Merge branch 'vulkan' into 'vulkan'
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "glsl/nir/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->stride = 1;
437 if (this->file == IMM &&
438 (this->type != BRW_REGISTER_TYPE_V &&
439 this->type != BRW_REGISTER_TYPE_UV &&
440 this->type != BRW_REGISTER_TYPE_VF)) {
441 this->stride = 0;
442 }
443 }
444
445 bool
446 fs_reg::equals(const fs_reg &r) const
447 {
448 return (this->backend_reg::equals(r) &&
449 subreg_offset == r.subreg_offset &&
450 stride == r.stride);
451 }
452
453 fs_reg &
454 fs_reg::set_smear(unsigned subreg)
455 {
456 assert(file != ARF && file != FIXED_GRF && file != IMM);
457 subreg_offset = subreg * type_sz(type);
458 stride = 0;
459 return *this;
460 }
461
462 bool
463 fs_reg::is_contiguous() const
464 {
465 return stride == 1;
466 }
467
468 unsigned
469 fs_reg::component_size(unsigned width) const
470 {
471 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
472 hstride == 0 ? 0 :
473 1 << (hstride - 1));
474 return MAX2(width * stride, 1) * type_sz(type);
475 }
476
477 extern "C" int
478 type_size_scalar(const struct glsl_type *type)
479 {
480 unsigned int size, i;
481
482 switch (type->base_type) {
483 case GLSL_TYPE_UINT:
484 case GLSL_TYPE_INT:
485 case GLSL_TYPE_FLOAT:
486 case GLSL_TYPE_BOOL:
487 return type->components();
488 case GLSL_TYPE_ARRAY:
489 return type_size_scalar(type->fields.array) * type->length;
490 case GLSL_TYPE_STRUCT:
491 size = 0;
492 for (i = 0; i < type->length; i++) {
493 size += type_size_scalar(type->fields.structure[i].type);
494 }
495 return size;
496 case GLSL_TYPE_SAMPLER:
497 /* Samplers take up no register space, since they're baked in at
498 * link time.
499 */
500 return 0;
501 case GLSL_TYPE_ATOMIC_UINT:
502 return 0;
503 case GLSL_TYPE_SUBROUTINE:
504 return 1;
505 case GLSL_TYPE_IMAGE:
506 return BRW_IMAGE_PARAM_SIZE;
507 case GLSL_TYPE_VOID:
508 case GLSL_TYPE_ERROR:
509 case GLSL_TYPE_INTERFACE:
510 case GLSL_TYPE_DOUBLE:
511 case GLSL_TYPE_FUNCTION:
512 unreachable("not reached");
513 }
514
515 return 0;
516 }
517
518 /**
519 * Returns the number of scalar components needed to store type, assuming
520 * that vectors are padded out to vec4.
521 *
522 * This has the packing rules of type_size_vec4(), but counts components
523 * similar to type_size_scalar().
524 */
525 extern "C" int
526 type_size_vec4_times_4(const struct glsl_type *type)
527 {
528 return 4 * type_size_vec4(type);
529 }
530
531 /**
532 * Create a MOV to read the timestamp register.
533 *
534 * The caller is responsible for emitting the MOV. The return value is
535 * the destination of the MOV, with extra parameters set.
536 */
537 fs_reg
538 fs_visitor::get_timestamp(const fs_builder &bld)
539 {
540 assert(devinfo->gen >= 7);
541
542 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
543 BRW_ARF_TIMESTAMP,
544 0),
545 BRW_REGISTER_TYPE_UD));
546
547 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
548
549 /* We want to read the 3 fields we care about even if it's not enabled in
550 * the dispatch.
551 */
552 bld.group(4, 0).exec_all().MOV(dst, ts);
553
554 return dst;
555 }
556
557 void
558 fs_visitor::emit_shader_time_begin()
559 {
560 shader_start_time = get_timestamp(bld.annotate("shader time start"));
561
562 /* We want only the low 32 bits of the timestamp. Since it's running
563 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
564 * which is plenty of time for our purposes. It is identical across the
565 * EUs, but since it's tracking GPU core speed it will increment at a
566 * varying rate as render P-states change.
567 */
568 shader_start_time.set_smear(0);
569 }
570
571 void
572 fs_visitor::emit_shader_time_end()
573 {
574 /* Insert our code just before the final SEND with EOT. */
575 exec_node *end = this->instructions.get_tail();
576 assert(end && ((fs_inst *) end)->eot);
577 const fs_builder ibld = bld.annotate("shader time end")
578 .exec_all().at(NULL, end);
579
580 fs_reg shader_end_time = get_timestamp(ibld);
581
582 /* We only use the low 32 bits of the timestamp - see
583 * emit_shader_time_begin()).
584 *
585 * We could also check if render P-states have changed (or anything
586 * else that might disrupt timing) by setting smear to 2 and checking if
587 * that field is != 0.
588 */
589 shader_end_time.set_smear(0);
590
591 /* Check that there weren't any timestamp reset events (assuming these
592 * were the only two timestamp reads that happened).
593 */
594 fs_reg reset = shader_end_time;
595 reset.set_smear(2);
596 set_condmod(BRW_CONDITIONAL_Z,
597 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
598 ibld.IF(BRW_PREDICATE_NORMAL);
599
600 fs_reg start = shader_start_time;
601 start.negate = true;
602 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
603 diff.set_smear(0);
604
605 const fs_builder cbld = ibld.group(1, 0);
606 cbld.group(1, 0).ADD(diff, start, shader_end_time);
607
608 /* If there were no instructions between the two timestamp gets, the diff
609 * is 2 cycles. Remove that overhead, so I can forget about that when
610 * trying to determine the time taken for single instructions.
611 */
612 cbld.ADD(diff, diff, brw_imm_ud(-2u));
613 SHADER_TIME_ADD(cbld, 0, diff);
614 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
615 ibld.emit(BRW_OPCODE_ELSE);
616 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ENDIF);
618 }
619
620 void
621 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
622 int shader_time_subindex,
623 fs_reg value)
624 {
625 int index = shader_time_index * 3 + shader_time_subindex;
626 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
627
628 fs_reg payload;
629 if (dispatch_width == 8)
630 payload = vgrf(glsl_type::uvec2_type);
631 else
632 payload = vgrf(glsl_type::uint_type);
633
634 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
635 }
636
637 void
638 fs_visitor::vfail(const char *format, va_list va)
639 {
640 char *msg;
641
642 if (failed)
643 return;
644
645 failed = true;
646
647 msg = ralloc_vasprintf(mem_ctx, format, va);
648 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
649
650 this->fail_msg = msg;
651
652 if (debug_enabled) {
653 fprintf(stderr, "%s", msg);
654 }
655 }
656
657 void
658 fs_visitor::fail(const char *format, ...)
659 {
660 va_list va;
661
662 va_start(va, format);
663 vfail(format, va);
664 va_end(va);
665 }
666
667 /**
668 * Mark this program as impossible to compile in SIMD16 mode.
669 *
670 * During the SIMD8 compile (which happens first), we can detect and flag
671 * things that are unsupported in SIMD16 mode, so the compiler can skip
672 * the SIMD16 compile altogether.
673 *
674 * During a SIMD16 compile (if one happens anyway), this just calls fail().
675 */
676 void
677 fs_visitor::no16(const char *msg)
678 {
679 if (dispatch_width == 16) {
680 fail("%s", msg);
681 } else {
682 simd16_unsupported = true;
683
684 compiler->shader_perf_log(log_data,
685 "SIMD16 shader failed to compile: %s", msg);
686 }
687 }
688
689 /**
690 * Returns true if the instruction has a flag that means it won't
691 * update an entire destination register.
692 *
693 * For example, dead code elimination and live variable analysis want to know
694 * when a write to a variable screens off any preceding values that were in
695 * it.
696 */
697 bool
698 fs_inst::is_partial_write() const
699 {
700 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
701 (this->exec_size * type_sz(this->dst.type)) < 32 ||
702 !this->dst.is_contiguous());
703 }
704
705 unsigned
706 fs_inst::components_read(unsigned i) const
707 {
708 switch (opcode) {
709 case FS_OPCODE_LINTERP:
710 if (i == 0)
711 return 2;
712 else
713 return 1;
714
715 case FS_OPCODE_PIXEL_X:
716 case FS_OPCODE_PIXEL_Y:
717 assert(i == 0);
718 return 2;
719
720 case FS_OPCODE_FB_WRITE_LOGICAL:
721 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
722 /* First/second FB write color. */
723 if (i < 2)
724 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
725 else
726 return 1;
727
728 case SHADER_OPCODE_TEX_LOGICAL:
729 case SHADER_OPCODE_TXD_LOGICAL:
730 case SHADER_OPCODE_TXF_LOGICAL:
731 case SHADER_OPCODE_TXL_LOGICAL:
732 case SHADER_OPCODE_TXS_LOGICAL:
733 case FS_OPCODE_TXB_LOGICAL:
734 case SHADER_OPCODE_TXF_CMS_LOGICAL:
735 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
736 case SHADER_OPCODE_TXF_UMS_LOGICAL:
737 case SHADER_OPCODE_TXF_MCS_LOGICAL:
738 case SHADER_OPCODE_LOD_LOGICAL:
739 case SHADER_OPCODE_TG4_LOGICAL:
740 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
741 assert(src[9].file == IMM && src[10].file == IMM);
742 /* Texture coordinates. */
743 if (i == 0)
744 return src[9].ud;
745 /* Texture derivatives. */
746 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
747 return src[10].ud;
748 /* Texture offset. */
749 else if (i == 8)
750 return 2;
751 /* MCS */
752 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
753 return 2;
754 else
755 return 1;
756
757 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
758 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
759 assert(src[3].file == IMM);
760 /* Surface coordinates. */
761 if (i == 0)
762 return src[3].ud;
763 /* Surface operation source (ignored for reads). */
764 else if (i == 1)
765 return 0;
766 else
767 return 1;
768
769 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
770 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
771 assert(src[3].file == IMM &&
772 src[4].file == IMM);
773 /* Surface coordinates. */
774 if (i == 0)
775 return src[3].ud;
776 /* Surface operation source. */
777 else if (i == 1)
778 return src[4].ud;
779 else
780 return 1;
781
782 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
783 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
784 assert(src[3].file == IMM &&
785 src[4].file == IMM);
786 const unsigned op = src[4].ud;
787 /* Surface coordinates. */
788 if (i == 0)
789 return src[3].ud;
790 /* Surface operation source. */
791 else if (i == 1 && op == BRW_AOP_CMPWR)
792 return 2;
793 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
794 op == BRW_AOP_PREDEC))
795 return 0;
796 else
797 return 1;
798 }
799
800 default:
801 return 1;
802 }
803 }
804
805 int
806 fs_inst::regs_read(int arg) const
807 {
808 switch (opcode) {
809 case FS_OPCODE_FB_WRITE:
810 case SHADER_OPCODE_URB_WRITE_SIMD8:
811 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
812 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
813 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
814 case SHADER_OPCODE_URB_READ_SIMD8:
815 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
816 case SHADER_OPCODE_UNTYPED_ATOMIC:
817 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
818 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
819 case SHADER_OPCODE_TYPED_ATOMIC:
820 case SHADER_OPCODE_TYPED_SURFACE_READ:
821 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
822 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
823 if (arg == 0)
824 return mlen;
825 break;
826
827 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
828 /* The payload is actually stored in src1 */
829 if (arg == 1)
830 return mlen;
831 break;
832
833 case FS_OPCODE_LINTERP:
834 if (arg == 1)
835 return 1;
836 break;
837
838 case SHADER_OPCODE_LOAD_PAYLOAD:
839 if (arg < this->header_size)
840 return 1;
841 break;
842
843 case CS_OPCODE_CS_TERMINATE:
844 case SHADER_OPCODE_BARRIER:
845 return 1;
846
847 case SHADER_OPCODE_MOV_INDIRECT:
848 if (arg == 0) {
849 assert(src[2].file == IMM);
850 unsigned region_length = src[2].ud;
851
852 if (src[0].file == UNIFORM) {
853 assert(region_length % 4 == 0);
854 return region_length / 4;
855 } else if (src[0].file == FIXED_GRF) {
856 /* If the start of the region is not register aligned, then
857 * there's some portion of the register that's technically
858 * unread at the beginning.
859 *
860 * However, the register allocator works in terms of whole
861 * registers, and does not use subnr. It assumes that the
862 * read starts at the beginning of the register, and extends
863 * regs_read() whole registers beyond that.
864 *
865 * To compensate, we extend the region length to include this
866 * unread portion at the beginning.
867 */
868 if (src[0].subnr)
869 region_length += src[0].subnr;
870
871 return DIV_ROUND_UP(region_length, REG_SIZE);
872 } else {
873 assert(!"Invalid register file");
874 }
875 }
876 break;
877
878 default:
879 if (is_tex() && arg == 0 && src[0].file == VGRF)
880 return mlen;
881 break;
882 }
883
884 switch (src[arg].file) {
885 case BAD_FILE:
886 return 0;
887 case UNIFORM:
888 case IMM:
889 return 1;
890 case ARF:
891 case FIXED_GRF:
892 case VGRF:
893 case ATTR:
894 return DIV_ROUND_UP(components_read(arg) *
895 src[arg].component_size(exec_size),
896 REG_SIZE);
897 case MRF:
898 unreachable("MRF registers are not allowed as sources");
899 }
900 return 0;
901 }
902
903 bool
904 fs_inst::reads_flag() const
905 {
906 return predicate;
907 }
908
909 bool
910 fs_inst::writes_flag() const
911 {
912 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
913 opcode != BRW_OPCODE_IF &&
914 opcode != BRW_OPCODE_WHILE)) ||
915 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
916 }
917
918 /**
919 * Returns how many MRFs an FS opcode will write over.
920 *
921 * Note that this is not the 0 or 1 implied writes in an actual gen
922 * instruction -- the FS opcodes often generate MOVs in addition.
923 */
924 int
925 fs_visitor::implied_mrf_writes(fs_inst *inst)
926 {
927 if (inst->mlen == 0)
928 return 0;
929
930 if (inst->base_mrf == -1)
931 return 0;
932
933 switch (inst->opcode) {
934 case SHADER_OPCODE_RCP:
935 case SHADER_OPCODE_RSQ:
936 case SHADER_OPCODE_SQRT:
937 case SHADER_OPCODE_EXP2:
938 case SHADER_OPCODE_LOG2:
939 case SHADER_OPCODE_SIN:
940 case SHADER_OPCODE_COS:
941 return 1 * dispatch_width / 8;
942 case SHADER_OPCODE_POW:
943 case SHADER_OPCODE_INT_QUOTIENT:
944 case SHADER_OPCODE_INT_REMAINDER:
945 return 2 * dispatch_width / 8;
946 case SHADER_OPCODE_TEX:
947 case FS_OPCODE_TXB:
948 case SHADER_OPCODE_TXD:
949 case SHADER_OPCODE_TXF:
950 case SHADER_OPCODE_TXF_CMS:
951 case SHADER_OPCODE_TXF_CMS_W:
952 case SHADER_OPCODE_TXF_MCS:
953 case SHADER_OPCODE_TG4:
954 case SHADER_OPCODE_TG4_OFFSET:
955 case SHADER_OPCODE_TXL:
956 case SHADER_OPCODE_TXS:
957 case SHADER_OPCODE_LOD:
958 case SHADER_OPCODE_SAMPLEINFO:
959 return 1;
960 case FS_OPCODE_FB_WRITE:
961 return 2;
962 case FS_OPCODE_GET_BUFFER_SIZE:
963 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
964 case SHADER_OPCODE_GEN4_SCRATCH_READ:
965 return 1;
966 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
967 return inst->mlen;
968 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
969 return inst->mlen;
970 case SHADER_OPCODE_UNTYPED_ATOMIC:
971 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
972 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
973 case SHADER_OPCODE_TYPED_ATOMIC:
974 case SHADER_OPCODE_TYPED_SURFACE_READ:
975 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
976 case SHADER_OPCODE_URB_WRITE_SIMD8:
977 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
980 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
981 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
982 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
983 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
984 return 0;
985 default:
986 unreachable("not reached");
987 }
988 }
989
990 fs_reg
991 fs_visitor::vgrf(const glsl_type *const type)
992 {
993 int reg_width = dispatch_width / 8;
994 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
995 brw_type_for_base_type(type));
996 }
997
998 fs_reg::fs_reg(enum brw_reg_file file, int nr)
999 {
1000 init();
1001 this->file = file;
1002 this->nr = nr;
1003 this->type = BRW_REGISTER_TYPE_F;
1004 this->stride = (file == UNIFORM ? 0 : 1);
1005 }
1006
1007 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1008 {
1009 init();
1010 this->file = file;
1011 this->nr = nr;
1012 this->type = type;
1013 this->stride = (file == UNIFORM ? 0 : 1);
1014 }
1015
1016 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1017 * This brings in those uniform definitions
1018 */
1019 void
1020 fs_visitor::import_uniforms(fs_visitor *v)
1021 {
1022 this->push_constant_loc = v->push_constant_loc;
1023 this->pull_constant_loc = v->pull_constant_loc;
1024 this->uniforms = v->uniforms;
1025 }
1026
1027 fs_reg *
1028 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1029 bool origin_upper_left)
1030 {
1031 assert(stage == MESA_SHADER_FRAGMENT);
1032 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1033 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1034 fs_reg wpos = *reg;
1035 bool flip = !origin_upper_left ^ key->render_to_fbo;
1036
1037 /* gl_FragCoord.x */
1038 if (pixel_center_integer) {
1039 bld.MOV(wpos, this->pixel_x);
1040 } else {
1041 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1042 }
1043 wpos = offset(wpos, bld, 1);
1044
1045 /* gl_FragCoord.y */
1046 if (!flip && pixel_center_integer) {
1047 bld.MOV(wpos, this->pixel_y);
1048 } else {
1049 fs_reg pixel_y = this->pixel_y;
1050 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1051
1052 if (flip) {
1053 pixel_y.negate = true;
1054 offset += key->drawable_height - 1.0f;
1055 }
1056
1057 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1058 }
1059 wpos = offset(wpos, bld, 1);
1060
1061 /* gl_FragCoord.z */
1062 if (devinfo->gen >= 6) {
1063 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1064 } else {
1065 bld.emit(FS_OPCODE_LINTERP, wpos,
1066 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1067 interp_reg(VARYING_SLOT_POS, 2));
1068 }
1069 wpos = offset(wpos, bld, 1);
1070
1071 /* gl_FragCoord.w: Already set up in emit_interpolation */
1072 bld.MOV(wpos, this->wpos_w);
1073
1074 return reg;
1075 }
1076
1077 fs_inst *
1078 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1079 glsl_interp_qualifier interpolation_mode,
1080 bool is_centroid, bool is_sample)
1081 {
1082 brw_wm_barycentric_interp_mode barycoord_mode;
1083 if (devinfo->gen >= 6) {
1084 if (is_centroid) {
1085 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1086 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1087 else
1088 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1089 } else if (is_sample) {
1090 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1091 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1092 else
1093 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1094 } else {
1095 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1096 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1097 else
1098 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1099 }
1100 } else {
1101 /* On Ironlake and below, there is only one interpolation mode.
1102 * Centroid interpolation doesn't mean anything on this hardware --
1103 * there is no multisampling.
1104 */
1105 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1106 }
1107 return bld.emit(FS_OPCODE_LINTERP, attr,
1108 this->delta_xy[barycoord_mode], interp);
1109 }
1110
1111 void
1112 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1113 const glsl_type *type,
1114 glsl_interp_qualifier interpolation_mode,
1115 int *location, bool mod_centroid,
1116 bool mod_sample)
1117 {
1118 assert(stage == MESA_SHADER_FRAGMENT);
1119 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1120 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1121
1122 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1123 bool is_gl_Color =
1124 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1125 if (key->flat_shade && is_gl_Color) {
1126 interpolation_mode = INTERP_QUALIFIER_FLAT;
1127 } else {
1128 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1129 }
1130 }
1131
1132 if (type->is_array() || type->is_matrix()) {
1133 const glsl_type *elem_type = glsl_get_array_element(type);
1134 const unsigned length = glsl_get_length(type);
1135
1136 for (unsigned i = 0; i < length; i++) {
1137 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1138 location, mod_centroid, mod_sample);
1139 }
1140 } else if (type->is_record()) {
1141 for (unsigned i = 0; i < type->length; i++) {
1142 const glsl_type *field_type = type->fields.structure[i].type;
1143 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1144 location, mod_centroid, mod_sample);
1145 }
1146 } else {
1147 assert(type->is_scalar() || type->is_vector());
1148
1149 if (prog_data->urb_setup[*location] == -1) {
1150 /* If there's no incoming setup data for this slot, don't
1151 * emit interpolation for it.
1152 */
1153 *attr = offset(*attr, bld, type->vector_elements);
1154 (*location)++;
1155 return;
1156 }
1157
1158 attr->type = brw_type_for_base_type(type->get_scalar_type());
1159
1160 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1161 /* Constant interpolation (flat shading) case. The SF has
1162 * handed us defined values in only the constant offset
1163 * field of the setup reg.
1164 */
1165 for (unsigned int i = 0; i < type->vector_elements; i++) {
1166 struct brw_reg interp = interp_reg(*location, i);
1167 interp = suboffset(interp, 3);
1168 interp.type = attr->type;
1169 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1170 *attr = offset(*attr, bld, 1);
1171 }
1172 } else {
1173 /* Smooth/noperspective interpolation case. */
1174 for (unsigned int i = 0; i < type->vector_elements; i++) {
1175 struct brw_reg interp = interp_reg(*location, i);
1176 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1177 /* Get the pixel/sample mask into f0 so that we know
1178 * which pixels are lit. Then, for each channel that is
1179 * unlit, replace the centroid data with non-centroid
1180 * data.
1181 */
1182 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1183
1184 fs_inst *inst;
1185 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1186 false, false);
1187 inst->predicate = BRW_PREDICATE_NORMAL;
1188 inst->predicate_inverse = true;
1189 if (devinfo->has_pln)
1190 inst->no_dd_clear = true;
1191
1192 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1193 mod_centroid && !key->persample_shading,
1194 mod_sample || key->persample_shading);
1195 inst->predicate = BRW_PREDICATE_NORMAL;
1196 inst->predicate_inverse = false;
1197 if (devinfo->has_pln)
1198 inst->no_dd_check = true;
1199
1200 } else {
1201 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1202 mod_centroid && !key->persample_shading,
1203 mod_sample || key->persample_shading);
1204 }
1205 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1206 bld.MUL(*attr, *attr, this->pixel_w);
1207 }
1208 *attr = offset(*attr, bld, 1);
1209 }
1210 }
1211 (*location)++;
1212 }
1213 }
1214
1215 fs_reg *
1216 fs_visitor::emit_frontfacing_interpolation()
1217 {
1218 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1219
1220 if (devinfo->gen >= 6) {
1221 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1222 * a boolean result from this (~0/true or 0/false).
1223 *
1224 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1225 * this task in only one instruction:
1226 * - a negation source modifier will flip the bit; and
1227 * - a W -> D type conversion will sign extend the bit into the high
1228 * word of the destination.
1229 *
1230 * An ASR 15 fills the low word of the destination.
1231 */
1232 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1233 g0.negate = true;
1234
1235 bld.ASR(*reg, g0, brw_imm_d(15));
1236 } else {
1237 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1238 * a boolean result from this (1/true or 0/false).
1239 *
1240 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1241 * the negation source modifier to flip it. Unfortunately the SHR
1242 * instruction only operates on UD (or D with an abs source modifier)
1243 * sources without negation.
1244 *
1245 * Instead, use ASR (which will give ~0/true or 0/false).
1246 */
1247 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1248 g1_6.negate = true;
1249
1250 bld.ASR(*reg, g1_6, brw_imm_d(31));
1251 }
1252
1253 return reg;
1254 }
1255
1256 void
1257 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1258 {
1259 assert(stage == MESA_SHADER_FRAGMENT);
1260 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1261 assert(dst.type == BRW_REGISTER_TYPE_F);
1262
1263 if (key->compute_pos_offset) {
1264 /* Convert int_sample_pos to floating point */
1265 bld.MOV(dst, int_sample_pos);
1266 /* Scale to the range [0, 1] */
1267 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1268 }
1269 else {
1270 /* From ARB_sample_shading specification:
1271 * "When rendering to a non-multisample buffer, or if multisample
1272 * rasterization is disabled, gl_SamplePosition will always be
1273 * (0.5, 0.5).
1274 */
1275 bld.MOV(dst, brw_imm_f(0.5f));
1276 }
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplepos_setup()
1281 {
1282 assert(devinfo->gen >= 6);
1283
1284 const fs_builder abld = bld.annotate("compute sample position");
1285 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1286 fs_reg pos = *reg;
1287 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1288 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1289
1290 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1291 * mode will be enabled.
1292 *
1293 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1294 * R31.1:0 Position Offset X/Y for Slot[3:0]
1295 * R31.3:2 Position Offset X/Y for Slot[7:4]
1296 * .....
1297 *
1298 * The X, Y sample positions come in as bytes in thread payload. So, read
1299 * the positions using vstride=16, width=8, hstride=2.
1300 */
1301 struct brw_reg sample_pos_reg =
1302 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1303 BRW_REGISTER_TYPE_B), 16, 8, 2);
1304
1305 if (dispatch_width == 8) {
1306 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1307 } else {
1308 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1309 abld.half(1).MOV(half(int_sample_x, 1),
1310 fs_reg(suboffset(sample_pos_reg, 16)));
1311 }
1312 /* Compute gl_SamplePosition.x */
1313 compute_sample_position(pos, int_sample_x);
1314 pos = offset(pos, abld, 1);
1315 if (dispatch_width == 8) {
1316 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1317 } else {
1318 abld.half(0).MOV(half(int_sample_y, 0),
1319 fs_reg(suboffset(sample_pos_reg, 1)));
1320 abld.half(1).MOV(half(int_sample_y, 1),
1321 fs_reg(suboffset(sample_pos_reg, 17)));
1322 }
1323 /* Compute gl_SamplePosition.y */
1324 compute_sample_position(pos, int_sample_y);
1325 return reg;
1326 }
1327
1328 fs_reg *
1329 fs_visitor::emit_sampleid_setup()
1330 {
1331 assert(stage == MESA_SHADER_FRAGMENT);
1332 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1333 assert(devinfo->gen >= 6);
1334
1335 const fs_builder abld = bld.annotate("compute sample id");
1336 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1337
1338 if (key->compute_sample_id) {
1339 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1340 t1.set_smear(0);
1341 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1342
1343 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1344 * 8x multisampling, subspan 0 will represent sample N (where N
1345 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1346 * 7. We can find the value of N by looking at R0.0 bits 7:6
1347 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1348 * (since samples are always delivered in pairs). That is, we
1349 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1350 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1351 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1352 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1353 * populating a temporary variable with the sequence (0, 1, 2, 3),
1354 * and then reading from it using vstride=1, width=4, hstride=0.
1355 * These computations hold good for 4x multisampling as well.
1356 *
1357 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1358 * the first four slots are sample 0 of subspan 0; the next four
1359 * are sample 1 of subspan 0; the third group is sample 0 of
1360 * subspan 1, and finally sample 1 of subspan 1.
1361 */
1362
1363 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1364 * accomodate 16x MSAA.
1365 */
1366 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1367
1368 abld.exec_all().group(1, 0)
1369 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1370 brw_imm_ud(sspi_mask));
1371 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1372
1373 /* This works for both SIMD8 and SIMD16 */
1374 abld.exec_all().group(4, 0)
1375 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1376
1377 /* This special instruction takes care of setting vstride=1,
1378 * width=4, hstride=0 of t2 during an ADD instruction.
1379 */
1380 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1381 } else {
1382 /* As per GL_ARB_sample_shading specification:
1383 * "When rendering to a non-multisample buffer, or if multisample
1384 * rasterization is disabled, gl_SampleID will always be zero."
1385 */
1386 abld.MOV(*reg, brw_imm_d(0));
1387 }
1388
1389 return reg;
1390 }
1391
1392 fs_reg
1393 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1394 {
1395 if (!src.abs && !src.negate)
1396 return src;
1397
1398 fs_reg temp = bld.vgrf(src.type);
1399 bld.MOV(temp, src);
1400
1401 return temp;
1402 }
1403
1404 void
1405 fs_visitor::emit_discard_jump()
1406 {
1407 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1408
1409 /* For performance, after a discard, jump to the end of the
1410 * shader if all relevant channels have been discarded.
1411 */
1412 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1413 discard_jump->flag_subreg = 1;
1414
1415 discard_jump->predicate = (dispatch_width == 8)
1416 ? BRW_PREDICATE_ALIGN1_ANY8H
1417 : BRW_PREDICATE_ALIGN1_ANY16H;
1418 discard_jump->predicate_inverse = true;
1419 }
1420
1421 void
1422 fs_visitor::emit_gs_thread_end()
1423 {
1424 assert(stage == MESA_SHADER_GEOMETRY);
1425
1426 struct brw_gs_prog_data *gs_prog_data =
1427 (struct brw_gs_prog_data *) prog_data;
1428
1429 if (gs_compile->control_data_header_size_bits > 0) {
1430 emit_gs_control_data_bits(this->final_gs_vertex_count);
1431 }
1432
1433 const fs_builder abld = bld.annotate("thread end");
1434 fs_inst *inst;
1435
1436 if (gs_prog_data->static_vertex_count != -1) {
1437 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1438 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1439 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1440 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1441 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1442 prev->eot = true;
1443
1444 /* Delete now dead instructions. */
1445 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1446 if (dead == prev)
1447 break;
1448 dead->remove();
1449 }
1450 return;
1451 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1452 break;
1453 }
1454 }
1455 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1456 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1457 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1458 inst->mlen = 1;
1459 } else {
1460 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1461 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1462 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1463 sources[1] = this->final_gs_vertex_count;
1464 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1465 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1466 inst->mlen = 2;
1467 }
1468 inst->eot = true;
1469 inst->offset = 0;
1470 }
1471
1472 void
1473 fs_visitor::assign_curb_setup()
1474 {
1475 if (dispatch_width == 8) {
1476 prog_data->dispatch_grf_start_reg = payload.num_regs;
1477 } else {
1478 if (stage == MESA_SHADER_FRAGMENT) {
1479 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1480 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1481 } else if (stage == MESA_SHADER_COMPUTE) {
1482 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1483 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1484 } else {
1485 unreachable("Unsupported shader type!");
1486 }
1487 }
1488
1489 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1490
1491 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1492 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1493 for (unsigned int i = 0; i < inst->sources; i++) {
1494 if (inst->src[i].file == UNIFORM) {
1495 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1496 int constant_nr;
1497 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1498 constant_nr = push_constant_loc[uniform_nr];
1499 } else {
1500 /* Section 5.11 of the OpenGL 4.1 spec says:
1501 * "Out-of-bounds reads return undefined values, which include
1502 * values from other variables of the active program or zero."
1503 * Just return the first push constant.
1504 */
1505 constant_nr = 0;
1506 }
1507
1508 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1509 constant_nr / 8,
1510 constant_nr % 8);
1511 brw_reg.abs = inst->src[i].abs;
1512 brw_reg.negate = inst->src[i].negate;
1513
1514 assert(inst->src[i].stride == 0);
1515 inst->src[i] = byte_offset(
1516 retype(brw_reg, inst->src[i].type),
1517 inst->src[i].subreg_offset);
1518 }
1519 }
1520 }
1521
1522 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1523 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1524 }
1525
1526 void
1527 fs_visitor::calculate_urb_setup()
1528 {
1529 assert(stage == MESA_SHADER_FRAGMENT);
1530 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1531 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1532
1533 memset(prog_data->urb_setup, -1,
1534 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1535
1536 int urb_next = 0;
1537 /* Figure out where each of the incoming setup attributes lands. */
1538 if (devinfo->gen >= 6) {
1539 if (_mesa_bitcount_64(nir->info.inputs_read &
1540 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1541 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1542 * first 16 varying inputs, so we can put them wherever we want.
1543 * Just put them in order.
1544 *
1545 * This is useful because it means that (a) inputs not used by the
1546 * fragment shader won't take up valuable register space, and (b) we
1547 * won't have to recompile the fragment shader if it gets paired with
1548 * a different vertex (or geometry) shader.
1549 */
1550 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1551 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1552 BITFIELD64_BIT(i)) {
1553 prog_data->urb_setup[i] = urb_next++;
1554 }
1555 }
1556 } else {
1557 bool include_vue_header =
1558 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1559
1560 /* We have enough input varyings that the SF/SBE pipeline stage can't
1561 * arbitrarily rearrange them to suit our whim; we have to put them
1562 * in an order that matches the output of the previous pipeline stage
1563 * (geometry or vertex shader).
1564 */
1565 struct brw_vue_map prev_stage_vue_map;
1566 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1567 key->input_slots_valid,
1568 nir->info.separate_shader);
1569 int first_slot =
1570 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1571
1572 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1573 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1574 slot++) {
1575 int varying = prev_stage_vue_map.slot_to_varying[slot];
1576 if (varying != BRW_VARYING_SLOT_PAD &&
1577 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1578 BITFIELD64_BIT(varying))) {
1579 prog_data->urb_setup[varying] = slot - first_slot;
1580 }
1581 }
1582 urb_next = prev_stage_vue_map.num_slots - first_slot;
1583 }
1584 } else {
1585 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1586 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1587 /* Point size is packed into the header, not as a general attribute */
1588 if (i == VARYING_SLOT_PSIZ)
1589 continue;
1590
1591 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1592 /* The back color slot is skipped when the front color is
1593 * also written to. In addition, some slots can be
1594 * written in the vertex shader and not read in the
1595 * fragment shader. So the register number must always be
1596 * incremented, mapped or not.
1597 */
1598 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1599 prog_data->urb_setup[i] = urb_next;
1600 urb_next++;
1601 }
1602 }
1603
1604 /*
1605 * It's a FS only attribute, and we did interpolation for this attribute
1606 * in SF thread. So, count it here, too.
1607 *
1608 * See compile_sf_prog() for more info.
1609 */
1610 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1611 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1612 }
1613
1614 prog_data->num_varying_inputs = urb_next;
1615 }
1616
1617 void
1618 fs_visitor::assign_urb_setup()
1619 {
1620 assert(stage == MESA_SHADER_FRAGMENT);
1621 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1622
1623 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1624
1625 /* Offset all the urb_setup[] index by the actual position of the
1626 * setup regs, now that the location of the constants has been chosen.
1627 */
1628 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1629 if (inst->opcode == FS_OPCODE_LINTERP) {
1630 assert(inst->src[1].file == FIXED_GRF);
1631 inst->src[1].nr += urb_start;
1632 }
1633
1634 if (inst->opcode == FS_OPCODE_CINTERP) {
1635 assert(inst->src[0].file == FIXED_GRF);
1636 inst->src[0].nr += urb_start;
1637 }
1638 }
1639
1640 /* Each attribute is 4 setup channels, each of which is half a reg. */
1641 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1642 }
1643
1644 void
1645 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1646 {
1647 for (int i = 0; i < inst->sources; i++) {
1648 if (inst->src[i].file == ATTR) {
1649 int grf = payload.num_regs +
1650 prog_data->curb_read_length +
1651 inst->src[i].nr +
1652 inst->src[i].reg_offset;
1653
1654 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1655 struct brw_reg reg =
1656 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1657 inst->src[i].subreg_offset),
1658 inst->exec_size * inst->src[i].stride,
1659 width, inst->src[i].stride);
1660 reg.abs = inst->src[i].abs;
1661 reg.negate = inst->src[i].negate;
1662
1663 inst->src[i] = reg;
1664 }
1665 }
1666 }
1667
1668 void
1669 fs_visitor::assign_vs_urb_setup()
1670 {
1671 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1672
1673 assert(stage == MESA_SHADER_VERTEX);
1674 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1675 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid ||
1676 vs_prog_data->uses_basevertex || vs_prog_data->uses_baseinstance)
1677 count++;
1678 if (vs_prog_data->uses_drawid)
1679 count++;
1680
1681 /* Each attribute is 4 regs. */
1682 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1683
1684 assert(vs_prog_data->base.urb_read_length <= 15);
1685
1686 /* Rewrite all ATTR file references to the hw grf that they land in. */
1687 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1688 convert_attr_sources_to_hw_regs(inst);
1689 }
1690 }
1691
1692 void
1693 fs_visitor::assign_tes_urb_setup()
1694 {
1695 assert(stage == MESA_SHADER_TESS_EVAL);
1696
1697 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1698
1699 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1700
1701 /* Rewrite all ATTR file references to HW_REGs. */
1702 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1703 convert_attr_sources_to_hw_regs(inst);
1704 }
1705 }
1706
1707 void
1708 fs_visitor::assign_gs_urb_setup()
1709 {
1710 assert(stage == MESA_SHADER_GEOMETRY);
1711
1712 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1713
1714 first_non_payload_grf +=
1715 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1716
1717 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1718 /* Rewrite all ATTR file references to GRFs. */
1719 convert_attr_sources_to_hw_regs(inst);
1720 }
1721 }
1722
1723
1724 /**
1725 * Split large virtual GRFs into separate components if we can.
1726 *
1727 * This is mostly duplicated with what brw_fs_vector_splitting does,
1728 * but that's really conservative because it's afraid of doing
1729 * splitting that doesn't result in real progress after the rest of
1730 * the optimization phases, which would cause infinite looping in
1731 * optimization. We can do it once here, safely. This also has the
1732 * opportunity to split interpolated values, or maybe even uniforms,
1733 * which we don't have at the IR level.
1734 *
1735 * We want to split, because virtual GRFs are what we register
1736 * allocate and spill (due to contiguousness requirements for some
1737 * instructions), and they're what we naturally generate in the
1738 * codegen process, but most virtual GRFs don't actually need to be
1739 * contiguous sets of GRFs. If we split, we'll end up with reduced
1740 * live intervals and better dead code elimination and coalescing.
1741 */
1742 void
1743 fs_visitor::split_virtual_grfs()
1744 {
1745 int num_vars = this->alloc.count;
1746
1747 /* Count the total number of registers */
1748 int reg_count = 0;
1749 int vgrf_to_reg[num_vars];
1750 for (int i = 0; i < num_vars; i++) {
1751 vgrf_to_reg[i] = reg_count;
1752 reg_count += alloc.sizes[i];
1753 }
1754
1755 /* An array of "split points". For each register slot, this indicates
1756 * if this slot can be separated from the previous slot. Every time an
1757 * instruction uses multiple elements of a register (as a source or
1758 * destination), we mark the used slots as inseparable. Then we go
1759 * through and split the registers into the smallest pieces we can.
1760 */
1761 bool split_points[reg_count];
1762 memset(split_points, 0, sizeof(split_points));
1763
1764 /* Mark all used registers as fully splittable */
1765 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1766 if (inst->dst.file == VGRF) {
1767 int reg = vgrf_to_reg[inst->dst.nr];
1768 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1769 split_points[reg + j] = true;
1770 }
1771
1772 for (int i = 0; i < inst->sources; i++) {
1773 if (inst->src[i].file == VGRF) {
1774 int reg = vgrf_to_reg[inst->src[i].nr];
1775 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1776 split_points[reg + j] = true;
1777 }
1778 }
1779 }
1780
1781 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1782 if (inst->dst.file == VGRF) {
1783 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1784 for (int j = 1; j < inst->regs_written; j++)
1785 split_points[reg + j] = false;
1786 }
1787 for (int i = 0; i < inst->sources; i++) {
1788 if (inst->src[i].file == VGRF) {
1789 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1790 for (int j = 1; j < inst->regs_read(i); j++)
1791 split_points[reg + j] = false;
1792 }
1793 }
1794 }
1795
1796 int new_virtual_grf[reg_count];
1797 int new_reg_offset[reg_count];
1798
1799 int reg = 0;
1800 for (int i = 0; i < num_vars; i++) {
1801 /* The first one should always be 0 as a quick sanity check. */
1802 assert(split_points[reg] == false);
1803
1804 /* j = 0 case */
1805 new_reg_offset[reg] = 0;
1806 reg++;
1807 int offset = 1;
1808
1809 /* j > 0 case */
1810 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1811 /* If this is a split point, reset the offset to 0 and allocate a
1812 * new virtual GRF for the previous offset many registers
1813 */
1814 if (split_points[reg]) {
1815 assert(offset <= MAX_VGRF_SIZE);
1816 int grf = alloc.allocate(offset);
1817 for (int k = reg - offset; k < reg; k++)
1818 new_virtual_grf[k] = grf;
1819 offset = 0;
1820 }
1821 new_reg_offset[reg] = offset;
1822 offset++;
1823 reg++;
1824 }
1825
1826 /* The last one gets the original register number */
1827 assert(offset <= MAX_VGRF_SIZE);
1828 alloc.sizes[i] = offset;
1829 for (int k = reg - offset; k < reg; k++)
1830 new_virtual_grf[k] = i;
1831 }
1832 assert(reg == reg_count);
1833
1834 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1835 if (inst->dst.file == VGRF) {
1836 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1837 inst->dst.nr = new_virtual_grf[reg];
1838 inst->dst.reg_offset = new_reg_offset[reg];
1839 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1840 }
1841 for (int i = 0; i < inst->sources; i++) {
1842 if (inst->src[i].file == VGRF) {
1843 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1844 inst->src[i].nr = new_virtual_grf[reg];
1845 inst->src[i].reg_offset = new_reg_offset[reg];
1846 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1847 }
1848 }
1849 }
1850 invalidate_live_intervals();
1851 }
1852
1853 /**
1854 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1855 *
1856 * During code generation, we create tons of temporary variables, many of
1857 * which get immediately killed and are never used again. Yet, in later
1858 * optimization and analysis passes, such as compute_live_intervals, we need
1859 * to loop over all the virtual GRFs. Compacting them can save a lot of
1860 * overhead.
1861 */
1862 bool
1863 fs_visitor::compact_virtual_grfs()
1864 {
1865 bool progress = false;
1866 int remap_table[this->alloc.count];
1867 memset(remap_table, -1, sizeof(remap_table));
1868
1869 /* Mark which virtual GRFs are used. */
1870 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1871 if (inst->dst.file == VGRF)
1872 remap_table[inst->dst.nr] = 0;
1873
1874 for (int i = 0; i < inst->sources; i++) {
1875 if (inst->src[i].file == VGRF)
1876 remap_table[inst->src[i].nr] = 0;
1877 }
1878 }
1879
1880 /* Compact the GRF arrays. */
1881 int new_index = 0;
1882 for (unsigned i = 0; i < this->alloc.count; i++) {
1883 if (remap_table[i] == -1) {
1884 /* We just found an unused register. This means that we are
1885 * actually going to compact something.
1886 */
1887 progress = true;
1888 } else {
1889 remap_table[i] = new_index;
1890 alloc.sizes[new_index] = alloc.sizes[i];
1891 invalidate_live_intervals();
1892 ++new_index;
1893 }
1894 }
1895
1896 this->alloc.count = new_index;
1897
1898 /* Patch all the instructions to use the newly renumbered registers */
1899 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1900 if (inst->dst.file == VGRF)
1901 inst->dst.nr = remap_table[inst->dst.nr];
1902
1903 for (int i = 0; i < inst->sources; i++) {
1904 if (inst->src[i].file == VGRF)
1905 inst->src[i].nr = remap_table[inst->src[i].nr];
1906 }
1907 }
1908
1909 /* Patch all the references to delta_xy, since they're used in register
1910 * allocation. If they're unused, switch them to BAD_FILE so we don't
1911 * think some random VGRF is delta_xy.
1912 */
1913 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1914 if (delta_xy[i].file == VGRF) {
1915 if (remap_table[delta_xy[i].nr] != -1) {
1916 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1917 } else {
1918 delta_xy[i].file = BAD_FILE;
1919 }
1920 }
1921 }
1922
1923 return progress;
1924 }
1925
1926 /**
1927 * Assign UNIFORM file registers to either push constants or pull constants.
1928 *
1929 * We allow a fragment shader to have more than the specified minimum
1930 * maximum number of fragment shader uniform components (64). If
1931 * there are too many of these, they'd fill up all of register space.
1932 * So, this will push some of them out to the pull constant buffer and
1933 * update the program to load them.
1934 */
1935 void
1936 fs_visitor::assign_constant_locations()
1937 {
1938 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1939 if (dispatch_width != 8)
1940 return;
1941
1942 bool is_live[uniforms];
1943 memset(is_live, 0, sizeof(is_live));
1944
1945 /* For each uniform slot, a value of true indicates that the given slot and
1946 * the next slot must remain contiguous. This is used to keep us from
1947 * splitting arrays apart.
1948 */
1949 bool contiguous[uniforms];
1950 memset(contiguous, 0, sizeof(contiguous));
1951
1952 /* First, we walk through the instructions and do two things:
1953 *
1954 * 1) Figure out which uniforms are live.
1955 *
1956 * 2) Mark any indirectly used ranges of registers as contiguous.
1957 *
1958 * Note that we don't move constant-indexed accesses to arrays. No
1959 * testing has been done of the performance impact of this choice.
1960 */
1961 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1962 for (int i = 0 ; i < inst->sources; i++) {
1963 if (inst->src[i].file != UNIFORM)
1964 continue;
1965
1966 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1967
1968 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1969 assert(inst->src[2].ud % 4 == 0);
1970 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1971 assert(last < uniforms);
1972
1973 for (unsigned j = constant_nr; j < last; j++) {
1974 is_live[j] = true;
1975 contiguous[j] = true;
1976 }
1977 is_live[last] = true;
1978 } else {
1979 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1980 is_live[constant_nr] = true;
1981 }
1982 }
1983 }
1984
1985 /* Only allow 16 registers (128 uniform components) as push constants.
1986 *
1987 * Just demote the end of the list. We could probably do better
1988 * here, demoting things that are rarely used in the program first.
1989 *
1990 * If changing this value, note the limitation about total_regs in
1991 * brw_curbe.c.
1992 */
1993 const unsigned int max_push_components = 16 * 8;
1994
1995 /* For vulkan we don't limit the max_chunk_size. We set it to 32 float =
1996 * 128 bytes, which is the maximum vulkan push constant size.
1997 */
1998 const unsigned int max_chunk_size = 32;
1999
2000 unsigned int num_push_constants = 0;
2001 unsigned int num_pull_constants = 0;
2002
2003 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2004 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2005
2006 int chunk_start = -1;
2007 for (unsigned u = 0; u < uniforms; u++) {
2008 push_constant_loc[u] = -1;
2009 pull_constant_loc[u] = -1;
2010
2011 if (!is_live[u])
2012 continue;
2013
2014 /* This is the first live uniform in the chunk */
2015 if (chunk_start < 0)
2016 chunk_start = u;
2017
2018 /* If this element does not need to be contiguous with the next, we
2019 * split at this point and everthing between chunk_start and u forms a
2020 * single chunk.
2021 */
2022 if (!contiguous[u]) {
2023 unsigned chunk_size = u - chunk_start + 1;
2024
2025 if (num_push_constants + chunk_size <= max_push_components &&
2026 chunk_size <= max_chunk_size) {
2027 for (unsigned j = chunk_start; j <= u; j++)
2028 push_constant_loc[j] = num_push_constants++;
2029 } else {
2030 for (unsigned j = chunk_start; j <= u; j++)
2031 pull_constant_loc[j] = num_pull_constants++;
2032 }
2033
2034 chunk_start = -1;
2035 }
2036 }
2037
2038 stage_prog_data->nr_params = num_push_constants;
2039 stage_prog_data->nr_pull_params = num_pull_constants;
2040
2041 /* Up until now, the param[] array has been indexed by reg + reg_offset
2042 * of UNIFORM registers. Move pull constants into pull_param[] and
2043 * condense param[] to only contain the uniforms we chose to push.
2044 *
2045 * NOTE: Because we are condensing the params[] array, we know that
2046 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2047 * having to make a copy.
2048 */
2049 for (unsigned int i = 0; i < uniforms; i++) {
2050 const gl_constant_value *value = stage_prog_data->param[i];
2051
2052 if (pull_constant_loc[i] != -1) {
2053 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2054 } else if (push_constant_loc[i] != -1) {
2055 stage_prog_data->param[push_constant_loc[i]] = value;
2056 }
2057 }
2058 }
2059
2060 /**
2061 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2062 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2063 */
2064 void
2065 fs_visitor::lower_constant_loads()
2066 {
2067 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2068
2069 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2070 /* Set up the annotation tracking for new generated instructions. */
2071 const fs_builder ibld(this, block, inst);
2072
2073 for (int i = 0; i < inst->sources; i++) {
2074 if (inst->src[i].file != UNIFORM)
2075 continue;
2076
2077 /* We'll handle this case later */
2078 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2079 continue;
2080
2081 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2082 if (location >= uniforms)
2083 continue; /* Out of bounds access */
2084
2085 int pull_index = pull_constant_loc[location];
2086
2087 if (pull_index == -1)
2088 continue;
2089
2090 assert(inst->src[i].stride == 0);
2091
2092 fs_reg dst = vgrf(glsl_type::float_type);
2093 const fs_builder ubld = ibld.exec_all().group(8, 0);
2094 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2095 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2096 dst, brw_imm_ud(index), offset);
2097
2098 /* Rewrite the instruction to use the temporary VGRF. */
2099 inst->src[i].file = VGRF;
2100 inst->src[i].nr = dst.nr;
2101 inst->src[i].reg_offset = 0;
2102 inst->src[i].set_smear(pull_index & 3);
2103
2104 brw_mark_surface_used(prog_data, index);
2105 }
2106
2107 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2108 inst->src[0].file == UNIFORM) {
2109
2110 unsigned location = inst->src[0].nr + inst->src[0].reg_offset;
2111 if (location >= uniforms)
2112 continue; /* Out of bounds access */
2113
2114 int pull_index = pull_constant_loc[location];
2115
2116 if (pull_index == -1)
2117 continue;
2118
2119 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2120 brw_imm_ud(index),
2121 inst->src[1],
2122 pull_index * 4);
2123 inst->remove(block);
2124
2125 brw_mark_surface_used(prog_data, index);
2126 }
2127 }
2128 invalidate_live_intervals();
2129 }
2130
2131 bool
2132 fs_visitor::opt_algebraic()
2133 {
2134 bool progress = false;
2135
2136 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2137 switch (inst->opcode) {
2138 case BRW_OPCODE_MOV:
2139 if (inst->src[0].file != IMM)
2140 break;
2141
2142 if (inst->saturate) {
2143 if (inst->dst.type != inst->src[0].type)
2144 assert(!"unimplemented: saturate mixed types");
2145
2146 if (brw_saturate_immediate(inst->dst.type,
2147 &inst->src[0].as_brw_reg())) {
2148 inst->saturate = false;
2149 progress = true;
2150 }
2151 }
2152 break;
2153
2154 case BRW_OPCODE_MUL:
2155 if (inst->src[1].file != IMM)
2156 continue;
2157
2158 /* a * 1.0 = a */
2159 if (inst->src[1].is_one()) {
2160 inst->opcode = BRW_OPCODE_MOV;
2161 inst->src[1] = reg_undef;
2162 progress = true;
2163 break;
2164 }
2165
2166 /* a * -1.0 = -a */
2167 if (inst->src[1].is_negative_one()) {
2168 inst->opcode = BRW_OPCODE_MOV;
2169 inst->src[0].negate = !inst->src[0].negate;
2170 inst->src[1] = reg_undef;
2171 progress = true;
2172 break;
2173 }
2174
2175 /* a * 0.0 = 0.0 */
2176 if (inst->src[1].is_zero()) {
2177 inst->opcode = BRW_OPCODE_MOV;
2178 inst->src[0] = inst->src[1];
2179 inst->src[1] = reg_undef;
2180 progress = true;
2181 break;
2182 }
2183
2184 if (inst->src[0].file == IMM) {
2185 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2186 inst->opcode = BRW_OPCODE_MOV;
2187 inst->src[0].f *= inst->src[1].f;
2188 inst->src[1] = reg_undef;
2189 progress = true;
2190 break;
2191 }
2192 break;
2193 case BRW_OPCODE_ADD:
2194 if (inst->src[1].file != IMM)
2195 continue;
2196
2197 /* a + 0.0 = a */
2198 if (inst->src[1].is_zero()) {
2199 inst->opcode = BRW_OPCODE_MOV;
2200 inst->src[1] = reg_undef;
2201 progress = true;
2202 break;
2203 }
2204
2205 if (inst->src[0].file == IMM) {
2206 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2207 inst->opcode = BRW_OPCODE_MOV;
2208 inst->src[0].f += inst->src[1].f;
2209 inst->src[1] = reg_undef;
2210 progress = true;
2211 break;
2212 }
2213 break;
2214 case BRW_OPCODE_OR:
2215 if (inst->src[0].equals(inst->src[1])) {
2216 inst->opcode = BRW_OPCODE_MOV;
2217 inst->src[1] = reg_undef;
2218 progress = true;
2219 break;
2220 }
2221 break;
2222 case BRW_OPCODE_LRP:
2223 if (inst->src[1].equals(inst->src[2])) {
2224 inst->opcode = BRW_OPCODE_MOV;
2225 inst->src[0] = inst->src[1];
2226 inst->src[1] = reg_undef;
2227 inst->src[2] = reg_undef;
2228 progress = true;
2229 break;
2230 }
2231 break;
2232 case BRW_OPCODE_CMP:
2233 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2234 inst->src[0].abs &&
2235 inst->src[0].negate &&
2236 inst->src[1].is_zero()) {
2237 inst->src[0].abs = false;
2238 inst->src[0].negate = false;
2239 inst->conditional_mod = BRW_CONDITIONAL_Z;
2240 progress = true;
2241 break;
2242 }
2243 break;
2244 case BRW_OPCODE_SEL:
2245 if (inst->src[0].equals(inst->src[1])) {
2246 inst->opcode = BRW_OPCODE_MOV;
2247 inst->src[1] = reg_undef;
2248 inst->predicate = BRW_PREDICATE_NONE;
2249 inst->predicate_inverse = false;
2250 progress = true;
2251 } else if (inst->saturate && inst->src[1].file == IMM) {
2252 switch (inst->conditional_mod) {
2253 case BRW_CONDITIONAL_LE:
2254 case BRW_CONDITIONAL_L:
2255 switch (inst->src[1].type) {
2256 case BRW_REGISTER_TYPE_F:
2257 if (inst->src[1].f >= 1.0f) {
2258 inst->opcode = BRW_OPCODE_MOV;
2259 inst->src[1] = reg_undef;
2260 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2261 progress = true;
2262 }
2263 break;
2264 default:
2265 break;
2266 }
2267 break;
2268 case BRW_CONDITIONAL_GE:
2269 case BRW_CONDITIONAL_G:
2270 switch (inst->src[1].type) {
2271 case BRW_REGISTER_TYPE_F:
2272 if (inst->src[1].f <= 0.0f) {
2273 inst->opcode = BRW_OPCODE_MOV;
2274 inst->src[1] = reg_undef;
2275 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2276 progress = true;
2277 }
2278 break;
2279 default:
2280 break;
2281 }
2282 default:
2283 break;
2284 }
2285 }
2286 break;
2287 case BRW_OPCODE_MAD:
2288 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2289 inst->opcode = BRW_OPCODE_MOV;
2290 inst->src[1] = reg_undef;
2291 inst->src[2] = reg_undef;
2292 progress = true;
2293 } else if (inst->src[0].is_zero()) {
2294 inst->opcode = BRW_OPCODE_MUL;
2295 inst->src[0] = inst->src[2];
2296 inst->src[2] = reg_undef;
2297 progress = true;
2298 } else if (inst->src[1].is_one()) {
2299 inst->opcode = BRW_OPCODE_ADD;
2300 inst->src[1] = inst->src[2];
2301 inst->src[2] = reg_undef;
2302 progress = true;
2303 } else if (inst->src[2].is_one()) {
2304 inst->opcode = BRW_OPCODE_ADD;
2305 inst->src[2] = reg_undef;
2306 progress = true;
2307 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2308 inst->opcode = BRW_OPCODE_ADD;
2309 inst->src[1].f *= inst->src[2].f;
2310 inst->src[2] = reg_undef;
2311 progress = true;
2312 }
2313 break;
2314 case SHADER_OPCODE_RCP: {
2315 fs_inst *prev = (fs_inst *)inst->prev;
2316 if (prev->opcode == SHADER_OPCODE_SQRT) {
2317 if (inst->src[0].equals(prev->dst)) {
2318 inst->opcode = SHADER_OPCODE_RSQ;
2319 inst->src[0] = prev->src[0];
2320 progress = true;
2321 }
2322 }
2323 break;
2324 }
2325 case SHADER_OPCODE_BROADCAST:
2326 if (is_uniform(inst->src[0])) {
2327 inst->opcode = BRW_OPCODE_MOV;
2328 inst->sources = 1;
2329 inst->force_writemask_all = true;
2330 progress = true;
2331 } else if (inst->src[1].file == IMM) {
2332 inst->opcode = BRW_OPCODE_MOV;
2333 inst->src[0] = component(inst->src[0],
2334 inst->src[1].ud);
2335 inst->sources = 1;
2336 inst->force_writemask_all = true;
2337 progress = true;
2338 }
2339 break;
2340
2341 default:
2342 break;
2343 }
2344
2345 /* Swap if src[0] is immediate. */
2346 if (progress && inst->is_commutative()) {
2347 if (inst->src[0].file == IMM) {
2348 fs_reg tmp = inst->src[1];
2349 inst->src[1] = inst->src[0];
2350 inst->src[0] = tmp;
2351 }
2352 }
2353 }
2354 return progress;
2355 }
2356
2357 /**
2358 * Optimize sample messages that have constant zero values for the trailing
2359 * texture coordinates. We can just reduce the message length for these
2360 * instructions instead of reserving a register for it. Trailing parameters
2361 * that aren't sent default to zero anyway. This will cause the dead code
2362 * eliminator to remove the MOV instruction that would otherwise be emitted to
2363 * set up the zero value.
2364 */
2365 bool
2366 fs_visitor::opt_zero_samples()
2367 {
2368 /* Gen4 infers the texturing opcode based on the message length so we can't
2369 * change it.
2370 */
2371 if (devinfo->gen < 5)
2372 return false;
2373
2374 bool progress = false;
2375
2376 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2377 if (!inst->is_tex())
2378 continue;
2379
2380 fs_inst *load_payload = (fs_inst *) inst->prev;
2381
2382 if (load_payload->is_head_sentinel() ||
2383 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2384 continue;
2385
2386 /* We don't want to remove the message header or the first parameter.
2387 * Removing the first parameter is not allowed, see the Haswell PRM
2388 * volume 7, page 149:
2389 *
2390 * "Parameter 0 is required except for the sampleinfo message, which
2391 * has no parameter 0"
2392 */
2393 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2394 load_payload->src[(inst->mlen - inst->header_size) /
2395 (inst->exec_size / 8) +
2396 inst->header_size - 1].is_zero()) {
2397 inst->mlen -= inst->exec_size / 8;
2398 progress = true;
2399 }
2400 }
2401
2402 if (progress)
2403 invalidate_live_intervals();
2404
2405 return progress;
2406 }
2407
2408 /**
2409 * Optimize sample messages which are followed by the final RT write.
2410 *
2411 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2412 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2413 * final texturing results copied to the framebuffer write payload and modify
2414 * them to write to the framebuffer directly.
2415 */
2416 bool
2417 fs_visitor::opt_sampler_eot()
2418 {
2419 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2420
2421 if (stage != MESA_SHADER_FRAGMENT)
2422 return false;
2423
2424 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2425 return false;
2426
2427 /* FINISHME: It should be possible to implement this optimization when there
2428 * are multiple drawbuffers.
2429 */
2430 if (key->nr_color_regions != 1)
2431 return false;
2432
2433 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2434 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2435 fs_inst *fb_write = (fs_inst *)block->end();
2436 assert(fb_write->eot);
2437 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2438
2439 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2440
2441 /* There wasn't one; nothing to do. */
2442 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2443 return false;
2444
2445 /* 3D Sampler » Messages » Message Format
2446 *
2447 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2448 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2449 */
2450 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2451 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2452 tex_inst->opcode == SHADER_OPCODE_LOD ||
2453 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2454 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2455 return false;
2456
2457 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2458 * It's very likely to be the previous instruction.
2459 */
2460 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2461 if (load_payload->is_head_sentinel() ||
2462 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2463 return false;
2464
2465 assert(!tex_inst->eot); /* We can't get here twice */
2466 assert((tex_inst->offset & (0xff << 24)) == 0);
2467
2468 const fs_builder ibld(this, block, tex_inst);
2469
2470 tex_inst->offset |= fb_write->target << 24;
2471 tex_inst->eot = true;
2472 tex_inst->dst = ibld.null_reg_ud();
2473 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2474
2475 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2476 * to create a new LOAD_PAYLOAD command with the same sources and a space
2477 * saved for the header. Using a new destination register not only makes sure
2478 * we have enough space, but it will make sure the dead code eliminator kills
2479 * the instruction that this will replace.
2480 */
2481 if (tex_inst->header_size != 0)
2482 return true;
2483
2484 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2485 load_payload->sources + 1);
2486 fs_reg *new_sources =
2487 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2488
2489 new_sources[0] = fs_reg();
2490 for (int i = 0; i < load_payload->sources; i++)
2491 new_sources[i+1] = load_payload->src[i];
2492
2493 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2494 * requires a lot of information about the sources to appropriately figure
2495 * out the number of registers needed to be used. Given this stage in our
2496 * optimization, we may not have the appropriate GRFs required by
2497 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2498 * manually emit the instruction.
2499 */
2500 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2501 load_payload->exec_size,
2502 send_header,
2503 new_sources,
2504 load_payload->sources + 1);
2505
2506 new_load_payload->regs_written = load_payload->regs_written + 1;
2507 new_load_payload->header_size = 1;
2508 tex_inst->mlen++;
2509 tex_inst->header_size = 1;
2510 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2511 tex_inst->src[0] = send_header;
2512
2513 return true;
2514 }
2515
2516 bool
2517 fs_visitor::opt_register_renaming()
2518 {
2519 bool progress = false;
2520 int depth = 0;
2521
2522 int remap[alloc.count];
2523 memset(remap, -1, sizeof(int) * alloc.count);
2524
2525 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2526 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2527 depth++;
2528 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2529 inst->opcode == BRW_OPCODE_WHILE) {
2530 depth--;
2531 }
2532
2533 /* Rewrite instruction sources. */
2534 for (int i = 0; i < inst->sources; i++) {
2535 if (inst->src[i].file == VGRF &&
2536 remap[inst->src[i].nr] != -1 &&
2537 remap[inst->src[i].nr] != inst->src[i].nr) {
2538 inst->src[i].nr = remap[inst->src[i].nr];
2539 progress = true;
2540 }
2541 }
2542
2543 const int dst = inst->dst.nr;
2544
2545 if (depth == 0 &&
2546 inst->dst.file == VGRF &&
2547 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2548 !inst->is_partial_write()) {
2549 if (remap[dst] == -1) {
2550 remap[dst] = dst;
2551 } else {
2552 remap[dst] = alloc.allocate(inst->exec_size / 8);
2553 inst->dst.nr = remap[dst];
2554 progress = true;
2555 }
2556 } else if (inst->dst.file == VGRF &&
2557 remap[dst] != -1 &&
2558 remap[dst] != dst) {
2559 inst->dst.nr = remap[dst];
2560 progress = true;
2561 }
2562 }
2563
2564 if (progress) {
2565 invalidate_live_intervals();
2566
2567 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2568 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2569 delta_xy[i].nr = remap[delta_xy[i].nr];
2570 }
2571 }
2572 }
2573
2574 return progress;
2575 }
2576
2577 /**
2578 * Remove redundant or useless discard jumps.
2579 *
2580 * For example, we can eliminate jumps in the following sequence:
2581 *
2582 * discard-jump (redundant with the next jump)
2583 * discard-jump (useless; jumps to the next instruction)
2584 * placeholder-halt
2585 */
2586 bool
2587 fs_visitor::opt_redundant_discard_jumps()
2588 {
2589 bool progress = false;
2590
2591 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2592
2593 fs_inst *placeholder_halt = NULL;
2594 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2595 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2596 placeholder_halt = inst;
2597 break;
2598 }
2599 }
2600
2601 if (!placeholder_halt)
2602 return false;
2603
2604 /* Delete any HALTs immediately before the placeholder halt. */
2605 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2606 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2607 prev = (fs_inst *) placeholder_halt->prev) {
2608 prev->remove(last_bblock);
2609 progress = true;
2610 }
2611
2612 if (progress)
2613 invalidate_live_intervals();
2614
2615 return progress;
2616 }
2617
2618 bool
2619 fs_visitor::compute_to_mrf()
2620 {
2621 bool progress = false;
2622 int next_ip = 0;
2623
2624 /* No MRFs on Gen >= 7. */
2625 if (devinfo->gen >= 7)
2626 return false;
2627
2628 calculate_live_intervals();
2629
2630 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2631 int ip = next_ip;
2632 next_ip++;
2633
2634 if (inst->opcode != BRW_OPCODE_MOV ||
2635 inst->is_partial_write() ||
2636 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2637 inst->dst.type != inst->src[0].type ||
2638 inst->src[0].abs || inst->src[0].negate ||
2639 !inst->src[0].is_contiguous() ||
2640 inst->src[0].subreg_offset)
2641 continue;
2642
2643 /* Work out which hardware MRF registers are written by this
2644 * instruction.
2645 */
2646 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2647 int mrf_high;
2648 if (inst->dst.nr & BRW_MRF_COMPR4) {
2649 mrf_high = mrf_low + 4;
2650 } else if (inst->exec_size == 16) {
2651 mrf_high = mrf_low + 1;
2652 } else {
2653 mrf_high = mrf_low;
2654 }
2655
2656 /* Can't compute-to-MRF this GRF if someone else was going to
2657 * read it later.
2658 */
2659 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2660 continue;
2661
2662 /* Found a move of a GRF to a MRF. Let's see if we can go
2663 * rewrite the thing that made this GRF to write into the MRF.
2664 */
2665 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2666 if (scan_inst->dst.file == VGRF &&
2667 scan_inst->dst.nr == inst->src[0].nr) {
2668 /* Found the last thing to write our reg we want to turn
2669 * into a compute-to-MRF.
2670 */
2671
2672 /* If this one instruction didn't populate all the
2673 * channels, bail. We might be able to rewrite everything
2674 * that writes that reg, but it would require smarter
2675 * tracking to delay the rewriting until complete success.
2676 */
2677 if (scan_inst->is_partial_write())
2678 break;
2679
2680 /* Things returning more than one register would need us to
2681 * understand coalescing out more than one MOV at a time.
2682 */
2683 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2684 break;
2685
2686 /* SEND instructions can't have MRF as a destination. */
2687 if (scan_inst->mlen)
2688 break;
2689
2690 if (devinfo->gen == 6) {
2691 /* gen6 math instructions must have the destination be
2692 * GRF, so no compute-to-MRF for them.
2693 */
2694 if (scan_inst->is_math()) {
2695 break;
2696 }
2697 }
2698
2699 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2700 /* Found the creator of our MRF's source value. */
2701 scan_inst->dst.file = MRF;
2702 scan_inst->dst.nr = inst->dst.nr;
2703 scan_inst->saturate |= inst->saturate;
2704 inst->remove(block);
2705 progress = true;
2706 }
2707 break;
2708 }
2709
2710 /* We don't handle control flow here. Most computation of
2711 * values that end up in MRFs are shortly before the MRF
2712 * write anyway.
2713 */
2714 if (block->start() == scan_inst)
2715 break;
2716
2717 /* You can't read from an MRF, so if someone else reads our
2718 * MRF's source GRF that we wanted to rewrite, that stops us.
2719 */
2720 bool interfered = false;
2721 for (int i = 0; i < scan_inst->sources; i++) {
2722 if (scan_inst->src[i].file == VGRF &&
2723 scan_inst->src[i].nr == inst->src[0].nr &&
2724 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2725 interfered = true;
2726 }
2727 }
2728 if (interfered)
2729 break;
2730
2731 if (scan_inst->dst.file == MRF) {
2732 /* If somebody else writes our MRF here, we can't
2733 * compute-to-MRF before that.
2734 */
2735 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2736 int scan_mrf_high;
2737
2738 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2739 scan_mrf_high = scan_mrf_low + 4;
2740 } else if (scan_inst->exec_size == 16) {
2741 scan_mrf_high = scan_mrf_low + 1;
2742 } else {
2743 scan_mrf_high = scan_mrf_low;
2744 }
2745
2746 if (mrf_low == scan_mrf_low ||
2747 mrf_low == scan_mrf_high ||
2748 mrf_high == scan_mrf_low ||
2749 mrf_high == scan_mrf_high) {
2750 break;
2751 }
2752 }
2753
2754 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2755 /* Found a SEND instruction, which means that there are
2756 * live values in MRFs from base_mrf to base_mrf +
2757 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2758 * above it.
2759 */
2760 if (mrf_low >= scan_inst->base_mrf &&
2761 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2762 break;
2763 }
2764 if (mrf_high >= scan_inst->base_mrf &&
2765 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2766 break;
2767 }
2768 }
2769 }
2770 }
2771
2772 if (progress)
2773 invalidate_live_intervals();
2774
2775 return progress;
2776 }
2777
2778 /**
2779 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2780 * flow. We could probably do better here with some form of divergence
2781 * analysis.
2782 */
2783 bool
2784 fs_visitor::eliminate_find_live_channel()
2785 {
2786 bool progress = false;
2787 unsigned depth = 0;
2788
2789 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2790 switch (inst->opcode) {
2791 case BRW_OPCODE_IF:
2792 case BRW_OPCODE_DO:
2793 depth++;
2794 break;
2795
2796 case BRW_OPCODE_ENDIF:
2797 case BRW_OPCODE_WHILE:
2798 depth--;
2799 break;
2800
2801 case FS_OPCODE_DISCARD_JUMP:
2802 /* This can potentially make control flow non-uniform until the end
2803 * of the program.
2804 */
2805 return progress;
2806
2807 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2808 if (depth == 0) {
2809 inst->opcode = BRW_OPCODE_MOV;
2810 inst->src[0] = brw_imm_ud(0u);
2811 inst->sources = 1;
2812 inst->force_writemask_all = true;
2813 progress = true;
2814 }
2815 break;
2816
2817 default:
2818 break;
2819 }
2820 }
2821
2822 return progress;
2823 }
2824
2825 /**
2826 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2827 * instructions to FS_OPCODE_REP_FB_WRITE.
2828 */
2829 void
2830 fs_visitor::emit_repclear_shader()
2831 {
2832 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2833 int base_mrf = 1;
2834 int color_mrf = base_mrf + 2;
2835 fs_inst *mov;
2836
2837 if (uniforms == 1) {
2838 mov = bld.exec_all().group(4, 0)
2839 .MOV(brw_message_reg(color_mrf),
2840 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2841 } else {
2842 struct brw_reg reg =
2843 brw_reg(BRW_GENERAL_REGISTER_FILE,
2844 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2845 BRW_VERTICAL_STRIDE_8,
2846 BRW_WIDTH_2,
2847 BRW_HORIZONTAL_STRIDE_4, BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2848
2849 mov = bld.exec_all().group(4, 0)
2850 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2851 }
2852
2853 fs_inst *write;
2854 if (key->nr_color_regions == 1) {
2855 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2856 write->saturate = key->clamp_fragment_color;
2857 write->base_mrf = color_mrf;
2858 write->target = 0;
2859 write->header_size = 0;
2860 write->mlen = 1;
2861 } else {
2862 assume(key->nr_color_regions > 0);
2863 for (int i = 0; i < key->nr_color_regions; ++i) {
2864 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2865 write->saturate = key->clamp_fragment_color;
2866 write->base_mrf = base_mrf;
2867 write->target = i;
2868 write->header_size = 2;
2869 write->mlen = 3;
2870 }
2871 }
2872 write->eot = true;
2873
2874 calculate_cfg();
2875
2876 assign_constant_locations();
2877 assign_curb_setup();
2878
2879 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2880 if (uniforms == 1) {
2881 assert(mov->src[0].file == FIXED_GRF);
2882 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2883 }
2884 }
2885
2886 /**
2887 * Walks through basic blocks, looking for repeated MRF writes and
2888 * removing the later ones.
2889 */
2890 bool
2891 fs_visitor::remove_duplicate_mrf_writes()
2892 {
2893 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2894 bool progress = false;
2895
2896 /* Need to update the MRF tracking for compressed instructions. */
2897 if (dispatch_width == 16)
2898 return false;
2899
2900 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2901
2902 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2903 if (inst->is_control_flow()) {
2904 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2905 }
2906
2907 if (inst->opcode == BRW_OPCODE_MOV &&
2908 inst->dst.file == MRF) {
2909 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2910 if (prev_inst && inst->equals(prev_inst)) {
2911 inst->remove(block);
2912 progress = true;
2913 continue;
2914 }
2915 }
2916
2917 /* Clear out the last-write records for MRFs that were overwritten. */
2918 if (inst->dst.file == MRF) {
2919 last_mrf_move[inst->dst.nr] = NULL;
2920 }
2921
2922 if (inst->mlen > 0 && inst->base_mrf != -1) {
2923 /* Found a SEND instruction, which will include two or fewer
2924 * implied MRF writes. We could do better here.
2925 */
2926 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2927 last_mrf_move[inst->base_mrf + i] = NULL;
2928 }
2929 }
2930
2931 /* Clear out any MRF move records whose sources got overwritten. */
2932 if (inst->dst.file == VGRF) {
2933 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2934 if (last_mrf_move[i] &&
2935 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2936 last_mrf_move[i] = NULL;
2937 }
2938 }
2939 }
2940
2941 if (inst->opcode == BRW_OPCODE_MOV &&
2942 inst->dst.file == MRF &&
2943 inst->src[0].file == VGRF &&
2944 !inst->is_partial_write()) {
2945 last_mrf_move[inst->dst.nr] = inst;
2946 }
2947 }
2948
2949 if (progress)
2950 invalidate_live_intervals();
2951
2952 return progress;
2953 }
2954
2955 static void
2956 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2957 {
2958 /* Clear the flag for registers that actually got read (as expected). */
2959 for (int i = 0; i < inst->sources; i++) {
2960 int grf;
2961 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2962 grf = inst->src[i].nr;
2963 } else {
2964 continue;
2965 }
2966
2967 if (grf >= first_grf &&
2968 grf < first_grf + grf_len) {
2969 deps[grf - first_grf] = false;
2970 if (inst->exec_size == 16)
2971 deps[grf - first_grf + 1] = false;
2972 }
2973 }
2974 }
2975
2976 /**
2977 * Implements this workaround for the original 965:
2978 *
2979 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2980 * check for post destination dependencies on this instruction, software
2981 * must ensure that there is no destination hazard for the case of ‘write
2982 * followed by a posted write’ shown in the following example.
2983 *
2984 * 1. mov r3 0
2985 * 2. send r3.xy <rest of send instruction>
2986 * 3. mov r2 r3
2987 *
2988 * Due to no post-destination dependency check on the ‘send’, the above
2989 * code sequence could have two instructions (1 and 2) in flight at the
2990 * same time that both consider ‘r3’ as the target of their final writes.
2991 */
2992 void
2993 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2994 fs_inst *inst)
2995 {
2996 int write_len = inst->regs_written;
2997 int first_write_grf = inst->dst.nr;
2998 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2999 assert(write_len < (int)sizeof(needs_dep) - 1);
3000
3001 memset(needs_dep, false, sizeof(needs_dep));
3002 memset(needs_dep, true, write_len);
3003
3004 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3005
3006 /* Walk backwards looking for writes to registers we're writing which
3007 * aren't read since being written. If we hit the start of the program,
3008 * we assume that there are no outstanding dependencies on entry to the
3009 * program.
3010 */
3011 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3012 /* If we hit control flow, assume that there *are* outstanding
3013 * dependencies, and force their cleanup before our instruction.
3014 */
3015 if (block->start() == scan_inst) {
3016 for (int i = 0; i < write_len; i++) {
3017 if (needs_dep[i])
3018 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3019 first_write_grf + i);
3020 }
3021 return;
3022 }
3023
3024 /* We insert our reads as late as possible on the assumption that any
3025 * instruction but a MOV that might have left us an outstanding
3026 * dependency has more latency than a MOV.
3027 */
3028 if (scan_inst->dst.file == VGRF) {
3029 for (int i = 0; i < scan_inst->regs_written; i++) {
3030 int reg = scan_inst->dst.nr + i;
3031
3032 if (reg >= first_write_grf &&
3033 reg < first_write_grf + write_len &&
3034 needs_dep[reg - first_write_grf]) {
3035 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3036 needs_dep[reg - first_write_grf] = false;
3037 if (scan_inst->exec_size == 16)
3038 needs_dep[reg - first_write_grf + 1] = false;
3039 }
3040 }
3041 }
3042
3043 /* Clear the flag for registers that actually got read (as expected). */
3044 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3045
3046 /* Continue the loop only if we haven't resolved all the dependencies */
3047 int i;
3048 for (i = 0; i < write_len; i++) {
3049 if (needs_dep[i])
3050 break;
3051 }
3052 if (i == write_len)
3053 return;
3054 }
3055 }
3056
3057 /**
3058 * Implements this workaround for the original 965:
3059 *
3060 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3061 * used as a destination register until after it has been sourced by an
3062 * instruction with a different destination register.
3063 */
3064 void
3065 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3066 {
3067 int write_len = inst->regs_written;
3068 int first_write_grf = inst->dst.nr;
3069 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3070 assert(write_len < (int)sizeof(needs_dep) - 1);
3071
3072 memset(needs_dep, false, sizeof(needs_dep));
3073 memset(needs_dep, true, write_len);
3074 /* Walk forwards looking for writes to registers we're writing which aren't
3075 * read before being written.
3076 */
3077 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3078 /* If we hit control flow, force resolve all remaining dependencies. */
3079 if (block->end() == scan_inst) {
3080 for (int i = 0; i < write_len; i++) {
3081 if (needs_dep[i])
3082 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3083 first_write_grf + i);
3084 }
3085 return;
3086 }
3087
3088 /* Clear the flag for registers that actually got read (as expected). */
3089 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3090
3091 /* We insert our reads as late as possible since they're reading the
3092 * result of a SEND, which has massive latency.
3093 */
3094 if (scan_inst->dst.file == VGRF &&
3095 scan_inst->dst.nr >= first_write_grf &&
3096 scan_inst->dst.nr < first_write_grf + write_len &&
3097 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3098 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3099 scan_inst->dst.nr);
3100 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3101 }
3102
3103 /* Continue the loop only if we haven't resolved all the dependencies */
3104 int i;
3105 for (i = 0; i < write_len; i++) {
3106 if (needs_dep[i])
3107 break;
3108 }
3109 if (i == write_len)
3110 return;
3111 }
3112 }
3113
3114 void
3115 fs_visitor::insert_gen4_send_dependency_workarounds()
3116 {
3117 if (devinfo->gen != 4 || devinfo->is_g4x)
3118 return;
3119
3120 bool progress = false;
3121
3122 /* Note that we're done with register allocation, so GRF fs_regs always
3123 * have a .reg_offset of 0.
3124 */
3125
3126 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3127 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3128 insert_gen4_pre_send_dependency_workarounds(block, inst);
3129 insert_gen4_post_send_dependency_workarounds(block, inst);
3130 progress = true;
3131 }
3132 }
3133
3134 if (progress)
3135 invalidate_live_intervals();
3136 }
3137
3138 /**
3139 * Turns the generic expression-style uniform pull constant load instruction
3140 * into a hardware-specific series of instructions for loading a pull
3141 * constant.
3142 *
3143 * The expression style allows the CSE pass before this to optimize out
3144 * repeated loads from the same offset, and gives the pre-register-allocation
3145 * scheduling full flexibility, while the conversion to native instructions
3146 * allows the post-register-allocation scheduler the best information
3147 * possible.
3148 *
3149 * Note that execution masking for setting up pull constant loads is special:
3150 * the channels that need to be written are unrelated to the current execution
3151 * mask, since a later instruction will use one of the result channels as a
3152 * source operand for all 8 or 16 of its channels.
3153 */
3154 void
3155 fs_visitor::lower_uniform_pull_constant_loads()
3156 {
3157 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3158 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3159 continue;
3160
3161 if (devinfo->gen >= 7) {
3162 /* The offset arg is a vec4-aligned immediate byte offset. */
3163 fs_reg const_offset_reg = inst->src[1];
3164 assert(const_offset_reg.file == IMM &&
3165 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3166 assert(const_offset_reg.ud % 16 == 0);
3167
3168 fs_reg payload, offset;
3169 if (devinfo->gen >= 9) {
3170 /* We have to use a message header on Skylake to get SIMD4x2
3171 * mode. Reserve space for the register.
3172 */
3173 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3174 offset.reg_offset++;
3175 inst->mlen = 2;
3176 } else {
3177 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3178 inst->mlen = 1;
3179 }
3180
3181 /* This is actually going to be a MOV, but since only the first dword
3182 * is accessed, we have a special opcode to do just that one. Note
3183 * that this needs to be an operation that will be considered a def
3184 * by live variable analysis, or register allocation will explode.
3185 */
3186 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3187 8, offset, const_offset_reg);
3188 setup->force_writemask_all = true;
3189
3190 setup->ir = inst->ir;
3191 setup->annotation = inst->annotation;
3192 inst->insert_before(block, setup);
3193
3194 /* Similarly, this will only populate the first 4 channels of the
3195 * result register (since we only use smear values from 0-3), but we
3196 * don't tell the optimizer.
3197 */
3198 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3199 inst->src[1] = payload;
3200 inst->base_mrf = -1;
3201
3202 invalidate_live_intervals();
3203 } else {
3204 /* Before register allocation, we didn't tell the scheduler about the
3205 * MRF we use. We know it's safe to use this MRF because nothing
3206 * else does except for register spill/unspill, which generates and
3207 * uses its MRF within a single IR instruction.
3208 */
3209 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3210 inst->mlen = 1;
3211 }
3212 }
3213 }
3214
3215 bool
3216 fs_visitor::lower_load_payload()
3217 {
3218 bool progress = false;
3219
3220 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3221 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3222 continue;
3223
3224 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3225 assert(inst->saturate == false);
3226 fs_reg dst = inst->dst;
3227
3228 /* Get rid of COMPR4. We'll add it back in if we need it */
3229 if (dst.file == MRF)
3230 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3231
3232 const fs_builder ibld(this, block, inst);
3233 const fs_builder hbld = ibld.exec_all().group(8, 0);
3234
3235 for (uint8_t i = 0; i < inst->header_size; i++) {
3236 if (inst->src[i].file != BAD_FILE) {
3237 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3238 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3239 hbld.MOV(mov_dst, mov_src);
3240 }
3241 dst = offset(dst, hbld, 1);
3242 }
3243
3244 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3245 inst->exec_size > 8) {
3246 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3247 * a straightforward copy. Instead, the result of the
3248 * LOAD_PAYLOAD is treated as interleaved and the first four
3249 * non-header sources are unpacked as:
3250 *
3251 * m + 0: r0
3252 * m + 1: g0
3253 * m + 2: b0
3254 * m + 3: a0
3255 * m + 4: r1
3256 * m + 5: g1
3257 * m + 6: b1
3258 * m + 7: a1
3259 *
3260 * This is used for gen <= 5 fb writes.
3261 */
3262 assert(inst->exec_size == 16);
3263 assert(inst->header_size + 4 <= inst->sources);
3264 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3265 if (inst->src[i].file != BAD_FILE) {
3266 if (devinfo->has_compr4) {
3267 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3268 compr4_dst.nr |= BRW_MRF_COMPR4;
3269 ibld.MOV(compr4_dst, inst->src[i]);
3270 } else {
3271 /* Platform doesn't have COMPR4. We have to fake it */
3272 fs_reg mov_dst = retype(dst, inst->src[i].type);
3273 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3274 mov_dst.nr += 4;
3275 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3276 }
3277 }
3278
3279 dst.nr++;
3280 }
3281
3282 /* The loop above only ever incremented us through the first set
3283 * of 4 registers. However, thanks to the magic of COMPR4, we
3284 * actually wrote to the first 8 registers, so we need to take
3285 * that into account now.
3286 */
3287 dst.nr += 4;
3288
3289 /* The COMPR4 code took care of the first 4 sources. We'll let
3290 * the regular path handle any remaining sources. Yes, we are
3291 * modifying the instruction but we're about to delete it so
3292 * this really doesn't hurt anything.
3293 */
3294 inst->header_size += 4;
3295 }
3296
3297 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3298 if (inst->src[i].file != BAD_FILE)
3299 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3300 dst = offset(dst, ibld, 1);
3301 }
3302
3303 inst->remove(block);
3304 progress = true;
3305 }
3306
3307 if (progress)
3308 invalidate_live_intervals();
3309
3310 return progress;
3311 }
3312
3313 bool
3314 fs_visitor::lower_integer_multiplication()
3315 {
3316 bool progress = false;
3317
3318 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3319 const fs_builder ibld(this, block, inst);
3320
3321 if (inst->opcode == BRW_OPCODE_MUL) {
3322 if (inst->dst.is_accumulator() ||
3323 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3324 inst->dst.type != BRW_REGISTER_TYPE_UD))
3325 continue;
3326
3327 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3328 * operation directly, but CHV/BXT cannot.
3329 */
3330 if (devinfo->gen >= 8 &&
3331 !devinfo->is_cherryview && !devinfo->is_broxton)
3332 continue;
3333
3334 if (inst->src[1].file == IMM &&
3335 inst->src[1].ud < (1 << 16)) {
3336 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3337 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3338 * src1 are used.
3339 *
3340 * If multiplying by an immediate value that fits in 16-bits, do a
3341 * single MUL instruction with that value in the proper location.
3342 */
3343 if (devinfo->gen < 7) {
3344 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3345 inst->dst.type);
3346 ibld.MOV(imm, inst->src[1]);
3347 ibld.MUL(inst->dst, imm, inst->src[0]);
3348 } else {
3349 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3350 }
3351 } else {
3352 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3353 * do 32-bit integer multiplication in one instruction, but instead
3354 * must do a sequence (which actually calculates a 64-bit result):
3355 *
3356 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3357 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3358 * mov(8) g2<1>D acc0<8,8,1>D
3359 *
3360 * But on Gen > 6, the ability to use second accumulator register
3361 * (acc1) for non-float data types was removed, preventing a simple
3362 * implementation in SIMD16. A 16-channel result can be calculated by
3363 * executing the three instructions twice in SIMD8, once with quarter
3364 * control of 1Q for the first eight channels and again with 2Q for
3365 * the second eight channels.
3366 *
3367 * Which accumulator register is implicitly accessed (by AccWrEnable
3368 * for instance) is determined by the quarter control. Unfortunately
3369 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3370 * implicit accumulator access by an instruction with 2Q will access
3371 * acc1 regardless of whether the data type is usable in acc1.
3372 *
3373 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3374 * integer data types.
3375 *
3376 * Since we only want the low 32-bits of the result, we can do two
3377 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3378 * adjust the high result and add them (like the mach is doing):
3379 *
3380 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3381 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3382 * shl(8) g9<1>D g8<8,8,1>D 16D
3383 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3384 *
3385 * We avoid the shl instruction by realizing that we only want to add
3386 * the low 16-bits of the "high" result to the high 16-bits of the
3387 * "low" result and using proper regioning on the add:
3388 *
3389 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3390 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3391 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3392 *
3393 * Since it does not use the (single) accumulator register, we can
3394 * schedule multi-component multiplications much better.
3395 */
3396
3397 fs_reg orig_dst = inst->dst;
3398 if (orig_dst.is_null() || orig_dst.file == MRF) {
3399 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3400 inst->dst.type);
3401 }
3402 fs_reg low = inst->dst;
3403 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3404 inst->dst.type);
3405
3406 if (devinfo->gen >= 7) {
3407 fs_reg src1_0_w = inst->src[1];
3408 fs_reg src1_1_w = inst->src[1];
3409
3410 if (inst->src[1].file == IMM) {
3411 src1_0_w.ud &= 0xffff;
3412 src1_1_w.ud >>= 16;
3413 } else {
3414 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3415 if (src1_0_w.stride != 0) {
3416 assert(src1_0_w.stride == 1);
3417 src1_0_w.stride = 2;
3418 }
3419
3420 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3421 if (src1_1_w.stride != 0) {
3422 assert(src1_1_w.stride == 1);
3423 src1_1_w.stride = 2;
3424 }
3425 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3426 }
3427 ibld.MUL(low, inst->src[0], src1_0_w);
3428 ibld.MUL(high, inst->src[0], src1_1_w);
3429 } else {
3430 fs_reg src0_0_w = inst->src[0];
3431 fs_reg src0_1_w = inst->src[0];
3432
3433 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3434 if (src0_0_w.stride != 0) {
3435 assert(src0_0_w.stride == 1);
3436 src0_0_w.stride = 2;
3437 }
3438
3439 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3440 if (src0_1_w.stride != 0) {
3441 assert(src0_1_w.stride == 1);
3442 src0_1_w.stride = 2;
3443 }
3444 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3445
3446 ibld.MUL(low, src0_0_w, inst->src[1]);
3447 ibld.MUL(high, src0_1_w, inst->src[1]);
3448 }
3449
3450 fs_reg dst = inst->dst;
3451 dst.type = BRW_REGISTER_TYPE_UW;
3452 dst.subreg_offset = 2;
3453 dst.stride = 2;
3454
3455 high.type = BRW_REGISTER_TYPE_UW;
3456 high.stride = 2;
3457
3458 low.type = BRW_REGISTER_TYPE_UW;
3459 low.subreg_offset = 2;
3460 low.stride = 2;
3461
3462 ibld.ADD(dst, low, high);
3463
3464 if (inst->conditional_mod || orig_dst.file == MRF) {
3465 set_condmod(inst->conditional_mod,
3466 ibld.MOV(orig_dst, inst->dst));
3467 }
3468 }
3469
3470 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3471 /* Should have been lowered to 8-wide. */
3472 assert(inst->exec_size <= 8);
3473 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3474 inst->dst.type);
3475 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3476 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3477
3478 if (devinfo->gen >= 8) {
3479 /* Until Gen8, integer multiplies read 32-bits from one source,
3480 * and 16-bits from the other, and relying on the MACH instruction
3481 * to generate the high bits of the result.
3482 *
3483 * On Gen8, the multiply instruction does a full 32x32-bit
3484 * multiply, but in order to do a 64-bit multiply we can simulate
3485 * the previous behavior and then use a MACH instruction.
3486 *
3487 * FINISHME: Don't use source modifiers on src1.
3488 */
3489 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3490 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3491 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3492 mul->src[1].stride *= 2;
3493
3494 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3495 inst->force_sechalf) {
3496 /* Among other things the quarter control bits influence which
3497 * accumulator register is used by the hardware for instructions
3498 * that access the accumulator implicitly (e.g. MACH). A
3499 * second-half instruction would normally map to acc1, which
3500 * doesn't exist on Gen7 and up (the hardware does emulate it for
3501 * floating-point instructions *only* by taking advantage of the
3502 * extra precision of acc0 not normally used for floating point
3503 * arithmetic).
3504 *
3505 * HSW and up are careful enough not to try to access an
3506 * accumulator register that doesn't exist, but on earlier Gen7
3507 * hardware we need to make sure that the quarter control bits are
3508 * zero to avoid non-deterministic behaviour and emit an extra MOV
3509 * to get the result masked correctly according to the current
3510 * channel enables.
3511 */
3512 mach->force_sechalf = false;
3513 mach->force_writemask_all = true;
3514 mach->dst = ibld.vgrf(inst->dst.type);
3515 ibld.MOV(inst->dst, mach->dst);
3516 }
3517 } else {
3518 continue;
3519 }
3520
3521 inst->remove(block);
3522 progress = true;
3523 }
3524
3525 if (progress)
3526 invalidate_live_intervals();
3527
3528 return progress;
3529 }
3530
3531 static void
3532 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3533 fs_reg *dst, fs_reg color, unsigned components)
3534 {
3535 if (key->clamp_fragment_color) {
3536 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3537 assert(color.type == BRW_REGISTER_TYPE_F);
3538
3539 for (unsigned i = 0; i < components; i++)
3540 set_saturate(true,
3541 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3542
3543 color = tmp;
3544 }
3545
3546 for (unsigned i = 0; i < components; i++)
3547 dst[i] = offset(color, bld, i);
3548 }
3549
3550 static void
3551 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3552 const brw_wm_prog_data *prog_data,
3553 const brw_wm_prog_key *key,
3554 const fs_visitor::thread_payload &payload)
3555 {
3556 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3557 const brw_device_info *devinfo = bld.shader->devinfo;
3558 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3559 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3560 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3561 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3562 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3563 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3564 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3565 const unsigned components =
3566 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3567
3568 /* We can potentially have a message length of up to 15, so we have to set
3569 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3570 */
3571 fs_reg sources[15];
3572 int header_size = 2, payload_header_size;
3573 unsigned length = 0;
3574
3575 /* From the Sandy Bridge PRM, volume 4, page 198:
3576 *
3577 * "Dispatched Pixel Enables. One bit per pixel indicating
3578 * which pixels were originally enabled when the thread was
3579 * dispatched. This field is only required for the end-of-
3580 * thread message and on all dual-source messages."
3581 */
3582 if (devinfo->gen >= 6 &&
3583 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3584 color1.file == BAD_FILE &&
3585 key->nr_color_regions == 1) {
3586 header_size = 0;
3587 }
3588
3589 if (header_size != 0) {
3590 assert(header_size == 2);
3591 /* Allocate 2 registers for a header */
3592 length += 2;
3593 }
3594
3595 if (payload.aa_dest_stencil_reg) {
3596 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3597 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3598 .MOV(sources[length],
3599 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3600 length++;
3601 }
3602
3603 if (prog_data->uses_omask) {
3604 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3605 BRW_REGISTER_TYPE_UD);
3606
3607 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3608 * relevant. Since it's unsigned single words one vgrf is always
3609 * 16-wide, but only the lower or higher 8 channels will be used by the
3610 * hardware when doing a SIMD8 write depending on whether we have
3611 * selected the subspans for the first or second half respectively.
3612 */
3613 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3614 sample_mask.type = BRW_REGISTER_TYPE_UW;
3615 sample_mask.stride *= 2;
3616
3617 bld.exec_all().annotate("FB write oMask")
3618 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3619 inst->force_sechalf),
3620 sample_mask);
3621 length++;
3622 }
3623
3624 payload_header_size = length;
3625
3626 if (src0_alpha.file != BAD_FILE) {
3627 /* FIXME: This is being passed at the wrong location in the payload and
3628 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3629 * It's supposed to be immediately before oMask but there seems to be no
3630 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3631 * requires header sources to form a contiguous segment at the beginning
3632 * of the message and src0_alpha has per-channel semantics.
3633 */
3634 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3635 length++;
3636 }
3637
3638 setup_color_payload(bld, key, &sources[length], color0, components);
3639 length += 4;
3640
3641 if (color1.file != BAD_FILE) {
3642 setup_color_payload(bld, key, &sources[length], color1, components);
3643 length += 4;
3644 }
3645
3646 if (src_depth.file != BAD_FILE) {
3647 sources[length] = src_depth;
3648 length++;
3649 }
3650
3651 if (dst_depth.file != BAD_FILE) {
3652 sources[length] = dst_depth;
3653 length++;
3654 }
3655
3656 if (src_stencil.file != BAD_FILE) {
3657 assert(devinfo->gen >= 9);
3658 assert(bld.dispatch_width() != 16);
3659
3660 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3661 * available on gen9+. As such it's impossible to have both enabled at the
3662 * same time and therefore length cannot overrun the array.
3663 */
3664 assert(length < 15);
3665
3666 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3667 bld.exec_all().annotate("FB write OS")
3668 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3669 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3670 length++;
3671 }
3672
3673 fs_inst *load;
3674 if (devinfo->gen >= 7) {
3675 /* Send from the GRF */
3676 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3677 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3678 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3679 load->dst = payload;
3680
3681 inst->src[0] = payload;
3682 inst->resize_sources(1);
3683 inst->base_mrf = -1;
3684 } else {
3685 /* Send from the MRF */
3686 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3687 sources, length, payload_header_size);
3688
3689 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3690 * will do this for us if we just give it a COMPR4 destination.
3691 */
3692 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3693 load->dst.nr |= BRW_MRF_COMPR4;
3694
3695 inst->resize_sources(0);
3696 inst->base_mrf = 1;
3697 }
3698
3699 inst->opcode = FS_OPCODE_FB_WRITE;
3700 inst->mlen = load->regs_written;
3701 inst->header_size = header_size;
3702 }
3703
3704 static void
3705 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3706 const fs_reg &coordinate,
3707 const fs_reg &shadow_c,
3708 const fs_reg &lod, const fs_reg &lod2,
3709 const fs_reg &surface,
3710 const fs_reg &sampler,
3711 unsigned coord_components,
3712 unsigned grad_components)
3713 {
3714 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3715 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3716 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3717 fs_reg msg_end = msg_begin;
3718
3719 /* g0 header. */
3720 msg_end = offset(msg_end, bld.group(8, 0), 1);
3721
3722 for (unsigned i = 0; i < coord_components; i++)
3723 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3724 offset(coordinate, bld, i));
3725
3726 msg_end = offset(msg_end, bld, coord_components);
3727
3728 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3729 * require all three components to be present and zero if they are unused.
3730 */
3731 if (coord_components > 0 &&
3732 (has_lod || shadow_c.file != BAD_FILE ||
3733 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3734 for (unsigned i = coord_components; i < 3; i++)
3735 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3736
3737 msg_end = offset(msg_end, bld, 3 - coord_components);
3738 }
3739
3740 if (op == SHADER_OPCODE_TXD) {
3741 /* TXD unsupported in SIMD16 mode. */
3742 assert(bld.dispatch_width() == 8);
3743
3744 /* the slots for u and v are always present, but r is optional */
3745 if (coord_components < 2)
3746 msg_end = offset(msg_end, bld, 2 - coord_components);
3747
3748 /* P = u, v, r
3749 * dPdx = dudx, dvdx, drdx
3750 * dPdy = dudy, dvdy, drdy
3751 *
3752 * 1-arg: Does not exist.
3753 *
3754 * 2-arg: dudx dvdx dudy dvdy
3755 * dPdx.x dPdx.y dPdy.x dPdy.y
3756 * m4 m5 m6 m7
3757 *
3758 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3759 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3760 * m5 m6 m7 m8 m9 m10
3761 */
3762 for (unsigned i = 0; i < grad_components; i++)
3763 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3764
3765 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3766
3767 for (unsigned i = 0; i < grad_components; i++)
3768 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3769
3770 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3771 }
3772
3773 if (has_lod) {
3774 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3775 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3776 */
3777 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3778 bld.dispatch_width() == 16);
3779
3780 const brw_reg_type type =
3781 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3782 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3783 bld.MOV(retype(msg_end, type), lod);
3784 msg_end = offset(msg_end, bld, 1);
3785 }
3786
3787 if (shadow_c.file != BAD_FILE) {
3788 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3789 /* There's no plain shadow compare message, so we use shadow
3790 * compare with a bias of 0.0.
3791 */
3792 bld.MOV(msg_end, brw_imm_f(0.0f));
3793 msg_end = offset(msg_end, bld, 1);
3794 }
3795
3796 bld.MOV(msg_end, shadow_c);
3797 msg_end = offset(msg_end, bld, 1);
3798 }
3799
3800 inst->opcode = op;
3801 inst->src[0] = reg_undef;
3802 inst->src[1] = surface;
3803 inst->src[2] = sampler;
3804 inst->resize_sources(3);
3805 inst->base_mrf = msg_begin.nr;
3806 inst->mlen = msg_end.nr - msg_begin.nr;
3807 inst->header_size = 1;
3808 }
3809
3810 static void
3811 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3812 fs_reg coordinate,
3813 const fs_reg &shadow_c,
3814 fs_reg lod, fs_reg lod2,
3815 const fs_reg &sample_index,
3816 const fs_reg &surface,
3817 const fs_reg &sampler,
3818 const fs_reg &offset_value,
3819 unsigned coord_components,
3820 unsigned grad_components)
3821 {
3822 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3823 fs_reg msg_coords = message;
3824 unsigned header_size = 0;
3825
3826 if (offset_value.file != BAD_FILE) {
3827 /* The offsets set up by the visitor are in the m1 header, so we can't
3828 * go headerless.
3829 */
3830 header_size = 1;
3831 message.nr--;
3832 }
3833
3834 for (unsigned i = 0; i < coord_components; i++) {
3835 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3836 coordinate = offset(coordinate, bld, 1);
3837 }
3838 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3839 fs_reg msg_lod = offset(msg_coords, bld, 4);
3840
3841 if (shadow_c.file != BAD_FILE) {
3842 fs_reg msg_shadow = msg_lod;
3843 bld.MOV(msg_shadow, shadow_c);
3844 msg_lod = offset(msg_shadow, bld, 1);
3845 msg_end = msg_lod;
3846 }
3847
3848 switch (op) {
3849 case SHADER_OPCODE_TXL:
3850 case FS_OPCODE_TXB:
3851 bld.MOV(msg_lod, lod);
3852 msg_end = offset(msg_lod, bld, 1);
3853 break;
3854 case SHADER_OPCODE_TXD:
3855 /**
3856 * P = u, v, r
3857 * dPdx = dudx, dvdx, drdx
3858 * dPdy = dudy, dvdy, drdy
3859 *
3860 * Load up these values:
3861 * - dudx dudy dvdx dvdy drdx drdy
3862 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3863 */
3864 msg_end = msg_lod;
3865 for (unsigned i = 0; i < grad_components; i++) {
3866 bld.MOV(msg_end, lod);
3867 lod = offset(lod, bld, 1);
3868 msg_end = offset(msg_end, bld, 1);
3869
3870 bld.MOV(msg_end, lod2);
3871 lod2 = offset(lod2, bld, 1);
3872 msg_end = offset(msg_end, bld, 1);
3873 }
3874 break;
3875 case SHADER_OPCODE_TXS:
3876 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3877 bld.MOV(msg_lod, lod);
3878 msg_end = offset(msg_lod, bld, 1);
3879 break;
3880 case SHADER_OPCODE_TXF:
3881 msg_lod = offset(msg_coords, bld, 3);
3882 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3883 msg_end = offset(msg_lod, bld, 1);
3884 break;
3885 case SHADER_OPCODE_TXF_CMS:
3886 msg_lod = offset(msg_coords, bld, 3);
3887 /* lod */
3888 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3889 /* sample index */
3890 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3891 msg_end = offset(msg_lod, bld, 2);
3892 break;
3893 default:
3894 break;
3895 }
3896
3897 inst->opcode = op;
3898 inst->src[0] = reg_undef;
3899 inst->src[1] = surface;
3900 inst->src[2] = sampler;
3901 inst->resize_sources(3);
3902 inst->base_mrf = message.nr;
3903 inst->mlen = msg_end.nr - message.nr;
3904 inst->header_size = header_size;
3905
3906 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3907 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3908 }
3909
3910 static bool
3911 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3912 {
3913 if (devinfo->gen < 8 && !devinfo->is_haswell)
3914 return false;
3915
3916 return sampler.file != IMM || sampler.ud >= 16;
3917 }
3918
3919 static void
3920 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3921 fs_reg coordinate,
3922 const fs_reg &shadow_c,
3923 fs_reg lod, fs_reg lod2,
3924 const fs_reg &sample_index,
3925 const fs_reg &mcs,
3926 const fs_reg &surface,
3927 const fs_reg &sampler,
3928 fs_reg offset_value,
3929 unsigned coord_components,
3930 unsigned grad_components)
3931 {
3932 const brw_device_info *devinfo = bld.shader->devinfo;
3933 int reg_width = bld.dispatch_width() / 8;
3934 unsigned header_size = 0, length = 0;
3935 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3936 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3937 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3938
3939 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3940 offset_value.file != BAD_FILE ||
3941 is_high_sampler(devinfo, sampler)) {
3942 /* For general texture offsets (no txf workaround), we need a header to
3943 * put them in. Note that we're only reserving space for it in the
3944 * message payload as it will be initialized implicitly by the
3945 * generator.
3946 *
3947 * TG4 needs to place its channel select in the header, for interaction
3948 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3949 * larger sampler numbers we need to offset the Sampler State Pointer in
3950 * the header.
3951 */
3952 header_size = 1;
3953 sources[0] = fs_reg();
3954 length++;
3955 }
3956
3957 if (shadow_c.file != BAD_FILE) {
3958 bld.MOV(sources[length], shadow_c);
3959 length++;
3960 }
3961
3962 bool coordinate_done = false;
3963
3964 /* The sampler can only meaningfully compute LOD for fragment shader
3965 * messages. For all other stages, we change the opcode to TXL and
3966 * hardcode the LOD to 0.
3967 */
3968 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3969 op == SHADER_OPCODE_TEX) {
3970 op = SHADER_OPCODE_TXL;
3971 lod = brw_imm_f(0.0f);
3972 }
3973
3974 /* Set up the LOD info */
3975 switch (op) {
3976 case FS_OPCODE_TXB:
3977 case SHADER_OPCODE_TXL:
3978 bld.MOV(sources[length], lod);
3979 length++;
3980 break;
3981 case SHADER_OPCODE_TXD:
3982 /* TXD should have been lowered in SIMD16 mode. */
3983 assert(bld.dispatch_width() == 8);
3984
3985 /* Load dPdx and the coordinate together:
3986 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3987 */
3988 for (unsigned i = 0; i < coord_components; i++) {
3989 bld.MOV(sources[length], coordinate);
3990 coordinate = offset(coordinate, bld, 1);
3991 length++;
3992
3993 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3994 * only derivatives for (u, v, r).
3995 */
3996 if (i < grad_components) {
3997 bld.MOV(sources[length], lod);
3998 lod = offset(lod, bld, 1);
3999 length++;
4000
4001 bld.MOV(sources[length], lod2);
4002 lod2 = offset(lod2, bld, 1);
4003 length++;
4004 }
4005 }
4006
4007 coordinate_done = true;
4008 break;
4009 case SHADER_OPCODE_TXS:
4010 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4011 length++;
4012 break;
4013 case SHADER_OPCODE_TXF:
4014 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4015 * On Gen9 they are u, v, lod, r
4016 */
4017 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4018 coordinate = offset(coordinate, bld, 1);
4019 length++;
4020
4021 if (devinfo->gen >= 9) {
4022 if (coord_components >= 2) {
4023 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4024 coordinate = offset(coordinate, bld, 1);
4025 }
4026 length++;
4027 }
4028
4029 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4030 length++;
4031
4032 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
4033 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4034 coordinate = offset(coordinate, bld, 1);
4035 length++;
4036 }
4037
4038 coordinate_done = true;
4039 break;
4040 case SHADER_OPCODE_TXF_CMS:
4041 case SHADER_OPCODE_TXF_CMS_W:
4042 case SHADER_OPCODE_TXF_UMS:
4043 case SHADER_OPCODE_TXF_MCS:
4044 if (op == SHADER_OPCODE_TXF_UMS ||
4045 op == SHADER_OPCODE_TXF_CMS ||
4046 op == SHADER_OPCODE_TXF_CMS_W) {
4047 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4048 length++;
4049 }
4050
4051 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4052 /* Data from the multisample control surface. */
4053 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4054 length++;
4055
4056 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4057 * the MCS data.
4058 */
4059 if (op == SHADER_OPCODE_TXF_CMS_W) {
4060 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4061 mcs.file == IMM ?
4062 mcs :
4063 offset(mcs, bld, 1));
4064 length++;
4065 }
4066 }
4067
4068 /* There is no offsetting for this message; just copy in the integer
4069 * texture coordinates.
4070 */
4071 for (unsigned i = 0; i < coord_components; i++) {
4072 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4073 coordinate = offset(coordinate, bld, 1);
4074 length++;
4075 }
4076
4077 coordinate_done = true;
4078 break;
4079 case SHADER_OPCODE_TG4_OFFSET:
4080 /* gather4_po_c should have been lowered in SIMD16 mode. */
4081 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4082
4083 /* More crazy intermixing */
4084 for (unsigned i = 0; i < 2; i++) { /* u, v */
4085 bld.MOV(sources[length], coordinate);
4086 coordinate = offset(coordinate, bld, 1);
4087 length++;
4088 }
4089
4090 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4091 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4092 offset_value = offset(offset_value, bld, 1);
4093 length++;
4094 }
4095
4096 if (coord_components == 3) { /* r if present */
4097 bld.MOV(sources[length], coordinate);
4098 coordinate = offset(coordinate, bld, 1);
4099 length++;
4100 }
4101
4102 coordinate_done = true;
4103 break;
4104 default:
4105 break;
4106 }
4107
4108 /* Set up the coordinate (except for cases where it was done above) */
4109 if (!coordinate_done) {
4110 for (unsigned i = 0; i < coord_components; i++) {
4111 bld.MOV(sources[length], coordinate);
4112 coordinate = offset(coordinate, bld, 1);
4113 length++;
4114 }
4115 }
4116
4117 int mlen;
4118 if (reg_width == 2)
4119 mlen = length * reg_width - header_size;
4120 else
4121 mlen = length * reg_width;
4122
4123 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4124 BRW_REGISTER_TYPE_F);
4125 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4126
4127 /* Generate the SEND. */
4128 inst->opcode = op;
4129 inst->src[0] = src_payload;
4130 inst->src[1] = surface;
4131 inst->src[2] = sampler;
4132 inst->resize_sources(3);
4133 inst->base_mrf = -1;
4134 inst->mlen = mlen;
4135 inst->header_size = header_size;
4136
4137 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4138 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4139 }
4140
4141 static void
4142 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4143 {
4144 const brw_device_info *devinfo = bld.shader->devinfo;
4145 const fs_reg &coordinate = inst->src[0];
4146 const fs_reg &shadow_c = inst->src[1];
4147 const fs_reg &lod = inst->src[2];
4148 const fs_reg &lod2 = inst->src[3];
4149 const fs_reg &sample_index = inst->src[4];
4150 const fs_reg &mcs = inst->src[5];
4151 const fs_reg &surface = inst->src[6];
4152 const fs_reg &sampler = inst->src[7];
4153 const fs_reg &offset_value = inst->src[8];
4154 assert(inst->src[9].file == IMM && inst->src[10].file == IMM);
4155 const unsigned coord_components = inst->src[9].ud;
4156 const unsigned grad_components = inst->src[10].ud;
4157
4158 if (devinfo->gen >= 7) {
4159 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4160 shadow_c, lod, lod2, sample_index,
4161 mcs, surface, sampler, offset_value,
4162 coord_components, grad_components);
4163 } else if (devinfo->gen >= 5) {
4164 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4165 shadow_c, lod, lod2, sample_index,
4166 surface, sampler, offset_value,
4167 coord_components, grad_components);
4168 } else {
4169 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4170 shadow_c, lod, lod2,
4171 surface, sampler,
4172 coord_components, grad_components);
4173 }
4174 }
4175
4176 /**
4177 * Initialize the header present in some typed and untyped surface
4178 * messages.
4179 */
4180 static fs_reg
4181 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4182 {
4183 fs_builder ubld = bld.exec_all().group(8, 0);
4184 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4185 ubld.MOV(dst, brw_imm_d(0));
4186 ubld.MOV(component(dst, 7), sample_mask);
4187 return dst;
4188 }
4189
4190 static void
4191 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4192 const fs_reg &sample_mask)
4193 {
4194 /* Get the logical send arguments. */
4195 const fs_reg &addr = inst->src[0];
4196 const fs_reg &src = inst->src[1];
4197 const fs_reg &surface = inst->src[2];
4198 const UNUSED fs_reg &dims = inst->src[3];
4199 const fs_reg &arg = inst->src[4];
4200
4201 /* Calculate the total number of components of the payload. */
4202 const unsigned addr_sz = inst->components_read(0);
4203 const unsigned src_sz = inst->components_read(1);
4204 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4205 const unsigned sz = header_sz + addr_sz + src_sz;
4206
4207 /* Allocate space for the payload. */
4208 fs_reg *const components = new fs_reg[sz];
4209 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4210 unsigned n = 0;
4211
4212 /* Construct the payload. */
4213 if (header_sz)
4214 components[n++] = emit_surface_header(bld, sample_mask);
4215
4216 for (unsigned i = 0; i < addr_sz; i++)
4217 components[n++] = offset(addr, bld, i);
4218
4219 for (unsigned i = 0; i < src_sz; i++)
4220 components[n++] = offset(src, bld, i);
4221
4222 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4223
4224 /* Update the original instruction. */
4225 inst->opcode = op;
4226 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4227 inst->header_size = header_sz;
4228
4229 inst->src[0] = payload;
4230 inst->src[1] = surface;
4231 inst->src[2] = arg;
4232 inst->resize_sources(3);
4233
4234 delete[] components;
4235 }
4236
4237 bool
4238 fs_visitor::lower_logical_sends()
4239 {
4240 bool progress = false;
4241
4242 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4243 const fs_builder ibld(this, block, inst);
4244
4245 switch (inst->opcode) {
4246 case FS_OPCODE_FB_WRITE_LOGICAL:
4247 assert(stage == MESA_SHADER_FRAGMENT);
4248 lower_fb_write_logical_send(ibld, inst,
4249 (const brw_wm_prog_data *)prog_data,
4250 (const brw_wm_prog_key *)key,
4251 payload);
4252 break;
4253
4254 case SHADER_OPCODE_TEX_LOGICAL:
4255 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4256 break;
4257
4258 case SHADER_OPCODE_TXD_LOGICAL:
4259 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4260 break;
4261
4262 case SHADER_OPCODE_TXF_LOGICAL:
4263 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4264 break;
4265
4266 case SHADER_OPCODE_TXL_LOGICAL:
4267 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4268 break;
4269
4270 case SHADER_OPCODE_TXS_LOGICAL:
4271 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4272 break;
4273
4274 case FS_OPCODE_TXB_LOGICAL:
4275 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4276 break;
4277
4278 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4279 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4280 break;
4281
4282 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4283 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4284 break;
4285
4286 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4287 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4288 break;
4289
4290 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4291 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4292 break;
4293
4294 case SHADER_OPCODE_LOD_LOGICAL:
4295 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4296 break;
4297
4298 case SHADER_OPCODE_TG4_LOGICAL:
4299 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4300 break;
4301
4302 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4303 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4304 break;
4305
4306 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4307 lower_surface_logical_send(ibld, inst,
4308 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4309 fs_reg());
4310 break;
4311
4312 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4313 lower_surface_logical_send(ibld, inst,
4314 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4315 ibld.sample_mask_reg());
4316 break;
4317
4318 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4319 lower_surface_logical_send(ibld, inst,
4320 SHADER_OPCODE_UNTYPED_ATOMIC,
4321 ibld.sample_mask_reg());
4322 break;
4323
4324 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4325 lower_surface_logical_send(ibld, inst,
4326 SHADER_OPCODE_TYPED_SURFACE_READ,
4327 brw_imm_d(0xffff));
4328 break;
4329
4330 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4331 lower_surface_logical_send(ibld, inst,
4332 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4333 ibld.sample_mask_reg());
4334 break;
4335
4336 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4337 lower_surface_logical_send(ibld, inst,
4338 SHADER_OPCODE_TYPED_ATOMIC,
4339 ibld.sample_mask_reg());
4340 break;
4341
4342 default:
4343 continue;
4344 }
4345
4346 progress = true;
4347 }
4348
4349 if (progress)
4350 invalidate_live_intervals();
4351
4352 return progress;
4353 }
4354
4355 /**
4356 * Get the closest native SIMD width supported by the hardware for instruction
4357 * \p inst. The instruction will be left untouched by
4358 * fs_visitor::lower_simd_width() if the returned value is equal to the
4359 * original execution size.
4360 */
4361 static unsigned
4362 get_lowered_simd_width(const struct brw_device_info *devinfo,
4363 const fs_inst *inst)
4364 {
4365 switch (inst->opcode) {
4366 case BRW_OPCODE_MOV:
4367 case BRW_OPCODE_SEL:
4368 case BRW_OPCODE_NOT:
4369 case BRW_OPCODE_AND:
4370 case BRW_OPCODE_OR:
4371 case BRW_OPCODE_XOR:
4372 case BRW_OPCODE_SHR:
4373 case BRW_OPCODE_SHL:
4374 case BRW_OPCODE_ASR:
4375 case BRW_OPCODE_CMP:
4376 case BRW_OPCODE_CMPN:
4377 case BRW_OPCODE_CSEL:
4378 case BRW_OPCODE_F32TO16:
4379 case BRW_OPCODE_F16TO32:
4380 case BRW_OPCODE_BFREV:
4381 case BRW_OPCODE_BFE:
4382 case BRW_OPCODE_BFI1:
4383 case BRW_OPCODE_BFI2:
4384 case BRW_OPCODE_ADD:
4385 case BRW_OPCODE_MUL:
4386 case BRW_OPCODE_AVG:
4387 case BRW_OPCODE_FRC:
4388 case BRW_OPCODE_RNDU:
4389 case BRW_OPCODE_RNDD:
4390 case BRW_OPCODE_RNDE:
4391 case BRW_OPCODE_RNDZ:
4392 case BRW_OPCODE_LZD:
4393 case BRW_OPCODE_FBH:
4394 case BRW_OPCODE_FBL:
4395 case BRW_OPCODE_CBIT:
4396 case BRW_OPCODE_SAD2:
4397 case BRW_OPCODE_MAD:
4398 case BRW_OPCODE_LRP:
4399 case SHADER_OPCODE_RCP:
4400 case SHADER_OPCODE_RSQ:
4401 case SHADER_OPCODE_SQRT:
4402 case SHADER_OPCODE_EXP2:
4403 case SHADER_OPCODE_LOG2:
4404 case SHADER_OPCODE_POW:
4405 case SHADER_OPCODE_INT_QUOTIENT:
4406 case SHADER_OPCODE_INT_REMAINDER:
4407 case SHADER_OPCODE_SIN:
4408 case SHADER_OPCODE_COS: {
4409 /* According to the PRMs:
4410 * "A. In Direct Addressing mode, a source cannot span more than 2
4411 * adjacent GRF registers.
4412 * B. A destination cannot span more than 2 adjacent GRF registers."
4413 *
4414 * Look for the source or destination with the largest register region
4415 * which is the one that is going to limit the overal execution size of
4416 * the instruction due to this rule.
4417 */
4418 unsigned reg_count = inst->regs_written;
4419
4420 for (unsigned i = 0; i < inst->sources; i++)
4421 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4422
4423 /* Calculate the maximum execution size of the instruction based on the
4424 * factor by which it goes over the hardware limit of 2 GRFs.
4425 */
4426 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4427 }
4428 case SHADER_OPCODE_MULH:
4429 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4430 * is 8-wide on Gen7+.
4431 */
4432 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4433
4434 case FS_OPCODE_FB_WRITE_LOGICAL:
4435 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4436 * here.
4437 */
4438 assert(devinfo->gen != 6 ||
4439 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4440 inst->exec_size == 8);
4441 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4442 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4443 8 : inst->exec_size);
4444
4445 case SHADER_OPCODE_TXD_LOGICAL:
4446 /* TXD is unsupported in SIMD16 mode. */
4447 return 8;
4448
4449 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4450 /* gather4_po_c is unsupported in SIMD16 mode. */
4451 const fs_reg &shadow_c = inst->src[1];
4452 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4453 }
4454 case SHADER_OPCODE_TXL_LOGICAL:
4455 case FS_OPCODE_TXB_LOGICAL: {
4456 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4457 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4458 * mode because the message exceeds the maximum length of 11.
4459 */
4460 const fs_reg &shadow_c = inst->src[1];
4461 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4462 return 16;
4463 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4464 return 8;
4465 else
4466 return inst->exec_size;
4467 }
4468 case SHADER_OPCODE_TXF_LOGICAL:
4469 case SHADER_OPCODE_TXS_LOGICAL:
4470 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4471 * messages. Use SIMD16 instead.
4472 */
4473 if (devinfo->gen == 4)
4474 return 16;
4475 else
4476 return inst->exec_size;
4477
4478 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4479 /* This opcode can take up to 6 arguments which means that in some
4480 * circumstances it can end up with a message that is too long in SIMD16
4481 * mode.
4482 */
4483 const unsigned coord_components = inst->src[8].ud;
4484 /* First three arguments are the sample index and the two arguments for
4485 * the MCS data.
4486 */
4487 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4488 return 8;
4489 else
4490 return inst->exec_size;
4491 }
4492
4493 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4494 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4495 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4496 return 8;
4497
4498 case SHADER_OPCODE_MOV_INDIRECT:
4499 /* Prior to Broadwell, we only have 8 address subregisters */
4500 return devinfo->gen < 8 ? 8 : inst->exec_size;
4501
4502 default:
4503 return inst->exec_size;
4504 }
4505 }
4506
4507 /**
4508 * The \p rows array of registers represents a \p num_rows by \p num_columns
4509 * matrix in row-major order, write it in column-major order into the register
4510 * passed as destination. \p stride gives the separation between matrix
4511 * elements in the input in fs_builder::dispatch_width() units.
4512 */
4513 static void
4514 emit_transpose(const fs_builder &bld,
4515 const fs_reg &dst, const fs_reg *rows,
4516 unsigned num_rows, unsigned num_columns, unsigned stride)
4517 {
4518 fs_reg *const components = new fs_reg[num_rows * num_columns];
4519
4520 for (unsigned i = 0; i < num_columns; ++i) {
4521 for (unsigned j = 0; j < num_rows; ++j)
4522 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4523 }
4524
4525 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4526
4527 delete[] components;
4528 }
4529
4530 bool
4531 fs_visitor::lower_simd_width()
4532 {
4533 bool progress = false;
4534
4535 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4536 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4537
4538 if (lower_width != inst->exec_size) {
4539 /* Builder matching the original instruction. We may also need to
4540 * emit an instruction of width larger than the original, set the
4541 * execution size of the builder to the highest of both for now so
4542 * we're sure that both cases can be handled.
4543 */
4544 const fs_builder ibld = bld.at(block, inst)
4545 .exec_all(inst->force_writemask_all)
4546 .group(MAX2(inst->exec_size, lower_width),
4547 inst->force_sechalf);
4548
4549 /* Split the copies in chunks of the execution width of either the
4550 * original or the lowered instruction, whichever is lower.
4551 */
4552 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4553 const unsigned n = inst->exec_size / copy_width;
4554 const unsigned dst_size = inst->regs_written * REG_SIZE /
4555 inst->dst.component_size(inst->exec_size);
4556 fs_reg dsts[4];
4557
4558 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4559 !inst->writes_accumulator && !inst->mlen);
4560
4561 for (unsigned i = 0; i < n; i++) {
4562 /* Emit a copy of the original instruction with the lowered width.
4563 * If the EOT flag was set throw it away except for the last
4564 * instruction to avoid killing the thread prematurely.
4565 */
4566 fs_inst split_inst = *inst;
4567 split_inst.exec_size = lower_width;
4568 split_inst.eot = inst->eot && i == n - 1;
4569
4570 /* Select the correct channel enables for the i-th group, then
4571 * transform the sources and destination and emit the lowered
4572 * instruction.
4573 */
4574 const fs_builder lbld = ibld.group(lower_width, i);
4575
4576 for (unsigned j = 0; j < inst->sources; j++) {
4577 if (inst->src[j].file != BAD_FILE &&
4578 !is_uniform(inst->src[j])) {
4579 /* Get the i-th copy_width-wide chunk of the source. */
4580 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4581 const unsigned src_size = inst->components_read(j);
4582
4583 /* Use a trivial transposition to copy one every n
4584 * copy_width-wide components of the register into a
4585 * temporary passed as source to the lowered instruction.
4586 */
4587 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4588 emit_transpose(lbld.group(copy_width, 0),
4589 split_inst.src[j], &src, 1, src_size, n);
4590 }
4591 }
4592
4593 if (inst->regs_written) {
4594 /* Allocate enough space to hold the result of the lowered
4595 * instruction and fix up the number of registers written.
4596 */
4597 split_inst.dst = dsts[i] =
4598 lbld.vgrf(inst->dst.type, dst_size);
4599 split_inst.regs_written =
4600 DIV_ROUND_UP(inst->regs_written * lower_width,
4601 inst->exec_size);
4602 }
4603
4604 lbld.emit(split_inst);
4605 }
4606
4607 if (inst->regs_written) {
4608 /* Distance between useful channels in the temporaries, skipping
4609 * garbage if the lowered instruction is wider than the original.
4610 */
4611 const unsigned m = lower_width / copy_width;
4612
4613 /* Interleave the components of the result from the lowered
4614 * instructions. We need to set exec_all() when copying more than
4615 * one half per component, because LOAD_PAYLOAD (in terms of which
4616 * emit_transpose is implemented) can only use the same channel
4617 * enable signals for all of its non-header sources.
4618 */
4619 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4620 .group(copy_width, 0),
4621 inst->dst, dsts, n, dst_size, m);
4622 }
4623
4624 inst->remove(block);
4625 progress = true;
4626 }
4627 }
4628
4629 if (progress)
4630 invalidate_live_intervals();
4631
4632 return progress;
4633 }
4634
4635 void
4636 fs_visitor::dump_instructions()
4637 {
4638 dump_instructions(NULL);
4639 }
4640
4641 void
4642 fs_visitor::dump_instructions(const char *name)
4643 {
4644 FILE *file = stderr;
4645 if (name && geteuid() != 0) {
4646 file = fopen(name, "w");
4647 if (!file)
4648 file = stderr;
4649 }
4650
4651 if (cfg) {
4652 calculate_register_pressure();
4653 int ip = 0, max_pressure = 0;
4654 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4655 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4656 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4657 dump_instruction(inst, file);
4658 ip++;
4659 }
4660 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4661 } else {
4662 int ip = 0;
4663 foreach_in_list(backend_instruction, inst, &instructions) {
4664 fprintf(file, "%4d: ", ip++);
4665 dump_instruction(inst, file);
4666 }
4667 }
4668
4669 if (file != stderr) {
4670 fclose(file);
4671 }
4672 }
4673
4674 void
4675 fs_visitor::dump_instruction(backend_instruction *be_inst)
4676 {
4677 dump_instruction(be_inst, stderr);
4678 }
4679
4680 void
4681 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4682 {
4683 fs_inst *inst = (fs_inst *)be_inst;
4684
4685 if (inst->predicate) {
4686 fprintf(file, "(%cf0.%d) ",
4687 inst->predicate_inverse ? '-' : '+',
4688 inst->flag_subreg);
4689 }
4690
4691 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4692 if (inst->saturate)
4693 fprintf(file, ".sat");
4694 if (inst->conditional_mod) {
4695 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4696 if (!inst->predicate &&
4697 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4698 inst->opcode != BRW_OPCODE_IF &&
4699 inst->opcode != BRW_OPCODE_WHILE))) {
4700 fprintf(file, ".f0.%d", inst->flag_subreg);
4701 }
4702 }
4703 fprintf(file, "(%d) ", inst->exec_size);
4704
4705 if (inst->mlen) {
4706 fprintf(file, "(mlen: %d) ", inst->mlen);
4707 }
4708
4709 switch (inst->dst.file) {
4710 case VGRF:
4711 fprintf(file, "vgrf%d", inst->dst.nr);
4712 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4713 inst->dst.subreg_offset)
4714 fprintf(file, "+%d.%d",
4715 inst->dst.reg_offset, inst->dst.subreg_offset);
4716 break;
4717 case FIXED_GRF:
4718 fprintf(file, "g%d", inst->dst.nr);
4719 break;
4720 case MRF:
4721 fprintf(file, "m%d", inst->dst.nr);
4722 break;
4723 case BAD_FILE:
4724 fprintf(file, "(null)");
4725 break;
4726 case UNIFORM:
4727 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4728 break;
4729 case ATTR:
4730 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4731 break;
4732 case ARF:
4733 switch (inst->dst.nr) {
4734 case BRW_ARF_NULL:
4735 fprintf(file, "null");
4736 break;
4737 case BRW_ARF_ADDRESS:
4738 fprintf(file, "a0.%d", inst->dst.subnr);
4739 break;
4740 case BRW_ARF_ACCUMULATOR:
4741 fprintf(file, "acc%d", inst->dst.subnr);
4742 break;
4743 case BRW_ARF_FLAG:
4744 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4745 break;
4746 default:
4747 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4748 break;
4749 }
4750 if (inst->dst.subnr)
4751 fprintf(file, "+%d", inst->dst.subnr);
4752 break;
4753 case IMM:
4754 unreachable("not reached");
4755 }
4756 if (inst->dst.stride != 1)
4757 fprintf(file, "<%u>", inst->dst.stride);
4758 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4759
4760 for (int i = 0; i < inst->sources; i++) {
4761 if (inst->src[i].negate)
4762 fprintf(file, "-");
4763 if (inst->src[i].abs)
4764 fprintf(file, "|");
4765 switch (inst->src[i].file) {
4766 case VGRF:
4767 fprintf(file, "vgrf%d", inst->src[i].nr);
4768 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4769 inst->src[i].subreg_offset)
4770 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4771 inst->src[i].subreg_offset);
4772 break;
4773 case FIXED_GRF:
4774 fprintf(file, "g%d", inst->src[i].nr);
4775 break;
4776 case MRF:
4777 fprintf(file, "***m%d***", inst->src[i].nr);
4778 break;
4779 case ATTR:
4780 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4781 break;
4782 case UNIFORM:
4783 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4784 if (inst->src[i].subreg_offset) {
4785 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4786 inst->src[i].subreg_offset);
4787 }
4788 break;
4789 case BAD_FILE:
4790 fprintf(file, "(null)");
4791 break;
4792 case IMM:
4793 switch (inst->src[i].type) {
4794 case BRW_REGISTER_TYPE_F:
4795 fprintf(file, "%ff", inst->src[i].f);
4796 break;
4797 case BRW_REGISTER_TYPE_W:
4798 case BRW_REGISTER_TYPE_D:
4799 fprintf(file, "%dd", inst->src[i].d);
4800 break;
4801 case BRW_REGISTER_TYPE_UW:
4802 case BRW_REGISTER_TYPE_UD:
4803 fprintf(file, "%uu", inst->src[i].ud);
4804 break;
4805 case BRW_REGISTER_TYPE_VF:
4806 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4807 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4808 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4809 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4810 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4811 break;
4812 default:
4813 fprintf(file, "???");
4814 break;
4815 }
4816 break;
4817 case ARF:
4818 switch (inst->src[i].nr) {
4819 case BRW_ARF_NULL:
4820 fprintf(file, "null");
4821 break;
4822 case BRW_ARF_ADDRESS:
4823 fprintf(file, "a0.%d", inst->src[i].subnr);
4824 break;
4825 case BRW_ARF_ACCUMULATOR:
4826 fprintf(file, "acc%d", inst->src[i].subnr);
4827 break;
4828 case BRW_ARF_FLAG:
4829 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4830 break;
4831 default:
4832 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4833 break;
4834 }
4835 if (inst->src[i].subnr)
4836 fprintf(file, "+%d", inst->src[i].subnr);
4837 break;
4838 }
4839 if (inst->src[i].abs)
4840 fprintf(file, "|");
4841
4842 if (inst->src[i].file != IMM) {
4843 unsigned stride;
4844 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4845 unsigned hstride = inst->src[i].hstride;
4846 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4847 } else {
4848 stride = inst->src[i].stride;
4849 }
4850 if (stride != 1)
4851 fprintf(file, "<%u>", stride);
4852
4853 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4854 }
4855
4856 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4857 fprintf(file, ", ");
4858 }
4859
4860 fprintf(file, " ");
4861
4862 if (inst->force_writemask_all)
4863 fprintf(file, "NoMask ");
4864
4865 if (dispatch_width == 16 && inst->exec_size == 8) {
4866 if (inst->force_sechalf)
4867 fprintf(file, "2ndhalf ");
4868 else
4869 fprintf(file, "1sthalf ");
4870 }
4871
4872 fprintf(file, "\n");
4873 }
4874
4875 /**
4876 * Possibly returns an instruction that set up @param reg.
4877 *
4878 * Sometimes we want to take the result of some expression/variable
4879 * dereference tree and rewrite the instruction generating the result
4880 * of the tree. When processing the tree, we know that the
4881 * instructions generated are all writing temporaries that are dead
4882 * outside of this tree. So, if we have some instructions that write
4883 * a temporary, we're free to point that temp write somewhere else.
4884 *
4885 * Note that this doesn't guarantee that the instruction generated
4886 * only reg -- it might be the size=4 destination of a texture instruction.
4887 */
4888 fs_inst *
4889 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4890 fs_inst *end,
4891 const fs_reg &reg)
4892 {
4893 if (end == start ||
4894 end->is_partial_write() ||
4895 !reg.equals(end->dst)) {
4896 return NULL;
4897 } else {
4898 return end;
4899 }
4900 }
4901
4902 void
4903 fs_visitor::setup_payload_gen6()
4904 {
4905 bool uses_depth =
4906 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4907 unsigned barycentric_interp_modes =
4908 (stage == MESA_SHADER_FRAGMENT) ?
4909 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4910
4911 assert(devinfo->gen >= 6);
4912
4913 /* R0-1: masks, pixel X/Y coordinates. */
4914 payload.num_regs = 2;
4915 /* R2: only for 32-pixel dispatch.*/
4916
4917 /* R3-26: barycentric interpolation coordinates. These appear in the
4918 * same order that they appear in the brw_wm_barycentric_interp_mode
4919 * enum. Each set of coordinates occupies 2 registers if dispatch width
4920 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4921 * appear if they were enabled using the "Barycentric Interpolation
4922 * Mode" bits in WM_STATE.
4923 */
4924 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4925 if (barycentric_interp_modes & (1 << i)) {
4926 payload.barycentric_coord_reg[i] = payload.num_regs;
4927 payload.num_regs += 2;
4928 if (dispatch_width == 16) {
4929 payload.num_regs += 2;
4930 }
4931 }
4932 }
4933
4934 /* R27: interpolated depth if uses source depth */
4935 if (uses_depth) {
4936 payload.source_depth_reg = payload.num_regs;
4937 payload.num_regs++;
4938 if (dispatch_width == 16) {
4939 /* R28: interpolated depth if not SIMD8. */
4940 payload.num_regs++;
4941 }
4942 }
4943 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4944 if (uses_depth) {
4945 payload.source_w_reg = payload.num_regs;
4946 payload.num_regs++;
4947 if (dispatch_width == 16) {
4948 /* R30: interpolated W if not SIMD8. */
4949 payload.num_regs++;
4950 }
4951 }
4952
4953 if (stage == MESA_SHADER_FRAGMENT) {
4954 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4955 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4956 prog_data->uses_pos_offset = key->compute_pos_offset;
4957 /* R31: MSAA position offsets. */
4958 if (prog_data->uses_pos_offset) {
4959 payload.sample_pos_reg = payload.num_regs;
4960 payload.num_regs++;
4961 }
4962 }
4963
4964 /* R32: MSAA input coverage mask */
4965 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4966 assert(devinfo->gen >= 7);
4967 payload.sample_mask_in_reg = payload.num_regs;
4968 payload.num_regs++;
4969 if (dispatch_width == 16) {
4970 /* R33: input coverage mask if not SIMD8. */
4971 payload.num_regs++;
4972 }
4973 }
4974
4975 /* R34-: bary for 32-pixel. */
4976 /* R58-59: interp W for 32-pixel. */
4977
4978 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4979 source_depth_to_render_target = true;
4980 }
4981 }
4982
4983 void
4984 fs_visitor::setup_vs_payload()
4985 {
4986 /* R0: thread header, R1: urb handles */
4987 payload.num_regs = 2;
4988 }
4989
4990 /**
4991 * We are building the local ID push constant data using the simplest possible
4992 * method. We simply push the local IDs directly as they should appear in the
4993 * registers for the uvec3 gl_LocalInvocationID variable.
4994 *
4995 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4996 * registers worth of push constant space.
4997 *
4998 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4999 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
5000 * to coordinated.
5001 *
5002 * FINISHME: There are a few easy optimizations to consider.
5003 *
5004 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
5005 * no need for using push constant space for that dimension.
5006 *
5007 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
5008 * easily use 16-bit words rather than 32-bit dwords in the push constant
5009 * data.
5010 *
5011 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
5012 * conveying the data, and thereby reduce push constant usage.
5013 *
5014 */
5015 void
5016 fs_visitor::setup_gs_payload()
5017 {
5018 assert(stage == MESA_SHADER_GEOMETRY);
5019
5020 struct brw_gs_prog_data *gs_prog_data =
5021 (struct brw_gs_prog_data *) prog_data;
5022 struct brw_vue_prog_data *vue_prog_data =
5023 (struct brw_vue_prog_data *) prog_data;
5024
5025 /* R0: thread header, R1: output URB handles */
5026 payload.num_regs = 2;
5027
5028 if (gs_prog_data->include_primitive_id) {
5029 /* R2: Primitive ID 0..7 */
5030 payload.num_regs++;
5031 }
5032
5033 /* Use a maximum of 32 registers for push-model inputs. */
5034 const unsigned max_push_components = 32;
5035
5036 /* If pushing our inputs would take too many registers, reduce the URB read
5037 * length (which is in HWords, or 8 registers), and resort to pulling.
5038 *
5039 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5040 * have to multiply by VerticesIn to obtain the total storage requirement.
5041 */
5042 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5043 max_push_components) {
5044 gs_prog_data->base.include_vue_handles = true;
5045
5046 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5047 payload.num_regs += nir->info.gs.vertices_in;
5048
5049 vue_prog_data->urb_read_length =
5050 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5051 }
5052 }
5053
5054 void
5055 fs_visitor::setup_cs_payload()
5056 {
5057 assert(devinfo->gen >= 7);
5058 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5059
5060 payload.num_regs = 1;
5061
5062 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5063 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5064 payload.local_invocation_id_reg = payload.num_regs;
5065 payload.num_regs += prog_data->local_invocation_id_regs;
5066 }
5067 }
5068
5069 void
5070 fs_visitor::calculate_register_pressure()
5071 {
5072 invalidate_live_intervals();
5073 calculate_live_intervals();
5074
5075 unsigned num_instructions = 0;
5076 foreach_block(block, cfg)
5077 num_instructions += block->instructions.length();
5078
5079 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5080
5081 for (unsigned reg = 0; reg < alloc.count; reg++) {
5082 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5083 regs_live_at_ip[ip] += alloc.sizes[reg];
5084 }
5085 }
5086
5087 void
5088 fs_visitor::optimize()
5089 {
5090 /* Start by validating the shader we currently have. */
5091 validate();
5092
5093 /* bld is the common builder object pointing at the end of the program we
5094 * used to translate it into i965 IR. For the optimization and lowering
5095 * passes coming next, any code added after the end of the program without
5096 * having explicitly called fs_builder::at() clearly points at a mistake.
5097 * Ideally optimization passes wouldn't be part of the visitor so they
5098 * wouldn't have access to bld at all, but they do, so just in case some
5099 * pass forgets to ask for a location explicitly set it to NULL here to
5100 * make it trip. The dispatch width is initialized to a bogus value to
5101 * make sure that optimizations set the execution controls explicitly to
5102 * match the code they are manipulating instead of relying on the defaults.
5103 */
5104 bld = fs_builder(this, 64);
5105
5106 assign_constant_locations();
5107 lower_constant_loads();
5108
5109 validate();
5110
5111 split_virtual_grfs();
5112 validate();
5113
5114 #define OPT(pass, args...) ({ \
5115 pass_num++; \
5116 bool this_progress = pass(args); \
5117 \
5118 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5119 char filename[64]; \
5120 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5121 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5122 \
5123 backend_shader::dump_instructions(filename); \
5124 } \
5125 \
5126 validate(); \
5127 \
5128 progress = progress || this_progress; \
5129 this_progress; \
5130 })
5131
5132 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5133 char filename[64];
5134 snprintf(filename, 64, "%s%d-%s-00-start",
5135 stage_abbrev, dispatch_width, nir->info.name);
5136
5137 backend_shader::dump_instructions(filename);
5138 }
5139
5140 bool progress = false;
5141 int iteration = 0;
5142 int pass_num = 0;
5143
5144 OPT(lower_simd_width);
5145 OPT(lower_logical_sends);
5146
5147 do {
5148 progress = false;
5149 pass_num = 0;
5150 iteration++;
5151
5152 OPT(remove_duplicate_mrf_writes);
5153
5154 OPT(opt_algebraic);
5155 OPT(opt_cse);
5156 OPT(opt_copy_propagate);
5157 OPT(opt_predicated_break, this);
5158 OPT(opt_cmod_propagation);
5159 OPT(dead_code_eliminate);
5160 OPT(opt_peephole_sel);
5161 OPT(dead_control_flow_eliminate, this);
5162 OPT(opt_register_renaming);
5163 OPT(opt_redundant_discard_jumps);
5164 OPT(opt_saturate_propagation);
5165 OPT(opt_zero_samples);
5166 OPT(register_coalesce);
5167 OPT(compute_to_mrf);
5168 OPT(eliminate_find_live_channel);
5169
5170 OPT(compact_virtual_grfs);
5171 } while (progress);
5172
5173 pass_num = 0;
5174
5175 OPT(opt_sampler_eot);
5176
5177 if (OPT(lower_load_payload)) {
5178 split_virtual_grfs();
5179 OPT(register_coalesce);
5180 OPT(compute_to_mrf);
5181 OPT(dead_code_eliminate);
5182 }
5183
5184 OPT(opt_combine_constants);
5185 OPT(lower_integer_multiplication);
5186
5187 lower_uniform_pull_constant_loads();
5188
5189 validate();
5190 }
5191
5192 /**
5193 * Three source instruction must have a GRF/MRF destination register.
5194 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5195 */
5196 void
5197 fs_visitor::fixup_3src_null_dest()
5198 {
5199 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5200 if (inst->is_3src() && inst->dst.is_null()) {
5201 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5202 inst->dst.type);
5203 }
5204 }
5205 }
5206
5207 void
5208 fs_visitor::allocate_registers()
5209 {
5210 bool allocated_without_spills;
5211
5212 static const enum instruction_scheduler_mode pre_modes[] = {
5213 SCHEDULE_PRE,
5214 SCHEDULE_PRE_NON_LIFO,
5215 SCHEDULE_PRE_LIFO,
5216 };
5217
5218 /* Try each scheduling heuristic to see if it can successfully register
5219 * allocate without spilling. They should be ordered by decreasing
5220 * performance but increasing likelihood of allocating.
5221 */
5222 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5223 schedule_instructions(pre_modes[i]);
5224
5225 if (0) {
5226 assign_regs_trivial();
5227 allocated_without_spills = true;
5228 } else {
5229 allocated_without_spills = assign_regs(false);
5230 }
5231 if (allocated_without_spills)
5232 break;
5233 }
5234
5235 if (!allocated_without_spills) {
5236 /* We assume that any spilling is worse than just dropping back to
5237 * SIMD8. There's probably actually some intermediate point where
5238 * SIMD16 with a couple of spills is still better.
5239 */
5240 if (dispatch_width == 16) {
5241 fail("Failure to register allocate. Reduce number of "
5242 "live scalar values to avoid this.");
5243 } else {
5244 compiler->shader_perf_log(log_data,
5245 "%s shader triggered register spilling. "
5246 "Try reducing the number of live scalar "
5247 "values to improve performance.\n",
5248 stage_name);
5249 }
5250
5251 /* Since we're out of heuristics, just go spill registers until we
5252 * get an allocation.
5253 */
5254 while (!assign_regs(true)) {
5255 if (failed)
5256 break;
5257 }
5258 }
5259
5260 /* This must come after all optimization and register allocation, since
5261 * it inserts dead code that happens to have side effects, and it does
5262 * so based on the actual physical registers in use.
5263 */
5264 insert_gen4_send_dependency_workarounds();
5265
5266 if (failed)
5267 return;
5268
5269 schedule_instructions(SCHEDULE_POST);
5270
5271 if (last_scratch > 0)
5272 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5273 }
5274
5275 bool
5276 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5277 {
5278 assert(stage == MESA_SHADER_VERTEX);
5279
5280 setup_vs_payload();
5281
5282 if (shader_time_index >= 0)
5283 emit_shader_time_begin();
5284
5285 emit_nir_code();
5286
5287 if (failed)
5288 return false;
5289
5290 compute_clip_distance(clip_planes);
5291
5292 emit_urb_writes();
5293
5294 if (shader_time_index >= 0)
5295 emit_shader_time_end();
5296
5297 calculate_cfg();
5298
5299 optimize();
5300
5301 assign_curb_setup();
5302 assign_vs_urb_setup();
5303
5304 fixup_3src_null_dest();
5305 allocate_registers();
5306
5307 return !failed;
5308 }
5309
5310 bool
5311 fs_visitor::run_tes()
5312 {
5313 assert(stage == MESA_SHADER_TESS_EVAL);
5314
5315 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5316 payload.num_regs = 5;
5317
5318 if (shader_time_index >= 0)
5319 emit_shader_time_begin();
5320
5321 emit_nir_code();
5322
5323 if (failed)
5324 return false;
5325
5326 emit_urb_writes();
5327
5328 if (shader_time_index >= 0)
5329 emit_shader_time_end();
5330
5331 calculate_cfg();
5332
5333 optimize();
5334
5335 assign_curb_setup();
5336 assign_tes_urb_setup();
5337
5338 fixup_3src_null_dest();
5339 allocate_registers();
5340
5341 return !failed;
5342 }
5343
5344 bool
5345 fs_visitor::run_gs()
5346 {
5347 assert(stage == MESA_SHADER_GEOMETRY);
5348
5349 setup_gs_payload();
5350
5351 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5352
5353 if (gs_compile->control_data_header_size_bits > 0) {
5354 /* Create a VGRF to store accumulated control data bits. */
5355 this->control_data_bits = vgrf(glsl_type::uint_type);
5356
5357 /* If we're outputting more than 32 control data bits, then EmitVertex()
5358 * will set control_data_bits to 0 after emitting the first vertex.
5359 * Otherwise, we need to initialize it to 0 here.
5360 */
5361 if (gs_compile->control_data_header_size_bits <= 32) {
5362 const fs_builder abld = bld.annotate("initialize control data bits");
5363 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5364 }
5365 }
5366
5367 if (shader_time_index >= 0)
5368 emit_shader_time_begin();
5369
5370 emit_nir_code();
5371
5372 emit_gs_thread_end();
5373
5374 if (shader_time_index >= 0)
5375 emit_shader_time_end();
5376
5377 if (failed)
5378 return false;
5379
5380 calculate_cfg();
5381
5382 optimize();
5383
5384 assign_curb_setup();
5385 assign_gs_urb_setup();
5386
5387 fixup_3src_null_dest();
5388 allocate_registers();
5389
5390 return !failed;
5391 }
5392
5393 bool
5394 fs_visitor::run_fs(bool do_rep_send)
5395 {
5396 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5397 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5398
5399 assert(stage == MESA_SHADER_FRAGMENT);
5400
5401 if (devinfo->gen >= 6)
5402 setup_payload_gen6();
5403 else
5404 setup_payload_gen4();
5405
5406 if (0) {
5407 emit_dummy_fs();
5408 } else if (do_rep_send) {
5409 assert(dispatch_width == 16);
5410 emit_repclear_shader();
5411 } else {
5412 if (shader_time_index >= 0)
5413 emit_shader_time_begin();
5414
5415 calculate_urb_setup();
5416 if (nir->info.inputs_read > 0) {
5417 if (devinfo->gen < 6)
5418 emit_interpolation_setup_gen4();
5419 else
5420 emit_interpolation_setup_gen6();
5421 }
5422
5423 /* We handle discards by keeping track of the still-live pixels in f0.1.
5424 * Initialize it with the dispatched pixels.
5425 */
5426 if (wm_prog_data->uses_kill) {
5427 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5428 discard_init->flag_subreg = 1;
5429 }
5430
5431 /* Generate FS IR for main(). (the visitor only descends into
5432 * functions called "main").
5433 */
5434 emit_nir_code();
5435
5436 if (failed)
5437 return false;
5438
5439 if (wm_prog_data->uses_kill)
5440 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5441
5442 if (wm_key->alpha_test_func)
5443 emit_alpha_test();
5444
5445 emit_fb_writes();
5446
5447 if (shader_time_index >= 0)
5448 emit_shader_time_end();
5449
5450 calculate_cfg();
5451
5452 optimize();
5453
5454 assign_curb_setup();
5455 assign_urb_setup();
5456
5457 fixup_3src_null_dest();
5458 allocate_registers();
5459
5460 if (failed)
5461 return false;
5462 }
5463
5464 if (dispatch_width == 8)
5465 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5466 else
5467 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5468
5469 return !failed;
5470 }
5471
5472 bool
5473 fs_visitor::run_cs()
5474 {
5475 assert(stage == MESA_SHADER_COMPUTE);
5476
5477 setup_cs_payload();
5478
5479 if (shader_time_index >= 0)
5480 emit_shader_time_begin();
5481
5482 emit_nir_code();
5483
5484 if (failed)
5485 return false;
5486
5487 emit_cs_terminate();
5488
5489 if (shader_time_index >= 0)
5490 emit_shader_time_end();
5491
5492 calculate_cfg();
5493
5494 optimize();
5495
5496 assign_curb_setup();
5497
5498 fixup_3src_null_dest();
5499 allocate_registers();
5500
5501 if (failed)
5502 return false;
5503
5504 return !failed;
5505 }
5506
5507 /**
5508 * Return a bitfield where bit n is set if barycentric interpolation mode n
5509 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5510 */
5511 static unsigned
5512 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5513 bool shade_model_flat,
5514 bool persample_shading,
5515 const nir_shader *shader)
5516 {
5517 unsigned barycentric_interp_modes = 0;
5518
5519 nir_foreach_variable(var, &shader->inputs) {
5520 enum glsl_interp_qualifier interp_qualifier =
5521 (enum glsl_interp_qualifier)var->data.interpolation;
5522 bool is_centroid = var->data.centroid && !persample_shading;
5523 bool is_sample = var->data.sample || persample_shading;
5524 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5525 (var->data.location == VARYING_SLOT_COL1);
5526
5527 /* Ignore WPOS and FACE, because they don't require interpolation. */
5528 if (var->data.location == VARYING_SLOT_POS ||
5529 var->data.location == VARYING_SLOT_FACE)
5530 continue;
5531
5532 /* Determine the set (or sets) of barycentric coordinates needed to
5533 * interpolate this variable. Note that when
5534 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5535 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5536 * for lit pixels, so we need both sets of barycentric coordinates.
5537 */
5538 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5539 if (is_centroid) {
5540 barycentric_interp_modes |=
5541 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5542 } else if (is_sample) {
5543 barycentric_interp_modes |=
5544 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5545 }
5546 if ((!is_centroid && !is_sample) ||
5547 devinfo->needs_unlit_centroid_workaround) {
5548 barycentric_interp_modes |=
5549 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5550 }
5551 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5552 (!(shade_model_flat && is_gl_Color) &&
5553 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5554 if (is_centroid) {
5555 barycentric_interp_modes |=
5556 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5557 } else if (is_sample) {
5558 barycentric_interp_modes |=
5559 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5560 }
5561 if ((!is_centroid && !is_sample) ||
5562 devinfo->needs_unlit_centroid_workaround) {
5563 barycentric_interp_modes |=
5564 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5565 }
5566 }
5567 }
5568
5569 return barycentric_interp_modes;
5570 }
5571
5572 static uint8_t
5573 computed_depth_mode(const nir_shader *shader)
5574 {
5575 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5576 switch (shader->info.fs.depth_layout) {
5577 case FRAG_DEPTH_LAYOUT_NONE:
5578 case FRAG_DEPTH_LAYOUT_ANY:
5579 return BRW_PSCDEPTH_ON;
5580 case FRAG_DEPTH_LAYOUT_GREATER:
5581 return BRW_PSCDEPTH_ON_GE;
5582 case FRAG_DEPTH_LAYOUT_LESS:
5583 return BRW_PSCDEPTH_ON_LE;
5584 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5585 return BRW_PSCDEPTH_OFF;
5586 }
5587 }
5588 return BRW_PSCDEPTH_OFF;
5589 }
5590
5591 const unsigned *
5592 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5593 void *mem_ctx,
5594 const struct brw_wm_prog_key *key,
5595 struct brw_wm_prog_data *prog_data,
5596 const nir_shader *src_shader,
5597 struct gl_program *prog,
5598 int shader_time_index8, int shader_time_index16,
5599 bool use_rep_send,
5600 unsigned *final_assembly_size,
5601 char **error_str)
5602 {
5603 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5604 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5605 true);
5606 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5607
5608 /* key->alpha_test_func means simulating alpha testing via discards,
5609 * so the shader definitely kills pixels.
5610 */
5611 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5612 prog_data->uses_omask =
5613 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5614 prog_data->computed_depth_mode = computed_depth_mode(shader);
5615 prog_data->computed_stencil =
5616 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5617
5618 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5619
5620 prog_data->barycentric_interp_modes =
5621 brw_compute_barycentric_interp_modes(compiler->devinfo,
5622 key->flat_shade,
5623 key->persample_shading,
5624 shader);
5625
5626 fs_visitor v(compiler, log_data, mem_ctx, key,
5627 &prog_data->base, prog, shader, 8,
5628 shader_time_index8);
5629 if (!v.run_fs(false /* do_rep_send */)) {
5630 if (error_str)
5631 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5632
5633 return NULL;
5634 }
5635
5636 cfg_t *simd16_cfg = NULL;
5637 fs_visitor v2(compiler, log_data, mem_ctx, key,
5638 &prog_data->base, prog, shader, 16,
5639 shader_time_index16);
5640 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5641 if (!v.simd16_unsupported) {
5642 /* Try a SIMD16 compile */
5643 v2.import_uniforms(&v);
5644 if (!v2.run_fs(use_rep_send)) {
5645 compiler->shader_perf_log(log_data,
5646 "SIMD16 shader failed to compile: %s",
5647 v2.fail_msg);
5648 } else {
5649 simd16_cfg = v2.cfg;
5650 }
5651 }
5652 }
5653
5654 cfg_t *simd8_cfg;
5655 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5656 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5657 simd8_cfg = NULL;
5658 prog_data->no_8 = true;
5659 } else {
5660 simd8_cfg = v.cfg;
5661 prog_data->no_8 = false;
5662 }
5663
5664 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5665 v.promoted_constants, v.runtime_check_aads_emit,
5666 MESA_SHADER_FRAGMENT);
5667
5668 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5669 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5670 shader->info.label ? shader->info.label :
5671 "unnamed",
5672 shader->info.name));
5673 }
5674
5675 if (simd8_cfg)
5676 g.generate_code(simd8_cfg, 8);
5677 if (simd16_cfg)
5678 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5679
5680 return g.get_assembly(final_assembly_size);
5681 }
5682
5683 fs_reg *
5684 fs_visitor::emit_cs_local_invocation_id_setup()
5685 {
5686 assert(stage == MESA_SHADER_COMPUTE);
5687
5688 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5689
5690 struct brw_reg src =
5691 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5692 src = retype(src, BRW_REGISTER_TYPE_UD);
5693 bld.MOV(*reg, src);
5694 src.nr += dispatch_width / 8;
5695 bld.MOV(offset(*reg, bld, 1), src);
5696 src.nr += dispatch_width / 8;
5697 bld.MOV(offset(*reg, bld, 2), src);
5698
5699 return reg;
5700 }
5701
5702 fs_reg *
5703 fs_visitor::emit_cs_work_group_id_setup()
5704 {
5705 assert(stage == MESA_SHADER_COMPUTE);
5706
5707 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5708
5709 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5710 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5711 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5712
5713 bld.MOV(*reg, r0_1);
5714 bld.MOV(offset(*reg, bld, 1), r0_6);
5715 bld.MOV(offset(*reg, bld, 2), r0_7);
5716
5717 return reg;
5718 }
5719
5720 const unsigned *
5721 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5722 void *mem_ctx,
5723 const struct brw_cs_prog_key *key,
5724 struct brw_cs_prog_data *prog_data,
5725 const nir_shader *src_shader,
5726 int shader_time_index,
5727 unsigned *final_assembly_size,
5728 char **error_str)
5729 {
5730 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5731 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5732 true);
5733 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5734
5735 prog_data->local_size[0] = shader->info.cs.local_size[0];
5736 prog_data->local_size[1] = shader->info.cs.local_size[1];
5737 prog_data->local_size[2] = shader->info.cs.local_size[2];
5738 unsigned local_workgroup_size =
5739 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5740 shader->info.cs.local_size[2];
5741
5742 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5743
5744 cfg_t *cfg = NULL;
5745 const char *fail_msg = NULL;
5746
5747 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5748 */
5749 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5750 NULL, /* Never used in core profile */
5751 shader, 8, shader_time_index);
5752 if (!v8.run_cs()) {
5753 fail_msg = v8.fail_msg;
5754 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5755 cfg = v8.cfg;
5756 prog_data->simd_size = 8;
5757 }
5758
5759 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5760 NULL, /* Never used in core profile */
5761 shader, 16, shader_time_index);
5762 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5763 !fail_msg && !v8.simd16_unsupported &&
5764 local_workgroup_size <= 16 * max_cs_threads) {
5765 /* Try a SIMD16 compile */
5766 v16.import_uniforms(&v8);
5767 if (!v16.run_cs()) {
5768 compiler->shader_perf_log(log_data,
5769 "SIMD16 shader failed to compile: %s",
5770 v16.fail_msg);
5771 if (!cfg) {
5772 fail_msg =
5773 "Couldn't generate SIMD16 program and not "
5774 "enough threads for SIMD8";
5775 }
5776 } else {
5777 cfg = v16.cfg;
5778 prog_data->simd_size = 16;
5779 }
5780 }
5781
5782 if (unlikely(cfg == NULL)) {
5783 assert(fail_msg);
5784 if (error_str)
5785 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5786
5787 return NULL;
5788 }
5789
5790 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5791 v8.promoted_constants, v8.runtime_check_aads_emit,
5792 MESA_SHADER_COMPUTE);
5793 if (INTEL_DEBUG & DEBUG_CS) {
5794 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5795 shader->info.label ? shader->info.label :
5796 "unnamed",
5797 shader->info.name);
5798 g.enable_debug(name);
5799 }
5800
5801 g.generate_code(cfg, prog_data->simd_size);
5802
5803 return g.get_assembly(final_assembly_size);
5804 }
5805
5806 void
5807 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5808 void *buffer, uint32_t threads, uint32_t stride)
5809 {
5810 if (prog_data->local_invocation_id_regs == 0)
5811 return;
5812
5813 /* 'stride' should be an integer number of registers, that is, a multiple
5814 * of 32 bytes.
5815 */
5816 assert(stride % 32 == 0);
5817
5818 unsigned x = 0, y = 0, z = 0;
5819 for (unsigned t = 0; t < threads; t++) {
5820 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5821
5822 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5823 param[0 * prog_data->simd_size + i] = x;
5824 param[1 * prog_data->simd_size + i] = y;
5825 param[2 * prog_data->simd_size + i] = z;
5826
5827 x++;
5828 if (x == prog_data->local_size[0]) {
5829 x = 0;
5830 y++;
5831 if (y == prog_data->local_size[1]) {
5832 y = 0;
5833 z++;
5834 if (z == prog_data->local_size[2])
5835 z = 0;
5836 }
5837 }
5838 }
5839 }
5840 }