i965: Combine register file field.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cs.h"
46 #include "brw_vec4_gs_visitor.h"
47 #include "brw_cfg.h"
48 #include "brw_dead_control_flow.h"
49 #include "main/uniforms.h"
50 #include "brw_fs_live_variables.h"
51 #include "glsl/nir/glsl_types.h"
52 #include "program/sampler.h"
53
54 using namespace brw;
55
56 void
57 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
58 const fs_reg *src, unsigned sources)
59 {
60 memset(this, 0, sizeof(*this));
61
62 this->src = new fs_reg[MAX2(sources, 3)];
63 for (unsigned i = 0; i < sources; i++)
64 this->src[i] = src[i];
65
66 this->opcode = opcode;
67 this->dst = dst;
68 this->sources = sources;
69 this->exec_size = exec_size;
70
71 assert(dst.file != IMM && dst.file != UNIFORM);
72
73 assert(this->exec_size != 0);
74
75 this->conditional_mod = BRW_CONDITIONAL_NONE;
76
77 /* This will be the case for almost all instructions. */
78 switch (dst.file) {
79 case VGRF:
80 case ARF:
81 case FIXED_GRF:
82 case MRF:
83 case ATTR:
84 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
85 REG_SIZE);
86 break;
87 case BAD_FILE:
88 this->regs_written = 0;
89 break;
90 case IMM:
91 case UNIFORM:
92 unreachable("Invalid destination register file");
93 }
94
95 this->writes_accumulator = false;
96 }
97
98 fs_inst::fs_inst()
99 {
100 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
101 }
102
103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
104 {
105 init(opcode, exec_size, reg_undef, NULL, 0);
106 }
107
108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
109 {
110 init(opcode, exec_size, dst, NULL, 0);
111 }
112
113 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
114 const fs_reg &src0)
115 {
116 const fs_reg src[1] = { src0 };
117 init(opcode, exec_size, dst, src, 1);
118 }
119
120 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
121 const fs_reg &src0, const fs_reg &src1)
122 {
123 const fs_reg src[2] = { src0, src1 };
124 init(opcode, exec_size, dst, src, 2);
125 }
126
127 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
128 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
129 {
130 const fs_reg src[3] = { src0, src1, src2 };
131 init(opcode, exec_size, dst, src, 3);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
135 const fs_reg src[], unsigned sources)
136 {
137 init(opcode, exec_width, dst, src, sources);
138 }
139
140 fs_inst::fs_inst(const fs_inst &that)
141 {
142 memcpy(this, &that, sizeof(that));
143
144 this->src = new fs_reg[MAX2(that.sources, 3)];
145
146 for (unsigned i = 0; i < that.sources; i++)
147 this->src[i] = that.src[i];
148 }
149
150 fs_inst::~fs_inst()
151 {
152 delete[] this->src;
153 }
154
155 void
156 fs_inst::resize_sources(uint8_t num_sources)
157 {
158 if (this->sources != num_sources) {
159 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
160
161 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
162 src[i] = this->src[i];
163
164 delete[] this->src;
165 this->src = src;
166 this->sources = num_sources;
167 }
168 }
169
170 void
171 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
172 const fs_reg &dst,
173 const fs_reg &surf_index,
174 const fs_reg &varying_offset,
175 uint32_t const_offset)
176 {
177 /* We have our constant surface use a pitch of 4 bytes, so our index can
178 * be any component of a vector, and then we load 4 contiguous
179 * components starting from that.
180 *
181 * We break down the const_offset to a portion added to the variable
182 * offset and a portion done using reg_offset, which means that if you
183 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
184 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
185 * CSE can later notice that those loads are all the same and eliminate
186 * the redundant ones.
187 */
188 fs_reg vec4_offset = vgrf(glsl_type::int_type);
189 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
190
191 int scale = 1;
192 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
193 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
194 * u, v, r) as parameters, or we can just use the SIMD16 message
195 * consisting of (header, u). We choose the second, at the cost of a
196 * longer return length.
197 */
198 scale = 2;
199 }
200
201 enum opcode op;
202 if (devinfo->gen >= 7)
203 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
204 else
205 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
206
207 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
208 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
209 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
210 inst->regs_written = regs_written;
211
212 if (devinfo->gen < 7) {
213 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
214 inst->header_size = 1;
215 if (devinfo->gen == 4)
216 inst->mlen = 3;
217 else
218 inst->mlen = 1 + bld.dispatch_width() / 8;
219 }
220
221 bld.MOV(dst, offset(vec4_result, bld, (const_offset & 3) * scale));
222 }
223
224 /**
225 * A helper for MOV generation for fixing up broken hardware SEND dependency
226 * handling.
227 */
228 void
229 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
230 {
231 /* The caller always wants uncompressed to emit the minimal extra
232 * dependencies, and to avoid having to deal with aligning its regs to 2.
233 */
234 const fs_builder ubld = bld.annotate("send dependency resolve")
235 .half(0);
236
237 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
238 }
239
240 bool
241 fs_inst::equals(fs_inst *inst) const
242 {
243 return (opcode == inst->opcode &&
244 dst.equals(inst->dst) &&
245 src[0].equals(inst->src[0]) &&
246 src[1].equals(inst->src[1]) &&
247 src[2].equals(inst->src[2]) &&
248 saturate == inst->saturate &&
249 predicate == inst->predicate &&
250 conditional_mod == inst->conditional_mod &&
251 mlen == inst->mlen &&
252 base_mrf == inst->base_mrf &&
253 target == inst->target &&
254 eot == inst->eot &&
255 header_size == inst->header_size &&
256 shadow_compare == inst->shadow_compare &&
257 exec_size == inst->exec_size &&
258 offset == inst->offset);
259 }
260
261 bool
262 fs_inst::overwrites_reg(const fs_reg &reg) const
263 {
264 return reg.in_range(dst, regs_written);
265 }
266
267 bool
268 fs_inst::is_send_from_grf() const
269 {
270 switch (opcode) {
271 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
274 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
275 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
276 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
277 case SHADER_OPCODE_UNTYPED_ATOMIC:
278 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
279 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
280 case SHADER_OPCODE_TYPED_ATOMIC:
281 case SHADER_OPCODE_TYPED_SURFACE_READ:
282 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
283 case SHADER_OPCODE_URB_WRITE_SIMD8:
284 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
285 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
286 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
287 case SHADER_OPCODE_URB_READ_SIMD8:
288 return true;
289 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
290 return src[1].file == VGRF;
291 case FS_OPCODE_FB_WRITE:
292 return src[0].file == VGRF;
293 default:
294 if (is_tex())
295 return src[0].file == VGRF;
296
297 return false;
298 }
299 }
300
301 bool
302 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
303 {
304 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
305 return false;
306
307 fs_reg reg = this->src[0];
308 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
309 return false;
310
311 if (grf_alloc.sizes[reg.nr] != this->regs_written)
312 return false;
313
314 for (int i = 0; i < this->sources; i++) {
315 reg.type = this->src[i].type;
316 if (!this->src[i].equals(reg))
317 return false;
318
319 if (i < this->header_size) {
320 reg.reg_offset += 1;
321 } else {
322 reg.reg_offset += this->exec_size / 8;
323 }
324 }
325
326 return true;
327 }
328
329 bool
330 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
331 {
332 if (devinfo->gen == 6 && is_math())
333 return false;
334
335 if (is_send_from_grf())
336 return false;
337
338 if (!backend_instruction::can_do_source_mods())
339 return false;
340
341 return true;
342 }
343
344 bool
345 fs_inst::can_change_types() const
346 {
347 return dst.type == src[0].type &&
348 !src[0].abs && !src[0].negate && !saturate &&
349 (opcode == BRW_OPCODE_MOV ||
350 (opcode == BRW_OPCODE_SEL &&
351 dst.type == src[1].type &&
352 predicate != BRW_PREDICATE_NONE &&
353 !src[1].abs && !src[1].negate));
354 }
355
356 bool
357 fs_inst::has_side_effects() const
358 {
359 return this->eot || backend_instruction::has_side_effects();
360 }
361
362 void
363 fs_reg::init()
364 {
365 memset(this, 0, sizeof(*this));
366 stride = 1;
367 }
368
369 /** Generic unset register constructor. */
370 fs_reg::fs_reg()
371 {
372 init();
373 this->file = BAD_FILE;
374 }
375
376 /** Immediate value constructor. */
377 fs_reg::fs_reg(float f)
378 {
379 init();
380 this->file = IMM;
381 this->type = BRW_REGISTER_TYPE_F;
382 this->stride = 0;
383 this->f = f;
384 }
385
386 /** Immediate value constructor. */
387 fs_reg::fs_reg(int32_t i)
388 {
389 init();
390 this->file = IMM;
391 this->type = BRW_REGISTER_TYPE_D;
392 this->stride = 0;
393 this->d = i;
394 }
395
396 /** Immediate value constructor. */
397 fs_reg::fs_reg(uint32_t u)
398 {
399 init();
400 this->file = IMM;
401 this->type = BRW_REGISTER_TYPE_UD;
402 this->stride = 0;
403 this->ud = u;
404 }
405
406 /** Vector float immediate value constructor. */
407 fs_reg::fs_reg(uint8_t vf[4])
408 {
409 init();
410 this->file = IMM;
411 this->type = BRW_REGISTER_TYPE_VF;
412 memcpy(&this->ud, vf, sizeof(unsigned));
413 }
414
415 /** Vector float immediate value constructor. */
416 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_VF;
421 this->ud = (vf0 << 0) | (vf1 << 8) | (vf2 << 16) | (vf3 << 24);
422 }
423
424 fs_reg::fs_reg(struct brw_reg reg) :
425 backend_reg(reg)
426 {
427 this->reg_offset = 0;
428 this->subreg_offset = 0;
429 this->reladdr = NULL;
430 this->stride = 1;
431 if (this->file == IMM &&
432 (this->type != BRW_REGISTER_TYPE_V &&
433 this->type != BRW_REGISTER_TYPE_UV &&
434 this->type != BRW_REGISTER_TYPE_VF)) {
435 this->stride = 0;
436 }
437 }
438
439 bool
440 fs_reg::equals(const fs_reg &r) const
441 {
442 return (memcmp((brw_reg *)this, (brw_reg *)&r, sizeof(brw_reg)) == 0 &&
443 reg_offset == r.reg_offset &&
444 subreg_offset == r.subreg_offset &&
445 !reladdr && !r.reladdr &&
446 stride == r.stride);
447 }
448
449 fs_reg &
450 fs_reg::set_smear(unsigned subreg)
451 {
452 assert(file != ARF && file != FIXED_GRF && file != IMM);
453 subreg_offset = subreg * type_sz(type);
454 stride = 0;
455 return *this;
456 }
457
458 bool
459 fs_reg::is_contiguous() const
460 {
461 return stride == 1;
462 }
463
464 unsigned
465 fs_reg::component_size(unsigned width) const
466 {
467 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
468 hstride == 0 ? 0 :
469 1 << (hstride - 1));
470 return MAX2(width * stride, 1) * type_sz(type);
471 }
472
473 extern "C" int
474 type_size_scalar(const struct glsl_type *type)
475 {
476 unsigned int size, i;
477
478 switch (type->base_type) {
479 case GLSL_TYPE_UINT:
480 case GLSL_TYPE_INT:
481 case GLSL_TYPE_FLOAT:
482 case GLSL_TYPE_BOOL:
483 return type->components();
484 case GLSL_TYPE_ARRAY:
485 return type_size_scalar(type->fields.array) * type->length;
486 case GLSL_TYPE_STRUCT:
487 size = 0;
488 for (i = 0; i < type->length; i++) {
489 size += type_size_scalar(type->fields.structure[i].type);
490 }
491 return size;
492 case GLSL_TYPE_SAMPLER:
493 /* Samplers take up no register space, since they're baked in at
494 * link time.
495 */
496 return 0;
497 case GLSL_TYPE_ATOMIC_UINT:
498 return 0;
499 case GLSL_TYPE_SUBROUTINE:
500 return 1;
501 case GLSL_TYPE_IMAGE:
502 return BRW_IMAGE_PARAM_SIZE;
503 case GLSL_TYPE_VOID:
504 case GLSL_TYPE_ERROR:
505 case GLSL_TYPE_INTERFACE:
506 case GLSL_TYPE_DOUBLE:
507 unreachable("not reached");
508 }
509
510 return 0;
511 }
512
513 /**
514 * Returns the number of scalar components needed to store type, assuming
515 * that vectors are padded out to vec4.
516 *
517 * This has the packing rules of type_size_vec4(), but counts components
518 * similar to type_size_scalar().
519 */
520 extern "C" int
521 type_size_vec4_times_4(const struct glsl_type *type)
522 {
523 return 4 * type_size_vec4(type);
524 }
525
526 /**
527 * Create a MOV to read the timestamp register.
528 *
529 * The caller is responsible for emitting the MOV. The return value is
530 * the destination of the MOV, with extra parameters set.
531 */
532 fs_reg
533 fs_visitor::get_timestamp(const fs_builder &bld)
534 {
535 assert(devinfo->gen >= 7);
536
537 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
538 BRW_ARF_TIMESTAMP,
539 0),
540 BRW_REGISTER_TYPE_UD));
541
542 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
543
544 /* We want to read the 3 fields we care about even if it's not enabled in
545 * the dispatch.
546 */
547 bld.group(4, 0).exec_all().MOV(dst, ts);
548
549 return dst;
550 }
551
552 void
553 fs_visitor::emit_shader_time_begin()
554 {
555 shader_start_time = get_timestamp(bld.annotate("shader time start"));
556
557 /* We want only the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 */
563 shader_start_time.set_smear(0);
564 }
565
566 void
567 fs_visitor::emit_shader_time_end()
568 {
569 /* Insert our code just before the final SEND with EOT. */
570 exec_node *end = this->instructions.get_tail();
571 assert(end && ((fs_inst *) end)->eot);
572 const fs_builder ibld = bld.annotate("shader time end")
573 .exec_all().at(NULL, end);
574
575 fs_reg shader_end_time = get_timestamp(ibld);
576
577 /* We only use the low 32 bits of the timestamp - see
578 * emit_shader_time_begin()).
579 *
580 * We could also check if render P-states have changed (or anything
581 * else that might disrupt timing) by setting smear to 2 and checking if
582 * that field is != 0.
583 */
584 shader_end_time.set_smear(0);
585
586 /* Check that there weren't any timestamp reset events (assuming these
587 * were the only two timestamp reads that happened).
588 */
589 fs_reg reset = shader_end_time;
590 reset.set_smear(2);
591 set_condmod(BRW_CONDITIONAL_Z,
592 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
593 ibld.IF(BRW_PREDICATE_NORMAL);
594
595 fs_reg start = shader_start_time;
596 start.negate = true;
597 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
598 diff.set_smear(0);
599
600 const fs_builder cbld = ibld.group(1, 0);
601 cbld.group(1, 0).ADD(diff, start, shader_end_time);
602
603 /* If there were no instructions between the two timestamp gets, the diff
604 * is 2 cycles. Remove that overhead, so I can forget about that when
605 * trying to determine the time taken for single instructions.
606 */
607 cbld.ADD(diff, diff, fs_reg(-2u));
608 SHADER_TIME_ADD(cbld, 0, diff);
609 SHADER_TIME_ADD(cbld, 1, fs_reg(1u));
610 ibld.emit(BRW_OPCODE_ELSE);
611 SHADER_TIME_ADD(cbld, 2, fs_reg(1u));
612 ibld.emit(BRW_OPCODE_ENDIF);
613 }
614
615 void
616 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
617 int shader_time_subindex,
618 fs_reg value)
619 {
620 int index = shader_time_index * 3 + shader_time_subindex;
621 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
622
623 fs_reg payload;
624 if (dispatch_width == 8)
625 payload = vgrf(glsl_type::uvec2_type);
626 else
627 payload = vgrf(glsl_type::uint_type);
628
629 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
630 }
631
632 void
633 fs_visitor::vfail(const char *format, va_list va)
634 {
635 char *msg;
636
637 if (failed)
638 return;
639
640 failed = true;
641
642 msg = ralloc_vasprintf(mem_ctx, format, va);
643 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
644
645 this->fail_msg = msg;
646
647 if (debug_enabled) {
648 fprintf(stderr, "%s", msg);
649 }
650 }
651
652 void
653 fs_visitor::fail(const char *format, ...)
654 {
655 va_list va;
656
657 va_start(va, format);
658 vfail(format, va);
659 va_end(va);
660 }
661
662 /**
663 * Mark this program as impossible to compile in SIMD16 mode.
664 *
665 * During the SIMD8 compile (which happens first), we can detect and flag
666 * things that are unsupported in SIMD16 mode, so the compiler can skip
667 * the SIMD16 compile altogether.
668 *
669 * During a SIMD16 compile (if one happens anyway), this just calls fail().
670 */
671 void
672 fs_visitor::no16(const char *msg)
673 {
674 if (dispatch_width == 16) {
675 fail("%s", msg);
676 } else {
677 simd16_unsupported = true;
678
679 compiler->shader_perf_log(log_data,
680 "SIMD16 shader failed to compile: %s", msg);
681 }
682 }
683
684 /**
685 * Returns true if the instruction has a flag that means it won't
686 * update an entire destination register.
687 *
688 * For example, dead code elimination and live variable analysis want to know
689 * when a write to a variable screens off any preceding values that were in
690 * it.
691 */
692 bool
693 fs_inst::is_partial_write() const
694 {
695 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
696 (this->exec_size * type_sz(this->dst.type)) < 32 ||
697 !this->dst.is_contiguous());
698 }
699
700 unsigned
701 fs_inst::components_read(unsigned i) const
702 {
703 switch (opcode) {
704 case FS_OPCODE_LINTERP:
705 if (i == 0)
706 return 2;
707 else
708 return 1;
709
710 case FS_OPCODE_PIXEL_X:
711 case FS_OPCODE_PIXEL_Y:
712 assert(i == 0);
713 return 2;
714
715 case FS_OPCODE_FB_WRITE_LOGICAL:
716 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
717 /* First/second FB write color. */
718 if (i < 2)
719 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
720 else
721 return 1;
722
723 case SHADER_OPCODE_TEX_LOGICAL:
724 case SHADER_OPCODE_TXD_LOGICAL:
725 case SHADER_OPCODE_TXF_LOGICAL:
726 case SHADER_OPCODE_TXL_LOGICAL:
727 case SHADER_OPCODE_TXS_LOGICAL:
728 case FS_OPCODE_TXB_LOGICAL:
729 case SHADER_OPCODE_TXF_CMS_LOGICAL:
730 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
731 case SHADER_OPCODE_TXF_UMS_LOGICAL:
732 case SHADER_OPCODE_TXF_MCS_LOGICAL:
733 case SHADER_OPCODE_LOD_LOGICAL:
734 case SHADER_OPCODE_TG4_LOGICAL:
735 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
736 assert(src[8].file == IMM && src[9].file == IMM);
737 /* Texture coordinates. */
738 if (i == 0)
739 return src[8].ud;
740 /* Texture derivatives. */
741 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
742 return src[9].ud;
743 /* Texture offset. */
744 else if (i == 7)
745 return 2;
746 /* MCS */
747 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
748 return 2;
749 else
750 return 1;
751
752 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
753 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
754 assert(src[3].file == IMM);
755 /* Surface coordinates. */
756 if (i == 0)
757 return src[3].ud;
758 /* Surface operation source (ignored for reads). */
759 else if (i == 1)
760 return 0;
761 else
762 return 1;
763
764 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
765 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
766 assert(src[3].file == IMM &&
767 src[4].file == IMM);
768 /* Surface coordinates. */
769 if (i == 0)
770 return src[3].ud;
771 /* Surface operation source. */
772 else if (i == 1)
773 return src[4].ud;
774 else
775 return 1;
776
777 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
778 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
779 assert(src[3].file == IMM &&
780 src[4].file == IMM);
781 const unsigned op = src[4].ud;
782 /* Surface coordinates. */
783 if (i == 0)
784 return src[3].ud;
785 /* Surface operation source. */
786 else if (i == 1 && op == BRW_AOP_CMPWR)
787 return 2;
788 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
789 op == BRW_AOP_PREDEC))
790 return 0;
791 else
792 return 1;
793 }
794
795 default:
796 return 1;
797 }
798 }
799
800 int
801 fs_inst::regs_read(int arg) const
802 {
803 switch (opcode) {
804 case FS_OPCODE_FB_WRITE:
805 case SHADER_OPCODE_URB_WRITE_SIMD8:
806 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
807 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
809 case SHADER_OPCODE_URB_READ_SIMD8:
810 case SHADER_OPCODE_UNTYPED_ATOMIC:
811 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
812 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
813 case SHADER_OPCODE_TYPED_ATOMIC:
814 case SHADER_OPCODE_TYPED_SURFACE_READ:
815 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
816 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
817 if (arg == 0)
818 return mlen;
819 break;
820
821 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
822 /* The payload is actually stored in src1 */
823 if (arg == 1)
824 return mlen;
825 break;
826
827 case FS_OPCODE_LINTERP:
828 if (arg == 1)
829 return 1;
830 break;
831
832 case SHADER_OPCODE_LOAD_PAYLOAD:
833 if (arg < this->header_size)
834 return 1;
835 break;
836
837 case CS_OPCODE_CS_TERMINATE:
838 case SHADER_OPCODE_BARRIER:
839 return 1;
840
841 default:
842 if (is_tex() && arg == 0 && src[0].file == VGRF)
843 return mlen;
844 break;
845 }
846
847 switch (src[arg].file) {
848 case BAD_FILE:
849 return 0;
850 case UNIFORM:
851 case IMM:
852 return 1;
853 case ARF:
854 case FIXED_GRF:
855 case VGRF:
856 case ATTR:
857 return DIV_ROUND_UP(components_read(arg) *
858 src[arg].component_size(exec_size),
859 REG_SIZE);
860 case MRF:
861 unreachable("MRF registers are not allowed as sources");
862 }
863 return 0;
864 }
865
866 bool
867 fs_inst::reads_flag() const
868 {
869 return predicate;
870 }
871
872 bool
873 fs_inst::writes_flag() const
874 {
875 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
876 opcode != BRW_OPCODE_IF &&
877 opcode != BRW_OPCODE_WHILE)) ||
878 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
879 }
880
881 /**
882 * Returns how many MRFs an FS opcode will write over.
883 *
884 * Note that this is not the 0 or 1 implied writes in an actual gen
885 * instruction -- the FS opcodes often generate MOVs in addition.
886 */
887 int
888 fs_visitor::implied_mrf_writes(fs_inst *inst)
889 {
890 if (inst->mlen == 0)
891 return 0;
892
893 if (inst->base_mrf == -1)
894 return 0;
895
896 switch (inst->opcode) {
897 case SHADER_OPCODE_RCP:
898 case SHADER_OPCODE_RSQ:
899 case SHADER_OPCODE_SQRT:
900 case SHADER_OPCODE_EXP2:
901 case SHADER_OPCODE_LOG2:
902 case SHADER_OPCODE_SIN:
903 case SHADER_OPCODE_COS:
904 return 1 * dispatch_width / 8;
905 case SHADER_OPCODE_POW:
906 case SHADER_OPCODE_INT_QUOTIENT:
907 case SHADER_OPCODE_INT_REMAINDER:
908 return 2 * dispatch_width / 8;
909 case SHADER_OPCODE_TEX:
910 case FS_OPCODE_TXB:
911 case SHADER_OPCODE_TXD:
912 case SHADER_OPCODE_TXF:
913 case SHADER_OPCODE_TXF_CMS:
914 case SHADER_OPCODE_TXF_CMS_W:
915 case SHADER_OPCODE_TXF_MCS:
916 case SHADER_OPCODE_TG4:
917 case SHADER_OPCODE_TG4_OFFSET:
918 case SHADER_OPCODE_TXL:
919 case SHADER_OPCODE_TXS:
920 case SHADER_OPCODE_LOD:
921 case SHADER_OPCODE_SAMPLEINFO:
922 return 1;
923 case FS_OPCODE_FB_WRITE:
924 return 2;
925 case FS_OPCODE_GET_BUFFER_SIZE:
926 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
927 case SHADER_OPCODE_GEN4_SCRATCH_READ:
928 return 1;
929 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
930 return inst->mlen;
931 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
932 return inst->mlen;
933 case SHADER_OPCODE_UNTYPED_ATOMIC:
934 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
935 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
936 case SHADER_OPCODE_TYPED_ATOMIC:
937 case SHADER_OPCODE_TYPED_SURFACE_READ:
938 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
939 case SHADER_OPCODE_URB_WRITE_SIMD8:
940 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
941 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
942 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
943 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
944 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
945 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
946 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
947 return 0;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 this->param_size = v->param_size;
989 }
990
991 fs_reg *
992 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
993 bool origin_upper_left)
994 {
995 assert(stage == MESA_SHADER_FRAGMENT);
996 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
997 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
998 fs_reg wpos = *reg;
999 bool flip = !origin_upper_left ^ key->render_to_fbo;
1000
1001 /* gl_FragCoord.x */
1002 if (pixel_center_integer) {
1003 bld.MOV(wpos, this->pixel_x);
1004 } else {
1005 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
1006 }
1007 wpos = offset(wpos, bld, 1);
1008
1009 /* gl_FragCoord.y */
1010 if (!flip && pixel_center_integer) {
1011 bld.MOV(wpos, this->pixel_y);
1012 } else {
1013 fs_reg pixel_y = this->pixel_y;
1014 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1015
1016 if (flip) {
1017 pixel_y.negate = true;
1018 offset += key->drawable_height - 1.0f;
1019 }
1020
1021 bld.ADD(wpos, pixel_y, fs_reg(offset));
1022 }
1023 wpos = offset(wpos, bld, 1);
1024
1025 /* gl_FragCoord.z */
1026 if (devinfo->gen >= 6) {
1027 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1028 } else {
1029 bld.emit(FS_OPCODE_LINTERP, wpos,
1030 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1031 interp_reg(VARYING_SLOT_POS, 2));
1032 }
1033 wpos = offset(wpos, bld, 1);
1034
1035 /* gl_FragCoord.w: Already set up in emit_interpolation */
1036 bld.MOV(wpos, this->wpos_w);
1037
1038 return reg;
1039 }
1040
1041 fs_inst *
1042 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1043 glsl_interp_qualifier interpolation_mode,
1044 bool is_centroid, bool is_sample)
1045 {
1046 brw_wm_barycentric_interp_mode barycoord_mode;
1047 if (devinfo->gen >= 6) {
1048 if (is_centroid) {
1049 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1050 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1051 else
1052 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1053 } else if (is_sample) {
1054 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1055 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1056 else
1057 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1058 } else {
1059 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1060 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1061 else
1062 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1063 }
1064 } else {
1065 /* On Ironlake and below, there is only one interpolation mode.
1066 * Centroid interpolation doesn't mean anything on this hardware --
1067 * there is no multisampling.
1068 */
1069 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1070 }
1071 return bld.emit(FS_OPCODE_LINTERP, attr,
1072 this->delta_xy[barycoord_mode], interp);
1073 }
1074
1075 void
1076 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1077 const glsl_type *type,
1078 glsl_interp_qualifier interpolation_mode,
1079 int location, bool mod_centroid,
1080 bool mod_sample)
1081 {
1082 attr.type = brw_type_for_base_type(type->get_scalar_type());
1083
1084 assert(stage == MESA_SHADER_FRAGMENT);
1085 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1086 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1087
1088 unsigned int array_elements;
1089
1090 if (type->is_array()) {
1091 array_elements = type->arrays_of_arrays_size();
1092 if (array_elements == 0) {
1093 fail("dereferenced array '%s' has length 0\n", name);
1094 }
1095 type = type->without_array();
1096 } else {
1097 array_elements = 1;
1098 }
1099
1100 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1101 bool is_gl_Color =
1102 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1103 if (key->flat_shade && is_gl_Color) {
1104 interpolation_mode = INTERP_QUALIFIER_FLAT;
1105 } else {
1106 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1107 }
1108 }
1109
1110 for (unsigned int i = 0; i < array_elements; i++) {
1111 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1112 if (prog_data->urb_setup[location] == -1) {
1113 /* If there's no incoming setup data for this slot, don't
1114 * emit interpolation for it.
1115 */
1116 attr = offset(attr, bld, type->vector_elements);
1117 location++;
1118 continue;
1119 }
1120
1121 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1122 /* Constant interpolation (flat shading) case. The SF has
1123 * handed us defined values in only the constant offset
1124 * field of the setup reg.
1125 */
1126 for (unsigned int k = 0; k < type->vector_elements; k++) {
1127 struct brw_reg interp = interp_reg(location, k);
1128 interp = suboffset(interp, 3);
1129 interp.type = attr.type;
1130 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1131 attr = offset(attr, bld, 1);
1132 }
1133 } else {
1134 /* Smooth/noperspective interpolation case. */
1135 for (unsigned int k = 0; k < type->vector_elements; k++) {
1136 struct brw_reg interp = interp_reg(location, k);
1137 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1138 /* Get the pixel/sample mask into f0 so that we know
1139 * which pixels are lit. Then, for each channel that is
1140 * unlit, replace the centroid data with non-centroid
1141 * data.
1142 */
1143 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1144
1145 fs_inst *inst;
1146 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1147 false, false);
1148 inst->predicate = BRW_PREDICATE_NORMAL;
1149 inst->predicate_inverse = true;
1150 if (devinfo->has_pln)
1151 inst->no_dd_clear = true;
1152
1153 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1154 mod_centroid && !key->persample_shading,
1155 mod_sample || key->persample_shading);
1156 inst->predicate = BRW_PREDICATE_NORMAL;
1157 inst->predicate_inverse = false;
1158 if (devinfo->has_pln)
1159 inst->no_dd_check = true;
1160
1161 } else {
1162 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1163 mod_centroid && !key->persample_shading,
1164 mod_sample || key->persample_shading);
1165 }
1166 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1167 bld.MUL(attr, attr, this->pixel_w);
1168 }
1169 attr = offset(attr, bld, 1);
1170 }
1171
1172 }
1173 location++;
1174 }
1175 }
1176 }
1177
1178 fs_reg *
1179 fs_visitor::emit_frontfacing_interpolation()
1180 {
1181 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1182
1183 if (devinfo->gen >= 6) {
1184 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1185 * a boolean result from this (~0/true or 0/false).
1186 *
1187 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1188 * this task in only one instruction:
1189 * - a negation source modifier will flip the bit; and
1190 * - a W -> D type conversion will sign extend the bit into the high
1191 * word of the destination.
1192 *
1193 * An ASR 15 fills the low word of the destination.
1194 */
1195 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1196 g0.negate = true;
1197
1198 bld.ASR(*reg, g0, fs_reg(15));
1199 } else {
1200 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1201 * a boolean result from this (1/true or 0/false).
1202 *
1203 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1204 * the negation source modifier to flip it. Unfortunately the SHR
1205 * instruction only operates on UD (or D with an abs source modifier)
1206 * sources without negation.
1207 *
1208 * Instead, use ASR (which will give ~0/true or 0/false).
1209 */
1210 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1211 g1_6.negate = true;
1212
1213 bld.ASR(*reg, g1_6, fs_reg(31));
1214 }
1215
1216 return reg;
1217 }
1218
1219 void
1220 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1221 {
1222 assert(stage == MESA_SHADER_FRAGMENT);
1223 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1224 assert(dst.type == BRW_REGISTER_TYPE_F);
1225
1226 if (key->compute_pos_offset) {
1227 /* Convert int_sample_pos to floating point */
1228 bld.MOV(dst, int_sample_pos);
1229 /* Scale to the range [0, 1] */
1230 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1231 }
1232 else {
1233 /* From ARB_sample_shading specification:
1234 * "When rendering to a non-multisample buffer, or if multisample
1235 * rasterization is disabled, gl_SamplePosition will always be
1236 * (0.5, 0.5).
1237 */
1238 bld.MOV(dst, fs_reg(0.5f));
1239 }
1240 }
1241
1242 fs_reg *
1243 fs_visitor::emit_samplepos_setup()
1244 {
1245 assert(devinfo->gen >= 6);
1246
1247 const fs_builder abld = bld.annotate("compute sample position");
1248 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1249 fs_reg pos = *reg;
1250 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1251 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1252
1253 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1254 * mode will be enabled.
1255 *
1256 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1257 * R31.1:0 Position Offset X/Y for Slot[3:0]
1258 * R31.3:2 Position Offset X/Y for Slot[7:4]
1259 * .....
1260 *
1261 * The X, Y sample positions come in as bytes in thread payload. So, read
1262 * the positions using vstride=16, width=8, hstride=2.
1263 */
1264 struct brw_reg sample_pos_reg =
1265 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1266 BRW_REGISTER_TYPE_B), 16, 8, 2);
1267
1268 if (dispatch_width == 8) {
1269 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1270 } else {
1271 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1272 abld.half(1).MOV(half(int_sample_x, 1),
1273 fs_reg(suboffset(sample_pos_reg, 16)));
1274 }
1275 /* Compute gl_SamplePosition.x */
1276 compute_sample_position(pos, int_sample_x);
1277 pos = offset(pos, abld, 1);
1278 if (dispatch_width == 8) {
1279 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1280 } else {
1281 abld.half(0).MOV(half(int_sample_y, 0),
1282 fs_reg(suboffset(sample_pos_reg, 1)));
1283 abld.half(1).MOV(half(int_sample_y, 1),
1284 fs_reg(suboffset(sample_pos_reg, 17)));
1285 }
1286 /* Compute gl_SamplePosition.y */
1287 compute_sample_position(pos, int_sample_y);
1288 return reg;
1289 }
1290
1291 fs_reg *
1292 fs_visitor::emit_sampleid_setup()
1293 {
1294 assert(stage == MESA_SHADER_FRAGMENT);
1295 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1296 assert(devinfo->gen >= 6);
1297
1298 const fs_builder abld = bld.annotate("compute sample id");
1299 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1300
1301 if (key->compute_sample_id) {
1302 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1303 t1.set_smear(0);
1304 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1305
1306 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1307 * 8x multisampling, subspan 0 will represent sample N (where N
1308 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1309 * 7. We can find the value of N by looking at R0.0 bits 7:6
1310 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1311 * (since samples are always delivered in pairs). That is, we
1312 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1313 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1314 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1315 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1316 * populating a temporary variable with the sequence (0, 1, 2, 3),
1317 * and then reading from it using vstride=1, width=4, hstride=0.
1318 * These computations hold good for 4x multisampling as well.
1319 *
1320 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1321 * the first four slots are sample 0 of subspan 0; the next four
1322 * are sample 1 of subspan 0; the third group is sample 0 of
1323 * subspan 1, and finally sample 1 of subspan 1.
1324 */
1325
1326 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1327 * accomodate 16x MSAA.
1328 */
1329 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1330
1331 abld.exec_all().group(1, 0)
1332 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1333 fs_reg(sspi_mask));
1334 abld.exec_all().group(1, 0).SHR(t1, t1, fs_reg(5));
1335
1336 /* This works for both SIMD8 and SIMD16 */
1337 abld.exec_all().group(4, 0)
1338 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1339
1340 /* This special instruction takes care of setting vstride=1,
1341 * width=4, hstride=0 of t2 during an ADD instruction.
1342 */
1343 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1344 } else {
1345 /* As per GL_ARB_sample_shading specification:
1346 * "When rendering to a non-multisample buffer, or if multisample
1347 * rasterization is disabled, gl_SampleID will always be zero."
1348 */
1349 abld.MOV(*reg, fs_reg(0));
1350 }
1351
1352 return reg;
1353 }
1354
1355 fs_reg
1356 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1357 {
1358 if (!src.abs && !src.negate)
1359 return src;
1360
1361 fs_reg temp = bld.vgrf(src.type);
1362 bld.MOV(temp, src);
1363
1364 return temp;
1365 }
1366
1367 void
1368 fs_visitor::emit_discard_jump()
1369 {
1370 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1371
1372 /* For performance, after a discard, jump to the end of the
1373 * shader if all relevant channels have been discarded.
1374 */
1375 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1376 discard_jump->flag_subreg = 1;
1377
1378 discard_jump->predicate = (dispatch_width == 8)
1379 ? BRW_PREDICATE_ALIGN1_ANY8H
1380 : BRW_PREDICATE_ALIGN1_ANY16H;
1381 discard_jump->predicate_inverse = true;
1382 }
1383
1384 void
1385 fs_visitor::emit_gs_thread_end()
1386 {
1387 assert(stage == MESA_SHADER_GEOMETRY);
1388
1389 struct brw_gs_prog_data *gs_prog_data =
1390 (struct brw_gs_prog_data *) prog_data;
1391
1392 if (gs_compile->control_data_header_size_bits > 0) {
1393 emit_gs_control_data_bits(this->final_gs_vertex_count);
1394 }
1395
1396 const fs_builder abld = bld.annotate("thread end");
1397 fs_inst *inst;
1398
1399 if (gs_prog_data->static_vertex_count != -1) {
1400 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1401 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1402 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1403 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1404 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1405 prev->eot = true;
1406
1407 /* Delete now dead instructions. */
1408 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1409 if (dead == prev)
1410 break;
1411 dead->remove();
1412 }
1413 return;
1414 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1415 break;
1416 }
1417 }
1418 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1419 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1421 inst->mlen = 1;
1422 } else {
1423 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1424 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1425 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1426 sources[1] = this->final_gs_vertex_count;
1427 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1428 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1429 inst->mlen = 2;
1430 }
1431 inst->eot = true;
1432 inst->offset = 0;
1433 }
1434
1435 void
1436 fs_visitor::assign_curb_setup()
1437 {
1438 if (dispatch_width == 8) {
1439 prog_data->dispatch_grf_start_reg = payload.num_regs;
1440 } else {
1441 if (stage == MESA_SHADER_FRAGMENT) {
1442 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1443 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1444 } else if (stage == MESA_SHADER_COMPUTE) {
1445 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1446 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1447 } else {
1448 unreachable("Unsupported shader type!");
1449 }
1450 }
1451
1452 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1453
1454 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1455 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1456 for (unsigned int i = 0; i < inst->sources; i++) {
1457 if (inst->src[i].file == UNIFORM) {
1458 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1459 int constant_nr;
1460 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1461 constant_nr = push_constant_loc[uniform_nr];
1462 } else {
1463 /* Section 5.11 of the OpenGL 4.1 spec says:
1464 * "Out-of-bounds reads return undefined values, which include
1465 * values from other variables of the active program or zero."
1466 * Just return the first push constant.
1467 */
1468 constant_nr = 0;
1469 }
1470
1471 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1472 constant_nr / 8,
1473 constant_nr % 8);
1474 brw_reg.abs = inst->src[i].abs;
1475 brw_reg.negate = inst->src[i].negate;
1476
1477 assert(inst->src[i].stride == 0);
1478 inst->src[i] = byte_offset(
1479 retype(brw_reg, inst->src[i].type),
1480 inst->src[i].subreg_offset);
1481 }
1482 }
1483 }
1484
1485 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1486 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1487 }
1488
1489 void
1490 fs_visitor::calculate_urb_setup()
1491 {
1492 assert(stage == MESA_SHADER_FRAGMENT);
1493 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1494 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1495
1496 memset(prog_data->urb_setup, -1,
1497 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1498
1499 int urb_next = 0;
1500 /* Figure out where each of the incoming setup attributes lands. */
1501 if (devinfo->gen >= 6) {
1502 if (_mesa_bitcount_64(nir->info.inputs_read &
1503 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1504 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1505 * first 16 varying inputs, so we can put them wherever we want.
1506 * Just put them in order.
1507 *
1508 * This is useful because it means that (a) inputs not used by the
1509 * fragment shader won't take up valuable register space, and (b) we
1510 * won't have to recompile the fragment shader if it gets paired with
1511 * a different vertex (or geometry) shader.
1512 */
1513 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1514 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1515 BITFIELD64_BIT(i)) {
1516 prog_data->urb_setup[i] = urb_next++;
1517 }
1518 }
1519 } else {
1520 bool include_vue_header =
1521 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1522
1523 /* We have enough input varyings that the SF/SBE pipeline stage can't
1524 * arbitrarily rearrange them to suit our whim; we have to put them
1525 * in an order that matches the output of the previous pipeline stage
1526 * (geometry or vertex shader).
1527 */
1528 struct brw_vue_map prev_stage_vue_map;
1529 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1530 key->input_slots_valid,
1531 nir->info.separate_shader);
1532 int first_slot =
1533 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1534
1535 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1536 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1537 slot++) {
1538 int varying = prev_stage_vue_map.slot_to_varying[slot];
1539 if (varying != BRW_VARYING_SLOT_PAD &&
1540 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1541 BITFIELD64_BIT(varying))) {
1542 prog_data->urb_setup[varying] = slot - first_slot;
1543 }
1544 }
1545 urb_next = prev_stage_vue_map.num_slots - first_slot;
1546 }
1547 } else {
1548 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1549 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1550 /* Point size is packed into the header, not as a general attribute */
1551 if (i == VARYING_SLOT_PSIZ)
1552 continue;
1553
1554 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1555 /* The back color slot is skipped when the front color is
1556 * also written to. In addition, some slots can be
1557 * written in the vertex shader and not read in the
1558 * fragment shader. So the register number must always be
1559 * incremented, mapped or not.
1560 */
1561 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1562 prog_data->urb_setup[i] = urb_next;
1563 urb_next++;
1564 }
1565 }
1566
1567 /*
1568 * It's a FS only attribute, and we did interpolation for this attribute
1569 * in SF thread. So, count it here, too.
1570 *
1571 * See compile_sf_prog() for more info.
1572 */
1573 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1574 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1575 }
1576
1577 prog_data->num_varying_inputs = urb_next;
1578 }
1579
1580 void
1581 fs_visitor::assign_urb_setup()
1582 {
1583 assert(stage == MESA_SHADER_FRAGMENT);
1584 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1585
1586 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1587
1588 /* Offset all the urb_setup[] index by the actual position of the
1589 * setup regs, now that the location of the constants has been chosen.
1590 */
1591 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1592 if (inst->opcode == FS_OPCODE_LINTERP) {
1593 assert(inst->src[1].file == FIXED_GRF);
1594 inst->src[1].nr += urb_start;
1595 }
1596
1597 if (inst->opcode == FS_OPCODE_CINTERP) {
1598 assert(inst->src[0].file == FIXED_GRF);
1599 inst->src[0].nr += urb_start;
1600 }
1601 }
1602
1603 /* Each attribute is 4 setup channels, each of which is half a reg. */
1604 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1605 }
1606
1607 void
1608 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1609 {
1610 for (int i = 0; i < inst->sources; i++) {
1611 if (inst->src[i].file == ATTR) {
1612 int grf = payload.num_regs +
1613 prog_data->curb_read_length +
1614 inst->src[i].nr +
1615 inst->src[i].reg_offset;
1616
1617 struct brw_reg reg =
1618 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1619 inst->src[i].subreg_offset),
1620 inst->exec_size * inst->src[i].stride,
1621 inst->exec_size, inst->src[i].stride);
1622 reg.abs = inst->src[i].abs;
1623 reg.negate = inst->src[i].negate;
1624
1625 inst->src[i] = reg;
1626 }
1627 }
1628 }
1629
1630 void
1631 fs_visitor::assign_vs_urb_setup()
1632 {
1633 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1634
1635 assert(stage == MESA_SHADER_VERTEX);
1636 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1637 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1638 count++;
1639
1640 /* Each attribute is 4 regs. */
1641 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1642
1643 assert(vs_prog_data->base.urb_read_length <= 15);
1644
1645 /* Rewrite all ATTR file references to the hw grf that they land in. */
1646 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1647 convert_attr_sources_to_hw_regs(inst);
1648 }
1649 }
1650
1651 void
1652 fs_visitor::assign_gs_urb_setup()
1653 {
1654 assert(stage == MESA_SHADER_GEOMETRY);
1655
1656 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1657
1658 first_non_payload_grf +=
1659 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1660
1661 const unsigned first_icp_handle = payload.num_regs -
1662 (vue_prog_data->include_vue_handles ? nir->info.gs.vertices_in : 0);
1663
1664 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1665 /* Lower URB_READ_SIMD8 opcodes into real messages. */
1666 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8) {
1667 assert(inst->src[0].file == IMM);
1668 inst->src[0] = retype(brw_vec8_grf(first_icp_handle +
1669 inst->src[0].ud,
1670 0), BRW_REGISTER_TYPE_UD);
1671 /* for now, assume constant - we can do per-slot offsets later */
1672 assert(inst->src[1].file == IMM);
1673 inst->offset = inst->src[1].ud;
1674 inst->src[1] = fs_reg();
1675 inst->mlen = 1;
1676 inst->base_mrf = -1;
1677 }
1678
1679 /* Rewrite all ATTR file references to GRFs. */
1680 convert_attr_sources_to_hw_regs(inst);
1681 }
1682 }
1683
1684
1685 /**
1686 * Split large virtual GRFs into separate components if we can.
1687 *
1688 * This is mostly duplicated with what brw_fs_vector_splitting does,
1689 * but that's really conservative because it's afraid of doing
1690 * splitting that doesn't result in real progress after the rest of
1691 * the optimization phases, which would cause infinite looping in
1692 * optimization. We can do it once here, safely. This also has the
1693 * opportunity to split interpolated values, or maybe even uniforms,
1694 * which we don't have at the IR level.
1695 *
1696 * We want to split, because virtual GRFs are what we register
1697 * allocate and spill (due to contiguousness requirements for some
1698 * instructions), and they're what we naturally generate in the
1699 * codegen process, but most virtual GRFs don't actually need to be
1700 * contiguous sets of GRFs. If we split, we'll end up with reduced
1701 * live intervals and better dead code elimination and coalescing.
1702 */
1703 void
1704 fs_visitor::split_virtual_grfs()
1705 {
1706 int num_vars = this->alloc.count;
1707
1708 /* Count the total number of registers */
1709 int reg_count = 0;
1710 int vgrf_to_reg[num_vars];
1711 for (int i = 0; i < num_vars; i++) {
1712 vgrf_to_reg[i] = reg_count;
1713 reg_count += alloc.sizes[i];
1714 }
1715
1716 /* An array of "split points". For each register slot, this indicates
1717 * if this slot can be separated from the previous slot. Every time an
1718 * instruction uses multiple elements of a register (as a source or
1719 * destination), we mark the used slots as inseparable. Then we go
1720 * through and split the registers into the smallest pieces we can.
1721 */
1722 bool split_points[reg_count];
1723 memset(split_points, 0, sizeof(split_points));
1724
1725 /* Mark all used registers as fully splittable */
1726 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1727 if (inst->dst.file == VGRF) {
1728 int reg = vgrf_to_reg[inst->dst.nr];
1729 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1730 split_points[reg + j] = true;
1731 }
1732
1733 for (int i = 0; i < inst->sources; i++) {
1734 if (inst->src[i].file == VGRF) {
1735 int reg = vgrf_to_reg[inst->src[i].nr];
1736 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1737 split_points[reg + j] = true;
1738 }
1739 }
1740 }
1741
1742 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1743 if (inst->dst.file == VGRF) {
1744 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1745 for (int j = 1; j < inst->regs_written; j++)
1746 split_points[reg + j] = false;
1747 }
1748 for (int i = 0; i < inst->sources; i++) {
1749 if (inst->src[i].file == VGRF) {
1750 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1751 for (int j = 1; j < inst->regs_read(i); j++)
1752 split_points[reg + j] = false;
1753 }
1754 }
1755 }
1756
1757 int new_virtual_grf[reg_count];
1758 int new_reg_offset[reg_count];
1759
1760 int reg = 0;
1761 for (int i = 0; i < num_vars; i++) {
1762 /* The first one should always be 0 as a quick sanity check. */
1763 assert(split_points[reg] == false);
1764
1765 /* j = 0 case */
1766 new_reg_offset[reg] = 0;
1767 reg++;
1768 int offset = 1;
1769
1770 /* j > 0 case */
1771 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1772 /* If this is a split point, reset the offset to 0 and allocate a
1773 * new virtual GRF for the previous offset many registers
1774 */
1775 if (split_points[reg]) {
1776 assert(offset <= MAX_VGRF_SIZE);
1777 int grf = alloc.allocate(offset);
1778 for (int k = reg - offset; k < reg; k++)
1779 new_virtual_grf[k] = grf;
1780 offset = 0;
1781 }
1782 new_reg_offset[reg] = offset;
1783 offset++;
1784 reg++;
1785 }
1786
1787 /* The last one gets the original register number */
1788 assert(offset <= MAX_VGRF_SIZE);
1789 alloc.sizes[i] = offset;
1790 for (int k = reg - offset; k < reg; k++)
1791 new_virtual_grf[k] = i;
1792 }
1793 assert(reg == reg_count);
1794
1795 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1796 if (inst->dst.file == VGRF) {
1797 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1798 inst->dst.nr = new_virtual_grf[reg];
1799 inst->dst.reg_offset = new_reg_offset[reg];
1800 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1801 }
1802 for (int i = 0; i < inst->sources; i++) {
1803 if (inst->src[i].file == VGRF) {
1804 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1805 inst->src[i].nr = new_virtual_grf[reg];
1806 inst->src[i].reg_offset = new_reg_offset[reg];
1807 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1808 }
1809 }
1810 }
1811 invalidate_live_intervals();
1812 }
1813
1814 /**
1815 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1816 *
1817 * During code generation, we create tons of temporary variables, many of
1818 * which get immediately killed and are never used again. Yet, in later
1819 * optimization and analysis passes, such as compute_live_intervals, we need
1820 * to loop over all the virtual GRFs. Compacting them can save a lot of
1821 * overhead.
1822 */
1823 bool
1824 fs_visitor::compact_virtual_grfs()
1825 {
1826 bool progress = false;
1827 int remap_table[this->alloc.count];
1828 memset(remap_table, -1, sizeof(remap_table));
1829
1830 /* Mark which virtual GRFs are used. */
1831 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1832 if (inst->dst.file == VGRF)
1833 remap_table[inst->dst.nr] = 0;
1834
1835 for (int i = 0; i < inst->sources; i++) {
1836 if (inst->src[i].file == VGRF)
1837 remap_table[inst->src[i].nr] = 0;
1838 }
1839 }
1840
1841 /* Compact the GRF arrays. */
1842 int new_index = 0;
1843 for (unsigned i = 0; i < this->alloc.count; i++) {
1844 if (remap_table[i] == -1) {
1845 /* We just found an unused register. This means that we are
1846 * actually going to compact something.
1847 */
1848 progress = true;
1849 } else {
1850 remap_table[i] = new_index;
1851 alloc.sizes[new_index] = alloc.sizes[i];
1852 invalidate_live_intervals();
1853 ++new_index;
1854 }
1855 }
1856
1857 this->alloc.count = new_index;
1858
1859 /* Patch all the instructions to use the newly renumbered registers */
1860 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1861 if (inst->dst.file == VGRF)
1862 inst->dst.nr = remap_table[inst->dst.nr];
1863
1864 for (int i = 0; i < inst->sources; i++) {
1865 if (inst->src[i].file == VGRF)
1866 inst->src[i].nr = remap_table[inst->src[i].nr];
1867 }
1868 }
1869
1870 /* Patch all the references to delta_xy, since they're used in register
1871 * allocation. If they're unused, switch them to BAD_FILE so we don't
1872 * think some random VGRF is delta_xy.
1873 */
1874 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1875 if (delta_xy[i].file == VGRF) {
1876 if (remap_table[delta_xy[i].nr] != -1) {
1877 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1878 } else {
1879 delta_xy[i].file = BAD_FILE;
1880 }
1881 }
1882 }
1883
1884 return progress;
1885 }
1886
1887 /**
1888 * Assign UNIFORM file registers to either push constants or pull constants.
1889 *
1890 * We allow a fragment shader to have more than the specified minimum
1891 * maximum number of fragment shader uniform components (64). If
1892 * there are too many of these, they'd fill up all of register space.
1893 * So, this will push some of them out to the pull constant buffer and
1894 * update the program to load them. We also use pull constants for all
1895 * indirect constant loads because we don't support indirect accesses in
1896 * registers yet.
1897 */
1898 void
1899 fs_visitor::assign_constant_locations()
1900 {
1901 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1902 if (dispatch_width != 8)
1903 return;
1904
1905 unsigned int num_pull_constants = 0;
1906
1907 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1908 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1909
1910 bool is_live[uniforms];
1911 memset(is_live, 0, sizeof(is_live));
1912
1913 /* First, we walk through the instructions and do two things:
1914 *
1915 * 1) Figure out which uniforms are live.
1916 *
1917 * 2) Find all indirect access of uniform arrays and flag them as needing
1918 * to go into the pull constant buffer.
1919 *
1920 * Note that we don't move constant-indexed accesses to arrays. No
1921 * testing has been done of the performance impact of this choice.
1922 */
1923 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1924 for (int i = 0 ; i < inst->sources; i++) {
1925 if (inst->src[i].file != UNIFORM)
1926 continue;
1927
1928 if (inst->src[i].reladdr) {
1929 int uniform = inst->src[i].nr;
1930
1931 /* If this array isn't already present in the pull constant buffer,
1932 * add it.
1933 */
1934 if (pull_constant_loc[uniform] == -1) {
1935 assert(param_size[uniform]);
1936 for (int j = 0; j < param_size[uniform]; j++)
1937 pull_constant_loc[uniform + j] = num_pull_constants++;
1938 }
1939 } else {
1940 /* Mark the the one accessed uniform as live */
1941 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1942 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1943 is_live[constant_nr] = true;
1944 }
1945 }
1946 }
1947
1948 /* Only allow 16 registers (128 uniform components) as push constants.
1949 *
1950 * Just demote the end of the list. We could probably do better
1951 * here, demoting things that are rarely used in the program first.
1952 *
1953 * If changing this value, note the limitation about total_regs in
1954 * brw_curbe.c.
1955 */
1956 unsigned int max_push_components = 16 * 8;
1957 unsigned int num_push_constants = 0;
1958
1959 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1960
1961 for (unsigned int i = 0; i < uniforms; i++) {
1962 if (!is_live[i] || pull_constant_loc[i] != -1) {
1963 /* This UNIFORM register is either dead, or has already been demoted
1964 * to a pull const. Mark it as no longer living in the param[] array.
1965 */
1966 push_constant_loc[i] = -1;
1967 continue;
1968 }
1969
1970 if (num_push_constants < max_push_components) {
1971 /* Retain as a push constant. Record the location in the params[]
1972 * array.
1973 */
1974 push_constant_loc[i] = num_push_constants++;
1975 } else {
1976 /* Demote to a pull constant. */
1977 push_constant_loc[i] = -1;
1978 pull_constant_loc[i] = num_pull_constants++;
1979 }
1980 }
1981
1982 stage_prog_data->nr_params = num_push_constants;
1983 stage_prog_data->nr_pull_params = num_pull_constants;
1984
1985 /* Up until now, the param[] array has been indexed by reg + reg_offset
1986 * of UNIFORM registers. Move pull constants into pull_param[] and
1987 * condense param[] to only contain the uniforms we chose to push.
1988 *
1989 * NOTE: Because we are condensing the params[] array, we know that
1990 * push_constant_loc[i] <= i and we can do it in one smooth loop without
1991 * having to make a copy.
1992 */
1993 for (unsigned int i = 0; i < uniforms; i++) {
1994 const gl_constant_value *value = stage_prog_data->param[i];
1995
1996 if (pull_constant_loc[i] != -1) {
1997 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
1998 } else if (push_constant_loc[i] != -1) {
1999 stage_prog_data->param[push_constant_loc[i]] = value;
2000 }
2001 }
2002 }
2003
2004 /**
2005 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2006 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2007 */
2008 void
2009 fs_visitor::demote_pull_constants()
2010 {
2011 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2012 for (int i = 0; i < inst->sources; i++) {
2013 if (inst->src[i].file != UNIFORM)
2014 continue;
2015
2016 int pull_index;
2017 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2018 if (location >= uniforms) /* Out of bounds access */
2019 pull_index = -1;
2020 else
2021 pull_index = pull_constant_loc[location];
2022
2023 if (pull_index == -1)
2024 continue;
2025
2026 /* Set up the annotation tracking for new generated instructions. */
2027 const fs_builder ibld(this, block, inst);
2028 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2029 fs_reg dst = vgrf(glsl_type::float_type);
2030
2031 assert(inst->src[i].stride == 0);
2032
2033 /* Generate a pull load into dst. */
2034 if (inst->src[i].reladdr) {
2035 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2036 fs_reg(index),
2037 *inst->src[i].reladdr,
2038 pull_index);
2039 inst->src[i].reladdr = NULL;
2040 inst->src[i].stride = 1;
2041 } else {
2042 const fs_builder ubld = ibld.exec_all().group(8, 0);
2043 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
2044 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2045 dst, fs_reg(index), offset);
2046 inst->src[i].set_smear(pull_index & 3);
2047 }
2048 brw_mark_surface_used(prog_data, index);
2049
2050 /* Rewrite the instruction to use the temporary VGRF. */
2051 inst->src[i].file = VGRF;
2052 inst->src[i].nr = dst.nr;
2053 inst->src[i].reg_offset = 0;
2054 }
2055 }
2056 invalidate_live_intervals();
2057 }
2058
2059 bool
2060 fs_visitor::opt_algebraic()
2061 {
2062 bool progress = false;
2063
2064 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2065 switch (inst->opcode) {
2066 case BRW_OPCODE_MOV:
2067 if (inst->src[0].file != IMM)
2068 break;
2069
2070 if (inst->saturate) {
2071 if (inst->dst.type != inst->src[0].type)
2072 assert(!"unimplemented: saturate mixed types");
2073
2074 if (brw_saturate_immediate(inst->dst.type, &inst->src[0])) {
2075 inst->saturate = false;
2076 progress = true;
2077 }
2078 }
2079 break;
2080
2081 case BRW_OPCODE_MUL:
2082 if (inst->src[1].file != IMM)
2083 continue;
2084
2085 /* a * 1.0 = a */
2086 if (inst->src[1].is_one()) {
2087 inst->opcode = BRW_OPCODE_MOV;
2088 inst->src[1] = reg_undef;
2089 progress = true;
2090 break;
2091 }
2092
2093 /* a * -1.0 = -a */
2094 if (inst->src[1].is_negative_one()) {
2095 inst->opcode = BRW_OPCODE_MOV;
2096 inst->src[0].negate = !inst->src[0].negate;
2097 inst->src[1] = reg_undef;
2098 progress = true;
2099 break;
2100 }
2101
2102 /* a * 0.0 = 0.0 */
2103 if (inst->src[1].is_zero()) {
2104 inst->opcode = BRW_OPCODE_MOV;
2105 inst->src[0] = inst->src[1];
2106 inst->src[1] = reg_undef;
2107 progress = true;
2108 break;
2109 }
2110
2111 if (inst->src[0].file == IMM) {
2112 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2113 inst->opcode = BRW_OPCODE_MOV;
2114 inst->src[0].f *= inst->src[1].f;
2115 inst->src[1] = reg_undef;
2116 progress = true;
2117 break;
2118 }
2119 break;
2120 case BRW_OPCODE_ADD:
2121 if (inst->src[1].file != IMM)
2122 continue;
2123
2124 /* a + 0.0 = a */
2125 if (inst->src[1].is_zero()) {
2126 inst->opcode = BRW_OPCODE_MOV;
2127 inst->src[1] = reg_undef;
2128 progress = true;
2129 break;
2130 }
2131
2132 if (inst->src[0].file == IMM) {
2133 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2134 inst->opcode = BRW_OPCODE_MOV;
2135 inst->src[0].f += inst->src[1].f;
2136 inst->src[1] = reg_undef;
2137 progress = true;
2138 break;
2139 }
2140 break;
2141 case BRW_OPCODE_OR:
2142 if (inst->src[0].equals(inst->src[1])) {
2143 inst->opcode = BRW_OPCODE_MOV;
2144 inst->src[1] = reg_undef;
2145 progress = true;
2146 break;
2147 }
2148 break;
2149 case BRW_OPCODE_LRP:
2150 if (inst->src[1].equals(inst->src[2])) {
2151 inst->opcode = BRW_OPCODE_MOV;
2152 inst->src[0] = inst->src[1];
2153 inst->src[1] = reg_undef;
2154 inst->src[2] = reg_undef;
2155 progress = true;
2156 break;
2157 }
2158 break;
2159 case BRW_OPCODE_CMP:
2160 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2161 inst->src[0].abs &&
2162 inst->src[0].negate &&
2163 inst->src[1].is_zero()) {
2164 inst->src[0].abs = false;
2165 inst->src[0].negate = false;
2166 inst->conditional_mod = BRW_CONDITIONAL_Z;
2167 progress = true;
2168 break;
2169 }
2170 break;
2171 case BRW_OPCODE_SEL:
2172 if (inst->src[0].equals(inst->src[1])) {
2173 inst->opcode = BRW_OPCODE_MOV;
2174 inst->src[1] = reg_undef;
2175 inst->predicate = BRW_PREDICATE_NONE;
2176 inst->predicate_inverse = false;
2177 progress = true;
2178 } else if (inst->saturate && inst->src[1].file == IMM) {
2179 switch (inst->conditional_mod) {
2180 case BRW_CONDITIONAL_LE:
2181 case BRW_CONDITIONAL_L:
2182 switch (inst->src[1].type) {
2183 case BRW_REGISTER_TYPE_F:
2184 if (inst->src[1].f >= 1.0f) {
2185 inst->opcode = BRW_OPCODE_MOV;
2186 inst->src[1] = reg_undef;
2187 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2188 progress = true;
2189 }
2190 break;
2191 default:
2192 break;
2193 }
2194 break;
2195 case BRW_CONDITIONAL_GE:
2196 case BRW_CONDITIONAL_G:
2197 switch (inst->src[1].type) {
2198 case BRW_REGISTER_TYPE_F:
2199 if (inst->src[1].f <= 0.0f) {
2200 inst->opcode = BRW_OPCODE_MOV;
2201 inst->src[1] = reg_undef;
2202 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2203 progress = true;
2204 }
2205 break;
2206 default:
2207 break;
2208 }
2209 default:
2210 break;
2211 }
2212 }
2213 break;
2214 case BRW_OPCODE_MAD:
2215 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2216 inst->opcode = BRW_OPCODE_MOV;
2217 inst->src[1] = reg_undef;
2218 inst->src[2] = reg_undef;
2219 progress = true;
2220 } else if (inst->src[0].is_zero()) {
2221 inst->opcode = BRW_OPCODE_MUL;
2222 inst->src[0] = inst->src[2];
2223 inst->src[2] = reg_undef;
2224 progress = true;
2225 } else if (inst->src[1].is_one()) {
2226 inst->opcode = BRW_OPCODE_ADD;
2227 inst->src[1] = inst->src[2];
2228 inst->src[2] = reg_undef;
2229 progress = true;
2230 } else if (inst->src[2].is_one()) {
2231 inst->opcode = BRW_OPCODE_ADD;
2232 inst->src[2] = reg_undef;
2233 progress = true;
2234 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2235 inst->opcode = BRW_OPCODE_ADD;
2236 inst->src[1].f *= inst->src[2].f;
2237 inst->src[2] = reg_undef;
2238 progress = true;
2239 }
2240 break;
2241 case SHADER_OPCODE_RCP: {
2242 fs_inst *prev = (fs_inst *)inst->prev;
2243 if (prev->opcode == SHADER_OPCODE_SQRT) {
2244 if (inst->src[0].equals(prev->dst)) {
2245 inst->opcode = SHADER_OPCODE_RSQ;
2246 inst->src[0] = prev->src[0];
2247 progress = true;
2248 }
2249 }
2250 break;
2251 }
2252 case SHADER_OPCODE_BROADCAST:
2253 if (is_uniform(inst->src[0])) {
2254 inst->opcode = BRW_OPCODE_MOV;
2255 inst->sources = 1;
2256 inst->force_writemask_all = true;
2257 progress = true;
2258 } else if (inst->src[1].file == IMM) {
2259 inst->opcode = BRW_OPCODE_MOV;
2260 inst->src[0] = component(inst->src[0],
2261 inst->src[1].ud);
2262 inst->sources = 1;
2263 inst->force_writemask_all = true;
2264 progress = true;
2265 }
2266 break;
2267
2268 default:
2269 break;
2270 }
2271
2272 /* Swap if src[0] is immediate. */
2273 if (progress && inst->is_commutative()) {
2274 if (inst->src[0].file == IMM) {
2275 fs_reg tmp = inst->src[1];
2276 inst->src[1] = inst->src[0];
2277 inst->src[0] = tmp;
2278 }
2279 }
2280 }
2281 return progress;
2282 }
2283
2284 /**
2285 * Optimize sample messages that have constant zero values for the trailing
2286 * texture coordinates. We can just reduce the message length for these
2287 * instructions instead of reserving a register for it. Trailing parameters
2288 * that aren't sent default to zero anyway. This will cause the dead code
2289 * eliminator to remove the MOV instruction that would otherwise be emitted to
2290 * set up the zero value.
2291 */
2292 bool
2293 fs_visitor::opt_zero_samples()
2294 {
2295 /* Gen4 infers the texturing opcode based on the message length so we can't
2296 * change it.
2297 */
2298 if (devinfo->gen < 5)
2299 return false;
2300
2301 bool progress = false;
2302
2303 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2304 if (!inst->is_tex())
2305 continue;
2306
2307 fs_inst *load_payload = (fs_inst *) inst->prev;
2308
2309 if (load_payload->is_head_sentinel() ||
2310 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2311 continue;
2312
2313 /* We don't want to remove the message header or the first parameter.
2314 * Removing the first parameter is not allowed, see the Haswell PRM
2315 * volume 7, page 149:
2316 *
2317 * "Parameter 0 is required except for the sampleinfo message, which
2318 * has no parameter 0"
2319 */
2320 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2321 load_payload->src[(inst->mlen - inst->header_size) /
2322 (inst->exec_size / 8) +
2323 inst->header_size - 1].is_zero()) {
2324 inst->mlen -= inst->exec_size / 8;
2325 progress = true;
2326 }
2327 }
2328
2329 if (progress)
2330 invalidate_live_intervals();
2331
2332 return progress;
2333 }
2334
2335 /**
2336 * Optimize sample messages which are followed by the final RT write.
2337 *
2338 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2339 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2340 * final texturing results copied to the framebuffer write payload and modify
2341 * them to write to the framebuffer directly.
2342 */
2343 bool
2344 fs_visitor::opt_sampler_eot()
2345 {
2346 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2347
2348 if (stage != MESA_SHADER_FRAGMENT)
2349 return false;
2350
2351 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2352 return false;
2353
2354 /* FINISHME: It should be possible to implement this optimization when there
2355 * are multiple drawbuffers.
2356 */
2357 if (key->nr_color_regions != 1)
2358 return false;
2359
2360 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2361 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2362 fs_inst *fb_write = (fs_inst *)block->end();
2363 assert(fb_write->eot);
2364 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2365
2366 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2367
2368 /* There wasn't one; nothing to do. */
2369 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2370 return false;
2371
2372 /* 3D Sampler » Messages » Message Format
2373 *
2374 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2375 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2376 */
2377 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2378 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2379 tex_inst->opcode == SHADER_OPCODE_LOD ||
2380 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2381 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2382 return false;
2383
2384 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2385 * It's very likely to be the previous instruction.
2386 */
2387 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2388 if (load_payload->is_head_sentinel() ||
2389 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2390 return false;
2391
2392 assert(!tex_inst->eot); /* We can't get here twice */
2393 assert((tex_inst->offset & (0xff << 24)) == 0);
2394
2395 const fs_builder ibld(this, block, tex_inst);
2396
2397 tex_inst->offset |= fb_write->target << 24;
2398 tex_inst->eot = true;
2399 tex_inst->dst = ibld.null_reg_ud();
2400 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2401
2402 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2403 * to create a new LOAD_PAYLOAD command with the same sources and a space
2404 * saved for the header. Using a new destination register not only makes sure
2405 * we have enough space, but it will make sure the dead code eliminator kills
2406 * the instruction that this will replace.
2407 */
2408 if (tex_inst->header_size != 0)
2409 return true;
2410
2411 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2412 load_payload->sources + 1);
2413 fs_reg *new_sources =
2414 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2415
2416 new_sources[0] = fs_reg();
2417 for (int i = 0; i < load_payload->sources; i++)
2418 new_sources[i+1] = load_payload->src[i];
2419
2420 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2421 * requires a lot of information about the sources to appropriately figure
2422 * out the number of registers needed to be used. Given this stage in our
2423 * optimization, we may not have the appropriate GRFs required by
2424 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2425 * manually emit the instruction.
2426 */
2427 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2428 load_payload->exec_size,
2429 send_header,
2430 new_sources,
2431 load_payload->sources + 1);
2432
2433 new_load_payload->regs_written = load_payload->regs_written + 1;
2434 new_load_payload->header_size = 1;
2435 tex_inst->mlen++;
2436 tex_inst->header_size = 1;
2437 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2438 tex_inst->src[0] = send_header;
2439
2440 return true;
2441 }
2442
2443 bool
2444 fs_visitor::opt_register_renaming()
2445 {
2446 bool progress = false;
2447 int depth = 0;
2448
2449 int remap[alloc.count];
2450 memset(remap, -1, sizeof(int) * alloc.count);
2451
2452 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2453 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2454 depth++;
2455 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2456 inst->opcode == BRW_OPCODE_WHILE) {
2457 depth--;
2458 }
2459
2460 /* Rewrite instruction sources. */
2461 for (int i = 0; i < inst->sources; i++) {
2462 if (inst->src[i].file == VGRF &&
2463 remap[inst->src[i].nr] != -1 &&
2464 remap[inst->src[i].nr] != inst->src[i].nr) {
2465 inst->src[i].nr = remap[inst->src[i].nr];
2466 progress = true;
2467 }
2468 }
2469
2470 const int dst = inst->dst.nr;
2471
2472 if (depth == 0 &&
2473 inst->dst.file == VGRF &&
2474 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2475 !inst->is_partial_write()) {
2476 if (remap[dst] == -1) {
2477 remap[dst] = dst;
2478 } else {
2479 remap[dst] = alloc.allocate(inst->exec_size / 8);
2480 inst->dst.nr = remap[dst];
2481 progress = true;
2482 }
2483 } else if (inst->dst.file == VGRF &&
2484 remap[dst] != -1 &&
2485 remap[dst] != dst) {
2486 inst->dst.nr = remap[dst];
2487 progress = true;
2488 }
2489 }
2490
2491 if (progress) {
2492 invalidate_live_intervals();
2493
2494 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2495 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2496 delta_xy[i].nr = remap[delta_xy[i].nr];
2497 }
2498 }
2499 }
2500
2501 return progress;
2502 }
2503
2504 /**
2505 * Remove redundant or useless discard jumps.
2506 *
2507 * For example, we can eliminate jumps in the following sequence:
2508 *
2509 * discard-jump (redundant with the next jump)
2510 * discard-jump (useless; jumps to the next instruction)
2511 * placeholder-halt
2512 */
2513 bool
2514 fs_visitor::opt_redundant_discard_jumps()
2515 {
2516 bool progress = false;
2517
2518 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2519
2520 fs_inst *placeholder_halt = NULL;
2521 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2522 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2523 placeholder_halt = inst;
2524 break;
2525 }
2526 }
2527
2528 if (!placeholder_halt)
2529 return false;
2530
2531 /* Delete any HALTs immediately before the placeholder halt. */
2532 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2533 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2534 prev = (fs_inst *) placeholder_halt->prev) {
2535 prev->remove(last_bblock);
2536 progress = true;
2537 }
2538
2539 if (progress)
2540 invalidate_live_intervals();
2541
2542 return progress;
2543 }
2544
2545 bool
2546 fs_visitor::compute_to_mrf()
2547 {
2548 bool progress = false;
2549 int next_ip = 0;
2550
2551 /* No MRFs on Gen >= 7. */
2552 if (devinfo->gen >= 7)
2553 return false;
2554
2555 calculate_live_intervals();
2556
2557 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2558 int ip = next_ip;
2559 next_ip++;
2560
2561 if (inst->opcode != BRW_OPCODE_MOV ||
2562 inst->is_partial_write() ||
2563 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2564 inst->dst.type != inst->src[0].type ||
2565 inst->src[0].abs || inst->src[0].negate ||
2566 !inst->src[0].is_contiguous() ||
2567 inst->src[0].subreg_offset)
2568 continue;
2569
2570 /* Work out which hardware MRF registers are written by this
2571 * instruction.
2572 */
2573 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2574 int mrf_high;
2575 if (inst->dst.nr & BRW_MRF_COMPR4) {
2576 mrf_high = mrf_low + 4;
2577 } else if (inst->exec_size == 16) {
2578 mrf_high = mrf_low + 1;
2579 } else {
2580 mrf_high = mrf_low;
2581 }
2582
2583 /* Can't compute-to-MRF this GRF if someone else was going to
2584 * read it later.
2585 */
2586 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2587 continue;
2588
2589 /* Found a move of a GRF to a MRF. Let's see if we can go
2590 * rewrite the thing that made this GRF to write into the MRF.
2591 */
2592 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2593 if (scan_inst->dst.file == VGRF &&
2594 scan_inst->dst.nr == inst->src[0].nr) {
2595 /* Found the last thing to write our reg we want to turn
2596 * into a compute-to-MRF.
2597 */
2598
2599 /* If this one instruction didn't populate all the
2600 * channels, bail. We might be able to rewrite everything
2601 * that writes that reg, but it would require smarter
2602 * tracking to delay the rewriting until complete success.
2603 */
2604 if (scan_inst->is_partial_write())
2605 break;
2606
2607 /* Things returning more than one register would need us to
2608 * understand coalescing out more than one MOV at a time.
2609 */
2610 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2611 break;
2612
2613 /* SEND instructions can't have MRF as a destination. */
2614 if (scan_inst->mlen)
2615 break;
2616
2617 if (devinfo->gen == 6) {
2618 /* gen6 math instructions must have the destination be
2619 * GRF, so no compute-to-MRF for them.
2620 */
2621 if (scan_inst->is_math()) {
2622 break;
2623 }
2624 }
2625
2626 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2627 /* Found the creator of our MRF's source value. */
2628 scan_inst->dst.file = MRF;
2629 scan_inst->dst.nr = inst->dst.nr;
2630 scan_inst->saturate |= inst->saturate;
2631 inst->remove(block);
2632 progress = true;
2633 }
2634 break;
2635 }
2636
2637 /* We don't handle control flow here. Most computation of
2638 * values that end up in MRFs are shortly before the MRF
2639 * write anyway.
2640 */
2641 if (block->start() == scan_inst)
2642 break;
2643
2644 /* You can't read from an MRF, so if someone else reads our
2645 * MRF's source GRF that we wanted to rewrite, that stops us.
2646 */
2647 bool interfered = false;
2648 for (int i = 0; i < scan_inst->sources; i++) {
2649 if (scan_inst->src[i].file == VGRF &&
2650 scan_inst->src[i].nr == inst->src[0].nr &&
2651 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2652 interfered = true;
2653 }
2654 }
2655 if (interfered)
2656 break;
2657
2658 if (scan_inst->dst.file == MRF) {
2659 /* If somebody else writes our MRF here, we can't
2660 * compute-to-MRF before that.
2661 */
2662 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2663 int scan_mrf_high;
2664
2665 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2666 scan_mrf_high = scan_mrf_low + 4;
2667 } else if (scan_inst->exec_size == 16) {
2668 scan_mrf_high = scan_mrf_low + 1;
2669 } else {
2670 scan_mrf_high = scan_mrf_low;
2671 }
2672
2673 if (mrf_low == scan_mrf_low ||
2674 mrf_low == scan_mrf_high ||
2675 mrf_high == scan_mrf_low ||
2676 mrf_high == scan_mrf_high) {
2677 break;
2678 }
2679 }
2680
2681 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2682 /* Found a SEND instruction, which means that there are
2683 * live values in MRFs from base_mrf to base_mrf +
2684 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2685 * above it.
2686 */
2687 if (mrf_low >= scan_inst->base_mrf &&
2688 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2689 break;
2690 }
2691 if (mrf_high >= scan_inst->base_mrf &&
2692 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2693 break;
2694 }
2695 }
2696 }
2697 }
2698
2699 if (progress)
2700 invalidate_live_intervals();
2701
2702 return progress;
2703 }
2704
2705 /**
2706 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2707 * flow. We could probably do better here with some form of divergence
2708 * analysis.
2709 */
2710 bool
2711 fs_visitor::eliminate_find_live_channel()
2712 {
2713 bool progress = false;
2714 unsigned depth = 0;
2715
2716 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2717 switch (inst->opcode) {
2718 case BRW_OPCODE_IF:
2719 case BRW_OPCODE_DO:
2720 depth++;
2721 break;
2722
2723 case BRW_OPCODE_ENDIF:
2724 case BRW_OPCODE_WHILE:
2725 depth--;
2726 break;
2727
2728 case FS_OPCODE_DISCARD_JUMP:
2729 /* This can potentially make control flow non-uniform until the end
2730 * of the program.
2731 */
2732 return progress;
2733
2734 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2735 if (depth == 0) {
2736 inst->opcode = BRW_OPCODE_MOV;
2737 inst->src[0] = fs_reg(0u);
2738 inst->sources = 1;
2739 inst->force_writemask_all = true;
2740 progress = true;
2741 }
2742 break;
2743
2744 default:
2745 break;
2746 }
2747 }
2748
2749 return progress;
2750 }
2751
2752 /**
2753 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2754 * instructions to FS_OPCODE_REP_FB_WRITE.
2755 */
2756 void
2757 fs_visitor::emit_repclear_shader()
2758 {
2759 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2760 int base_mrf = 1;
2761 int color_mrf = base_mrf + 2;
2762
2763 fs_inst *mov = bld.exec_all().group(4, 0)
2764 .MOV(brw_message_reg(color_mrf),
2765 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2766
2767 fs_inst *write;
2768 if (key->nr_color_regions == 1) {
2769 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2770 write->saturate = key->clamp_fragment_color;
2771 write->base_mrf = color_mrf;
2772 write->target = 0;
2773 write->header_size = 0;
2774 write->mlen = 1;
2775 } else {
2776 assume(key->nr_color_regions > 0);
2777 for (int i = 0; i < key->nr_color_regions; ++i) {
2778 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2779 write->saturate = key->clamp_fragment_color;
2780 write->base_mrf = base_mrf;
2781 write->target = i;
2782 write->header_size = 2;
2783 write->mlen = 3;
2784 }
2785 }
2786 write->eot = true;
2787
2788 calculate_cfg();
2789
2790 assign_constant_locations();
2791 assign_curb_setup();
2792
2793 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2794 assert(mov->src[0].file == FIXED_GRF);
2795 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2796 }
2797
2798 /**
2799 * Walks through basic blocks, looking for repeated MRF writes and
2800 * removing the later ones.
2801 */
2802 bool
2803 fs_visitor::remove_duplicate_mrf_writes()
2804 {
2805 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2806 bool progress = false;
2807
2808 /* Need to update the MRF tracking for compressed instructions. */
2809 if (dispatch_width == 16)
2810 return false;
2811
2812 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2813
2814 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2815 if (inst->is_control_flow()) {
2816 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2817 }
2818
2819 if (inst->opcode == BRW_OPCODE_MOV &&
2820 inst->dst.file == MRF) {
2821 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2822 if (prev_inst && inst->equals(prev_inst)) {
2823 inst->remove(block);
2824 progress = true;
2825 continue;
2826 }
2827 }
2828
2829 /* Clear out the last-write records for MRFs that were overwritten. */
2830 if (inst->dst.file == MRF) {
2831 last_mrf_move[inst->dst.nr] = NULL;
2832 }
2833
2834 if (inst->mlen > 0 && inst->base_mrf != -1) {
2835 /* Found a SEND instruction, which will include two or fewer
2836 * implied MRF writes. We could do better here.
2837 */
2838 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2839 last_mrf_move[inst->base_mrf + i] = NULL;
2840 }
2841 }
2842
2843 /* Clear out any MRF move records whose sources got overwritten. */
2844 if (inst->dst.file == VGRF) {
2845 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2846 if (last_mrf_move[i] &&
2847 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2848 last_mrf_move[i] = NULL;
2849 }
2850 }
2851 }
2852
2853 if (inst->opcode == BRW_OPCODE_MOV &&
2854 inst->dst.file == MRF &&
2855 inst->src[0].file == VGRF &&
2856 !inst->is_partial_write()) {
2857 last_mrf_move[inst->dst.nr] = inst;
2858 }
2859 }
2860
2861 if (progress)
2862 invalidate_live_intervals();
2863
2864 return progress;
2865 }
2866
2867 static void
2868 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2869 {
2870 /* Clear the flag for registers that actually got read (as expected). */
2871 for (int i = 0; i < inst->sources; i++) {
2872 int grf;
2873 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2874 grf = inst->src[i].nr;
2875 } else {
2876 continue;
2877 }
2878
2879 if (grf >= first_grf &&
2880 grf < first_grf + grf_len) {
2881 deps[grf - first_grf] = false;
2882 if (inst->exec_size == 16)
2883 deps[grf - first_grf + 1] = false;
2884 }
2885 }
2886 }
2887
2888 /**
2889 * Implements this workaround for the original 965:
2890 *
2891 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2892 * check for post destination dependencies on this instruction, software
2893 * must ensure that there is no destination hazard for the case of ‘write
2894 * followed by a posted write’ shown in the following example.
2895 *
2896 * 1. mov r3 0
2897 * 2. send r3.xy <rest of send instruction>
2898 * 3. mov r2 r3
2899 *
2900 * Due to no post-destination dependency check on the ‘send’, the above
2901 * code sequence could have two instructions (1 and 2) in flight at the
2902 * same time that both consider ‘r3’ as the target of their final writes.
2903 */
2904 void
2905 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2906 fs_inst *inst)
2907 {
2908 int write_len = inst->regs_written;
2909 int first_write_grf = inst->dst.nr;
2910 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2911 assert(write_len < (int)sizeof(needs_dep) - 1);
2912
2913 memset(needs_dep, false, sizeof(needs_dep));
2914 memset(needs_dep, true, write_len);
2915
2916 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2917
2918 /* Walk backwards looking for writes to registers we're writing which
2919 * aren't read since being written. If we hit the start of the program,
2920 * we assume that there are no outstanding dependencies on entry to the
2921 * program.
2922 */
2923 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2924 /* If we hit control flow, assume that there *are* outstanding
2925 * dependencies, and force their cleanup before our instruction.
2926 */
2927 if (block->start() == scan_inst) {
2928 for (int i = 0; i < write_len; i++) {
2929 if (needs_dep[i])
2930 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2931 first_write_grf + i);
2932 }
2933 return;
2934 }
2935
2936 /* We insert our reads as late as possible on the assumption that any
2937 * instruction but a MOV that might have left us an outstanding
2938 * dependency has more latency than a MOV.
2939 */
2940 if (scan_inst->dst.file == VGRF) {
2941 for (int i = 0; i < scan_inst->regs_written; i++) {
2942 int reg = scan_inst->dst.nr + i;
2943
2944 if (reg >= first_write_grf &&
2945 reg < first_write_grf + write_len &&
2946 needs_dep[reg - first_write_grf]) {
2947 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2948 needs_dep[reg - first_write_grf] = false;
2949 if (scan_inst->exec_size == 16)
2950 needs_dep[reg - first_write_grf + 1] = false;
2951 }
2952 }
2953 }
2954
2955 /* Clear the flag for registers that actually got read (as expected). */
2956 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2957
2958 /* Continue the loop only if we haven't resolved all the dependencies */
2959 int i;
2960 for (i = 0; i < write_len; i++) {
2961 if (needs_dep[i])
2962 break;
2963 }
2964 if (i == write_len)
2965 return;
2966 }
2967 }
2968
2969 /**
2970 * Implements this workaround for the original 965:
2971 *
2972 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2973 * used as a destination register until after it has been sourced by an
2974 * instruction with a different destination register.
2975 */
2976 void
2977 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2978 {
2979 int write_len = inst->regs_written;
2980 int first_write_grf = inst->dst.nr;
2981 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2982 assert(write_len < (int)sizeof(needs_dep) - 1);
2983
2984 memset(needs_dep, false, sizeof(needs_dep));
2985 memset(needs_dep, true, write_len);
2986 /* Walk forwards looking for writes to registers we're writing which aren't
2987 * read before being written.
2988 */
2989 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
2990 /* If we hit control flow, force resolve all remaining dependencies. */
2991 if (block->end() == scan_inst) {
2992 for (int i = 0; i < write_len; i++) {
2993 if (needs_dep[i])
2994 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
2995 first_write_grf + i);
2996 }
2997 return;
2998 }
2999
3000 /* Clear the flag for registers that actually got read (as expected). */
3001 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3002
3003 /* We insert our reads as late as possible since they're reading the
3004 * result of a SEND, which has massive latency.
3005 */
3006 if (scan_inst->dst.file == VGRF &&
3007 scan_inst->dst.nr >= first_write_grf &&
3008 scan_inst->dst.nr < first_write_grf + write_len &&
3009 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3010 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3011 scan_inst->dst.nr);
3012 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3013 }
3014
3015 /* Continue the loop only if we haven't resolved all the dependencies */
3016 int i;
3017 for (i = 0; i < write_len; i++) {
3018 if (needs_dep[i])
3019 break;
3020 }
3021 if (i == write_len)
3022 return;
3023 }
3024 }
3025
3026 void
3027 fs_visitor::insert_gen4_send_dependency_workarounds()
3028 {
3029 if (devinfo->gen != 4 || devinfo->is_g4x)
3030 return;
3031
3032 bool progress = false;
3033
3034 /* Note that we're done with register allocation, so GRF fs_regs always
3035 * have a .reg_offset of 0.
3036 */
3037
3038 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3039 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3040 insert_gen4_pre_send_dependency_workarounds(block, inst);
3041 insert_gen4_post_send_dependency_workarounds(block, inst);
3042 progress = true;
3043 }
3044 }
3045
3046 if (progress)
3047 invalidate_live_intervals();
3048 }
3049
3050 /**
3051 * Turns the generic expression-style uniform pull constant load instruction
3052 * into a hardware-specific series of instructions for loading a pull
3053 * constant.
3054 *
3055 * The expression style allows the CSE pass before this to optimize out
3056 * repeated loads from the same offset, and gives the pre-register-allocation
3057 * scheduling full flexibility, while the conversion to native instructions
3058 * allows the post-register-allocation scheduler the best information
3059 * possible.
3060 *
3061 * Note that execution masking for setting up pull constant loads is special:
3062 * the channels that need to be written are unrelated to the current execution
3063 * mask, since a later instruction will use one of the result channels as a
3064 * source operand for all 8 or 16 of its channels.
3065 */
3066 void
3067 fs_visitor::lower_uniform_pull_constant_loads()
3068 {
3069 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3070 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3071 continue;
3072
3073 if (devinfo->gen >= 7) {
3074 /* The offset arg before was a vec4-aligned byte offset. We need to
3075 * turn it into a dword offset.
3076 */
3077 fs_reg const_offset_reg = inst->src[1];
3078 assert(const_offset_reg.file == IMM &&
3079 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3080 const_offset_reg.ud /= 4;
3081
3082 fs_reg payload, offset;
3083 if (devinfo->gen >= 9) {
3084 /* We have to use a message header on Skylake to get SIMD4x2
3085 * mode. Reserve space for the register.
3086 */
3087 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3088 offset.reg_offset++;
3089 inst->mlen = 2;
3090 } else {
3091 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3092 inst->mlen = 1;
3093 }
3094
3095 /* This is actually going to be a MOV, but since only the first dword
3096 * is accessed, we have a special opcode to do just that one. Note
3097 * that this needs to be an operation that will be considered a def
3098 * by live variable analysis, or register allocation will explode.
3099 */
3100 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3101 8, offset, const_offset_reg);
3102 setup->force_writemask_all = true;
3103
3104 setup->ir = inst->ir;
3105 setup->annotation = inst->annotation;
3106 inst->insert_before(block, setup);
3107
3108 /* Similarly, this will only populate the first 4 channels of the
3109 * result register (since we only use smear values from 0-3), but we
3110 * don't tell the optimizer.
3111 */
3112 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3113 inst->src[1] = payload;
3114 inst->base_mrf = -1;
3115
3116 invalidate_live_intervals();
3117 } else {
3118 /* Before register allocation, we didn't tell the scheduler about the
3119 * MRF we use. We know it's safe to use this MRF because nothing
3120 * else does except for register spill/unspill, which generates and
3121 * uses its MRF within a single IR instruction.
3122 */
3123 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3124 inst->mlen = 1;
3125 }
3126 }
3127 }
3128
3129 bool
3130 fs_visitor::lower_load_payload()
3131 {
3132 bool progress = false;
3133
3134 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3135 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3136 continue;
3137
3138 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3139 assert(inst->saturate == false);
3140 fs_reg dst = inst->dst;
3141
3142 /* Get rid of COMPR4. We'll add it back in if we need it */
3143 if (dst.file == MRF)
3144 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3145
3146 const fs_builder ibld(this, block, inst);
3147 const fs_builder hbld = ibld.exec_all().group(8, 0);
3148
3149 for (uint8_t i = 0; i < inst->header_size; i++) {
3150 if (inst->src[i].file != BAD_FILE) {
3151 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3152 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3153 hbld.MOV(mov_dst, mov_src);
3154 }
3155 dst = offset(dst, hbld, 1);
3156 }
3157
3158 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3159 inst->exec_size > 8) {
3160 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3161 * a straightforward copy. Instead, the result of the
3162 * LOAD_PAYLOAD is treated as interleaved and the first four
3163 * non-header sources are unpacked as:
3164 *
3165 * m + 0: r0
3166 * m + 1: g0
3167 * m + 2: b0
3168 * m + 3: a0
3169 * m + 4: r1
3170 * m + 5: g1
3171 * m + 6: b1
3172 * m + 7: a1
3173 *
3174 * This is used for gen <= 5 fb writes.
3175 */
3176 assert(inst->exec_size == 16);
3177 assert(inst->header_size + 4 <= inst->sources);
3178 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3179 if (inst->src[i].file != BAD_FILE) {
3180 if (devinfo->has_compr4) {
3181 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3182 compr4_dst.nr |= BRW_MRF_COMPR4;
3183 ibld.MOV(compr4_dst, inst->src[i]);
3184 } else {
3185 /* Platform doesn't have COMPR4. We have to fake it */
3186 fs_reg mov_dst = retype(dst, inst->src[i].type);
3187 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3188 mov_dst.nr += 4;
3189 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3190 }
3191 }
3192
3193 dst.nr++;
3194 }
3195
3196 /* The loop above only ever incremented us through the first set
3197 * of 4 registers. However, thanks to the magic of COMPR4, we
3198 * actually wrote to the first 8 registers, so we need to take
3199 * that into account now.
3200 */
3201 dst.nr += 4;
3202
3203 /* The COMPR4 code took care of the first 4 sources. We'll let
3204 * the regular path handle any remaining sources. Yes, we are
3205 * modifying the instruction but we're about to delete it so
3206 * this really doesn't hurt anything.
3207 */
3208 inst->header_size += 4;
3209 }
3210
3211 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3212 if (inst->src[i].file != BAD_FILE)
3213 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3214 dst = offset(dst, ibld, 1);
3215 }
3216
3217 inst->remove(block);
3218 progress = true;
3219 }
3220
3221 if (progress)
3222 invalidate_live_intervals();
3223
3224 return progress;
3225 }
3226
3227 bool
3228 fs_visitor::lower_integer_multiplication()
3229 {
3230 bool progress = false;
3231
3232 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3233 const fs_builder ibld(this, block, inst);
3234
3235 if (inst->opcode == BRW_OPCODE_MUL) {
3236 if (inst->dst.is_accumulator() ||
3237 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3238 inst->dst.type != BRW_REGISTER_TYPE_UD))
3239 continue;
3240
3241 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3242 * operation directly, but CHV/BXT cannot.
3243 */
3244 if (devinfo->gen >= 8 &&
3245 !devinfo->is_cherryview && !devinfo->is_broxton)
3246 continue;
3247
3248 if (inst->src[1].file == IMM &&
3249 inst->src[1].ud < (1 << 16)) {
3250 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3251 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3252 * src1 are used.
3253 *
3254 * If multiplying by an immediate value that fits in 16-bits, do a
3255 * single MUL instruction with that value in the proper location.
3256 */
3257 if (devinfo->gen < 7) {
3258 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3259 inst->dst.type);
3260 ibld.MOV(imm, inst->src[1]);
3261 ibld.MUL(inst->dst, imm, inst->src[0]);
3262 } else {
3263 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3264 }
3265 } else {
3266 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3267 * do 32-bit integer multiplication in one instruction, but instead
3268 * must do a sequence (which actually calculates a 64-bit result):
3269 *
3270 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3271 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3272 * mov(8) g2<1>D acc0<8,8,1>D
3273 *
3274 * But on Gen > 6, the ability to use second accumulator register
3275 * (acc1) for non-float data types was removed, preventing a simple
3276 * implementation in SIMD16. A 16-channel result can be calculated by
3277 * executing the three instructions twice in SIMD8, once with quarter
3278 * control of 1Q for the first eight channels and again with 2Q for
3279 * the second eight channels.
3280 *
3281 * Which accumulator register is implicitly accessed (by AccWrEnable
3282 * for instance) is determined by the quarter control. Unfortunately
3283 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3284 * implicit accumulator access by an instruction with 2Q will access
3285 * acc1 regardless of whether the data type is usable in acc1.
3286 *
3287 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3288 * integer data types.
3289 *
3290 * Since we only want the low 32-bits of the result, we can do two
3291 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3292 * adjust the high result and add them (like the mach is doing):
3293 *
3294 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3295 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3296 * shl(8) g9<1>D g8<8,8,1>D 16D
3297 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3298 *
3299 * We avoid the shl instruction by realizing that we only want to add
3300 * the low 16-bits of the "high" result to the high 16-bits of the
3301 * "low" result and using proper regioning on the add:
3302 *
3303 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3304 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3305 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3306 *
3307 * Since it does not use the (single) accumulator register, we can
3308 * schedule multi-component multiplications much better.
3309 */
3310
3311 fs_reg orig_dst = inst->dst;
3312 if (orig_dst.is_null() || orig_dst.file == MRF) {
3313 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3314 inst->dst.type);
3315 }
3316 fs_reg low = inst->dst;
3317 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3318 inst->dst.type);
3319
3320 if (devinfo->gen >= 7) {
3321 fs_reg src1_0_w = inst->src[1];
3322 fs_reg src1_1_w = inst->src[1];
3323
3324 if (inst->src[1].file == IMM) {
3325 src1_0_w.ud &= 0xffff;
3326 src1_1_w.ud >>= 16;
3327 } else {
3328 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3329 if (src1_0_w.stride != 0) {
3330 assert(src1_0_w.stride == 1);
3331 src1_0_w.stride = 2;
3332 }
3333
3334 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3335 if (src1_1_w.stride != 0) {
3336 assert(src1_1_w.stride == 1);
3337 src1_1_w.stride = 2;
3338 }
3339 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3340 }
3341 ibld.MUL(low, inst->src[0], src1_0_w);
3342 ibld.MUL(high, inst->src[0], src1_1_w);
3343 } else {
3344 fs_reg src0_0_w = inst->src[0];
3345 fs_reg src0_1_w = inst->src[0];
3346
3347 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3348 if (src0_0_w.stride != 0) {
3349 assert(src0_0_w.stride == 1);
3350 src0_0_w.stride = 2;
3351 }
3352
3353 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3354 if (src0_1_w.stride != 0) {
3355 assert(src0_1_w.stride == 1);
3356 src0_1_w.stride = 2;
3357 }
3358 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3359
3360 ibld.MUL(low, src0_0_w, inst->src[1]);
3361 ibld.MUL(high, src0_1_w, inst->src[1]);
3362 }
3363
3364 fs_reg dst = inst->dst;
3365 dst.type = BRW_REGISTER_TYPE_UW;
3366 dst.subreg_offset = 2;
3367 dst.stride = 2;
3368
3369 high.type = BRW_REGISTER_TYPE_UW;
3370 high.stride = 2;
3371
3372 low.type = BRW_REGISTER_TYPE_UW;
3373 low.subreg_offset = 2;
3374 low.stride = 2;
3375
3376 ibld.ADD(dst, low, high);
3377
3378 if (inst->conditional_mod || orig_dst.file == MRF) {
3379 set_condmod(inst->conditional_mod,
3380 ibld.MOV(orig_dst, inst->dst));
3381 }
3382 }
3383
3384 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3385 /* Should have been lowered to 8-wide. */
3386 assert(inst->exec_size <= 8);
3387 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3388 inst->dst.type);
3389 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3390 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3391
3392 if (devinfo->gen >= 8) {
3393 /* Until Gen8, integer multiplies read 32-bits from one source,
3394 * and 16-bits from the other, and relying on the MACH instruction
3395 * to generate the high bits of the result.
3396 *
3397 * On Gen8, the multiply instruction does a full 32x32-bit
3398 * multiply, but in order to do a 64-bit multiply we can simulate
3399 * the previous behavior and then use a MACH instruction.
3400 *
3401 * FINISHME: Don't use source modifiers on src1.
3402 */
3403 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3404 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3405 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3406 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3407 mul->src[1].stride *= 2;
3408
3409 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3410 inst->force_sechalf) {
3411 /* Among other things the quarter control bits influence which
3412 * accumulator register is used by the hardware for instructions
3413 * that access the accumulator implicitly (e.g. MACH). A
3414 * second-half instruction would normally map to acc1, which
3415 * doesn't exist on Gen7 and up (the hardware does emulate it for
3416 * floating-point instructions *only* by taking advantage of the
3417 * extra precision of acc0 not normally used for floating point
3418 * arithmetic).
3419 *
3420 * HSW and up are careful enough not to try to access an
3421 * accumulator register that doesn't exist, but on earlier Gen7
3422 * hardware we need to make sure that the quarter control bits are
3423 * zero to avoid non-deterministic behaviour and emit an extra MOV
3424 * to get the result masked correctly according to the current
3425 * channel enables.
3426 */
3427 mach->force_sechalf = false;
3428 mach->force_writemask_all = true;
3429 mach->dst = ibld.vgrf(inst->dst.type);
3430 ibld.MOV(inst->dst, mach->dst);
3431 }
3432 } else {
3433 continue;
3434 }
3435
3436 inst->remove(block);
3437 progress = true;
3438 }
3439
3440 if (progress)
3441 invalidate_live_intervals();
3442
3443 return progress;
3444 }
3445
3446 static void
3447 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3448 fs_reg *dst, fs_reg color, unsigned components)
3449 {
3450 if (key->clamp_fragment_color) {
3451 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3452 assert(color.type == BRW_REGISTER_TYPE_F);
3453
3454 for (unsigned i = 0; i < components; i++)
3455 set_saturate(true,
3456 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3457
3458 color = tmp;
3459 }
3460
3461 for (unsigned i = 0; i < components; i++)
3462 dst[i] = offset(color, bld, i);
3463 }
3464
3465 static void
3466 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3467 const brw_wm_prog_data *prog_data,
3468 const brw_wm_prog_key *key,
3469 const fs_visitor::thread_payload &payload)
3470 {
3471 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3472 const brw_device_info *devinfo = bld.shader->devinfo;
3473 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3474 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3475 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3476 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3477 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3478 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3479 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3480 const unsigned components =
3481 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3482
3483 /* We can potentially have a message length of up to 15, so we have to set
3484 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3485 */
3486 fs_reg sources[15];
3487 int header_size = 2, payload_header_size;
3488 unsigned length = 0;
3489
3490 /* From the Sandy Bridge PRM, volume 4, page 198:
3491 *
3492 * "Dispatched Pixel Enables. One bit per pixel indicating
3493 * which pixels were originally enabled when the thread was
3494 * dispatched. This field is only required for the end-of-
3495 * thread message and on all dual-source messages."
3496 */
3497 if (devinfo->gen >= 6 &&
3498 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3499 color1.file == BAD_FILE &&
3500 key->nr_color_regions == 1) {
3501 header_size = 0;
3502 }
3503
3504 if (header_size != 0) {
3505 assert(header_size == 2);
3506 /* Allocate 2 registers for a header */
3507 length += 2;
3508 }
3509
3510 if (payload.aa_dest_stencil_reg) {
3511 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3512 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3513 .MOV(sources[length],
3514 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3515 length++;
3516 }
3517
3518 if (prog_data->uses_omask) {
3519 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3520 BRW_REGISTER_TYPE_UD);
3521
3522 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3523 * relevant. Since it's unsigned single words one vgrf is always
3524 * 16-wide, but only the lower or higher 8 channels will be used by the
3525 * hardware when doing a SIMD8 write depending on whether we have
3526 * selected the subspans for the first or second half respectively.
3527 */
3528 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3529 sample_mask.type = BRW_REGISTER_TYPE_UW;
3530 sample_mask.stride *= 2;
3531
3532 bld.exec_all().annotate("FB write oMask")
3533 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3534 inst->force_sechalf),
3535 sample_mask);
3536 length++;
3537 }
3538
3539 payload_header_size = length;
3540
3541 if (src0_alpha.file != BAD_FILE) {
3542 /* FIXME: This is being passed at the wrong location in the payload and
3543 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3544 * It's supposed to be immediately before oMask but there seems to be no
3545 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3546 * requires header sources to form a contiguous segment at the beginning
3547 * of the message and src0_alpha has per-channel semantics.
3548 */
3549 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3550 length++;
3551 }
3552
3553 setup_color_payload(bld, key, &sources[length], color0, components);
3554 length += 4;
3555
3556 if (color1.file != BAD_FILE) {
3557 setup_color_payload(bld, key, &sources[length], color1, components);
3558 length += 4;
3559 }
3560
3561 if (src_depth.file != BAD_FILE) {
3562 sources[length] = src_depth;
3563 length++;
3564 }
3565
3566 if (dst_depth.file != BAD_FILE) {
3567 sources[length] = dst_depth;
3568 length++;
3569 }
3570
3571 if (src_stencil.file != BAD_FILE) {
3572 assert(devinfo->gen >= 9);
3573 assert(bld.dispatch_width() != 16);
3574
3575 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3576 bld.exec_all().annotate("FB write OS")
3577 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3578 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3579 length++;
3580 }
3581
3582 fs_inst *load;
3583 if (devinfo->gen >= 7) {
3584 /* Send from the GRF */
3585 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3586 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3587 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3588 load->dst = payload;
3589
3590 inst->src[0] = payload;
3591 inst->resize_sources(1);
3592 inst->base_mrf = -1;
3593 } else {
3594 /* Send from the MRF */
3595 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3596 sources, length, payload_header_size);
3597
3598 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3599 * will do this for us if we just give it a COMPR4 destination.
3600 */
3601 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3602 load->dst.nr |= BRW_MRF_COMPR4;
3603
3604 inst->resize_sources(0);
3605 inst->base_mrf = 1;
3606 }
3607
3608 inst->opcode = FS_OPCODE_FB_WRITE;
3609 inst->mlen = load->regs_written;
3610 inst->header_size = header_size;
3611 }
3612
3613 static void
3614 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3615 const fs_reg &coordinate,
3616 const fs_reg &shadow_c,
3617 const fs_reg &lod, const fs_reg &lod2,
3618 const fs_reg &sampler,
3619 unsigned coord_components,
3620 unsigned grad_components)
3621 {
3622 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3623 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3624 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3625 fs_reg msg_end = msg_begin;
3626
3627 /* g0 header. */
3628 msg_end = offset(msg_end, bld.group(8, 0), 1);
3629
3630 for (unsigned i = 0; i < coord_components; i++)
3631 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3632 offset(coordinate, bld, i));
3633
3634 msg_end = offset(msg_end, bld, coord_components);
3635
3636 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3637 * require all three components to be present and zero if they are unused.
3638 */
3639 if (coord_components > 0 &&
3640 (has_lod || shadow_c.file != BAD_FILE ||
3641 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3642 for (unsigned i = coord_components; i < 3; i++)
3643 bld.MOV(offset(msg_end, bld, i), fs_reg(0.0f));
3644
3645 msg_end = offset(msg_end, bld, 3 - coord_components);
3646 }
3647
3648 if (op == SHADER_OPCODE_TXD) {
3649 /* TXD unsupported in SIMD16 mode. */
3650 assert(bld.dispatch_width() == 8);
3651
3652 /* the slots for u and v are always present, but r is optional */
3653 if (coord_components < 2)
3654 msg_end = offset(msg_end, bld, 2 - coord_components);
3655
3656 /* P = u, v, r
3657 * dPdx = dudx, dvdx, drdx
3658 * dPdy = dudy, dvdy, drdy
3659 *
3660 * 1-arg: Does not exist.
3661 *
3662 * 2-arg: dudx dvdx dudy dvdy
3663 * dPdx.x dPdx.y dPdy.x dPdy.y
3664 * m4 m5 m6 m7
3665 *
3666 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3667 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3668 * m5 m6 m7 m8 m9 m10
3669 */
3670 for (unsigned i = 0; i < grad_components; i++)
3671 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3672
3673 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3674
3675 for (unsigned i = 0; i < grad_components; i++)
3676 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3677
3678 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3679 }
3680
3681 if (has_lod) {
3682 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3683 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3684 */
3685 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3686 bld.dispatch_width() == 16);
3687
3688 const brw_reg_type type =
3689 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3690 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3691 bld.MOV(retype(msg_end, type), lod);
3692 msg_end = offset(msg_end, bld, 1);
3693 }
3694
3695 if (shadow_c.file != BAD_FILE) {
3696 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3697 /* There's no plain shadow compare message, so we use shadow
3698 * compare with a bias of 0.0.
3699 */
3700 bld.MOV(msg_end, fs_reg(0.0f));
3701 msg_end = offset(msg_end, bld, 1);
3702 }
3703
3704 bld.MOV(msg_end, shadow_c);
3705 msg_end = offset(msg_end, bld, 1);
3706 }
3707
3708 inst->opcode = op;
3709 inst->src[0] = reg_undef;
3710 inst->src[1] = sampler;
3711 inst->resize_sources(2);
3712 inst->base_mrf = msg_begin.nr;
3713 inst->mlen = msg_end.nr - msg_begin.nr;
3714 inst->header_size = 1;
3715 }
3716
3717 static void
3718 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3719 fs_reg coordinate,
3720 const fs_reg &shadow_c,
3721 fs_reg lod, fs_reg lod2,
3722 const fs_reg &sample_index,
3723 const fs_reg &sampler,
3724 const fs_reg &offset_value,
3725 unsigned coord_components,
3726 unsigned grad_components)
3727 {
3728 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3729 fs_reg msg_coords = message;
3730 unsigned header_size = 0;
3731
3732 if (offset_value.file != BAD_FILE) {
3733 /* The offsets set up by the visitor are in the m1 header, so we can't
3734 * go headerless.
3735 */
3736 header_size = 1;
3737 message.nr--;
3738 }
3739
3740 for (unsigned i = 0; i < coord_components; i++) {
3741 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3742 coordinate = offset(coordinate, bld, 1);
3743 }
3744 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3745 fs_reg msg_lod = offset(msg_coords, bld, 4);
3746
3747 if (shadow_c.file != BAD_FILE) {
3748 fs_reg msg_shadow = msg_lod;
3749 bld.MOV(msg_shadow, shadow_c);
3750 msg_lod = offset(msg_shadow, bld, 1);
3751 msg_end = msg_lod;
3752 }
3753
3754 switch (op) {
3755 case SHADER_OPCODE_TXL:
3756 case FS_OPCODE_TXB:
3757 bld.MOV(msg_lod, lod);
3758 msg_end = offset(msg_lod, bld, 1);
3759 break;
3760 case SHADER_OPCODE_TXD:
3761 /**
3762 * P = u, v, r
3763 * dPdx = dudx, dvdx, drdx
3764 * dPdy = dudy, dvdy, drdy
3765 *
3766 * Load up these values:
3767 * - dudx dudy dvdx dvdy drdx drdy
3768 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3769 */
3770 msg_end = msg_lod;
3771 for (unsigned i = 0; i < grad_components; i++) {
3772 bld.MOV(msg_end, lod);
3773 lod = offset(lod, bld, 1);
3774 msg_end = offset(msg_end, bld, 1);
3775
3776 bld.MOV(msg_end, lod2);
3777 lod2 = offset(lod2, bld, 1);
3778 msg_end = offset(msg_end, bld, 1);
3779 }
3780 break;
3781 case SHADER_OPCODE_TXS:
3782 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3783 bld.MOV(msg_lod, lod);
3784 msg_end = offset(msg_lod, bld, 1);
3785 break;
3786 case SHADER_OPCODE_TXF:
3787 msg_lod = offset(msg_coords, bld, 3);
3788 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3789 msg_end = offset(msg_lod, bld, 1);
3790 break;
3791 case SHADER_OPCODE_TXF_CMS:
3792 msg_lod = offset(msg_coords, bld, 3);
3793 /* lod */
3794 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
3795 /* sample index */
3796 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3797 msg_end = offset(msg_lod, bld, 2);
3798 break;
3799 default:
3800 break;
3801 }
3802
3803 inst->opcode = op;
3804 inst->src[0] = reg_undef;
3805 inst->src[1] = sampler;
3806 inst->resize_sources(2);
3807 inst->base_mrf = message.nr;
3808 inst->mlen = msg_end.nr - message.nr;
3809 inst->header_size = header_size;
3810
3811 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3812 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3813 }
3814
3815 static bool
3816 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3817 {
3818 if (devinfo->gen < 8 && !devinfo->is_haswell)
3819 return false;
3820
3821 return sampler.file != IMM || sampler.ud >= 16;
3822 }
3823
3824 static void
3825 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3826 fs_reg coordinate,
3827 const fs_reg &shadow_c,
3828 fs_reg lod, fs_reg lod2,
3829 const fs_reg &sample_index,
3830 const fs_reg &mcs, const fs_reg &sampler,
3831 fs_reg offset_value,
3832 unsigned coord_components,
3833 unsigned grad_components)
3834 {
3835 const brw_device_info *devinfo = bld.shader->devinfo;
3836 int reg_width = bld.dispatch_width() / 8;
3837 unsigned header_size = 0, length = 0;
3838 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3839 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3840 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3841
3842 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3843 offset_value.file != BAD_FILE ||
3844 is_high_sampler(devinfo, sampler)) {
3845 /* For general texture offsets (no txf workaround), we need a header to
3846 * put them in. Note that we're only reserving space for it in the
3847 * message payload as it will be initialized implicitly by the
3848 * generator.
3849 *
3850 * TG4 needs to place its channel select in the header, for interaction
3851 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3852 * larger sampler numbers we need to offset the Sampler State Pointer in
3853 * the header.
3854 */
3855 header_size = 1;
3856 sources[0] = fs_reg();
3857 length++;
3858 }
3859
3860 if (shadow_c.file != BAD_FILE) {
3861 bld.MOV(sources[length], shadow_c);
3862 length++;
3863 }
3864
3865 bool coordinate_done = false;
3866
3867 /* The sampler can only meaningfully compute LOD for fragment shader
3868 * messages. For all other stages, we change the opcode to TXL and
3869 * hardcode the LOD to 0.
3870 */
3871 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3872 op == SHADER_OPCODE_TEX) {
3873 op = SHADER_OPCODE_TXL;
3874 lod = fs_reg(0.0f);
3875 }
3876
3877 /* Set up the LOD info */
3878 switch (op) {
3879 case FS_OPCODE_TXB:
3880 case SHADER_OPCODE_TXL:
3881 bld.MOV(sources[length], lod);
3882 length++;
3883 break;
3884 case SHADER_OPCODE_TXD:
3885 /* TXD should have been lowered in SIMD16 mode. */
3886 assert(bld.dispatch_width() == 8);
3887
3888 /* Load dPdx and the coordinate together:
3889 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3890 */
3891 for (unsigned i = 0; i < coord_components; i++) {
3892 bld.MOV(sources[length], coordinate);
3893 coordinate = offset(coordinate, bld, 1);
3894 length++;
3895
3896 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3897 * only derivatives for (u, v, r).
3898 */
3899 if (i < grad_components) {
3900 bld.MOV(sources[length], lod);
3901 lod = offset(lod, bld, 1);
3902 length++;
3903
3904 bld.MOV(sources[length], lod2);
3905 lod2 = offset(lod2, bld, 1);
3906 length++;
3907 }
3908 }
3909
3910 coordinate_done = true;
3911 break;
3912 case SHADER_OPCODE_TXS:
3913 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3914 length++;
3915 break;
3916 case SHADER_OPCODE_TXF:
3917 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3918 * On Gen9 they are u, v, lod, r
3919 */
3920 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3921 coordinate = offset(coordinate, bld, 1);
3922 length++;
3923
3924 if (devinfo->gen >= 9) {
3925 if (coord_components >= 2) {
3926 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3927 coordinate = offset(coordinate, bld, 1);
3928 }
3929 length++;
3930 }
3931
3932 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3933 length++;
3934
3935 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3936 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3937 coordinate = offset(coordinate, bld, 1);
3938 length++;
3939 }
3940
3941 coordinate_done = true;
3942 break;
3943 case SHADER_OPCODE_TXF_CMS:
3944 case SHADER_OPCODE_TXF_CMS_W:
3945 case SHADER_OPCODE_TXF_UMS:
3946 case SHADER_OPCODE_TXF_MCS:
3947 if (op == SHADER_OPCODE_TXF_UMS ||
3948 op == SHADER_OPCODE_TXF_CMS ||
3949 op == SHADER_OPCODE_TXF_CMS_W) {
3950 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
3951 length++;
3952 }
3953
3954 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
3955 /* Data from the multisample control surface. */
3956 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
3957 length++;
3958
3959 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
3960 * the MCS data.
3961 */
3962 if (op == SHADER_OPCODE_TXF_CMS_W) {
3963 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
3964 mcs.file == IMM ?
3965 mcs :
3966 offset(mcs, bld, 1));
3967 length++;
3968 }
3969 }
3970
3971 /* There is no offsetting for this message; just copy in the integer
3972 * texture coordinates.
3973 */
3974 for (unsigned i = 0; i < coord_components; i++) {
3975 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3976 coordinate = offset(coordinate, bld, 1);
3977 length++;
3978 }
3979
3980 coordinate_done = true;
3981 break;
3982 case SHADER_OPCODE_TG4_OFFSET:
3983 /* gather4_po_c should have been lowered in SIMD16 mode. */
3984 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
3985
3986 /* More crazy intermixing */
3987 for (unsigned i = 0; i < 2; i++) { /* u, v */
3988 bld.MOV(sources[length], coordinate);
3989 coordinate = offset(coordinate, bld, 1);
3990 length++;
3991 }
3992
3993 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
3994 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
3995 offset_value = offset(offset_value, bld, 1);
3996 length++;
3997 }
3998
3999 if (coord_components == 3) { /* r if present */
4000 bld.MOV(sources[length], coordinate);
4001 coordinate = offset(coordinate, bld, 1);
4002 length++;
4003 }
4004
4005 coordinate_done = true;
4006 break;
4007 default:
4008 break;
4009 }
4010
4011 /* Set up the coordinate (except for cases where it was done above) */
4012 if (!coordinate_done) {
4013 for (unsigned i = 0; i < coord_components; i++) {
4014 bld.MOV(sources[length], coordinate);
4015 coordinate = offset(coordinate, bld, 1);
4016 length++;
4017 }
4018 }
4019
4020 int mlen;
4021 if (reg_width == 2)
4022 mlen = length * reg_width - header_size;
4023 else
4024 mlen = length * reg_width;
4025
4026 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4027 BRW_REGISTER_TYPE_F);
4028 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4029
4030 /* Generate the SEND. */
4031 inst->opcode = op;
4032 inst->src[0] = src_payload;
4033 inst->src[1] = sampler;
4034 inst->resize_sources(2);
4035 inst->base_mrf = -1;
4036 inst->mlen = mlen;
4037 inst->header_size = header_size;
4038
4039 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4040 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4041 }
4042
4043 static void
4044 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4045 {
4046 const brw_device_info *devinfo = bld.shader->devinfo;
4047 const fs_reg &coordinate = inst->src[0];
4048 const fs_reg &shadow_c = inst->src[1];
4049 const fs_reg &lod = inst->src[2];
4050 const fs_reg &lod2 = inst->src[3];
4051 const fs_reg &sample_index = inst->src[4];
4052 const fs_reg &mcs = inst->src[5];
4053 const fs_reg &sampler = inst->src[6];
4054 const fs_reg &offset_value = inst->src[7];
4055 assert(inst->src[8].file == IMM && inst->src[9].file == IMM);
4056 const unsigned coord_components = inst->src[8].ud;
4057 const unsigned grad_components = inst->src[9].ud;
4058
4059 if (devinfo->gen >= 7) {
4060 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4061 shadow_c, lod, lod2, sample_index,
4062 mcs, sampler, offset_value,
4063 coord_components, grad_components);
4064 } else if (devinfo->gen >= 5) {
4065 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4066 shadow_c, lod, lod2, sample_index,
4067 sampler, offset_value,
4068 coord_components, grad_components);
4069 } else {
4070 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4071 shadow_c, lod, lod2, sampler,
4072 coord_components, grad_components);
4073 }
4074 }
4075
4076 /**
4077 * Initialize the header present in some typed and untyped surface
4078 * messages.
4079 */
4080 static fs_reg
4081 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4082 {
4083 fs_builder ubld = bld.exec_all().group(8, 0);
4084 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4085 ubld.MOV(dst, fs_reg(0));
4086 ubld.MOV(component(dst, 7), sample_mask);
4087 return dst;
4088 }
4089
4090 static void
4091 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4092 const fs_reg &sample_mask)
4093 {
4094 /* Get the logical send arguments. */
4095 const fs_reg &addr = inst->src[0];
4096 const fs_reg &src = inst->src[1];
4097 const fs_reg &surface = inst->src[2];
4098 const UNUSED fs_reg &dims = inst->src[3];
4099 const fs_reg &arg = inst->src[4];
4100
4101 /* Calculate the total number of components of the payload. */
4102 const unsigned addr_sz = inst->components_read(0);
4103 const unsigned src_sz = inst->components_read(1);
4104 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4105 const unsigned sz = header_sz + addr_sz + src_sz;
4106
4107 /* Allocate space for the payload. */
4108 fs_reg *const components = new fs_reg[sz];
4109 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4110 unsigned n = 0;
4111
4112 /* Construct the payload. */
4113 if (header_sz)
4114 components[n++] = emit_surface_header(bld, sample_mask);
4115
4116 for (unsigned i = 0; i < addr_sz; i++)
4117 components[n++] = offset(addr, bld, i);
4118
4119 for (unsigned i = 0; i < src_sz; i++)
4120 components[n++] = offset(src, bld, i);
4121
4122 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4123
4124 /* Update the original instruction. */
4125 inst->opcode = op;
4126 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4127 inst->header_size = header_sz;
4128
4129 inst->src[0] = payload;
4130 inst->src[1] = surface;
4131 inst->src[2] = arg;
4132 inst->resize_sources(3);
4133
4134 delete[] components;
4135 }
4136
4137 bool
4138 fs_visitor::lower_logical_sends()
4139 {
4140 bool progress = false;
4141
4142 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4143 const fs_builder ibld(this, block, inst);
4144
4145 switch (inst->opcode) {
4146 case FS_OPCODE_FB_WRITE_LOGICAL:
4147 assert(stage == MESA_SHADER_FRAGMENT);
4148 lower_fb_write_logical_send(ibld, inst,
4149 (const brw_wm_prog_data *)prog_data,
4150 (const brw_wm_prog_key *)key,
4151 payload);
4152 break;
4153
4154 case SHADER_OPCODE_TEX_LOGICAL:
4155 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4156 break;
4157
4158 case SHADER_OPCODE_TXD_LOGICAL:
4159 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4160 break;
4161
4162 case SHADER_OPCODE_TXF_LOGICAL:
4163 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4164 break;
4165
4166 case SHADER_OPCODE_TXL_LOGICAL:
4167 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4168 break;
4169
4170 case SHADER_OPCODE_TXS_LOGICAL:
4171 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4172 break;
4173
4174 case FS_OPCODE_TXB_LOGICAL:
4175 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4176 break;
4177
4178 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4179 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4180 break;
4181
4182 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4183 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4184 break;
4185
4186 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4187 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4188 break;
4189
4190 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4191 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4192 break;
4193
4194 case SHADER_OPCODE_LOD_LOGICAL:
4195 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4196 break;
4197
4198 case SHADER_OPCODE_TG4_LOGICAL:
4199 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4200 break;
4201
4202 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4203 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4204 break;
4205
4206 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4207 lower_surface_logical_send(ibld, inst,
4208 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4209 fs_reg());
4210 break;
4211
4212 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4213 lower_surface_logical_send(ibld, inst,
4214 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4215 ibld.sample_mask_reg());
4216 break;
4217
4218 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4219 lower_surface_logical_send(ibld, inst,
4220 SHADER_OPCODE_UNTYPED_ATOMIC,
4221 ibld.sample_mask_reg());
4222 break;
4223
4224 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4225 lower_surface_logical_send(ibld, inst,
4226 SHADER_OPCODE_TYPED_SURFACE_READ,
4227 fs_reg(0xffff));
4228 break;
4229
4230 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4231 lower_surface_logical_send(ibld, inst,
4232 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4233 ibld.sample_mask_reg());
4234 break;
4235
4236 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4237 lower_surface_logical_send(ibld, inst,
4238 SHADER_OPCODE_TYPED_ATOMIC,
4239 ibld.sample_mask_reg());
4240 break;
4241
4242 default:
4243 continue;
4244 }
4245
4246 progress = true;
4247 }
4248
4249 if (progress)
4250 invalidate_live_intervals();
4251
4252 return progress;
4253 }
4254
4255 /**
4256 * Get the closest native SIMD width supported by the hardware for instruction
4257 * \p inst. The instruction will be left untouched by
4258 * fs_visitor::lower_simd_width() if the returned value is equal to the
4259 * original execution size.
4260 */
4261 static unsigned
4262 get_lowered_simd_width(const struct brw_device_info *devinfo,
4263 const fs_inst *inst)
4264 {
4265 switch (inst->opcode) {
4266 case BRW_OPCODE_MOV:
4267 case BRW_OPCODE_SEL:
4268 case BRW_OPCODE_NOT:
4269 case BRW_OPCODE_AND:
4270 case BRW_OPCODE_OR:
4271 case BRW_OPCODE_XOR:
4272 case BRW_OPCODE_SHR:
4273 case BRW_OPCODE_SHL:
4274 case BRW_OPCODE_ASR:
4275 case BRW_OPCODE_CMP:
4276 case BRW_OPCODE_CMPN:
4277 case BRW_OPCODE_CSEL:
4278 case BRW_OPCODE_F32TO16:
4279 case BRW_OPCODE_F16TO32:
4280 case BRW_OPCODE_BFREV:
4281 case BRW_OPCODE_BFE:
4282 case BRW_OPCODE_BFI1:
4283 case BRW_OPCODE_BFI2:
4284 case BRW_OPCODE_ADD:
4285 case BRW_OPCODE_MUL:
4286 case BRW_OPCODE_AVG:
4287 case BRW_OPCODE_FRC:
4288 case BRW_OPCODE_RNDU:
4289 case BRW_OPCODE_RNDD:
4290 case BRW_OPCODE_RNDE:
4291 case BRW_OPCODE_RNDZ:
4292 case BRW_OPCODE_LZD:
4293 case BRW_OPCODE_FBH:
4294 case BRW_OPCODE_FBL:
4295 case BRW_OPCODE_CBIT:
4296 case BRW_OPCODE_SAD2:
4297 case BRW_OPCODE_MAD:
4298 case BRW_OPCODE_LRP:
4299 case SHADER_OPCODE_RCP:
4300 case SHADER_OPCODE_RSQ:
4301 case SHADER_OPCODE_SQRT:
4302 case SHADER_OPCODE_EXP2:
4303 case SHADER_OPCODE_LOG2:
4304 case SHADER_OPCODE_POW:
4305 case SHADER_OPCODE_INT_QUOTIENT:
4306 case SHADER_OPCODE_INT_REMAINDER:
4307 case SHADER_OPCODE_SIN:
4308 case SHADER_OPCODE_COS: {
4309 /* According to the PRMs:
4310 * "A. In Direct Addressing mode, a source cannot span more than 2
4311 * adjacent GRF registers.
4312 * B. A destination cannot span more than 2 adjacent GRF registers."
4313 *
4314 * Look for the source or destination with the largest register region
4315 * which is the one that is going to limit the overal execution size of
4316 * the instruction due to this rule.
4317 */
4318 unsigned reg_count = inst->regs_written;
4319
4320 for (unsigned i = 0; i < inst->sources; i++)
4321 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4322
4323 /* Calculate the maximum execution size of the instruction based on the
4324 * factor by which it goes over the hardware limit of 2 GRFs.
4325 */
4326 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4327 }
4328 case SHADER_OPCODE_MULH:
4329 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4330 * is 8-wide on Gen7+.
4331 */
4332 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4333
4334 case FS_OPCODE_FB_WRITE_LOGICAL:
4335 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4336 * here.
4337 */
4338 assert(devinfo->gen != 6 ||
4339 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4340 inst->exec_size == 8);
4341 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4342 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4343 8 : inst->exec_size);
4344
4345 case SHADER_OPCODE_TXD_LOGICAL:
4346 /* TXD is unsupported in SIMD16 mode. */
4347 return 8;
4348
4349 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4350 /* gather4_po_c is unsupported in SIMD16 mode. */
4351 const fs_reg &shadow_c = inst->src[1];
4352 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4353 }
4354 case SHADER_OPCODE_TXL_LOGICAL:
4355 case FS_OPCODE_TXB_LOGICAL: {
4356 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4357 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4358 * mode because the message exceeds the maximum length of 11.
4359 */
4360 const fs_reg &shadow_c = inst->src[1];
4361 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4362 return 16;
4363 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4364 return 8;
4365 else
4366 return inst->exec_size;
4367 }
4368 case SHADER_OPCODE_TXF_LOGICAL:
4369 case SHADER_OPCODE_TXS_LOGICAL:
4370 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4371 * messages. Use SIMD16 instead.
4372 */
4373 if (devinfo->gen == 4)
4374 return 16;
4375 else
4376 return inst->exec_size;
4377
4378 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4379 /* This opcode can take up to 6 arguments which means that in some
4380 * circumstances it can end up with a message that is too long in SIMD16
4381 * mode.
4382 */
4383 const unsigned coord_components = inst->src[8].ud;
4384 /* First three arguments are the sample index and the two arguments for
4385 * the MCS data.
4386 */
4387 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4388 return 8;
4389 else
4390 return inst->exec_size;
4391 }
4392
4393 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4394 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4395 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4396 return 8;
4397
4398 default:
4399 return inst->exec_size;
4400 }
4401 }
4402
4403 /**
4404 * The \p rows array of registers represents a \p num_rows by \p num_columns
4405 * matrix in row-major order, write it in column-major order into the register
4406 * passed as destination. \p stride gives the separation between matrix
4407 * elements in the input in fs_builder::dispatch_width() units.
4408 */
4409 static void
4410 emit_transpose(const fs_builder &bld,
4411 const fs_reg &dst, const fs_reg *rows,
4412 unsigned num_rows, unsigned num_columns, unsigned stride)
4413 {
4414 fs_reg *const components = new fs_reg[num_rows * num_columns];
4415
4416 for (unsigned i = 0; i < num_columns; ++i) {
4417 for (unsigned j = 0; j < num_rows; ++j)
4418 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4419 }
4420
4421 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4422
4423 delete[] components;
4424 }
4425
4426 bool
4427 fs_visitor::lower_simd_width()
4428 {
4429 bool progress = false;
4430
4431 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4432 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4433
4434 if (lower_width != inst->exec_size) {
4435 /* Builder matching the original instruction. We may also need to
4436 * emit an instruction of width larger than the original, set the
4437 * execution size of the builder to the highest of both for now so
4438 * we're sure that both cases can be handled.
4439 */
4440 const fs_builder ibld = bld.at(block, inst)
4441 .exec_all(inst->force_writemask_all)
4442 .group(MAX2(inst->exec_size, lower_width),
4443 inst->force_sechalf);
4444
4445 /* Split the copies in chunks of the execution width of either the
4446 * original or the lowered instruction, whichever is lower.
4447 */
4448 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4449 const unsigned n = inst->exec_size / copy_width;
4450 const unsigned dst_size = inst->regs_written * REG_SIZE /
4451 inst->dst.component_size(inst->exec_size);
4452 fs_reg dsts[4];
4453
4454 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4455 !inst->writes_accumulator && !inst->mlen);
4456
4457 for (unsigned i = 0; i < n; i++) {
4458 /* Emit a copy of the original instruction with the lowered width.
4459 * If the EOT flag was set throw it away except for the last
4460 * instruction to avoid killing the thread prematurely.
4461 */
4462 fs_inst split_inst = *inst;
4463 split_inst.exec_size = lower_width;
4464 split_inst.eot = inst->eot && i == n - 1;
4465
4466 /* Select the correct channel enables for the i-th group, then
4467 * transform the sources and destination and emit the lowered
4468 * instruction.
4469 */
4470 const fs_builder lbld = ibld.group(lower_width, i);
4471
4472 for (unsigned j = 0; j < inst->sources; j++) {
4473 if (inst->src[j].file != BAD_FILE &&
4474 !is_uniform(inst->src[j])) {
4475 /* Get the i-th copy_width-wide chunk of the source. */
4476 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4477 const unsigned src_size = inst->components_read(j);
4478
4479 /* Use a trivial transposition to copy one every n
4480 * copy_width-wide components of the register into a
4481 * temporary passed as source to the lowered instruction.
4482 */
4483 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4484 emit_transpose(lbld.group(copy_width, 0),
4485 split_inst.src[j], &src, 1, src_size, n);
4486 }
4487 }
4488
4489 if (inst->regs_written) {
4490 /* Allocate enough space to hold the result of the lowered
4491 * instruction and fix up the number of registers written.
4492 */
4493 split_inst.dst = dsts[i] =
4494 lbld.vgrf(inst->dst.type, dst_size);
4495 split_inst.regs_written =
4496 DIV_ROUND_UP(inst->regs_written * lower_width,
4497 inst->exec_size);
4498 }
4499
4500 lbld.emit(split_inst);
4501 }
4502
4503 if (inst->regs_written) {
4504 /* Distance between useful channels in the temporaries, skipping
4505 * garbage if the lowered instruction is wider than the original.
4506 */
4507 const unsigned m = lower_width / copy_width;
4508
4509 /* Interleave the components of the result from the lowered
4510 * instructions. We need to set exec_all() when copying more than
4511 * one half per component, because LOAD_PAYLOAD (in terms of which
4512 * emit_transpose is implemented) can only use the same channel
4513 * enable signals for all of its non-header sources.
4514 */
4515 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4516 .group(copy_width, 0),
4517 inst->dst, dsts, n, dst_size, m);
4518 }
4519
4520 inst->remove(block);
4521 progress = true;
4522 }
4523 }
4524
4525 if (progress)
4526 invalidate_live_intervals();
4527
4528 return progress;
4529 }
4530
4531 void
4532 fs_visitor::dump_instructions()
4533 {
4534 dump_instructions(NULL);
4535 }
4536
4537 void
4538 fs_visitor::dump_instructions(const char *name)
4539 {
4540 FILE *file = stderr;
4541 if (name && geteuid() != 0) {
4542 file = fopen(name, "w");
4543 if (!file)
4544 file = stderr;
4545 }
4546
4547 if (cfg) {
4548 calculate_register_pressure();
4549 int ip = 0, max_pressure = 0;
4550 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4551 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4552 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4553 dump_instruction(inst, file);
4554 ip++;
4555 }
4556 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4557 } else {
4558 int ip = 0;
4559 foreach_in_list(backend_instruction, inst, &instructions) {
4560 fprintf(file, "%4d: ", ip++);
4561 dump_instruction(inst, file);
4562 }
4563 }
4564
4565 if (file != stderr) {
4566 fclose(file);
4567 }
4568 }
4569
4570 void
4571 fs_visitor::dump_instruction(backend_instruction *be_inst)
4572 {
4573 dump_instruction(be_inst, stderr);
4574 }
4575
4576 void
4577 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4578 {
4579 fs_inst *inst = (fs_inst *)be_inst;
4580
4581 if (inst->predicate) {
4582 fprintf(file, "(%cf0.%d) ",
4583 inst->predicate_inverse ? '-' : '+',
4584 inst->flag_subreg);
4585 }
4586
4587 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4588 if (inst->saturate)
4589 fprintf(file, ".sat");
4590 if (inst->conditional_mod) {
4591 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4592 if (!inst->predicate &&
4593 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4594 inst->opcode != BRW_OPCODE_IF &&
4595 inst->opcode != BRW_OPCODE_WHILE))) {
4596 fprintf(file, ".f0.%d", inst->flag_subreg);
4597 }
4598 }
4599 fprintf(file, "(%d) ", inst->exec_size);
4600
4601 if (inst->mlen) {
4602 fprintf(file, "(mlen: %d) ", inst->mlen);
4603 }
4604
4605 switch (inst->dst.file) {
4606 case VGRF:
4607 fprintf(file, "vgrf%d", inst->dst.nr);
4608 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4609 inst->dst.subreg_offset)
4610 fprintf(file, "+%d.%d",
4611 inst->dst.reg_offset, inst->dst.subreg_offset);
4612 break;
4613 case FIXED_GRF:
4614 fprintf(file, "g%d", inst->dst.nr);
4615 break;
4616 case MRF:
4617 fprintf(file, "m%d", inst->dst.nr);
4618 break;
4619 case BAD_FILE:
4620 fprintf(file, "(null)");
4621 break;
4622 case UNIFORM:
4623 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4624 break;
4625 case ATTR:
4626 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4627 break;
4628 case ARF:
4629 switch (inst->dst.nr) {
4630 case BRW_ARF_NULL:
4631 fprintf(file, "null");
4632 break;
4633 case BRW_ARF_ADDRESS:
4634 fprintf(file, "a0.%d", inst->dst.subnr);
4635 break;
4636 case BRW_ARF_ACCUMULATOR:
4637 fprintf(file, "acc%d", inst->dst.subnr);
4638 break;
4639 case BRW_ARF_FLAG:
4640 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4641 break;
4642 default:
4643 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4644 break;
4645 }
4646 if (inst->dst.subnr)
4647 fprintf(file, "+%d", inst->dst.subnr);
4648 break;
4649 case IMM:
4650 unreachable("not reached");
4651 }
4652 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4653
4654 for (int i = 0; i < inst->sources; i++) {
4655 if (inst->src[i].negate)
4656 fprintf(file, "-");
4657 if (inst->src[i].abs)
4658 fprintf(file, "|");
4659 switch (inst->src[i].file) {
4660 case VGRF:
4661 fprintf(file, "vgrf%d", inst->src[i].nr);
4662 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4663 inst->src[i].subreg_offset)
4664 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4665 inst->src[i].subreg_offset);
4666 break;
4667 case FIXED_GRF:
4668 fprintf(file, "g%d", inst->src[i].nr);
4669 break;
4670 case MRF:
4671 fprintf(file, "***m%d***", inst->src[i].nr);
4672 break;
4673 case ATTR:
4674 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4675 break;
4676 case UNIFORM:
4677 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4678 if (inst->src[i].reladdr) {
4679 fprintf(file, "+reladdr");
4680 } else if (inst->src[i].subreg_offset) {
4681 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4682 inst->src[i].subreg_offset);
4683 }
4684 break;
4685 case BAD_FILE:
4686 fprintf(file, "(null)");
4687 break;
4688 case IMM:
4689 switch (inst->src[i].type) {
4690 case BRW_REGISTER_TYPE_F:
4691 fprintf(file, "%ff", inst->src[i].f);
4692 break;
4693 case BRW_REGISTER_TYPE_W:
4694 case BRW_REGISTER_TYPE_D:
4695 fprintf(file, "%dd", inst->src[i].d);
4696 break;
4697 case BRW_REGISTER_TYPE_UW:
4698 case BRW_REGISTER_TYPE_UD:
4699 fprintf(file, "%uu", inst->src[i].ud);
4700 break;
4701 case BRW_REGISTER_TYPE_VF:
4702 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4703 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4704 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4705 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4706 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4707 break;
4708 default:
4709 fprintf(file, "???");
4710 break;
4711 }
4712 break;
4713 case ARF:
4714 switch (inst->src[i].nr) {
4715 case BRW_ARF_NULL:
4716 fprintf(file, "null");
4717 break;
4718 case BRW_ARF_ADDRESS:
4719 fprintf(file, "a0.%d", inst->src[i].subnr);
4720 break;
4721 case BRW_ARF_ACCUMULATOR:
4722 fprintf(file, "acc%d", inst->src[i].subnr);
4723 break;
4724 case BRW_ARF_FLAG:
4725 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4726 break;
4727 default:
4728 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4729 break;
4730 }
4731 if (inst->src[i].subnr)
4732 fprintf(file, "+%d", inst->src[i].subnr);
4733 break;
4734 }
4735 if (inst->src[i].abs)
4736 fprintf(file, "|");
4737
4738 if (inst->src[i].file != IMM) {
4739 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4740 }
4741
4742 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4743 fprintf(file, ", ");
4744 }
4745
4746 fprintf(file, " ");
4747
4748 if (inst->force_writemask_all)
4749 fprintf(file, "NoMask ");
4750
4751 if (dispatch_width == 16 && inst->exec_size == 8) {
4752 if (inst->force_sechalf)
4753 fprintf(file, "2ndhalf ");
4754 else
4755 fprintf(file, "1sthalf ");
4756 }
4757
4758 fprintf(file, "\n");
4759 }
4760
4761 /**
4762 * Possibly returns an instruction that set up @param reg.
4763 *
4764 * Sometimes we want to take the result of some expression/variable
4765 * dereference tree and rewrite the instruction generating the result
4766 * of the tree. When processing the tree, we know that the
4767 * instructions generated are all writing temporaries that are dead
4768 * outside of this tree. So, if we have some instructions that write
4769 * a temporary, we're free to point that temp write somewhere else.
4770 *
4771 * Note that this doesn't guarantee that the instruction generated
4772 * only reg -- it might be the size=4 destination of a texture instruction.
4773 */
4774 fs_inst *
4775 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4776 fs_inst *end,
4777 const fs_reg &reg)
4778 {
4779 if (end == start ||
4780 end->is_partial_write() ||
4781 reg.reladdr ||
4782 !reg.equals(end->dst)) {
4783 return NULL;
4784 } else {
4785 return end;
4786 }
4787 }
4788
4789 void
4790 fs_visitor::setup_payload_gen6()
4791 {
4792 bool uses_depth =
4793 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4794 unsigned barycentric_interp_modes =
4795 (stage == MESA_SHADER_FRAGMENT) ?
4796 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4797
4798 assert(devinfo->gen >= 6);
4799
4800 /* R0-1: masks, pixel X/Y coordinates. */
4801 payload.num_regs = 2;
4802 /* R2: only for 32-pixel dispatch.*/
4803
4804 /* R3-26: barycentric interpolation coordinates. These appear in the
4805 * same order that they appear in the brw_wm_barycentric_interp_mode
4806 * enum. Each set of coordinates occupies 2 registers if dispatch width
4807 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4808 * appear if they were enabled using the "Barycentric Interpolation
4809 * Mode" bits in WM_STATE.
4810 */
4811 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4812 if (barycentric_interp_modes & (1 << i)) {
4813 payload.barycentric_coord_reg[i] = payload.num_regs;
4814 payload.num_regs += 2;
4815 if (dispatch_width == 16) {
4816 payload.num_regs += 2;
4817 }
4818 }
4819 }
4820
4821 /* R27: interpolated depth if uses source depth */
4822 if (uses_depth) {
4823 payload.source_depth_reg = payload.num_regs;
4824 payload.num_regs++;
4825 if (dispatch_width == 16) {
4826 /* R28: interpolated depth if not SIMD8. */
4827 payload.num_regs++;
4828 }
4829 }
4830 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4831 if (uses_depth) {
4832 payload.source_w_reg = payload.num_regs;
4833 payload.num_regs++;
4834 if (dispatch_width == 16) {
4835 /* R30: interpolated W if not SIMD8. */
4836 payload.num_regs++;
4837 }
4838 }
4839
4840 if (stage == MESA_SHADER_FRAGMENT) {
4841 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4842 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4843 prog_data->uses_pos_offset = key->compute_pos_offset;
4844 /* R31: MSAA position offsets. */
4845 if (prog_data->uses_pos_offset) {
4846 payload.sample_pos_reg = payload.num_regs;
4847 payload.num_regs++;
4848 }
4849 }
4850
4851 /* R32: MSAA input coverage mask */
4852 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4853 assert(devinfo->gen >= 7);
4854 payload.sample_mask_in_reg = payload.num_regs;
4855 payload.num_regs++;
4856 if (dispatch_width == 16) {
4857 /* R33: input coverage mask if not SIMD8. */
4858 payload.num_regs++;
4859 }
4860 }
4861
4862 /* R34-: bary for 32-pixel. */
4863 /* R58-59: interp W for 32-pixel. */
4864
4865 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4866 source_depth_to_render_target = true;
4867 }
4868 }
4869
4870 void
4871 fs_visitor::setup_vs_payload()
4872 {
4873 /* R0: thread header, R1: urb handles */
4874 payload.num_regs = 2;
4875 }
4876
4877 /**
4878 * We are building the local ID push constant data using the simplest possible
4879 * method. We simply push the local IDs directly as they should appear in the
4880 * registers for the uvec3 gl_LocalInvocationID variable.
4881 *
4882 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4883 * registers worth of push constant space.
4884 *
4885 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4886 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4887 * to coordinated.
4888 *
4889 * FINISHME: There are a few easy optimizations to consider.
4890 *
4891 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4892 * no need for using push constant space for that dimension.
4893 *
4894 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4895 * easily use 16-bit words rather than 32-bit dwords in the push constant
4896 * data.
4897 *
4898 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4899 * conveying the data, and thereby reduce push constant usage.
4900 *
4901 */
4902 void
4903 fs_visitor::setup_gs_payload()
4904 {
4905 assert(stage == MESA_SHADER_GEOMETRY);
4906
4907 struct brw_gs_prog_data *gs_prog_data =
4908 (struct brw_gs_prog_data *) prog_data;
4909 struct brw_vue_prog_data *vue_prog_data =
4910 (struct brw_vue_prog_data *) prog_data;
4911
4912 /* R0: thread header, R1: output URB handles */
4913 payload.num_regs = 2;
4914
4915 if (gs_prog_data->include_primitive_id) {
4916 /* R2: Primitive ID 0..7 */
4917 payload.num_regs++;
4918 }
4919
4920 /* Use a maximum of 32 registers for push-model inputs. */
4921 const unsigned max_push_components = 32;
4922
4923 /* If pushing our inputs would take too many registers, reduce the URB read
4924 * length (which is in HWords, or 8 registers), and resort to pulling.
4925 *
4926 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
4927 * have to multiply by VerticesIn to obtain the total storage requirement.
4928 */
4929 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
4930 max_push_components) {
4931 gs_prog_data->base.include_vue_handles = true;
4932
4933 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
4934 payload.num_regs += nir->info.gs.vertices_in;
4935
4936 vue_prog_data->urb_read_length =
4937 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
4938 }
4939 }
4940
4941 void
4942 fs_visitor::setup_cs_payload()
4943 {
4944 assert(devinfo->gen >= 7);
4945 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
4946
4947 payload.num_regs = 1;
4948
4949 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
4950 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
4951 payload.local_invocation_id_reg = payload.num_regs;
4952 payload.num_regs += prog_data->local_invocation_id_regs;
4953 }
4954 }
4955
4956 void
4957 fs_visitor::calculate_register_pressure()
4958 {
4959 invalidate_live_intervals();
4960 calculate_live_intervals();
4961
4962 unsigned num_instructions = 0;
4963 foreach_block(block, cfg)
4964 num_instructions += block->instructions.length();
4965
4966 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
4967
4968 for (unsigned reg = 0; reg < alloc.count; reg++) {
4969 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
4970 regs_live_at_ip[ip] += alloc.sizes[reg];
4971 }
4972 }
4973
4974 void
4975 fs_visitor::optimize()
4976 {
4977 /* Start by validating the shader we currently have. */
4978 validate();
4979
4980 /* bld is the common builder object pointing at the end of the program we
4981 * used to translate it into i965 IR. For the optimization and lowering
4982 * passes coming next, any code added after the end of the program without
4983 * having explicitly called fs_builder::at() clearly points at a mistake.
4984 * Ideally optimization passes wouldn't be part of the visitor so they
4985 * wouldn't have access to bld at all, but they do, so just in case some
4986 * pass forgets to ask for a location explicitly set it to NULL here to
4987 * make it trip. The dispatch width is initialized to a bogus value to
4988 * make sure that optimizations set the execution controls explicitly to
4989 * match the code they are manipulating instead of relying on the defaults.
4990 */
4991 bld = fs_builder(this, 64);
4992
4993 assign_constant_locations();
4994 demote_pull_constants();
4995
4996 validate();
4997
4998 split_virtual_grfs();
4999 validate();
5000
5001 #define OPT(pass, args...) ({ \
5002 pass_num++; \
5003 bool this_progress = pass(args); \
5004 \
5005 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5006 char filename[64]; \
5007 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5008 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5009 \
5010 backend_shader::dump_instructions(filename); \
5011 } \
5012 \
5013 validate(); \
5014 \
5015 progress = progress || this_progress; \
5016 this_progress; \
5017 })
5018
5019 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5020 char filename[64];
5021 snprintf(filename, 64, "%s%d-%s-00-start",
5022 stage_abbrev, dispatch_width, nir->info.name);
5023
5024 backend_shader::dump_instructions(filename);
5025 }
5026
5027 bool progress = false;
5028 int iteration = 0;
5029 int pass_num = 0;
5030
5031 OPT(lower_simd_width);
5032 OPT(lower_logical_sends);
5033
5034 do {
5035 progress = false;
5036 pass_num = 0;
5037 iteration++;
5038
5039 OPT(remove_duplicate_mrf_writes);
5040
5041 OPT(opt_algebraic);
5042 OPT(opt_cse);
5043 OPT(opt_copy_propagate);
5044 OPT(opt_predicated_break, this);
5045 OPT(opt_cmod_propagation);
5046 OPT(dead_code_eliminate);
5047 OPT(opt_peephole_sel);
5048 OPT(dead_control_flow_eliminate, this);
5049 OPT(opt_register_renaming);
5050 OPT(opt_redundant_discard_jumps);
5051 OPT(opt_saturate_propagation);
5052 OPT(opt_zero_samples);
5053 OPT(register_coalesce);
5054 OPT(compute_to_mrf);
5055 OPT(eliminate_find_live_channel);
5056
5057 OPT(compact_virtual_grfs);
5058 } while (progress);
5059
5060 pass_num = 0;
5061
5062 OPT(opt_sampler_eot);
5063
5064 if (OPT(lower_load_payload)) {
5065 split_virtual_grfs();
5066 OPT(register_coalesce);
5067 OPT(compute_to_mrf);
5068 OPT(dead_code_eliminate);
5069 }
5070
5071 OPT(opt_combine_constants);
5072 OPT(lower_integer_multiplication);
5073
5074 lower_uniform_pull_constant_loads();
5075
5076 validate();
5077 }
5078
5079 /**
5080 * Three source instruction must have a GRF/MRF destination register.
5081 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5082 */
5083 void
5084 fs_visitor::fixup_3src_null_dest()
5085 {
5086 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5087 if (inst->is_3src() && inst->dst.is_null()) {
5088 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5089 inst->dst.type);
5090 }
5091 }
5092 }
5093
5094 void
5095 fs_visitor::allocate_registers()
5096 {
5097 bool allocated_without_spills;
5098
5099 static const enum instruction_scheduler_mode pre_modes[] = {
5100 SCHEDULE_PRE,
5101 SCHEDULE_PRE_NON_LIFO,
5102 SCHEDULE_PRE_LIFO,
5103 };
5104
5105 /* Try each scheduling heuristic to see if it can successfully register
5106 * allocate without spilling. They should be ordered by decreasing
5107 * performance but increasing likelihood of allocating.
5108 */
5109 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5110 schedule_instructions(pre_modes[i]);
5111
5112 if (0) {
5113 assign_regs_trivial();
5114 allocated_without_spills = true;
5115 } else {
5116 allocated_without_spills = assign_regs(false);
5117 }
5118 if (allocated_without_spills)
5119 break;
5120 }
5121
5122 if (!allocated_without_spills) {
5123 /* We assume that any spilling is worse than just dropping back to
5124 * SIMD8. There's probably actually some intermediate point where
5125 * SIMD16 with a couple of spills is still better.
5126 */
5127 if (dispatch_width == 16) {
5128 fail("Failure to register allocate. Reduce number of "
5129 "live scalar values to avoid this.");
5130 } else {
5131 compiler->shader_perf_log(log_data,
5132 "%s shader triggered register spilling. "
5133 "Try reducing the number of live scalar "
5134 "values to improve performance.\n",
5135 stage_name);
5136 }
5137
5138 /* Since we're out of heuristics, just go spill registers until we
5139 * get an allocation.
5140 */
5141 while (!assign_regs(true)) {
5142 if (failed)
5143 break;
5144 }
5145 }
5146
5147 /* This must come after all optimization and register allocation, since
5148 * it inserts dead code that happens to have side effects, and it does
5149 * so based on the actual physical registers in use.
5150 */
5151 insert_gen4_send_dependency_workarounds();
5152
5153 if (failed)
5154 return;
5155
5156 schedule_instructions(SCHEDULE_POST);
5157
5158 if (last_scratch > 0)
5159 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5160 }
5161
5162 bool
5163 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5164 {
5165 assert(stage == MESA_SHADER_VERTEX);
5166
5167 setup_vs_payload();
5168
5169 if (shader_time_index >= 0)
5170 emit_shader_time_begin();
5171
5172 emit_nir_code();
5173
5174 if (failed)
5175 return false;
5176
5177 compute_clip_distance(clip_planes);
5178
5179 emit_urb_writes();
5180
5181 if (shader_time_index >= 0)
5182 emit_shader_time_end();
5183
5184 calculate_cfg();
5185
5186 optimize();
5187
5188 assign_curb_setup();
5189 assign_vs_urb_setup();
5190
5191 fixup_3src_null_dest();
5192 allocate_registers();
5193
5194 return !failed;
5195 }
5196
5197 bool
5198 fs_visitor::run_gs()
5199 {
5200 assert(stage == MESA_SHADER_GEOMETRY);
5201
5202 setup_gs_payload();
5203
5204 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5205
5206 if (gs_compile->control_data_header_size_bits > 0) {
5207 /* Create a VGRF to store accumulated control data bits. */
5208 this->control_data_bits = vgrf(glsl_type::uint_type);
5209
5210 /* If we're outputting more than 32 control data bits, then EmitVertex()
5211 * will set control_data_bits to 0 after emitting the first vertex.
5212 * Otherwise, we need to initialize it to 0 here.
5213 */
5214 if (gs_compile->control_data_header_size_bits <= 32) {
5215 const fs_builder abld = bld.annotate("initialize control data bits");
5216 abld.MOV(this->control_data_bits, fs_reg(0u));
5217 }
5218 }
5219
5220 if (shader_time_index >= 0)
5221 emit_shader_time_begin();
5222
5223 emit_nir_code();
5224
5225 emit_gs_thread_end();
5226
5227 if (shader_time_index >= 0)
5228 emit_shader_time_end();
5229
5230 if (failed)
5231 return false;
5232
5233 calculate_cfg();
5234
5235 optimize();
5236
5237 assign_curb_setup();
5238 assign_gs_urb_setup();
5239
5240 fixup_3src_null_dest();
5241 allocate_registers();
5242
5243 return !failed;
5244 }
5245
5246 bool
5247 fs_visitor::run_fs(bool do_rep_send)
5248 {
5249 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5250 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5251
5252 assert(stage == MESA_SHADER_FRAGMENT);
5253
5254 if (devinfo->gen >= 6)
5255 setup_payload_gen6();
5256 else
5257 setup_payload_gen4();
5258
5259 if (0) {
5260 emit_dummy_fs();
5261 } else if (do_rep_send) {
5262 assert(dispatch_width == 16);
5263 emit_repclear_shader();
5264 } else {
5265 if (shader_time_index >= 0)
5266 emit_shader_time_begin();
5267
5268 calculate_urb_setup();
5269 if (nir->info.inputs_read > 0) {
5270 if (devinfo->gen < 6)
5271 emit_interpolation_setup_gen4();
5272 else
5273 emit_interpolation_setup_gen6();
5274 }
5275
5276 /* We handle discards by keeping track of the still-live pixels in f0.1.
5277 * Initialize it with the dispatched pixels.
5278 */
5279 if (wm_prog_data->uses_kill) {
5280 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5281 discard_init->flag_subreg = 1;
5282 }
5283
5284 /* Generate FS IR for main(). (the visitor only descends into
5285 * functions called "main").
5286 */
5287 emit_nir_code();
5288
5289 if (failed)
5290 return false;
5291
5292 if (wm_prog_data->uses_kill)
5293 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5294
5295 if (wm_key->alpha_test_func)
5296 emit_alpha_test();
5297
5298 emit_fb_writes();
5299
5300 if (shader_time_index >= 0)
5301 emit_shader_time_end();
5302
5303 calculate_cfg();
5304
5305 optimize();
5306
5307 assign_curb_setup();
5308 assign_urb_setup();
5309
5310 fixup_3src_null_dest();
5311 allocate_registers();
5312
5313 if (failed)
5314 return false;
5315 }
5316
5317 if (dispatch_width == 8)
5318 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5319 else
5320 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5321
5322 return !failed;
5323 }
5324
5325 bool
5326 fs_visitor::run_cs()
5327 {
5328 assert(stage == MESA_SHADER_COMPUTE);
5329
5330 setup_cs_payload();
5331
5332 if (shader_time_index >= 0)
5333 emit_shader_time_begin();
5334
5335 emit_nir_code();
5336
5337 if (failed)
5338 return false;
5339
5340 emit_cs_terminate();
5341
5342 if (shader_time_index >= 0)
5343 emit_shader_time_end();
5344
5345 calculate_cfg();
5346
5347 optimize();
5348
5349 assign_curb_setup();
5350
5351 fixup_3src_null_dest();
5352 allocate_registers();
5353
5354 if (failed)
5355 return false;
5356
5357 return !failed;
5358 }
5359
5360 /**
5361 * Return a bitfield where bit n is set if barycentric interpolation mode n
5362 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5363 */
5364 static unsigned
5365 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5366 bool shade_model_flat,
5367 bool persample_shading,
5368 const nir_shader *shader)
5369 {
5370 unsigned barycentric_interp_modes = 0;
5371
5372 nir_foreach_variable(var, &shader->inputs) {
5373 enum glsl_interp_qualifier interp_qualifier =
5374 (enum glsl_interp_qualifier)var->data.interpolation;
5375 bool is_centroid = var->data.centroid && !persample_shading;
5376 bool is_sample = var->data.sample || persample_shading;
5377 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5378 (var->data.location == VARYING_SLOT_COL1);
5379
5380 /* Ignore WPOS and FACE, because they don't require interpolation. */
5381 if (var->data.location == VARYING_SLOT_POS ||
5382 var->data.location == VARYING_SLOT_FACE)
5383 continue;
5384
5385 /* Determine the set (or sets) of barycentric coordinates needed to
5386 * interpolate this variable. Note that when
5387 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5388 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5389 * for lit pixels, so we need both sets of barycentric coordinates.
5390 */
5391 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5392 if (is_centroid) {
5393 barycentric_interp_modes |=
5394 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5395 } else if (is_sample) {
5396 barycentric_interp_modes |=
5397 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5398 }
5399 if ((!is_centroid && !is_sample) ||
5400 devinfo->needs_unlit_centroid_workaround) {
5401 barycentric_interp_modes |=
5402 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5403 }
5404 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5405 (!(shade_model_flat && is_gl_Color) &&
5406 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5407 if (is_centroid) {
5408 barycentric_interp_modes |=
5409 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5410 } else if (is_sample) {
5411 barycentric_interp_modes |=
5412 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5413 }
5414 if ((!is_centroid && !is_sample) ||
5415 devinfo->needs_unlit_centroid_workaround) {
5416 barycentric_interp_modes |=
5417 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5418 }
5419 }
5420 }
5421
5422 return barycentric_interp_modes;
5423 }
5424
5425 static uint8_t
5426 computed_depth_mode(const nir_shader *shader)
5427 {
5428 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5429 switch (shader->info.fs.depth_layout) {
5430 case FRAG_DEPTH_LAYOUT_NONE:
5431 case FRAG_DEPTH_LAYOUT_ANY:
5432 return BRW_PSCDEPTH_ON;
5433 case FRAG_DEPTH_LAYOUT_GREATER:
5434 return BRW_PSCDEPTH_ON_GE;
5435 case FRAG_DEPTH_LAYOUT_LESS:
5436 return BRW_PSCDEPTH_ON_LE;
5437 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5438 return BRW_PSCDEPTH_OFF;
5439 }
5440 }
5441 return BRW_PSCDEPTH_OFF;
5442 }
5443
5444 const unsigned *
5445 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5446 void *mem_ctx,
5447 const struct brw_wm_prog_key *key,
5448 struct brw_wm_prog_data *prog_data,
5449 const nir_shader *shader,
5450 struct gl_program *prog,
5451 int shader_time_index8, int shader_time_index16,
5452 bool use_rep_send,
5453 unsigned *final_assembly_size,
5454 char **error_str)
5455 {
5456 /* key->alpha_test_func means simulating alpha testing via discards,
5457 * so the shader definitely kills pixels.
5458 */
5459 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5460 prog_data->uses_omask =
5461 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5462 prog_data->computed_depth_mode = computed_depth_mode(shader);
5463 prog_data->computed_stencil =
5464 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5465
5466 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5467
5468 prog_data->barycentric_interp_modes =
5469 brw_compute_barycentric_interp_modes(compiler->devinfo,
5470 key->flat_shade,
5471 key->persample_shading,
5472 shader);
5473
5474 fs_visitor v(compiler, log_data, mem_ctx, key,
5475 &prog_data->base, prog, shader, 8,
5476 shader_time_index8);
5477 if (!v.run_fs(false /* do_rep_send */)) {
5478 if (error_str)
5479 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5480
5481 return NULL;
5482 }
5483
5484 cfg_t *simd16_cfg = NULL;
5485 fs_visitor v2(compiler, log_data, mem_ctx, key,
5486 &prog_data->base, prog, shader, 16,
5487 shader_time_index16);
5488 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5489 if (!v.simd16_unsupported) {
5490 /* Try a SIMD16 compile */
5491 v2.import_uniforms(&v);
5492 if (!v2.run_fs(use_rep_send)) {
5493 compiler->shader_perf_log(log_data,
5494 "SIMD16 shader failed to compile: %s",
5495 v2.fail_msg);
5496 } else {
5497 simd16_cfg = v2.cfg;
5498 }
5499 }
5500 }
5501
5502 cfg_t *simd8_cfg;
5503 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5504 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5505 simd8_cfg = NULL;
5506 prog_data->no_8 = true;
5507 } else {
5508 simd8_cfg = v.cfg;
5509 prog_data->no_8 = false;
5510 }
5511
5512 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5513 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5514
5515 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5516 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5517 shader->info.label ? shader->info.label :
5518 "unnamed",
5519 shader->info.name));
5520 }
5521
5522 if (simd8_cfg)
5523 g.generate_code(simd8_cfg, 8);
5524 if (simd16_cfg)
5525 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5526
5527 return g.get_assembly(final_assembly_size);
5528 }
5529
5530 void
5531 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5532 void *buffer, uint32_t threads, uint32_t stride)
5533 {
5534 if (prog_data->local_invocation_id_regs == 0)
5535 return;
5536
5537 /* 'stride' should be an integer number of registers, that is, a multiple
5538 * of 32 bytes.
5539 */
5540 assert(stride % 32 == 0);
5541
5542 unsigned x = 0, y = 0, z = 0;
5543 for (unsigned t = 0; t < threads; t++) {
5544 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5545
5546 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5547 param[0 * prog_data->simd_size + i] = x;
5548 param[1 * prog_data->simd_size + i] = y;
5549 param[2 * prog_data->simd_size + i] = z;
5550
5551 x++;
5552 if (x == prog_data->local_size[0]) {
5553 x = 0;
5554 y++;
5555 if (y == prog_data->local_size[1]) {
5556 y = 0;
5557 z++;
5558 if (z == prog_data->local_size[2])
5559 z = 0;
5560 }
5561 }
5562 }
5563 }
5564 }
5565
5566 fs_reg *
5567 fs_visitor::emit_cs_local_invocation_id_setup()
5568 {
5569 assert(stage == MESA_SHADER_COMPUTE);
5570
5571 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5572
5573 struct brw_reg src =
5574 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5575 src = retype(src, BRW_REGISTER_TYPE_UD);
5576 bld.MOV(*reg, src);
5577 src.nr += dispatch_width / 8;
5578 bld.MOV(offset(*reg, bld, 1), src);
5579 src.nr += dispatch_width / 8;
5580 bld.MOV(offset(*reg, bld, 2), src);
5581
5582 return reg;
5583 }
5584
5585 fs_reg *
5586 fs_visitor::emit_cs_work_group_id_setup()
5587 {
5588 assert(stage == MESA_SHADER_COMPUTE);
5589
5590 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5591
5592 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5593 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5594 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5595
5596 bld.MOV(*reg, r0_1);
5597 bld.MOV(offset(*reg, bld, 1), r0_6);
5598 bld.MOV(offset(*reg, bld, 2), r0_7);
5599
5600 return reg;
5601 }
5602
5603 const unsigned *
5604 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5605 void *mem_ctx,
5606 const struct brw_cs_prog_key *key,
5607 struct brw_cs_prog_data *prog_data,
5608 const nir_shader *shader,
5609 int shader_time_index,
5610 unsigned *final_assembly_size,
5611 char **error_str)
5612 {
5613 prog_data->local_size[0] = shader->info.cs.local_size[0];
5614 prog_data->local_size[1] = shader->info.cs.local_size[1];
5615 prog_data->local_size[2] = shader->info.cs.local_size[2];
5616 unsigned local_workgroup_size =
5617 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5618 shader->info.cs.local_size[2];
5619
5620 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5621
5622 cfg_t *cfg = NULL;
5623 const char *fail_msg = NULL;
5624
5625 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5626 */
5627 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5628 NULL, /* Never used in core profile */
5629 shader, 8, shader_time_index);
5630 if (!v8.run_cs()) {
5631 fail_msg = v8.fail_msg;
5632 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5633 cfg = v8.cfg;
5634 prog_data->simd_size = 8;
5635 }
5636
5637 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5638 NULL, /* Never used in core profile */
5639 shader, 16, shader_time_index);
5640 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5641 !fail_msg && !v8.simd16_unsupported &&
5642 local_workgroup_size <= 16 * max_cs_threads) {
5643 /* Try a SIMD16 compile */
5644 v16.import_uniforms(&v8);
5645 if (!v16.run_cs()) {
5646 compiler->shader_perf_log(log_data,
5647 "SIMD16 shader failed to compile: %s",
5648 v16.fail_msg);
5649 if (!cfg) {
5650 fail_msg =
5651 "Couldn't generate SIMD16 program and not "
5652 "enough threads for SIMD8";
5653 }
5654 } else {
5655 cfg = v16.cfg;
5656 prog_data->simd_size = 16;
5657 }
5658 }
5659
5660 if (unlikely(cfg == NULL)) {
5661 assert(fail_msg);
5662 if (error_str)
5663 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5664
5665 return NULL;
5666 }
5667
5668 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5669 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5670 if (INTEL_DEBUG & DEBUG_CS) {
5671 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5672 shader->info.label ? shader->info.label :
5673 "unnamed",
5674 shader->info.name);
5675 g.enable_debug(name);
5676 }
5677
5678 g.generate_code(cfg, prog_data->simd_size);
5679
5680 return g.get_assembly(final_assembly_size);
5681 }