i965/fs: Add a do_rep_send flag to run_fs
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 unreachable("not reached");
529 }
530
531 return 0;
532 }
533
534 /**
535 * Create a MOV to read the timestamp register.
536 *
537 * The caller is responsible for emitting the MOV. The return value is
538 * the destination of the MOV, with extra parameters set.
539 */
540 fs_reg
541 fs_visitor::get_timestamp(const fs_builder &bld)
542 {
543 assert(devinfo->gen >= 7);
544
545 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
546 BRW_ARF_TIMESTAMP,
547 0),
548 BRW_REGISTER_TYPE_UD));
549
550 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
551
552 /* We want to read the 3 fields we care about even if it's not enabled in
553 * the dispatch.
554 */
555 bld.exec_all().MOV(dst, ts);
556
557 /* The caller wants the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 *
563 * The caller could also check if render P-states have changed (or anything
564 * else that might disrupt timing) by setting smear to 2 and checking if
565 * that field is != 0.
566 */
567 dst.set_smear(0);
568
569 return dst;
570 }
571
572 void
573 fs_visitor::emit_shader_time_begin()
574 {
575 shader_start_time = get_timestamp(bld.annotate("shader time start"));
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 /* Insert our code just before the final SEND with EOT. */
582 exec_node *end = this->instructions.get_tail();
583 assert(end && ((fs_inst *) end)->eot);
584 const fs_builder ibld = bld.annotate("shader time end")
585 .exec_all().at(NULL, end);
586
587 fs_reg shader_end_time = get_timestamp(ibld);
588
589 /* Check that there weren't any timestamp reset events (assuming these
590 * were the only two timestamp reads that happened).
591 */
592 fs_reg reset = shader_end_time;
593 reset.set_smear(2);
594 set_condmod(BRW_CONDITIONAL_Z,
595 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
596 ibld.IF(BRW_PREDICATE_NORMAL);
597
598 fs_reg start = shader_start_time;
599 start.negate = true;
600 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
601 diff.set_smear(0);
602 ibld.ADD(diff, start, shader_end_time);
603
604 /* If there were no instructions between the two timestamp gets, the diff
605 * is 2 cycles. Remove that overhead, so I can forget about that when
606 * trying to determine the time taken for single instructions.
607 */
608 ibld.ADD(diff, diff, fs_reg(-2u));
609 SHADER_TIME_ADD(ibld, 0, diff);
610 SHADER_TIME_ADD(ibld, 1, fs_reg(1u));
611 ibld.emit(BRW_OPCODE_ELSE);
612 SHADER_TIME_ADD(ibld, 2, fs_reg(1u));
613 ibld.emit(BRW_OPCODE_ENDIF);
614 }
615
616 void
617 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
618 int shader_time_subindex,
619 fs_reg value)
620 {
621 int index = shader_time_index * 3 + shader_time_subindex;
622 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
623
624 fs_reg payload;
625 if (dispatch_width == 8)
626 payload = vgrf(glsl_type::uvec2_type);
627 else
628 payload = vgrf(glsl_type::uint_type);
629
630 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
631 }
632
633 void
634 fs_visitor::vfail(const char *format, va_list va)
635 {
636 char *msg;
637
638 if (failed)
639 return;
640
641 failed = true;
642
643 msg = ralloc_vasprintf(mem_ctx, format, va);
644 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
645
646 this->fail_msg = msg;
647
648 if (debug_enabled) {
649 fprintf(stderr, "%s", msg);
650 }
651 }
652
653 void
654 fs_visitor::fail(const char *format, ...)
655 {
656 va_list va;
657
658 va_start(va, format);
659 vfail(format, va);
660 va_end(va);
661 }
662
663 /**
664 * Mark this program as impossible to compile in SIMD16 mode.
665 *
666 * During the SIMD8 compile (which happens first), we can detect and flag
667 * things that are unsupported in SIMD16 mode, so the compiler can skip
668 * the SIMD16 compile altogether.
669 *
670 * During a SIMD16 compile (if one happens anyway), this just calls fail().
671 */
672 void
673 fs_visitor::no16(const char *msg)
674 {
675 if (dispatch_width == 16) {
676 fail("%s", msg);
677 } else {
678 simd16_unsupported = true;
679
680 struct brw_compiler *compiler = brw->intelScreen->compiler;
681 compiler->shader_perf_log(brw,
682 "SIMD16 shader failed to compile: %s", msg);
683 }
684 }
685
686 /**
687 * Returns true if the instruction has a flag that means it won't
688 * update an entire destination register.
689 *
690 * For example, dead code elimination and live variable analysis want to know
691 * when a write to a variable screens off any preceding values that were in
692 * it.
693 */
694 bool
695 fs_inst::is_partial_write() const
696 {
697 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
698 (this->dst.width * type_sz(this->dst.type)) < 32 ||
699 !this->dst.is_contiguous());
700 }
701
702 int
703 fs_inst::regs_read(int arg) const
704 {
705 if (is_tex() && arg == 0 && src[0].file == GRF) {
706 return mlen;
707 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
708 return mlen;
709 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
710 return mlen;
711 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
712 return mlen;
713 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
714 return mlen;
715 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE && arg == 0) {
716 return mlen;
717 } else if (opcode == SHADER_OPCODE_TYPED_ATOMIC && arg == 0) {
718 return mlen;
719 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_READ && arg == 0) {
720 return mlen;
721 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE && arg == 0) {
722 return mlen;
723 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
724 return mlen;
725 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
726 return exec_size / 4;
727 }
728
729 switch (src[arg].file) {
730 case BAD_FILE:
731 case UNIFORM:
732 case IMM:
733 return 1;
734 case GRF:
735 case HW_REG:
736 if (src[arg].stride == 0) {
737 return 1;
738 } else {
739 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
740 return (size + 31) / 32;
741 }
742 case MRF:
743 unreachable("MRF registers are not allowed as sources");
744 default:
745 unreachable("Invalid register file");
746 }
747 }
748
749 bool
750 fs_inst::reads_flag() const
751 {
752 return predicate;
753 }
754
755 bool
756 fs_inst::writes_flag() const
757 {
758 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
759 opcode != BRW_OPCODE_IF &&
760 opcode != BRW_OPCODE_WHILE)) ||
761 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
762 }
763
764 /**
765 * Returns how many MRFs an FS opcode will write over.
766 *
767 * Note that this is not the 0 or 1 implied writes in an actual gen
768 * instruction -- the FS opcodes often generate MOVs in addition.
769 */
770 int
771 fs_visitor::implied_mrf_writes(fs_inst *inst)
772 {
773 if (inst->mlen == 0)
774 return 0;
775
776 if (inst->base_mrf == -1)
777 return 0;
778
779 switch (inst->opcode) {
780 case SHADER_OPCODE_RCP:
781 case SHADER_OPCODE_RSQ:
782 case SHADER_OPCODE_SQRT:
783 case SHADER_OPCODE_EXP2:
784 case SHADER_OPCODE_LOG2:
785 case SHADER_OPCODE_SIN:
786 case SHADER_OPCODE_COS:
787 return 1 * dispatch_width / 8;
788 case SHADER_OPCODE_POW:
789 case SHADER_OPCODE_INT_QUOTIENT:
790 case SHADER_OPCODE_INT_REMAINDER:
791 return 2 * dispatch_width / 8;
792 case SHADER_OPCODE_TEX:
793 case FS_OPCODE_TXB:
794 case SHADER_OPCODE_TXD:
795 case SHADER_OPCODE_TXF:
796 case SHADER_OPCODE_TXF_CMS:
797 case SHADER_OPCODE_TXF_MCS:
798 case SHADER_OPCODE_TG4:
799 case SHADER_OPCODE_TG4_OFFSET:
800 case SHADER_OPCODE_TXL:
801 case SHADER_OPCODE_TXS:
802 case SHADER_OPCODE_LOD:
803 return 1;
804 case FS_OPCODE_FB_WRITE:
805 return 2;
806 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
807 case SHADER_OPCODE_GEN4_SCRATCH_READ:
808 return 1;
809 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
810 return inst->mlen;
811 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
812 return inst->mlen;
813 case SHADER_OPCODE_UNTYPED_ATOMIC:
814 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
815 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
816 case SHADER_OPCODE_TYPED_ATOMIC:
817 case SHADER_OPCODE_TYPED_SURFACE_READ:
818 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
819 case SHADER_OPCODE_URB_WRITE_SIMD8:
820 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
821 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
822 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
823 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
824 return 0;
825 default:
826 unreachable("not reached");
827 }
828 }
829
830 fs_reg
831 fs_visitor::vgrf(const glsl_type *const type)
832 {
833 int reg_width = dispatch_width / 8;
834 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
835 brw_type_for_base_type(type), dispatch_width);
836 }
837
838 /** Fixed HW reg constructor. */
839 fs_reg::fs_reg(enum register_file file, int reg)
840 {
841 init();
842 this->file = file;
843 this->reg = reg;
844 this->type = BRW_REGISTER_TYPE_F;
845
846 switch (file) {
847 case UNIFORM:
848 this->width = 1;
849 break;
850 default:
851 this->width = 8;
852 }
853 }
854
855 /** Fixed HW reg constructor. */
856 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
857 {
858 init();
859 this->file = file;
860 this->reg = reg;
861 this->type = type;
862
863 switch (file) {
864 case UNIFORM:
865 this->width = 1;
866 break;
867 default:
868 this->width = 8;
869 }
870 }
871
872 /** Fixed HW reg constructor. */
873 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
874 uint8_t width)
875 {
876 init();
877 this->file = file;
878 this->reg = reg;
879 this->type = type;
880 this->width = width;
881 }
882
883 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
884 * This brings in those uniform definitions
885 */
886 void
887 fs_visitor::import_uniforms(fs_visitor *v)
888 {
889 this->push_constant_loc = v->push_constant_loc;
890 this->pull_constant_loc = v->pull_constant_loc;
891 this->uniforms = v->uniforms;
892 this->param_size = v->param_size;
893 }
894
895 fs_reg *
896 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
897 bool origin_upper_left)
898 {
899 assert(stage == MESA_SHADER_FRAGMENT);
900 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
901 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
902 fs_reg wpos = *reg;
903 bool flip = !origin_upper_left ^ key->render_to_fbo;
904
905 /* gl_FragCoord.x */
906 if (pixel_center_integer) {
907 bld.MOV(wpos, this->pixel_x);
908 } else {
909 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
910 }
911 wpos = offset(wpos, 1);
912
913 /* gl_FragCoord.y */
914 if (!flip && pixel_center_integer) {
915 bld.MOV(wpos, this->pixel_y);
916 } else {
917 fs_reg pixel_y = this->pixel_y;
918 float offset = (pixel_center_integer ? 0.0 : 0.5);
919
920 if (flip) {
921 pixel_y.negate = true;
922 offset += key->drawable_height - 1.0;
923 }
924
925 bld.ADD(wpos, pixel_y, fs_reg(offset));
926 }
927 wpos = offset(wpos, 1);
928
929 /* gl_FragCoord.z */
930 if (devinfo->gen >= 6) {
931 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
932 } else {
933 bld.emit(FS_OPCODE_LINTERP, wpos,
934 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
935 interp_reg(VARYING_SLOT_POS, 2));
936 }
937 wpos = offset(wpos, 1);
938
939 /* gl_FragCoord.w: Already set up in emit_interpolation */
940 bld.MOV(wpos, this->wpos_w);
941
942 return reg;
943 }
944
945 fs_inst *
946 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
947 glsl_interp_qualifier interpolation_mode,
948 bool is_centroid, bool is_sample)
949 {
950 brw_wm_barycentric_interp_mode barycoord_mode;
951 if (devinfo->gen >= 6) {
952 if (is_centroid) {
953 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
954 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
955 else
956 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
957 } else if (is_sample) {
958 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
959 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
960 else
961 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
962 } else {
963 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
964 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
965 else
966 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
967 }
968 } else {
969 /* On Ironlake and below, there is only one interpolation mode.
970 * Centroid interpolation doesn't mean anything on this hardware --
971 * there is no multisampling.
972 */
973 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
974 }
975 return bld.emit(FS_OPCODE_LINTERP, attr,
976 this->delta_xy[barycoord_mode], interp);
977 }
978
979 void
980 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
981 const glsl_type *type,
982 glsl_interp_qualifier interpolation_mode,
983 int location, bool mod_centroid,
984 bool mod_sample)
985 {
986 attr.type = brw_type_for_base_type(type->get_scalar_type());
987
988 assert(stage == MESA_SHADER_FRAGMENT);
989 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
990 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
991
992 unsigned int array_elements;
993
994 if (type->is_array()) {
995 array_elements = type->length;
996 if (array_elements == 0) {
997 fail("dereferenced array '%s' has length 0\n", name);
998 }
999 type = type->fields.array;
1000 } else {
1001 array_elements = 1;
1002 }
1003
1004 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1005 bool is_gl_Color =
1006 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1007 if (key->flat_shade && is_gl_Color) {
1008 interpolation_mode = INTERP_QUALIFIER_FLAT;
1009 } else {
1010 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1011 }
1012 }
1013
1014 for (unsigned int i = 0; i < array_elements; i++) {
1015 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1016 if (prog_data->urb_setup[location] == -1) {
1017 /* If there's no incoming setup data for this slot, don't
1018 * emit interpolation for it.
1019 */
1020 attr = offset(attr, type->vector_elements);
1021 location++;
1022 continue;
1023 }
1024
1025 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1026 /* Constant interpolation (flat shading) case. The SF has
1027 * handed us defined values in only the constant offset
1028 * field of the setup reg.
1029 */
1030 for (unsigned int k = 0; k < type->vector_elements; k++) {
1031 struct brw_reg interp = interp_reg(location, k);
1032 interp = suboffset(interp, 3);
1033 interp.type = attr.type;
1034 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1035 attr = offset(attr, 1);
1036 }
1037 } else {
1038 /* Smooth/noperspective interpolation case. */
1039 for (unsigned int k = 0; k < type->vector_elements; k++) {
1040 struct brw_reg interp = interp_reg(location, k);
1041 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1042 /* Get the pixel/sample mask into f0 so that we know
1043 * which pixels are lit. Then, for each channel that is
1044 * unlit, replace the centroid data with non-centroid
1045 * data.
1046 */
1047 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1048
1049 fs_inst *inst;
1050 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1051 false, false);
1052 inst->predicate = BRW_PREDICATE_NORMAL;
1053 inst->predicate_inverse = true;
1054 if (devinfo->has_pln)
1055 inst->no_dd_clear = true;
1056
1057 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1058 mod_centroid && !key->persample_shading,
1059 mod_sample || key->persample_shading);
1060 inst->predicate = BRW_PREDICATE_NORMAL;
1061 inst->predicate_inverse = false;
1062 if (devinfo->has_pln)
1063 inst->no_dd_check = true;
1064
1065 } else {
1066 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1067 mod_centroid && !key->persample_shading,
1068 mod_sample || key->persample_shading);
1069 }
1070 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1071 bld.MUL(attr, attr, this->pixel_w);
1072 }
1073 attr = offset(attr, 1);
1074 }
1075
1076 }
1077 location++;
1078 }
1079 }
1080 }
1081
1082 fs_reg *
1083 fs_visitor::emit_frontfacing_interpolation()
1084 {
1085 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1086
1087 if (devinfo->gen >= 6) {
1088 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1089 * a boolean result from this (~0/true or 0/false).
1090 *
1091 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1092 * this task in only one instruction:
1093 * - a negation source modifier will flip the bit; and
1094 * - a W -> D type conversion will sign extend the bit into the high
1095 * word of the destination.
1096 *
1097 * An ASR 15 fills the low word of the destination.
1098 */
1099 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1100 g0.negate = true;
1101
1102 bld.ASR(*reg, g0, fs_reg(15));
1103 } else {
1104 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1105 * a boolean result from this (1/true or 0/false).
1106 *
1107 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1108 * the negation source modifier to flip it. Unfortunately the SHR
1109 * instruction only operates on UD (or D with an abs source modifier)
1110 * sources without negation.
1111 *
1112 * Instead, use ASR (which will give ~0/true or 0/false).
1113 */
1114 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1115 g1_6.negate = true;
1116
1117 bld.ASR(*reg, g1_6, fs_reg(31));
1118 }
1119
1120 return reg;
1121 }
1122
1123 void
1124 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1125 {
1126 assert(stage == MESA_SHADER_FRAGMENT);
1127 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1128 assert(dst.type == BRW_REGISTER_TYPE_F);
1129
1130 if (key->compute_pos_offset) {
1131 /* Convert int_sample_pos to floating point */
1132 bld.MOV(dst, int_sample_pos);
1133 /* Scale to the range [0, 1] */
1134 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1135 }
1136 else {
1137 /* From ARB_sample_shading specification:
1138 * "When rendering to a non-multisample buffer, or if multisample
1139 * rasterization is disabled, gl_SamplePosition will always be
1140 * (0.5, 0.5).
1141 */
1142 bld.MOV(dst, fs_reg(0.5f));
1143 }
1144 }
1145
1146 fs_reg *
1147 fs_visitor::emit_samplepos_setup()
1148 {
1149 assert(devinfo->gen >= 6);
1150
1151 const fs_builder abld = bld.annotate("compute sample position");
1152 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1153 fs_reg pos = *reg;
1154 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1155 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1156
1157 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1158 * mode will be enabled.
1159 *
1160 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1161 * R31.1:0 Position Offset X/Y for Slot[3:0]
1162 * R31.3:2 Position Offset X/Y for Slot[7:4]
1163 * .....
1164 *
1165 * The X, Y sample positions come in as bytes in thread payload. So, read
1166 * the positions using vstride=16, width=8, hstride=2.
1167 */
1168 struct brw_reg sample_pos_reg =
1169 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1170 BRW_REGISTER_TYPE_B), 16, 8, 2);
1171
1172 if (dispatch_width == 8) {
1173 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1174 } else {
1175 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1176 abld.half(1).MOV(half(int_sample_x, 1),
1177 fs_reg(suboffset(sample_pos_reg, 16)));
1178 }
1179 /* Compute gl_SamplePosition.x */
1180 compute_sample_position(pos, int_sample_x);
1181 pos = offset(pos, 1);
1182 if (dispatch_width == 8) {
1183 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1184 } else {
1185 abld.half(0).MOV(half(int_sample_y, 0),
1186 fs_reg(suboffset(sample_pos_reg, 1)));
1187 abld.half(1).MOV(half(int_sample_y, 1),
1188 fs_reg(suboffset(sample_pos_reg, 17)));
1189 }
1190 /* Compute gl_SamplePosition.y */
1191 compute_sample_position(pos, int_sample_y);
1192 return reg;
1193 }
1194
1195 fs_reg *
1196 fs_visitor::emit_sampleid_setup()
1197 {
1198 assert(stage == MESA_SHADER_FRAGMENT);
1199 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1200 assert(devinfo->gen >= 6);
1201
1202 const fs_builder abld = bld.annotate("compute sample id");
1203 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1204
1205 if (key->compute_sample_id) {
1206 fs_reg t1 = vgrf(glsl_type::int_type);
1207 fs_reg t2 = vgrf(glsl_type::int_type);
1208 t2.type = BRW_REGISTER_TYPE_UW;
1209
1210 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1211 * 8x multisampling, subspan 0 will represent sample N (where N
1212 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1213 * 7. We can find the value of N by looking at R0.0 bits 7:6
1214 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1215 * (since samples are always delivered in pairs). That is, we
1216 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1217 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1218 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1219 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1220 * populating a temporary variable with the sequence (0, 1, 2, 3),
1221 * and then reading from it using vstride=1, width=4, hstride=0.
1222 * These computations hold good for 4x multisampling as well.
1223 *
1224 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1225 * the first four slots are sample 0 of subspan 0; the next four
1226 * are sample 1 of subspan 0; the third group is sample 0 of
1227 * subspan 1, and finally sample 1 of subspan 1.
1228 */
1229 abld.exec_all()
1230 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1231 fs_reg(0xc0));
1232 abld.exec_all().SHR(t1, t1, fs_reg(5));
1233
1234 /* This works for both SIMD8 and SIMD16 */
1235 abld.exec_all()
1236 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1237
1238 /* This special instruction takes care of setting vstride=1,
1239 * width=4, hstride=0 of t2 during an ADD instruction.
1240 */
1241 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1242 } else {
1243 /* As per GL_ARB_sample_shading specification:
1244 * "When rendering to a non-multisample buffer, or if multisample
1245 * rasterization is disabled, gl_SampleID will always be zero."
1246 */
1247 abld.MOV(*reg, fs_reg(0));
1248 }
1249
1250 return reg;
1251 }
1252
1253 void
1254 fs_visitor::resolve_source_modifiers(fs_reg *src)
1255 {
1256 if (!src->abs && !src->negate)
1257 return;
1258
1259 fs_reg temp = bld.vgrf(src->type);
1260 bld.MOV(temp, *src);
1261 *src = temp;
1262 }
1263
1264 void
1265 fs_visitor::emit_discard_jump()
1266 {
1267 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1268
1269 /* For performance, after a discard, jump to the end of the
1270 * shader if all relevant channels have been discarded.
1271 */
1272 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1273 discard_jump->flag_subreg = 1;
1274
1275 discard_jump->predicate = (dispatch_width == 8)
1276 ? BRW_PREDICATE_ALIGN1_ANY8H
1277 : BRW_PREDICATE_ALIGN1_ANY16H;
1278 discard_jump->predicate_inverse = true;
1279 }
1280
1281 void
1282 fs_visitor::assign_curb_setup()
1283 {
1284 if (dispatch_width == 8) {
1285 prog_data->dispatch_grf_start_reg = payload.num_regs;
1286 } else {
1287 if (stage == MESA_SHADER_FRAGMENT) {
1288 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1289 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1290 } else if (stage == MESA_SHADER_COMPUTE) {
1291 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1292 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1293 } else {
1294 unreachable("Unsupported shader type!");
1295 }
1296 }
1297
1298 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1299
1300 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1301 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1302 for (unsigned int i = 0; i < inst->sources; i++) {
1303 if (inst->src[i].file == UNIFORM) {
1304 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1305 int constant_nr;
1306 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1307 constant_nr = push_constant_loc[uniform_nr];
1308 } else {
1309 /* Section 5.11 of the OpenGL 4.1 spec says:
1310 * "Out-of-bounds reads return undefined values, which include
1311 * values from other variables of the active program or zero."
1312 * Just return the first push constant.
1313 */
1314 constant_nr = 0;
1315 }
1316
1317 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1318 constant_nr / 8,
1319 constant_nr % 8);
1320
1321 inst->src[i].file = HW_REG;
1322 inst->src[i].fixed_hw_reg = byte_offset(
1323 retype(brw_reg, inst->src[i].type),
1324 inst->src[i].subreg_offset);
1325 }
1326 }
1327 }
1328 }
1329
1330 void
1331 fs_visitor::calculate_urb_setup()
1332 {
1333 assert(stage == MESA_SHADER_FRAGMENT);
1334 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1335 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1336
1337 memset(prog_data->urb_setup, -1,
1338 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1339
1340 int urb_next = 0;
1341 /* Figure out where each of the incoming setup attributes lands. */
1342 if (devinfo->gen >= 6) {
1343 if (_mesa_bitcount_64(prog->InputsRead &
1344 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1345 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1346 * first 16 varying inputs, so we can put them wherever we want.
1347 * Just put them in order.
1348 *
1349 * This is useful because it means that (a) inputs not used by the
1350 * fragment shader won't take up valuable register space, and (b) we
1351 * won't have to recompile the fragment shader if it gets paired with
1352 * a different vertex (or geometry) shader.
1353 */
1354 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1355 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1356 BITFIELD64_BIT(i)) {
1357 prog_data->urb_setup[i] = urb_next++;
1358 }
1359 }
1360 } else {
1361 /* We have enough input varyings that the SF/SBE pipeline stage can't
1362 * arbitrarily rearrange them to suit our whim; we have to put them
1363 * in an order that matches the output of the previous pipeline stage
1364 * (geometry or vertex shader).
1365 */
1366 struct brw_vue_map prev_stage_vue_map;
1367 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1368 key->input_slots_valid);
1369 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1370 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1371 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1372 slot++) {
1373 int varying = prev_stage_vue_map.slot_to_varying[slot];
1374 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1375 * unused.
1376 */
1377 if (varying != BRW_VARYING_SLOT_COUNT &&
1378 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1379 BITFIELD64_BIT(varying))) {
1380 prog_data->urb_setup[varying] = slot - first_slot;
1381 }
1382 }
1383 urb_next = prev_stage_vue_map.num_slots - first_slot;
1384 }
1385 } else {
1386 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1387 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1388 /* Point size is packed into the header, not as a general attribute */
1389 if (i == VARYING_SLOT_PSIZ)
1390 continue;
1391
1392 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1393 /* The back color slot is skipped when the front color is
1394 * also written to. In addition, some slots can be
1395 * written in the vertex shader and not read in the
1396 * fragment shader. So the register number must always be
1397 * incremented, mapped or not.
1398 */
1399 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1400 prog_data->urb_setup[i] = urb_next;
1401 urb_next++;
1402 }
1403 }
1404
1405 /*
1406 * It's a FS only attribute, and we did interpolation for this attribute
1407 * in SF thread. So, count it here, too.
1408 *
1409 * See compile_sf_prog() for more info.
1410 */
1411 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1412 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1413 }
1414
1415 prog_data->num_varying_inputs = urb_next;
1416 }
1417
1418 void
1419 fs_visitor::assign_urb_setup()
1420 {
1421 assert(stage == MESA_SHADER_FRAGMENT);
1422 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1423
1424 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1425
1426 /* Offset all the urb_setup[] index by the actual position of the
1427 * setup regs, now that the location of the constants has been chosen.
1428 */
1429 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1430 if (inst->opcode == FS_OPCODE_LINTERP) {
1431 assert(inst->src[1].file == HW_REG);
1432 inst->src[1].fixed_hw_reg.nr += urb_start;
1433 }
1434
1435 if (inst->opcode == FS_OPCODE_CINTERP) {
1436 assert(inst->src[0].file == HW_REG);
1437 inst->src[0].fixed_hw_reg.nr += urb_start;
1438 }
1439 }
1440
1441 /* Each attribute is 4 setup channels, each of which is half a reg. */
1442 this->first_non_payload_grf =
1443 urb_start + prog_data->num_varying_inputs * 2;
1444 }
1445
1446 void
1447 fs_visitor::assign_vs_urb_setup()
1448 {
1449 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1450 int grf, count, slot, channel, attr;
1451
1452 assert(stage == MESA_SHADER_VERTEX);
1453 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1454 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1455 count++;
1456
1457 /* Each attribute is 4 regs. */
1458 this->first_non_payload_grf =
1459 payload.num_regs + prog_data->curb_read_length + count * 4;
1460
1461 unsigned vue_entries =
1462 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1463
1464 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1465 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1466
1467 assert(vs_prog_data->base.urb_read_length <= 15);
1468
1469 /* Rewrite all ATTR file references to the hw grf that they land in. */
1470 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1471 for (int i = 0; i < inst->sources; i++) {
1472 if (inst->src[i].file == ATTR) {
1473
1474 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1475 slot = count - 1;
1476 } else {
1477 /* Attributes come in in a contiguous block, ordered by their
1478 * gl_vert_attrib value. That means we can compute the slot
1479 * number for an attribute by masking out the enabled
1480 * attributes before it and counting the bits.
1481 */
1482 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1483 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1484 BITFIELD64_MASK(attr));
1485 }
1486
1487 channel = inst->src[i].reg_offset & 3;
1488
1489 grf = payload.num_regs +
1490 prog_data->curb_read_length +
1491 slot * 4 + channel;
1492
1493 inst->src[i].file = HW_REG;
1494 inst->src[i].fixed_hw_reg =
1495 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1496 }
1497 }
1498 }
1499 }
1500
1501 /**
1502 * Split large virtual GRFs into separate components if we can.
1503 *
1504 * This is mostly duplicated with what brw_fs_vector_splitting does,
1505 * but that's really conservative because it's afraid of doing
1506 * splitting that doesn't result in real progress after the rest of
1507 * the optimization phases, which would cause infinite looping in
1508 * optimization. We can do it once here, safely. This also has the
1509 * opportunity to split interpolated values, or maybe even uniforms,
1510 * which we don't have at the IR level.
1511 *
1512 * We want to split, because virtual GRFs are what we register
1513 * allocate and spill (due to contiguousness requirements for some
1514 * instructions), and they're what we naturally generate in the
1515 * codegen process, but most virtual GRFs don't actually need to be
1516 * contiguous sets of GRFs. If we split, we'll end up with reduced
1517 * live intervals and better dead code elimination and coalescing.
1518 */
1519 void
1520 fs_visitor::split_virtual_grfs()
1521 {
1522 int num_vars = this->alloc.count;
1523
1524 /* Count the total number of registers */
1525 int reg_count = 0;
1526 int vgrf_to_reg[num_vars];
1527 for (int i = 0; i < num_vars; i++) {
1528 vgrf_to_reg[i] = reg_count;
1529 reg_count += alloc.sizes[i];
1530 }
1531
1532 /* An array of "split points". For each register slot, this indicates
1533 * if this slot can be separated from the previous slot. Every time an
1534 * instruction uses multiple elements of a register (as a source or
1535 * destination), we mark the used slots as inseparable. Then we go
1536 * through and split the registers into the smallest pieces we can.
1537 */
1538 bool split_points[reg_count];
1539 memset(split_points, 0, sizeof(split_points));
1540
1541 /* Mark all used registers as fully splittable */
1542 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1543 if (inst->dst.file == GRF) {
1544 int reg = vgrf_to_reg[inst->dst.reg];
1545 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1546 split_points[reg + j] = true;
1547 }
1548
1549 for (int i = 0; i < inst->sources; i++) {
1550 if (inst->src[i].file == GRF) {
1551 int reg = vgrf_to_reg[inst->src[i].reg];
1552 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1553 split_points[reg + j] = true;
1554 }
1555 }
1556 }
1557
1558 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1559 if (inst->dst.file == GRF) {
1560 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1561 for (int j = 1; j < inst->regs_written; j++)
1562 split_points[reg + j] = false;
1563 }
1564 for (int i = 0; i < inst->sources; i++) {
1565 if (inst->src[i].file == GRF) {
1566 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1567 for (int j = 1; j < inst->regs_read(i); j++)
1568 split_points[reg + j] = false;
1569 }
1570 }
1571 }
1572
1573 int new_virtual_grf[reg_count];
1574 int new_reg_offset[reg_count];
1575
1576 int reg = 0;
1577 for (int i = 0; i < num_vars; i++) {
1578 /* The first one should always be 0 as a quick sanity check. */
1579 assert(split_points[reg] == false);
1580
1581 /* j = 0 case */
1582 new_reg_offset[reg] = 0;
1583 reg++;
1584 int offset = 1;
1585
1586 /* j > 0 case */
1587 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1588 /* If this is a split point, reset the offset to 0 and allocate a
1589 * new virtual GRF for the previous offset many registers
1590 */
1591 if (split_points[reg]) {
1592 assert(offset <= MAX_VGRF_SIZE);
1593 int grf = alloc.allocate(offset);
1594 for (int k = reg - offset; k < reg; k++)
1595 new_virtual_grf[k] = grf;
1596 offset = 0;
1597 }
1598 new_reg_offset[reg] = offset;
1599 offset++;
1600 reg++;
1601 }
1602
1603 /* The last one gets the original register number */
1604 assert(offset <= MAX_VGRF_SIZE);
1605 alloc.sizes[i] = offset;
1606 for (int k = reg - offset; k < reg; k++)
1607 new_virtual_grf[k] = i;
1608 }
1609 assert(reg == reg_count);
1610
1611 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1612 if (inst->dst.file == GRF) {
1613 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1614 inst->dst.reg = new_virtual_grf[reg];
1615 inst->dst.reg_offset = new_reg_offset[reg];
1616 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1617 }
1618 for (int i = 0; i < inst->sources; i++) {
1619 if (inst->src[i].file == GRF) {
1620 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1621 inst->src[i].reg = new_virtual_grf[reg];
1622 inst->src[i].reg_offset = new_reg_offset[reg];
1623 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1624 }
1625 }
1626 }
1627 invalidate_live_intervals();
1628 }
1629
1630 /**
1631 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1632 *
1633 * During code generation, we create tons of temporary variables, many of
1634 * which get immediately killed and are never used again. Yet, in later
1635 * optimization and analysis passes, such as compute_live_intervals, we need
1636 * to loop over all the virtual GRFs. Compacting them can save a lot of
1637 * overhead.
1638 */
1639 bool
1640 fs_visitor::compact_virtual_grfs()
1641 {
1642 bool progress = false;
1643 int remap_table[this->alloc.count];
1644 memset(remap_table, -1, sizeof(remap_table));
1645
1646 /* Mark which virtual GRFs are used. */
1647 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1648 if (inst->dst.file == GRF)
1649 remap_table[inst->dst.reg] = 0;
1650
1651 for (int i = 0; i < inst->sources; i++) {
1652 if (inst->src[i].file == GRF)
1653 remap_table[inst->src[i].reg] = 0;
1654 }
1655 }
1656
1657 /* Compact the GRF arrays. */
1658 int new_index = 0;
1659 for (unsigned i = 0; i < this->alloc.count; i++) {
1660 if (remap_table[i] == -1) {
1661 /* We just found an unused register. This means that we are
1662 * actually going to compact something.
1663 */
1664 progress = true;
1665 } else {
1666 remap_table[i] = new_index;
1667 alloc.sizes[new_index] = alloc.sizes[i];
1668 invalidate_live_intervals();
1669 ++new_index;
1670 }
1671 }
1672
1673 this->alloc.count = new_index;
1674
1675 /* Patch all the instructions to use the newly renumbered registers */
1676 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1677 if (inst->dst.file == GRF)
1678 inst->dst.reg = remap_table[inst->dst.reg];
1679
1680 for (int i = 0; i < inst->sources; i++) {
1681 if (inst->src[i].file == GRF)
1682 inst->src[i].reg = remap_table[inst->src[i].reg];
1683 }
1684 }
1685
1686 /* Patch all the references to delta_xy, since they're used in register
1687 * allocation. If they're unused, switch them to BAD_FILE so we don't
1688 * think some random VGRF is delta_xy.
1689 */
1690 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1691 if (delta_xy[i].file == GRF) {
1692 if (remap_table[delta_xy[i].reg] != -1) {
1693 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1694 } else {
1695 delta_xy[i].file = BAD_FILE;
1696 }
1697 }
1698 }
1699
1700 return progress;
1701 }
1702
1703 /*
1704 * Implements array access of uniforms by inserting a
1705 * PULL_CONSTANT_LOAD instruction.
1706 *
1707 * Unlike temporary GRF array access (where we don't support it due to
1708 * the difficulty of doing relative addressing on instruction
1709 * destinations), we could potentially do array access of uniforms
1710 * that were loaded in GRF space as push constants. In real-world
1711 * usage we've seen, though, the arrays being used are always larger
1712 * than we could load as push constants, so just always move all
1713 * uniform array access out to a pull constant buffer.
1714 */
1715 void
1716 fs_visitor::move_uniform_array_access_to_pull_constants()
1717 {
1718 if (dispatch_width != 8)
1719 return;
1720
1721 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1722 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1723
1724 /* Walk through and find array access of uniforms. Put a copy of that
1725 * uniform in the pull constant buffer.
1726 *
1727 * Note that we don't move constant-indexed accesses to arrays. No
1728 * testing has been done of the performance impact of this choice.
1729 */
1730 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1731 for (int i = 0 ; i < inst->sources; i++) {
1732 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1733 continue;
1734
1735 int uniform = inst->src[i].reg;
1736
1737 /* If this array isn't already present in the pull constant buffer,
1738 * add it.
1739 */
1740 if (pull_constant_loc[uniform] == -1) {
1741 const gl_constant_value **values = &stage_prog_data->param[uniform];
1742
1743 assert(param_size[uniform]);
1744
1745 for (int j = 0; j < param_size[uniform]; j++) {
1746 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1747
1748 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1749 values[j];
1750 }
1751 }
1752 }
1753 }
1754 }
1755
1756 /**
1757 * Assign UNIFORM file registers to either push constants or pull constants.
1758 *
1759 * We allow a fragment shader to have more than the specified minimum
1760 * maximum number of fragment shader uniform components (64). If
1761 * there are too many of these, they'd fill up all of register space.
1762 * So, this will push some of them out to the pull constant buffer and
1763 * update the program to load them.
1764 */
1765 void
1766 fs_visitor::assign_constant_locations()
1767 {
1768 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1769 if (dispatch_width != 8)
1770 return;
1771
1772 /* Find which UNIFORM registers are still in use. */
1773 bool is_live[uniforms];
1774 for (unsigned int i = 0; i < uniforms; i++) {
1775 is_live[i] = false;
1776 }
1777
1778 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1779 for (int i = 0; i < inst->sources; i++) {
1780 if (inst->src[i].file != UNIFORM)
1781 continue;
1782
1783 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1784 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1785 is_live[constant_nr] = true;
1786 }
1787 }
1788
1789 /* Only allow 16 registers (128 uniform components) as push constants.
1790 *
1791 * Just demote the end of the list. We could probably do better
1792 * here, demoting things that are rarely used in the program first.
1793 *
1794 * If changing this value, note the limitation about total_regs in
1795 * brw_curbe.c.
1796 */
1797 unsigned int max_push_components = 16 * 8;
1798 unsigned int num_push_constants = 0;
1799
1800 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1801
1802 for (unsigned int i = 0; i < uniforms; i++) {
1803 if (!is_live[i] || pull_constant_loc[i] != -1) {
1804 /* This UNIFORM register is either dead, or has already been demoted
1805 * to a pull const. Mark it as no longer living in the param[] array.
1806 */
1807 push_constant_loc[i] = -1;
1808 continue;
1809 }
1810
1811 if (num_push_constants < max_push_components) {
1812 /* Retain as a push constant. Record the location in the params[]
1813 * array.
1814 */
1815 push_constant_loc[i] = num_push_constants++;
1816 } else {
1817 /* Demote to a pull constant. */
1818 push_constant_loc[i] = -1;
1819
1820 int pull_index = stage_prog_data->nr_pull_params++;
1821 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1822 pull_constant_loc[i] = pull_index;
1823 }
1824 }
1825
1826 stage_prog_data->nr_params = num_push_constants;
1827
1828 /* Up until now, the param[] array has been indexed by reg + reg_offset
1829 * of UNIFORM registers. Condense it to only contain the uniforms we
1830 * chose to upload as push constants.
1831 */
1832 for (unsigned int i = 0; i < uniforms; i++) {
1833 int remapped = push_constant_loc[i];
1834
1835 if (remapped == -1)
1836 continue;
1837
1838 assert(remapped <= (int)i);
1839 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1840 }
1841 }
1842
1843 /**
1844 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1845 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1846 */
1847 void
1848 fs_visitor::demote_pull_constants()
1849 {
1850 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1851 for (int i = 0; i < inst->sources; i++) {
1852 if (inst->src[i].file != UNIFORM)
1853 continue;
1854
1855 int pull_index;
1856 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1857 if (location >= uniforms) /* Out of bounds access */
1858 pull_index = -1;
1859 else
1860 pull_index = pull_constant_loc[location];
1861
1862 if (pull_index == -1)
1863 continue;
1864
1865 /* Set up the annotation tracking for new generated instructions. */
1866 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1867 .at(block, inst);
1868 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1869 fs_reg dst = vgrf(glsl_type::float_type);
1870
1871 /* Generate a pull load into dst. */
1872 if (inst->src[i].reladdr) {
1873 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1874 surf_index,
1875 *inst->src[i].reladdr,
1876 pull_index);
1877 inst->src[i].reladdr = NULL;
1878 } else {
1879 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1880 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1881 dst, surf_index, offset);
1882 inst->src[i].set_smear(pull_index & 3);
1883 }
1884
1885 /* Rewrite the instruction to use the temporary VGRF. */
1886 inst->src[i].file = GRF;
1887 inst->src[i].reg = dst.reg;
1888 inst->src[i].reg_offset = 0;
1889 inst->src[i].width = dispatch_width;
1890 }
1891 }
1892 invalidate_live_intervals();
1893 }
1894
1895 bool
1896 fs_visitor::opt_algebraic()
1897 {
1898 bool progress = false;
1899
1900 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1901 switch (inst->opcode) {
1902 case BRW_OPCODE_MOV:
1903 if (inst->src[0].file != IMM)
1904 break;
1905
1906 if (inst->saturate) {
1907 if (inst->dst.type != inst->src[0].type)
1908 assert(!"unimplemented: saturate mixed types");
1909
1910 if (brw_saturate_immediate(inst->dst.type,
1911 &inst->src[0].fixed_hw_reg)) {
1912 inst->saturate = false;
1913 progress = true;
1914 }
1915 }
1916 break;
1917
1918 case BRW_OPCODE_MUL:
1919 if (inst->src[1].file != IMM)
1920 continue;
1921
1922 /* a * 1.0 = a */
1923 if (inst->src[1].is_one()) {
1924 inst->opcode = BRW_OPCODE_MOV;
1925 inst->src[1] = reg_undef;
1926 progress = true;
1927 break;
1928 }
1929
1930 /* a * -1.0 = -a */
1931 if (inst->src[1].is_negative_one()) {
1932 inst->opcode = BRW_OPCODE_MOV;
1933 inst->src[0].negate = !inst->src[0].negate;
1934 inst->src[1] = reg_undef;
1935 progress = true;
1936 break;
1937 }
1938
1939 /* a * 0.0 = 0.0 */
1940 if (inst->src[1].is_zero()) {
1941 inst->opcode = BRW_OPCODE_MOV;
1942 inst->src[0] = inst->src[1];
1943 inst->src[1] = reg_undef;
1944 progress = true;
1945 break;
1946 }
1947
1948 if (inst->src[0].file == IMM) {
1949 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1950 inst->opcode = BRW_OPCODE_MOV;
1951 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1952 inst->src[1] = reg_undef;
1953 progress = true;
1954 break;
1955 }
1956 break;
1957 case BRW_OPCODE_ADD:
1958 if (inst->src[1].file != IMM)
1959 continue;
1960
1961 /* a + 0.0 = a */
1962 if (inst->src[1].is_zero()) {
1963 inst->opcode = BRW_OPCODE_MOV;
1964 inst->src[1] = reg_undef;
1965 progress = true;
1966 break;
1967 }
1968
1969 if (inst->src[0].file == IMM) {
1970 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1971 inst->opcode = BRW_OPCODE_MOV;
1972 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1973 inst->src[1] = reg_undef;
1974 progress = true;
1975 break;
1976 }
1977 break;
1978 case BRW_OPCODE_OR:
1979 if (inst->src[0].equals(inst->src[1])) {
1980 inst->opcode = BRW_OPCODE_MOV;
1981 inst->src[1] = reg_undef;
1982 progress = true;
1983 break;
1984 }
1985 break;
1986 case BRW_OPCODE_LRP:
1987 if (inst->src[1].equals(inst->src[2])) {
1988 inst->opcode = BRW_OPCODE_MOV;
1989 inst->src[0] = inst->src[1];
1990 inst->src[1] = reg_undef;
1991 inst->src[2] = reg_undef;
1992 progress = true;
1993 break;
1994 }
1995 break;
1996 case BRW_OPCODE_CMP:
1997 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
1998 inst->src[0].abs &&
1999 inst->src[0].negate &&
2000 inst->src[1].is_zero()) {
2001 inst->src[0].abs = false;
2002 inst->src[0].negate = false;
2003 inst->conditional_mod = BRW_CONDITIONAL_Z;
2004 progress = true;
2005 break;
2006 }
2007 break;
2008 case BRW_OPCODE_SEL:
2009 if (inst->src[0].equals(inst->src[1])) {
2010 inst->opcode = BRW_OPCODE_MOV;
2011 inst->src[1] = reg_undef;
2012 inst->predicate = BRW_PREDICATE_NONE;
2013 inst->predicate_inverse = false;
2014 progress = true;
2015 } else if (inst->saturate && inst->src[1].file == IMM) {
2016 switch (inst->conditional_mod) {
2017 case BRW_CONDITIONAL_LE:
2018 case BRW_CONDITIONAL_L:
2019 switch (inst->src[1].type) {
2020 case BRW_REGISTER_TYPE_F:
2021 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2022 inst->opcode = BRW_OPCODE_MOV;
2023 inst->src[1] = reg_undef;
2024 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2025 progress = true;
2026 }
2027 break;
2028 default:
2029 break;
2030 }
2031 break;
2032 case BRW_CONDITIONAL_GE:
2033 case BRW_CONDITIONAL_G:
2034 switch (inst->src[1].type) {
2035 case BRW_REGISTER_TYPE_F:
2036 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2037 inst->opcode = BRW_OPCODE_MOV;
2038 inst->src[1] = reg_undef;
2039 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2040 progress = true;
2041 }
2042 break;
2043 default:
2044 break;
2045 }
2046 default:
2047 break;
2048 }
2049 }
2050 break;
2051 case BRW_OPCODE_MAD:
2052 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2053 inst->opcode = BRW_OPCODE_MOV;
2054 inst->src[1] = reg_undef;
2055 inst->src[2] = reg_undef;
2056 progress = true;
2057 } else if (inst->src[0].is_zero()) {
2058 inst->opcode = BRW_OPCODE_MUL;
2059 inst->src[0] = inst->src[2];
2060 inst->src[2] = reg_undef;
2061 progress = true;
2062 } else if (inst->src[1].is_one()) {
2063 inst->opcode = BRW_OPCODE_ADD;
2064 inst->src[1] = inst->src[2];
2065 inst->src[2] = reg_undef;
2066 progress = true;
2067 } else if (inst->src[2].is_one()) {
2068 inst->opcode = BRW_OPCODE_ADD;
2069 inst->src[2] = reg_undef;
2070 progress = true;
2071 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2072 inst->opcode = BRW_OPCODE_ADD;
2073 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2074 inst->src[2] = reg_undef;
2075 progress = true;
2076 }
2077 break;
2078 case SHADER_OPCODE_RCP: {
2079 fs_inst *prev = (fs_inst *)inst->prev;
2080 if (prev->opcode == SHADER_OPCODE_SQRT) {
2081 if (inst->src[0].equals(prev->dst)) {
2082 inst->opcode = SHADER_OPCODE_RSQ;
2083 inst->src[0] = prev->src[0];
2084 progress = true;
2085 }
2086 }
2087 break;
2088 }
2089 case SHADER_OPCODE_BROADCAST:
2090 if (is_uniform(inst->src[0])) {
2091 inst->opcode = BRW_OPCODE_MOV;
2092 inst->sources = 1;
2093 inst->force_writemask_all = true;
2094 progress = true;
2095 } else if (inst->src[1].file == IMM) {
2096 inst->opcode = BRW_OPCODE_MOV;
2097 inst->src[0] = component(inst->src[0],
2098 inst->src[1].fixed_hw_reg.dw1.ud);
2099 inst->sources = 1;
2100 inst->force_writemask_all = true;
2101 progress = true;
2102 }
2103 break;
2104
2105 default:
2106 break;
2107 }
2108
2109 /* Swap if src[0] is immediate. */
2110 if (progress && inst->is_commutative()) {
2111 if (inst->src[0].file == IMM) {
2112 fs_reg tmp = inst->src[1];
2113 inst->src[1] = inst->src[0];
2114 inst->src[0] = tmp;
2115 }
2116 }
2117 }
2118 return progress;
2119 }
2120
2121 /**
2122 * Optimize sample messages that have constant zero values for the trailing
2123 * texture coordinates. We can just reduce the message length for these
2124 * instructions instead of reserving a register for it. Trailing parameters
2125 * that aren't sent default to zero anyway. This will cause the dead code
2126 * eliminator to remove the MOV instruction that would otherwise be emitted to
2127 * set up the zero value.
2128 */
2129 bool
2130 fs_visitor::opt_zero_samples()
2131 {
2132 /* Gen4 infers the texturing opcode based on the message length so we can't
2133 * change it.
2134 */
2135 if (devinfo->gen < 5)
2136 return false;
2137
2138 bool progress = false;
2139
2140 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2141 if (!inst->is_tex())
2142 continue;
2143
2144 fs_inst *load_payload = (fs_inst *) inst->prev;
2145
2146 if (load_payload->is_head_sentinel() ||
2147 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2148 continue;
2149
2150 /* We don't want to remove the message header or the first parameter.
2151 * Removing the first parameter is not allowed, see the Haswell PRM
2152 * volume 7, page 149:
2153 *
2154 * "Parameter 0 is required except for the sampleinfo message, which
2155 * has no parameter 0"
2156 */
2157 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2158 load_payload->src[(inst->mlen - inst->header_size) /
2159 (dispatch_width / 8) +
2160 inst->header_size - 1].is_zero()) {
2161 inst->mlen -= dispatch_width / 8;
2162 progress = true;
2163 }
2164 }
2165
2166 if (progress)
2167 invalidate_live_intervals();
2168
2169 return progress;
2170 }
2171
2172 /**
2173 * Optimize sample messages which are followed by the final RT write.
2174 *
2175 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2176 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2177 * final texturing results copied to the framebuffer write payload and modify
2178 * them to write to the framebuffer directly.
2179 */
2180 bool
2181 fs_visitor::opt_sampler_eot()
2182 {
2183 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2184
2185 if (stage != MESA_SHADER_FRAGMENT)
2186 return false;
2187
2188 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2189 return false;
2190
2191 /* FINISHME: It should be possible to implement this optimization when there
2192 * are multiple drawbuffers.
2193 */
2194 if (key->nr_color_regions != 1)
2195 return false;
2196
2197 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2198 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2199 assert(fb_write->eot);
2200 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2201
2202 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2203
2204 /* There wasn't one; nothing to do. */
2205 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2206 return false;
2207
2208 /* This optimisation doesn't seem to work for textureGather for some
2209 * reason. I can't find any documentation or known workarounds to indicate
2210 * that this is expected, but considering that it is probably pretty
2211 * unlikely that a shader would directly write out the results from
2212 * textureGather we might as well just disable it.
2213 */
2214 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2215 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2216 return false;
2217
2218 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2219 * It's very likely to be the previous instruction.
2220 */
2221 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2222 if (load_payload->is_head_sentinel() ||
2223 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2224 return false;
2225
2226 assert(!tex_inst->eot); /* We can't get here twice */
2227 assert((tex_inst->offset & (0xff << 24)) == 0);
2228
2229 tex_inst->offset |= fb_write->target << 24;
2230 tex_inst->eot = true;
2231 tex_inst->dst = bld.null_reg_ud();
2232 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2233
2234 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2235 * to create a new LOAD_PAYLOAD command with the same sources and a space
2236 * saved for the header. Using a new destination register not only makes sure
2237 * we have enough space, but it will make sure the dead code eliminator kills
2238 * the instruction that this will replace.
2239 */
2240 if (tex_inst->header_size != 0)
2241 return true;
2242
2243 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2244 load_payload->sources + 1);
2245 fs_reg *new_sources =
2246 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2247
2248 new_sources[0] = fs_reg();
2249 for (int i = 0; i < load_payload->sources; i++)
2250 new_sources[i+1] = load_payload->src[i];
2251
2252 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2253 * requires a lot of information about the sources to appropriately figure
2254 * out the number of registers needed to be used. Given this stage in our
2255 * optimization, we may not have the appropriate GRFs required by
2256 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2257 * manually emit the instruction.
2258 */
2259 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2260 load_payload->exec_size,
2261 send_header,
2262 new_sources,
2263 load_payload->sources + 1);
2264
2265 new_load_payload->regs_written = load_payload->regs_written + 1;
2266 new_load_payload->header_size = 1;
2267 tex_inst->mlen++;
2268 tex_inst->header_size = 1;
2269 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2270 tex_inst->src[0] = send_header;
2271
2272 return true;
2273 }
2274
2275 bool
2276 fs_visitor::opt_register_renaming()
2277 {
2278 bool progress = false;
2279 int depth = 0;
2280
2281 int remap[alloc.count];
2282 memset(remap, -1, sizeof(int) * alloc.count);
2283
2284 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2285 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2286 depth++;
2287 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2288 inst->opcode == BRW_OPCODE_WHILE) {
2289 depth--;
2290 }
2291
2292 /* Rewrite instruction sources. */
2293 for (int i = 0; i < inst->sources; i++) {
2294 if (inst->src[i].file == GRF &&
2295 remap[inst->src[i].reg] != -1 &&
2296 remap[inst->src[i].reg] != inst->src[i].reg) {
2297 inst->src[i].reg = remap[inst->src[i].reg];
2298 progress = true;
2299 }
2300 }
2301
2302 const int dst = inst->dst.reg;
2303
2304 if (depth == 0 &&
2305 inst->dst.file == GRF &&
2306 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2307 !inst->is_partial_write()) {
2308 if (remap[dst] == -1) {
2309 remap[dst] = dst;
2310 } else {
2311 remap[dst] = alloc.allocate(inst->dst.width / 8);
2312 inst->dst.reg = remap[dst];
2313 progress = true;
2314 }
2315 } else if (inst->dst.file == GRF &&
2316 remap[dst] != -1 &&
2317 remap[dst] != dst) {
2318 inst->dst.reg = remap[dst];
2319 progress = true;
2320 }
2321 }
2322
2323 if (progress) {
2324 invalidate_live_intervals();
2325
2326 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2327 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2328 delta_xy[i].reg = remap[delta_xy[i].reg];
2329 }
2330 }
2331 }
2332
2333 return progress;
2334 }
2335
2336 /**
2337 * Remove redundant or useless discard jumps.
2338 *
2339 * For example, we can eliminate jumps in the following sequence:
2340 *
2341 * discard-jump (redundant with the next jump)
2342 * discard-jump (useless; jumps to the next instruction)
2343 * placeholder-halt
2344 */
2345 bool
2346 fs_visitor::opt_redundant_discard_jumps()
2347 {
2348 bool progress = false;
2349
2350 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2351
2352 fs_inst *placeholder_halt = NULL;
2353 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2354 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2355 placeholder_halt = inst;
2356 break;
2357 }
2358 }
2359
2360 if (!placeholder_halt)
2361 return false;
2362
2363 /* Delete any HALTs immediately before the placeholder halt. */
2364 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2365 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2366 prev = (fs_inst *) placeholder_halt->prev) {
2367 prev->remove(last_bblock);
2368 progress = true;
2369 }
2370
2371 if (progress)
2372 invalidate_live_intervals();
2373
2374 return progress;
2375 }
2376
2377 bool
2378 fs_visitor::compute_to_mrf()
2379 {
2380 bool progress = false;
2381 int next_ip = 0;
2382
2383 /* No MRFs on Gen >= 7. */
2384 if (devinfo->gen >= 7)
2385 return false;
2386
2387 calculate_live_intervals();
2388
2389 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2390 int ip = next_ip;
2391 next_ip++;
2392
2393 if (inst->opcode != BRW_OPCODE_MOV ||
2394 inst->is_partial_write() ||
2395 inst->dst.file != MRF || inst->src[0].file != GRF ||
2396 inst->dst.type != inst->src[0].type ||
2397 inst->src[0].abs || inst->src[0].negate ||
2398 !inst->src[0].is_contiguous() ||
2399 inst->src[0].subreg_offset)
2400 continue;
2401
2402 /* Work out which hardware MRF registers are written by this
2403 * instruction.
2404 */
2405 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2406 int mrf_high;
2407 if (inst->dst.reg & BRW_MRF_COMPR4) {
2408 mrf_high = mrf_low + 4;
2409 } else if (inst->exec_size == 16) {
2410 mrf_high = mrf_low + 1;
2411 } else {
2412 mrf_high = mrf_low;
2413 }
2414
2415 /* Can't compute-to-MRF this GRF if someone else was going to
2416 * read it later.
2417 */
2418 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2419 continue;
2420
2421 /* Found a move of a GRF to a MRF. Let's see if we can go
2422 * rewrite the thing that made this GRF to write into the MRF.
2423 */
2424 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2425 if (scan_inst->dst.file == GRF &&
2426 scan_inst->dst.reg == inst->src[0].reg) {
2427 /* Found the last thing to write our reg we want to turn
2428 * into a compute-to-MRF.
2429 */
2430
2431 /* If this one instruction didn't populate all the
2432 * channels, bail. We might be able to rewrite everything
2433 * that writes that reg, but it would require smarter
2434 * tracking to delay the rewriting until complete success.
2435 */
2436 if (scan_inst->is_partial_write())
2437 break;
2438
2439 /* Things returning more than one register would need us to
2440 * understand coalescing out more than one MOV at a time.
2441 */
2442 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2443 break;
2444
2445 /* SEND instructions can't have MRF as a destination. */
2446 if (scan_inst->mlen)
2447 break;
2448
2449 if (devinfo->gen == 6) {
2450 /* gen6 math instructions must have the destination be
2451 * GRF, so no compute-to-MRF for them.
2452 */
2453 if (scan_inst->is_math()) {
2454 break;
2455 }
2456 }
2457
2458 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2459 /* Found the creator of our MRF's source value. */
2460 scan_inst->dst.file = MRF;
2461 scan_inst->dst.reg = inst->dst.reg;
2462 scan_inst->saturate |= inst->saturate;
2463 inst->remove(block);
2464 progress = true;
2465 }
2466 break;
2467 }
2468
2469 /* We don't handle control flow here. Most computation of
2470 * values that end up in MRFs are shortly before the MRF
2471 * write anyway.
2472 */
2473 if (block->start() == scan_inst)
2474 break;
2475
2476 /* You can't read from an MRF, so if someone else reads our
2477 * MRF's source GRF that we wanted to rewrite, that stops us.
2478 */
2479 bool interfered = false;
2480 for (int i = 0; i < scan_inst->sources; i++) {
2481 if (scan_inst->src[i].file == GRF &&
2482 scan_inst->src[i].reg == inst->src[0].reg &&
2483 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2484 interfered = true;
2485 }
2486 }
2487 if (interfered)
2488 break;
2489
2490 if (scan_inst->dst.file == MRF) {
2491 /* If somebody else writes our MRF here, we can't
2492 * compute-to-MRF before that.
2493 */
2494 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2495 int scan_mrf_high;
2496
2497 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2498 scan_mrf_high = scan_mrf_low + 4;
2499 } else if (scan_inst->exec_size == 16) {
2500 scan_mrf_high = scan_mrf_low + 1;
2501 } else {
2502 scan_mrf_high = scan_mrf_low;
2503 }
2504
2505 if (mrf_low == scan_mrf_low ||
2506 mrf_low == scan_mrf_high ||
2507 mrf_high == scan_mrf_low ||
2508 mrf_high == scan_mrf_high) {
2509 break;
2510 }
2511 }
2512
2513 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2514 /* Found a SEND instruction, which means that there are
2515 * live values in MRFs from base_mrf to base_mrf +
2516 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2517 * above it.
2518 */
2519 if (mrf_low >= scan_inst->base_mrf &&
2520 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2521 break;
2522 }
2523 if (mrf_high >= scan_inst->base_mrf &&
2524 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2525 break;
2526 }
2527 }
2528 }
2529 }
2530
2531 if (progress)
2532 invalidate_live_intervals();
2533
2534 return progress;
2535 }
2536
2537 /**
2538 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2539 * flow. We could probably do better here with some form of divergence
2540 * analysis.
2541 */
2542 bool
2543 fs_visitor::eliminate_find_live_channel()
2544 {
2545 bool progress = false;
2546 unsigned depth = 0;
2547
2548 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2549 switch (inst->opcode) {
2550 case BRW_OPCODE_IF:
2551 case BRW_OPCODE_DO:
2552 depth++;
2553 break;
2554
2555 case BRW_OPCODE_ENDIF:
2556 case BRW_OPCODE_WHILE:
2557 depth--;
2558 break;
2559
2560 case FS_OPCODE_DISCARD_JUMP:
2561 /* This can potentially make control flow non-uniform until the end
2562 * of the program.
2563 */
2564 return progress;
2565
2566 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2567 if (depth == 0) {
2568 inst->opcode = BRW_OPCODE_MOV;
2569 inst->src[0] = fs_reg(0);
2570 inst->sources = 1;
2571 inst->force_writemask_all = true;
2572 progress = true;
2573 }
2574 break;
2575
2576 default:
2577 break;
2578 }
2579 }
2580
2581 return progress;
2582 }
2583
2584 /**
2585 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2586 * instructions to FS_OPCODE_REP_FB_WRITE.
2587 */
2588 void
2589 fs_visitor::emit_repclear_shader()
2590 {
2591 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2592 int base_mrf = 1;
2593 int color_mrf = base_mrf + 2;
2594
2595 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2596 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2597
2598 fs_inst *write;
2599 if (key->nr_color_regions == 1) {
2600 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2601 write->saturate = key->clamp_fragment_color;
2602 write->base_mrf = color_mrf;
2603 write->target = 0;
2604 write->header_size = 0;
2605 write->mlen = 1;
2606 } else {
2607 assume(key->nr_color_regions > 0);
2608 for (int i = 0; i < key->nr_color_regions; ++i) {
2609 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2610 write->saturate = key->clamp_fragment_color;
2611 write->base_mrf = base_mrf;
2612 write->target = i;
2613 write->header_size = 2;
2614 write->mlen = 3;
2615 }
2616 }
2617 write->eot = true;
2618
2619 calculate_cfg();
2620
2621 assign_constant_locations();
2622 assign_curb_setup();
2623
2624 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2625 assert(mov->src[0].file == HW_REG);
2626 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2627 }
2628
2629 /**
2630 * Walks through basic blocks, looking for repeated MRF writes and
2631 * removing the later ones.
2632 */
2633 bool
2634 fs_visitor::remove_duplicate_mrf_writes()
2635 {
2636 fs_inst *last_mrf_move[16];
2637 bool progress = false;
2638
2639 /* Need to update the MRF tracking for compressed instructions. */
2640 if (dispatch_width == 16)
2641 return false;
2642
2643 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2644
2645 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2646 if (inst->is_control_flow()) {
2647 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2648 }
2649
2650 if (inst->opcode == BRW_OPCODE_MOV &&
2651 inst->dst.file == MRF) {
2652 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2653 if (prev_inst && inst->equals(prev_inst)) {
2654 inst->remove(block);
2655 progress = true;
2656 continue;
2657 }
2658 }
2659
2660 /* Clear out the last-write records for MRFs that were overwritten. */
2661 if (inst->dst.file == MRF) {
2662 last_mrf_move[inst->dst.reg] = NULL;
2663 }
2664
2665 if (inst->mlen > 0 && inst->base_mrf != -1) {
2666 /* Found a SEND instruction, which will include two or fewer
2667 * implied MRF writes. We could do better here.
2668 */
2669 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2670 last_mrf_move[inst->base_mrf + i] = NULL;
2671 }
2672 }
2673
2674 /* Clear out any MRF move records whose sources got overwritten. */
2675 if (inst->dst.file == GRF) {
2676 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2677 if (last_mrf_move[i] &&
2678 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2679 last_mrf_move[i] = NULL;
2680 }
2681 }
2682 }
2683
2684 if (inst->opcode == BRW_OPCODE_MOV &&
2685 inst->dst.file == MRF &&
2686 inst->src[0].file == GRF &&
2687 !inst->is_partial_write()) {
2688 last_mrf_move[inst->dst.reg] = inst;
2689 }
2690 }
2691
2692 if (progress)
2693 invalidate_live_intervals();
2694
2695 return progress;
2696 }
2697
2698 static void
2699 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2700 {
2701 /* Clear the flag for registers that actually got read (as expected). */
2702 for (int i = 0; i < inst->sources; i++) {
2703 int grf;
2704 if (inst->src[i].file == GRF) {
2705 grf = inst->src[i].reg;
2706 } else if (inst->src[i].file == HW_REG &&
2707 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2708 grf = inst->src[i].fixed_hw_reg.nr;
2709 } else {
2710 continue;
2711 }
2712
2713 if (grf >= first_grf &&
2714 grf < first_grf + grf_len) {
2715 deps[grf - first_grf] = false;
2716 if (inst->exec_size == 16)
2717 deps[grf - first_grf + 1] = false;
2718 }
2719 }
2720 }
2721
2722 /**
2723 * Implements this workaround for the original 965:
2724 *
2725 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2726 * check for post destination dependencies on this instruction, software
2727 * must ensure that there is no destination hazard for the case of ‘write
2728 * followed by a posted write’ shown in the following example.
2729 *
2730 * 1. mov r3 0
2731 * 2. send r3.xy <rest of send instruction>
2732 * 3. mov r2 r3
2733 *
2734 * Due to no post-destination dependency check on the ‘send’, the above
2735 * code sequence could have two instructions (1 and 2) in flight at the
2736 * same time that both consider ‘r3’ as the target of their final writes.
2737 */
2738 void
2739 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2740 fs_inst *inst)
2741 {
2742 int write_len = inst->regs_written;
2743 int first_write_grf = inst->dst.reg;
2744 bool needs_dep[BRW_MAX_MRF];
2745 assert(write_len < (int)sizeof(needs_dep) - 1);
2746
2747 memset(needs_dep, false, sizeof(needs_dep));
2748 memset(needs_dep, true, write_len);
2749
2750 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2751
2752 /* Walk backwards looking for writes to registers we're writing which
2753 * aren't read since being written. If we hit the start of the program,
2754 * we assume that there are no outstanding dependencies on entry to the
2755 * program.
2756 */
2757 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2758 /* If we hit control flow, assume that there *are* outstanding
2759 * dependencies, and force their cleanup before our instruction.
2760 */
2761 if (block->start() == scan_inst) {
2762 for (int i = 0; i < write_len; i++) {
2763 if (needs_dep[i])
2764 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2765 }
2766 return;
2767 }
2768
2769 /* We insert our reads as late as possible on the assumption that any
2770 * instruction but a MOV that might have left us an outstanding
2771 * dependency has more latency than a MOV.
2772 */
2773 if (scan_inst->dst.file == GRF) {
2774 for (int i = 0; i < scan_inst->regs_written; i++) {
2775 int reg = scan_inst->dst.reg + i;
2776
2777 if (reg >= first_write_grf &&
2778 reg < first_write_grf + write_len &&
2779 needs_dep[reg - first_write_grf]) {
2780 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2781 needs_dep[reg - first_write_grf] = false;
2782 if (scan_inst->exec_size == 16)
2783 needs_dep[reg - first_write_grf + 1] = false;
2784 }
2785 }
2786 }
2787
2788 /* Clear the flag for registers that actually got read (as expected). */
2789 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2790
2791 /* Continue the loop only if we haven't resolved all the dependencies */
2792 int i;
2793 for (i = 0; i < write_len; i++) {
2794 if (needs_dep[i])
2795 break;
2796 }
2797 if (i == write_len)
2798 return;
2799 }
2800 }
2801
2802 /**
2803 * Implements this workaround for the original 965:
2804 *
2805 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2806 * used as a destination register until after it has been sourced by an
2807 * instruction with a different destination register.
2808 */
2809 void
2810 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2811 {
2812 int write_len = inst->regs_written;
2813 int first_write_grf = inst->dst.reg;
2814 bool needs_dep[BRW_MAX_MRF];
2815 assert(write_len < (int)sizeof(needs_dep) - 1);
2816
2817 memset(needs_dep, false, sizeof(needs_dep));
2818 memset(needs_dep, true, write_len);
2819 /* Walk forwards looking for writes to registers we're writing which aren't
2820 * read before being written.
2821 */
2822 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2823 /* If we hit control flow, force resolve all remaining dependencies. */
2824 if (block->end() == scan_inst) {
2825 for (int i = 0; i < write_len; i++) {
2826 if (needs_dep[i])
2827 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2828 }
2829 return;
2830 }
2831
2832 /* Clear the flag for registers that actually got read (as expected). */
2833 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2834
2835 /* We insert our reads as late as possible since they're reading the
2836 * result of a SEND, which has massive latency.
2837 */
2838 if (scan_inst->dst.file == GRF &&
2839 scan_inst->dst.reg >= first_write_grf &&
2840 scan_inst->dst.reg < first_write_grf + write_len &&
2841 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2842 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2843 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2844 }
2845
2846 /* Continue the loop only if we haven't resolved all the dependencies */
2847 int i;
2848 for (i = 0; i < write_len; i++) {
2849 if (needs_dep[i])
2850 break;
2851 }
2852 if (i == write_len)
2853 return;
2854 }
2855 }
2856
2857 void
2858 fs_visitor::insert_gen4_send_dependency_workarounds()
2859 {
2860 if (devinfo->gen != 4 || devinfo->is_g4x)
2861 return;
2862
2863 bool progress = false;
2864
2865 /* Note that we're done with register allocation, so GRF fs_regs always
2866 * have a .reg_offset of 0.
2867 */
2868
2869 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2870 if (inst->mlen != 0 && inst->dst.file == GRF) {
2871 insert_gen4_pre_send_dependency_workarounds(block, inst);
2872 insert_gen4_post_send_dependency_workarounds(block, inst);
2873 progress = true;
2874 }
2875 }
2876
2877 if (progress)
2878 invalidate_live_intervals();
2879 }
2880
2881 /**
2882 * Turns the generic expression-style uniform pull constant load instruction
2883 * into a hardware-specific series of instructions for loading a pull
2884 * constant.
2885 *
2886 * The expression style allows the CSE pass before this to optimize out
2887 * repeated loads from the same offset, and gives the pre-register-allocation
2888 * scheduling full flexibility, while the conversion to native instructions
2889 * allows the post-register-allocation scheduler the best information
2890 * possible.
2891 *
2892 * Note that execution masking for setting up pull constant loads is special:
2893 * the channels that need to be written are unrelated to the current execution
2894 * mask, since a later instruction will use one of the result channels as a
2895 * source operand for all 8 or 16 of its channels.
2896 */
2897 void
2898 fs_visitor::lower_uniform_pull_constant_loads()
2899 {
2900 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2901 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2902 continue;
2903
2904 if (devinfo->gen >= 7) {
2905 /* The offset arg before was a vec4-aligned byte offset. We need to
2906 * turn it into a dword offset.
2907 */
2908 fs_reg const_offset_reg = inst->src[1];
2909 assert(const_offset_reg.file == IMM &&
2910 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2911 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2912 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
2913
2914 /* We have to use a message header on Skylake to get SIMD4x2 mode.
2915 * Reserve space for the register.
2916 */
2917 if (devinfo->gen >= 9) {
2918 payload.reg_offset++;
2919 alloc.sizes[payload.reg] = 2;
2920 }
2921
2922 /* This is actually going to be a MOV, but since only the first dword
2923 * is accessed, we have a special opcode to do just that one. Note
2924 * that this needs to be an operation that will be considered a def
2925 * by live variable analysis, or register allocation will explode.
2926 */
2927 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2928 8, payload, const_offset_reg);
2929 setup->force_writemask_all = true;
2930
2931 setup->ir = inst->ir;
2932 setup->annotation = inst->annotation;
2933 inst->insert_before(block, setup);
2934
2935 /* Similarly, this will only populate the first 4 channels of the
2936 * result register (since we only use smear values from 0-3), but we
2937 * don't tell the optimizer.
2938 */
2939 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2940 inst->src[1] = payload;
2941
2942 invalidate_live_intervals();
2943 } else {
2944 /* Before register allocation, we didn't tell the scheduler about the
2945 * MRF we use. We know it's safe to use this MRF because nothing
2946 * else does except for register spill/unspill, which generates and
2947 * uses its MRF within a single IR instruction.
2948 */
2949 inst->base_mrf = 14;
2950 inst->mlen = 1;
2951 }
2952 }
2953 }
2954
2955 bool
2956 fs_visitor::lower_load_payload()
2957 {
2958 bool progress = false;
2959
2960 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2961 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2962 continue;
2963
2964 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2965 assert(inst->saturate == false);
2966
2967 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
2968 .exec_all(inst->force_writemask_all)
2969 .at(block, inst);
2970 fs_reg dst = inst->dst;
2971
2972 /* Get rid of COMPR4. We'll add it back in if we need it */
2973 if (dst.file == MRF)
2974 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
2975
2976 dst.width = 8;
2977 for (uint8_t i = 0; i < inst->header_size; i++) {
2978 if (inst->src[i].file != BAD_FILE) {
2979 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
2980 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
2981 mov_src.width = 8;
2982 ibld.exec_all().MOV(mov_dst, mov_src);
2983 }
2984 dst = offset(dst, 1);
2985 }
2986
2987 dst.width = inst->exec_size;
2988 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
2989 inst->exec_size > 8) {
2990 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
2991 * a straightforward copy. Instead, the result of the
2992 * LOAD_PAYLOAD is treated as interleaved and the first four
2993 * non-header sources are unpacked as:
2994 *
2995 * m + 0: r0
2996 * m + 1: g0
2997 * m + 2: b0
2998 * m + 3: a0
2999 * m + 4: r1
3000 * m + 5: g1
3001 * m + 6: b1
3002 * m + 7: a1
3003 *
3004 * This is used for gen <= 5 fb writes.
3005 */
3006 assert(inst->exec_size == 16);
3007 assert(inst->header_size + 4 <= inst->sources);
3008 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3009 if (inst->src[i].file != BAD_FILE) {
3010 if (devinfo->has_compr4) {
3011 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3012 compr4_dst.reg |= BRW_MRF_COMPR4;
3013 ibld.MOV(compr4_dst, inst->src[i]);
3014 } else {
3015 /* Platform doesn't have COMPR4. We have to fake it */
3016 fs_reg mov_dst = retype(dst, inst->src[i].type);
3017 mov_dst.width = 8;
3018 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3019 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3020 }
3021 }
3022
3023 dst.reg++;
3024 }
3025
3026 /* The loop above only ever incremented us through the first set
3027 * of 4 registers. However, thanks to the magic of COMPR4, we
3028 * actually wrote to the first 8 registers, so we need to take
3029 * that into account now.
3030 */
3031 dst.reg += 4;
3032
3033 /* The COMPR4 code took care of the first 4 sources. We'll let
3034 * the regular path handle any remaining sources. Yes, we are
3035 * modifying the instruction but we're about to delete it so
3036 * this really doesn't hurt anything.
3037 */
3038 inst->header_size += 4;
3039 }
3040
3041 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3042 if (inst->src[i].file != BAD_FILE)
3043 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3044 dst = offset(dst, 1);
3045 }
3046
3047 inst->remove(block);
3048 progress = true;
3049 }
3050
3051 if (progress)
3052 invalidate_live_intervals();
3053
3054 return progress;
3055 }
3056
3057 bool
3058 fs_visitor::lower_integer_multiplication()
3059 {
3060 bool progress = false;
3061
3062 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3063 * directly, but Cherryview cannot.
3064 */
3065 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3066 return false;
3067
3068 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3069 if (inst->opcode != BRW_OPCODE_MUL ||
3070 inst->dst.is_accumulator() ||
3071 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3072 inst->dst.type != BRW_REGISTER_TYPE_UD))
3073 continue;
3074
3075 const fs_builder ibld = bld.at(block, inst);
3076
3077 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3078 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3079 * src1 are used.
3080 *
3081 * If multiplying by an immediate value that fits in 16-bits, do a
3082 * single MUL instruction with that value in the proper location.
3083 */
3084 if (inst->src[1].file == IMM &&
3085 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3086 if (devinfo->gen < 7) {
3087 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3088 inst->dst.type, dispatch_width);
3089 ibld.MOV(imm, inst->src[1]);
3090 ibld.MUL(inst->dst, imm, inst->src[0]);
3091 } else {
3092 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3093 }
3094 } else {
3095 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3096 * do 32-bit integer multiplication in one instruction, but instead
3097 * must do a sequence (which actually calculates a 64-bit result):
3098 *
3099 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3100 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3101 * mov(8) g2<1>D acc0<8,8,1>D
3102 *
3103 * But on Gen > 6, the ability to use second accumulator register
3104 * (acc1) for non-float data types was removed, preventing a simple
3105 * implementation in SIMD16. A 16-channel result can be calculated by
3106 * executing the three instructions twice in SIMD8, once with quarter
3107 * control of 1Q for the first eight channels and again with 2Q for
3108 * the second eight channels.
3109 *
3110 * Which accumulator register is implicitly accessed (by AccWrEnable
3111 * for instance) is determined by the quarter control. Unfortunately
3112 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3113 * implicit accumulator access by an instruction with 2Q will access
3114 * acc1 regardless of whether the data type is usable in acc1.
3115 *
3116 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3117 * integer data types.
3118 *
3119 * Since we only want the low 32-bits of the result, we can do two
3120 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3121 * adjust the high result and add them (like the mach is doing):
3122 *
3123 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3124 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3125 * shl(8) g9<1>D g8<8,8,1>D 16D
3126 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3127 *
3128 * We avoid the shl instruction by realizing that we only want to add
3129 * the low 16-bits of the "high" result to the high 16-bits of the
3130 * "low" result and using proper regioning on the add:
3131 *
3132 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3133 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3134 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3135 *
3136 * Since it does not use the (single) accumulator register, we can
3137 * schedule multi-component multiplications much better.
3138 */
3139
3140 if (inst->conditional_mod && inst->dst.is_null()) {
3141 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3142 inst->dst.type, dispatch_width);
3143 }
3144 fs_reg low = inst->dst;
3145 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3146 inst->dst.type, dispatch_width);
3147
3148 if (devinfo->gen >= 7) {
3149 fs_reg src1_0_w = inst->src[1];
3150 fs_reg src1_1_w = inst->src[1];
3151
3152 if (inst->src[1].file == IMM) {
3153 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3154 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3155 } else {
3156 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3157 if (src1_0_w.stride != 0) {
3158 assert(src1_0_w.stride == 1);
3159 src1_0_w.stride = 2;
3160 }
3161
3162 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3163 if (src1_1_w.stride != 0) {
3164 assert(src1_1_w.stride == 1);
3165 src1_1_w.stride = 2;
3166 }
3167 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3168 }
3169 ibld.MUL(low, inst->src[0], src1_0_w);
3170 ibld.MUL(high, inst->src[0], src1_1_w);
3171 } else {
3172 fs_reg src0_0_w = inst->src[0];
3173 fs_reg src0_1_w = inst->src[0];
3174
3175 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3176 if (src0_0_w.stride != 0) {
3177 assert(src0_0_w.stride == 1);
3178 src0_0_w.stride = 2;
3179 }
3180
3181 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3182 if (src0_1_w.stride != 0) {
3183 assert(src0_1_w.stride == 1);
3184 src0_1_w.stride = 2;
3185 }
3186 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3187
3188 ibld.MUL(low, src0_0_w, inst->src[1]);
3189 ibld.MUL(high, src0_1_w, inst->src[1]);
3190 }
3191
3192 fs_reg dst = inst->dst;
3193 dst.type = BRW_REGISTER_TYPE_UW;
3194 dst.subreg_offset = 2;
3195 dst.stride = 2;
3196
3197 high.type = BRW_REGISTER_TYPE_UW;
3198 high.stride = 2;
3199
3200 low.type = BRW_REGISTER_TYPE_UW;
3201 low.subreg_offset = 2;
3202 low.stride = 2;
3203
3204 ibld.ADD(dst, low, high);
3205
3206 if (inst->conditional_mod) {
3207 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3208 set_condmod(inst->conditional_mod,
3209 ibld.MOV(null, inst->dst));
3210 }
3211 }
3212
3213 inst->remove(block);
3214 progress = true;
3215 }
3216
3217 if (progress)
3218 invalidate_live_intervals();
3219
3220 return progress;
3221 }
3222
3223 void
3224 fs_visitor::dump_instructions()
3225 {
3226 dump_instructions(NULL);
3227 }
3228
3229 void
3230 fs_visitor::dump_instructions(const char *name)
3231 {
3232 FILE *file = stderr;
3233 if (name && geteuid() != 0) {
3234 file = fopen(name, "w");
3235 if (!file)
3236 file = stderr;
3237 }
3238
3239 if (cfg) {
3240 calculate_register_pressure();
3241 int ip = 0, max_pressure = 0;
3242 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3243 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3244 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3245 dump_instruction(inst, file);
3246 ip++;
3247 }
3248 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3249 } else {
3250 int ip = 0;
3251 foreach_in_list(backend_instruction, inst, &instructions) {
3252 fprintf(file, "%4d: ", ip++);
3253 dump_instruction(inst, file);
3254 }
3255 }
3256
3257 if (file != stderr) {
3258 fclose(file);
3259 }
3260 }
3261
3262 void
3263 fs_visitor::dump_instruction(backend_instruction *be_inst)
3264 {
3265 dump_instruction(be_inst, stderr);
3266 }
3267
3268 void
3269 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3270 {
3271 fs_inst *inst = (fs_inst *)be_inst;
3272
3273 if (inst->predicate) {
3274 fprintf(file, "(%cf0.%d) ",
3275 inst->predicate_inverse ? '-' : '+',
3276 inst->flag_subreg);
3277 }
3278
3279 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3280 if (inst->saturate)
3281 fprintf(file, ".sat");
3282 if (inst->conditional_mod) {
3283 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3284 if (!inst->predicate &&
3285 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3286 inst->opcode != BRW_OPCODE_IF &&
3287 inst->opcode != BRW_OPCODE_WHILE))) {
3288 fprintf(file, ".f0.%d", inst->flag_subreg);
3289 }
3290 }
3291 fprintf(file, "(%d) ", inst->exec_size);
3292
3293 if (inst->mlen) {
3294 fprintf(file, "(mlen: %d) ", inst->mlen);
3295 }
3296
3297 switch (inst->dst.file) {
3298 case GRF:
3299 fprintf(file, "vgrf%d", inst->dst.reg);
3300 if (inst->dst.width != dispatch_width)
3301 fprintf(file, "@%d", inst->dst.width);
3302 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3303 inst->dst.subreg_offset)
3304 fprintf(file, "+%d.%d",
3305 inst->dst.reg_offset, inst->dst.subreg_offset);
3306 break;
3307 case MRF:
3308 fprintf(file, "m%d", inst->dst.reg);
3309 break;
3310 case BAD_FILE:
3311 fprintf(file, "(null)");
3312 break;
3313 case UNIFORM:
3314 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3315 break;
3316 case ATTR:
3317 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3318 break;
3319 case HW_REG:
3320 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3321 switch (inst->dst.fixed_hw_reg.nr) {
3322 case BRW_ARF_NULL:
3323 fprintf(file, "null");
3324 break;
3325 case BRW_ARF_ADDRESS:
3326 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3327 break;
3328 case BRW_ARF_ACCUMULATOR:
3329 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3330 break;
3331 case BRW_ARF_FLAG:
3332 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3333 inst->dst.fixed_hw_reg.subnr);
3334 break;
3335 default:
3336 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3337 inst->dst.fixed_hw_reg.subnr);
3338 break;
3339 }
3340 } else {
3341 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3342 }
3343 if (inst->dst.fixed_hw_reg.subnr)
3344 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3345 break;
3346 default:
3347 fprintf(file, "???");
3348 break;
3349 }
3350 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3351
3352 for (int i = 0; i < inst->sources; i++) {
3353 if (inst->src[i].negate)
3354 fprintf(file, "-");
3355 if (inst->src[i].abs)
3356 fprintf(file, "|");
3357 switch (inst->src[i].file) {
3358 case GRF:
3359 fprintf(file, "vgrf%d", inst->src[i].reg);
3360 if (inst->src[i].width != dispatch_width)
3361 fprintf(file, "@%d", inst->src[i].width);
3362 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3363 inst->src[i].subreg_offset)
3364 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3365 inst->src[i].subreg_offset);
3366 break;
3367 case MRF:
3368 fprintf(file, "***m%d***", inst->src[i].reg);
3369 break;
3370 case ATTR:
3371 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3372 break;
3373 case UNIFORM:
3374 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3375 if (inst->src[i].reladdr) {
3376 fprintf(file, "+reladdr");
3377 } else if (inst->src[i].subreg_offset) {
3378 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3379 inst->src[i].subreg_offset);
3380 }
3381 break;
3382 case BAD_FILE:
3383 fprintf(file, "(null)");
3384 break;
3385 case IMM:
3386 switch (inst->src[i].type) {
3387 case BRW_REGISTER_TYPE_F:
3388 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3389 break;
3390 case BRW_REGISTER_TYPE_W:
3391 case BRW_REGISTER_TYPE_D:
3392 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3393 break;
3394 case BRW_REGISTER_TYPE_UW:
3395 case BRW_REGISTER_TYPE_UD:
3396 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3397 break;
3398 case BRW_REGISTER_TYPE_VF:
3399 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3400 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3401 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3402 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3403 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3404 break;
3405 default:
3406 fprintf(file, "???");
3407 break;
3408 }
3409 break;
3410 case HW_REG:
3411 if (inst->src[i].fixed_hw_reg.negate)
3412 fprintf(file, "-");
3413 if (inst->src[i].fixed_hw_reg.abs)
3414 fprintf(file, "|");
3415 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3416 switch (inst->src[i].fixed_hw_reg.nr) {
3417 case BRW_ARF_NULL:
3418 fprintf(file, "null");
3419 break;
3420 case BRW_ARF_ADDRESS:
3421 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3422 break;
3423 case BRW_ARF_ACCUMULATOR:
3424 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3425 break;
3426 case BRW_ARF_FLAG:
3427 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3428 inst->src[i].fixed_hw_reg.subnr);
3429 break;
3430 default:
3431 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3432 inst->src[i].fixed_hw_reg.subnr);
3433 break;
3434 }
3435 } else {
3436 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3437 }
3438 if (inst->src[i].fixed_hw_reg.subnr)
3439 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3440 if (inst->src[i].fixed_hw_reg.abs)
3441 fprintf(file, "|");
3442 break;
3443 default:
3444 fprintf(file, "???");
3445 break;
3446 }
3447 if (inst->src[i].abs)
3448 fprintf(file, "|");
3449
3450 if (inst->src[i].file != IMM) {
3451 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3452 }
3453
3454 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3455 fprintf(file, ", ");
3456 }
3457
3458 fprintf(file, " ");
3459
3460 if (dispatch_width == 16 && inst->exec_size == 8) {
3461 if (inst->force_sechalf)
3462 fprintf(file, "2ndhalf ");
3463 else
3464 fprintf(file, "1sthalf ");
3465 }
3466
3467 fprintf(file, "\n");
3468 }
3469
3470 /**
3471 * Possibly returns an instruction that set up @param reg.
3472 *
3473 * Sometimes we want to take the result of some expression/variable
3474 * dereference tree and rewrite the instruction generating the result
3475 * of the tree. When processing the tree, we know that the
3476 * instructions generated are all writing temporaries that are dead
3477 * outside of this tree. So, if we have some instructions that write
3478 * a temporary, we're free to point that temp write somewhere else.
3479 *
3480 * Note that this doesn't guarantee that the instruction generated
3481 * only reg -- it might be the size=4 destination of a texture instruction.
3482 */
3483 fs_inst *
3484 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3485 fs_inst *end,
3486 const fs_reg &reg)
3487 {
3488 if (end == start ||
3489 end->is_partial_write() ||
3490 reg.reladdr ||
3491 !reg.equals(end->dst)) {
3492 return NULL;
3493 } else {
3494 return end;
3495 }
3496 }
3497
3498 void
3499 fs_visitor::setup_payload_gen6()
3500 {
3501 bool uses_depth =
3502 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3503 unsigned barycentric_interp_modes =
3504 (stage == MESA_SHADER_FRAGMENT) ?
3505 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3506
3507 assert(devinfo->gen >= 6);
3508
3509 /* R0-1: masks, pixel X/Y coordinates. */
3510 payload.num_regs = 2;
3511 /* R2: only for 32-pixel dispatch.*/
3512
3513 /* R3-26: barycentric interpolation coordinates. These appear in the
3514 * same order that they appear in the brw_wm_barycentric_interp_mode
3515 * enum. Each set of coordinates occupies 2 registers if dispatch width
3516 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3517 * appear if they were enabled using the "Barycentric Interpolation
3518 * Mode" bits in WM_STATE.
3519 */
3520 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3521 if (barycentric_interp_modes & (1 << i)) {
3522 payload.barycentric_coord_reg[i] = payload.num_regs;
3523 payload.num_regs += 2;
3524 if (dispatch_width == 16) {
3525 payload.num_regs += 2;
3526 }
3527 }
3528 }
3529
3530 /* R27: interpolated depth if uses source depth */
3531 if (uses_depth) {
3532 payload.source_depth_reg = payload.num_regs;
3533 payload.num_regs++;
3534 if (dispatch_width == 16) {
3535 /* R28: interpolated depth if not SIMD8. */
3536 payload.num_regs++;
3537 }
3538 }
3539 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3540 if (uses_depth) {
3541 payload.source_w_reg = payload.num_regs;
3542 payload.num_regs++;
3543 if (dispatch_width == 16) {
3544 /* R30: interpolated W if not SIMD8. */
3545 payload.num_regs++;
3546 }
3547 }
3548
3549 if (stage == MESA_SHADER_FRAGMENT) {
3550 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3551 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3552 prog_data->uses_pos_offset = key->compute_pos_offset;
3553 /* R31: MSAA position offsets. */
3554 if (prog_data->uses_pos_offset) {
3555 payload.sample_pos_reg = payload.num_regs;
3556 payload.num_regs++;
3557 }
3558 }
3559
3560 /* R32: MSAA input coverage mask */
3561 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3562 assert(devinfo->gen >= 7);
3563 payload.sample_mask_in_reg = payload.num_regs;
3564 payload.num_regs++;
3565 if (dispatch_width == 16) {
3566 /* R33: input coverage mask if not SIMD8. */
3567 payload.num_regs++;
3568 }
3569 }
3570
3571 /* R34-: bary for 32-pixel. */
3572 /* R58-59: interp W for 32-pixel. */
3573
3574 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3575 source_depth_to_render_target = true;
3576 }
3577 }
3578
3579 void
3580 fs_visitor::setup_vs_payload()
3581 {
3582 /* R0: thread header, R1: urb handles */
3583 payload.num_regs = 2;
3584 }
3585
3586 void
3587 fs_visitor::setup_cs_payload()
3588 {
3589 assert(devinfo->gen >= 7);
3590
3591 payload.num_regs = 1;
3592 }
3593
3594 void
3595 fs_visitor::assign_binding_table_offsets()
3596 {
3597 assert(stage == MESA_SHADER_FRAGMENT);
3598 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3599 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3600 uint32_t next_binding_table_offset = 0;
3601
3602 /* If there are no color regions, we still perform an FB write to a null
3603 * renderbuffer, which we place at surface index 0.
3604 */
3605 prog_data->binding_table.render_target_start = next_binding_table_offset;
3606 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3607
3608 assign_common_binding_table_offsets(next_binding_table_offset);
3609 }
3610
3611 void
3612 fs_visitor::calculate_register_pressure()
3613 {
3614 invalidate_live_intervals();
3615 calculate_live_intervals();
3616
3617 unsigned num_instructions = 0;
3618 foreach_block(block, cfg)
3619 num_instructions += block->instructions.length();
3620
3621 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3622
3623 for (unsigned reg = 0; reg < alloc.count; reg++) {
3624 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3625 regs_live_at_ip[ip] += alloc.sizes[reg];
3626 }
3627 }
3628
3629 void
3630 fs_visitor::optimize()
3631 {
3632 /* bld is the common builder object pointing at the end of the program we
3633 * used to translate it into i965 IR. For the optimization and lowering
3634 * passes coming next, any code added after the end of the program without
3635 * having explicitly called fs_builder::at() clearly points at a mistake.
3636 * Ideally optimization passes wouldn't be part of the visitor so they
3637 * wouldn't have access to bld at all, but they do, so just in case some
3638 * pass forgets to ask for a location explicitly set it to NULL here to
3639 * make it trip.
3640 */
3641 bld = bld.at(NULL, NULL);
3642
3643 split_virtual_grfs();
3644
3645 move_uniform_array_access_to_pull_constants();
3646 assign_constant_locations();
3647 demote_pull_constants();
3648
3649 #define OPT(pass, args...) ({ \
3650 pass_num++; \
3651 bool this_progress = pass(args); \
3652 \
3653 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3654 char filename[64]; \
3655 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3656 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3657 \
3658 backend_shader::dump_instructions(filename); \
3659 } \
3660 \
3661 progress = progress || this_progress; \
3662 this_progress; \
3663 })
3664
3665 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3666 char filename[64];
3667 snprintf(filename, 64, "%s%d-%04d-00-start",
3668 stage_abbrev, dispatch_width,
3669 shader_prog ? shader_prog->Name : 0);
3670
3671 backend_shader::dump_instructions(filename);
3672 }
3673
3674 bool progress;
3675 int iteration = 0;
3676 int pass_num = 0;
3677 do {
3678 progress = false;
3679 pass_num = 0;
3680 iteration++;
3681
3682 OPT(remove_duplicate_mrf_writes);
3683
3684 OPT(opt_algebraic);
3685 OPT(opt_cse);
3686 OPT(opt_copy_propagate);
3687 OPT(opt_peephole_predicated_break);
3688 OPT(opt_cmod_propagation);
3689 OPT(dead_code_eliminate);
3690 OPT(opt_peephole_sel);
3691 OPT(dead_control_flow_eliminate, this);
3692 OPT(opt_register_renaming);
3693 OPT(opt_redundant_discard_jumps);
3694 OPT(opt_saturate_propagation);
3695 OPT(opt_zero_samples);
3696 OPT(register_coalesce);
3697 OPT(compute_to_mrf);
3698 OPT(eliminate_find_live_channel);
3699
3700 OPT(compact_virtual_grfs);
3701 } while (progress);
3702
3703 pass_num = 0;
3704
3705 OPT(opt_sampler_eot);
3706
3707 if (OPT(lower_load_payload)) {
3708 split_virtual_grfs();
3709 OPT(register_coalesce);
3710 OPT(compute_to_mrf);
3711 OPT(dead_code_eliminate);
3712 }
3713
3714 OPT(opt_combine_constants);
3715 OPT(lower_integer_multiplication);
3716
3717 lower_uniform_pull_constant_loads();
3718 }
3719
3720 /**
3721 * Three source instruction must have a GRF/MRF destination register.
3722 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3723 */
3724 void
3725 fs_visitor::fixup_3src_null_dest()
3726 {
3727 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3728 if (inst->is_3src() && inst->dst.is_null()) {
3729 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3730 inst->dst.type);
3731 }
3732 }
3733 }
3734
3735 void
3736 fs_visitor::allocate_registers()
3737 {
3738 bool allocated_without_spills;
3739
3740 static const enum instruction_scheduler_mode pre_modes[] = {
3741 SCHEDULE_PRE,
3742 SCHEDULE_PRE_NON_LIFO,
3743 SCHEDULE_PRE_LIFO,
3744 };
3745
3746 /* Try each scheduling heuristic to see if it can successfully register
3747 * allocate without spilling. They should be ordered by decreasing
3748 * performance but increasing likelihood of allocating.
3749 */
3750 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3751 schedule_instructions(pre_modes[i]);
3752
3753 if (0) {
3754 assign_regs_trivial();
3755 allocated_without_spills = true;
3756 } else {
3757 allocated_without_spills = assign_regs(false);
3758 }
3759 if (allocated_without_spills)
3760 break;
3761 }
3762
3763 if (!allocated_without_spills) {
3764 /* We assume that any spilling is worse than just dropping back to
3765 * SIMD8. There's probably actually some intermediate point where
3766 * SIMD16 with a couple of spills is still better.
3767 */
3768 if (dispatch_width == 16) {
3769 fail("Failure to register allocate. Reduce number of "
3770 "live scalar values to avoid this.");
3771 } else {
3772 struct brw_compiler *compiler = brw->intelScreen->compiler;
3773 compiler->shader_perf_log(brw,
3774 "%s shader triggered register spilling. "
3775 "Try reducing the number of live scalar "
3776 "values to improve performance.\n",
3777 stage_name);
3778 }
3779
3780 /* Since we're out of heuristics, just go spill registers until we
3781 * get an allocation.
3782 */
3783 while (!assign_regs(true)) {
3784 if (failed)
3785 break;
3786 }
3787 }
3788
3789 /* This must come after all optimization and register allocation, since
3790 * it inserts dead code that happens to have side effects, and it does
3791 * so based on the actual physical registers in use.
3792 */
3793 insert_gen4_send_dependency_workarounds();
3794
3795 if (failed)
3796 return;
3797
3798 if (!allocated_without_spills)
3799 schedule_instructions(SCHEDULE_POST);
3800
3801 if (last_scratch > 0)
3802 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3803 }
3804
3805 bool
3806 fs_visitor::run_vs()
3807 {
3808 assert(stage == MESA_SHADER_VERTEX);
3809
3810 assign_common_binding_table_offsets(0);
3811 setup_vs_payload();
3812
3813 if (shader_time_index >= 0)
3814 emit_shader_time_begin();
3815
3816 emit_nir_code();
3817
3818 if (failed)
3819 return false;
3820
3821 emit_urb_writes();
3822
3823 if (shader_time_index >= 0)
3824 emit_shader_time_end();
3825
3826 calculate_cfg();
3827
3828 optimize();
3829
3830 assign_curb_setup();
3831 assign_vs_urb_setup();
3832
3833 fixup_3src_null_dest();
3834 allocate_registers();
3835
3836 return !failed;
3837 }
3838
3839 bool
3840 fs_visitor::run_fs(bool do_rep_send)
3841 {
3842 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3843 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3844
3845 assert(stage == MESA_SHADER_FRAGMENT);
3846
3847 sanity_param_count = prog->Parameters->NumParameters;
3848
3849 assign_binding_table_offsets();
3850
3851 if (devinfo->gen >= 6)
3852 setup_payload_gen6();
3853 else
3854 setup_payload_gen4();
3855
3856 if (0) {
3857 emit_dummy_fs();
3858 } else if (do_rep_send) {
3859 assert(dispatch_width == 16);
3860 emit_repclear_shader();
3861 } else {
3862 if (shader_time_index >= 0)
3863 emit_shader_time_begin();
3864
3865 calculate_urb_setup();
3866 if (prog->InputsRead > 0) {
3867 if (devinfo->gen < 6)
3868 emit_interpolation_setup_gen4();
3869 else
3870 emit_interpolation_setup_gen6();
3871 }
3872
3873 /* We handle discards by keeping track of the still-live pixels in f0.1.
3874 * Initialize it with the dispatched pixels.
3875 */
3876 if (wm_prog_data->uses_kill) {
3877 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3878 discard_init->flag_subreg = 1;
3879 }
3880
3881 /* Generate FS IR for main(). (the visitor only descends into
3882 * functions called "main").
3883 */
3884 emit_nir_code();
3885
3886 if (failed)
3887 return false;
3888
3889 if (wm_prog_data->uses_kill)
3890 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3891
3892 if (wm_key->alpha_test_func)
3893 emit_alpha_test();
3894
3895 emit_fb_writes();
3896
3897 if (shader_time_index >= 0)
3898 emit_shader_time_end();
3899
3900 calculate_cfg();
3901
3902 optimize();
3903
3904 assign_curb_setup();
3905 assign_urb_setup();
3906
3907 fixup_3src_null_dest();
3908 allocate_registers();
3909
3910 if (failed)
3911 return false;
3912 }
3913
3914 if (dispatch_width == 8)
3915 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3916 else
3917 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3918
3919 /* If any state parameters were appended, then ParameterValues could have
3920 * been realloced, in which case the driver uniform storage set up by
3921 * _mesa_associate_uniform_storage() would point to freed memory. Make
3922 * sure that didn't happen.
3923 */
3924 assert(sanity_param_count == prog->Parameters->NumParameters);
3925
3926 return !failed;
3927 }
3928
3929 bool
3930 fs_visitor::run_cs()
3931 {
3932 assert(stage == MESA_SHADER_COMPUTE);
3933 assert(shader);
3934
3935 sanity_param_count = prog->Parameters->NumParameters;
3936
3937 assign_common_binding_table_offsets(0);
3938
3939 setup_cs_payload();
3940
3941 if (shader_time_index >= 0)
3942 emit_shader_time_begin();
3943
3944 emit_nir_code();
3945
3946 if (failed)
3947 return false;
3948
3949 emit_cs_terminate();
3950
3951 if (shader_time_index >= 0)
3952 emit_shader_time_end();
3953
3954 calculate_cfg();
3955
3956 optimize();
3957
3958 assign_curb_setup();
3959
3960 fixup_3src_null_dest();
3961 allocate_registers();
3962
3963 if (failed)
3964 return false;
3965
3966 /* If any state parameters were appended, then ParameterValues could have
3967 * been realloced, in which case the driver uniform storage set up by
3968 * _mesa_associate_uniform_storage() would point to freed memory. Make
3969 * sure that didn't happen.
3970 */
3971 assert(sanity_param_count == prog->Parameters->NumParameters);
3972
3973 return !failed;
3974 }
3975
3976 const unsigned *
3977 brw_wm_fs_emit(struct brw_context *brw,
3978 void *mem_ctx,
3979 const struct brw_wm_prog_key *key,
3980 struct brw_wm_prog_data *prog_data,
3981 struct gl_fragment_program *fp,
3982 struct gl_shader_program *prog,
3983 unsigned *final_assembly_size)
3984 {
3985 bool start_busy = false;
3986 double start_time = 0;
3987
3988 if (unlikely(brw->perf_debug)) {
3989 start_busy = (brw->batch.last_bo &&
3990 drm_intel_bo_busy(brw->batch.last_bo));
3991 start_time = get_time();
3992 }
3993
3994 struct brw_shader *shader = NULL;
3995 if (prog)
3996 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
3997
3998 if (unlikely(INTEL_DEBUG & DEBUG_WM))
3999 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4000
4001 int st_index8 = -1, st_index16 = -1;
4002 if (INTEL_DEBUG & DEBUG_SHADER_TIME) {
4003 st_index8 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS8);
4004 st_index16 = brw_get_shader_time_index(brw, prog, &fp->Base, ST_FS16);
4005 }
4006
4007 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4008 */
4009 fs_visitor v(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4010 prog, &fp->Base, 8, st_index8);
4011 if (!v.run_fs(false /* do_rep_send */)) {
4012 if (prog) {
4013 prog->LinkStatus = false;
4014 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4015 }
4016
4017 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4018 v.fail_msg);
4019
4020 return NULL;
4021 }
4022
4023 cfg_t *simd16_cfg = NULL;
4024 fs_visitor v2(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4025 prog, &fp->Base, 16, st_index16);
4026 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4027 if (!v.simd16_unsupported) {
4028 /* Try a SIMD16 compile */
4029 v2.import_uniforms(&v);
4030 if (!v2.run_fs(brw->use_rep_send)) {
4031 perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
4032 } else {
4033 simd16_cfg = v2.cfg;
4034 }
4035 }
4036 }
4037
4038 cfg_t *simd8_cfg;
4039 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4040 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4041 simd8_cfg = NULL;
4042 prog_data->no_8 = true;
4043 } else {
4044 simd8_cfg = v.cfg;
4045 prog_data->no_8 = false;
4046 }
4047
4048 fs_generator g(brw->intelScreen->compiler, brw,
4049 mem_ctx, (void *) key, &prog_data->base,
4050 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4051
4052 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4053 char *name;
4054 if (prog)
4055 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4056 prog->Label ? prog->Label : "unnamed",
4057 prog->Name);
4058 else
4059 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4060
4061 g.enable_debug(name);
4062 }
4063
4064 if (simd8_cfg)
4065 g.generate_code(simd8_cfg, 8);
4066 if (simd16_cfg)
4067 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4068
4069 if (unlikely(brw->perf_debug) && shader) {
4070 if (shader->compiled_once)
4071 brw_wm_debug_recompile(brw, prog, key);
4072 shader->compiled_once = true;
4073
4074 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4075 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4076 (get_time() - start_time) * 1000);
4077 }
4078 }
4079
4080 return g.get_assembly(final_assembly_size);
4081 }
4082
4083 extern "C" bool
4084 brw_fs_precompile(struct gl_context *ctx,
4085 struct gl_shader_program *shader_prog,
4086 struct gl_program *prog)
4087 {
4088 struct brw_context *brw = brw_context(ctx);
4089 struct brw_wm_prog_key key;
4090
4091 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4092 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4093 bool program_uses_dfdy = fp->UsesDFdy;
4094
4095 memset(&key, 0, sizeof(key));
4096
4097 if (brw->gen < 6) {
4098 if (fp->UsesKill)
4099 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4100
4101 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4102 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4103
4104 /* Just assume depth testing. */
4105 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4106 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4107 }
4108
4109 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4110 BRW_FS_VARYING_INPUT_MASK) > 16)
4111 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4112
4113 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4114
4115 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4116 key.drawable_height = ctx->DrawBuffer->Height;
4117 }
4118
4119 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4120 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4121 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4122
4123 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4124 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4125 key.nr_color_regions > 1;
4126 }
4127
4128 key.program_string_id = bfp->id;
4129
4130 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4131 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4132
4133 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4134
4135 brw->wm.base.prog_offset = old_prog_offset;
4136 brw->wm.prog_data = old_prog_data;
4137
4138 return success;
4139 }
4140
4141 void
4142 brw_setup_tex_for_precompile(struct brw_context *brw,
4143 struct brw_sampler_prog_key_data *tex,
4144 struct gl_program *prog)
4145 {
4146 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4147 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4148 for (unsigned i = 0; i < sampler_count; i++) {
4149 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4150 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4151 tex->swizzles[i] =
4152 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4153 } else {
4154 /* Color sampler: assume no swizzling. */
4155 tex->swizzles[i] = SWIZZLE_XYZW;
4156 }
4157 }
4158 }