i965: Add support for gl_BaseVertexARB and gl_BaseInstanceARB
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "glsl/nir/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::int_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->reladdr = NULL;
437 this->stride = 1;
438 if (this->file == IMM &&
439 (this->type != BRW_REGISTER_TYPE_V &&
440 this->type != BRW_REGISTER_TYPE_UV &&
441 this->type != BRW_REGISTER_TYPE_VF)) {
442 this->stride = 0;
443 }
444 }
445
446 bool
447 fs_reg::equals(const fs_reg &r) const
448 {
449 return (this->backend_reg::equals(r) &&
450 subreg_offset == r.subreg_offset &&
451 !reladdr && !r.reladdr &&
452 stride == r.stride);
453 }
454
455 fs_reg &
456 fs_reg::set_smear(unsigned subreg)
457 {
458 assert(file != ARF && file != FIXED_GRF && file != IMM);
459 subreg_offset = subreg * type_sz(type);
460 stride = 0;
461 return *this;
462 }
463
464 bool
465 fs_reg::is_contiguous() const
466 {
467 return stride == 1;
468 }
469
470 unsigned
471 fs_reg::component_size(unsigned width) const
472 {
473 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
474 hstride == 0 ? 0 :
475 1 << (hstride - 1));
476 return MAX2(width * stride, 1) * type_sz(type);
477 }
478
479 extern "C" int
480 type_size_scalar(const struct glsl_type *type)
481 {
482 unsigned int size, i;
483
484 switch (type->base_type) {
485 case GLSL_TYPE_UINT:
486 case GLSL_TYPE_INT:
487 case GLSL_TYPE_FLOAT:
488 case GLSL_TYPE_BOOL:
489 return type->components();
490 case GLSL_TYPE_ARRAY:
491 return type_size_scalar(type->fields.array) * type->length;
492 case GLSL_TYPE_STRUCT:
493 size = 0;
494 for (i = 0; i < type->length; i++) {
495 size += type_size_scalar(type->fields.structure[i].type);
496 }
497 return size;
498 case GLSL_TYPE_SAMPLER:
499 /* Samplers take up no register space, since they're baked in at
500 * link time.
501 */
502 return 0;
503 case GLSL_TYPE_ATOMIC_UINT:
504 return 0;
505 case GLSL_TYPE_SUBROUTINE:
506 return 1;
507 case GLSL_TYPE_IMAGE:
508 return BRW_IMAGE_PARAM_SIZE;
509 case GLSL_TYPE_VOID:
510 case GLSL_TYPE_ERROR:
511 case GLSL_TYPE_INTERFACE:
512 case GLSL_TYPE_DOUBLE:
513 unreachable("not reached");
514 }
515
516 return 0;
517 }
518
519 /**
520 * Returns the number of scalar components needed to store type, assuming
521 * that vectors are padded out to vec4.
522 *
523 * This has the packing rules of type_size_vec4(), but counts components
524 * similar to type_size_scalar().
525 */
526 extern "C" int
527 type_size_vec4_times_4(const struct glsl_type *type)
528 {
529 return 4 * type_size_vec4(type);
530 }
531
532 /**
533 * Create a MOV to read the timestamp register.
534 *
535 * The caller is responsible for emitting the MOV. The return value is
536 * the destination of the MOV, with extra parameters set.
537 */
538 fs_reg
539 fs_visitor::get_timestamp(const fs_builder &bld)
540 {
541 assert(devinfo->gen >= 7);
542
543 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
544 BRW_ARF_TIMESTAMP,
545 0),
546 BRW_REGISTER_TYPE_UD));
547
548 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
549
550 /* We want to read the 3 fields we care about even if it's not enabled in
551 * the dispatch.
552 */
553 bld.group(4, 0).exec_all().MOV(dst, ts);
554
555 return dst;
556 }
557
558 void
559 fs_visitor::emit_shader_time_begin()
560 {
561 shader_start_time = get_timestamp(bld.annotate("shader time start"));
562
563 /* We want only the low 32 bits of the timestamp. Since it's running
564 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
565 * which is plenty of time for our purposes. It is identical across the
566 * EUs, but since it's tracking GPU core speed it will increment at a
567 * varying rate as render P-states change.
568 */
569 shader_start_time.set_smear(0);
570 }
571
572 void
573 fs_visitor::emit_shader_time_end()
574 {
575 /* Insert our code just before the final SEND with EOT. */
576 exec_node *end = this->instructions.get_tail();
577 assert(end && ((fs_inst *) end)->eot);
578 const fs_builder ibld = bld.annotate("shader time end")
579 .exec_all().at(NULL, end);
580
581 fs_reg shader_end_time = get_timestamp(ibld);
582
583 /* We only use the low 32 bits of the timestamp - see
584 * emit_shader_time_begin()).
585 *
586 * We could also check if render P-states have changed (or anything
587 * else that might disrupt timing) by setting smear to 2 and checking if
588 * that field is != 0.
589 */
590 shader_end_time.set_smear(0);
591
592 /* Check that there weren't any timestamp reset events (assuming these
593 * were the only two timestamp reads that happened).
594 */
595 fs_reg reset = shader_end_time;
596 reset.set_smear(2);
597 set_condmod(BRW_CONDITIONAL_Z,
598 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
599 ibld.IF(BRW_PREDICATE_NORMAL);
600
601 fs_reg start = shader_start_time;
602 start.negate = true;
603 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
604 diff.set_smear(0);
605
606 const fs_builder cbld = ibld.group(1, 0);
607 cbld.group(1, 0).ADD(diff, start, shader_end_time);
608
609 /* If there were no instructions between the two timestamp gets, the diff
610 * is 2 cycles. Remove that overhead, so I can forget about that when
611 * trying to determine the time taken for single instructions.
612 */
613 cbld.ADD(diff, diff, brw_imm_ud(-2u));
614 SHADER_TIME_ADD(cbld, 0, diff);
615 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
616 ibld.emit(BRW_OPCODE_ELSE);
617 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
618 ibld.emit(BRW_OPCODE_ENDIF);
619 }
620
621 void
622 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
623 int shader_time_subindex,
624 fs_reg value)
625 {
626 int index = shader_time_index * 3 + shader_time_subindex;
627 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
628
629 fs_reg payload;
630 if (dispatch_width == 8)
631 payload = vgrf(glsl_type::uvec2_type);
632 else
633 payload = vgrf(glsl_type::uint_type);
634
635 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
636 }
637
638 void
639 fs_visitor::vfail(const char *format, va_list va)
640 {
641 char *msg;
642
643 if (failed)
644 return;
645
646 failed = true;
647
648 msg = ralloc_vasprintf(mem_ctx, format, va);
649 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
650
651 this->fail_msg = msg;
652
653 if (debug_enabled) {
654 fprintf(stderr, "%s", msg);
655 }
656 }
657
658 void
659 fs_visitor::fail(const char *format, ...)
660 {
661 va_list va;
662
663 va_start(va, format);
664 vfail(format, va);
665 va_end(va);
666 }
667
668 /**
669 * Mark this program as impossible to compile in SIMD16 mode.
670 *
671 * During the SIMD8 compile (which happens first), we can detect and flag
672 * things that are unsupported in SIMD16 mode, so the compiler can skip
673 * the SIMD16 compile altogether.
674 *
675 * During a SIMD16 compile (if one happens anyway), this just calls fail().
676 */
677 void
678 fs_visitor::no16(const char *msg)
679 {
680 if (dispatch_width == 16) {
681 fail("%s", msg);
682 } else {
683 simd16_unsupported = true;
684
685 compiler->shader_perf_log(log_data,
686 "SIMD16 shader failed to compile: %s", msg);
687 }
688 }
689
690 /**
691 * Returns true if the instruction has a flag that means it won't
692 * update an entire destination register.
693 *
694 * For example, dead code elimination and live variable analysis want to know
695 * when a write to a variable screens off any preceding values that were in
696 * it.
697 */
698 bool
699 fs_inst::is_partial_write() const
700 {
701 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
702 (this->exec_size * type_sz(this->dst.type)) < 32 ||
703 !this->dst.is_contiguous());
704 }
705
706 unsigned
707 fs_inst::components_read(unsigned i) const
708 {
709 switch (opcode) {
710 case FS_OPCODE_LINTERP:
711 if (i == 0)
712 return 2;
713 else
714 return 1;
715
716 case FS_OPCODE_PIXEL_X:
717 case FS_OPCODE_PIXEL_Y:
718 assert(i == 0);
719 return 2;
720
721 case FS_OPCODE_FB_WRITE_LOGICAL:
722 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
723 /* First/second FB write color. */
724 if (i < 2)
725 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
726 else
727 return 1;
728
729 case SHADER_OPCODE_TEX_LOGICAL:
730 case SHADER_OPCODE_TXD_LOGICAL:
731 case SHADER_OPCODE_TXF_LOGICAL:
732 case SHADER_OPCODE_TXL_LOGICAL:
733 case SHADER_OPCODE_TXS_LOGICAL:
734 case FS_OPCODE_TXB_LOGICAL:
735 case SHADER_OPCODE_TXF_CMS_LOGICAL:
736 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
737 case SHADER_OPCODE_TXF_UMS_LOGICAL:
738 case SHADER_OPCODE_TXF_MCS_LOGICAL:
739 case SHADER_OPCODE_LOD_LOGICAL:
740 case SHADER_OPCODE_TG4_LOGICAL:
741 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
742 assert(src[8].file == IMM && src[9].file == IMM);
743 /* Texture coordinates. */
744 if (i == 0)
745 return src[8].ud;
746 /* Texture derivatives. */
747 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
748 return src[9].ud;
749 /* Texture offset. */
750 else if (i == 7)
751 return 2;
752 /* MCS */
753 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
754 return 2;
755 else
756 return 1;
757
758 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
759 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
760 assert(src[3].file == IMM);
761 /* Surface coordinates. */
762 if (i == 0)
763 return src[3].ud;
764 /* Surface operation source (ignored for reads). */
765 else if (i == 1)
766 return 0;
767 else
768 return 1;
769
770 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
771 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
772 assert(src[3].file == IMM &&
773 src[4].file == IMM);
774 /* Surface coordinates. */
775 if (i == 0)
776 return src[3].ud;
777 /* Surface operation source. */
778 else if (i == 1)
779 return src[4].ud;
780 else
781 return 1;
782
783 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
784 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
785 assert(src[3].file == IMM &&
786 src[4].file == IMM);
787 const unsigned op = src[4].ud;
788 /* Surface coordinates. */
789 if (i == 0)
790 return src[3].ud;
791 /* Surface operation source. */
792 else if (i == 1 && op == BRW_AOP_CMPWR)
793 return 2;
794 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
795 op == BRW_AOP_PREDEC))
796 return 0;
797 else
798 return 1;
799 }
800
801 default:
802 return 1;
803 }
804 }
805
806 int
807 fs_inst::regs_read(int arg) const
808 {
809 switch (opcode) {
810 case FS_OPCODE_FB_WRITE:
811 case SHADER_OPCODE_URB_WRITE_SIMD8:
812 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
813 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
814 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
815 case SHADER_OPCODE_URB_READ_SIMD8:
816 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
817 case SHADER_OPCODE_UNTYPED_ATOMIC:
818 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
819 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
820 case SHADER_OPCODE_TYPED_ATOMIC:
821 case SHADER_OPCODE_TYPED_SURFACE_READ:
822 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
823 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
824 if (arg == 0)
825 return mlen;
826 break;
827
828 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
829 /* The payload is actually stored in src1 */
830 if (arg == 1)
831 return mlen;
832 break;
833
834 case FS_OPCODE_LINTERP:
835 if (arg == 1)
836 return 1;
837 break;
838
839 case SHADER_OPCODE_LOAD_PAYLOAD:
840 if (arg < this->header_size)
841 return 1;
842 break;
843
844 case CS_OPCODE_CS_TERMINATE:
845 case SHADER_OPCODE_BARRIER:
846 return 1;
847
848 case SHADER_OPCODE_MOV_INDIRECT:
849 if (arg == 0) {
850 assert(src[2].file == IMM);
851 unsigned region_length = src[2].ud;
852
853 if (src[0].file == FIXED_GRF) {
854 /* If the start of the region is not register aligned, then
855 * there's some portion of the register that's technically
856 * unread at the beginning.
857 *
858 * However, the register allocator works in terms of whole
859 * registers, and does not use subnr. It assumes that the
860 * read starts at the beginning of the register, and extends
861 * regs_read() whole registers beyond that.
862 *
863 * To compensate, we extend the region length to include this
864 * unread portion at the beginning.
865 */
866 if (src[0].subnr)
867 region_length += src[0].subnr * type_sz(src[0].type);
868
869 return DIV_ROUND_UP(region_length, REG_SIZE);
870 } else {
871 assert(!"Invalid register file");
872 }
873 }
874 break;
875
876 default:
877 if (is_tex() && arg == 0 && src[0].file == VGRF)
878 return mlen;
879 break;
880 }
881
882 switch (src[arg].file) {
883 case BAD_FILE:
884 return 0;
885 case UNIFORM:
886 case IMM:
887 return 1;
888 case ARF:
889 case FIXED_GRF:
890 case VGRF:
891 case ATTR:
892 return DIV_ROUND_UP(components_read(arg) *
893 src[arg].component_size(exec_size),
894 REG_SIZE);
895 case MRF:
896 unreachable("MRF registers are not allowed as sources");
897 }
898 return 0;
899 }
900
901 bool
902 fs_inst::reads_flag() const
903 {
904 return predicate;
905 }
906
907 bool
908 fs_inst::writes_flag() const
909 {
910 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
911 opcode != BRW_OPCODE_IF &&
912 opcode != BRW_OPCODE_WHILE)) ||
913 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
914 }
915
916 /**
917 * Returns how many MRFs an FS opcode will write over.
918 *
919 * Note that this is not the 0 or 1 implied writes in an actual gen
920 * instruction -- the FS opcodes often generate MOVs in addition.
921 */
922 int
923 fs_visitor::implied_mrf_writes(fs_inst *inst)
924 {
925 if (inst->mlen == 0)
926 return 0;
927
928 if (inst->base_mrf == -1)
929 return 0;
930
931 switch (inst->opcode) {
932 case SHADER_OPCODE_RCP:
933 case SHADER_OPCODE_RSQ:
934 case SHADER_OPCODE_SQRT:
935 case SHADER_OPCODE_EXP2:
936 case SHADER_OPCODE_LOG2:
937 case SHADER_OPCODE_SIN:
938 case SHADER_OPCODE_COS:
939 return 1 * dispatch_width / 8;
940 case SHADER_OPCODE_POW:
941 case SHADER_OPCODE_INT_QUOTIENT:
942 case SHADER_OPCODE_INT_REMAINDER:
943 return 2 * dispatch_width / 8;
944 case SHADER_OPCODE_TEX:
945 case FS_OPCODE_TXB:
946 case SHADER_OPCODE_TXD:
947 case SHADER_OPCODE_TXF:
948 case SHADER_OPCODE_TXF_CMS:
949 case SHADER_OPCODE_TXF_CMS_W:
950 case SHADER_OPCODE_TXF_MCS:
951 case SHADER_OPCODE_TG4:
952 case SHADER_OPCODE_TG4_OFFSET:
953 case SHADER_OPCODE_TXL:
954 case SHADER_OPCODE_TXS:
955 case SHADER_OPCODE_LOD:
956 case SHADER_OPCODE_SAMPLEINFO:
957 return 1;
958 case FS_OPCODE_FB_WRITE:
959 return 2;
960 case FS_OPCODE_GET_BUFFER_SIZE:
961 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
962 case SHADER_OPCODE_GEN4_SCRATCH_READ:
963 return 1;
964 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
965 return inst->mlen;
966 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
967 return inst->mlen;
968 case SHADER_OPCODE_UNTYPED_ATOMIC:
969 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
970 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
971 case SHADER_OPCODE_TYPED_ATOMIC:
972 case SHADER_OPCODE_TYPED_SURFACE_READ:
973 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
974 case SHADER_OPCODE_URB_WRITE_SIMD8:
975 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
976 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
978 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
979 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
980 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
981 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
982 return 0;
983 default:
984 unreachable("not reached");
985 }
986 }
987
988 fs_reg
989 fs_visitor::vgrf(const glsl_type *const type)
990 {
991 int reg_width = dispatch_width / 8;
992 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
993 brw_type_for_base_type(type));
994 }
995
996 fs_reg::fs_reg(enum brw_reg_file file, int nr)
997 {
998 init();
999 this->file = file;
1000 this->nr = nr;
1001 this->type = BRW_REGISTER_TYPE_F;
1002 this->stride = (file == UNIFORM ? 0 : 1);
1003 }
1004
1005 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1006 {
1007 init();
1008 this->file = file;
1009 this->nr = nr;
1010 this->type = type;
1011 this->stride = (file == UNIFORM ? 0 : 1);
1012 }
1013
1014 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1015 * This brings in those uniform definitions
1016 */
1017 void
1018 fs_visitor::import_uniforms(fs_visitor *v)
1019 {
1020 this->push_constant_loc = v->push_constant_loc;
1021 this->pull_constant_loc = v->pull_constant_loc;
1022 this->uniforms = v->uniforms;
1023 this->param_size = v->param_size;
1024 }
1025
1026 fs_reg *
1027 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1028 bool origin_upper_left)
1029 {
1030 assert(stage == MESA_SHADER_FRAGMENT);
1031 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1032 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1033 fs_reg wpos = *reg;
1034 bool flip = !origin_upper_left ^ key->render_to_fbo;
1035
1036 /* gl_FragCoord.x */
1037 if (pixel_center_integer) {
1038 bld.MOV(wpos, this->pixel_x);
1039 } else {
1040 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1041 }
1042 wpos = offset(wpos, bld, 1);
1043
1044 /* gl_FragCoord.y */
1045 if (!flip && pixel_center_integer) {
1046 bld.MOV(wpos, this->pixel_y);
1047 } else {
1048 fs_reg pixel_y = this->pixel_y;
1049 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1050
1051 if (flip) {
1052 pixel_y.negate = true;
1053 offset += key->drawable_height - 1.0f;
1054 }
1055
1056 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1057 }
1058 wpos = offset(wpos, bld, 1);
1059
1060 /* gl_FragCoord.z */
1061 if (devinfo->gen >= 6) {
1062 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1063 } else {
1064 bld.emit(FS_OPCODE_LINTERP, wpos,
1065 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1066 interp_reg(VARYING_SLOT_POS, 2));
1067 }
1068 wpos = offset(wpos, bld, 1);
1069
1070 /* gl_FragCoord.w: Already set up in emit_interpolation */
1071 bld.MOV(wpos, this->wpos_w);
1072
1073 return reg;
1074 }
1075
1076 fs_inst *
1077 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1078 glsl_interp_qualifier interpolation_mode,
1079 bool is_centroid, bool is_sample)
1080 {
1081 brw_wm_barycentric_interp_mode barycoord_mode;
1082 if (devinfo->gen >= 6) {
1083 if (is_centroid) {
1084 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1085 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1086 else
1087 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1088 } else if (is_sample) {
1089 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1090 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1091 else
1092 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1093 } else {
1094 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1095 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1096 else
1097 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1098 }
1099 } else {
1100 /* On Ironlake and below, there is only one interpolation mode.
1101 * Centroid interpolation doesn't mean anything on this hardware --
1102 * there is no multisampling.
1103 */
1104 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1105 }
1106 return bld.emit(FS_OPCODE_LINTERP, attr,
1107 this->delta_xy[barycoord_mode], interp);
1108 }
1109
1110 void
1111 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1112 const glsl_type *type,
1113 glsl_interp_qualifier interpolation_mode,
1114 int *location, bool mod_centroid,
1115 bool mod_sample)
1116 {
1117 assert(stage == MESA_SHADER_FRAGMENT);
1118 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1119 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1120
1121 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1122 bool is_gl_Color =
1123 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1124 if (key->flat_shade && is_gl_Color) {
1125 interpolation_mode = INTERP_QUALIFIER_FLAT;
1126 } else {
1127 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1128 }
1129 }
1130
1131 if (type->is_array() || type->is_matrix()) {
1132 const glsl_type *elem_type = glsl_get_array_element(type);
1133 const unsigned length = glsl_get_length(type);
1134
1135 for (unsigned i = 0; i < length; i++) {
1136 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1137 location, mod_centroid, mod_sample);
1138 }
1139 } else if (type->is_record()) {
1140 for (unsigned i = 0; i < type->length; i++) {
1141 const glsl_type *field_type = type->fields.structure[i].type;
1142 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1143 location, mod_centroid, mod_sample);
1144 }
1145 } else {
1146 assert(type->is_scalar() || type->is_vector());
1147
1148 if (prog_data->urb_setup[*location] == -1) {
1149 /* If there's no incoming setup data for this slot, don't
1150 * emit interpolation for it.
1151 */
1152 *attr = offset(*attr, bld, type->vector_elements);
1153 (*location)++;
1154 return;
1155 }
1156
1157 attr->type = brw_type_for_base_type(type->get_scalar_type());
1158
1159 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1160 /* Constant interpolation (flat shading) case. The SF has
1161 * handed us defined values in only the constant offset
1162 * field of the setup reg.
1163 */
1164 for (unsigned int i = 0; i < type->vector_elements; i++) {
1165 struct brw_reg interp = interp_reg(*location, i);
1166 interp = suboffset(interp, 3);
1167 interp.type = attr->type;
1168 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1169 *attr = offset(*attr, bld, 1);
1170 }
1171 } else {
1172 /* Smooth/noperspective interpolation case. */
1173 for (unsigned int i = 0; i < type->vector_elements; i++) {
1174 struct brw_reg interp = interp_reg(*location, i);
1175 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1176 /* Get the pixel/sample mask into f0 so that we know
1177 * which pixels are lit. Then, for each channel that is
1178 * unlit, replace the centroid data with non-centroid
1179 * data.
1180 */
1181 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1182
1183 fs_inst *inst;
1184 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1185 false, false);
1186 inst->predicate = BRW_PREDICATE_NORMAL;
1187 inst->predicate_inverse = true;
1188 if (devinfo->has_pln)
1189 inst->no_dd_clear = true;
1190
1191 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1192 mod_centroid && !key->persample_shading,
1193 mod_sample || key->persample_shading);
1194 inst->predicate = BRW_PREDICATE_NORMAL;
1195 inst->predicate_inverse = false;
1196 if (devinfo->has_pln)
1197 inst->no_dd_check = true;
1198
1199 } else {
1200 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1201 mod_centroid && !key->persample_shading,
1202 mod_sample || key->persample_shading);
1203 }
1204 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1205 bld.MUL(*attr, *attr, this->pixel_w);
1206 }
1207 *attr = offset(*attr, bld, 1);
1208 }
1209 }
1210 (*location)++;
1211 }
1212 }
1213
1214 fs_reg *
1215 fs_visitor::emit_frontfacing_interpolation()
1216 {
1217 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1218
1219 if (devinfo->gen >= 6) {
1220 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1221 * a boolean result from this (~0/true or 0/false).
1222 *
1223 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1224 * this task in only one instruction:
1225 * - a negation source modifier will flip the bit; and
1226 * - a W -> D type conversion will sign extend the bit into the high
1227 * word of the destination.
1228 *
1229 * An ASR 15 fills the low word of the destination.
1230 */
1231 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1232 g0.negate = true;
1233
1234 bld.ASR(*reg, g0, brw_imm_d(15));
1235 } else {
1236 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1237 * a boolean result from this (1/true or 0/false).
1238 *
1239 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1240 * the negation source modifier to flip it. Unfortunately the SHR
1241 * instruction only operates on UD (or D with an abs source modifier)
1242 * sources without negation.
1243 *
1244 * Instead, use ASR (which will give ~0/true or 0/false).
1245 */
1246 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1247 g1_6.negate = true;
1248
1249 bld.ASR(*reg, g1_6, brw_imm_d(31));
1250 }
1251
1252 return reg;
1253 }
1254
1255 void
1256 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1257 {
1258 assert(stage == MESA_SHADER_FRAGMENT);
1259 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1260 assert(dst.type == BRW_REGISTER_TYPE_F);
1261
1262 if (key->compute_pos_offset) {
1263 /* Convert int_sample_pos to floating point */
1264 bld.MOV(dst, int_sample_pos);
1265 /* Scale to the range [0, 1] */
1266 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1267 }
1268 else {
1269 /* From ARB_sample_shading specification:
1270 * "When rendering to a non-multisample buffer, or if multisample
1271 * rasterization is disabled, gl_SamplePosition will always be
1272 * (0.5, 0.5).
1273 */
1274 bld.MOV(dst, brw_imm_f(0.5f));
1275 }
1276 }
1277
1278 fs_reg *
1279 fs_visitor::emit_samplepos_setup()
1280 {
1281 assert(devinfo->gen >= 6);
1282
1283 const fs_builder abld = bld.annotate("compute sample position");
1284 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1285 fs_reg pos = *reg;
1286 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1287 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1288
1289 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1290 * mode will be enabled.
1291 *
1292 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1293 * R31.1:0 Position Offset X/Y for Slot[3:0]
1294 * R31.3:2 Position Offset X/Y for Slot[7:4]
1295 * .....
1296 *
1297 * The X, Y sample positions come in as bytes in thread payload. So, read
1298 * the positions using vstride=16, width=8, hstride=2.
1299 */
1300 struct brw_reg sample_pos_reg =
1301 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1302 BRW_REGISTER_TYPE_B), 16, 8, 2);
1303
1304 if (dispatch_width == 8) {
1305 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1306 } else {
1307 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1308 abld.half(1).MOV(half(int_sample_x, 1),
1309 fs_reg(suboffset(sample_pos_reg, 16)));
1310 }
1311 /* Compute gl_SamplePosition.x */
1312 compute_sample_position(pos, int_sample_x);
1313 pos = offset(pos, abld, 1);
1314 if (dispatch_width == 8) {
1315 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1316 } else {
1317 abld.half(0).MOV(half(int_sample_y, 0),
1318 fs_reg(suboffset(sample_pos_reg, 1)));
1319 abld.half(1).MOV(half(int_sample_y, 1),
1320 fs_reg(suboffset(sample_pos_reg, 17)));
1321 }
1322 /* Compute gl_SamplePosition.y */
1323 compute_sample_position(pos, int_sample_y);
1324 return reg;
1325 }
1326
1327 fs_reg *
1328 fs_visitor::emit_sampleid_setup()
1329 {
1330 assert(stage == MESA_SHADER_FRAGMENT);
1331 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1332 assert(devinfo->gen >= 6);
1333
1334 const fs_builder abld = bld.annotate("compute sample id");
1335 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1336
1337 if (key->compute_sample_id) {
1338 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1339 t1.set_smear(0);
1340 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1341
1342 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1343 * 8x multisampling, subspan 0 will represent sample N (where N
1344 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1345 * 7. We can find the value of N by looking at R0.0 bits 7:6
1346 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1347 * (since samples are always delivered in pairs). That is, we
1348 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1349 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1350 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1351 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1352 * populating a temporary variable with the sequence (0, 1, 2, 3),
1353 * and then reading from it using vstride=1, width=4, hstride=0.
1354 * These computations hold good for 4x multisampling as well.
1355 *
1356 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1357 * the first four slots are sample 0 of subspan 0; the next four
1358 * are sample 1 of subspan 0; the third group is sample 0 of
1359 * subspan 1, and finally sample 1 of subspan 1.
1360 */
1361
1362 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1363 * accomodate 16x MSAA.
1364 */
1365 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1366
1367 abld.exec_all().group(1, 0)
1368 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1369 brw_imm_ud(sspi_mask));
1370 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1371
1372 /* This works for both SIMD8 and SIMD16 */
1373 abld.exec_all().group(4, 0)
1374 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1375
1376 /* This special instruction takes care of setting vstride=1,
1377 * width=4, hstride=0 of t2 during an ADD instruction.
1378 */
1379 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1380 } else {
1381 /* As per GL_ARB_sample_shading specification:
1382 * "When rendering to a non-multisample buffer, or if multisample
1383 * rasterization is disabled, gl_SampleID will always be zero."
1384 */
1385 abld.MOV(*reg, brw_imm_d(0));
1386 }
1387
1388 return reg;
1389 }
1390
1391 fs_reg
1392 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1393 {
1394 if (!src.abs && !src.negate)
1395 return src;
1396
1397 fs_reg temp = bld.vgrf(src.type);
1398 bld.MOV(temp, src);
1399
1400 return temp;
1401 }
1402
1403 void
1404 fs_visitor::emit_discard_jump()
1405 {
1406 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1407
1408 /* For performance, after a discard, jump to the end of the
1409 * shader if all relevant channels have been discarded.
1410 */
1411 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1412 discard_jump->flag_subreg = 1;
1413
1414 discard_jump->predicate = (dispatch_width == 8)
1415 ? BRW_PREDICATE_ALIGN1_ANY8H
1416 : BRW_PREDICATE_ALIGN1_ANY16H;
1417 discard_jump->predicate_inverse = true;
1418 }
1419
1420 void
1421 fs_visitor::emit_gs_thread_end()
1422 {
1423 assert(stage == MESA_SHADER_GEOMETRY);
1424
1425 struct brw_gs_prog_data *gs_prog_data =
1426 (struct brw_gs_prog_data *) prog_data;
1427
1428 if (gs_compile->control_data_header_size_bits > 0) {
1429 emit_gs_control_data_bits(this->final_gs_vertex_count);
1430 }
1431
1432 const fs_builder abld = bld.annotate("thread end");
1433 fs_inst *inst;
1434
1435 if (gs_prog_data->static_vertex_count != -1) {
1436 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1437 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1438 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1439 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1440 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1441 prev->eot = true;
1442
1443 /* Delete now dead instructions. */
1444 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1445 if (dead == prev)
1446 break;
1447 dead->remove();
1448 }
1449 return;
1450 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1451 break;
1452 }
1453 }
1454 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1455 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1456 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1457 inst->mlen = 1;
1458 } else {
1459 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1460 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1461 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1462 sources[1] = this->final_gs_vertex_count;
1463 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1464 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1465 inst->mlen = 2;
1466 }
1467 inst->eot = true;
1468 inst->offset = 0;
1469 }
1470
1471 void
1472 fs_visitor::assign_curb_setup()
1473 {
1474 if (dispatch_width == 8) {
1475 prog_data->dispatch_grf_start_reg = payload.num_regs;
1476 } else {
1477 if (stage == MESA_SHADER_FRAGMENT) {
1478 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1479 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1480 } else if (stage == MESA_SHADER_COMPUTE) {
1481 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1482 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1483 } else {
1484 unreachable("Unsupported shader type!");
1485 }
1486 }
1487
1488 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1489
1490 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1491 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1492 for (unsigned int i = 0; i < inst->sources; i++) {
1493 if (inst->src[i].file == UNIFORM) {
1494 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1495 int constant_nr;
1496 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1497 constant_nr = push_constant_loc[uniform_nr];
1498 } else {
1499 /* Section 5.11 of the OpenGL 4.1 spec says:
1500 * "Out-of-bounds reads return undefined values, which include
1501 * values from other variables of the active program or zero."
1502 * Just return the first push constant.
1503 */
1504 constant_nr = 0;
1505 }
1506
1507 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1508 constant_nr / 8,
1509 constant_nr % 8);
1510 brw_reg.abs = inst->src[i].abs;
1511 brw_reg.negate = inst->src[i].negate;
1512
1513 assert(inst->src[i].stride == 0);
1514 inst->src[i] = byte_offset(
1515 retype(brw_reg, inst->src[i].type),
1516 inst->src[i].subreg_offset);
1517 }
1518 }
1519 }
1520
1521 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1522 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1523 }
1524
1525 void
1526 fs_visitor::calculate_urb_setup()
1527 {
1528 assert(stage == MESA_SHADER_FRAGMENT);
1529 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1530 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1531
1532 memset(prog_data->urb_setup, -1,
1533 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1534
1535 int urb_next = 0;
1536 /* Figure out where each of the incoming setup attributes lands. */
1537 if (devinfo->gen >= 6) {
1538 if (_mesa_bitcount_64(nir->info.inputs_read &
1539 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1540 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1541 * first 16 varying inputs, so we can put them wherever we want.
1542 * Just put them in order.
1543 *
1544 * This is useful because it means that (a) inputs not used by the
1545 * fragment shader won't take up valuable register space, and (b) we
1546 * won't have to recompile the fragment shader if it gets paired with
1547 * a different vertex (or geometry) shader.
1548 */
1549 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1550 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1551 BITFIELD64_BIT(i)) {
1552 prog_data->urb_setup[i] = urb_next++;
1553 }
1554 }
1555 } else {
1556 bool include_vue_header =
1557 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1558
1559 /* We have enough input varyings that the SF/SBE pipeline stage can't
1560 * arbitrarily rearrange them to suit our whim; we have to put them
1561 * in an order that matches the output of the previous pipeline stage
1562 * (geometry or vertex shader).
1563 */
1564 struct brw_vue_map prev_stage_vue_map;
1565 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1566 key->input_slots_valid,
1567 nir->info.separate_shader);
1568 int first_slot =
1569 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1570
1571 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1572 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1573 slot++) {
1574 int varying = prev_stage_vue_map.slot_to_varying[slot];
1575 if (varying != BRW_VARYING_SLOT_PAD &&
1576 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1577 BITFIELD64_BIT(varying))) {
1578 prog_data->urb_setup[varying] = slot - first_slot;
1579 }
1580 }
1581 urb_next = prev_stage_vue_map.num_slots - first_slot;
1582 }
1583 } else {
1584 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1585 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1586 /* Point size is packed into the header, not as a general attribute */
1587 if (i == VARYING_SLOT_PSIZ)
1588 continue;
1589
1590 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1591 /* The back color slot is skipped when the front color is
1592 * also written to. In addition, some slots can be
1593 * written in the vertex shader and not read in the
1594 * fragment shader. So the register number must always be
1595 * incremented, mapped or not.
1596 */
1597 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1598 prog_data->urb_setup[i] = urb_next;
1599 urb_next++;
1600 }
1601 }
1602
1603 /*
1604 * It's a FS only attribute, and we did interpolation for this attribute
1605 * in SF thread. So, count it here, too.
1606 *
1607 * See compile_sf_prog() for more info.
1608 */
1609 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1610 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1611 }
1612
1613 prog_data->num_varying_inputs = urb_next;
1614 }
1615
1616 void
1617 fs_visitor::assign_urb_setup()
1618 {
1619 assert(stage == MESA_SHADER_FRAGMENT);
1620 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1621
1622 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1623
1624 /* Offset all the urb_setup[] index by the actual position of the
1625 * setup regs, now that the location of the constants has been chosen.
1626 */
1627 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1628 if (inst->opcode == FS_OPCODE_LINTERP) {
1629 assert(inst->src[1].file == FIXED_GRF);
1630 inst->src[1].nr += urb_start;
1631 }
1632
1633 if (inst->opcode == FS_OPCODE_CINTERP) {
1634 assert(inst->src[0].file == FIXED_GRF);
1635 inst->src[0].nr += urb_start;
1636 }
1637 }
1638
1639 /* Each attribute is 4 setup channels, each of which is half a reg. */
1640 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1641 }
1642
1643 void
1644 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1645 {
1646 for (int i = 0; i < inst->sources; i++) {
1647 if (inst->src[i].file == ATTR) {
1648 int grf = payload.num_regs +
1649 prog_data->curb_read_length +
1650 inst->src[i].nr +
1651 inst->src[i].reg_offset;
1652
1653 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1654 struct brw_reg reg =
1655 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1656 inst->src[i].subreg_offset),
1657 inst->exec_size * inst->src[i].stride,
1658 width, inst->src[i].stride);
1659 reg.abs = inst->src[i].abs;
1660 reg.negate = inst->src[i].negate;
1661
1662 inst->src[i] = reg;
1663 }
1664 }
1665 }
1666
1667 void
1668 fs_visitor::assign_vs_urb_setup()
1669 {
1670 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1671
1672 assert(stage == MESA_SHADER_VERTEX);
1673 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1674 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
1675 vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1676 count++;
1677
1678 /* Each attribute is 4 regs. */
1679 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1680
1681 assert(vs_prog_data->base.urb_read_length <= 15);
1682
1683 /* Rewrite all ATTR file references to the hw grf that they land in. */
1684 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1685 convert_attr_sources_to_hw_regs(inst);
1686 }
1687 }
1688
1689 void
1690 fs_visitor::assign_tes_urb_setup()
1691 {
1692 assert(stage == MESA_SHADER_TESS_EVAL);
1693
1694 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1695
1696 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1697
1698 /* Rewrite all ATTR file references to HW_REGs. */
1699 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1700 convert_attr_sources_to_hw_regs(inst);
1701 }
1702 }
1703
1704 void
1705 fs_visitor::assign_gs_urb_setup()
1706 {
1707 assert(stage == MESA_SHADER_GEOMETRY);
1708
1709 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1710
1711 first_non_payload_grf +=
1712 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1713
1714 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1715 /* Rewrite all ATTR file references to GRFs. */
1716 convert_attr_sources_to_hw_regs(inst);
1717 }
1718 }
1719
1720
1721 /**
1722 * Split large virtual GRFs into separate components if we can.
1723 *
1724 * This is mostly duplicated with what brw_fs_vector_splitting does,
1725 * but that's really conservative because it's afraid of doing
1726 * splitting that doesn't result in real progress after the rest of
1727 * the optimization phases, which would cause infinite looping in
1728 * optimization. We can do it once here, safely. This also has the
1729 * opportunity to split interpolated values, or maybe even uniforms,
1730 * which we don't have at the IR level.
1731 *
1732 * We want to split, because virtual GRFs are what we register
1733 * allocate and spill (due to contiguousness requirements for some
1734 * instructions), and they're what we naturally generate in the
1735 * codegen process, but most virtual GRFs don't actually need to be
1736 * contiguous sets of GRFs. If we split, we'll end up with reduced
1737 * live intervals and better dead code elimination and coalescing.
1738 */
1739 void
1740 fs_visitor::split_virtual_grfs()
1741 {
1742 int num_vars = this->alloc.count;
1743
1744 /* Count the total number of registers */
1745 int reg_count = 0;
1746 int vgrf_to_reg[num_vars];
1747 for (int i = 0; i < num_vars; i++) {
1748 vgrf_to_reg[i] = reg_count;
1749 reg_count += alloc.sizes[i];
1750 }
1751
1752 /* An array of "split points". For each register slot, this indicates
1753 * if this slot can be separated from the previous slot. Every time an
1754 * instruction uses multiple elements of a register (as a source or
1755 * destination), we mark the used slots as inseparable. Then we go
1756 * through and split the registers into the smallest pieces we can.
1757 */
1758 bool split_points[reg_count];
1759 memset(split_points, 0, sizeof(split_points));
1760
1761 /* Mark all used registers as fully splittable */
1762 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1763 if (inst->dst.file == VGRF) {
1764 int reg = vgrf_to_reg[inst->dst.nr];
1765 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1766 split_points[reg + j] = true;
1767 }
1768
1769 for (int i = 0; i < inst->sources; i++) {
1770 if (inst->src[i].file == VGRF) {
1771 int reg = vgrf_to_reg[inst->src[i].nr];
1772 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1773 split_points[reg + j] = true;
1774 }
1775 }
1776 }
1777
1778 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1779 if (inst->dst.file == VGRF) {
1780 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1781 for (int j = 1; j < inst->regs_written; j++)
1782 split_points[reg + j] = false;
1783 }
1784 for (int i = 0; i < inst->sources; i++) {
1785 if (inst->src[i].file == VGRF) {
1786 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1787 for (int j = 1; j < inst->regs_read(i); j++)
1788 split_points[reg + j] = false;
1789 }
1790 }
1791 }
1792
1793 int new_virtual_grf[reg_count];
1794 int new_reg_offset[reg_count];
1795
1796 int reg = 0;
1797 for (int i = 0; i < num_vars; i++) {
1798 /* The first one should always be 0 as a quick sanity check. */
1799 assert(split_points[reg] == false);
1800
1801 /* j = 0 case */
1802 new_reg_offset[reg] = 0;
1803 reg++;
1804 int offset = 1;
1805
1806 /* j > 0 case */
1807 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1808 /* If this is a split point, reset the offset to 0 and allocate a
1809 * new virtual GRF for the previous offset many registers
1810 */
1811 if (split_points[reg]) {
1812 assert(offset <= MAX_VGRF_SIZE);
1813 int grf = alloc.allocate(offset);
1814 for (int k = reg - offset; k < reg; k++)
1815 new_virtual_grf[k] = grf;
1816 offset = 0;
1817 }
1818 new_reg_offset[reg] = offset;
1819 offset++;
1820 reg++;
1821 }
1822
1823 /* The last one gets the original register number */
1824 assert(offset <= MAX_VGRF_SIZE);
1825 alloc.sizes[i] = offset;
1826 for (int k = reg - offset; k < reg; k++)
1827 new_virtual_grf[k] = i;
1828 }
1829 assert(reg == reg_count);
1830
1831 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1832 if (inst->dst.file == VGRF) {
1833 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1834 inst->dst.nr = new_virtual_grf[reg];
1835 inst->dst.reg_offset = new_reg_offset[reg];
1836 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1837 }
1838 for (int i = 0; i < inst->sources; i++) {
1839 if (inst->src[i].file == VGRF) {
1840 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1841 inst->src[i].nr = new_virtual_grf[reg];
1842 inst->src[i].reg_offset = new_reg_offset[reg];
1843 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1844 }
1845 }
1846 }
1847 invalidate_live_intervals();
1848 }
1849
1850 /**
1851 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1852 *
1853 * During code generation, we create tons of temporary variables, many of
1854 * which get immediately killed and are never used again. Yet, in later
1855 * optimization and analysis passes, such as compute_live_intervals, we need
1856 * to loop over all the virtual GRFs. Compacting them can save a lot of
1857 * overhead.
1858 */
1859 bool
1860 fs_visitor::compact_virtual_grfs()
1861 {
1862 bool progress = false;
1863 int remap_table[this->alloc.count];
1864 memset(remap_table, -1, sizeof(remap_table));
1865
1866 /* Mark which virtual GRFs are used. */
1867 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1868 if (inst->dst.file == VGRF)
1869 remap_table[inst->dst.nr] = 0;
1870
1871 for (int i = 0; i < inst->sources; i++) {
1872 if (inst->src[i].file == VGRF)
1873 remap_table[inst->src[i].nr] = 0;
1874 }
1875 }
1876
1877 /* Compact the GRF arrays. */
1878 int new_index = 0;
1879 for (unsigned i = 0; i < this->alloc.count; i++) {
1880 if (remap_table[i] == -1) {
1881 /* We just found an unused register. This means that we are
1882 * actually going to compact something.
1883 */
1884 progress = true;
1885 } else {
1886 remap_table[i] = new_index;
1887 alloc.sizes[new_index] = alloc.sizes[i];
1888 invalidate_live_intervals();
1889 ++new_index;
1890 }
1891 }
1892
1893 this->alloc.count = new_index;
1894
1895 /* Patch all the instructions to use the newly renumbered registers */
1896 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1897 if (inst->dst.file == VGRF)
1898 inst->dst.nr = remap_table[inst->dst.nr];
1899
1900 for (int i = 0; i < inst->sources; i++) {
1901 if (inst->src[i].file == VGRF)
1902 inst->src[i].nr = remap_table[inst->src[i].nr];
1903 }
1904 }
1905
1906 /* Patch all the references to delta_xy, since they're used in register
1907 * allocation. If they're unused, switch them to BAD_FILE so we don't
1908 * think some random VGRF is delta_xy.
1909 */
1910 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1911 if (delta_xy[i].file == VGRF) {
1912 if (remap_table[delta_xy[i].nr] != -1) {
1913 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1914 } else {
1915 delta_xy[i].file = BAD_FILE;
1916 }
1917 }
1918 }
1919
1920 return progress;
1921 }
1922
1923 /**
1924 * Assign UNIFORM file registers to either push constants or pull constants.
1925 *
1926 * We allow a fragment shader to have more than the specified minimum
1927 * maximum number of fragment shader uniform components (64). If
1928 * there are too many of these, they'd fill up all of register space.
1929 * So, this will push some of them out to the pull constant buffer and
1930 * update the program to load them. We also use pull constants for all
1931 * indirect constant loads because we don't support indirect accesses in
1932 * registers yet.
1933 */
1934 void
1935 fs_visitor::assign_constant_locations()
1936 {
1937 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1938 if (dispatch_width != 8)
1939 return;
1940
1941 unsigned int num_pull_constants = 0;
1942
1943 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1944 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1945
1946 bool is_live[uniforms];
1947 memset(is_live, 0, sizeof(is_live));
1948
1949 /* First, we walk through the instructions and do two things:
1950 *
1951 * 1) Figure out which uniforms are live.
1952 *
1953 * 2) Find all indirect access of uniform arrays and flag them as needing
1954 * to go into the pull constant buffer.
1955 *
1956 * Note that we don't move constant-indexed accesses to arrays. No
1957 * testing has been done of the performance impact of this choice.
1958 */
1959 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1960 for (int i = 0 ; i < inst->sources; i++) {
1961 if (inst->src[i].file != UNIFORM)
1962 continue;
1963
1964 if (inst->src[i].reladdr) {
1965 int uniform = inst->src[i].nr;
1966
1967 /* If this array isn't already present in the pull constant buffer,
1968 * add it.
1969 */
1970 if (pull_constant_loc[uniform] == -1) {
1971 assert(param_size[uniform]);
1972 for (int j = 0; j < param_size[uniform]; j++)
1973 pull_constant_loc[uniform + j] = num_pull_constants++;
1974 }
1975 } else {
1976 /* Mark the the one accessed uniform as live */
1977 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1978 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1979 is_live[constant_nr] = true;
1980 }
1981 }
1982 }
1983
1984 /* Only allow 16 registers (128 uniform components) as push constants.
1985 *
1986 * Just demote the end of the list. We could probably do better
1987 * here, demoting things that are rarely used in the program first.
1988 *
1989 * If changing this value, note the limitation about total_regs in
1990 * brw_curbe.c.
1991 */
1992 unsigned int max_push_components = 16 * 8;
1993 unsigned int num_push_constants = 0;
1994
1995 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1996
1997 for (unsigned int i = 0; i < uniforms; i++) {
1998 if (!is_live[i] || pull_constant_loc[i] != -1) {
1999 /* This UNIFORM register is either dead, or has already been demoted
2000 * to a pull const. Mark it as no longer living in the param[] array.
2001 */
2002 push_constant_loc[i] = -1;
2003 continue;
2004 }
2005
2006 if (num_push_constants < max_push_components) {
2007 /* Retain as a push constant. Record the location in the params[]
2008 * array.
2009 */
2010 push_constant_loc[i] = num_push_constants++;
2011 } else {
2012 /* Demote to a pull constant. */
2013 push_constant_loc[i] = -1;
2014 pull_constant_loc[i] = num_pull_constants++;
2015 }
2016 }
2017
2018 stage_prog_data->nr_params = num_push_constants;
2019 stage_prog_data->nr_pull_params = num_pull_constants;
2020
2021 /* Up until now, the param[] array has been indexed by reg + reg_offset
2022 * of UNIFORM registers. Move pull constants into pull_param[] and
2023 * condense param[] to only contain the uniforms we chose to push.
2024 *
2025 * NOTE: Because we are condensing the params[] array, we know that
2026 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2027 * having to make a copy.
2028 */
2029 for (unsigned int i = 0; i < uniforms; i++) {
2030 const gl_constant_value *value = stage_prog_data->param[i];
2031
2032 if (pull_constant_loc[i] != -1) {
2033 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2034 } else if (push_constant_loc[i] != -1) {
2035 stage_prog_data->param[push_constant_loc[i]] = value;
2036 }
2037 }
2038 }
2039
2040 /**
2041 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2042 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2043 */
2044 void
2045 fs_visitor::demote_pull_constants()
2046 {
2047 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2048 for (int i = 0; i < inst->sources; i++) {
2049 if (inst->src[i].file != UNIFORM)
2050 continue;
2051
2052 int pull_index;
2053 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2054 if (location >= uniforms) /* Out of bounds access */
2055 pull_index = -1;
2056 else
2057 pull_index = pull_constant_loc[location];
2058
2059 if (pull_index == -1)
2060 continue;
2061
2062 /* Set up the annotation tracking for new generated instructions. */
2063 const fs_builder ibld(this, block, inst);
2064 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2065 fs_reg dst = vgrf(glsl_type::float_type);
2066
2067 assert(inst->src[i].stride == 0);
2068
2069 /* Generate a pull load into dst. */
2070 if (inst->src[i].reladdr) {
2071 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2072 brw_imm_ud(index),
2073 *inst->src[i].reladdr,
2074 pull_index * 4);
2075 inst->src[i].reladdr = NULL;
2076 inst->src[i].stride = 1;
2077 } else {
2078 const fs_builder ubld = ibld.exec_all().group(8, 0);
2079 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2080 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2081 dst, brw_imm_ud(index), offset);
2082 inst->src[i].set_smear(pull_index & 3);
2083 }
2084 brw_mark_surface_used(prog_data, index);
2085
2086 /* Rewrite the instruction to use the temporary VGRF. */
2087 inst->src[i].file = VGRF;
2088 inst->src[i].nr = dst.nr;
2089 inst->src[i].reg_offset = 0;
2090 }
2091 }
2092 invalidate_live_intervals();
2093 }
2094
2095 bool
2096 fs_visitor::opt_algebraic()
2097 {
2098 bool progress = false;
2099
2100 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2101 switch (inst->opcode) {
2102 case BRW_OPCODE_MOV:
2103 if (inst->src[0].file != IMM)
2104 break;
2105
2106 if (inst->saturate) {
2107 if (inst->dst.type != inst->src[0].type)
2108 assert(!"unimplemented: saturate mixed types");
2109
2110 if (brw_saturate_immediate(inst->dst.type,
2111 &inst->src[0].as_brw_reg())) {
2112 inst->saturate = false;
2113 progress = true;
2114 }
2115 }
2116 break;
2117
2118 case BRW_OPCODE_MUL:
2119 if (inst->src[1].file != IMM)
2120 continue;
2121
2122 /* a * 1.0 = a */
2123 if (inst->src[1].is_one()) {
2124 inst->opcode = BRW_OPCODE_MOV;
2125 inst->src[1] = reg_undef;
2126 progress = true;
2127 break;
2128 }
2129
2130 /* a * -1.0 = -a */
2131 if (inst->src[1].is_negative_one()) {
2132 inst->opcode = BRW_OPCODE_MOV;
2133 inst->src[0].negate = !inst->src[0].negate;
2134 inst->src[1] = reg_undef;
2135 progress = true;
2136 break;
2137 }
2138
2139 /* a * 0.0 = 0.0 */
2140 if (inst->src[1].is_zero()) {
2141 inst->opcode = BRW_OPCODE_MOV;
2142 inst->src[0] = inst->src[1];
2143 inst->src[1] = reg_undef;
2144 progress = true;
2145 break;
2146 }
2147
2148 if (inst->src[0].file == IMM) {
2149 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2150 inst->opcode = BRW_OPCODE_MOV;
2151 inst->src[0].f *= inst->src[1].f;
2152 inst->src[1] = reg_undef;
2153 progress = true;
2154 break;
2155 }
2156 break;
2157 case BRW_OPCODE_ADD:
2158 if (inst->src[1].file != IMM)
2159 continue;
2160
2161 /* a + 0.0 = a */
2162 if (inst->src[1].is_zero()) {
2163 inst->opcode = BRW_OPCODE_MOV;
2164 inst->src[1] = reg_undef;
2165 progress = true;
2166 break;
2167 }
2168
2169 if (inst->src[0].file == IMM) {
2170 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2171 inst->opcode = BRW_OPCODE_MOV;
2172 inst->src[0].f += inst->src[1].f;
2173 inst->src[1] = reg_undef;
2174 progress = true;
2175 break;
2176 }
2177 break;
2178 case BRW_OPCODE_OR:
2179 if (inst->src[0].equals(inst->src[1])) {
2180 inst->opcode = BRW_OPCODE_MOV;
2181 inst->src[1] = reg_undef;
2182 progress = true;
2183 break;
2184 }
2185 break;
2186 case BRW_OPCODE_LRP:
2187 if (inst->src[1].equals(inst->src[2])) {
2188 inst->opcode = BRW_OPCODE_MOV;
2189 inst->src[0] = inst->src[1];
2190 inst->src[1] = reg_undef;
2191 inst->src[2] = reg_undef;
2192 progress = true;
2193 break;
2194 }
2195 break;
2196 case BRW_OPCODE_CMP:
2197 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2198 inst->src[0].abs &&
2199 inst->src[0].negate &&
2200 inst->src[1].is_zero()) {
2201 inst->src[0].abs = false;
2202 inst->src[0].negate = false;
2203 inst->conditional_mod = BRW_CONDITIONAL_Z;
2204 progress = true;
2205 break;
2206 }
2207 break;
2208 case BRW_OPCODE_SEL:
2209 if (inst->src[0].equals(inst->src[1])) {
2210 inst->opcode = BRW_OPCODE_MOV;
2211 inst->src[1] = reg_undef;
2212 inst->predicate = BRW_PREDICATE_NONE;
2213 inst->predicate_inverse = false;
2214 progress = true;
2215 } else if (inst->saturate && inst->src[1].file == IMM) {
2216 switch (inst->conditional_mod) {
2217 case BRW_CONDITIONAL_LE:
2218 case BRW_CONDITIONAL_L:
2219 switch (inst->src[1].type) {
2220 case BRW_REGISTER_TYPE_F:
2221 if (inst->src[1].f >= 1.0f) {
2222 inst->opcode = BRW_OPCODE_MOV;
2223 inst->src[1] = reg_undef;
2224 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2225 progress = true;
2226 }
2227 break;
2228 default:
2229 break;
2230 }
2231 break;
2232 case BRW_CONDITIONAL_GE:
2233 case BRW_CONDITIONAL_G:
2234 switch (inst->src[1].type) {
2235 case BRW_REGISTER_TYPE_F:
2236 if (inst->src[1].f <= 0.0f) {
2237 inst->opcode = BRW_OPCODE_MOV;
2238 inst->src[1] = reg_undef;
2239 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2240 progress = true;
2241 }
2242 break;
2243 default:
2244 break;
2245 }
2246 default:
2247 break;
2248 }
2249 }
2250 break;
2251 case BRW_OPCODE_MAD:
2252 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2253 inst->opcode = BRW_OPCODE_MOV;
2254 inst->src[1] = reg_undef;
2255 inst->src[2] = reg_undef;
2256 progress = true;
2257 } else if (inst->src[0].is_zero()) {
2258 inst->opcode = BRW_OPCODE_MUL;
2259 inst->src[0] = inst->src[2];
2260 inst->src[2] = reg_undef;
2261 progress = true;
2262 } else if (inst->src[1].is_one()) {
2263 inst->opcode = BRW_OPCODE_ADD;
2264 inst->src[1] = inst->src[2];
2265 inst->src[2] = reg_undef;
2266 progress = true;
2267 } else if (inst->src[2].is_one()) {
2268 inst->opcode = BRW_OPCODE_ADD;
2269 inst->src[2] = reg_undef;
2270 progress = true;
2271 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2272 inst->opcode = BRW_OPCODE_ADD;
2273 inst->src[1].f *= inst->src[2].f;
2274 inst->src[2] = reg_undef;
2275 progress = true;
2276 }
2277 break;
2278 case SHADER_OPCODE_RCP: {
2279 fs_inst *prev = (fs_inst *)inst->prev;
2280 if (prev->opcode == SHADER_OPCODE_SQRT) {
2281 if (inst->src[0].equals(prev->dst)) {
2282 inst->opcode = SHADER_OPCODE_RSQ;
2283 inst->src[0] = prev->src[0];
2284 progress = true;
2285 }
2286 }
2287 break;
2288 }
2289 case SHADER_OPCODE_BROADCAST:
2290 if (is_uniform(inst->src[0])) {
2291 inst->opcode = BRW_OPCODE_MOV;
2292 inst->sources = 1;
2293 inst->force_writemask_all = true;
2294 progress = true;
2295 } else if (inst->src[1].file == IMM) {
2296 inst->opcode = BRW_OPCODE_MOV;
2297 inst->src[0] = component(inst->src[0],
2298 inst->src[1].ud);
2299 inst->sources = 1;
2300 inst->force_writemask_all = true;
2301 progress = true;
2302 }
2303 break;
2304
2305 default:
2306 break;
2307 }
2308
2309 /* Swap if src[0] is immediate. */
2310 if (progress && inst->is_commutative()) {
2311 if (inst->src[0].file == IMM) {
2312 fs_reg tmp = inst->src[1];
2313 inst->src[1] = inst->src[0];
2314 inst->src[0] = tmp;
2315 }
2316 }
2317 }
2318 return progress;
2319 }
2320
2321 /**
2322 * Optimize sample messages that have constant zero values for the trailing
2323 * texture coordinates. We can just reduce the message length for these
2324 * instructions instead of reserving a register for it. Trailing parameters
2325 * that aren't sent default to zero anyway. This will cause the dead code
2326 * eliminator to remove the MOV instruction that would otherwise be emitted to
2327 * set up the zero value.
2328 */
2329 bool
2330 fs_visitor::opt_zero_samples()
2331 {
2332 /* Gen4 infers the texturing opcode based on the message length so we can't
2333 * change it.
2334 */
2335 if (devinfo->gen < 5)
2336 return false;
2337
2338 bool progress = false;
2339
2340 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2341 if (!inst->is_tex())
2342 continue;
2343
2344 fs_inst *load_payload = (fs_inst *) inst->prev;
2345
2346 if (load_payload->is_head_sentinel() ||
2347 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2348 continue;
2349
2350 /* We don't want to remove the message header or the first parameter.
2351 * Removing the first parameter is not allowed, see the Haswell PRM
2352 * volume 7, page 149:
2353 *
2354 * "Parameter 0 is required except for the sampleinfo message, which
2355 * has no parameter 0"
2356 */
2357 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2358 load_payload->src[(inst->mlen - inst->header_size) /
2359 (inst->exec_size / 8) +
2360 inst->header_size - 1].is_zero()) {
2361 inst->mlen -= inst->exec_size / 8;
2362 progress = true;
2363 }
2364 }
2365
2366 if (progress)
2367 invalidate_live_intervals();
2368
2369 return progress;
2370 }
2371
2372 /**
2373 * Optimize sample messages which are followed by the final RT write.
2374 *
2375 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2376 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2377 * final texturing results copied to the framebuffer write payload and modify
2378 * them to write to the framebuffer directly.
2379 */
2380 bool
2381 fs_visitor::opt_sampler_eot()
2382 {
2383 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2384
2385 if (stage != MESA_SHADER_FRAGMENT)
2386 return false;
2387
2388 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2389 return false;
2390
2391 /* FINISHME: It should be possible to implement this optimization when there
2392 * are multiple drawbuffers.
2393 */
2394 if (key->nr_color_regions != 1)
2395 return false;
2396
2397 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2398 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2399 fs_inst *fb_write = (fs_inst *)block->end();
2400 assert(fb_write->eot);
2401 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2402
2403 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2404
2405 /* There wasn't one; nothing to do. */
2406 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2407 return false;
2408
2409 /* 3D Sampler » Messages » Message Format
2410 *
2411 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2412 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2413 */
2414 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2415 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2416 tex_inst->opcode == SHADER_OPCODE_LOD ||
2417 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2418 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2419 return false;
2420
2421 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2422 * It's very likely to be the previous instruction.
2423 */
2424 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2425 if (load_payload->is_head_sentinel() ||
2426 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2427 return false;
2428
2429 assert(!tex_inst->eot); /* We can't get here twice */
2430 assert((tex_inst->offset & (0xff << 24)) == 0);
2431
2432 const fs_builder ibld(this, block, tex_inst);
2433
2434 tex_inst->offset |= fb_write->target << 24;
2435 tex_inst->eot = true;
2436 tex_inst->dst = ibld.null_reg_ud();
2437 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2438
2439 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2440 * to create a new LOAD_PAYLOAD command with the same sources and a space
2441 * saved for the header. Using a new destination register not only makes sure
2442 * we have enough space, but it will make sure the dead code eliminator kills
2443 * the instruction that this will replace.
2444 */
2445 if (tex_inst->header_size != 0)
2446 return true;
2447
2448 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2449 load_payload->sources + 1);
2450 fs_reg *new_sources =
2451 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2452
2453 new_sources[0] = fs_reg();
2454 for (int i = 0; i < load_payload->sources; i++)
2455 new_sources[i+1] = load_payload->src[i];
2456
2457 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2458 * requires a lot of information about the sources to appropriately figure
2459 * out the number of registers needed to be used. Given this stage in our
2460 * optimization, we may not have the appropriate GRFs required by
2461 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2462 * manually emit the instruction.
2463 */
2464 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2465 load_payload->exec_size,
2466 send_header,
2467 new_sources,
2468 load_payload->sources + 1);
2469
2470 new_load_payload->regs_written = load_payload->regs_written + 1;
2471 new_load_payload->header_size = 1;
2472 tex_inst->mlen++;
2473 tex_inst->header_size = 1;
2474 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2475 tex_inst->src[0] = send_header;
2476
2477 return true;
2478 }
2479
2480 bool
2481 fs_visitor::opt_register_renaming()
2482 {
2483 bool progress = false;
2484 int depth = 0;
2485
2486 int remap[alloc.count];
2487 memset(remap, -1, sizeof(int) * alloc.count);
2488
2489 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2490 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2491 depth++;
2492 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2493 inst->opcode == BRW_OPCODE_WHILE) {
2494 depth--;
2495 }
2496
2497 /* Rewrite instruction sources. */
2498 for (int i = 0; i < inst->sources; i++) {
2499 if (inst->src[i].file == VGRF &&
2500 remap[inst->src[i].nr] != -1 &&
2501 remap[inst->src[i].nr] != inst->src[i].nr) {
2502 inst->src[i].nr = remap[inst->src[i].nr];
2503 progress = true;
2504 }
2505 }
2506
2507 const int dst = inst->dst.nr;
2508
2509 if (depth == 0 &&
2510 inst->dst.file == VGRF &&
2511 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2512 !inst->is_partial_write()) {
2513 if (remap[dst] == -1) {
2514 remap[dst] = dst;
2515 } else {
2516 remap[dst] = alloc.allocate(inst->exec_size / 8);
2517 inst->dst.nr = remap[dst];
2518 progress = true;
2519 }
2520 } else if (inst->dst.file == VGRF &&
2521 remap[dst] != -1 &&
2522 remap[dst] != dst) {
2523 inst->dst.nr = remap[dst];
2524 progress = true;
2525 }
2526 }
2527
2528 if (progress) {
2529 invalidate_live_intervals();
2530
2531 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2532 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2533 delta_xy[i].nr = remap[delta_xy[i].nr];
2534 }
2535 }
2536 }
2537
2538 return progress;
2539 }
2540
2541 /**
2542 * Remove redundant or useless discard jumps.
2543 *
2544 * For example, we can eliminate jumps in the following sequence:
2545 *
2546 * discard-jump (redundant with the next jump)
2547 * discard-jump (useless; jumps to the next instruction)
2548 * placeholder-halt
2549 */
2550 bool
2551 fs_visitor::opt_redundant_discard_jumps()
2552 {
2553 bool progress = false;
2554
2555 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2556
2557 fs_inst *placeholder_halt = NULL;
2558 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2559 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2560 placeholder_halt = inst;
2561 break;
2562 }
2563 }
2564
2565 if (!placeholder_halt)
2566 return false;
2567
2568 /* Delete any HALTs immediately before the placeholder halt. */
2569 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2570 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2571 prev = (fs_inst *) placeholder_halt->prev) {
2572 prev->remove(last_bblock);
2573 progress = true;
2574 }
2575
2576 if (progress)
2577 invalidate_live_intervals();
2578
2579 return progress;
2580 }
2581
2582 bool
2583 fs_visitor::compute_to_mrf()
2584 {
2585 bool progress = false;
2586 int next_ip = 0;
2587
2588 /* No MRFs on Gen >= 7. */
2589 if (devinfo->gen >= 7)
2590 return false;
2591
2592 calculate_live_intervals();
2593
2594 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2595 int ip = next_ip;
2596 next_ip++;
2597
2598 if (inst->opcode != BRW_OPCODE_MOV ||
2599 inst->is_partial_write() ||
2600 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2601 inst->dst.type != inst->src[0].type ||
2602 inst->src[0].abs || inst->src[0].negate ||
2603 !inst->src[0].is_contiguous() ||
2604 inst->src[0].subreg_offset)
2605 continue;
2606
2607 /* Work out which hardware MRF registers are written by this
2608 * instruction.
2609 */
2610 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2611 int mrf_high;
2612 if (inst->dst.nr & BRW_MRF_COMPR4) {
2613 mrf_high = mrf_low + 4;
2614 } else if (inst->exec_size == 16) {
2615 mrf_high = mrf_low + 1;
2616 } else {
2617 mrf_high = mrf_low;
2618 }
2619
2620 /* Can't compute-to-MRF this GRF if someone else was going to
2621 * read it later.
2622 */
2623 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2624 continue;
2625
2626 /* Found a move of a GRF to a MRF. Let's see if we can go
2627 * rewrite the thing that made this GRF to write into the MRF.
2628 */
2629 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2630 if (scan_inst->dst.file == VGRF &&
2631 scan_inst->dst.nr == inst->src[0].nr) {
2632 /* Found the last thing to write our reg we want to turn
2633 * into a compute-to-MRF.
2634 */
2635
2636 /* If this one instruction didn't populate all the
2637 * channels, bail. We might be able to rewrite everything
2638 * that writes that reg, but it would require smarter
2639 * tracking to delay the rewriting until complete success.
2640 */
2641 if (scan_inst->is_partial_write())
2642 break;
2643
2644 /* Things returning more than one register would need us to
2645 * understand coalescing out more than one MOV at a time.
2646 */
2647 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2648 break;
2649
2650 /* SEND instructions can't have MRF as a destination. */
2651 if (scan_inst->mlen)
2652 break;
2653
2654 if (devinfo->gen == 6) {
2655 /* gen6 math instructions must have the destination be
2656 * GRF, so no compute-to-MRF for them.
2657 */
2658 if (scan_inst->is_math()) {
2659 break;
2660 }
2661 }
2662
2663 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2664 /* Found the creator of our MRF's source value. */
2665 scan_inst->dst.file = MRF;
2666 scan_inst->dst.nr = inst->dst.nr;
2667 scan_inst->saturate |= inst->saturate;
2668 inst->remove(block);
2669 progress = true;
2670 }
2671 break;
2672 }
2673
2674 /* We don't handle control flow here. Most computation of
2675 * values that end up in MRFs are shortly before the MRF
2676 * write anyway.
2677 */
2678 if (block->start() == scan_inst)
2679 break;
2680
2681 /* You can't read from an MRF, so if someone else reads our
2682 * MRF's source GRF that we wanted to rewrite, that stops us.
2683 */
2684 bool interfered = false;
2685 for (int i = 0; i < scan_inst->sources; i++) {
2686 if (scan_inst->src[i].file == VGRF &&
2687 scan_inst->src[i].nr == inst->src[0].nr &&
2688 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2689 interfered = true;
2690 }
2691 }
2692 if (interfered)
2693 break;
2694
2695 if (scan_inst->dst.file == MRF) {
2696 /* If somebody else writes our MRF here, we can't
2697 * compute-to-MRF before that.
2698 */
2699 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2700 int scan_mrf_high;
2701
2702 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2703 scan_mrf_high = scan_mrf_low + 4;
2704 } else if (scan_inst->exec_size == 16) {
2705 scan_mrf_high = scan_mrf_low + 1;
2706 } else {
2707 scan_mrf_high = scan_mrf_low;
2708 }
2709
2710 if (mrf_low == scan_mrf_low ||
2711 mrf_low == scan_mrf_high ||
2712 mrf_high == scan_mrf_low ||
2713 mrf_high == scan_mrf_high) {
2714 break;
2715 }
2716 }
2717
2718 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2719 /* Found a SEND instruction, which means that there are
2720 * live values in MRFs from base_mrf to base_mrf +
2721 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2722 * above it.
2723 */
2724 if (mrf_low >= scan_inst->base_mrf &&
2725 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2726 break;
2727 }
2728 if (mrf_high >= scan_inst->base_mrf &&
2729 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2730 break;
2731 }
2732 }
2733 }
2734 }
2735
2736 if (progress)
2737 invalidate_live_intervals();
2738
2739 return progress;
2740 }
2741
2742 /**
2743 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2744 * flow. We could probably do better here with some form of divergence
2745 * analysis.
2746 */
2747 bool
2748 fs_visitor::eliminate_find_live_channel()
2749 {
2750 bool progress = false;
2751 unsigned depth = 0;
2752
2753 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2754 switch (inst->opcode) {
2755 case BRW_OPCODE_IF:
2756 case BRW_OPCODE_DO:
2757 depth++;
2758 break;
2759
2760 case BRW_OPCODE_ENDIF:
2761 case BRW_OPCODE_WHILE:
2762 depth--;
2763 break;
2764
2765 case FS_OPCODE_DISCARD_JUMP:
2766 /* This can potentially make control flow non-uniform until the end
2767 * of the program.
2768 */
2769 return progress;
2770
2771 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2772 if (depth == 0) {
2773 inst->opcode = BRW_OPCODE_MOV;
2774 inst->src[0] = brw_imm_ud(0u);
2775 inst->sources = 1;
2776 inst->force_writemask_all = true;
2777 progress = true;
2778 }
2779 break;
2780
2781 default:
2782 break;
2783 }
2784 }
2785
2786 return progress;
2787 }
2788
2789 /**
2790 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2791 * instructions to FS_OPCODE_REP_FB_WRITE.
2792 */
2793 void
2794 fs_visitor::emit_repclear_shader()
2795 {
2796 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2797 int base_mrf = 1;
2798 int color_mrf = base_mrf + 2;
2799
2800 fs_inst *mov = bld.exec_all().group(4, 0)
2801 .MOV(brw_message_reg(color_mrf),
2802 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2803
2804 fs_inst *write;
2805 if (key->nr_color_regions == 1) {
2806 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2807 write->saturate = key->clamp_fragment_color;
2808 write->base_mrf = color_mrf;
2809 write->target = 0;
2810 write->header_size = 0;
2811 write->mlen = 1;
2812 } else {
2813 assume(key->nr_color_regions > 0);
2814 for (int i = 0; i < key->nr_color_regions; ++i) {
2815 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2816 write->saturate = key->clamp_fragment_color;
2817 write->base_mrf = base_mrf;
2818 write->target = i;
2819 write->header_size = 2;
2820 write->mlen = 3;
2821 }
2822 }
2823 write->eot = true;
2824
2825 calculate_cfg();
2826
2827 assign_constant_locations();
2828 assign_curb_setup();
2829
2830 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2831 assert(mov->src[0].file == FIXED_GRF);
2832 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2833 }
2834
2835 /**
2836 * Walks through basic blocks, looking for repeated MRF writes and
2837 * removing the later ones.
2838 */
2839 bool
2840 fs_visitor::remove_duplicate_mrf_writes()
2841 {
2842 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2843 bool progress = false;
2844
2845 /* Need to update the MRF tracking for compressed instructions. */
2846 if (dispatch_width == 16)
2847 return false;
2848
2849 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2850
2851 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2852 if (inst->is_control_flow()) {
2853 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2854 }
2855
2856 if (inst->opcode == BRW_OPCODE_MOV &&
2857 inst->dst.file == MRF) {
2858 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2859 if (prev_inst && inst->equals(prev_inst)) {
2860 inst->remove(block);
2861 progress = true;
2862 continue;
2863 }
2864 }
2865
2866 /* Clear out the last-write records for MRFs that were overwritten. */
2867 if (inst->dst.file == MRF) {
2868 last_mrf_move[inst->dst.nr] = NULL;
2869 }
2870
2871 if (inst->mlen > 0 && inst->base_mrf != -1) {
2872 /* Found a SEND instruction, which will include two or fewer
2873 * implied MRF writes. We could do better here.
2874 */
2875 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2876 last_mrf_move[inst->base_mrf + i] = NULL;
2877 }
2878 }
2879
2880 /* Clear out any MRF move records whose sources got overwritten. */
2881 if (inst->dst.file == VGRF) {
2882 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2883 if (last_mrf_move[i] &&
2884 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2885 last_mrf_move[i] = NULL;
2886 }
2887 }
2888 }
2889
2890 if (inst->opcode == BRW_OPCODE_MOV &&
2891 inst->dst.file == MRF &&
2892 inst->src[0].file == VGRF &&
2893 !inst->is_partial_write()) {
2894 last_mrf_move[inst->dst.nr] = inst;
2895 }
2896 }
2897
2898 if (progress)
2899 invalidate_live_intervals();
2900
2901 return progress;
2902 }
2903
2904 static void
2905 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2906 {
2907 /* Clear the flag for registers that actually got read (as expected). */
2908 for (int i = 0; i < inst->sources; i++) {
2909 int grf;
2910 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2911 grf = inst->src[i].nr;
2912 } else {
2913 continue;
2914 }
2915
2916 if (grf >= first_grf &&
2917 grf < first_grf + grf_len) {
2918 deps[grf - first_grf] = false;
2919 if (inst->exec_size == 16)
2920 deps[grf - first_grf + 1] = false;
2921 }
2922 }
2923 }
2924
2925 /**
2926 * Implements this workaround for the original 965:
2927 *
2928 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2929 * check for post destination dependencies on this instruction, software
2930 * must ensure that there is no destination hazard for the case of ‘write
2931 * followed by a posted write’ shown in the following example.
2932 *
2933 * 1. mov r3 0
2934 * 2. send r3.xy <rest of send instruction>
2935 * 3. mov r2 r3
2936 *
2937 * Due to no post-destination dependency check on the ‘send’, the above
2938 * code sequence could have two instructions (1 and 2) in flight at the
2939 * same time that both consider ‘r3’ as the target of their final writes.
2940 */
2941 void
2942 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2943 fs_inst *inst)
2944 {
2945 int write_len = inst->regs_written;
2946 int first_write_grf = inst->dst.nr;
2947 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2948 assert(write_len < (int)sizeof(needs_dep) - 1);
2949
2950 memset(needs_dep, false, sizeof(needs_dep));
2951 memset(needs_dep, true, write_len);
2952
2953 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2954
2955 /* Walk backwards looking for writes to registers we're writing which
2956 * aren't read since being written. If we hit the start of the program,
2957 * we assume that there are no outstanding dependencies on entry to the
2958 * program.
2959 */
2960 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2961 /* If we hit control flow, assume that there *are* outstanding
2962 * dependencies, and force their cleanup before our instruction.
2963 */
2964 if (block->start() == scan_inst) {
2965 for (int i = 0; i < write_len; i++) {
2966 if (needs_dep[i])
2967 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2968 first_write_grf + i);
2969 }
2970 return;
2971 }
2972
2973 /* We insert our reads as late as possible on the assumption that any
2974 * instruction but a MOV that might have left us an outstanding
2975 * dependency has more latency than a MOV.
2976 */
2977 if (scan_inst->dst.file == VGRF) {
2978 for (int i = 0; i < scan_inst->regs_written; i++) {
2979 int reg = scan_inst->dst.nr + i;
2980
2981 if (reg >= first_write_grf &&
2982 reg < first_write_grf + write_len &&
2983 needs_dep[reg - first_write_grf]) {
2984 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2985 needs_dep[reg - first_write_grf] = false;
2986 if (scan_inst->exec_size == 16)
2987 needs_dep[reg - first_write_grf + 1] = false;
2988 }
2989 }
2990 }
2991
2992 /* Clear the flag for registers that actually got read (as expected). */
2993 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2994
2995 /* Continue the loop only if we haven't resolved all the dependencies */
2996 int i;
2997 for (i = 0; i < write_len; i++) {
2998 if (needs_dep[i])
2999 break;
3000 }
3001 if (i == write_len)
3002 return;
3003 }
3004 }
3005
3006 /**
3007 * Implements this workaround for the original 965:
3008 *
3009 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3010 * used as a destination register until after it has been sourced by an
3011 * instruction with a different destination register.
3012 */
3013 void
3014 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3015 {
3016 int write_len = inst->regs_written;
3017 int first_write_grf = inst->dst.nr;
3018 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3019 assert(write_len < (int)sizeof(needs_dep) - 1);
3020
3021 memset(needs_dep, false, sizeof(needs_dep));
3022 memset(needs_dep, true, write_len);
3023 /* Walk forwards looking for writes to registers we're writing which aren't
3024 * read before being written.
3025 */
3026 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3027 /* If we hit control flow, force resolve all remaining dependencies. */
3028 if (block->end() == scan_inst) {
3029 for (int i = 0; i < write_len; i++) {
3030 if (needs_dep[i])
3031 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3032 first_write_grf + i);
3033 }
3034 return;
3035 }
3036
3037 /* Clear the flag for registers that actually got read (as expected). */
3038 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3039
3040 /* We insert our reads as late as possible since they're reading the
3041 * result of a SEND, which has massive latency.
3042 */
3043 if (scan_inst->dst.file == VGRF &&
3044 scan_inst->dst.nr >= first_write_grf &&
3045 scan_inst->dst.nr < first_write_grf + write_len &&
3046 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3047 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3048 scan_inst->dst.nr);
3049 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3050 }
3051
3052 /* Continue the loop only if we haven't resolved all the dependencies */
3053 int i;
3054 for (i = 0; i < write_len; i++) {
3055 if (needs_dep[i])
3056 break;
3057 }
3058 if (i == write_len)
3059 return;
3060 }
3061 }
3062
3063 void
3064 fs_visitor::insert_gen4_send_dependency_workarounds()
3065 {
3066 if (devinfo->gen != 4 || devinfo->is_g4x)
3067 return;
3068
3069 bool progress = false;
3070
3071 /* Note that we're done with register allocation, so GRF fs_regs always
3072 * have a .reg_offset of 0.
3073 */
3074
3075 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3076 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3077 insert_gen4_pre_send_dependency_workarounds(block, inst);
3078 insert_gen4_post_send_dependency_workarounds(block, inst);
3079 progress = true;
3080 }
3081 }
3082
3083 if (progress)
3084 invalidate_live_intervals();
3085 }
3086
3087 /**
3088 * Turns the generic expression-style uniform pull constant load instruction
3089 * into a hardware-specific series of instructions for loading a pull
3090 * constant.
3091 *
3092 * The expression style allows the CSE pass before this to optimize out
3093 * repeated loads from the same offset, and gives the pre-register-allocation
3094 * scheduling full flexibility, while the conversion to native instructions
3095 * allows the post-register-allocation scheduler the best information
3096 * possible.
3097 *
3098 * Note that execution masking for setting up pull constant loads is special:
3099 * the channels that need to be written are unrelated to the current execution
3100 * mask, since a later instruction will use one of the result channels as a
3101 * source operand for all 8 or 16 of its channels.
3102 */
3103 void
3104 fs_visitor::lower_uniform_pull_constant_loads()
3105 {
3106 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3107 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3108 continue;
3109
3110 if (devinfo->gen >= 7) {
3111 /* The offset arg is a vec4-aligned immediate byte offset. */
3112 fs_reg const_offset_reg = inst->src[1];
3113 assert(const_offset_reg.file == IMM &&
3114 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3115 assert(const_offset_reg.ud % 16 == 0);
3116
3117 fs_reg payload, offset;
3118 if (devinfo->gen >= 9) {
3119 /* We have to use a message header on Skylake to get SIMD4x2
3120 * mode. Reserve space for the register.
3121 */
3122 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3123 offset.reg_offset++;
3124 inst->mlen = 2;
3125 } else {
3126 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3127 inst->mlen = 1;
3128 }
3129
3130 /* This is actually going to be a MOV, but since only the first dword
3131 * is accessed, we have a special opcode to do just that one. Note
3132 * that this needs to be an operation that will be considered a def
3133 * by live variable analysis, or register allocation will explode.
3134 */
3135 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3136 8, offset, const_offset_reg);
3137 setup->force_writemask_all = true;
3138
3139 setup->ir = inst->ir;
3140 setup->annotation = inst->annotation;
3141 inst->insert_before(block, setup);
3142
3143 /* Similarly, this will only populate the first 4 channels of the
3144 * result register (since we only use smear values from 0-3), but we
3145 * don't tell the optimizer.
3146 */
3147 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3148 inst->src[1] = payload;
3149 inst->base_mrf = -1;
3150
3151 invalidate_live_intervals();
3152 } else {
3153 /* Before register allocation, we didn't tell the scheduler about the
3154 * MRF we use. We know it's safe to use this MRF because nothing
3155 * else does except for register spill/unspill, which generates and
3156 * uses its MRF within a single IR instruction.
3157 */
3158 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3159 inst->mlen = 1;
3160 }
3161 }
3162 }
3163
3164 bool
3165 fs_visitor::lower_load_payload()
3166 {
3167 bool progress = false;
3168
3169 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3170 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3171 continue;
3172
3173 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3174 assert(inst->saturate == false);
3175 fs_reg dst = inst->dst;
3176
3177 /* Get rid of COMPR4. We'll add it back in if we need it */
3178 if (dst.file == MRF)
3179 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3180
3181 const fs_builder ibld(this, block, inst);
3182 const fs_builder hbld = ibld.exec_all().group(8, 0);
3183
3184 for (uint8_t i = 0; i < inst->header_size; i++) {
3185 if (inst->src[i].file != BAD_FILE) {
3186 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3187 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3188 hbld.MOV(mov_dst, mov_src);
3189 }
3190 dst = offset(dst, hbld, 1);
3191 }
3192
3193 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3194 inst->exec_size > 8) {
3195 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3196 * a straightforward copy. Instead, the result of the
3197 * LOAD_PAYLOAD is treated as interleaved and the first four
3198 * non-header sources are unpacked as:
3199 *
3200 * m + 0: r0
3201 * m + 1: g0
3202 * m + 2: b0
3203 * m + 3: a0
3204 * m + 4: r1
3205 * m + 5: g1
3206 * m + 6: b1
3207 * m + 7: a1
3208 *
3209 * This is used for gen <= 5 fb writes.
3210 */
3211 assert(inst->exec_size == 16);
3212 assert(inst->header_size + 4 <= inst->sources);
3213 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3214 if (inst->src[i].file != BAD_FILE) {
3215 if (devinfo->has_compr4) {
3216 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3217 compr4_dst.nr |= BRW_MRF_COMPR4;
3218 ibld.MOV(compr4_dst, inst->src[i]);
3219 } else {
3220 /* Platform doesn't have COMPR4. We have to fake it */
3221 fs_reg mov_dst = retype(dst, inst->src[i].type);
3222 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3223 mov_dst.nr += 4;
3224 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3225 }
3226 }
3227
3228 dst.nr++;
3229 }
3230
3231 /* The loop above only ever incremented us through the first set
3232 * of 4 registers. However, thanks to the magic of COMPR4, we
3233 * actually wrote to the first 8 registers, so we need to take
3234 * that into account now.
3235 */
3236 dst.nr += 4;
3237
3238 /* The COMPR4 code took care of the first 4 sources. We'll let
3239 * the regular path handle any remaining sources. Yes, we are
3240 * modifying the instruction but we're about to delete it so
3241 * this really doesn't hurt anything.
3242 */
3243 inst->header_size += 4;
3244 }
3245
3246 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3247 if (inst->src[i].file != BAD_FILE)
3248 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3249 dst = offset(dst, ibld, 1);
3250 }
3251
3252 inst->remove(block);
3253 progress = true;
3254 }
3255
3256 if (progress)
3257 invalidate_live_intervals();
3258
3259 return progress;
3260 }
3261
3262 bool
3263 fs_visitor::lower_integer_multiplication()
3264 {
3265 bool progress = false;
3266
3267 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3268 const fs_builder ibld(this, block, inst);
3269
3270 if (inst->opcode == BRW_OPCODE_MUL) {
3271 if (inst->dst.is_accumulator() ||
3272 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3273 inst->dst.type != BRW_REGISTER_TYPE_UD))
3274 continue;
3275
3276 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3277 * operation directly, but CHV/BXT cannot.
3278 */
3279 if (devinfo->gen >= 8 &&
3280 !devinfo->is_cherryview && !devinfo->is_broxton)
3281 continue;
3282
3283 if (inst->src[1].file == IMM &&
3284 inst->src[1].ud < (1 << 16)) {
3285 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3286 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3287 * src1 are used.
3288 *
3289 * If multiplying by an immediate value that fits in 16-bits, do a
3290 * single MUL instruction with that value in the proper location.
3291 */
3292 if (devinfo->gen < 7) {
3293 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3294 inst->dst.type);
3295 ibld.MOV(imm, inst->src[1]);
3296 ibld.MUL(inst->dst, imm, inst->src[0]);
3297 } else {
3298 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3299 }
3300 } else {
3301 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3302 * do 32-bit integer multiplication in one instruction, but instead
3303 * must do a sequence (which actually calculates a 64-bit result):
3304 *
3305 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3306 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3307 * mov(8) g2<1>D acc0<8,8,1>D
3308 *
3309 * But on Gen > 6, the ability to use second accumulator register
3310 * (acc1) for non-float data types was removed, preventing a simple
3311 * implementation in SIMD16. A 16-channel result can be calculated by
3312 * executing the three instructions twice in SIMD8, once with quarter
3313 * control of 1Q for the first eight channels and again with 2Q for
3314 * the second eight channels.
3315 *
3316 * Which accumulator register is implicitly accessed (by AccWrEnable
3317 * for instance) is determined by the quarter control. Unfortunately
3318 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3319 * implicit accumulator access by an instruction with 2Q will access
3320 * acc1 regardless of whether the data type is usable in acc1.
3321 *
3322 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3323 * integer data types.
3324 *
3325 * Since we only want the low 32-bits of the result, we can do two
3326 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3327 * adjust the high result and add them (like the mach is doing):
3328 *
3329 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3330 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3331 * shl(8) g9<1>D g8<8,8,1>D 16D
3332 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3333 *
3334 * We avoid the shl instruction by realizing that we only want to add
3335 * the low 16-bits of the "high" result to the high 16-bits of the
3336 * "low" result and using proper regioning on the add:
3337 *
3338 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3339 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3340 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3341 *
3342 * Since it does not use the (single) accumulator register, we can
3343 * schedule multi-component multiplications much better.
3344 */
3345
3346 fs_reg orig_dst = inst->dst;
3347 if (orig_dst.is_null() || orig_dst.file == MRF) {
3348 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3349 inst->dst.type);
3350 }
3351 fs_reg low = inst->dst;
3352 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3353 inst->dst.type);
3354
3355 if (devinfo->gen >= 7) {
3356 fs_reg src1_0_w = inst->src[1];
3357 fs_reg src1_1_w = inst->src[1];
3358
3359 if (inst->src[1].file == IMM) {
3360 src1_0_w.ud &= 0xffff;
3361 src1_1_w.ud >>= 16;
3362 } else {
3363 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3364 if (src1_0_w.stride != 0) {
3365 assert(src1_0_w.stride == 1);
3366 src1_0_w.stride = 2;
3367 }
3368
3369 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3370 if (src1_1_w.stride != 0) {
3371 assert(src1_1_w.stride == 1);
3372 src1_1_w.stride = 2;
3373 }
3374 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3375 }
3376 ibld.MUL(low, inst->src[0], src1_0_w);
3377 ibld.MUL(high, inst->src[0], src1_1_w);
3378 } else {
3379 fs_reg src0_0_w = inst->src[0];
3380 fs_reg src0_1_w = inst->src[0];
3381
3382 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3383 if (src0_0_w.stride != 0) {
3384 assert(src0_0_w.stride == 1);
3385 src0_0_w.stride = 2;
3386 }
3387
3388 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3389 if (src0_1_w.stride != 0) {
3390 assert(src0_1_w.stride == 1);
3391 src0_1_w.stride = 2;
3392 }
3393 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3394
3395 ibld.MUL(low, src0_0_w, inst->src[1]);
3396 ibld.MUL(high, src0_1_w, inst->src[1]);
3397 }
3398
3399 fs_reg dst = inst->dst;
3400 dst.type = BRW_REGISTER_TYPE_UW;
3401 dst.subreg_offset = 2;
3402 dst.stride = 2;
3403
3404 high.type = BRW_REGISTER_TYPE_UW;
3405 high.stride = 2;
3406
3407 low.type = BRW_REGISTER_TYPE_UW;
3408 low.subreg_offset = 2;
3409 low.stride = 2;
3410
3411 ibld.ADD(dst, low, high);
3412
3413 if (inst->conditional_mod || orig_dst.file == MRF) {
3414 set_condmod(inst->conditional_mod,
3415 ibld.MOV(orig_dst, inst->dst));
3416 }
3417 }
3418
3419 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3420 /* Should have been lowered to 8-wide. */
3421 assert(inst->exec_size <= 8);
3422 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3423 inst->dst.type);
3424 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3425 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3426
3427 if (devinfo->gen >= 8) {
3428 /* Until Gen8, integer multiplies read 32-bits from one source,
3429 * and 16-bits from the other, and relying on the MACH instruction
3430 * to generate the high bits of the result.
3431 *
3432 * On Gen8, the multiply instruction does a full 32x32-bit
3433 * multiply, but in order to do a 64-bit multiply we can simulate
3434 * the previous behavior and then use a MACH instruction.
3435 *
3436 * FINISHME: Don't use source modifiers on src1.
3437 */
3438 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3439 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3440 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3441 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3442 mul->src[1].stride *= 2;
3443
3444 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3445 inst->force_sechalf) {
3446 /* Among other things the quarter control bits influence which
3447 * accumulator register is used by the hardware for instructions
3448 * that access the accumulator implicitly (e.g. MACH). A
3449 * second-half instruction would normally map to acc1, which
3450 * doesn't exist on Gen7 and up (the hardware does emulate it for
3451 * floating-point instructions *only* by taking advantage of the
3452 * extra precision of acc0 not normally used for floating point
3453 * arithmetic).
3454 *
3455 * HSW and up are careful enough not to try to access an
3456 * accumulator register that doesn't exist, but on earlier Gen7
3457 * hardware we need to make sure that the quarter control bits are
3458 * zero to avoid non-deterministic behaviour and emit an extra MOV
3459 * to get the result masked correctly according to the current
3460 * channel enables.
3461 */
3462 mach->force_sechalf = false;
3463 mach->force_writemask_all = true;
3464 mach->dst = ibld.vgrf(inst->dst.type);
3465 ibld.MOV(inst->dst, mach->dst);
3466 }
3467 } else {
3468 continue;
3469 }
3470
3471 inst->remove(block);
3472 progress = true;
3473 }
3474
3475 if (progress)
3476 invalidate_live_intervals();
3477
3478 return progress;
3479 }
3480
3481 static void
3482 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3483 fs_reg *dst, fs_reg color, unsigned components)
3484 {
3485 if (key->clamp_fragment_color) {
3486 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3487 assert(color.type == BRW_REGISTER_TYPE_F);
3488
3489 for (unsigned i = 0; i < components; i++)
3490 set_saturate(true,
3491 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3492
3493 color = tmp;
3494 }
3495
3496 for (unsigned i = 0; i < components; i++)
3497 dst[i] = offset(color, bld, i);
3498 }
3499
3500 static void
3501 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3502 const brw_wm_prog_data *prog_data,
3503 const brw_wm_prog_key *key,
3504 const fs_visitor::thread_payload &payload)
3505 {
3506 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3507 const brw_device_info *devinfo = bld.shader->devinfo;
3508 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3509 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3510 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3511 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3512 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3513 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3514 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3515 const unsigned components =
3516 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3517
3518 /* We can potentially have a message length of up to 15, so we have to set
3519 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3520 */
3521 fs_reg sources[15];
3522 int header_size = 2, payload_header_size;
3523 unsigned length = 0;
3524
3525 /* From the Sandy Bridge PRM, volume 4, page 198:
3526 *
3527 * "Dispatched Pixel Enables. One bit per pixel indicating
3528 * which pixels were originally enabled when the thread was
3529 * dispatched. This field is only required for the end-of-
3530 * thread message and on all dual-source messages."
3531 */
3532 if (devinfo->gen >= 6 &&
3533 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3534 color1.file == BAD_FILE &&
3535 key->nr_color_regions == 1) {
3536 header_size = 0;
3537 }
3538
3539 if (header_size != 0) {
3540 assert(header_size == 2);
3541 /* Allocate 2 registers for a header */
3542 length += 2;
3543 }
3544
3545 if (payload.aa_dest_stencil_reg) {
3546 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3547 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3548 .MOV(sources[length],
3549 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3550 length++;
3551 }
3552
3553 if (prog_data->uses_omask) {
3554 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3555 BRW_REGISTER_TYPE_UD);
3556
3557 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3558 * relevant. Since it's unsigned single words one vgrf is always
3559 * 16-wide, but only the lower or higher 8 channels will be used by the
3560 * hardware when doing a SIMD8 write depending on whether we have
3561 * selected the subspans for the first or second half respectively.
3562 */
3563 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3564 sample_mask.type = BRW_REGISTER_TYPE_UW;
3565 sample_mask.stride *= 2;
3566
3567 bld.exec_all().annotate("FB write oMask")
3568 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3569 inst->force_sechalf),
3570 sample_mask);
3571 length++;
3572 }
3573
3574 payload_header_size = length;
3575
3576 if (src0_alpha.file != BAD_FILE) {
3577 /* FIXME: This is being passed at the wrong location in the payload and
3578 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3579 * It's supposed to be immediately before oMask but there seems to be no
3580 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3581 * requires header sources to form a contiguous segment at the beginning
3582 * of the message and src0_alpha has per-channel semantics.
3583 */
3584 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3585 length++;
3586 }
3587
3588 setup_color_payload(bld, key, &sources[length], color0, components);
3589 length += 4;
3590
3591 if (color1.file != BAD_FILE) {
3592 setup_color_payload(bld, key, &sources[length], color1, components);
3593 length += 4;
3594 }
3595
3596 if (src_depth.file != BAD_FILE) {
3597 sources[length] = src_depth;
3598 length++;
3599 }
3600
3601 if (dst_depth.file != BAD_FILE) {
3602 sources[length] = dst_depth;
3603 length++;
3604 }
3605
3606 if (src_stencil.file != BAD_FILE) {
3607 assert(devinfo->gen >= 9);
3608 assert(bld.dispatch_width() != 16);
3609
3610 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3611 * available on gen9+. As such it's impossible to have both enabled at the
3612 * same time and therefore length cannot overrun the array.
3613 */
3614 assert(length < 15);
3615
3616 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3617 bld.exec_all().annotate("FB write OS")
3618 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3619 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3620 length++;
3621 }
3622
3623 fs_inst *load;
3624 if (devinfo->gen >= 7) {
3625 /* Send from the GRF */
3626 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3627 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3628 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3629 load->dst = payload;
3630
3631 inst->src[0] = payload;
3632 inst->resize_sources(1);
3633 inst->base_mrf = -1;
3634 } else {
3635 /* Send from the MRF */
3636 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3637 sources, length, payload_header_size);
3638
3639 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3640 * will do this for us if we just give it a COMPR4 destination.
3641 */
3642 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3643 load->dst.nr |= BRW_MRF_COMPR4;
3644
3645 inst->resize_sources(0);
3646 inst->base_mrf = 1;
3647 }
3648
3649 inst->opcode = FS_OPCODE_FB_WRITE;
3650 inst->mlen = load->regs_written;
3651 inst->header_size = header_size;
3652 }
3653
3654 static void
3655 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3656 const fs_reg &coordinate,
3657 const fs_reg &shadow_c,
3658 const fs_reg &lod, const fs_reg &lod2,
3659 const fs_reg &sampler,
3660 unsigned coord_components,
3661 unsigned grad_components)
3662 {
3663 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3664 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3665 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3666 fs_reg msg_end = msg_begin;
3667
3668 /* g0 header. */
3669 msg_end = offset(msg_end, bld.group(8, 0), 1);
3670
3671 for (unsigned i = 0; i < coord_components; i++)
3672 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3673 offset(coordinate, bld, i));
3674
3675 msg_end = offset(msg_end, bld, coord_components);
3676
3677 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3678 * require all three components to be present and zero if they are unused.
3679 */
3680 if (coord_components > 0 &&
3681 (has_lod || shadow_c.file != BAD_FILE ||
3682 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3683 for (unsigned i = coord_components; i < 3; i++)
3684 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3685
3686 msg_end = offset(msg_end, bld, 3 - coord_components);
3687 }
3688
3689 if (op == SHADER_OPCODE_TXD) {
3690 /* TXD unsupported in SIMD16 mode. */
3691 assert(bld.dispatch_width() == 8);
3692
3693 /* the slots for u and v are always present, but r is optional */
3694 if (coord_components < 2)
3695 msg_end = offset(msg_end, bld, 2 - coord_components);
3696
3697 /* P = u, v, r
3698 * dPdx = dudx, dvdx, drdx
3699 * dPdy = dudy, dvdy, drdy
3700 *
3701 * 1-arg: Does not exist.
3702 *
3703 * 2-arg: dudx dvdx dudy dvdy
3704 * dPdx.x dPdx.y dPdy.x dPdy.y
3705 * m4 m5 m6 m7
3706 *
3707 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3708 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3709 * m5 m6 m7 m8 m9 m10
3710 */
3711 for (unsigned i = 0; i < grad_components; i++)
3712 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3713
3714 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3715
3716 for (unsigned i = 0; i < grad_components; i++)
3717 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3718
3719 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3720 }
3721
3722 if (has_lod) {
3723 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3724 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3725 */
3726 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3727 bld.dispatch_width() == 16);
3728
3729 const brw_reg_type type =
3730 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3731 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3732 bld.MOV(retype(msg_end, type), lod);
3733 msg_end = offset(msg_end, bld, 1);
3734 }
3735
3736 if (shadow_c.file != BAD_FILE) {
3737 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3738 /* There's no plain shadow compare message, so we use shadow
3739 * compare with a bias of 0.0.
3740 */
3741 bld.MOV(msg_end, brw_imm_f(0.0f));
3742 msg_end = offset(msg_end, bld, 1);
3743 }
3744
3745 bld.MOV(msg_end, shadow_c);
3746 msg_end = offset(msg_end, bld, 1);
3747 }
3748
3749 inst->opcode = op;
3750 inst->src[0] = reg_undef;
3751 inst->src[1] = sampler;
3752 inst->resize_sources(2);
3753 inst->base_mrf = msg_begin.nr;
3754 inst->mlen = msg_end.nr - msg_begin.nr;
3755 inst->header_size = 1;
3756 }
3757
3758 static void
3759 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3760 fs_reg coordinate,
3761 const fs_reg &shadow_c,
3762 fs_reg lod, fs_reg lod2,
3763 const fs_reg &sample_index,
3764 const fs_reg &sampler,
3765 const fs_reg &offset_value,
3766 unsigned coord_components,
3767 unsigned grad_components)
3768 {
3769 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3770 fs_reg msg_coords = message;
3771 unsigned header_size = 0;
3772
3773 if (offset_value.file != BAD_FILE) {
3774 /* The offsets set up by the visitor are in the m1 header, so we can't
3775 * go headerless.
3776 */
3777 header_size = 1;
3778 message.nr--;
3779 }
3780
3781 for (unsigned i = 0; i < coord_components; i++) {
3782 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3783 coordinate = offset(coordinate, bld, 1);
3784 }
3785 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3786 fs_reg msg_lod = offset(msg_coords, bld, 4);
3787
3788 if (shadow_c.file != BAD_FILE) {
3789 fs_reg msg_shadow = msg_lod;
3790 bld.MOV(msg_shadow, shadow_c);
3791 msg_lod = offset(msg_shadow, bld, 1);
3792 msg_end = msg_lod;
3793 }
3794
3795 switch (op) {
3796 case SHADER_OPCODE_TXL:
3797 case FS_OPCODE_TXB:
3798 bld.MOV(msg_lod, lod);
3799 msg_end = offset(msg_lod, bld, 1);
3800 break;
3801 case SHADER_OPCODE_TXD:
3802 /**
3803 * P = u, v, r
3804 * dPdx = dudx, dvdx, drdx
3805 * dPdy = dudy, dvdy, drdy
3806 *
3807 * Load up these values:
3808 * - dudx dudy dvdx dvdy drdx drdy
3809 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3810 */
3811 msg_end = msg_lod;
3812 for (unsigned i = 0; i < grad_components; i++) {
3813 bld.MOV(msg_end, lod);
3814 lod = offset(lod, bld, 1);
3815 msg_end = offset(msg_end, bld, 1);
3816
3817 bld.MOV(msg_end, lod2);
3818 lod2 = offset(lod2, bld, 1);
3819 msg_end = offset(msg_end, bld, 1);
3820 }
3821 break;
3822 case SHADER_OPCODE_TXS:
3823 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3824 bld.MOV(msg_lod, lod);
3825 msg_end = offset(msg_lod, bld, 1);
3826 break;
3827 case SHADER_OPCODE_TXF:
3828 msg_lod = offset(msg_coords, bld, 3);
3829 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3830 msg_end = offset(msg_lod, bld, 1);
3831 break;
3832 case SHADER_OPCODE_TXF_CMS:
3833 msg_lod = offset(msg_coords, bld, 3);
3834 /* lod */
3835 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3836 /* sample index */
3837 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3838 msg_end = offset(msg_lod, bld, 2);
3839 break;
3840 default:
3841 break;
3842 }
3843
3844 inst->opcode = op;
3845 inst->src[0] = reg_undef;
3846 inst->src[1] = sampler;
3847 inst->resize_sources(2);
3848 inst->base_mrf = message.nr;
3849 inst->mlen = msg_end.nr - message.nr;
3850 inst->header_size = header_size;
3851
3852 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3853 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3854 }
3855
3856 static bool
3857 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3858 {
3859 if (devinfo->gen < 8 && !devinfo->is_haswell)
3860 return false;
3861
3862 return sampler.file != IMM || sampler.ud >= 16;
3863 }
3864
3865 static void
3866 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3867 fs_reg coordinate,
3868 const fs_reg &shadow_c,
3869 fs_reg lod, fs_reg lod2,
3870 const fs_reg &sample_index,
3871 const fs_reg &mcs, const fs_reg &sampler,
3872 fs_reg offset_value,
3873 unsigned coord_components,
3874 unsigned grad_components)
3875 {
3876 const brw_device_info *devinfo = bld.shader->devinfo;
3877 int reg_width = bld.dispatch_width() / 8;
3878 unsigned header_size = 0, length = 0;
3879 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3880 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3881 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3882
3883 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3884 offset_value.file != BAD_FILE ||
3885 is_high_sampler(devinfo, sampler)) {
3886 /* For general texture offsets (no txf workaround), we need a header to
3887 * put them in. Note that we're only reserving space for it in the
3888 * message payload as it will be initialized implicitly by the
3889 * generator.
3890 *
3891 * TG4 needs to place its channel select in the header, for interaction
3892 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3893 * larger sampler numbers we need to offset the Sampler State Pointer in
3894 * the header.
3895 */
3896 header_size = 1;
3897 sources[0] = fs_reg();
3898 length++;
3899 }
3900
3901 if (shadow_c.file != BAD_FILE) {
3902 bld.MOV(sources[length], shadow_c);
3903 length++;
3904 }
3905
3906 bool coordinate_done = false;
3907
3908 /* The sampler can only meaningfully compute LOD for fragment shader
3909 * messages. For all other stages, we change the opcode to TXL and
3910 * hardcode the LOD to 0.
3911 */
3912 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3913 op == SHADER_OPCODE_TEX) {
3914 op = SHADER_OPCODE_TXL;
3915 lod = brw_imm_f(0.0f);
3916 }
3917
3918 /* Set up the LOD info */
3919 switch (op) {
3920 case FS_OPCODE_TXB:
3921 case SHADER_OPCODE_TXL:
3922 bld.MOV(sources[length], lod);
3923 length++;
3924 break;
3925 case SHADER_OPCODE_TXD:
3926 /* TXD should have been lowered in SIMD16 mode. */
3927 assert(bld.dispatch_width() == 8);
3928
3929 /* Load dPdx and the coordinate together:
3930 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3931 */
3932 for (unsigned i = 0; i < coord_components; i++) {
3933 bld.MOV(sources[length], coordinate);
3934 coordinate = offset(coordinate, bld, 1);
3935 length++;
3936
3937 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3938 * only derivatives for (u, v, r).
3939 */
3940 if (i < grad_components) {
3941 bld.MOV(sources[length], lod);
3942 lod = offset(lod, bld, 1);
3943 length++;
3944
3945 bld.MOV(sources[length], lod2);
3946 lod2 = offset(lod2, bld, 1);
3947 length++;
3948 }
3949 }
3950
3951 coordinate_done = true;
3952 break;
3953 case SHADER_OPCODE_TXS:
3954 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3955 length++;
3956 break;
3957 case SHADER_OPCODE_TXF:
3958 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3959 * On Gen9 they are u, v, lod, r
3960 */
3961 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3962 coordinate = offset(coordinate, bld, 1);
3963 length++;
3964
3965 if (devinfo->gen >= 9) {
3966 if (coord_components >= 2) {
3967 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3968 coordinate = offset(coordinate, bld, 1);
3969 }
3970 length++;
3971 }
3972
3973 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3974 length++;
3975
3976 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3977 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3978 coordinate = offset(coordinate, bld, 1);
3979 length++;
3980 }
3981
3982 coordinate_done = true;
3983 break;
3984 case SHADER_OPCODE_TXF_CMS:
3985 case SHADER_OPCODE_TXF_CMS_W:
3986 case SHADER_OPCODE_TXF_UMS:
3987 case SHADER_OPCODE_TXF_MCS:
3988 if (op == SHADER_OPCODE_TXF_UMS ||
3989 op == SHADER_OPCODE_TXF_CMS ||
3990 op == SHADER_OPCODE_TXF_CMS_W) {
3991 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
3992 length++;
3993 }
3994
3995 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
3996 /* Data from the multisample control surface. */
3997 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
3998 length++;
3999
4000 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4001 * the MCS data.
4002 */
4003 if (op == SHADER_OPCODE_TXF_CMS_W) {
4004 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4005 mcs.file == IMM ?
4006 mcs :
4007 offset(mcs, bld, 1));
4008 length++;
4009 }
4010 }
4011
4012 /* There is no offsetting for this message; just copy in the integer
4013 * texture coordinates.
4014 */
4015 for (unsigned i = 0; i < coord_components; i++) {
4016 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4017 coordinate = offset(coordinate, bld, 1);
4018 length++;
4019 }
4020
4021 coordinate_done = true;
4022 break;
4023 case SHADER_OPCODE_TG4_OFFSET:
4024 /* gather4_po_c should have been lowered in SIMD16 mode. */
4025 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4026
4027 /* More crazy intermixing */
4028 for (unsigned i = 0; i < 2; i++) { /* u, v */
4029 bld.MOV(sources[length], coordinate);
4030 coordinate = offset(coordinate, bld, 1);
4031 length++;
4032 }
4033
4034 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4035 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4036 offset_value = offset(offset_value, bld, 1);
4037 length++;
4038 }
4039
4040 if (coord_components == 3) { /* r if present */
4041 bld.MOV(sources[length], coordinate);
4042 coordinate = offset(coordinate, bld, 1);
4043 length++;
4044 }
4045
4046 coordinate_done = true;
4047 break;
4048 default:
4049 break;
4050 }
4051
4052 /* Set up the coordinate (except for cases where it was done above) */
4053 if (!coordinate_done) {
4054 for (unsigned i = 0; i < coord_components; i++) {
4055 bld.MOV(sources[length], coordinate);
4056 coordinate = offset(coordinate, bld, 1);
4057 length++;
4058 }
4059 }
4060
4061 int mlen;
4062 if (reg_width == 2)
4063 mlen = length * reg_width - header_size;
4064 else
4065 mlen = length * reg_width;
4066
4067 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4068 BRW_REGISTER_TYPE_F);
4069 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4070
4071 /* Generate the SEND. */
4072 inst->opcode = op;
4073 inst->src[0] = src_payload;
4074 inst->src[1] = sampler;
4075 inst->resize_sources(2);
4076 inst->base_mrf = -1;
4077 inst->mlen = mlen;
4078 inst->header_size = header_size;
4079
4080 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4081 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4082 }
4083
4084 static void
4085 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4086 {
4087 const brw_device_info *devinfo = bld.shader->devinfo;
4088 const fs_reg &coordinate = inst->src[0];
4089 const fs_reg &shadow_c = inst->src[1];
4090 const fs_reg &lod = inst->src[2];
4091 const fs_reg &lod2 = inst->src[3];
4092 const fs_reg &sample_index = inst->src[4];
4093 const fs_reg &mcs = inst->src[5];
4094 const fs_reg &sampler = inst->src[6];
4095 const fs_reg &offset_value = inst->src[7];
4096 assert(inst->src[8].file == IMM && inst->src[9].file == IMM);
4097 const unsigned coord_components = inst->src[8].ud;
4098 const unsigned grad_components = inst->src[9].ud;
4099
4100 if (devinfo->gen >= 7) {
4101 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4102 shadow_c, lod, lod2, sample_index,
4103 mcs, sampler, offset_value,
4104 coord_components, grad_components);
4105 } else if (devinfo->gen >= 5) {
4106 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4107 shadow_c, lod, lod2, sample_index,
4108 sampler, offset_value,
4109 coord_components, grad_components);
4110 } else {
4111 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4112 shadow_c, lod, lod2, sampler,
4113 coord_components, grad_components);
4114 }
4115 }
4116
4117 /**
4118 * Initialize the header present in some typed and untyped surface
4119 * messages.
4120 */
4121 static fs_reg
4122 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4123 {
4124 fs_builder ubld = bld.exec_all().group(8, 0);
4125 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4126 ubld.MOV(dst, brw_imm_d(0));
4127 ubld.MOV(component(dst, 7), sample_mask);
4128 return dst;
4129 }
4130
4131 static void
4132 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4133 const fs_reg &sample_mask)
4134 {
4135 /* Get the logical send arguments. */
4136 const fs_reg &addr = inst->src[0];
4137 const fs_reg &src = inst->src[1];
4138 const fs_reg &surface = inst->src[2];
4139 const UNUSED fs_reg &dims = inst->src[3];
4140 const fs_reg &arg = inst->src[4];
4141
4142 /* Calculate the total number of components of the payload. */
4143 const unsigned addr_sz = inst->components_read(0);
4144 const unsigned src_sz = inst->components_read(1);
4145 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4146 const unsigned sz = header_sz + addr_sz + src_sz;
4147
4148 /* Allocate space for the payload. */
4149 fs_reg *const components = new fs_reg[sz];
4150 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4151 unsigned n = 0;
4152
4153 /* Construct the payload. */
4154 if (header_sz)
4155 components[n++] = emit_surface_header(bld, sample_mask);
4156
4157 for (unsigned i = 0; i < addr_sz; i++)
4158 components[n++] = offset(addr, bld, i);
4159
4160 for (unsigned i = 0; i < src_sz; i++)
4161 components[n++] = offset(src, bld, i);
4162
4163 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4164
4165 /* Update the original instruction. */
4166 inst->opcode = op;
4167 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4168 inst->header_size = header_sz;
4169
4170 inst->src[0] = payload;
4171 inst->src[1] = surface;
4172 inst->src[2] = arg;
4173 inst->resize_sources(3);
4174
4175 delete[] components;
4176 }
4177
4178 bool
4179 fs_visitor::lower_logical_sends()
4180 {
4181 bool progress = false;
4182
4183 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4184 const fs_builder ibld(this, block, inst);
4185
4186 switch (inst->opcode) {
4187 case FS_OPCODE_FB_WRITE_LOGICAL:
4188 assert(stage == MESA_SHADER_FRAGMENT);
4189 lower_fb_write_logical_send(ibld, inst,
4190 (const brw_wm_prog_data *)prog_data,
4191 (const brw_wm_prog_key *)key,
4192 payload);
4193 break;
4194
4195 case SHADER_OPCODE_TEX_LOGICAL:
4196 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4197 break;
4198
4199 case SHADER_OPCODE_TXD_LOGICAL:
4200 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4201 break;
4202
4203 case SHADER_OPCODE_TXF_LOGICAL:
4204 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4205 break;
4206
4207 case SHADER_OPCODE_TXL_LOGICAL:
4208 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4209 break;
4210
4211 case SHADER_OPCODE_TXS_LOGICAL:
4212 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4213 break;
4214
4215 case FS_OPCODE_TXB_LOGICAL:
4216 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4217 break;
4218
4219 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4220 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4221 break;
4222
4223 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4224 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4225 break;
4226
4227 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4228 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4229 break;
4230
4231 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4232 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4233 break;
4234
4235 case SHADER_OPCODE_LOD_LOGICAL:
4236 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4237 break;
4238
4239 case SHADER_OPCODE_TG4_LOGICAL:
4240 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4241 break;
4242
4243 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4244 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4245 break;
4246
4247 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4248 lower_surface_logical_send(ibld, inst,
4249 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4250 fs_reg());
4251 break;
4252
4253 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4254 lower_surface_logical_send(ibld, inst,
4255 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4256 ibld.sample_mask_reg());
4257 break;
4258
4259 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4260 lower_surface_logical_send(ibld, inst,
4261 SHADER_OPCODE_UNTYPED_ATOMIC,
4262 ibld.sample_mask_reg());
4263 break;
4264
4265 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4266 lower_surface_logical_send(ibld, inst,
4267 SHADER_OPCODE_TYPED_SURFACE_READ,
4268 brw_imm_d(0xffff));
4269 break;
4270
4271 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4272 lower_surface_logical_send(ibld, inst,
4273 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4274 ibld.sample_mask_reg());
4275 break;
4276
4277 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4278 lower_surface_logical_send(ibld, inst,
4279 SHADER_OPCODE_TYPED_ATOMIC,
4280 ibld.sample_mask_reg());
4281 break;
4282
4283 default:
4284 continue;
4285 }
4286
4287 progress = true;
4288 }
4289
4290 if (progress)
4291 invalidate_live_intervals();
4292
4293 return progress;
4294 }
4295
4296 /**
4297 * Get the closest native SIMD width supported by the hardware for instruction
4298 * \p inst. The instruction will be left untouched by
4299 * fs_visitor::lower_simd_width() if the returned value is equal to the
4300 * original execution size.
4301 */
4302 static unsigned
4303 get_lowered_simd_width(const struct brw_device_info *devinfo,
4304 const fs_inst *inst)
4305 {
4306 switch (inst->opcode) {
4307 case BRW_OPCODE_MOV:
4308 case BRW_OPCODE_SEL:
4309 case BRW_OPCODE_NOT:
4310 case BRW_OPCODE_AND:
4311 case BRW_OPCODE_OR:
4312 case BRW_OPCODE_XOR:
4313 case BRW_OPCODE_SHR:
4314 case BRW_OPCODE_SHL:
4315 case BRW_OPCODE_ASR:
4316 case BRW_OPCODE_CMP:
4317 case BRW_OPCODE_CMPN:
4318 case BRW_OPCODE_CSEL:
4319 case BRW_OPCODE_F32TO16:
4320 case BRW_OPCODE_F16TO32:
4321 case BRW_OPCODE_BFREV:
4322 case BRW_OPCODE_BFE:
4323 case BRW_OPCODE_BFI1:
4324 case BRW_OPCODE_BFI2:
4325 case BRW_OPCODE_ADD:
4326 case BRW_OPCODE_MUL:
4327 case BRW_OPCODE_AVG:
4328 case BRW_OPCODE_FRC:
4329 case BRW_OPCODE_RNDU:
4330 case BRW_OPCODE_RNDD:
4331 case BRW_OPCODE_RNDE:
4332 case BRW_OPCODE_RNDZ:
4333 case BRW_OPCODE_LZD:
4334 case BRW_OPCODE_FBH:
4335 case BRW_OPCODE_FBL:
4336 case BRW_OPCODE_CBIT:
4337 case BRW_OPCODE_SAD2:
4338 case BRW_OPCODE_MAD:
4339 case BRW_OPCODE_LRP:
4340 case SHADER_OPCODE_RCP:
4341 case SHADER_OPCODE_RSQ:
4342 case SHADER_OPCODE_SQRT:
4343 case SHADER_OPCODE_EXP2:
4344 case SHADER_OPCODE_LOG2:
4345 case SHADER_OPCODE_POW:
4346 case SHADER_OPCODE_INT_QUOTIENT:
4347 case SHADER_OPCODE_INT_REMAINDER:
4348 case SHADER_OPCODE_SIN:
4349 case SHADER_OPCODE_COS: {
4350 /* According to the PRMs:
4351 * "A. In Direct Addressing mode, a source cannot span more than 2
4352 * adjacent GRF registers.
4353 * B. A destination cannot span more than 2 adjacent GRF registers."
4354 *
4355 * Look for the source or destination with the largest register region
4356 * which is the one that is going to limit the overal execution size of
4357 * the instruction due to this rule.
4358 */
4359 unsigned reg_count = inst->regs_written;
4360
4361 for (unsigned i = 0; i < inst->sources; i++)
4362 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4363
4364 /* Calculate the maximum execution size of the instruction based on the
4365 * factor by which it goes over the hardware limit of 2 GRFs.
4366 */
4367 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4368 }
4369 case SHADER_OPCODE_MULH:
4370 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4371 * is 8-wide on Gen7+.
4372 */
4373 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4374
4375 case FS_OPCODE_FB_WRITE_LOGICAL:
4376 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4377 * here.
4378 */
4379 assert(devinfo->gen != 6 ||
4380 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4381 inst->exec_size == 8);
4382 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4383 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4384 8 : inst->exec_size);
4385
4386 case SHADER_OPCODE_TXD_LOGICAL:
4387 /* TXD is unsupported in SIMD16 mode. */
4388 return 8;
4389
4390 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4391 /* gather4_po_c is unsupported in SIMD16 mode. */
4392 const fs_reg &shadow_c = inst->src[1];
4393 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4394 }
4395 case SHADER_OPCODE_TXL_LOGICAL:
4396 case FS_OPCODE_TXB_LOGICAL: {
4397 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4398 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4399 * mode because the message exceeds the maximum length of 11.
4400 */
4401 const fs_reg &shadow_c = inst->src[1];
4402 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4403 return 16;
4404 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4405 return 8;
4406 else
4407 return inst->exec_size;
4408 }
4409 case SHADER_OPCODE_TXF_LOGICAL:
4410 case SHADER_OPCODE_TXS_LOGICAL:
4411 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4412 * messages. Use SIMD16 instead.
4413 */
4414 if (devinfo->gen == 4)
4415 return 16;
4416 else
4417 return inst->exec_size;
4418
4419 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4420 /* This opcode can take up to 6 arguments which means that in some
4421 * circumstances it can end up with a message that is too long in SIMD16
4422 * mode.
4423 */
4424 const unsigned coord_components = inst->src[8].ud;
4425 /* First three arguments are the sample index and the two arguments for
4426 * the MCS data.
4427 */
4428 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4429 return 8;
4430 else
4431 return inst->exec_size;
4432 }
4433
4434 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4435 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4436 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4437 return 8;
4438
4439 default:
4440 return inst->exec_size;
4441 }
4442 }
4443
4444 /**
4445 * The \p rows array of registers represents a \p num_rows by \p num_columns
4446 * matrix in row-major order, write it in column-major order into the register
4447 * passed as destination. \p stride gives the separation between matrix
4448 * elements in the input in fs_builder::dispatch_width() units.
4449 */
4450 static void
4451 emit_transpose(const fs_builder &bld,
4452 const fs_reg &dst, const fs_reg *rows,
4453 unsigned num_rows, unsigned num_columns, unsigned stride)
4454 {
4455 fs_reg *const components = new fs_reg[num_rows * num_columns];
4456
4457 for (unsigned i = 0; i < num_columns; ++i) {
4458 for (unsigned j = 0; j < num_rows; ++j)
4459 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4460 }
4461
4462 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4463
4464 delete[] components;
4465 }
4466
4467 bool
4468 fs_visitor::lower_simd_width()
4469 {
4470 bool progress = false;
4471
4472 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4473 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4474
4475 if (lower_width != inst->exec_size) {
4476 /* Builder matching the original instruction. We may also need to
4477 * emit an instruction of width larger than the original, set the
4478 * execution size of the builder to the highest of both for now so
4479 * we're sure that both cases can be handled.
4480 */
4481 const fs_builder ibld = bld.at(block, inst)
4482 .exec_all(inst->force_writemask_all)
4483 .group(MAX2(inst->exec_size, lower_width),
4484 inst->force_sechalf);
4485
4486 /* Split the copies in chunks of the execution width of either the
4487 * original or the lowered instruction, whichever is lower.
4488 */
4489 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4490 const unsigned n = inst->exec_size / copy_width;
4491 const unsigned dst_size = inst->regs_written * REG_SIZE /
4492 inst->dst.component_size(inst->exec_size);
4493 fs_reg dsts[4];
4494
4495 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4496 !inst->writes_accumulator && !inst->mlen);
4497
4498 for (unsigned i = 0; i < n; i++) {
4499 /* Emit a copy of the original instruction with the lowered width.
4500 * If the EOT flag was set throw it away except for the last
4501 * instruction to avoid killing the thread prematurely.
4502 */
4503 fs_inst split_inst = *inst;
4504 split_inst.exec_size = lower_width;
4505 split_inst.eot = inst->eot && i == n - 1;
4506
4507 /* Select the correct channel enables for the i-th group, then
4508 * transform the sources and destination and emit the lowered
4509 * instruction.
4510 */
4511 const fs_builder lbld = ibld.group(lower_width, i);
4512
4513 for (unsigned j = 0; j < inst->sources; j++) {
4514 if (inst->src[j].file != BAD_FILE &&
4515 !is_uniform(inst->src[j])) {
4516 /* Get the i-th copy_width-wide chunk of the source. */
4517 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4518 const unsigned src_size = inst->components_read(j);
4519
4520 /* Use a trivial transposition to copy one every n
4521 * copy_width-wide components of the register into a
4522 * temporary passed as source to the lowered instruction.
4523 */
4524 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4525 emit_transpose(lbld.group(copy_width, 0),
4526 split_inst.src[j], &src, 1, src_size, n);
4527 }
4528 }
4529
4530 if (inst->regs_written) {
4531 /* Allocate enough space to hold the result of the lowered
4532 * instruction and fix up the number of registers written.
4533 */
4534 split_inst.dst = dsts[i] =
4535 lbld.vgrf(inst->dst.type, dst_size);
4536 split_inst.regs_written =
4537 DIV_ROUND_UP(inst->regs_written * lower_width,
4538 inst->exec_size);
4539 }
4540
4541 lbld.emit(split_inst);
4542 }
4543
4544 if (inst->regs_written) {
4545 /* Distance between useful channels in the temporaries, skipping
4546 * garbage if the lowered instruction is wider than the original.
4547 */
4548 const unsigned m = lower_width / copy_width;
4549
4550 /* Interleave the components of the result from the lowered
4551 * instructions. We need to set exec_all() when copying more than
4552 * one half per component, because LOAD_PAYLOAD (in terms of which
4553 * emit_transpose is implemented) can only use the same channel
4554 * enable signals for all of its non-header sources.
4555 */
4556 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4557 .group(copy_width, 0),
4558 inst->dst, dsts, n, dst_size, m);
4559 }
4560
4561 inst->remove(block);
4562 progress = true;
4563 }
4564 }
4565
4566 if (progress)
4567 invalidate_live_intervals();
4568
4569 return progress;
4570 }
4571
4572 void
4573 fs_visitor::dump_instructions()
4574 {
4575 dump_instructions(NULL);
4576 }
4577
4578 void
4579 fs_visitor::dump_instructions(const char *name)
4580 {
4581 FILE *file = stderr;
4582 if (name && geteuid() != 0) {
4583 file = fopen(name, "w");
4584 if (!file)
4585 file = stderr;
4586 }
4587
4588 if (cfg) {
4589 calculate_register_pressure();
4590 int ip = 0, max_pressure = 0;
4591 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4592 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4593 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4594 dump_instruction(inst, file);
4595 ip++;
4596 }
4597 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4598 } else {
4599 int ip = 0;
4600 foreach_in_list(backend_instruction, inst, &instructions) {
4601 fprintf(file, "%4d: ", ip++);
4602 dump_instruction(inst, file);
4603 }
4604 }
4605
4606 if (file != stderr) {
4607 fclose(file);
4608 }
4609 }
4610
4611 void
4612 fs_visitor::dump_instruction(backend_instruction *be_inst)
4613 {
4614 dump_instruction(be_inst, stderr);
4615 }
4616
4617 void
4618 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4619 {
4620 fs_inst *inst = (fs_inst *)be_inst;
4621
4622 if (inst->predicate) {
4623 fprintf(file, "(%cf0.%d) ",
4624 inst->predicate_inverse ? '-' : '+',
4625 inst->flag_subreg);
4626 }
4627
4628 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4629 if (inst->saturate)
4630 fprintf(file, ".sat");
4631 if (inst->conditional_mod) {
4632 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4633 if (!inst->predicate &&
4634 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4635 inst->opcode != BRW_OPCODE_IF &&
4636 inst->opcode != BRW_OPCODE_WHILE))) {
4637 fprintf(file, ".f0.%d", inst->flag_subreg);
4638 }
4639 }
4640 fprintf(file, "(%d) ", inst->exec_size);
4641
4642 if (inst->mlen) {
4643 fprintf(file, "(mlen: %d) ", inst->mlen);
4644 }
4645
4646 switch (inst->dst.file) {
4647 case VGRF:
4648 fprintf(file, "vgrf%d", inst->dst.nr);
4649 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4650 inst->dst.subreg_offset)
4651 fprintf(file, "+%d.%d",
4652 inst->dst.reg_offset, inst->dst.subreg_offset);
4653 break;
4654 case FIXED_GRF:
4655 fprintf(file, "g%d", inst->dst.nr);
4656 break;
4657 case MRF:
4658 fprintf(file, "m%d", inst->dst.nr);
4659 break;
4660 case BAD_FILE:
4661 fprintf(file, "(null)");
4662 break;
4663 case UNIFORM:
4664 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4665 break;
4666 case ATTR:
4667 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4668 break;
4669 case ARF:
4670 switch (inst->dst.nr) {
4671 case BRW_ARF_NULL:
4672 fprintf(file, "null");
4673 break;
4674 case BRW_ARF_ADDRESS:
4675 fprintf(file, "a0.%d", inst->dst.subnr);
4676 break;
4677 case BRW_ARF_ACCUMULATOR:
4678 fprintf(file, "acc%d", inst->dst.subnr);
4679 break;
4680 case BRW_ARF_FLAG:
4681 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4682 break;
4683 default:
4684 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4685 break;
4686 }
4687 if (inst->dst.subnr)
4688 fprintf(file, "+%d", inst->dst.subnr);
4689 break;
4690 case IMM:
4691 unreachable("not reached");
4692 }
4693 if (inst->dst.stride != 1)
4694 fprintf(file, "<%u>", inst->dst.stride);
4695 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4696
4697 for (int i = 0; i < inst->sources; i++) {
4698 if (inst->src[i].negate)
4699 fprintf(file, "-");
4700 if (inst->src[i].abs)
4701 fprintf(file, "|");
4702 switch (inst->src[i].file) {
4703 case VGRF:
4704 fprintf(file, "vgrf%d", inst->src[i].nr);
4705 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4706 inst->src[i].subreg_offset)
4707 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4708 inst->src[i].subreg_offset);
4709 break;
4710 case FIXED_GRF:
4711 fprintf(file, "g%d", inst->src[i].nr);
4712 break;
4713 case MRF:
4714 fprintf(file, "***m%d***", inst->src[i].nr);
4715 break;
4716 case ATTR:
4717 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4718 break;
4719 case UNIFORM:
4720 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4721 if (inst->src[i].reladdr) {
4722 fprintf(file, "+reladdr");
4723 } else if (inst->src[i].subreg_offset) {
4724 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4725 inst->src[i].subreg_offset);
4726 }
4727 break;
4728 case BAD_FILE:
4729 fprintf(file, "(null)");
4730 break;
4731 case IMM:
4732 switch (inst->src[i].type) {
4733 case BRW_REGISTER_TYPE_F:
4734 fprintf(file, "%ff", inst->src[i].f);
4735 break;
4736 case BRW_REGISTER_TYPE_W:
4737 case BRW_REGISTER_TYPE_D:
4738 fprintf(file, "%dd", inst->src[i].d);
4739 break;
4740 case BRW_REGISTER_TYPE_UW:
4741 case BRW_REGISTER_TYPE_UD:
4742 fprintf(file, "%uu", inst->src[i].ud);
4743 break;
4744 case BRW_REGISTER_TYPE_VF:
4745 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4746 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4747 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4748 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4749 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4750 break;
4751 default:
4752 fprintf(file, "???");
4753 break;
4754 }
4755 break;
4756 case ARF:
4757 switch (inst->src[i].nr) {
4758 case BRW_ARF_NULL:
4759 fprintf(file, "null");
4760 break;
4761 case BRW_ARF_ADDRESS:
4762 fprintf(file, "a0.%d", inst->src[i].subnr);
4763 break;
4764 case BRW_ARF_ACCUMULATOR:
4765 fprintf(file, "acc%d", inst->src[i].subnr);
4766 break;
4767 case BRW_ARF_FLAG:
4768 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4769 break;
4770 default:
4771 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4772 break;
4773 }
4774 if (inst->src[i].subnr)
4775 fprintf(file, "+%d", inst->src[i].subnr);
4776 break;
4777 }
4778 if (inst->src[i].abs)
4779 fprintf(file, "|");
4780
4781 if (inst->src[i].file != IMM) {
4782 unsigned stride;
4783 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4784 unsigned hstride = inst->src[i].hstride;
4785 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4786 } else {
4787 stride = inst->src[i].stride;
4788 }
4789 if (stride != 1)
4790 fprintf(file, "<%u>", stride);
4791
4792 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4793 }
4794
4795 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4796 fprintf(file, ", ");
4797 }
4798
4799 fprintf(file, " ");
4800
4801 if (inst->force_writemask_all)
4802 fprintf(file, "NoMask ");
4803
4804 if (dispatch_width == 16 && inst->exec_size == 8) {
4805 if (inst->force_sechalf)
4806 fprintf(file, "2ndhalf ");
4807 else
4808 fprintf(file, "1sthalf ");
4809 }
4810
4811 fprintf(file, "\n");
4812 }
4813
4814 /**
4815 * Possibly returns an instruction that set up @param reg.
4816 *
4817 * Sometimes we want to take the result of some expression/variable
4818 * dereference tree and rewrite the instruction generating the result
4819 * of the tree. When processing the tree, we know that the
4820 * instructions generated are all writing temporaries that are dead
4821 * outside of this tree. So, if we have some instructions that write
4822 * a temporary, we're free to point that temp write somewhere else.
4823 *
4824 * Note that this doesn't guarantee that the instruction generated
4825 * only reg -- it might be the size=4 destination of a texture instruction.
4826 */
4827 fs_inst *
4828 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4829 fs_inst *end,
4830 const fs_reg &reg)
4831 {
4832 if (end == start ||
4833 end->is_partial_write() ||
4834 reg.reladdr ||
4835 !reg.equals(end->dst)) {
4836 return NULL;
4837 } else {
4838 return end;
4839 }
4840 }
4841
4842 void
4843 fs_visitor::setup_payload_gen6()
4844 {
4845 bool uses_depth =
4846 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4847 unsigned barycentric_interp_modes =
4848 (stage == MESA_SHADER_FRAGMENT) ?
4849 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4850
4851 assert(devinfo->gen >= 6);
4852
4853 /* R0-1: masks, pixel X/Y coordinates. */
4854 payload.num_regs = 2;
4855 /* R2: only for 32-pixel dispatch.*/
4856
4857 /* R3-26: barycentric interpolation coordinates. These appear in the
4858 * same order that they appear in the brw_wm_barycentric_interp_mode
4859 * enum. Each set of coordinates occupies 2 registers if dispatch width
4860 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4861 * appear if they were enabled using the "Barycentric Interpolation
4862 * Mode" bits in WM_STATE.
4863 */
4864 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4865 if (barycentric_interp_modes & (1 << i)) {
4866 payload.barycentric_coord_reg[i] = payload.num_regs;
4867 payload.num_regs += 2;
4868 if (dispatch_width == 16) {
4869 payload.num_regs += 2;
4870 }
4871 }
4872 }
4873
4874 /* R27: interpolated depth if uses source depth */
4875 if (uses_depth) {
4876 payload.source_depth_reg = payload.num_regs;
4877 payload.num_regs++;
4878 if (dispatch_width == 16) {
4879 /* R28: interpolated depth if not SIMD8. */
4880 payload.num_regs++;
4881 }
4882 }
4883 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4884 if (uses_depth) {
4885 payload.source_w_reg = payload.num_regs;
4886 payload.num_regs++;
4887 if (dispatch_width == 16) {
4888 /* R30: interpolated W if not SIMD8. */
4889 payload.num_regs++;
4890 }
4891 }
4892
4893 if (stage == MESA_SHADER_FRAGMENT) {
4894 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4895 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4896 prog_data->uses_pos_offset = key->compute_pos_offset;
4897 /* R31: MSAA position offsets. */
4898 if (prog_data->uses_pos_offset) {
4899 payload.sample_pos_reg = payload.num_regs;
4900 payload.num_regs++;
4901 }
4902 }
4903
4904 /* R32: MSAA input coverage mask */
4905 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4906 assert(devinfo->gen >= 7);
4907 payload.sample_mask_in_reg = payload.num_regs;
4908 payload.num_regs++;
4909 if (dispatch_width == 16) {
4910 /* R33: input coverage mask if not SIMD8. */
4911 payload.num_regs++;
4912 }
4913 }
4914
4915 /* R34-: bary for 32-pixel. */
4916 /* R58-59: interp W for 32-pixel. */
4917
4918 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4919 source_depth_to_render_target = true;
4920 }
4921 }
4922
4923 void
4924 fs_visitor::setup_vs_payload()
4925 {
4926 /* R0: thread header, R1: urb handles */
4927 payload.num_regs = 2;
4928 }
4929
4930 /**
4931 * We are building the local ID push constant data using the simplest possible
4932 * method. We simply push the local IDs directly as they should appear in the
4933 * registers for the uvec3 gl_LocalInvocationID variable.
4934 *
4935 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4936 * registers worth of push constant space.
4937 *
4938 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4939 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4940 * to coordinated.
4941 *
4942 * FINISHME: There are a few easy optimizations to consider.
4943 *
4944 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4945 * no need for using push constant space for that dimension.
4946 *
4947 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4948 * easily use 16-bit words rather than 32-bit dwords in the push constant
4949 * data.
4950 *
4951 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4952 * conveying the data, and thereby reduce push constant usage.
4953 *
4954 */
4955 void
4956 fs_visitor::setup_gs_payload()
4957 {
4958 assert(stage == MESA_SHADER_GEOMETRY);
4959
4960 struct brw_gs_prog_data *gs_prog_data =
4961 (struct brw_gs_prog_data *) prog_data;
4962 struct brw_vue_prog_data *vue_prog_data =
4963 (struct brw_vue_prog_data *) prog_data;
4964
4965 /* R0: thread header, R1: output URB handles */
4966 payload.num_regs = 2;
4967
4968 if (gs_prog_data->include_primitive_id) {
4969 /* R2: Primitive ID 0..7 */
4970 payload.num_regs++;
4971 }
4972
4973 /* Use a maximum of 32 registers for push-model inputs. */
4974 const unsigned max_push_components = 32;
4975
4976 /* If pushing our inputs would take too many registers, reduce the URB read
4977 * length (which is in HWords, or 8 registers), and resort to pulling.
4978 *
4979 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
4980 * have to multiply by VerticesIn to obtain the total storage requirement.
4981 */
4982 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
4983 max_push_components) {
4984 gs_prog_data->base.include_vue_handles = true;
4985
4986 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
4987 payload.num_regs += nir->info.gs.vertices_in;
4988
4989 vue_prog_data->urb_read_length =
4990 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
4991 }
4992 }
4993
4994 void
4995 fs_visitor::setup_cs_payload()
4996 {
4997 assert(devinfo->gen >= 7);
4998 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
4999
5000 payload.num_regs = 1;
5001
5002 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5003 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5004 payload.local_invocation_id_reg = payload.num_regs;
5005 payload.num_regs += prog_data->local_invocation_id_regs;
5006 }
5007 }
5008
5009 void
5010 fs_visitor::calculate_register_pressure()
5011 {
5012 invalidate_live_intervals();
5013 calculate_live_intervals();
5014
5015 unsigned num_instructions = 0;
5016 foreach_block(block, cfg)
5017 num_instructions += block->instructions.length();
5018
5019 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5020
5021 for (unsigned reg = 0; reg < alloc.count; reg++) {
5022 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5023 regs_live_at_ip[ip] += alloc.sizes[reg];
5024 }
5025 }
5026
5027 void
5028 fs_visitor::optimize()
5029 {
5030 /* Start by validating the shader we currently have. */
5031 validate();
5032
5033 /* bld is the common builder object pointing at the end of the program we
5034 * used to translate it into i965 IR. For the optimization and lowering
5035 * passes coming next, any code added after the end of the program without
5036 * having explicitly called fs_builder::at() clearly points at a mistake.
5037 * Ideally optimization passes wouldn't be part of the visitor so they
5038 * wouldn't have access to bld at all, but they do, so just in case some
5039 * pass forgets to ask for a location explicitly set it to NULL here to
5040 * make it trip. The dispatch width is initialized to a bogus value to
5041 * make sure that optimizations set the execution controls explicitly to
5042 * match the code they are manipulating instead of relying on the defaults.
5043 */
5044 bld = fs_builder(this, 64);
5045
5046 assign_constant_locations();
5047 demote_pull_constants();
5048
5049 validate();
5050
5051 split_virtual_grfs();
5052 validate();
5053
5054 #define OPT(pass, args...) ({ \
5055 pass_num++; \
5056 bool this_progress = pass(args); \
5057 \
5058 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5059 char filename[64]; \
5060 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5061 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5062 \
5063 backend_shader::dump_instructions(filename); \
5064 } \
5065 \
5066 validate(); \
5067 \
5068 progress = progress || this_progress; \
5069 this_progress; \
5070 })
5071
5072 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5073 char filename[64];
5074 snprintf(filename, 64, "%s%d-%s-00-start",
5075 stage_abbrev, dispatch_width, nir->info.name);
5076
5077 backend_shader::dump_instructions(filename);
5078 }
5079
5080 bool progress = false;
5081 int iteration = 0;
5082 int pass_num = 0;
5083
5084 OPT(lower_simd_width);
5085 OPT(lower_logical_sends);
5086
5087 do {
5088 progress = false;
5089 pass_num = 0;
5090 iteration++;
5091
5092 OPT(remove_duplicate_mrf_writes);
5093
5094 OPT(opt_algebraic);
5095 OPT(opt_cse);
5096 OPT(opt_copy_propagate);
5097 OPT(opt_predicated_break, this);
5098 OPT(opt_cmod_propagation);
5099 OPT(dead_code_eliminate);
5100 OPT(opt_peephole_sel);
5101 OPT(dead_control_flow_eliminate, this);
5102 OPT(opt_register_renaming);
5103 OPT(opt_redundant_discard_jumps);
5104 OPT(opt_saturate_propagation);
5105 OPT(opt_zero_samples);
5106 OPT(register_coalesce);
5107 OPT(compute_to_mrf);
5108 OPT(eliminate_find_live_channel);
5109
5110 OPT(compact_virtual_grfs);
5111 } while (progress);
5112
5113 pass_num = 0;
5114
5115 OPT(opt_sampler_eot);
5116
5117 if (OPT(lower_load_payload)) {
5118 split_virtual_grfs();
5119 OPT(register_coalesce);
5120 OPT(compute_to_mrf);
5121 OPT(dead_code_eliminate);
5122 }
5123
5124 OPT(opt_combine_constants);
5125 OPT(lower_integer_multiplication);
5126
5127 lower_uniform_pull_constant_loads();
5128
5129 validate();
5130 }
5131
5132 /**
5133 * Three source instruction must have a GRF/MRF destination register.
5134 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5135 */
5136 void
5137 fs_visitor::fixup_3src_null_dest()
5138 {
5139 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5140 if (inst->is_3src() && inst->dst.is_null()) {
5141 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5142 inst->dst.type);
5143 }
5144 }
5145 }
5146
5147 void
5148 fs_visitor::allocate_registers()
5149 {
5150 bool allocated_without_spills;
5151
5152 static const enum instruction_scheduler_mode pre_modes[] = {
5153 SCHEDULE_PRE,
5154 SCHEDULE_PRE_NON_LIFO,
5155 SCHEDULE_PRE_LIFO,
5156 };
5157
5158 /* Try each scheduling heuristic to see if it can successfully register
5159 * allocate without spilling. They should be ordered by decreasing
5160 * performance but increasing likelihood of allocating.
5161 */
5162 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5163 schedule_instructions(pre_modes[i]);
5164
5165 if (0) {
5166 assign_regs_trivial();
5167 allocated_without_spills = true;
5168 } else {
5169 allocated_without_spills = assign_regs(false);
5170 }
5171 if (allocated_without_spills)
5172 break;
5173 }
5174
5175 if (!allocated_without_spills) {
5176 /* We assume that any spilling is worse than just dropping back to
5177 * SIMD8. There's probably actually some intermediate point where
5178 * SIMD16 with a couple of spills is still better.
5179 */
5180 if (dispatch_width == 16) {
5181 fail("Failure to register allocate. Reduce number of "
5182 "live scalar values to avoid this.");
5183 } else {
5184 compiler->shader_perf_log(log_data,
5185 "%s shader triggered register spilling. "
5186 "Try reducing the number of live scalar "
5187 "values to improve performance.\n",
5188 stage_name);
5189 }
5190
5191 /* Since we're out of heuristics, just go spill registers until we
5192 * get an allocation.
5193 */
5194 while (!assign_regs(true)) {
5195 if (failed)
5196 break;
5197 }
5198 }
5199
5200 /* This must come after all optimization and register allocation, since
5201 * it inserts dead code that happens to have side effects, and it does
5202 * so based on the actual physical registers in use.
5203 */
5204 insert_gen4_send_dependency_workarounds();
5205
5206 if (failed)
5207 return;
5208
5209 schedule_instructions(SCHEDULE_POST);
5210
5211 if (last_scratch > 0)
5212 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5213 }
5214
5215 bool
5216 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5217 {
5218 assert(stage == MESA_SHADER_VERTEX);
5219
5220 setup_vs_payload();
5221
5222 if (shader_time_index >= 0)
5223 emit_shader_time_begin();
5224
5225 emit_nir_code();
5226
5227 if (failed)
5228 return false;
5229
5230 compute_clip_distance(clip_planes);
5231
5232 emit_urb_writes();
5233
5234 if (shader_time_index >= 0)
5235 emit_shader_time_end();
5236
5237 calculate_cfg();
5238
5239 optimize();
5240
5241 assign_curb_setup();
5242 assign_vs_urb_setup();
5243
5244 fixup_3src_null_dest();
5245 allocate_registers();
5246
5247 return !failed;
5248 }
5249
5250 bool
5251 fs_visitor::run_tes()
5252 {
5253 assert(stage == MESA_SHADER_TESS_EVAL);
5254
5255 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5256 payload.num_regs = 5;
5257
5258 if (shader_time_index >= 0)
5259 emit_shader_time_begin();
5260
5261 emit_nir_code();
5262
5263 if (failed)
5264 return false;
5265
5266 emit_urb_writes();
5267
5268 if (shader_time_index >= 0)
5269 emit_shader_time_end();
5270
5271 calculate_cfg();
5272
5273 optimize();
5274
5275 assign_curb_setup();
5276 assign_tes_urb_setup();
5277
5278 fixup_3src_null_dest();
5279 allocate_registers();
5280
5281 return !failed;
5282 }
5283
5284 bool
5285 fs_visitor::run_gs()
5286 {
5287 assert(stage == MESA_SHADER_GEOMETRY);
5288
5289 setup_gs_payload();
5290
5291 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5292
5293 if (gs_compile->control_data_header_size_bits > 0) {
5294 /* Create a VGRF to store accumulated control data bits. */
5295 this->control_data_bits = vgrf(glsl_type::uint_type);
5296
5297 /* If we're outputting more than 32 control data bits, then EmitVertex()
5298 * will set control_data_bits to 0 after emitting the first vertex.
5299 * Otherwise, we need to initialize it to 0 here.
5300 */
5301 if (gs_compile->control_data_header_size_bits <= 32) {
5302 const fs_builder abld = bld.annotate("initialize control data bits");
5303 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5304 }
5305 }
5306
5307 if (shader_time_index >= 0)
5308 emit_shader_time_begin();
5309
5310 emit_nir_code();
5311
5312 emit_gs_thread_end();
5313
5314 if (shader_time_index >= 0)
5315 emit_shader_time_end();
5316
5317 if (failed)
5318 return false;
5319
5320 calculate_cfg();
5321
5322 optimize();
5323
5324 assign_curb_setup();
5325 assign_gs_urb_setup();
5326
5327 fixup_3src_null_dest();
5328 allocate_registers();
5329
5330 return !failed;
5331 }
5332
5333 bool
5334 fs_visitor::run_fs(bool do_rep_send)
5335 {
5336 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5337 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5338
5339 assert(stage == MESA_SHADER_FRAGMENT);
5340
5341 if (devinfo->gen >= 6)
5342 setup_payload_gen6();
5343 else
5344 setup_payload_gen4();
5345
5346 if (0) {
5347 emit_dummy_fs();
5348 } else if (do_rep_send) {
5349 assert(dispatch_width == 16);
5350 emit_repclear_shader();
5351 } else {
5352 if (shader_time_index >= 0)
5353 emit_shader_time_begin();
5354
5355 calculate_urb_setup();
5356 if (nir->info.inputs_read > 0) {
5357 if (devinfo->gen < 6)
5358 emit_interpolation_setup_gen4();
5359 else
5360 emit_interpolation_setup_gen6();
5361 }
5362
5363 /* We handle discards by keeping track of the still-live pixels in f0.1.
5364 * Initialize it with the dispatched pixels.
5365 */
5366 if (wm_prog_data->uses_kill) {
5367 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5368 discard_init->flag_subreg = 1;
5369 }
5370
5371 /* Generate FS IR for main(). (the visitor only descends into
5372 * functions called "main").
5373 */
5374 emit_nir_code();
5375
5376 if (failed)
5377 return false;
5378
5379 if (wm_prog_data->uses_kill)
5380 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5381
5382 if (wm_key->alpha_test_func)
5383 emit_alpha_test();
5384
5385 emit_fb_writes();
5386
5387 if (shader_time_index >= 0)
5388 emit_shader_time_end();
5389
5390 calculate_cfg();
5391
5392 optimize();
5393
5394 assign_curb_setup();
5395 assign_urb_setup();
5396
5397 fixup_3src_null_dest();
5398 allocate_registers();
5399
5400 if (failed)
5401 return false;
5402 }
5403
5404 if (dispatch_width == 8)
5405 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5406 else
5407 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5408
5409 return !failed;
5410 }
5411
5412 bool
5413 fs_visitor::run_cs()
5414 {
5415 assert(stage == MESA_SHADER_COMPUTE);
5416
5417 setup_cs_payload();
5418
5419 if (shader_time_index >= 0)
5420 emit_shader_time_begin();
5421
5422 emit_nir_code();
5423
5424 if (failed)
5425 return false;
5426
5427 emit_cs_terminate();
5428
5429 if (shader_time_index >= 0)
5430 emit_shader_time_end();
5431
5432 calculate_cfg();
5433
5434 optimize();
5435
5436 assign_curb_setup();
5437
5438 fixup_3src_null_dest();
5439 allocate_registers();
5440
5441 if (failed)
5442 return false;
5443
5444 return !failed;
5445 }
5446
5447 /**
5448 * Return a bitfield where bit n is set if barycentric interpolation mode n
5449 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5450 */
5451 static unsigned
5452 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5453 bool shade_model_flat,
5454 bool persample_shading,
5455 const nir_shader *shader)
5456 {
5457 unsigned barycentric_interp_modes = 0;
5458
5459 nir_foreach_variable(var, &shader->inputs) {
5460 enum glsl_interp_qualifier interp_qualifier =
5461 (enum glsl_interp_qualifier)var->data.interpolation;
5462 bool is_centroid = var->data.centroid && !persample_shading;
5463 bool is_sample = var->data.sample || persample_shading;
5464 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5465 (var->data.location == VARYING_SLOT_COL1);
5466
5467 /* Ignore WPOS and FACE, because they don't require interpolation. */
5468 if (var->data.location == VARYING_SLOT_POS ||
5469 var->data.location == VARYING_SLOT_FACE)
5470 continue;
5471
5472 /* Determine the set (or sets) of barycentric coordinates needed to
5473 * interpolate this variable. Note that when
5474 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5475 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5476 * for lit pixels, so we need both sets of barycentric coordinates.
5477 */
5478 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5479 if (is_centroid) {
5480 barycentric_interp_modes |=
5481 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5482 } else if (is_sample) {
5483 barycentric_interp_modes |=
5484 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5485 }
5486 if ((!is_centroid && !is_sample) ||
5487 devinfo->needs_unlit_centroid_workaround) {
5488 barycentric_interp_modes |=
5489 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5490 }
5491 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5492 (!(shade_model_flat && is_gl_Color) &&
5493 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5494 if (is_centroid) {
5495 barycentric_interp_modes |=
5496 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5497 } else if (is_sample) {
5498 barycentric_interp_modes |=
5499 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5500 }
5501 if ((!is_centroid && !is_sample) ||
5502 devinfo->needs_unlit_centroid_workaround) {
5503 barycentric_interp_modes |=
5504 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5505 }
5506 }
5507 }
5508
5509 return barycentric_interp_modes;
5510 }
5511
5512 static uint8_t
5513 computed_depth_mode(const nir_shader *shader)
5514 {
5515 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5516 switch (shader->info.fs.depth_layout) {
5517 case FRAG_DEPTH_LAYOUT_NONE:
5518 case FRAG_DEPTH_LAYOUT_ANY:
5519 return BRW_PSCDEPTH_ON;
5520 case FRAG_DEPTH_LAYOUT_GREATER:
5521 return BRW_PSCDEPTH_ON_GE;
5522 case FRAG_DEPTH_LAYOUT_LESS:
5523 return BRW_PSCDEPTH_ON_LE;
5524 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5525 return BRW_PSCDEPTH_OFF;
5526 }
5527 }
5528 return BRW_PSCDEPTH_OFF;
5529 }
5530
5531 const unsigned *
5532 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5533 void *mem_ctx,
5534 const struct brw_wm_prog_key *key,
5535 struct brw_wm_prog_data *prog_data,
5536 const nir_shader *src_shader,
5537 struct gl_program *prog,
5538 int shader_time_index8, int shader_time_index16,
5539 bool use_rep_send,
5540 unsigned *final_assembly_size,
5541 char **error_str)
5542 {
5543 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5544 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5545 true);
5546 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5547
5548 /* key->alpha_test_func means simulating alpha testing via discards,
5549 * so the shader definitely kills pixels.
5550 */
5551 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5552 prog_data->uses_omask =
5553 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5554 prog_data->computed_depth_mode = computed_depth_mode(shader);
5555 prog_data->computed_stencil =
5556 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5557
5558 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5559
5560 prog_data->barycentric_interp_modes =
5561 brw_compute_barycentric_interp_modes(compiler->devinfo,
5562 key->flat_shade,
5563 key->persample_shading,
5564 shader);
5565
5566 fs_visitor v(compiler, log_data, mem_ctx, key,
5567 &prog_data->base, prog, shader, 8,
5568 shader_time_index8);
5569 if (!v.run_fs(false /* do_rep_send */)) {
5570 if (error_str)
5571 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5572
5573 return NULL;
5574 }
5575
5576 cfg_t *simd16_cfg = NULL;
5577 fs_visitor v2(compiler, log_data, mem_ctx, key,
5578 &prog_data->base, prog, shader, 16,
5579 shader_time_index16);
5580 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5581 if (!v.simd16_unsupported) {
5582 /* Try a SIMD16 compile */
5583 v2.import_uniforms(&v);
5584 if (!v2.run_fs(use_rep_send)) {
5585 compiler->shader_perf_log(log_data,
5586 "SIMD16 shader failed to compile: %s",
5587 v2.fail_msg);
5588 } else {
5589 simd16_cfg = v2.cfg;
5590 }
5591 }
5592 }
5593
5594 cfg_t *simd8_cfg;
5595 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5596 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5597 simd8_cfg = NULL;
5598 prog_data->no_8 = true;
5599 } else {
5600 simd8_cfg = v.cfg;
5601 prog_data->no_8 = false;
5602 }
5603
5604 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5605 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5606
5607 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5608 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5609 shader->info.label ? shader->info.label :
5610 "unnamed",
5611 shader->info.name));
5612 }
5613
5614 if (simd8_cfg)
5615 g.generate_code(simd8_cfg, 8);
5616 if (simd16_cfg)
5617 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5618
5619 return g.get_assembly(final_assembly_size);
5620 }
5621
5622 fs_reg *
5623 fs_visitor::emit_cs_local_invocation_id_setup()
5624 {
5625 assert(stage == MESA_SHADER_COMPUTE);
5626
5627 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5628
5629 struct brw_reg src =
5630 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5631 src = retype(src, BRW_REGISTER_TYPE_UD);
5632 bld.MOV(*reg, src);
5633 src.nr += dispatch_width / 8;
5634 bld.MOV(offset(*reg, bld, 1), src);
5635 src.nr += dispatch_width / 8;
5636 bld.MOV(offset(*reg, bld, 2), src);
5637
5638 return reg;
5639 }
5640
5641 fs_reg *
5642 fs_visitor::emit_cs_work_group_id_setup()
5643 {
5644 assert(stage == MESA_SHADER_COMPUTE);
5645
5646 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5647
5648 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5649 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5650 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5651
5652 bld.MOV(*reg, r0_1);
5653 bld.MOV(offset(*reg, bld, 1), r0_6);
5654 bld.MOV(offset(*reg, bld, 2), r0_7);
5655
5656 return reg;
5657 }
5658
5659 const unsigned *
5660 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5661 void *mem_ctx,
5662 const struct brw_cs_prog_key *key,
5663 struct brw_cs_prog_data *prog_data,
5664 const nir_shader *src_shader,
5665 int shader_time_index,
5666 unsigned *final_assembly_size,
5667 char **error_str)
5668 {
5669 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5670 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5671 true);
5672 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5673
5674 prog_data->local_size[0] = shader->info.cs.local_size[0];
5675 prog_data->local_size[1] = shader->info.cs.local_size[1];
5676 prog_data->local_size[2] = shader->info.cs.local_size[2];
5677 unsigned local_workgroup_size =
5678 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5679 shader->info.cs.local_size[2];
5680
5681 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5682
5683 cfg_t *cfg = NULL;
5684 const char *fail_msg = NULL;
5685
5686 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5687 */
5688 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5689 NULL, /* Never used in core profile */
5690 shader, 8, shader_time_index);
5691 if (!v8.run_cs()) {
5692 fail_msg = v8.fail_msg;
5693 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5694 cfg = v8.cfg;
5695 prog_data->simd_size = 8;
5696 }
5697
5698 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5699 NULL, /* Never used in core profile */
5700 shader, 16, shader_time_index);
5701 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5702 !fail_msg && !v8.simd16_unsupported &&
5703 local_workgroup_size <= 16 * max_cs_threads) {
5704 /* Try a SIMD16 compile */
5705 v16.import_uniforms(&v8);
5706 if (!v16.run_cs()) {
5707 compiler->shader_perf_log(log_data,
5708 "SIMD16 shader failed to compile: %s",
5709 v16.fail_msg);
5710 if (!cfg) {
5711 fail_msg =
5712 "Couldn't generate SIMD16 program and not "
5713 "enough threads for SIMD8";
5714 }
5715 } else {
5716 cfg = v16.cfg;
5717 prog_data->simd_size = 16;
5718 }
5719 }
5720
5721 if (unlikely(cfg == NULL)) {
5722 assert(fail_msg);
5723 if (error_str)
5724 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5725
5726 return NULL;
5727 }
5728
5729 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5730 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5731 if (INTEL_DEBUG & DEBUG_CS) {
5732 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5733 shader->info.label ? shader->info.label :
5734 "unnamed",
5735 shader->info.name);
5736 g.enable_debug(name);
5737 }
5738
5739 g.generate_code(cfg, prog_data->simd_size);
5740
5741 return g.get_assembly(final_assembly_size);
5742 }
5743
5744 void
5745 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5746 void *buffer, uint32_t threads, uint32_t stride)
5747 {
5748 if (prog_data->local_invocation_id_regs == 0)
5749 return;
5750
5751 /* 'stride' should be an integer number of registers, that is, a multiple
5752 * of 32 bytes.
5753 */
5754 assert(stride % 32 == 0);
5755
5756 unsigned x = 0, y = 0, z = 0;
5757 for (unsigned t = 0; t < threads; t++) {
5758 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5759
5760 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5761 param[0 * prog_data->simd_size + i] = x;
5762 param[1 * prog_data->simd_size + i] = y;
5763 param[2 * prog_data->simd_size + i] = z;
5764
5765 x++;
5766 if (x == prog_data->local_size[0]) {
5767 x = 0;
5768 y++;
5769 if (y == prog_data->local_size[1]) {
5770 y = 0;
5771 z++;
5772 if (z == prog_data->local_size[2])
5773 z = 0;
5774 }
5775 }
5776 }
5777 }
5778 }