982 assert(stage == MESA_SHADER_GEOMETRY);
4983
4984 struct brw_gs_prog_data *gs_prog_data =
4985 (struct brw_gs_prog_data *) prog_data;
4986 struct brw_vue_prog_data *vue_prog_data =
4987 (struct brw_vue_prog_data *) prog_data;
4988
4989 /* R0: thread header, R1: output URB handles */
4990 payload.num_regs = 2;
4991
4992 if (gs_prog_data->include_primitive_id) {
4993 /* R2: Primitive ID 0..7 */
4994 payload.num_regs++;
4995 }
4996
4997 /* Use a maximum of 32 registers for push-model inputs. */
4998 const unsigned max_push_components = 32;
4999
5000 /* If pushing our inputs would take too many registers, reduce the URB read
5001 * length (which is in HWords, or 8 registers), and resort to pulling.
5002 *
5003 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5004 * have to multiply by VerticesIn to obtain the total storage requirement.
5005 */
5006 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5007 max_push_components) {
5008 gs_prog_data->base.include_vue_handles = true;
5009
5010 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5011 payload.num_regs += nir->info.gs.vertices_in;
5012
5013 vue_prog_data->urb_read_length =
5014 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5015 }
5016 }
5017
5018 void
5019 fs_visitor::setup_cs_payload()
5020 {
5021 assert(devinfo->gen >= 7);
5022 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5023
5024 payload.num_regs = 1;
5025
5026 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5027 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5028 payload.local_invocation_id_reg = payload.num_regs;
5029 payload.num_regs += prog_data->local_invocation_id_regs;
5030 }
5031 }
5032
5033 void
5034 fs_visitor::calculate_register_pressure()
5035 {
5036 invalidate_live_intervals();
5037 calculate_live_intervals();
5038
5039 unsigned num_instructions = 0;
5040 foreach_block(block, cfg)
5041 num_instructions += block->instructions.length();
5042
5043 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5044
5045 for (unsigned reg = 0; reg < alloc.count; reg++) {
5046 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5047 regs_live_at_ip[ip] += alloc.sizes[reg];
5048 }
5049 }
5050
5051 void
5052 fs_visitor::optimize()
5053 {
5054 /* Start by validating the shader we currently have. */
5055 validate();
5056
5057 /* bld is the common builder object pointing at the end of the program we
5058 * used to translate it into i965 IR. For the optimization and lowering
5059 * passes coming next, any code added after the end of the program without
5060 * having explicitly called fs_builder::at() clearly points at a mistake.
5061 * Ideally optimization passes wouldn't be part of the visitor so they
5062 * wouldn't have access to bld at all, but they do, so just in case some
5063 * pass forgets to ask for a location explicitly set it to NULL here to
5064 * make it trip. The dispatch width is initialized to a bogus value to
5065 * make sure that optimizations set the execution controls explicitly to
5066 * match the code they are manipulating instead of relying on the defaults.
5067 */
5068 bld = fs_builder(this, 64);
5069
5070 assign_constant_locations();
5071 demote_pull_constants();
5072
5073 validate();
5074
5075 split_virtual_grfs();
5076 validate();
5077
5078 #define OPT(pass, args...) ({ \
5079 pass_num++; \
5080 bool this_progress = pass(args); \
5081 \
5082 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5083 char filename[64]; \
5084 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5085 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5086 \
5087 backend_shader::dump_instructions(filename); \
5088 } \
5089 \
5090 validate(); \
5091 \
5092 progress = progress || this_progress; \
5093 this_progress; \
5094 })
5095
5096 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5097 char filename[64];
5098 snprintf(filename, 64, "%s%d-%s-00-start",
5099 stage_abbrev, dispatch_width, nir->info.name);
5100
5101 backend_shader::dump_instructions(filename);
5102 }
5103
5104 bool progress = false;
5105 int iteration = 0;
5106 int pass_num = 0;
5107
5108 OPT(lower_simd_width);
5109 OPT(lower_logical_sends);
5110
5111 do {
5112 progress = false;
5113 pass_num = 0;
5114 iteration++;
5115
5116 OPT(remove_duplicate_mrf_writes);
5117
5118 OPT(opt_algebraic);
5119 OPT(opt_cse);
5120 OPT(opt_copy_propagate);
5121 OPT(opt_predicated_break, this);
5122 OPT(opt_cmod_propagation);
5123 OPT(dead_code_eliminate);
5124 OPT(opt_peephole_sel);
5125 OPT(dead_control_flow_eliminate, this);
5126 OPT(opt_register_renaming);
5127 OPT(opt_redundant_discard_jumps);
5128 OPT(opt_saturate_propagation);
5129 OPT(opt_zero_samples);
5130 OPT(register_coalesce);
5131 OPT(compute_to_mrf);
5132 OPT(eliminate_find_live_channel);
5133
5134 OPT(compact_virtual_grfs);
5135 } while (progress);
5136
5137 pass_num = 0;
5138
5139 OPT(opt_sampler_eot);
5140
5141 if (OPT(lower_load_payload)) {
5142 split_virtual_grfs();
5143 OPT(register_coalesce);
5144 OPT(compute_to_mrf);
5145 OPT(dead_code_eliminate);
5146 }
5147
5148 OPT(opt_combine_constants);
5149 OPT(lower_integer_multiplication);
5150
5151 lower_uniform_pull_constant_loads();
5152
5153 validate();
5154 }
5155
5156 /**
5157 * Three source instruction must have a GRF/MRF destination register.
5158 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5159 */
5160 void
5161 fs_visitor::fixup_3src_null_dest()
5162 {
5163 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5164 if (inst->is_3src() && inst->dst.is_null()) {
5165 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5166 inst->dst.type);
5167 }
5168 }
5169 }
5170
5171 void
5172 fs_visitor::allocate_registers()
5173 {
5174 bool allocated_without_spills;
5175
5176 static const enum instruction_scheduler_mode pre_modes[] = {
5177 SCHEDULE_PRE,
5178 SCHEDULE_PRE_NON_LIFO,
5179 SCHEDULE_PRE_LIFO,
5180 };
5181
5182 /* Try each scheduling heuristic to see if it can successfully register
5183 * allocate without spilling. They should be ordered by decreasing
5184 * performance but increasing likelihood of allocating.
5185 */
5186 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5187 schedule_instructions(pre_modes[i]);
5188
5189 if (0) {
5190 assign_regs_trivial();
5191 allocated_without_spills = true;
5192 } else {
5193 allocated_without_spills = assign_regs(false);
5194 }
5195 if (allocated_without_spills)
5196 break;
5197 }
5198
5199 if (!allocated_without_spills) {
5200 /* We assume that any spilling is worse than just dropping back to
5201 * SIMD8. There's probably actually some intermediate point where
5202 * SIMD16 with a couple of spills is still better.
5203 */
5204 if (dispatch_width == 16) {
5205 fail("Failure to register allocate. Reduce number of "
5206 "live scalar values to avoid this.");
5207 } else {
5208 compiler->shader_perf_log(log_data,
5209 "%s shader triggered register spilling. "
5210 "Try reducing the number of live scalar "
5211 "values to improve performance.\n",
5212 stage_name);
5213 }
5214
5215 /* Since we're out of heuristics, just go spill registers until we
5216 * get an allocation.
5217 */
5218 while (!assign_regs(true)) {
5219 if (failed)
5220 break;
5221 }
5222 }
5223
5224 /* This must come after all optimization and register allocation, since
5225 * it inserts dead code that happens to have side effects, and it does
5226 * so based on the actual physical registers in use.
5227 */
5228 insert_gen4_send_dependency_workarounds();
5229
5230 if (failed)
5231 return;
5232
5233 schedule_instructions(SCHEDULE_POST);
5234
5235 if (last_scratch > 0)
5236 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5237 }
5238
5239 bool
5240 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5241 {
5242 assert(stage == MESA_SHADER_VERTEX);
5243
5244 setup_vs_payload();
5245
5246 if (shader_time_index >= 0)
5247 emit_shader_time_begin();
5248
5249 emit_nir_code();
5250
5251 if (failed)
5252 return false;
5253
5254 compute_clip_distance(clip_planes);
5255
5256 emit_urb_writes();
5257
5258 if (shader_time_index >= 0)
5259 emit_shader_time_end();
5260
5261 calculate_cfg();
5262
5263 optimize();
5264
5265 assign_curb_setup();
5266 assign_vs_urb_setup();
5267
5268 fixup_3src_null_dest();
5269 allocate_registers();
5270
5271 return !failed;
5272 }
5273
5274 bool
5275 fs_visitor::run_tes()
5276 {
5277 assert(stage == MESA_SHADER_TESS_EVAL);
5278
5279 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5280 payload.num_regs = 5;
5281
5282 if (shader_time_index >= 0)
5283 emit_shader_time_begin();
5284
5285 emit_nir_code();
5286
5287 if (failed)
5288 return false;
5289
5290 emit_urb_writes();
5291
5292 if (shader_time_index >= 0)
5293 emit_shader_time_end();
5294
5295 calculate_cfg();
5296
5297 optimize();
5298
5299 assign_curb_setup();
5300 assign_tes_urb_setup();
5301
5302 fixup_3src_null_dest();
5303 allocate_registers();
5304
5305 return !failed;
5306 }
5307
5308 bool
5309 fs_visitor::run_gs()
5310 {
5311 assert(stage == MESA_SHADER_GEOMETRY);
5312
5313 setup_gs_payload();
5314
5315 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5316
5317 if (gs_compile->control_data_header_size_bits > 0) {
5318 /* Create a VGRF to store accumulated control data bits. */
5319 this->control_data_bits = vgrf(glsl_type::uint_type);
5320
5321 /* If we're outputting more than 32 control data bits, then EmitVertex()
5322 * will set control_data_bits to 0 after emitting the first vertex.
5323 * Otherwise, we need to initialize it to 0 here.
5324 */
5325 if (gs_compile->control_data_header_size_bits <= 32) {
5326 const fs_builder abld = bld.annotate("initialize control data bits");
5327 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5328 }
5329 }
5330
5331 if (shader_time_index >= 0)
5332 emit_shader_time_begin();
5333
5334 emit_nir_code();
5335
5336 emit_gs_thread_end();
5337
5338 if (shader_time_index >= 0)
5339 emit_shader_time_end();
5340
5341 if (failed)
5342 return false;
5343
5344 calculate_cfg();
5345
5346 optimize();
5347
5348 assign_curb_setup();
5349 assign_gs_urb_setup();
5350
5351 fixup_3src_null_dest();
5352 allocate_registers();
5353
5354 return !failed;
5355 }
5356
5357 bool
5358 fs_visitor::run_fs(bool do_rep_send)
5359 {
5360 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5361 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5362
5363 assert(stage == MESA_SHADER_FRAGMENT);
5364
5365 if (devinfo->gen >= 6)
5366 setup_payload_gen6();
5367 else
5368 setup_payload_gen4();
5369
5370 if (0) {
5371 emit_dummy_fs();
5372 } else if (do_rep_send) {
5373 assert(dispatch_width == 16);
5374 emit_repclear_shader();
5375 } else {
5376 if (shader_time_index >= 0)
5377 emit_shader_time_begin();
5378
5379 calculate_urb_setup();
5380 if (nir->info.inputs_read > 0) {
5381 if (devinfo->gen < 6)
5382 emit_interpolation_setup_gen4();
5383 else
5384 emit_interpolation_setup_gen6();
5385 }
5386
5387 /* We handle discards by keeping track of the still-live pixels in f0.1.
5388 * Initialize it with the dispatched pixels.
5389 */
5390 if (wm_prog_data->uses_kill) {
5391 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5392 discard_init->flag_subreg = 1;
5393 }
5394
5395 /* Generate FS IR for main(). (the visitor only descends into
5396 * functions called "main").
5397 */
5398 emit_nir_code();
5399
5400 if (failed)
5401 return false;
5402
5403 if (wm_prog_data->uses_kill)
5404 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5405
5406 if (wm_key->alpha_test_func)
5407 emit_alpha_test();
5408
5409 emit_fb_writes();
5410
5411 if (shader_time_index >= 0)
5412 emit_shader_time_end();
5413
5414 calculate_cfg();
5415
5416 optimize();
5417
5418 assign_curb_setup();
5419 assign_urb_setup();
5420
5421 fixup_3src_null_dest();
5422 allocate_registers();
5423
5424 if (failed)
5425 return false;
5426 }
5427
5428 if (dispatch_width == 8)
5429 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5430 else
5431 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5432
5433 return !failed;
5434 }
5435
5436 bool
5437 fs_visitor::run_cs()
5438 {
5439 assert(stage == MESA_SHADER_COMPUTE);
5440
5441 setup_cs_payload();
5442
5443 if (shader_time_index >= 0)
5444 emit_shader_time_begin();
5445
5446 emit_nir_code();
5447
5448 if (failed)
5449 return false;
5450
5451 emit_cs_terminate();
5452
5453 if (shader_time_index >= 0)
5454 emit_shader_time_end();
5455
5456 calculate_cfg();
5457
5458 optimize();
5459
5460 assign_curb_setup();
5461
5462 fixup_3src_null_dest();
5463 allocate_registers();
5464
5465 if (failed)
5466 return false;
5467
5468 return !failed;
5469 }
5470
5471 /**
5472 * Return a bitfield where bit n is set if barycentric interpolation mode n
5473 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5474 */
5475 static unsigned
5476 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5477 bool shade_model_flat,
5478 bool persample_shading,
5479 const nir_shader *shader)
5480 {
5481 unsigned barycentric_interp_modes = 0;
5482
5483 nir_foreach_variable(var, &shader->inputs) {
5484 enum glsl_interp_qualifier interp_qualifier =
5485 (enum glsl_interp_qualifier)var->data.interpolation;
5486 bool is_centroid = var->data.centroid && !persample_shading;
5487 bool is_sample = var->data.sample || persample_shading;
5488 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5489 (var->data.location == VARYING_SLOT_COL1);
5490
5491 /* Ignore WPOS and FACE, because they don't require interpolation. */
5492 if (var->data.location == VARYING_SLOT_POS ||
5493 var->data.location == VARYING_SLOT_FACE)
5494 continue;
5495
5496 /* Determine the set (or sets) of barycentric coordinates needed to
5497 * interpolate this variable. Note that when
5498 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5499 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5500 * for lit pixels, so we need both sets of barycentric coordinates.
5501 */
5502 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5503 if (is_centroid) {
5504 barycentric_interp_modes |=
5505 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5506 } else if (is_sample) {
5507 barycentric_interp_modes |=
5508 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5509 }
5510 if ((!is_centroid && !is_sample) ||
5511 devinfo->needs_unlit_centroid_workaround) {
5512 barycentric_interp_modes |=
5513 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5514 }
5515 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5516 (!(shade_model_flat && is_gl_Color) &&
5517 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5518 if (is_centroid) {
5519 barycentric_interp_modes |=
5520 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5521 } else if (is_sample) {
5522 barycentric_interp_modes |=
5523 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5524 }
5525 if ((!is_centroid && !is_sample) ||
5526 devinfo->needs_unlit_centroid_workaround) {
5527 barycentric_interp_modes |=
5528 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5529 }
5530 }
5531 }
5532
5533 return barycentric_interp_modes;
5534 }
5535
5536 static uint8_t
5537 computed_depth_mode(const nir_shader *shader)
5538 {
5539 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5540 switch (shader->info.fs.depth_layout) {
5541 case FRAG_DEPTH_LAYOUT_NONE:
5542 case FRAG_DEPTH_LAYOUT_ANY:
5543 return BRW_PSCDEPTH_ON;
5544 case FRAG_DEPTH_LAYOUT_GREATER:
5545 return BRW_PSCDEPTH_ON_GE;
5546 case FRAG_DEPTH_LAYOUT_LESS:
5547 return BRW_PSCDEPTH_ON_LE;
5548 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5549 return BRW_PSCDEPTH_OFF;
5550 }
5551 }
5552 return BRW_PSCDEPTH_OFF;
5553 }
5554
5555 const unsigned *
5556 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5557 void *mem_ctx,
5558 const struct brw_wm_prog_key *key,
5559 struct brw_wm_prog_data *prog_data,
5560 const nir_shader *src_shader,
5561 struct gl_program *prog,
5562 int shader_time_index8, int shader_time_index16,
5563 bool use_rep_send,
5564 unsigned *final_assembly_size,
5565 char **error_str)
5566 {
5567 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5568 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5569 true);
5570 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5571
5572 /* key->alpha_test_func means simulating alpha testing via discards,
5573 * so the shader definitely kills pixels.
5574 */
5575 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5576 prog_data->uses_omask =
5577 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5578 prog_data->computed_depth_mode = computed_depth_mode(shader);
5579 prog_data->computed_stencil =
5580 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5581
5582 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5583
5584 prog_data->barycentric_interp_modes =
5585 brw_compute_barycentric_interp_modes(compiler->devinfo,
5586 key->flat_shade,
5587 key->persample_shading,
5588 shader);
5589
5590 fs_visitor v(compiler, log_data, mem_ctx, key,
5591 &prog_data->base, prog, shader, 8,
5592 shader_time_index8);
5593 if (!v.run_fs(false /* do_rep_send */)) {
5594 if (error_str)
5595 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5596
5597 return NULL;
5598 }
5599
5600 cfg_t *simd16_cfg = NULL;
5601 fs_visitor v2(compiler, log_data, mem_ctx, key,
5602 &prog_data->base, prog, shader, 16,
5603 shader_time_index16);
5604 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5605 if (!v.simd16_unsupported) {
5606 /* Try a SIMD16 compile */
5607 v2.import_uniforms(&v);
5608 if (!v2.run_fs(use_rep_send)) {
5609 compiler->shader_perf_log(log_data,
5610 "SIMD16 shader failed to compile: %s",
5611 v2.fail_msg);
5612 } else {
5613 simd16_cfg = v2.cfg;
5614 }
5615 }
5616 }
5617
5618 cfg_t *simd8_cfg;
5619 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5620 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5621 simd8_cfg = NULL;
5622 prog_data->no_8 = true;
5623 } else {
5624 simd8_cfg = v.cfg;
5625 prog_data->no_8 = false;
5626 }
5627
5628 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5629 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5630
5631 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5632 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5633 shader->info.label ? shader->info.label :
5634 "unnamed",
5635 shader->info.name));
5636 }
5637
5638 if (simd8_cfg)
5639 g.generate_code(simd8_cfg, 8);
5640 if (simd16_cfg)
5641 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5642
5643 return g.get_assembly(final_assembly_size);
5644 }
5645
5646 fs_reg *
5647 fs_visitor::emit_cs_local_invocation_id_setup()
5648 {
5649 assert(stage == MESA_SHADER_COMPUTE);
5650
5651 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5652
5653 struct brw_reg src =
5654 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5655 src = retype(src, BRW_REGISTER_TYPE_UD);
5656 bld.MOV(*reg, src);
5657 src.nr += dispatch_width / 8;
5658 bld.MOV(offset(*reg, bld, 1), src);
5659 src.nr += dispatch_width / 8;
5660 bld.MOV(offset(*reg, bld, 2), src);
5661
5662 return reg;
5663 }
5664
5665 fs_reg *
5666 fs_visitor::emit_cs_work_group_id_setup()
5667 {
5668 assert(stage == MESA_SHADER_COMPUTE);
5669
5670 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5671
5672 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5673 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5674 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5675
5676 bld.MOV(*reg, r0_1);
5677 bld.MOV(offset(*reg, bld, 1), r0_6);
5678 bld.MOV(offset(*reg, bld, 2), r0_7);
5679
5680 return reg;
5681 }
5682
5683 const unsigned *
5684 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5685 void *mem_ctx,
5686 const struct brw_cs_prog_key *key,
5687 struct brw_cs_prog_data *prog_data,
5688 const nir_shader *src_shader,
5689 int shader_time_index,
5690 unsigned *final_assembly_size,
5691 char **error_str)
5692 {
5693 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5694 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5695 true);
5696 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5697
5698 prog_data->local_size[0] = shader->info.cs.local_size[0];
5699 prog_data->local_size[1] = shader->info.cs.local_size[1];
5700 prog_data->local_size[2] = shader->info.cs.local_size[2];
5701 unsigned local_workgroup_size =
5702 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5703 shader->info.cs.local_size[2];
5704
5705 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5706
5707 cfg_t *cfg = NULL;
5708 const char *fail_msg = NULL;
5709
5710 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5711 */
5712 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5713 NULL, /* Never used in core profile */
5714 shader, 8, shader_time_index);
5715 if (!v8.run_cs()) {
5716 fail_msg = v8.fail_msg;
5717 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5718 cfg = v8.cfg;
5719 prog_data->simd_size = 8;
5720 }
5721
5722 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5723 NULL, /* Never used in core profile */
5724 shader, 16, shader_time_index);
5725 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5726 !fail_msg && !v8.simd16_unsupported &&
5727 local_workgroup_size <= 16 * max_cs_threads) {
5728 /* Try a SIMD16 compile */
5729 v16.import_uniforms(&v8);
5730 if (!v16.run_cs()) {
5731 compiler->shader_perf_log(log_data,
5732 "SIMD16 shader failed to compile: %s",
5733 v16.fail_msg);
5734 if (!cfg) {
5735 fail_msg =
5736 "Couldn't generate SIMD16 program and not "
5737 "enough threads for SIMD8";
5738 }
5739 } else {
5740 cfg = v16.cfg;
5741 prog_data->simd_size = 16;
5742 }
5743 }
5744
5745 if (unlikely(cfg == NULL)) {
5746 assert(fail_msg);
5747 if (error_str)
5748 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5749
5750 return NULL;
5751 }
5752
5753 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5754 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5755 if (INTEL_DEBUG & DEBUG_CS) {
5756 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5757 shader->info.label ? shader->info.label :
5758 "unnamed",
5759 shader->info.name);
5760 g.enable_debug(name);
5761 }
5762
5763 g.generate_code(cfg, prog_data->simd_size);
5764
5765 return g.get_assembly(final_assembly_size);
5766 }
5767
5768 void
5769 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5770 void *buffer, uint32_t threads, uint32_t stride)
5771 {
5772 if (prog_data->local_invocation_id_regs == 0)
5773 return;
5774
5775 /* 'stride' should be an integer number of registers, that is, a multiple
5776 * of 32 bytes.
5777 */
5778 assert(stride % 32 == 0);
5779
5780 unsigned x = 0, y = 0, z = 0;
5781 for (unsigned t = 0; t < threads; t++) {
5782 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5783
5784 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5785 param[0 * prog_data->simd_size + i] = x;
5786 param[1 * prog_data->simd_size + i] = y;
5787 param[2 * prog_data->simd_size + i] = z;
5788
5789 x++;
5790 if (x == prog_data->local_size[0]) {
5791 x = 0;
5792 y++;
5793 if (y == prog_data->local_size[1]) {
5794 y = 0;
5795 z++;
5796 if (z == prog_data->local_size[2])
5797 z = 0;
5798 }
5799 }
5800 }
5801 }
5802 }