i965/fs: Report the right value in fs_inst::regs_read() for PIXEL_X/Y
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 unreachable("not reached");
529 }
530
531 return 0;
532 }
533
534 /**
535 * Create a MOV to read the timestamp register.
536 *
537 * The caller is responsible for emitting the MOV. The return value is
538 * the destination of the MOV, with extra parameters set.
539 */
540 fs_reg
541 fs_visitor::get_timestamp(const fs_builder &bld)
542 {
543 assert(devinfo->gen >= 7);
544
545 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
546 BRW_ARF_TIMESTAMP,
547 0),
548 BRW_REGISTER_TYPE_UD));
549
550 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
551
552 /* We want to read the 3 fields we care about even if it's not enabled in
553 * the dispatch.
554 */
555 bld.exec_all().MOV(dst, ts);
556
557 /* The caller wants the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 *
563 * The caller could also check if render P-states have changed (or anything
564 * else that might disrupt timing) by setting smear to 2 and checking if
565 * that field is != 0.
566 */
567 dst.set_smear(0);
568
569 return dst;
570 }
571
572 void
573 fs_visitor::emit_shader_time_begin()
574 {
575 shader_start_time = get_timestamp(bld.annotate("shader time start"));
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 /* Insert our code just before the final SEND with EOT. */
582 exec_node *end = this->instructions.get_tail();
583 assert(end && ((fs_inst *) end)->eot);
584 const fs_builder ibld = bld.annotate("shader time end")
585 .exec_all().at(NULL, end);
586
587 fs_reg shader_end_time = get_timestamp(ibld);
588
589 /* Check that there weren't any timestamp reset events (assuming these
590 * were the only two timestamp reads that happened).
591 */
592 fs_reg reset = shader_end_time;
593 reset.set_smear(2);
594 set_condmod(BRW_CONDITIONAL_Z,
595 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
596 ibld.IF(BRW_PREDICATE_NORMAL);
597
598 fs_reg start = shader_start_time;
599 start.negate = true;
600 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
601 diff.set_smear(0);
602 ibld.ADD(diff, start, shader_end_time);
603
604 /* If there were no instructions between the two timestamp gets, the diff
605 * is 2 cycles. Remove that overhead, so I can forget about that when
606 * trying to determine the time taken for single instructions.
607 */
608 ibld.ADD(diff, diff, fs_reg(-2u));
609 SHADER_TIME_ADD(ibld, 0, diff);
610 SHADER_TIME_ADD(ibld, 1, fs_reg(1u));
611 ibld.emit(BRW_OPCODE_ELSE);
612 SHADER_TIME_ADD(ibld, 2, fs_reg(1u));
613 ibld.emit(BRW_OPCODE_ENDIF);
614 }
615
616 void
617 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
618 int shader_time_subindex,
619 fs_reg value)
620 {
621 int index = shader_time_index * 3 + shader_time_subindex;
622 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
623
624 fs_reg payload;
625 if (dispatch_width == 8)
626 payload = vgrf(glsl_type::uvec2_type);
627 else
628 payload = vgrf(glsl_type::uint_type);
629
630 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
631 }
632
633 void
634 fs_visitor::vfail(const char *format, va_list va)
635 {
636 char *msg;
637
638 if (failed)
639 return;
640
641 failed = true;
642
643 msg = ralloc_vasprintf(mem_ctx, format, va);
644 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
645
646 this->fail_msg = msg;
647
648 if (debug_enabled) {
649 fprintf(stderr, "%s", msg);
650 }
651 }
652
653 void
654 fs_visitor::fail(const char *format, ...)
655 {
656 va_list va;
657
658 va_start(va, format);
659 vfail(format, va);
660 va_end(va);
661 }
662
663 /**
664 * Mark this program as impossible to compile in SIMD16 mode.
665 *
666 * During the SIMD8 compile (which happens first), we can detect and flag
667 * things that are unsupported in SIMD16 mode, so the compiler can skip
668 * the SIMD16 compile altogether.
669 *
670 * During a SIMD16 compile (if one happens anyway), this just calls fail().
671 */
672 void
673 fs_visitor::no16(const char *msg)
674 {
675 if (dispatch_width == 16) {
676 fail("%s", msg);
677 } else {
678 simd16_unsupported = true;
679
680 compiler->shader_perf_log(log_data,
681 "SIMD16 shader failed to compile: %s", msg);
682 }
683 }
684
685 /**
686 * Returns true if the instruction has a flag that means it won't
687 * update an entire destination register.
688 *
689 * For example, dead code elimination and live variable analysis want to know
690 * when a write to a variable screens off any preceding values that were in
691 * it.
692 */
693 bool
694 fs_inst::is_partial_write() const
695 {
696 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
697 (this->dst.width * type_sz(this->dst.type)) < 32 ||
698 !this->dst.is_contiguous());
699 }
700
701 int
702 fs_inst::regs_read(int arg) const
703 {
704 unsigned components = 1;
705 switch (opcode) {
706 case FS_OPCODE_FB_WRITE:
707 case SHADER_OPCODE_URB_WRITE_SIMD8:
708 case SHADER_OPCODE_UNTYPED_ATOMIC:
709 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
710 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
711 case SHADER_OPCODE_TYPED_ATOMIC:
712 case SHADER_OPCODE_TYPED_SURFACE_READ:
713 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
714 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
715 if (arg == 0)
716 return mlen;
717 break;
718
719 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
720 /* The payload is actually stored in src1 */
721 if (arg == 1)
722 return mlen;
723 break;
724
725 case FS_OPCODE_LINTERP:
726 if (arg == 0)
727 return exec_size / 4;
728 break;
729
730 case FS_OPCODE_PIXEL_X:
731 case FS_OPCODE_PIXEL_Y:
732 if (arg == 0)
733 components = 1;
734 break;
735
736 default:
737 if (is_tex() && arg == 0 && src[0].file == GRF)
738 return mlen;
739 break;
740 }
741
742 switch (src[arg].file) {
743 case BAD_FILE:
744 case UNIFORM:
745 case IMM:
746 return 1;
747 case GRF:
748 case HW_REG:
749 if (src[arg].stride == 0) {
750 return 1;
751 } else {
752 int size = components * src[arg].width * type_sz(src[arg].type);
753 return DIV_ROUND_UP(size * src[arg].stride, 32);
754 }
755 case MRF:
756 unreachable("MRF registers are not allowed as sources");
757 default:
758 unreachable("Invalid register file");
759 }
760 }
761
762 bool
763 fs_inst::reads_flag() const
764 {
765 return predicate;
766 }
767
768 bool
769 fs_inst::writes_flag() const
770 {
771 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
772 opcode != BRW_OPCODE_IF &&
773 opcode != BRW_OPCODE_WHILE)) ||
774 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
775 }
776
777 /**
778 * Returns how many MRFs an FS opcode will write over.
779 *
780 * Note that this is not the 0 or 1 implied writes in an actual gen
781 * instruction -- the FS opcodes often generate MOVs in addition.
782 */
783 int
784 fs_visitor::implied_mrf_writes(fs_inst *inst)
785 {
786 if (inst->mlen == 0)
787 return 0;
788
789 if (inst->base_mrf == -1)
790 return 0;
791
792 switch (inst->opcode) {
793 case SHADER_OPCODE_RCP:
794 case SHADER_OPCODE_RSQ:
795 case SHADER_OPCODE_SQRT:
796 case SHADER_OPCODE_EXP2:
797 case SHADER_OPCODE_LOG2:
798 case SHADER_OPCODE_SIN:
799 case SHADER_OPCODE_COS:
800 return 1 * dispatch_width / 8;
801 case SHADER_OPCODE_POW:
802 case SHADER_OPCODE_INT_QUOTIENT:
803 case SHADER_OPCODE_INT_REMAINDER:
804 return 2 * dispatch_width / 8;
805 case SHADER_OPCODE_TEX:
806 case FS_OPCODE_TXB:
807 case SHADER_OPCODE_TXD:
808 case SHADER_OPCODE_TXF:
809 case SHADER_OPCODE_TXF_CMS:
810 case SHADER_OPCODE_TXF_MCS:
811 case SHADER_OPCODE_TG4:
812 case SHADER_OPCODE_TG4_OFFSET:
813 case SHADER_OPCODE_TXL:
814 case SHADER_OPCODE_TXS:
815 case SHADER_OPCODE_LOD:
816 return 1;
817 case FS_OPCODE_FB_WRITE:
818 return 2;
819 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
820 case SHADER_OPCODE_GEN4_SCRATCH_READ:
821 return 1;
822 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
823 return inst->mlen;
824 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
825 return inst->mlen;
826 case SHADER_OPCODE_UNTYPED_ATOMIC:
827 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
828 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
829 case SHADER_OPCODE_TYPED_ATOMIC:
830 case SHADER_OPCODE_TYPED_SURFACE_READ:
831 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
832 case SHADER_OPCODE_URB_WRITE_SIMD8:
833 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
834 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
835 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
836 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
837 return 0;
838 default:
839 unreachable("not reached");
840 }
841 }
842
843 fs_reg
844 fs_visitor::vgrf(const glsl_type *const type)
845 {
846 int reg_width = dispatch_width / 8;
847 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
848 brw_type_for_base_type(type), dispatch_width);
849 }
850
851 /** Fixed HW reg constructor. */
852 fs_reg::fs_reg(enum register_file file, int reg)
853 {
854 init();
855 this->file = file;
856 this->reg = reg;
857 this->type = BRW_REGISTER_TYPE_F;
858
859 switch (file) {
860 case UNIFORM:
861 this->width = 1;
862 break;
863 default:
864 this->width = 8;
865 }
866 }
867
868 /** Fixed HW reg constructor. */
869 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
870 {
871 init();
872 this->file = file;
873 this->reg = reg;
874 this->type = type;
875
876 switch (file) {
877 case UNIFORM:
878 this->width = 1;
879 break;
880 default:
881 this->width = 8;
882 }
883 }
884
885 /** Fixed HW reg constructor. */
886 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
887 uint8_t width)
888 {
889 init();
890 this->file = file;
891 this->reg = reg;
892 this->type = type;
893 this->width = width;
894 }
895
896 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
897 * This brings in those uniform definitions
898 */
899 void
900 fs_visitor::import_uniforms(fs_visitor *v)
901 {
902 this->push_constant_loc = v->push_constant_loc;
903 this->pull_constant_loc = v->pull_constant_loc;
904 this->uniforms = v->uniforms;
905 this->param_size = v->param_size;
906 }
907
908 fs_reg *
909 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
910 bool origin_upper_left)
911 {
912 assert(stage == MESA_SHADER_FRAGMENT);
913 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
914 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
915 fs_reg wpos = *reg;
916 bool flip = !origin_upper_left ^ key->render_to_fbo;
917
918 /* gl_FragCoord.x */
919 if (pixel_center_integer) {
920 bld.MOV(wpos, this->pixel_x);
921 } else {
922 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
923 }
924 wpos = offset(wpos, 1);
925
926 /* gl_FragCoord.y */
927 if (!flip && pixel_center_integer) {
928 bld.MOV(wpos, this->pixel_y);
929 } else {
930 fs_reg pixel_y = this->pixel_y;
931 float offset = (pixel_center_integer ? 0.0 : 0.5);
932
933 if (flip) {
934 pixel_y.negate = true;
935 offset += key->drawable_height - 1.0;
936 }
937
938 bld.ADD(wpos, pixel_y, fs_reg(offset));
939 }
940 wpos = offset(wpos, 1);
941
942 /* gl_FragCoord.z */
943 if (devinfo->gen >= 6) {
944 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
945 } else {
946 bld.emit(FS_OPCODE_LINTERP, wpos,
947 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
948 interp_reg(VARYING_SLOT_POS, 2));
949 }
950 wpos = offset(wpos, 1);
951
952 /* gl_FragCoord.w: Already set up in emit_interpolation */
953 bld.MOV(wpos, this->wpos_w);
954
955 return reg;
956 }
957
958 fs_inst *
959 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
960 glsl_interp_qualifier interpolation_mode,
961 bool is_centroid, bool is_sample)
962 {
963 brw_wm_barycentric_interp_mode barycoord_mode;
964 if (devinfo->gen >= 6) {
965 if (is_centroid) {
966 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
967 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
968 else
969 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
970 } else if (is_sample) {
971 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
972 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
973 else
974 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
975 } else {
976 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
977 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
978 else
979 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
980 }
981 } else {
982 /* On Ironlake and below, there is only one interpolation mode.
983 * Centroid interpolation doesn't mean anything on this hardware --
984 * there is no multisampling.
985 */
986 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
987 }
988 return bld.emit(FS_OPCODE_LINTERP, attr,
989 this->delta_xy[barycoord_mode], interp);
990 }
991
992 void
993 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
994 const glsl_type *type,
995 glsl_interp_qualifier interpolation_mode,
996 int location, bool mod_centroid,
997 bool mod_sample)
998 {
999 attr.type = brw_type_for_base_type(type->get_scalar_type());
1000
1001 assert(stage == MESA_SHADER_FRAGMENT);
1002 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1003 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1004
1005 unsigned int array_elements;
1006
1007 if (type->is_array()) {
1008 array_elements = type->length;
1009 if (array_elements == 0) {
1010 fail("dereferenced array '%s' has length 0\n", name);
1011 }
1012 type = type->fields.array;
1013 } else {
1014 array_elements = 1;
1015 }
1016
1017 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1018 bool is_gl_Color =
1019 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1020 if (key->flat_shade && is_gl_Color) {
1021 interpolation_mode = INTERP_QUALIFIER_FLAT;
1022 } else {
1023 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1024 }
1025 }
1026
1027 for (unsigned int i = 0; i < array_elements; i++) {
1028 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1029 if (prog_data->urb_setup[location] == -1) {
1030 /* If there's no incoming setup data for this slot, don't
1031 * emit interpolation for it.
1032 */
1033 attr = offset(attr, type->vector_elements);
1034 location++;
1035 continue;
1036 }
1037
1038 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1039 /* Constant interpolation (flat shading) case. The SF has
1040 * handed us defined values in only the constant offset
1041 * field of the setup reg.
1042 */
1043 for (unsigned int k = 0; k < type->vector_elements; k++) {
1044 struct brw_reg interp = interp_reg(location, k);
1045 interp = suboffset(interp, 3);
1046 interp.type = attr.type;
1047 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1048 attr = offset(attr, 1);
1049 }
1050 } else {
1051 /* Smooth/noperspective interpolation case. */
1052 for (unsigned int k = 0; k < type->vector_elements; k++) {
1053 struct brw_reg interp = interp_reg(location, k);
1054 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1055 /* Get the pixel/sample mask into f0 so that we know
1056 * which pixels are lit. Then, for each channel that is
1057 * unlit, replace the centroid data with non-centroid
1058 * data.
1059 */
1060 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1061
1062 fs_inst *inst;
1063 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1064 false, false);
1065 inst->predicate = BRW_PREDICATE_NORMAL;
1066 inst->predicate_inverse = true;
1067 if (devinfo->has_pln)
1068 inst->no_dd_clear = true;
1069
1070 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1071 mod_centroid && !key->persample_shading,
1072 mod_sample || key->persample_shading);
1073 inst->predicate = BRW_PREDICATE_NORMAL;
1074 inst->predicate_inverse = false;
1075 if (devinfo->has_pln)
1076 inst->no_dd_check = true;
1077
1078 } else {
1079 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1080 mod_centroid && !key->persample_shading,
1081 mod_sample || key->persample_shading);
1082 }
1083 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1084 bld.MUL(attr, attr, this->pixel_w);
1085 }
1086 attr = offset(attr, 1);
1087 }
1088
1089 }
1090 location++;
1091 }
1092 }
1093 }
1094
1095 fs_reg *
1096 fs_visitor::emit_frontfacing_interpolation()
1097 {
1098 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1099
1100 if (devinfo->gen >= 6) {
1101 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1102 * a boolean result from this (~0/true or 0/false).
1103 *
1104 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1105 * this task in only one instruction:
1106 * - a negation source modifier will flip the bit; and
1107 * - a W -> D type conversion will sign extend the bit into the high
1108 * word of the destination.
1109 *
1110 * An ASR 15 fills the low word of the destination.
1111 */
1112 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1113 g0.negate = true;
1114
1115 bld.ASR(*reg, g0, fs_reg(15));
1116 } else {
1117 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1118 * a boolean result from this (1/true or 0/false).
1119 *
1120 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1121 * the negation source modifier to flip it. Unfortunately the SHR
1122 * instruction only operates on UD (or D with an abs source modifier)
1123 * sources without negation.
1124 *
1125 * Instead, use ASR (which will give ~0/true or 0/false).
1126 */
1127 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1128 g1_6.negate = true;
1129
1130 bld.ASR(*reg, g1_6, fs_reg(31));
1131 }
1132
1133 return reg;
1134 }
1135
1136 void
1137 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1138 {
1139 assert(stage == MESA_SHADER_FRAGMENT);
1140 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1141 assert(dst.type == BRW_REGISTER_TYPE_F);
1142
1143 if (key->compute_pos_offset) {
1144 /* Convert int_sample_pos to floating point */
1145 bld.MOV(dst, int_sample_pos);
1146 /* Scale to the range [0, 1] */
1147 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1148 }
1149 else {
1150 /* From ARB_sample_shading specification:
1151 * "When rendering to a non-multisample buffer, or if multisample
1152 * rasterization is disabled, gl_SamplePosition will always be
1153 * (0.5, 0.5).
1154 */
1155 bld.MOV(dst, fs_reg(0.5f));
1156 }
1157 }
1158
1159 fs_reg *
1160 fs_visitor::emit_samplepos_setup()
1161 {
1162 assert(devinfo->gen >= 6);
1163
1164 const fs_builder abld = bld.annotate("compute sample position");
1165 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1166 fs_reg pos = *reg;
1167 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1168 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1169
1170 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1171 * mode will be enabled.
1172 *
1173 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1174 * R31.1:0 Position Offset X/Y for Slot[3:0]
1175 * R31.3:2 Position Offset X/Y for Slot[7:4]
1176 * .....
1177 *
1178 * The X, Y sample positions come in as bytes in thread payload. So, read
1179 * the positions using vstride=16, width=8, hstride=2.
1180 */
1181 struct brw_reg sample_pos_reg =
1182 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1183 BRW_REGISTER_TYPE_B), 16, 8, 2);
1184
1185 if (dispatch_width == 8) {
1186 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1187 } else {
1188 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1189 abld.half(1).MOV(half(int_sample_x, 1),
1190 fs_reg(suboffset(sample_pos_reg, 16)));
1191 }
1192 /* Compute gl_SamplePosition.x */
1193 compute_sample_position(pos, int_sample_x);
1194 pos = offset(pos, 1);
1195 if (dispatch_width == 8) {
1196 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1197 } else {
1198 abld.half(0).MOV(half(int_sample_y, 0),
1199 fs_reg(suboffset(sample_pos_reg, 1)));
1200 abld.half(1).MOV(half(int_sample_y, 1),
1201 fs_reg(suboffset(sample_pos_reg, 17)));
1202 }
1203 /* Compute gl_SamplePosition.y */
1204 compute_sample_position(pos, int_sample_y);
1205 return reg;
1206 }
1207
1208 fs_reg *
1209 fs_visitor::emit_sampleid_setup()
1210 {
1211 assert(stage == MESA_SHADER_FRAGMENT);
1212 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1213 assert(devinfo->gen >= 6);
1214
1215 const fs_builder abld = bld.annotate("compute sample id");
1216 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1217
1218 if (key->compute_sample_id) {
1219 fs_reg t1 = vgrf(glsl_type::int_type);
1220 fs_reg t2 = vgrf(glsl_type::int_type);
1221 t2.type = BRW_REGISTER_TYPE_UW;
1222
1223 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1224 * 8x multisampling, subspan 0 will represent sample N (where N
1225 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1226 * 7. We can find the value of N by looking at R0.0 bits 7:6
1227 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1228 * (since samples are always delivered in pairs). That is, we
1229 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1230 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1231 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1232 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1233 * populating a temporary variable with the sequence (0, 1, 2, 3),
1234 * and then reading from it using vstride=1, width=4, hstride=0.
1235 * These computations hold good for 4x multisampling as well.
1236 *
1237 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1238 * the first four slots are sample 0 of subspan 0; the next four
1239 * are sample 1 of subspan 0; the third group is sample 0 of
1240 * subspan 1, and finally sample 1 of subspan 1.
1241 */
1242 abld.exec_all()
1243 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1244 fs_reg(0xc0));
1245 abld.exec_all().SHR(t1, t1, fs_reg(5));
1246
1247 /* This works for both SIMD8 and SIMD16 */
1248 abld.exec_all()
1249 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1250
1251 /* This special instruction takes care of setting vstride=1,
1252 * width=4, hstride=0 of t2 during an ADD instruction.
1253 */
1254 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1255 } else {
1256 /* As per GL_ARB_sample_shading specification:
1257 * "When rendering to a non-multisample buffer, or if multisample
1258 * rasterization is disabled, gl_SampleID will always be zero."
1259 */
1260 abld.MOV(*reg, fs_reg(0));
1261 }
1262
1263 return reg;
1264 }
1265
1266 void
1267 fs_visitor::resolve_source_modifiers(fs_reg *src)
1268 {
1269 if (!src->abs && !src->negate)
1270 return;
1271
1272 fs_reg temp = bld.vgrf(src->type);
1273 bld.MOV(temp, *src);
1274 *src = temp;
1275 }
1276
1277 void
1278 fs_visitor::emit_discard_jump()
1279 {
1280 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1281
1282 /* For performance, after a discard, jump to the end of the
1283 * shader if all relevant channels have been discarded.
1284 */
1285 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1286 discard_jump->flag_subreg = 1;
1287
1288 discard_jump->predicate = (dispatch_width == 8)
1289 ? BRW_PREDICATE_ALIGN1_ANY8H
1290 : BRW_PREDICATE_ALIGN1_ANY16H;
1291 discard_jump->predicate_inverse = true;
1292 }
1293
1294 void
1295 fs_visitor::assign_curb_setup()
1296 {
1297 if (dispatch_width == 8) {
1298 prog_data->dispatch_grf_start_reg = payload.num_regs;
1299 } else {
1300 if (stage == MESA_SHADER_FRAGMENT) {
1301 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1302 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1303 } else if (stage == MESA_SHADER_COMPUTE) {
1304 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1305 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1306 } else {
1307 unreachable("Unsupported shader type!");
1308 }
1309 }
1310
1311 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1312
1313 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1314 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1315 for (unsigned int i = 0; i < inst->sources; i++) {
1316 if (inst->src[i].file == UNIFORM) {
1317 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1318 int constant_nr;
1319 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1320 constant_nr = push_constant_loc[uniform_nr];
1321 } else {
1322 /* Section 5.11 of the OpenGL 4.1 spec says:
1323 * "Out-of-bounds reads return undefined values, which include
1324 * values from other variables of the active program or zero."
1325 * Just return the first push constant.
1326 */
1327 constant_nr = 0;
1328 }
1329
1330 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1331 constant_nr / 8,
1332 constant_nr % 8);
1333
1334 inst->src[i].file = HW_REG;
1335 inst->src[i].fixed_hw_reg = byte_offset(
1336 retype(brw_reg, inst->src[i].type),
1337 inst->src[i].subreg_offset);
1338 }
1339 }
1340 }
1341 }
1342
1343 void
1344 fs_visitor::calculate_urb_setup()
1345 {
1346 assert(stage == MESA_SHADER_FRAGMENT);
1347 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1348 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1349
1350 memset(prog_data->urb_setup, -1,
1351 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1352
1353 int urb_next = 0;
1354 /* Figure out where each of the incoming setup attributes lands. */
1355 if (devinfo->gen >= 6) {
1356 if (_mesa_bitcount_64(prog->InputsRead &
1357 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1358 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1359 * first 16 varying inputs, so we can put them wherever we want.
1360 * Just put them in order.
1361 *
1362 * This is useful because it means that (a) inputs not used by the
1363 * fragment shader won't take up valuable register space, and (b) we
1364 * won't have to recompile the fragment shader if it gets paired with
1365 * a different vertex (or geometry) shader.
1366 */
1367 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1368 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1369 BITFIELD64_BIT(i)) {
1370 prog_data->urb_setup[i] = urb_next++;
1371 }
1372 }
1373 } else {
1374 /* We have enough input varyings that the SF/SBE pipeline stage can't
1375 * arbitrarily rearrange them to suit our whim; we have to put them
1376 * in an order that matches the output of the previous pipeline stage
1377 * (geometry or vertex shader).
1378 */
1379 struct brw_vue_map prev_stage_vue_map;
1380 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1381 key->input_slots_valid);
1382 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1383 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1384 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1385 slot++) {
1386 int varying = prev_stage_vue_map.slot_to_varying[slot];
1387 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1388 * unused.
1389 */
1390 if (varying != BRW_VARYING_SLOT_COUNT &&
1391 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1392 BITFIELD64_BIT(varying))) {
1393 prog_data->urb_setup[varying] = slot - first_slot;
1394 }
1395 }
1396 urb_next = prev_stage_vue_map.num_slots - first_slot;
1397 }
1398 } else {
1399 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1400 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1401 /* Point size is packed into the header, not as a general attribute */
1402 if (i == VARYING_SLOT_PSIZ)
1403 continue;
1404
1405 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1406 /* The back color slot is skipped when the front color is
1407 * also written to. In addition, some slots can be
1408 * written in the vertex shader and not read in the
1409 * fragment shader. So the register number must always be
1410 * incremented, mapped or not.
1411 */
1412 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1413 prog_data->urb_setup[i] = urb_next;
1414 urb_next++;
1415 }
1416 }
1417
1418 /*
1419 * It's a FS only attribute, and we did interpolation for this attribute
1420 * in SF thread. So, count it here, too.
1421 *
1422 * See compile_sf_prog() for more info.
1423 */
1424 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1425 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1426 }
1427
1428 prog_data->num_varying_inputs = urb_next;
1429 }
1430
1431 void
1432 fs_visitor::assign_urb_setup()
1433 {
1434 assert(stage == MESA_SHADER_FRAGMENT);
1435 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1436
1437 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1438
1439 /* Offset all the urb_setup[] index by the actual position of the
1440 * setup regs, now that the location of the constants has been chosen.
1441 */
1442 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1443 if (inst->opcode == FS_OPCODE_LINTERP) {
1444 assert(inst->src[1].file == HW_REG);
1445 inst->src[1].fixed_hw_reg.nr += urb_start;
1446 }
1447
1448 if (inst->opcode == FS_OPCODE_CINTERP) {
1449 assert(inst->src[0].file == HW_REG);
1450 inst->src[0].fixed_hw_reg.nr += urb_start;
1451 }
1452 }
1453
1454 /* Each attribute is 4 setup channels, each of which is half a reg. */
1455 this->first_non_payload_grf =
1456 urb_start + prog_data->num_varying_inputs * 2;
1457 }
1458
1459 void
1460 fs_visitor::assign_vs_urb_setup()
1461 {
1462 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1463 int grf, count, slot, channel, attr;
1464
1465 assert(stage == MESA_SHADER_VERTEX);
1466 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1467 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1468 count++;
1469
1470 /* Each attribute is 4 regs. */
1471 this->first_non_payload_grf =
1472 payload.num_regs + prog_data->curb_read_length + count * 4;
1473
1474 unsigned vue_entries =
1475 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1476
1477 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1478 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1479
1480 assert(vs_prog_data->base.urb_read_length <= 15);
1481
1482 /* Rewrite all ATTR file references to the hw grf that they land in. */
1483 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1484 for (int i = 0; i < inst->sources; i++) {
1485 if (inst->src[i].file == ATTR) {
1486
1487 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1488 slot = count - 1;
1489 } else {
1490 /* Attributes come in in a contiguous block, ordered by their
1491 * gl_vert_attrib value. That means we can compute the slot
1492 * number for an attribute by masking out the enabled
1493 * attributes before it and counting the bits.
1494 */
1495 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1496 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1497 BITFIELD64_MASK(attr));
1498 }
1499
1500 channel = inst->src[i].reg_offset & 3;
1501
1502 grf = payload.num_regs +
1503 prog_data->curb_read_length +
1504 slot * 4 + channel;
1505
1506 inst->src[i].file = HW_REG;
1507 inst->src[i].fixed_hw_reg =
1508 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1509 }
1510 }
1511 }
1512 }
1513
1514 /**
1515 * Split large virtual GRFs into separate components if we can.
1516 *
1517 * This is mostly duplicated with what brw_fs_vector_splitting does,
1518 * but that's really conservative because it's afraid of doing
1519 * splitting that doesn't result in real progress after the rest of
1520 * the optimization phases, which would cause infinite looping in
1521 * optimization. We can do it once here, safely. This also has the
1522 * opportunity to split interpolated values, or maybe even uniforms,
1523 * which we don't have at the IR level.
1524 *
1525 * We want to split, because virtual GRFs are what we register
1526 * allocate and spill (due to contiguousness requirements for some
1527 * instructions), and they're what we naturally generate in the
1528 * codegen process, but most virtual GRFs don't actually need to be
1529 * contiguous sets of GRFs. If we split, we'll end up with reduced
1530 * live intervals and better dead code elimination and coalescing.
1531 */
1532 void
1533 fs_visitor::split_virtual_grfs()
1534 {
1535 int num_vars = this->alloc.count;
1536
1537 /* Count the total number of registers */
1538 int reg_count = 0;
1539 int vgrf_to_reg[num_vars];
1540 for (int i = 0; i < num_vars; i++) {
1541 vgrf_to_reg[i] = reg_count;
1542 reg_count += alloc.sizes[i];
1543 }
1544
1545 /* An array of "split points". For each register slot, this indicates
1546 * if this slot can be separated from the previous slot. Every time an
1547 * instruction uses multiple elements of a register (as a source or
1548 * destination), we mark the used slots as inseparable. Then we go
1549 * through and split the registers into the smallest pieces we can.
1550 */
1551 bool split_points[reg_count];
1552 memset(split_points, 0, sizeof(split_points));
1553
1554 /* Mark all used registers as fully splittable */
1555 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1556 if (inst->dst.file == GRF) {
1557 int reg = vgrf_to_reg[inst->dst.reg];
1558 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1559 split_points[reg + j] = true;
1560 }
1561
1562 for (int i = 0; i < inst->sources; i++) {
1563 if (inst->src[i].file == GRF) {
1564 int reg = vgrf_to_reg[inst->src[i].reg];
1565 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1566 split_points[reg + j] = true;
1567 }
1568 }
1569 }
1570
1571 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1572 if (inst->dst.file == GRF) {
1573 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1574 for (int j = 1; j < inst->regs_written; j++)
1575 split_points[reg + j] = false;
1576 }
1577 for (int i = 0; i < inst->sources; i++) {
1578 if (inst->src[i].file == GRF) {
1579 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1580 for (int j = 1; j < inst->regs_read(i); j++)
1581 split_points[reg + j] = false;
1582 }
1583 }
1584 }
1585
1586 int new_virtual_grf[reg_count];
1587 int new_reg_offset[reg_count];
1588
1589 int reg = 0;
1590 for (int i = 0; i < num_vars; i++) {
1591 /* The first one should always be 0 as a quick sanity check. */
1592 assert(split_points[reg] == false);
1593
1594 /* j = 0 case */
1595 new_reg_offset[reg] = 0;
1596 reg++;
1597 int offset = 1;
1598
1599 /* j > 0 case */
1600 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1601 /* If this is a split point, reset the offset to 0 and allocate a
1602 * new virtual GRF for the previous offset many registers
1603 */
1604 if (split_points[reg]) {
1605 assert(offset <= MAX_VGRF_SIZE);
1606 int grf = alloc.allocate(offset);
1607 for (int k = reg - offset; k < reg; k++)
1608 new_virtual_grf[k] = grf;
1609 offset = 0;
1610 }
1611 new_reg_offset[reg] = offset;
1612 offset++;
1613 reg++;
1614 }
1615
1616 /* The last one gets the original register number */
1617 assert(offset <= MAX_VGRF_SIZE);
1618 alloc.sizes[i] = offset;
1619 for (int k = reg - offset; k < reg; k++)
1620 new_virtual_grf[k] = i;
1621 }
1622 assert(reg == reg_count);
1623
1624 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1625 if (inst->dst.file == GRF) {
1626 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1627 inst->dst.reg = new_virtual_grf[reg];
1628 inst->dst.reg_offset = new_reg_offset[reg];
1629 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1630 }
1631 for (int i = 0; i < inst->sources; i++) {
1632 if (inst->src[i].file == GRF) {
1633 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1634 inst->src[i].reg = new_virtual_grf[reg];
1635 inst->src[i].reg_offset = new_reg_offset[reg];
1636 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1637 }
1638 }
1639 }
1640 invalidate_live_intervals();
1641 }
1642
1643 /**
1644 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1645 *
1646 * During code generation, we create tons of temporary variables, many of
1647 * which get immediately killed and are never used again. Yet, in later
1648 * optimization and analysis passes, such as compute_live_intervals, we need
1649 * to loop over all the virtual GRFs. Compacting them can save a lot of
1650 * overhead.
1651 */
1652 bool
1653 fs_visitor::compact_virtual_grfs()
1654 {
1655 bool progress = false;
1656 int remap_table[this->alloc.count];
1657 memset(remap_table, -1, sizeof(remap_table));
1658
1659 /* Mark which virtual GRFs are used. */
1660 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1661 if (inst->dst.file == GRF)
1662 remap_table[inst->dst.reg] = 0;
1663
1664 for (int i = 0; i < inst->sources; i++) {
1665 if (inst->src[i].file == GRF)
1666 remap_table[inst->src[i].reg] = 0;
1667 }
1668 }
1669
1670 /* Compact the GRF arrays. */
1671 int new_index = 0;
1672 for (unsigned i = 0; i < this->alloc.count; i++) {
1673 if (remap_table[i] == -1) {
1674 /* We just found an unused register. This means that we are
1675 * actually going to compact something.
1676 */
1677 progress = true;
1678 } else {
1679 remap_table[i] = new_index;
1680 alloc.sizes[new_index] = alloc.sizes[i];
1681 invalidate_live_intervals();
1682 ++new_index;
1683 }
1684 }
1685
1686 this->alloc.count = new_index;
1687
1688 /* Patch all the instructions to use the newly renumbered registers */
1689 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1690 if (inst->dst.file == GRF)
1691 inst->dst.reg = remap_table[inst->dst.reg];
1692
1693 for (int i = 0; i < inst->sources; i++) {
1694 if (inst->src[i].file == GRF)
1695 inst->src[i].reg = remap_table[inst->src[i].reg];
1696 }
1697 }
1698
1699 /* Patch all the references to delta_xy, since they're used in register
1700 * allocation. If they're unused, switch them to BAD_FILE so we don't
1701 * think some random VGRF is delta_xy.
1702 */
1703 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1704 if (delta_xy[i].file == GRF) {
1705 if (remap_table[delta_xy[i].reg] != -1) {
1706 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1707 } else {
1708 delta_xy[i].file = BAD_FILE;
1709 }
1710 }
1711 }
1712
1713 return progress;
1714 }
1715
1716 /*
1717 * Implements array access of uniforms by inserting a
1718 * PULL_CONSTANT_LOAD instruction.
1719 *
1720 * Unlike temporary GRF array access (where we don't support it due to
1721 * the difficulty of doing relative addressing on instruction
1722 * destinations), we could potentially do array access of uniforms
1723 * that were loaded in GRF space as push constants. In real-world
1724 * usage we've seen, though, the arrays being used are always larger
1725 * than we could load as push constants, so just always move all
1726 * uniform array access out to a pull constant buffer.
1727 */
1728 void
1729 fs_visitor::move_uniform_array_access_to_pull_constants()
1730 {
1731 if (dispatch_width != 8)
1732 return;
1733
1734 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1735 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1736
1737 /* Walk through and find array access of uniforms. Put a copy of that
1738 * uniform in the pull constant buffer.
1739 *
1740 * Note that we don't move constant-indexed accesses to arrays. No
1741 * testing has been done of the performance impact of this choice.
1742 */
1743 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1744 for (int i = 0 ; i < inst->sources; i++) {
1745 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1746 continue;
1747
1748 int uniform = inst->src[i].reg;
1749
1750 /* If this array isn't already present in the pull constant buffer,
1751 * add it.
1752 */
1753 if (pull_constant_loc[uniform] == -1) {
1754 const gl_constant_value **values = &stage_prog_data->param[uniform];
1755
1756 assert(param_size[uniform]);
1757
1758 for (int j = 0; j < param_size[uniform]; j++) {
1759 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1760
1761 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1762 values[j];
1763 }
1764 }
1765 }
1766 }
1767 }
1768
1769 /**
1770 * Assign UNIFORM file registers to either push constants or pull constants.
1771 *
1772 * We allow a fragment shader to have more than the specified minimum
1773 * maximum number of fragment shader uniform components (64). If
1774 * there are too many of these, they'd fill up all of register space.
1775 * So, this will push some of them out to the pull constant buffer and
1776 * update the program to load them.
1777 */
1778 void
1779 fs_visitor::assign_constant_locations()
1780 {
1781 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1782 if (dispatch_width != 8)
1783 return;
1784
1785 /* Find which UNIFORM registers are still in use. */
1786 bool is_live[uniforms];
1787 for (unsigned int i = 0; i < uniforms; i++) {
1788 is_live[i] = false;
1789 }
1790
1791 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1792 for (int i = 0; i < inst->sources; i++) {
1793 if (inst->src[i].file != UNIFORM)
1794 continue;
1795
1796 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1797 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1798 is_live[constant_nr] = true;
1799 }
1800 }
1801
1802 /* Only allow 16 registers (128 uniform components) as push constants.
1803 *
1804 * Just demote the end of the list. We could probably do better
1805 * here, demoting things that are rarely used in the program first.
1806 *
1807 * If changing this value, note the limitation about total_regs in
1808 * brw_curbe.c.
1809 */
1810 unsigned int max_push_components = 16 * 8;
1811 unsigned int num_push_constants = 0;
1812
1813 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1814
1815 for (unsigned int i = 0; i < uniforms; i++) {
1816 if (!is_live[i] || pull_constant_loc[i] != -1) {
1817 /* This UNIFORM register is either dead, or has already been demoted
1818 * to a pull const. Mark it as no longer living in the param[] array.
1819 */
1820 push_constant_loc[i] = -1;
1821 continue;
1822 }
1823
1824 if (num_push_constants < max_push_components) {
1825 /* Retain as a push constant. Record the location in the params[]
1826 * array.
1827 */
1828 push_constant_loc[i] = num_push_constants++;
1829 } else {
1830 /* Demote to a pull constant. */
1831 push_constant_loc[i] = -1;
1832
1833 int pull_index = stage_prog_data->nr_pull_params++;
1834 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1835 pull_constant_loc[i] = pull_index;
1836 }
1837 }
1838
1839 stage_prog_data->nr_params = num_push_constants;
1840
1841 /* Up until now, the param[] array has been indexed by reg + reg_offset
1842 * of UNIFORM registers. Condense it to only contain the uniforms we
1843 * chose to upload as push constants.
1844 */
1845 for (unsigned int i = 0; i < uniforms; i++) {
1846 int remapped = push_constant_loc[i];
1847
1848 if (remapped == -1)
1849 continue;
1850
1851 assert(remapped <= (int)i);
1852 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1853 }
1854 }
1855
1856 /**
1857 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1858 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1859 */
1860 void
1861 fs_visitor::demote_pull_constants()
1862 {
1863 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1864 for (int i = 0; i < inst->sources; i++) {
1865 if (inst->src[i].file != UNIFORM)
1866 continue;
1867
1868 int pull_index;
1869 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1870 if (location >= uniforms) /* Out of bounds access */
1871 pull_index = -1;
1872 else
1873 pull_index = pull_constant_loc[location];
1874
1875 if (pull_index == -1)
1876 continue;
1877
1878 /* Set up the annotation tracking for new generated instructions. */
1879 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1880 .at(block, inst);
1881 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1882 fs_reg dst = vgrf(glsl_type::float_type);
1883
1884 /* Generate a pull load into dst. */
1885 if (inst->src[i].reladdr) {
1886 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1887 surf_index,
1888 *inst->src[i].reladdr,
1889 pull_index);
1890 inst->src[i].reladdr = NULL;
1891 } else {
1892 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1893 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1894 dst, surf_index, offset);
1895 inst->src[i].set_smear(pull_index & 3);
1896 }
1897
1898 /* Rewrite the instruction to use the temporary VGRF. */
1899 inst->src[i].file = GRF;
1900 inst->src[i].reg = dst.reg;
1901 inst->src[i].reg_offset = 0;
1902 inst->src[i].width = dispatch_width;
1903 }
1904 }
1905 invalidate_live_intervals();
1906 }
1907
1908 bool
1909 fs_visitor::opt_algebraic()
1910 {
1911 bool progress = false;
1912
1913 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1914 switch (inst->opcode) {
1915 case BRW_OPCODE_MOV:
1916 if (inst->src[0].file != IMM)
1917 break;
1918
1919 if (inst->saturate) {
1920 if (inst->dst.type != inst->src[0].type)
1921 assert(!"unimplemented: saturate mixed types");
1922
1923 if (brw_saturate_immediate(inst->dst.type,
1924 &inst->src[0].fixed_hw_reg)) {
1925 inst->saturate = false;
1926 progress = true;
1927 }
1928 }
1929 break;
1930
1931 case BRW_OPCODE_MUL:
1932 if (inst->src[1].file != IMM)
1933 continue;
1934
1935 /* a * 1.0 = a */
1936 if (inst->src[1].is_one()) {
1937 inst->opcode = BRW_OPCODE_MOV;
1938 inst->src[1] = reg_undef;
1939 progress = true;
1940 break;
1941 }
1942
1943 /* a * -1.0 = -a */
1944 if (inst->src[1].is_negative_one()) {
1945 inst->opcode = BRW_OPCODE_MOV;
1946 inst->src[0].negate = !inst->src[0].negate;
1947 inst->src[1] = reg_undef;
1948 progress = true;
1949 break;
1950 }
1951
1952 /* a * 0.0 = 0.0 */
1953 if (inst->src[1].is_zero()) {
1954 inst->opcode = BRW_OPCODE_MOV;
1955 inst->src[0] = inst->src[1];
1956 inst->src[1] = reg_undef;
1957 progress = true;
1958 break;
1959 }
1960
1961 if (inst->src[0].file == IMM) {
1962 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1963 inst->opcode = BRW_OPCODE_MOV;
1964 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1965 inst->src[1] = reg_undef;
1966 progress = true;
1967 break;
1968 }
1969 break;
1970 case BRW_OPCODE_ADD:
1971 if (inst->src[1].file != IMM)
1972 continue;
1973
1974 /* a + 0.0 = a */
1975 if (inst->src[1].is_zero()) {
1976 inst->opcode = BRW_OPCODE_MOV;
1977 inst->src[1] = reg_undef;
1978 progress = true;
1979 break;
1980 }
1981
1982 if (inst->src[0].file == IMM) {
1983 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1984 inst->opcode = BRW_OPCODE_MOV;
1985 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1986 inst->src[1] = reg_undef;
1987 progress = true;
1988 break;
1989 }
1990 break;
1991 case BRW_OPCODE_OR:
1992 if (inst->src[0].equals(inst->src[1])) {
1993 inst->opcode = BRW_OPCODE_MOV;
1994 inst->src[1] = reg_undef;
1995 progress = true;
1996 break;
1997 }
1998 break;
1999 case BRW_OPCODE_LRP:
2000 if (inst->src[1].equals(inst->src[2])) {
2001 inst->opcode = BRW_OPCODE_MOV;
2002 inst->src[0] = inst->src[1];
2003 inst->src[1] = reg_undef;
2004 inst->src[2] = reg_undef;
2005 progress = true;
2006 break;
2007 }
2008 break;
2009 case BRW_OPCODE_CMP:
2010 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2011 inst->src[0].abs &&
2012 inst->src[0].negate &&
2013 inst->src[1].is_zero()) {
2014 inst->src[0].abs = false;
2015 inst->src[0].negate = false;
2016 inst->conditional_mod = BRW_CONDITIONAL_Z;
2017 progress = true;
2018 break;
2019 }
2020 break;
2021 case BRW_OPCODE_SEL:
2022 if (inst->src[0].equals(inst->src[1])) {
2023 inst->opcode = BRW_OPCODE_MOV;
2024 inst->src[1] = reg_undef;
2025 inst->predicate = BRW_PREDICATE_NONE;
2026 inst->predicate_inverse = false;
2027 progress = true;
2028 } else if (inst->saturate && inst->src[1].file == IMM) {
2029 switch (inst->conditional_mod) {
2030 case BRW_CONDITIONAL_LE:
2031 case BRW_CONDITIONAL_L:
2032 switch (inst->src[1].type) {
2033 case BRW_REGISTER_TYPE_F:
2034 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2035 inst->opcode = BRW_OPCODE_MOV;
2036 inst->src[1] = reg_undef;
2037 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2038 progress = true;
2039 }
2040 break;
2041 default:
2042 break;
2043 }
2044 break;
2045 case BRW_CONDITIONAL_GE:
2046 case BRW_CONDITIONAL_G:
2047 switch (inst->src[1].type) {
2048 case BRW_REGISTER_TYPE_F:
2049 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2050 inst->opcode = BRW_OPCODE_MOV;
2051 inst->src[1] = reg_undef;
2052 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2053 progress = true;
2054 }
2055 break;
2056 default:
2057 break;
2058 }
2059 default:
2060 break;
2061 }
2062 }
2063 break;
2064 case BRW_OPCODE_MAD:
2065 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2066 inst->opcode = BRW_OPCODE_MOV;
2067 inst->src[1] = reg_undef;
2068 inst->src[2] = reg_undef;
2069 progress = true;
2070 } else if (inst->src[0].is_zero()) {
2071 inst->opcode = BRW_OPCODE_MUL;
2072 inst->src[0] = inst->src[2];
2073 inst->src[2] = reg_undef;
2074 progress = true;
2075 } else if (inst->src[1].is_one()) {
2076 inst->opcode = BRW_OPCODE_ADD;
2077 inst->src[1] = inst->src[2];
2078 inst->src[2] = reg_undef;
2079 progress = true;
2080 } else if (inst->src[2].is_one()) {
2081 inst->opcode = BRW_OPCODE_ADD;
2082 inst->src[2] = reg_undef;
2083 progress = true;
2084 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2085 inst->opcode = BRW_OPCODE_ADD;
2086 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2087 inst->src[2] = reg_undef;
2088 progress = true;
2089 }
2090 break;
2091 case SHADER_OPCODE_RCP: {
2092 fs_inst *prev = (fs_inst *)inst->prev;
2093 if (prev->opcode == SHADER_OPCODE_SQRT) {
2094 if (inst->src[0].equals(prev->dst)) {
2095 inst->opcode = SHADER_OPCODE_RSQ;
2096 inst->src[0] = prev->src[0];
2097 progress = true;
2098 }
2099 }
2100 break;
2101 }
2102 case SHADER_OPCODE_BROADCAST:
2103 if (is_uniform(inst->src[0])) {
2104 inst->opcode = BRW_OPCODE_MOV;
2105 inst->sources = 1;
2106 inst->force_writemask_all = true;
2107 progress = true;
2108 } else if (inst->src[1].file == IMM) {
2109 inst->opcode = BRW_OPCODE_MOV;
2110 inst->src[0] = component(inst->src[0],
2111 inst->src[1].fixed_hw_reg.dw1.ud);
2112 inst->sources = 1;
2113 inst->force_writemask_all = true;
2114 progress = true;
2115 }
2116 break;
2117
2118 default:
2119 break;
2120 }
2121
2122 /* Swap if src[0] is immediate. */
2123 if (progress && inst->is_commutative()) {
2124 if (inst->src[0].file == IMM) {
2125 fs_reg tmp = inst->src[1];
2126 inst->src[1] = inst->src[0];
2127 inst->src[0] = tmp;
2128 }
2129 }
2130 }
2131 return progress;
2132 }
2133
2134 /**
2135 * Optimize sample messages that have constant zero values for the trailing
2136 * texture coordinates. We can just reduce the message length for these
2137 * instructions instead of reserving a register for it. Trailing parameters
2138 * that aren't sent default to zero anyway. This will cause the dead code
2139 * eliminator to remove the MOV instruction that would otherwise be emitted to
2140 * set up the zero value.
2141 */
2142 bool
2143 fs_visitor::opt_zero_samples()
2144 {
2145 /* Gen4 infers the texturing opcode based on the message length so we can't
2146 * change it.
2147 */
2148 if (devinfo->gen < 5)
2149 return false;
2150
2151 bool progress = false;
2152
2153 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2154 if (!inst->is_tex())
2155 continue;
2156
2157 fs_inst *load_payload = (fs_inst *) inst->prev;
2158
2159 if (load_payload->is_head_sentinel() ||
2160 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2161 continue;
2162
2163 /* We don't want to remove the message header or the first parameter.
2164 * Removing the first parameter is not allowed, see the Haswell PRM
2165 * volume 7, page 149:
2166 *
2167 * "Parameter 0 is required except for the sampleinfo message, which
2168 * has no parameter 0"
2169 */
2170 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2171 load_payload->src[(inst->mlen - inst->header_size) /
2172 (dispatch_width / 8) +
2173 inst->header_size - 1].is_zero()) {
2174 inst->mlen -= dispatch_width / 8;
2175 progress = true;
2176 }
2177 }
2178
2179 if (progress)
2180 invalidate_live_intervals();
2181
2182 return progress;
2183 }
2184
2185 /**
2186 * Optimize sample messages which are followed by the final RT write.
2187 *
2188 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2189 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2190 * final texturing results copied to the framebuffer write payload and modify
2191 * them to write to the framebuffer directly.
2192 */
2193 bool
2194 fs_visitor::opt_sampler_eot()
2195 {
2196 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2197
2198 if (stage != MESA_SHADER_FRAGMENT)
2199 return false;
2200
2201 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2202 return false;
2203
2204 /* FINISHME: It should be possible to implement this optimization when there
2205 * are multiple drawbuffers.
2206 */
2207 if (key->nr_color_regions != 1)
2208 return false;
2209
2210 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2211 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2212 assert(fb_write->eot);
2213 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2214
2215 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2216
2217 /* There wasn't one; nothing to do. */
2218 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2219 return false;
2220
2221 /* This optimisation doesn't seem to work for textureGather for some
2222 * reason. I can't find any documentation or known workarounds to indicate
2223 * that this is expected, but considering that it is probably pretty
2224 * unlikely that a shader would directly write out the results from
2225 * textureGather we might as well just disable it.
2226 */
2227 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2228 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2229 return false;
2230
2231 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2232 * It's very likely to be the previous instruction.
2233 */
2234 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2235 if (load_payload->is_head_sentinel() ||
2236 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2237 return false;
2238
2239 assert(!tex_inst->eot); /* We can't get here twice */
2240 assert((tex_inst->offset & (0xff << 24)) == 0);
2241
2242 tex_inst->offset |= fb_write->target << 24;
2243 tex_inst->eot = true;
2244 tex_inst->dst = bld.null_reg_ud();
2245 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2246
2247 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2248 * to create a new LOAD_PAYLOAD command with the same sources and a space
2249 * saved for the header. Using a new destination register not only makes sure
2250 * we have enough space, but it will make sure the dead code eliminator kills
2251 * the instruction that this will replace.
2252 */
2253 if (tex_inst->header_size != 0)
2254 return true;
2255
2256 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2257 load_payload->sources + 1);
2258 fs_reg *new_sources =
2259 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2260
2261 new_sources[0] = fs_reg();
2262 for (int i = 0; i < load_payload->sources; i++)
2263 new_sources[i+1] = load_payload->src[i];
2264
2265 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2266 * requires a lot of information about the sources to appropriately figure
2267 * out the number of registers needed to be used. Given this stage in our
2268 * optimization, we may not have the appropriate GRFs required by
2269 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2270 * manually emit the instruction.
2271 */
2272 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2273 load_payload->exec_size,
2274 send_header,
2275 new_sources,
2276 load_payload->sources + 1);
2277
2278 new_load_payload->regs_written = load_payload->regs_written + 1;
2279 new_load_payload->header_size = 1;
2280 tex_inst->mlen++;
2281 tex_inst->header_size = 1;
2282 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2283 tex_inst->src[0] = send_header;
2284
2285 return true;
2286 }
2287
2288 bool
2289 fs_visitor::opt_register_renaming()
2290 {
2291 bool progress = false;
2292 int depth = 0;
2293
2294 int remap[alloc.count];
2295 memset(remap, -1, sizeof(int) * alloc.count);
2296
2297 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2298 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2299 depth++;
2300 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2301 inst->opcode == BRW_OPCODE_WHILE) {
2302 depth--;
2303 }
2304
2305 /* Rewrite instruction sources. */
2306 for (int i = 0; i < inst->sources; i++) {
2307 if (inst->src[i].file == GRF &&
2308 remap[inst->src[i].reg] != -1 &&
2309 remap[inst->src[i].reg] != inst->src[i].reg) {
2310 inst->src[i].reg = remap[inst->src[i].reg];
2311 progress = true;
2312 }
2313 }
2314
2315 const int dst = inst->dst.reg;
2316
2317 if (depth == 0 &&
2318 inst->dst.file == GRF &&
2319 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2320 !inst->is_partial_write()) {
2321 if (remap[dst] == -1) {
2322 remap[dst] = dst;
2323 } else {
2324 remap[dst] = alloc.allocate(inst->dst.width / 8);
2325 inst->dst.reg = remap[dst];
2326 progress = true;
2327 }
2328 } else if (inst->dst.file == GRF &&
2329 remap[dst] != -1 &&
2330 remap[dst] != dst) {
2331 inst->dst.reg = remap[dst];
2332 progress = true;
2333 }
2334 }
2335
2336 if (progress) {
2337 invalidate_live_intervals();
2338
2339 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2340 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2341 delta_xy[i].reg = remap[delta_xy[i].reg];
2342 }
2343 }
2344 }
2345
2346 return progress;
2347 }
2348
2349 /**
2350 * Remove redundant or useless discard jumps.
2351 *
2352 * For example, we can eliminate jumps in the following sequence:
2353 *
2354 * discard-jump (redundant with the next jump)
2355 * discard-jump (useless; jumps to the next instruction)
2356 * placeholder-halt
2357 */
2358 bool
2359 fs_visitor::opt_redundant_discard_jumps()
2360 {
2361 bool progress = false;
2362
2363 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2364
2365 fs_inst *placeholder_halt = NULL;
2366 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2367 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2368 placeholder_halt = inst;
2369 break;
2370 }
2371 }
2372
2373 if (!placeholder_halt)
2374 return false;
2375
2376 /* Delete any HALTs immediately before the placeholder halt. */
2377 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2378 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2379 prev = (fs_inst *) placeholder_halt->prev) {
2380 prev->remove(last_bblock);
2381 progress = true;
2382 }
2383
2384 if (progress)
2385 invalidate_live_intervals();
2386
2387 return progress;
2388 }
2389
2390 bool
2391 fs_visitor::compute_to_mrf()
2392 {
2393 bool progress = false;
2394 int next_ip = 0;
2395
2396 /* No MRFs on Gen >= 7. */
2397 if (devinfo->gen >= 7)
2398 return false;
2399
2400 calculate_live_intervals();
2401
2402 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2403 int ip = next_ip;
2404 next_ip++;
2405
2406 if (inst->opcode != BRW_OPCODE_MOV ||
2407 inst->is_partial_write() ||
2408 inst->dst.file != MRF || inst->src[0].file != GRF ||
2409 inst->dst.type != inst->src[0].type ||
2410 inst->src[0].abs || inst->src[0].negate ||
2411 !inst->src[0].is_contiguous() ||
2412 inst->src[0].subreg_offset)
2413 continue;
2414
2415 /* Work out which hardware MRF registers are written by this
2416 * instruction.
2417 */
2418 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2419 int mrf_high;
2420 if (inst->dst.reg & BRW_MRF_COMPR4) {
2421 mrf_high = mrf_low + 4;
2422 } else if (inst->exec_size == 16) {
2423 mrf_high = mrf_low + 1;
2424 } else {
2425 mrf_high = mrf_low;
2426 }
2427
2428 /* Can't compute-to-MRF this GRF if someone else was going to
2429 * read it later.
2430 */
2431 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2432 continue;
2433
2434 /* Found a move of a GRF to a MRF. Let's see if we can go
2435 * rewrite the thing that made this GRF to write into the MRF.
2436 */
2437 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2438 if (scan_inst->dst.file == GRF &&
2439 scan_inst->dst.reg == inst->src[0].reg) {
2440 /* Found the last thing to write our reg we want to turn
2441 * into a compute-to-MRF.
2442 */
2443
2444 /* If this one instruction didn't populate all the
2445 * channels, bail. We might be able to rewrite everything
2446 * that writes that reg, but it would require smarter
2447 * tracking to delay the rewriting until complete success.
2448 */
2449 if (scan_inst->is_partial_write())
2450 break;
2451
2452 /* Things returning more than one register would need us to
2453 * understand coalescing out more than one MOV at a time.
2454 */
2455 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2456 break;
2457
2458 /* SEND instructions can't have MRF as a destination. */
2459 if (scan_inst->mlen)
2460 break;
2461
2462 if (devinfo->gen == 6) {
2463 /* gen6 math instructions must have the destination be
2464 * GRF, so no compute-to-MRF for them.
2465 */
2466 if (scan_inst->is_math()) {
2467 break;
2468 }
2469 }
2470
2471 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2472 /* Found the creator of our MRF's source value. */
2473 scan_inst->dst.file = MRF;
2474 scan_inst->dst.reg = inst->dst.reg;
2475 scan_inst->saturate |= inst->saturate;
2476 inst->remove(block);
2477 progress = true;
2478 }
2479 break;
2480 }
2481
2482 /* We don't handle control flow here. Most computation of
2483 * values that end up in MRFs are shortly before the MRF
2484 * write anyway.
2485 */
2486 if (block->start() == scan_inst)
2487 break;
2488
2489 /* You can't read from an MRF, so if someone else reads our
2490 * MRF's source GRF that we wanted to rewrite, that stops us.
2491 */
2492 bool interfered = false;
2493 for (int i = 0; i < scan_inst->sources; i++) {
2494 if (scan_inst->src[i].file == GRF &&
2495 scan_inst->src[i].reg == inst->src[0].reg &&
2496 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2497 interfered = true;
2498 }
2499 }
2500 if (interfered)
2501 break;
2502
2503 if (scan_inst->dst.file == MRF) {
2504 /* If somebody else writes our MRF here, we can't
2505 * compute-to-MRF before that.
2506 */
2507 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2508 int scan_mrf_high;
2509
2510 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2511 scan_mrf_high = scan_mrf_low + 4;
2512 } else if (scan_inst->exec_size == 16) {
2513 scan_mrf_high = scan_mrf_low + 1;
2514 } else {
2515 scan_mrf_high = scan_mrf_low;
2516 }
2517
2518 if (mrf_low == scan_mrf_low ||
2519 mrf_low == scan_mrf_high ||
2520 mrf_high == scan_mrf_low ||
2521 mrf_high == scan_mrf_high) {
2522 break;
2523 }
2524 }
2525
2526 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2527 /* Found a SEND instruction, which means that there are
2528 * live values in MRFs from base_mrf to base_mrf +
2529 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2530 * above it.
2531 */
2532 if (mrf_low >= scan_inst->base_mrf &&
2533 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2534 break;
2535 }
2536 if (mrf_high >= scan_inst->base_mrf &&
2537 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2538 break;
2539 }
2540 }
2541 }
2542 }
2543
2544 if (progress)
2545 invalidate_live_intervals();
2546
2547 return progress;
2548 }
2549
2550 /**
2551 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2552 * flow. We could probably do better here with some form of divergence
2553 * analysis.
2554 */
2555 bool
2556 fs_visitor::eliminate_find_live_channel()
2557 {
2558 bool progress = false;
2559 unsigned depth = 0;
2560
2561 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2562 switch (inst->opcode) {
2563 case BRW_OPCODE_IF:
2564 case BRW_OPCODE_DO:
2565 depth++;
2566 break;
2567
2568 case BRW_OPCODE_ENDIF:
2569 case BRW_OPCODE_WHILE:
2570 depth--;
2571 break;
2572
2573 case FS_OPCODE_DISCARD_JUMP:
2574 /* This can potentially make control flow non-uniform until the end
2575 * of the program.
2576 */
2577 return progress;
2578
2579 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2580 if (depth == 0) {
2581 inst->opcode = BRW_OPCODE_MOV;
2582 inst->src[0] = fs_reg(0);
2583 inst->sources = 1;
2584 inst->force_writemask_all = true;
2585 progress = true;
2586 }
2587 break;
2588
2589 default:
2590 break;
2591 }
2592 }
2593
2594 return progress;
2595 }
2596
2597 /**
2598 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2599 * instructions to FS_OPCODE_REP_FB_WRITE.
2600 */
2601 void
2602 fs_visitor::emit_repclear_shader()
2603 {
2604 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2605 int base_mrf = 1;
2606 int color_mrf = base_mrf + 2;
2607
2608 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2609 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2610
2611 fs_inst *write;
2612 if (key->nr_color_regions == 1) {
2613 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2614 write->saturate = key->clamp_fragment_color;
2615 write->base_mrf = color_mrf;
2616 write->target = 0;
2617 write->header_size = 0;
2618 write->mlen = 1;
2619 } else {
2620 assume(key->nr_color_regions > 0);
2621 for (int i = 0; i < key->nr_color_regions; ++i) {
2622 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2623 write->saturate = key->clamp_fragment_color;
2624 write->base_mrf = base_mrf;
2625 write->target = i;
2626 write->header_size = 2;
2627 write->mlen = 3;
2628 }
2629 }
2630 write->eot = true;
2631
2632 calculate_cfg();
2633
2634 assign_constant_locations();
2635 assign_curb_setup();
2636
2637 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2638 assert(mov->src[0].file == HW_REG);
2639 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2640 }
2641
2642 /**
2643 * Walks through basic blocks, looking for repeated MRF writes and
2644 * removing the later ones.
2645 */
2646 bool
2647 fs_visitor::remove_duplicate_mrf_writes()
2648 {
2649 fs_inst *last_mrf_move[16];
2650 bool progress = false;
2651
2652 /* Need to update the MRF tracking for compressed instructions. */
2653 if (dispatch_width == 16)
2654 return false;
2655
2656 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2657
2658 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2659 if (inst->is_control_flow()) {
2660 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2661 }
2662
2663 if (inst->opcode == BRW_OPCODE_MOV &&
2664 inst->dst.file == MRF) {
2665 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2666 if (prev_inst && inst->equals(prev_inst)) {
2667 inst->remove(block);
2668 progress = true;
2669 continue;
2670 }
2671 }
2672
2673 /* Clear out the last-write records for MRFs that were overwritten. */
2674 if (inst->dst.file == MRF) {
2675 last_mrf_move[inst->dst.reg] = NULL;
2676 }
2677
2678 if (inst->mlen > 0 && inst->base_mrf != -1) {
2679 /* Found a SEND instruction, which will include two or fewer
2680 * implied MRF writes. We could do better here.
2681 */
2682 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2683 last_mrf_move[inst->base_mrf + i] = NULL;
2684 }
2685 }
2686
2687 /* Clear out any MRF move records whose sources got overwritten. */
2688 if (inst->dst.file == GRF) {
2689 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2690 if (last_mrf_move[i] &&
2691 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2692 last_mrf_move[i] = NULL;
2693 }
2694 }
2695 }
2696
2697 if (inst->opcode == BRW_OPCODE_MOV &&
2698 inst->dst.file == MRF &&
2699 inst->src[0].file == GRF &&
2700 !inst->is_partial_write()) {
2701 last_mrf_move[inst->dst.reg] = inst;
2702 }
2703 }
2704
2705 if (progress)
2706 invalidate_live_intervals();
2707
2708 return progress;
2709 }
2710
2711 static void
2712 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2713 {
2714 /* Clear the flag for registers that actually got read (as expected). */
2715 for (int i = 0; i < inst->sources; i++) {
2716 int grf;
2717 if (inst->src[i].file == GRF) {
2718 grf = inst->src[i].reg;
2719 } else if (inst->src[i].file == HW_REG &&
2720 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2721 grf = inst->src[i].fixed_hw_reg.nr;
2722 } else {
2723 continue;
2724 }
2725
2726 if (grf >= first_grf &&
2727 grf < first_grf + grf_len) {
2728 deps[grf - first_grf] = false;
2729 if (inst->exec_size == 16)
2730 deps[grf - first_grf + 1] = false;
2731 }
2732 }
2733 }
2734
2735 /**
2736 * Implements this workaround for the original 965:
2737 *
2738 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2739 * check for post destination dependencies on this instruction, software
2740 * must ensure that there is no destination hazard for the case of ‘write
2741 * followed by a posted write’ shown in the following example.
2742 *
2743 * 1. mov r3 0
2744 * 2. send r3.xy <rest of send instruction>
2745 * 3. mov r2 r3
2746 *
2747 * Due to no post-destination dependency check on the ‘send’, the above
2748 * code sequence could have two instructions (1 and 2) in flight at the
2749 * same time that both consider ‘r3’ as the target of their final writes.
2750 */
2751 void
2752 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2753 fs_inst *inst)
2754 {
2755 int write_len = inst->regs_written;
2756 int first_write_grf = inst->dst.reg;
2757 bool needs_dep[BRW_MAX_MRF];
2758 assert(write_len < (int)sizeof(needs_dep) - 1);
2759
2760 memset(needs_dep, false, sizeof(needs_dep));
2761 memset(needs_dep, true, write_len);
2762
2763 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2764
2765 /* Walk backwards looking for writes to registers we're writing which
2766 * aren't read since being written. If we hit the start of the program,
2767 * we assume that there are no outstanding dependencies on entry to the
2768 * program.
2769 */
2770 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2771 /* If we hit control flow, assume that there *are* outstanding
2772 * dependencies, and force their cleanup before our instruction.
2773 */
2774 if (block->start() == scan_inst) {
2775 for (int i = 0; i < write_len; i++) {
2776 if (needs_dep[i])
2777 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2778 }
2779 return;
2780 }
2781
2782 /* We insert our reads as late as possible on the assumption that any
2783 * instruction but a MOV that might have left us an outstanding
2784 * dependency has more latency than a MOV.
2785 */
2786 if (scan_inst->dst.file == GRF) {
2787 for (int i = 0; i < scan_inst->regs_written; i++) {
2788 int reg = scan_inst->dst.reg + i;
2789
2790 if (reg >= first_write_grf &&
2791 reg < first_write_grf + write_len &&
2792 needs_dep[reg - first_write_grf]) {
2793 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2794 needs_dep[reg - first_write_grf] = false;
2795 if (scan_inst->exec_size == 16)
2796 needs_dep[reg - first_write_grf + 1] = false;
2797 }
2798 }
2799 }
2800
2801 /* Clear the flag for registers that actually got read (as expected). */
2802 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2803
2804 /* Continue the loop only if we haven't resolved all the dependencies */
2805 int i;
2806 for (i = 0; i < write_len; i++) {
2807 if (needs_dep[i])
2808 break;
2809 }
2810 if (i == write_len)
2811 return;
2812 }
2813 }
2814
2815 /**
2816 * Implements this workaround for the original 965:
2817 *
2818 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2819 * used as a destination register until after it has been sourced by an
2820 * instruction with a different destination register.
2821 */
2822 void
2823 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2824 {
2825 int write_len = inst->regs_written;
2826 int first_write_grf = inst->dst.reg;
2827 bool needs_dep[BRW_MAX_MRF];
2828 assert(write_len < (int)sizeof(needs_dep) - 1);
2829
2830 memset(needs_dep, false, sizeof(needs_dep));
2831 memset(needs_dep, true, write_len);
2832 /* Walk forwards looking for writes to registers we're writing which aren't
2833 * read before being written.
2834 */
2835 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2836 /* If we hit control flow, force resolve all remaining dependencies. */
2837 if (block->end() == scan_inst) {
2838 for (int i = 0; i < write_len; i++) {
2839 if (needs_dep[i])
2840 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2841 }
2842 return;
2843 }
2844
2845 /* Clear the flag for registers that actually got read (as expected). */
2846 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2847
2848 /* We insert our reads as late as possible since they're reading the
2849 * result of a SEND, which has massive latency.
2850 */
2851 if (scan_inst->dst.file == GRF &&
2852 scan_inst->dst.reg >= first_write_grf &&
2853 scan_inst->dst.reg < first_write_grf + write_len &&
2854 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2855 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2856 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2857 }
2858
2859 /* Continue the loop only if we haven't resolved all the dependencies */
2860 int i;
2861 for (i = 0; i < write_len; i++) {
2862 if (needs_dep[i])
2863 break;
2864 }
2865 if (i == write_len)
2866 return;
2867 }
2868 }
2869
2870 void
2871 fs_visitor::insert_gen4_send_dependency_workarounds()
2872 {
2873 if (devinfo->gen != 4 || devinfo->is_g4x)
2874 return;
2875
2876 bool progress = false;
2877
2878 /* Note that we're done with register allocation, so GRF fs_regs always
2879 * have a .reg_offset of 0.
2880 */
2881
2882 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2883 if (inst->mlen != 0 && inst->dst.file == GRF) {
2884 insert_gen4_pre_send_dependency_workarounds(block, inst);
2885 insert_gen4_post_send_dependency_workarounds(block, inst);
2886 progress = true;
2887 }
2888 }
2889
2890 if (progress)
2891 invalidate_live_intervals();
2892 }
2893
2894 /**
2895 * Turns the generic expression-style uniform pull constant load instruction
2896 * into a hardware-specific series of instructions for loading a pull
2897 * constant.
2898 *
2899 * The expression style allows the CSE pass before this to optimize out
2900 * repeated loads from the same offset, and gives the pre-register-allocation
2901 * scheduling full flexibility, while the conversion to native instructions
2902 * allows the post-register-allocation scheduler the best information
2903 * possible.
2904 *
2905 * Note that execution masking for setting up pull constant loads is special:
2906 * the channels that need to be written are unrelated to the current execution
2907 * mask, since a later instruction will use one of the result channels as a
2908 * source operand for all 8 or 16 of its channels.
2909 */
2910 void
2911 fs_visitor::lower_uniform_pull_constant_loads()
2912 {
2913 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2914 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2915 continue;
2916
2917 if (devinfo->gen >= 7) {
2918 /* The offset arg before was a vec4-aligned byte offset. We need to
2919 * turn it into a dword offset.
2920 */
2921 fs_reg const_offset_reg = inst->src[1];
2922 assert(const_offset_reg.file == IMM &&
2923 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2924 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2925
2926 fs_reg payload, offset;
2927 if (devinfo->gen >= 9) {
2928 /* We have to use a message header on Skylake to get SIMD4x2
2929 * mode. Reserve space for the register.
2930 */
2931 offset = payload = fs_reg(GRF, alloc.allocate(2));
2932 offset.reg_offset++;
2933 inst->mlen = 2;
2934 } else {
2935 offset = payload = fs_reg(GRF, alloc.allocate(1));
2936 inst->mlen = 1;
2937 }
2938
2939 /* This is actually going to be a MOV, but since only the first dword
2940 * is accessed, we have a special opcode to do just that one. Note
2941 * that this needs to be an operation that will be considered a def
2942 * by live variable analysis, or register allocation will explode.
2943 */
2944 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2945 8, offset, const_offset_reg);
2946 setup->force_writemask_all = true;
2947
2948 setup->ir = inst->ir;
2949 setup->annotation = inst->annotation;
2950 inst->insert_before(block, setup);
2951
2952 /* Similarly, this will only populate the first 4 channels of the
2953 * result register (since we only use smear values from 0-3), but we
2954 * don't tell the optimizer.
2955 */
2956 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2957 inst->src[1] = payload;
2958 inst->base_mrf = -1;
2959
2960 invalidate_live_intervals();
2961 } else {
2962 /* Before register allocation, we didn't tell the scheduler about the
2963 * MRF we use. We know it's safe to use this MRF because nothing
2964 * else does except for register spill/unspill, which generates and
2965 * uses its MRF within a single IR instruction.
2966 */
2967 inst->base_mrf = 14;
2968 inst->mlen = 1;
2969 }
2970 }
2971 }
2972
2973 bool
2974 fs_visitor::lower_load_payload()
2975 {
2976 bool progress = false;
2977
2978 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2979 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2980 continue;
2981
2982 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2983 assert(inst->saturate == false);
2984
2985 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
2986 .exec_all(inst->force_writemask_all)
2987 .at(block, inst);
2988 fs_reg dst = inst->dst;
2989
2990 /* Get rid of COMPR4. We'll add it back in if we need it */
2991 if (dst.file == MRF)
2992 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
2993
2994 dst.width = 8;
2995 for (uint8_t i = 0; i < inst->header_size; i++) {
2996 if (inst->src[i].file != BAD_FILE) {
2997 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
2998 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
2999 mov_src.width = 8;
3000 ibld.exec_all().MOV(mov_dst, mov_src);
3001 }
3002 dst = offset(dst, 1);
3003 }
3004
3005 dst.width = inst->exec_size;
3006 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3007 inst->exec_size > 8) {
3008 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3009 * a straightforward copy. Instead, the result of the
3010 * LOAD_PAYLOAD is treated as interleaved and the first four
3011 * non-header sources are unpacked as:
3012 *
3013 * m + 0: r0
3014 * m + 1: g0
3015 * m + 2: b0
3016 * m + 3: a0
3017 * m + 4: r1
3018 * m + 5: g1
3019 * m + 6: b1
3020 * m + 7: a1
3021 *
3022 * This is used for gen <= 5 fb writes.
3023 */
3024 assert(inst->exec_size == 16);
3025 assert(inst->header_size + 4 <= inst->sources);
3026 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3027 if (inst->src[i].file != BAD_FILE) {
3028 if (devinfo->has_compr4) {
3029 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3030 compr4_dst.reg |= BRW_MRF_COMPR4;
3031 ibld.MOV(compr4_dst, inst->src[i]);
3032 } else {
3033 /* Platform doesn't have COMPR4. We have to fake it */
3034 fs_reg mov_dst = retype(dst, inst->src[i].type);
3035 mov_dst.width = 8;
3036 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3037 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3038 }
3039 }
3040
3041 dst.reg++;
3042 }
3043
3044 /* The loop above only ever incremented us through the first set
3045 * of 4 registers. However, thanks to the magic of COMPR4, we
3046 * actually wrote to the first 8 registers, so we need to take
3047 * that into account now.
3048 */
3049 dst.reg += 4;
3050
3051 /* The COMPR4 code took care of the first 4 sources. We'll let
3052 * the regular path handle any remaining sources. Yes, we are
3053 * modifying the instruction but we're about to delete it so
3054 * this really doesn't hurt anything.
3055 */
3056 inst->header_size += 4;
3057 }
3058
3059 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3060 if (inst->src[i].file != BAD_FILE)
3061 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3062 dst = offset(dst, 1);
3063 }
3064
3065 inst->remove(block);
3066 progress = true;
3067 }
3068
3069 if (progress)
3070 invalidate_live_intervals();
3071
3072 return progress;
3073 }
3074
3075 bool
3076 fs_visitor::lower_integer_multiplication()
3077 {
3078 bool progress = false;
3079
3080 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3081 * directly, but Cherryview cannot.
3082 */
3083 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3084 return false;
3085
3086 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3087 if (inst->opcode != BRW_OPCODE_MUL ||
3088 inst->dst.is_accumulator() ||
3089 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3090 inst->dst.type != BRW_REGISTER_TYPE_UD))
3091 continue;
3092
3093 const fs_builder ibld = bld.at(block, inst);
3094
3095 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3096 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3097 * src1 are used.
3098 *
3099 * If multiplying by an immediate value that fits in 16-bits, do a
3100 * single MUL instruction with that value in the proper location.
3101 */
3102 if (inst->src[1].file == IMM &&
3103 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3104 if (devinfo->gen < 7) {
3105 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3106 inst->dst.type, dispatch_width);
3107 ibld.MOV(imm, inst->src[1]);
3108 ibld.MUL(inst->dst, imm, inst->src[0]);
3109 } else {
3110 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3111 }
3112 } else {
3113 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3114 * do 32-bit integer multiplication in one instruction, but instead
3115 * must do a sequence (which actually calculates a 64-bit result):
3116 *
3117 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3118 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3119 * mov(8) g2<1>D acc0<8,8,1>D
3120 *
3121 * But on Gen > 6, the ability to use second accumulator register
3122 * (acc1) for non-float data types was removed, preventing a simple
3123 * implementation in SIMD16. A 16-channel result can be calculated by
3124 * executing the three instructions twice in SIMD8, once with quarter
3125 * control of 1Q for the first eight channels and again with 2Q for
3126 * the second eight channels.
3127 *
3128 * Which accumulator register is implicitly accessed (by AccWrEnable
3129 * for instance) is determined by the quarter control. Unfortunately
3130 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3131 * implicit accumulator access by an instruction with 2Q will access
3132 * acc1 regardless of whether the data type is usable in acc1.
3133 *
3134 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3135 * integer data types.
3136 *
3137 * Since we only want the low 32-bits of the result, we can do two
3138 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3139 * adjust the high result and add them (like the mach is doing):
3140 *
3141 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3142 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3143 * shl(8) g9<1>D g8<8,8,1>D 16D
3144 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3145 *
3146 * We avoid the shl instruction by realizing that we only want to add
3147 * the low 16-bits of the "high" result to the high 16-bits of the
3148 * "low" result and using proper regioning on the add:
3149 *
3150 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3151 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3152 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3153 *
3154 * Since it does not use the (single) accumulator register, we can
3155 * schedule multi-component multiplications much better.
3156 */
3157
3158 if (inst->conditional_mod && inst->dst.is_null()) {
3159 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3160 inst->dst.type, dispatch_width);
3161 }
3162 fs_reg low = inst->dst;
3163 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3164 inst->dst.type, dispatch_width);
3165
3166 if (devinfo->gen >= 7) {
3167 fs_reg src1_0_w = inst->src[1];
3168 fs_reg src1_1_w = inst->src[1];
3169
3170 if (inst->src[1].file == IMM) {
3171 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3172 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3173 } else {
3174 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3175 if (src1_0_w.stride != 0) {
3176 assert(src1_0_w.stride == 1);
3177 src1_0_w.stride = 2;
3178 }
3179
3180 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3181 if (src1_1_w.stride != 0) {
3182 assert(src1_1_w.stride == 1);
3183 src1_1_w.stride = 2;
3184 }
3185 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3186 }
3187 ibld.MUL(low, inst->src[0], src1_0_w);
3188 ibld.MUL(high, inst->src[0], src1_1_w);
3189 } else {
3190 fs_reg src0_0_w = inst->src[0];
3191 fs_reg src0_1_w = inst->src[0];
3192
3193 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3194 if (src0_0_w.stride != 0) {
3195 assert(src0_0_w.stride == 1);
3196 src0_0_w.stride = 2;
3197 }
3198
3199 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3200 if (src0_1_w.stride != 0) {
3201 assert(src0_1_w.stride == 1);
3202 src0_1_w.stride = 2;
3203 }
3204 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3205
3206 ibld.MUL(low, src0_0_w, inst->src[1]);
3207 ibld.MUL(high, src0_1_w, inst->src[1]);
3208 }
3209
3210 fs_reg dst = inst->dst;
3211 dst.type = BRW_REGISTER_TYPE_UW;
3212 dst.subreg_offset = 2;
3213 dst.stride = 2;
3214
3215 high.type = BRW_REGISTER_TYPE_UW;
3216 high.stride = 2;
3217
3218 low.type = BRW_REGISTER_TYPE_UW;
3219 low.subreg_offset = 2;
3220 low.stride = 2;
3221
3222 ibld.ADD(dst, low, high);
3223
3224 if (inst->conditional_mod) {
3225 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3226 set_condmod(inst->conditional_mod,
3227 ibld.MOV(null, inst->dst));
3228 }
3229 }
3230
3231 inst->remove(block);
3232 progress = true;
3233 }
3234
3235 if (progress)
3236 invalidate_live_intervals();
3237
3238 return progress;
3239 }
3240
3241 void
3242 fs_visitor::dump_instructions()
3243 {
3244 dump_instructions(NULL);
3245 }
3246
3247 void
3248 fs_visitor::dump_instructions(const char *name)
3249 {
3250 FILE *file = stderr;
3251 if (name && geteuid() != 0) {
3252 file = fopen(name, "w");
3253 if (!file)
3254 file = stderr;
3255 }
3256
3257 if (cfg) {
3258 calculate_register_pressure();
3259 int ip = 0, max_pressure = 0;
3260 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3261 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3262 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3263 dump_instruction(inst, file);
3264 ip++;
3265 }
3266 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3267 } else {
3268 int ip = 0;
3269 foreach_in_list(backend_instruction, inst, &instructions) {
3270 fprintf(file, "%4d: ", ip++);
3271 dump_instruction(inst, file);
3272 }
3273 }
3274
3275 if (file != stderr) {
3276 fclose(file);
3277 }
3278 }
3279
3280 void
3281 fs_visitor::dump_instruction(backend_instruction *be_inst)
3282 {
3283 dump_instruction(be_inst, stderr);
3284 }
3285
3286 void
3287 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3288 {
3289 fs_inst *inst = (fs_inst *)be_inst;
3290
3291 if (inst->predicate) {
3292 fprintf(file, "(%cf0.%d) ",
3293 inst->predicate_inverse ? '-' : '+',
3294 inst->flag_subreg);
3295 }
3296
3297 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3298 if (inst->saturate)
3299 fprintf(file, ".sat");
3300 if (inst->conditional_mod) {
3301 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3302 if (!inst->predicate &&
3303 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3304 inst->opcode != BRW_OPCODE_IF &&
3305 inst->opcode != BRW_OPCODE_WHILE))) {
3306 fprintf(file, ".f0.%d", inst->flag_subreg);
3307 }
3308 }
3309 fprintf(file, "(%d) ", inst->exec_size);
3310
3311 if (inst->mlen) {
3312 fprintf(file, "(mlen: %d) ", inst->mlen);
3313 }
3314
3315 switch (inst->dst.file) {
3316 case GRF:
3317 fprintf(file, "vgrf%d", inst->dst.reg);
3318 if (inst->dst.width != dispatch_width)
3319 fprintf(file, "@%d", inst->dst.width);
3320 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3321 inst->dst.subreg_offset)
3322 fprintf(file, "+%d.%d",
3323 inst->dst.reg_offset, inst->dst.subreg_offset);
3324 break;
3325 case MRF:
3326 fprintf(file, "m%d", inst->dst.reg);
3327 break;
3328 case BAD_FILE:
3329 fprintf(file, "(null)");
3330 break;
3331 case UNIFORM:
3332 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3333 break;
3334 case ATTR:
3335 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3336 break;
3337 case HW_REG:
3338 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3339 switch (inst->dst.fixed_hw_reg.nr) {
3340 case BRW_ARF_NULL:
3341 fprintf(file, "null");
3342 break;
3343 case BRW_ARF_ADDRESS:
3344 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3345 break;
3346 case BRW_ARF_ACCUMULATOR:
3347 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3348 break;
3349 case BRW_ARF_FLAG:
3350 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3351 inst->dst.fixed_hw_reg.subnr);
3352 break;
3353 default:
3354 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3355 inst->dst.fixed_hw_reg.subnr);
3356 break;
3357 }
3358 } else {
3359 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3360 }
3361 if (inst->dst.fixed_hw_reg.subnr)
3362 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3363 break;
3364 default:
3365 fprintf(file, "???");
3366 break;
3367 }
3368 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3369
3370 for (int i = 0; i < inst->sources; i++) {
3371 if (inst->src[i].negate)
3372 fprintf(file, "-");
3373 if (inst->src[i].abs)
3374 fprintf(file, "|");
3375 switch (inst->src[i].file) {
3376 case GRF:
3377 fprintf(file, "vgrf%d", inst->src[i].reg);
3378 if (inst->src[i].width != dispatch_width)
3379 fprintf(file, "@%d", inst->src[i].width);
3380 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3381 inst->src[i].subreg_offset)
3382 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3383 inst->src[i].subreg_offset);
3384 break;
3385 case MRF:
3386 fprintf(file, "***m%d***", inst->src[i].reg);
3387 break;
3388 case ATTR:
3389 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3390 break;
3391 case UNIFORM:
3392 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3393 if (inst->src[i].reladdr) {
3394 fprintf(file, "+reladdr");
3395 } else if (inst->src[i].subreg_offset) {
3396 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3397 inst->src[i].subreg_offset);
3398 }
3399 break;
3400 case BAD_FILE:
3401 fprintf(file, "(null)");
3402 break;
3403 case IMM:
3404 switch (inst->src[i].type) {
3405 case BRW_REGISTER_TYPE_F:
3406 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3407 break;
3408 case BRW_REGISTER_TYPE_W:
3409 case BRW_REGISTER_TYPE_D:
3410 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3411 break;
3412 case BRW_REGISTER_TYPE_UW:
3413 case BRW_REGISTER_TYPE_UD:
3414 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3415 break;
3416 case BRW_REGISTER_TYPE_VF:
3417 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3418 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3419 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3420 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3421 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3422 break;
3423 default:
3424 fprintf(file, "???");
3425 break;
3426 }
3427 break;
3428 case HW_REG:
3429 if (inst->src[i].fixed_hw_reg.negate)
3430 fprintf(file, "-");
3431 if (inst->src[i].fixed_hw_reg.abs)
3432 fprintf(file, "|");
3433 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3434 switch (inst->src[i].fixed_hw_reg.nr) {
3435 case BRW_ARF_NULL:
3436 fprintf(file, "null");
3437 break;
3438 case BRW_ARF_ADDRESS:
3439 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3440 break;
3441 case BRW_ARF_ACCUMULATOR:
3442 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3443 break;
3444 case BRW_ARF_FLAG:
3445 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3446 inst->src[i].fixed_hw_reg.subnr);
3447 break;
3448 default:
3449 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3450 inst->src[i].fixed_hw_reg.subnr);
3451 break;
3452 }
3453 } else {
3454 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3455 }
3456 if (inst->src[i].fixed_hw_reg.subnr)
3457 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3458 if (inst->src[i].fixed_hw_reg.abs)
3459 fprintf(file, "|");
3460 break;
3461 default:
3462 fprintf(file, "???");
3463 break;
3464 }
3465 if (inst->src[i].abs)
3466 fprintf(file, "|");
3467
3468 if (inst->src[i].file != IMM) {
3469 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3470 }
3471
3472 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3473 fprintf(file, ", ");
3474 }
3475
3476 fprintf(file, " ");
3477
3478 if (dispatch_width == 16 && inst->exec_size == 8) {
3479 if (inst->force_sechalf)
3480 fprintf(file, "2ndhalf ");
3481 else
3482 fprintf(file, "1sthalf ");
3483 }
3484
3485 fprintf(file, "\n");
3486 }
3487
3488 /**
3489 * Possibly returns an instruction that set up @param reg.
3490 *
3491 * Sometimes we want to take the result of some expression/variable
3492 * dereference tree and rewrite the instruction generating the result
3493 * of the tree. When processing the tree, we know that the
3494 * instructions generated are all writing temporaries that are dead
3495 * outside of this tree. So, if we have some instructions that write
3496 * a temporary, we're free to point that temp write somewhere else.
3497 *
3498 * Note that this doesn't guarantee that the instruction generated
3499 * only reg -- it might be the size=4 destination of a texture instruction.
3500 */
3501 fs_inst *
3502 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3503 fs_inst *end,
3504 const fs_reg &reg)
3505 {
3506 if (end == start ||
3507 end->is_partial_write() ||
3508 reg.reladdr ||
3509 !reg.equals(end->dst)) {
3510 return NULL;
3511 } else {
3512 return end;
3513 }
3514 }
3515
3516 void
3517 fs_visitor::setup_payload_gen6()
3518 {
3519 bool uses_depth =
3520 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3521 unsigned barycentric_interp_modes =
3522 (stage == MESA_SHADER_FRAGMENT) ?
3523 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3524
3525 assert(devinfo->gen >= 6);
3526
3527 /* R0-1: masks, pixel X/Y coordinates. */
3528 payload.num_regs = 2;
3529 /* R2: only for 32-pixel dispatch.*/
3530
3531 /* R3-26: barycentric interpolation coordinates. These appear in the
3532 * same order that they appear in the brw_wm_barycentric_interp_mode
3533 * enum. Each set of coordinates occupies 2 registers if dispatch width
3534 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3535 * appear if they were enabled using the "Barycentric Interpolation
3536 * Mode" bits in WM_STATE.
3537 */
3538 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3539 if (barycentric_interp_modes & (1 << i)) {
3540 payload.barycentric_coord_reg[i] = payload.num_regs;
3541 payload.num_regs += 2;
3542 if (dispatch_width == 16) {
3543 payload.num_regs += 2;
3544 }
3545 }
3546 }
3547
3548 /* R27: interpolated depth if uses source depth */
3549 if (uses_depth) {
3550 payload.source_depth_reg = payload.num_regs;
3551 payload.num_regs++;
3552 if (dispatch_width == 16) {
3553 /* R28: interpolated depth if not SIMD8. */
3554 payload.num_regs++;
3555 }
3556 }
3557 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3558 if (uses_depth) {
3559 payload.source_w_reg = payload.num_regs;
3560 payload.num_regs++;
3561 if (dispatch_width == 16) {
3562 /* R30: interpolated W if not SIMD8. */
3563 payload.num_regs++;
3564 }
3565 }
3566
3567 if (stage == MESA_SHADER_FRAGMENT) {
3568 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3569 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3570 prog_data->uses_pos_offset = key->compute_pos_offset;
3571 /* R31: MSAA position offsets. */
3572 if (prog_data->uses_pos_offset) {
3573 payload.sample_pos_reg = payload.num_regs;
3574 payload.num_regs++;
3575 }
3576 }
3577
3578 /* R32: MSAA input coverage mask */
3579 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3580 assert(devinfo->gen >= 7);
3581 payload.sample_mask_in_reg = payload.num_regs;
3582 payload.num_regs++;
3583 if (dispatch_width == 16) {
3584 /* R33: input coverage mask if not SIMD8. */
3585 payload.num_regs++;
3586 }
3587 }
3588
3589 /* R34-: bary for 32-pixel. */
3590 /* R58-59: interp W for 32-pixel. */
3591
3592 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3593 source_depth_to_render_target = true;
3594 }
3595 }
3596
3597 void
3598 fs_visitor::setup_vs_payload()
3599 {
3600 /* R0: thread header, R1: urb handles */
3601 payload.num_regs = 2;
3602 }
3603
3604 void
3605 fs_visitor::setup_cs_payload()
3606 {
3607 assert(devinfo->gen >= 7);
3608
3609 payload.num_regs = 1;
3610 }
3611
3612 void
3613 fs_visitor::assign_binding_table_offsets()
3614 {
3615 assert(stage == MESA_SHADER_FRAGMENT);
3616 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3617 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3618 uint32_t next_binding_table_offset = 0;
3619
3620 /* If there are no color regions, we still perform an FB write to a null
3621 * renderbuffer, which we place at surface index 0.
3622 */
3623 prog_data->binding_table.render_target_start = next_binding_table_offset;
3624 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3625
3626 assign_common_binding_table_offsets(next_binding_table_offset);
3627 }
3628
3629 void
3630 fs_visitor::calculate_register_pressure()
3631 {
3632 invalidate_live_intervals();
3633 calculate_live_intervals();
3634
3635 unsigned num_instructions = 0;
3636 foreach_block(block, cfg)
3637 num_instructions += block->instructions.length();
3638
3639 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3640
3641 for (unsigned reg = 0; reg < alloc.count; reg++) {
3642 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3643 regs_live_at_ip[ip] += alloc.sizes[reg];
3644 }
3645 }
3646
3647 void
3648 fs_visitor::optimize()
3649 {
3650 /* bld is the common builder object pointing at the end of the program we
3651 * used to translate it into i965 IR. For the optimization and lowering
3652 * passes coming next, any code added after the end of the program without
3653 * having explicitly called fs_builder::at() clearly points at a mistake.
3654 * Ideally optimization passes wouldn't be part of the visitor so they
3655 * wouldn't have access to bld at all, but they do, so just in case some
3656 * pass forgets to ask for a location explicitly set it to NULL here to
3657 * make it trip.
3658 */
3659 bld = bld.at(NULL, NULL);
3660
3661 split_virtual_grfs();
3662
3663 move_uniform_array_access_to_pull_constants();
3664 assign_constant_locations();
3665 demote_pull_constants();
3666
3667 #define OPT(pass, args...) ({ \
3668 pass_num++; \
3669 bool this_progress = pass(args); \
3670 \
3671 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3672 char filename[64]; \
3673 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3674 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3675 \
3676 backend_shader::dump_instructions(filename); \
3677 } \
3678 \
3679 progress = progress || this_progress; \
3680 this_progress; \
3681 })
3682
3683 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3684 char filename[64];
3685 snprintf(filename, 64, "%s%d-%04d-00-start",
3686 stage_abbrev, dispatch_width,
3687 shader_prog ? shader_prog->Name : 0);
3688
3689 backend_shader::dump_instructions(filename);
3690 }
3691
3692 bool progress;
3693 int iteration = 0;
3694 int pass_num = 0;
3695 do {
3696 progress = false;
3697 pass_num = 0;
3698 iteration++;
3699
3700 OPT(remove_duplicate_mrf_writes);
3701
3702 OPT(opt_algebraic);
3703 OPT(opt_cse);
3704 OPT(opt_copy_propagate);
3705 OPT(opt_peephole_predicated_break);
3706 OPT(opt_cmod_propagation);
3707 OPT(dead_code_eliminate);
3708 OPT(opt_peephole_sel);
3709 OPT(dead_control_flow_eliminate, this);
3710 OPT(opt_register_renaming);
3711 OPT(opt_redundant_discard_jumps);
3712 OPT(opt_saturate_propagation);
3713 OPT(opt_zero_samples);
3714 OPT(register_coalesce);
3715 OPT(compute_to_mrf);
3716 OPT(eliminate_find_live_channel);
3717
3718 OPT(compact_virtual_grfs);
3719 } while (progress);
3720
3721 pass_num = 0;
3722
3723 OPT(opt_sampler_eot);
3724
3725 if (OPT(lower_load_payload)) {
3726 split_virtual_grfs();
3727 OPT(register_coalesce);
3728 OPT(compute_to_mrf);
3729 OPT(dead_code_eliminate);
3730 }
3731
3732 OPT(opt_combine_constants);
3733 OPT(lower_integer_multiplication);
3734
3735 lower_uniform_pull_constant_loads();
3736 }
3737
3738 /**
3739 * Three source instruction must have a GRF/MRF destination register.
3740 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3741 */
3742 void
3743 fs_visitor::fixup_3src_null_dest()
3744 {
3745 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3746 if (inst->is_3src() && inst->dst.is_null()) {
3747 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3748 inst->dst.type);
3749 }
3750 }
3751 }
3752
3753 void
3754 fs_visitor::allocate_registers()
3755 {
3756 bool allocated_without_spills;
3757
3758 static const enum instruction_scheduler_mode pre_modes[] = {
3759 SCHEDULE_PRE,
3760 SCHEDULE_PRE_NON_LIFO,
3761 SCHEDULE_PRE_LIFO,
3762 };
3763
3764 /* Try each scheduling heuristic to see if it can successfully register
3765 * allocate without spilling. They should be ordered by decreasing
3766 * performance but increasing likelihood of allocating.
3767 */
3768 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3769 schedule_instructions(pre_modes[i]);
3770
3771 if (0) {
3772 assign_regs_trivial();
3773 allocated_without_spills = true;
3774 } else {
3775 allocated_without_spills = assign_regs(false);
3776 }
3777 if (allocated_without_spills)
3778 break;
3779 }
3780
3781 if (!allocated_without_spills) {
3782 /* We assume that any spilling is worse than just dropping back to
3783 * SIMD8. There's probably actually some intermediate point where
3784 * SIMD16 with a couple of spills is still better.
3785 */
3786 if (dispatch_width == 16) {
3787 fail("Failure to register allocate. Reduce number of "
3788 "live scalar values to avoid this.");
3789 } else {
3790 compiler->shader_perf_log(log_data,
3791 "%s shader triggered register spilling. "
3792 "Try reducing the number of live scalar "
3793 "values to improve performance.\n",
3794 stage_name);
3795 }
3796
3797 /* Since we're out of heuristics, just go spill registers until we
3798 * get an allocation.
3799 */
3800 while (!assign_regs(true)) {
3801 if (failed)
3802 break;
3803 }
3804 }
3805
3806 /* This must come after all optimization and register allocation, since
3807 * it inserts dead code that happens to have side effects, and it does
3808 * so based on the actual physical registers in use.
3809 */
3810 insert_gen4_send_dependency_workarounds();
3811
3812 if (failed)
3813 return;
3814
3815 if (!allocated_without_spills)
3816 schedule_instructions(SCHEDULE_POST);
3817
3818 if (last_scratch > 0)
3819 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3820 }
3821
3822 bool
3823 fs_visitor::run_vs(gl_clip_plane *clip_planes)
3824 {
3825 assert(stage == MESA_SHADER_VERTEX);
3826
3827 assign_common_binding_table_offsets(0);
3828 setup_vs_payload();
3829
3830 if (shader_time_index >= 0)
3831 emit_shader_time_begin();
3832
3833 emit_nir_code();
3834
3835 if (failed)
3836 return false;
3837
3838 compute_clip_distance(clip_planes);
3839
3840 emit_urb_writes();
3841
3842 if (shader_time_index >= 0)
3843 emit_shader_time_end();
3844
3845 calculate_cfg();
3846
3847 optimize();
3848
3849 assign_curb_setup();
3850 assign_vs_urb_setup();
3851
3852 fixup_3src_null_dest();
3853 allocate_registers();
3854
3855 return !failed;
3856 }
3857
3858 bool
3859 fs_visitor::run_fs(bool do_rep_send)
3860 {
3861 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3862 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3863
3864 assert(stage == MESA_SHADER_FRAGMENT);
3865
3866 sanity_param_count = prog->Parameters->NumParameters;
3867
3868 assign_binding_table_offsets();
3869
3870 if (devinfo->gen >= 6)
3871 setup_payload_gen6();
3872 else
3873 setup_payload_gen4();
3874
3875 if (0) {
3876 emit_dummy_fs();
3877 } else if (do_rep_send) {
3878 assert(dispatch_width == 16);
3879 emit_repclear_shader();
3880 } else {
3881 if (shader_time_index >= 0)
3882 emit_shader_time_begin();
3883
3884 calculate_urb_setup();
3885 if (prog->InputsRead > 0) {
3886 if (devinfo->gen < 6)
3887 emit_interpolation_setup_gen4();
3888 else
3889 emit_interpolation_setup_gen6();
3890 }
3891
3892 /* We handle discards by keeping track of the still-live pixels in f0.1.
3893 * Initialize it with the dispatched pixels.
3894 */
3895 if (wm_prog_data->uses_kill) {
3896 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3897 discard_init->flag_subreg = 1;
3898 }
3899
3900 /* Generate FS IR for main(). (the visitor only descends into
3901 * functions called "main").
3902 */
3903 emit_nir_code();
3904
3905 if (failed)
3906 return false;
3907
3908 if (wm_prog_data->uses_kill)
3909 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3910
3911 if (wm_key->alpha_test_func)
3912 emit_alpha_test();
3913
3914 emit_fb_writes();
3915
3916 if (shader_time_index >= 0)
3917 emit_shader_time_end();
3918
3919 calculate_cfg();
3920
3921 optimize();
3922
3923 assign_curb_setup();
3924 assign_urb_setup();
3925
3926 fixup_3src_null_dest();
3927 allocate_registers();
3928
3929 if (failed)
3930 return false;
3931 }
3932
3933 if (dispatch_width == 8)
3934 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3935 else
3936 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3937
3938 /* If any state parameters were appended, then ParameterValues could have
3939 * been realloced, in which case the driver uniform storage set up by
3940 * _mesa_associate_uniform_storage() would point to freed memory. Make
3941 * sure that didn't happen.
3942 */
3943 assert(sanity_param_count == prog->Parameters->NumParameters);
3944
3945 return !failed;
3946 }
3947
3948 bool
3949 fs_visitor::run_cs()
3950 {
3951 assert(stage == MESA_SHADER_COMPUTE);
3952 assert(shader);
3953
3954 sanity_param_count = prog->Parameters->NumParameters;
3955
3956 assign_common_binding_table_offsets(0);
3957
3958 setup_cs_payload();
3959
3960 if (shader_time_index >= 0)
3961 emit_shader_time_begin();
3962
3963 emit_nir_code();
3964
3965 if (failed)
3966 return false;
3967
3968 emit_cs_terminate();
3969
3970 if (shader_time_index >= 0)
3971 emit_shader_time_end();
3972
3973 calculate_cfg();
3974
3975 optimize();
3976
3977 assign_curb_setup();
3978
3979 fixup_3src_null_dest();
3980 allocate_registers();
3981
3982 if (failed)
3983 return false;
3984
3985 /* If any state parameters were appended, then ParameterValues could have
3986 * been realloced, in which case the driver uniform storage set up by
3987 * _mesa_associate_uniform_storage() would point to freed memory. Make
3988 * sure that didn't happen.
3989 */
3990 assert(sanity_param_count == prog->Parameters->NumParameters);
3991
3992 return !failed;
3993 }
3994
3995 const unsigned *
3996 brw_wm_fs_emit(struct brw_context *brw,
3997 void *mem_ctx,
3998 const struct brw_wm_prog_key *key,
3999 struct brw_wm_prog_data *prog_data,
4000 struct gl_fragment_program *fp,
4001 struct gl_shader_program *prog,
4002 unsigned *final_assembly_size)
4003 {
4004 bool start_busy = false;
4005 double start_time = 0;
4006
4007 if (unlikely(brw->perf_debug)) {
4008 start_busy = (brw->batch.last_bo &&
4009 drm_intel_bo_busy(brw->batch.last_bo));
4010 start_time = get_time();
4011 }
4012
4013 struct brw_shader *shader = NULL;
4014 if (prog)
4015 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4016
4017 if (unlikely(INTEL_DEBUG & DEBUG_WM))
4018 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4019
4020 int st_index8 = -1, st_index16 = -1;
4021 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4022 st_index8 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS8);
4023 st_index16 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS16);
4024 }
4025
4026 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4027 */
4028 fs_visitor v(brw->intelScreen->compiler, brw,
4029 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4030 prog, &fp->Base, 8, st_index8);
4031 if (!v.run_fs(false /* do_rep_send */)) {
4032 if (prog) {
4033 prog->LinkStatus = false;
4034 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4035 }
4036
4037 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4038 v.fail_msg);
4039
4040 return NULL;
4041 }
4042
4043 cfg_t *simd16_cfg = NULL;
4044 fs_visitor v2(brw->intelScreen->compiler, brw,
4045 mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4046 prog, &fp->Base, 16, st_index16);
4047 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4048 if (!v.simd16_unsupported) {
4049 /* Try a SIMD16 compile */
4050 v2.import_uniforms(&v);
4051 if (!v2.run_fs(brw->use_rep_send)) {
4052 perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
4053 } else {
4054 simd16_cfg = v2.cfg;
4055 }
4056 }
4057 }
4058
4059 cfg_t *simd8_cfg;
4060 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4061 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4062 simd8_cfg = NULL;
4063 prog_data->no_8 = true;
4064 } else {
4065 simd8_cfg = v.cfg;
4066 prog_data->no_8 = false;
4067 }
4068
4069 fs_generator g(brw->intelScreen->compiler, brw,
4070 mem_ctx, (void *) key, &prog_data->base,
4071 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4072
4073 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4074 char *name;
4075 if (prog)
4076 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4077 prog->Label ? prog->Label : "unnamed",
4078 prog->Name);
4079 else
4080 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4081
4082 g.enable_debug(name);
4083 }
4084
4085 if (simd8_cfg)
4086 g.generate_code(simd8_cfg, 8);
4087 if (simd16_cfg)
4088 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4089
4090 if (unlikely(brw->perf_debug) && shader) {
4091 if (shader->compiled_once)
4092 brw_wm_debug_recompile(brw, prog, key);
4093 shader->compiled_once = true;
4094
4095 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4096 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4097 (get_time() - start_time) * 1000);
4098 }
4099 }
4100
4101 return g.get_assembly(final_assembly_size);
4102 }
4103
4104 extern "C" bool
4105 brw_fs_precompile(struct gl_context *ctx,
4106 struct gl_shader_program *shader_prog,
4107 struct gl_program *prog)
4108 {
4109 struct brw_context *brw = brw_context(ctx);
4110 struct brw_wm_prog_key key;
4111
4112 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4113 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4114 bool program_uses_dfdy = fp->UsesDFdy;
4115
4116 memset(&key, 0, sizeof(key));
4117
4118 if (brw->gen < 6) {
4119 if (fp->UsesKill)
4120 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4121
4122 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4123 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4124
4125 /* Just assume depth testing. */
4126 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4127 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4128 }
4129
4130 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4131 BRW_FS_VARYING_INPUT_MASK) > 16)
4132 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4133
4134 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4135
4136 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4137 key.drawable_height = ctx->DrawBuffer->Height;
4138 }
4139
4140 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4141 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4142 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4143
4144 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4145 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4146 key.nr_color_regions > 1;
4147 }
4148
4149 key.program_string_id = bfp->id;
4150
4151 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4152 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4153
4154 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4155
4156 brw->wm.base.prog_offset = old_prog_offset;
4157 brw->wm.prog_data = old_prog_data;
4158
4159 return success;
4160 }
4161
4162 void
4163 brw_setup_tex_for_precompile(struct brw_context *brw,
4164 struct brw_sampler_prog_key_data *tex,
4165 struct gl_program *prog)
4166 {
4167 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4168 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4169 for (unsigned i = 0; i < sampler_count; i++) {
4170 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4171 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4172 tex->swizzles[i] =
4173 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4174 } else {
4175 /* Color sampler: assume no swizzling. */
4176 tex->swizzles[i] = SWIZZLE_XYZW;
4177 }
4178 }
4179 }