i965: Don't try to emit code if we failed register allocation.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 extern "C" {
29
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "main/uniforms.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "program/prog_optimize.h"
38 #include "program/register_allocate.h"
39 #include "program/sampler.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "talloc.h"
45 }
46 #include "../glsl/glsl_types.h"
47 #include "../glsl/ir_optimization.h"
48 #include "../glsl/ir_print_visitor.h"
49
50 enum register_file {
51 ARF = BRW_ARCHITECTURE_REGISTER_FILE,
52 GRF = BRW_GENERAL_REGISTER_FILE,
53 MRF = BRW_MESSAGE_REGISTER_FILE,
54 IMM = BRW_IMMEDIATE_VALUE,
55 FIXED_HW_REG, /* a struct brw_reg */
56 UNIFORM, /* prog_data->params[hw_reg] */
57 BAD_FILE
58 };
59
60 enum fs_opcodes {
61 FS_OPCODE_FB_WRITE = 256,
62 FS_OPCODE_RCP,
63 FS_OPCODE_RSQ,
64 FS_OPCODE_SQRT,
65 FS_OPCODE_EXP2,
66 FS_OPCODE_LOG2,
67 FS_OPCODE_POW,
68 FS_OPCODE_SIN,
69 FS_OPCODE_COS,
70 FS_OPCODE_DDX,
71 FS_OPCODE_DDY,
72 FS_OPCODE_LINTERP,
73 FS_OPCODE_TEX,
74 FS_OPCODE_TXB,
75 FS_OPCODE_TXL,
76 FS_OPCODE_DISCARD,
77 };
78
79 static int using_new_fs = -1;
80 static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
81
82 struct gl_shader *
83 brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
84 {
85 struct brw_shader *shader;
86
87 shader = talloc_zero(NULL, struct brw_shader);
88 if (shader) {
89 shader->base.Type = type;
90 shader->base.Name = name;
91 _mesa_init_shader(ctx, &shader->base);
92 }
93
94 return &shader->base;
95 }
96
97 struct gl_shader_program *
98 brw_new_shader_program(GLcontext *ctx, GLuint name)
99 {
100 struct brw_shader_program *prog;
101 prog = talloc_zero(NULL, struct brw_shader_program);
102 if (prog) {
103 prog->base.Name = name;
104 _mesa_init_shader_program(ctx, &prog->base);
105 }
106 return &prog->base;
107 }
108
109 GLboolean
110 brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
111 {
112 if (!_mesa_ir_compile_shader(ctx, shader))
113 return GL_FALSE;
114
115 return GL_TRUE;
116 }
117
118 GLboolean
119 brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
120 {
121 if (using_new_fs == -1)
122 using_new_fs = getenv("INTEL_NEW_FS") != NULL;
123
124 for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
125 struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
126
127 if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
128 void *mem_ctx = talloc_new(NULL);
129 bool progress;
130
131 if (shader->ir)
132 talloc_free(shader->ir);
133 shader->ir = new(shader) exec_list;
134 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
135
136 do_mat_op_to_vec(shader->ir);
137 do_mod_to_fract(shader->ir);
138 do_div_to_mul_rcp(shader->ir);
139 do_sub_to_add_neg(shader->ir);
140 do_explog_to_explog2(shader->ir);
141 do_lower_texture_projection(shader->ir);
142
143 do {
144 progress = false;
145
146 brw_do_channel_expressions(shader->ir);
147 brw_do_vector_splitting(shader->ir);
148
149 progress = do_lower_jumps(shader->ir, true, true,
150 true, /* main return */
151 false, /* continue */
152 false /* loops */
153 ) || progress;
154
155 progress = do_common_optimization(shader->ir, true, 32) || progress;
156
157 progress = lower_noise(shader->ir) || progress;
158 progress =
159 lower_variable_index_to_cond_assign(shader->ir,
160 GL_TRUE, /* input */
161 GL_TRUE, /* output */
162 GL_TRUE, /* temp */
163 GL_TRUE /* uniform */
164 ) || progress;
165 } while (progress);
166
167 validate_ir_tree(shader->ir);
168
169 reparent_ir(shader->ir, shader->ir);
170 talloc_free(mem_ctx);
171 }
172 }
173
174 if (!_mesa_ir_link_shader(ctx, prog))
175 return GL_FALSE;
176
177 return GL_TRUE;
178 }
179
180 static int
181 type_size(const struct glsl_type *type)
182 {
183 unsigned int size, i;
184
185 switch (type->base_type) {
186 case GLSL_TYPE_UINT:
187 case GLSL_TYPE_INT:
188 case GLSL_TYPE_FLOAT:
189 case GLSL_TYPE_BOOL:
190 return type->components();
191 case GLSL_TYPE_ARRAY:
192 return type_size(type->fields.array) * type->length;
193 case GLSL_TYPE_STRUCT:
194 size = 0;
195 for (i = 0; i < type->length; i++) {
196 size += type_size(type->fields.structure[i].type);
197 }
198 return size;
199 case GLSL_TYPE_SAMPLER:
200 /* Samplers take up no register space, since they're baked in at
201 * link time.
202 */
203 return 0;
204 default:
205 assert(!"not reached");
206 return 0;
207 }
208 }
209
210 class fs_reg {
211 public:
212 /* Callers of this talloc-based new need not call delete. It's
213 * easier to just talloc_free 'ctx' (or any of its ancestors). */
214 static void* operator new(size_t size, void *ctx)
215 {
216 void *node;
217
218 node = talloc_size(ctx, size);
219 assert(node != NULL);
220
221 return node;
222 }
223
224 void init()
225 {
226 this->reg = 0;
227 this->reg_offset = 0;
228 this->negate = 0;
229 this->abs = 0;
230 this->hw_reg = -1;
231 }
232
233 /** Generic unset register constructor. */
234 fs_reg()
235 {
236 init();
237 this->file = BAD_FILE;
238 }
239
240 /** Immediate value constructor. */
241 fs_reg(float f)
242 {
243 init();
244 this->file = IMM;
245 this->type = BRW_REGISTER_TYPE_F;
246 this->imm.f = f;
247 }
248
249 /** Immediate value constructor. */
250 fs_reg(int32_t i)
251 {
252 init();
253 this->file = IMM;
254 this->type = BRW_REGISTER_TYPE_D;
255 this->imm.i = i;
256 }
257
258 /** Immediate value constructor. */
259 fs_reg(uint32_t u)
260 {
261 init();
262 this->file = IMM;
263 this->type = BRW_REGISTER_TYPE_UD;
264 this->imm.u = u;
265 }
266
267 /** Fixed brw_reg Immediate value constructor. */
268 fs_reg(struct brw_reg fixed_hw_reg)
269 {
270 init();
271 this->file = FIXED_HW_REG;
272 this->fixed_hw_reg = fixed_hw_reg;
273 this->type = fixed_hw_reg.type;
274 }
275
276 fs_reg(enum register_file file, int hw_reg);
277 fs_reg(class fs_visitor *v, const struct glsl_type *type);
278
279 /** Register file: ARF, GRF, MRF, IMM. */
280 enum register_file file;
281 /** virtual register number. 0 = fixed hw reg */
282 int reg;
283 /** Offset within the virtual register. */
284 int reg_offset;
285 /** HW register number. Generally unset until register allocation. */
286 int hw_reg;
287 /** Register type. BRW_REGISTER_TYPE_* */
288 int type;
289 bool negate;
290 bool abs;
291 struct brw_reg fixed_hw_reg;
292
293 /** Value for file == BRW_IMMMEDIATE_FILE */
294 union {
295 int32_t i;
296 uint32_t u;
297 float f;
298 } imm;
299 };
300
301 static const fs_reg reg_undef;
302 static const fs_reg reg_null(ARF, BRW_ARF_NULL);
303
304 class fs_inst : public exec_node {
305 public:
306 /* Callers of this talloc-based new need not call delete. It's
307 * easier to just talloc_free 'ctx' (or any of its ancestors). */
308 static void* operator new(size_t size, void *ctx)
309 {
310 void *node;
311
312 node = talloc_zero_size(ctx, size);
313 assert(node != NULL);
314
315 return node;
316 }
317
318 void init()
319 {
320 this->opcode = BRW_OPCODE_NOP;
321 this->saturate = false;
322 this->conditional_mod = BRW_CONDITIONAL_NONE;
323 this->predicated = false;
324 this->sampler = 0;
325 this->target = 0;
326 this->eot = false;
327 this->shadow_compare = false;
328 }
329
330 fs_inst()
331 {
332 init();
333 }
334
335 fs_inst(int opcode)
336 {
337 init();
338 this->opcode = opcode;
339 }
340
341 fs_inst(int opcode, fs_reg dst, fs_reg src0)
342 {
343 init();
344 this->opcode = opcode;
345 this->dst = dst;
346 this->src[0] = src0;
347 }
348
349 fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
350 {
351 init();
352 this->opcode = opcode;
353 this->dst = dst;
354 this->src[0] = src0;
355 this->src[1] = src1;
356 }
357
358 fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
359 {
360 init();
361 this->opcode = opcode;
362 this->dst = dst;
363 this->src[0] = src0;
364 this->src[1] = src1;
365 this->src[2] = src2;
366 }
367
368 int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
369 fs_reg dst;
370 fs_reg src[3];
371 bool saturate;
372 bool predicated;
373 int conditional_mod; /**< BRW_CONDITIONAL_* */
374
375 int mlen; /**< SEND message length */
376 int sampler;
377 int target; /**< MRT target. */
378 bool eot;
379 bool shadow_compare;
380
381 /** @{
382 * Annotation for the generated IR. One of the two can be set.
383 */
384 ir_instruction *ir;
385 const char *annotation;
386 /** @} */
387 };
388
389 class fs_visitor : public ir_visitor
390 {
391 public:
392
393 fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
394 {
395 this->c = c;
396 this->p = &c->func;
397 this->brw = p->brw;
398 this->fp = brw->fragment_program;
399 this->intel = &brw->intel;
400 this->ctx = &intel->ctx;
401 this->mem_ctx = talloc_new(NULL);
402 this->shader = shader;
403 this->fail = false;
404 this->variable_ht = hash_table_ctor(0,
405 hash_table_pointer_hash,
406 hash_table_pointer_compare);
407
408 this->frag_color = NULL;
409 this->frag_data = NULL;
410 this->frag_depth = NULL;
411 this->first_non_payload_grf = 0;
412
413 this->current_annotation = NULL;
414 this->annotation_string = NULL;
415 this->annotation_ir = NULL;
416 this->base_ir = NULL;
417
418 this->virtual_grf_sizes = NULL;
419 this->virtual_grf_next = 1;
420 this->virtual_grf_array_size = 0;
421 this->virtual_grf_def = NULL;
422 this->virtual_grf_use = NULL;
423 }
424 ~fs_visitor()
425 {
426 talloc_free(this->mem_ctx);
427 hash_table_dtor(this->variable_ht);
428 }
429
430 fs_reg *variable_storage(ir_variable *var);
431 int virtual_grf_alloc(int size);
432
433 void visit(ir_variable *ir);
434 void visit(ir_assignment *ir);
435 void visit(ir_dereference_variable *ir);
436 void visit(ir_dereference_record *ir);
437 void visit(ir_dereference_array *ir);
438 void visit(ir_expression *ir);
439 void visit(ir_texture *ir);
440 void visit(ir_if *ir);
441 void visit(ir_constant *ir);
442 void visit(ir_swizzle *ir);
443 void visit(ir_return *ir);
444 void visit(ir_loop *ir);
445 void visit(ir_loop_jump *ir);
446 void visit(ir_discard *ir);
447 void visit(ir_call *ir);
448 void visit(ir_function *ir);
449 void visit(ir_function_signature *ir);
450
451 fs_inst *emit(fs_inst inst);
452 void assign_curb_setup();
453 void calculate_urb_setup();
454 void assign_urb_setup();
455 void assign_regs();
456 void assign_regs_trivial();
457 void calculate_live_intervals();
458 bool virtual_grf_interferes(int a, int b);
459 void generate_code();
460 void generate_fb_write(fs_inst *inst);
461 void generate_linterp(fs_inst *inst, struct brw_reg dst,
462 struct brw_reg *src);
463 void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
464 void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
465 void generate_discard(fs_inst *inst, struct brw_reg temp);
466 void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
467 void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
468
469 void emit_dummy_fs();
470 void emit_fragcoord_interpolation(ir_variable *ir);
471 void emit_general_interpolation(ir_variable *ir);
472 void emit_interpolation_setup_gen4();
473 void emit_interpolation_setup_gen6();
474 fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate);
475 fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate);
476 void emit_fb_writes();
477 void emit_assignment_writes(fs_reg &l, fs_reg &r,
478 const glsl_type *type, bool predicated);
479
480 struct brw_reg interp_reg(int location, int channel);
481 int setup_uniform_values(int loc, const glsl_type *type);
482 void setup_builtin_uniform_values(ir_variable *ir);
483
484 struct brw_context *brw;
485 const struct gl_fragment_program *fp;
486 struct intel_context *intel;
487 GLcontext *ctx;
488 struct brw_wm_compile *c;
489 struct brw_compile *p;
490 struct brw_shader *shader;
491 void *mem_ctx;
492 exec_list instructions;
493
494 int *virtual_grf_sizes;
495 int virtual_grf_next;
496 int virtual_grf_array_size;
497 int *virtual_grf_def;
498 int *virtual_grf_use;
499
500 struct hash_table *variable_ht;
501 ir_variable *frag_color, *frag_data, *frag_depth;
502 int first_non_payload_grf;
503 int urb_setup[FRAG_ATTRIB_MAX];
504
505 /** @{ debug annotation info */
506 const char *current_annotation;
507 ir_instruction *base_ir;
508 const char **annotation_string;
509 ir_instruction **annotation_ir;
510 /** @} */
511
512 bool fail;
513
514 /* Result of last visit() method. */
515 fs_reg result;
516
517 fs_reg pixel_x;
518 fs_reg pixel_y;
519 fs_reg wpos_w;
520 fs_reg pixel_w;
521 fs_reg delta_x;
522 fs_reg delta_y;
523
524 int grf_used;
525
526 };
527
528 int
529 fs_visitor::virtual_grf_alloc(int size)
530 {
531 if (virtual_grf_array_size <= virtual_grf_next) {
532 if (virtual_grf_array_size == 0)
533 virtual_grf_array_size = 16;
534 else
535 virtual_grf_array_size *= 2;
536 virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
537 int, virtual_grf_array_size);
538
539 /* This slot is always unused. */
540 virtual_grf_sizes[0] = 0;
541 }
542 virtual_grf_sizes[virtual_grf_next] = size;
543 return virtual_grf_next++;
544 }
545
546 /** Fixed HW reg constructor. */
547 fs_reg::fs_reg(enum register_file file, int hw_reg)
548 {
549 init();
550 this->file = file;
551 this->hw_reg = hw_reg;
552 this->type = BRW_REGISTER_TYPE_F;
553 }
554
555 int
556 brw_type_for_base_type(const struct glsl_type *type)
557 {
558 switch (type->base_type) {
559 case GLSL_TYPE_FLOAT:
560 return BRW_REGISTER_TYPE_F;
561 case GLSL_TYPE_INT:
562 case GLSL_TYPE_BOOL:
563 return BRW_REGISTER_TYPE_D;
564 case GLSL_TYPE_UINT:
565 return BRW_REGISTER_TYPE_UD;
566 case GLSL_TYPE_ARRAY:
567 case GLSL_TYPE_STRUCT:
568 /* These should be overridden with the type of the member when
569 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
570 * way to trip up if we don't.
571 */
572 return BRW_REGISTER_TYPE_UD;
573 default:
574 assert(!"not reached");
575 return BRW_REGISTER_TYPE_F;
576 }
577 }
578
579 /** Automatic reg constructor. */
580 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
581 {
582 init();
583
584 this->file = GRF;
585 this->reg = v->virtual_grf_alloc(type_size(type));
586 this->reg_offset = 0;
587 this->type = brw_type_for_base_type(type);
588 }
589
590 fs_reg *
591 fs_visitor::variable_storage(ir_variable *var)
592 {
593 return (fs_reg *)hash_table_find(this->variable_ht, var);
594 }
595
596 /* Our support for uniforms is piggy-backed on the struct
597 * gl_fragment_program, because that's where the values actually
598 * get stored, rather than in some global gl_shader_program uniform
599 * store.
600 */
601 int
602 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
603 {
604 unsigned int offset = 0;
605 float *vec_values;
606
607 if (type->is_matrix()) {
608 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
609 type->vector_elements,
610 1);
611
612 for (unsigned int i = 0; i < type->matrix_columns; i++) {
613 offset += setup_uniform_values(loc + offset, column);
614 }
615
616 return offset;
617 }
618
619 switch (type->base_type) {
620 case GLSL_TYPE_FLOAT:
621 case GLSL_TYPE_UINT:
622 case GLSL_TYPE_INT:
623 case GLSL_TYPE_BOOL:
624 vec_values = fp->Base.Parameters->ParameterValues[loc];
625 for (unsigned int i = 0; i < type->vector_elements; i++) {
626 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
627 }
628 return 1;
629
630 case GLSL_TYPE_STRUCT:
631 for (unsigned int i = 0; i < type->length; i++) {
632 offset += setup_uniform_values(loc + offset,
633 type->fields.structure[i].type);
634 }
635 return offset;
636
637 case GLSL_TYPE_ARRAY:
638 for (unsigned int i = 0; i < type->length; i++) {
639 offset += setup_uniform_values(loc + offset, type->fields.array);
640 }
641 return offset;
642
643 case GLSL_TYPE_SAMPLER:
644 /* The sampler takes up a slot, but we don't use any values from it. */
645 return 1;
646
647 default:
648 assert(!"not reached");
649 return 0;
650 }
651 }
652
653
654 /* Our support for builtin uniforms is even scarier than non-builtin.
655 * It sits on top of the PROG_STATE_VAR parameters that are
656 * automatically updated from GL context state.
657 */
658 void
659 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
660 {
661 const struct gl_builtin_uniform_desc *statevar = NULL;
662
663 for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
664 statevar = &_mesa_builtin_uniform_desc[i];
665 if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
666 break;
667 }
668
669 if (!statevar->name) {
670 this->fail = true;
671 printf("Failed to find builtin uniform `%s'\n", ir->name);
672 return;
673 }
674
675 int array_count;
676 if (ir->type->is_array()) {
677 array_count = ir->type->length;
678 } else {
679 array_count = 1;
680 }
681
682 for (int a = 0; a < array_count; a++) {
683 for (unsigned int i = 0; i < statevar->num_elements; i++) {
684 struct gl_builtin_uniform_element *element = &statevar->elements[i];
685 int tokens[STATE_LENGTH];
686
687 memcpy(tokens, element->tokens, sizeof(element->tokens));
688 if (ir->type->is_array()) {
689 tokens[1] = a;
690 }
691
692 /* This state reference has already been setup by ir_to_mesa,
693 * but we'll get the same index back here.
694 */
695 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
696 (gl_state_index *)tokens);
697 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
698
699 /* Add each of the unique swizzles of the element as a
700 * parameter. This'll end up matching the expected layout of
701 * the array/matrix/structure we're trying to fill in.
702 */
703 int last_swiz = -1;
704 for (unsigned int i = 0; i < 4; i++) {
705 int swiz = GET_SWZ(element->swizzle, i);
706 if (swiz == last_swiz)
707 break;
708 last_swiz = swiz;
709
710 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
711 }
712 }
713 }
714 }
715
716 void
717 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
718 {
719 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
720 fs_reg wpos = *reg;
721 fs_reg neg_y = this->pixel_y;
722 neg_y.negate = true;
723
724 /* gl_FragCoord.x */
725 if (ir->pixel_center_integer) {
726 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
727 } else {
728 emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
729 }
730 wpos.reg_offset++;
731
732 /* gl_FragCoord.y */
733 if (ir->origin_upper_left && ir->pixel_center_integer) {
734 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
735 } else {
736 fs_reg pixel_y = this->pixel_y;
737 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
738
739 if (!ir->origin_upper_left) {
740 pixel_y.negate = true;
741 offset += c->key.drawable_height - 1.0;
742 }
743
744 emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
745 }
746 wpos.reg_offset++;
747
748 /* gl_FragCoord.z */
749 emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
750 interp_reg(FRAG_ATTRIB_WPOS, 2)));
751 wpos.reg_offset++;
752
753 /* gl_FragCoord.w: Already set up in emit_interpolation */
754 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
755
756 hash_table_insert(this->variable_ht, reg, ir);
757 }
758
759
760 void
761 fs_visitor::emit_general_interpolation(ir_variable *ir)
762 {
763 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
764 /* Interpolation is always in floating point regs. */
765 reg->type = BRW_REGISTER_TYPE_F;
766 fs_reg attr = *reg;
767
768 unsigned int array_elements;
769 const glsl_type *type;
770
771 if (ir->type->is_array()) {
772 array_elements = ir->type->length;
773 if (array_elements == 0) {
774 this->fail = true;
775 }
776 type = ir->type->fields.array;
777 } else {
778 array_elements = 1;
779 type = ir->type;
780 }
781
782 int location = ir->location;
783 for (unsigned int i = 0; i < array_elements; i++) {
784 for (unsigned int j = 0; j < type->matrix_columns; j++) {
785 if (urb_setup[location] == -1) {
786 /* If there's no incoming setup data for this slot, don't
787 * emit interpolation for it.
788 */
789 attr.reg_offset += type->vector_elements;
790 location++;
791 continue;
792 }
793
794 for (unsigned int c = 0; c < type->vector_elements; c++) {
795 struct brw_reg interp = interp_reg(location, c);
796 emit(fs_inst(FS_OPCODE_LINTERP,
797 attr,
798 this->delta_x,
799 this->delta_y,
800 fs_reg(interp)));
801 attr.reg_offset++;
802 }
803 attr.reg_offset -= type->vector_elements;
804
805 for (unsigned int c = 0; c < type->vector_elements; c++) {
806 emit(fs_inst(BRW_OPCODE_MUL,
807 attr,
808 attr,
809 this->pixel_w));
810 attr.reg_offset++;
811 }
812 location++;
813 }
814 }
815
816 hash_table_insert(this->variable_ht, reg, ir);
817 }
818
819 void
820 fs_visitor::visit(ir_variable *ir)
821 {
822 fs_reg *reg = NULL;
823
824 if (variable_storage(ir))
825 return;
826
827 if (strcmp(ir->name, "gl_FragColor") == 0) {
828 this->frag_color = ir;
829 } else if (strcmp(ir->name, "gl_FragData") == 0) {
830 this->frag_data = ir;
831 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
832 this->frag_depth = ir;
833 }
834
835 if (ir->mode == ir_var_in) {
836 if (!strcmp(ir->name, "gl_FragCoord")) {
837 emit_fragcoord_interpolation(ir);
838 return;
839 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
840 reg = new(this->mem_ctx) fs_reg(this, ir->type);
841 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
842 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
843 * us front face
844 */
845 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
846 *reg,
847 fs_reg(r1_6ud),
848 fs_reg(1u << 31)));
849 inst->conditional_mod = BRW_CONDITIONAL_L;
850 emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
851 } else {
852 emit_general_interpolation(ir);
853 return;
854 }
855 }
856
857 if (ir->mode == ir_var_uniform) {
858 int param_index = c->prog_data.nr_params;
859
860 if (!strncmp(ir->name, "gl_", 3)) {
861 setup_builtin_uniform_values(ir);
862 } else {
863 setup_uniform_values(ir->location, ir->type);
864 }
865
866 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
867 }
868
869 if (!reg)
870 reg = new(this->mem_ctx) fs_reg(this, ir->type);
871
872 hash_table_insert(this->variable_ht, reg, ir);
873 }
874
875 void
876 fs_visitor::visit(ir_dereference_variable *ir)
877 {
878 fs_reg *reg = variable_storage(ir->var);
879 this->result = *reg;
880 }
881
882 void
883 fs_visitor::visit(ir_dereference_record *ir)
884 {
885 const glsl_type *struct_type = ir->record->type;
886
887 ir->record->accept(this);
888
889 unsigned int offset = 0;
890 for (unsigned int i = 0; i < struct_type->length; i++) {
891 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
892 break;
893 offset += type_size(struct_type->fields.structure[i].type);
894 }
895 this->result.reg_offset += offset;
896 this->result.type = brw_type_for_base_type(ir->type);
897 }
898
899 void
900 fs_visitor::visit(ir_dereference_array *ir)
901 {
902 ir_constant *index;
903 int element_size;
904
905 ir->array->accept(this);
906 index = ir->array_index->as_constant();
907
908 element_size = type_size(ir->type);
909 this->result.type = brw_type_for_base_type(ir->type);
910
911 if (index) {
912 assert(this->result.file == UNIFORM ||
913 (this->result.file == GRF &&
914 this->result.reg != 0));
915 this->result.reg_offset += index->value.i[0] * element_size;
916 } else {
917 assert(!"FINISHME: non-constant array element");
918 }
919 }
920
921 void
922 fs_visitor::visit(ir_expression *ir)
923 {
924 unsigned int operand;
925 fs_reg op[2], temp;
926 fs_reg result;
927 fs_inst *inst;
928
929 for (operand = 0; operand < ir->get_num_operands(); operand++) {
930 ir->operands[operand]->accept(this);
931 if (this->result.file == BAD_FILE) {
932 ir_print_visitor v;
933 printf("Failed to get tree for expression operand:\n");
934 ir->operands[operand]->accept(&v);
935 this->fail = true;
936 }
937 op[operand] = this->result;
938
939 /* Matrix expression operands should have been broken down to vector
940 * operations already.
941 */
942 assert(!ir->operands[operand]->type->is_matrix());
943 /* And then those vector operands should have been broken down to scalar.
944 */
945 assert(!ir->operands[operand]->type->is_vector());
946 }
947
948 /* Storage for our result. If our result goes into an assignment, it will
949 * just get copy-propagated out, so no worries.
950 */
951 this->result = fs_reg(this, ir->type);
952
953 switch (ir->operation) {
954 case ir_unop_logic_not:
955 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
956 break;
957 case ir_unop_neg:
958 op[0].negate = !op[0].negate;
959 this->result = op[0];
960 break;
961 case ir_unop_abs:
962 op[0].abs = true;
963 this->result = op[0];
964 break;
965 case ir_unop_sign:
966 temp = fs_reg(this, ir->type);
967
968 emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
969
970 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
971 inst->conditional_mod = BRW_CONDITIONAL_G;
972 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
973 inst->predicated = true;
974
975 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
976 inst->conditional_mod = BRW_CONDITIONAL_L;
977 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
978 inst->predicated = true;
979
980 break;
981 case ir_unop_rcp:
982 emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
983 break;
984
985 case ir_unop_exp2:
986 emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
987 break;
988 case ir_unop_log2:
989 emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
990 break;
991 case ir_unop_exp:
992 case ir_unop_log:
993 assert(!"not reached: should be handled by ir_explog_to_explog2");
994 break;
995 case ir_unop_sin:
996 emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
997 break;
998 case ir_unop_cos:
999 emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
1000 break;
1001
1002 case ir_unop_dFdx:
1003 emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
1004 break;
1005 case ir_unop_dFdy:
1006 emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
1007 break;
1008
1009 case ir_binop_add:
1010 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
1011 break;
1012 case ir_binop_sub:
1013 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1014 break;
1015
1016 case ir_binop_mul:
1017 emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
1018 break;
1019 case ir_binop_div:
1020 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1021 break;
1022 case ir_binop_mod:
1023 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1024 break;
1025
1026 case ir_binop_less:
1027 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1028 inst->conditional_mod = BRW_CONDITIONAL_L;
1029 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1030 break;
1031 case ir_binop_greater:
1032 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1033 inst->conditional_mod = BRW_CONDITIONAL_G;
1034 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1035 break;
1036 case ir_binop_lequal:
1037 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1038 inst->conditional_mod = BRW_CONDITIONAL_LE;
1039 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1040 break;
1041 case ir_binop_gequal:
1042 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1043 inst->conditional_mod = BRW_CONDITIONAL_GE;
1044 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1045 break;
1046 case ir_binop_equal:
1047 case ir_binop_all_equal: /* same as nequal for scalars */
1048 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1049 inst->conditional_mod = BRW_CONDITIONAL_Z;
1050 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1051 break;
1052 case ir_binop_nequal:
1053 case ir_binop_any_nequal: /* same as nequal for scalars */
1054 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1055 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1056 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1057 break;
1058
1059 case ir_binop_logic_xor:
1060 emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1061 break;
1062
1063 case ir_binop_logic_or:
1064 emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1065 break;
1066
1067 case ir_binop_logic_and:
1068 emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1069 break;
1070
1071 case ir_binop_dot:
1072 case ir_binop_cross:
1073 case ir_unop_any:
1074 assert(!"not reached: should be handled by brw_fs_channel_expressions");
1075 break;
1076
1077 case ir_unop_noise:
1078 assert(!"not reached: should be handled by lower_noise");
1079 break;
1080
1081 case ir_unop_sqrt:
1082 emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
1083 break;
1084
1085 case ir_unop_rsq:
1086 emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
1087 break;
1088
1089 case ir_unop_i2f:
1090 case ir_unop_b2f:
1091 case ir_unop_b2i:
1092 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1093 break;
1094 case ir_unop_f2i:
1095 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1096 break;
1097 case ir_unop_f2b:
1098 case ir_unop_i2b:
1099 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
1100 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1101
1102 case ir_unop_trunc:
1103 emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1104 break;
1105 case ir_unop_ceil:
1106 op[0].negate = ~op[0].negate;
1107 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1108 this->result.negate = true;
1109 break;
1110 case ir_unop_floor:
1111 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1112 break;
1113 case ir_unop_fract:
1114 inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1115 break;
1116
1117 case ir_binop_min:
1118 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1119 inst->conditional_mod = BRW_CONDITIONAL_L;
1120
1121 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1122 inst->predicated = true;
1123 break;
1124 case ir_binop_max:
1125 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1126 inst->conditional_mod = BRW_CONDITIONAL_G;
1127
1128 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1129 inst->predicated = true;
1130 break;
1131
1132 case ir_binop_pow:
1133 inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
1134 break;
1135
1136 case ir_unop_bit_not:
1137 case ir_unop_u2f:
1138 case ir_binop_lshift:
1139 case ir_binop_rshift:
1140 case ir_binop_bit_and:
1141 case ir_binop_bit_xor:
1142 case ir_binop_bit_or:
1143 assert(!"GLSL 1.30 features unsupported");
1144 break;
1145 }
1146 }
1147
1148 void
1149 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1150 const glsl_type *type, bool predicated)
1151 {
1152 switch (type->base_type) {
1153 case GLSL_TYPE_FLOAT:
1154 case GLSL_TYPE_UINT:
1155 case GLSL_TYPE_INT:
1156 case GLSL_TYPE_BOOL:
1157 for (unsigned int i = 0; i < type->components(); i++) {
1158 l.type = brw_type_for_base_type(type);
1159 r.type = brw_type_for_base_type(type);
1160
1161 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1162 inst->predicated = predicated;
1163
1164 l.reg_offset++;
1165 r.reg_offset++;
1166 }
1167 break;
1168 case GLSL_TYPE_ARRAY:
1169 for (unsigned int i = 0; i < type->length; i++) {
1170 emit_assignment_writes(l, r, type->fields.array, predicated);
1171 }
1172
1173 case GLSL_TYPE_STRUCT:
1174 for (unsigned int i = 0; i < type->length; i++) {
1175 emit_assignment_writes(l, r, type->fields.structure[i].type,
1176 predicated);
1177 }
1178 break;
1179
1180 case GLSL_TYPE_SAMPLER:
1181 break;
1182
1183 default:
1184 assert(!"not reached");
1185 break;
1186 }
1187 }
1188
1189 void
1190 fs_visitor::visit(ir_assignment *ir)
1191 {
1192 struct fs_reg l, r;
1193 fs_inst *inst;
1194
1195 /* FINISHME: arrays on the lhs */
1196 ir->lhs->accept(this);
1197 l = this->result;
1198
1199 ir->rhs->accept(this);
1200 r = this->result;
1201
1202 assert(l.file != BAD_FILE);
1203 assert(r.file != BAD_FILE);
1204
1205 if (ir->condition) {
1206 /* Get the condition bool into the predicate. */
1207 ir->condition->accept(this);
1208 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
1209 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1210 }
1211
1212 if (ir->lhs->type->is_scalar() ||
1213 ir->lhs->type->is_vector()) {
1214 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1215 if (ir->write_mask & (1 << i)) {
1216 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1217 if (ir->condition)
1218 inst->predicated = true;
1219 r.reg_offset++;
1220 }
1221 l.reg_offset++;
1222 }
1223 } else {
1224 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1225 }
1226 }
1227
1228 fs_inst *
1229 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1230 {
1231 int mlen;
1232 int base_mrf = 2;
1233 bool simd16 = false;
1234 fs_reg orig_dst;
1235
1236 if (ir->shadow_comparitor) {
1237 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1238 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1239 coordinate));
1240 coordinate.reg_offset++;
1241 }
1242 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1243 mlen = 3;
1244
1245 if (ir->op == ir_tex) {
1246 /* There's no plain shadow compare message, so we use shadow
1247 * compare with a bias of 0.0.
1248 */
1249 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1250 fs_reg(0.0f)));
1251 mlen++;
1252 } else if (ir->op == ir_txb) {
1253 ir->lod_info.bias->accept(this);
1254 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1255 this->result));
1256 mlen++;
1257 } else {
1258 assert(ir->op == ir_txl);
1259 ir->lod_info.lod->accept(this);
1260 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1261 this->result));
1262 mlen++;
1263 }
1264
1265 ir->shadow_comparitor->accept(this);
1266 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1267 mlen++;
1268 } else if (ir->op == ir_tex) {
1269 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1270 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1271 coordinate));
1272 coordinate.reg_offset++;
1273 }
1274 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1275 mlen = 3;
1276 } else {
1277 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1278 * instructions. We'll need to do SIMD16 here.
1279 */
1280 assert(ir->op == ir_txb || ir->op == ir_txl);
1281
1282 for (mlen = 0; mlen < ir->coordinate->type->vector_elements * 2;) {
1283 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1284 coordinate));
1285 coordinate.reg_offset++;
1286 mlen++;
1287
1288 /* The unused upper half. */
1289 mlen++;
1290 }
1291
1292 /* lod/bias appears after u/v/r. */
1293 mlen = 6;
1294
1295 if (ir->op == ir_txb) {
1296 ir->lod_info.bias->accept(this);
1297 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1298 this->result));
1299 mlen++;
1300 } else {
1301 ir->lod_info.lod->accept(this);
1302 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1303 this->result));
1304 mlen++;
1305 }
1306
1307 /* The unused upper half. */
1308 mlen++;
1309
1310 /* Now, since we're doing simd16, the return is 2 interleaved
1311 * vec4s where the odd-indexed ones are junk. We'll need to move
1312 * this weirdness around to the expected layout.
1313 */
1314 simd16 = true;
1315 orig_dst = dst;
1316 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1317 2));
1318 dst.type = BRW_REGISTER_TYPE_F;
1319 }
1320
1321 fs_inst *inst = NULL;
1322 switch (ir->op) {
1323 case ir_tex:
1324 inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1325 break;
1326 case ir_txb:
1327 inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1328 break;
1329 case ir_txl:
1330 inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1331 break;
1332 case ir_txd:
1333 case ir_txf:
1334 assert(!"GLSL 1.30 features unsupported");
1335 break;
1336 }
1337 inst->mlen = mlen;
1338
1339 if (simd16) {
1340 for (int i = 0; i < 4; i++) {
1341 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1342 orig_dst.reg_offset++;
1343 dst.reg_offset += 2;
1344 }
1345 }
1346
1347 return inst;
1348 }
1349
1350 fs_inst *
1351 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1352 {
1353 /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1354 * optional parameters like shadow comparitor or LOD bias. If
1355 * optional parameters aren't present, those base slots are
1356 * optional and don't need to be included in the message.
1357 *
1358 * We don't fill in the unnecessary slots regardless, which may
1359 * look surprising in the disassembly.
1360 */
1361 int mlen;
1362 int base_mrf = 2;
1363
1364 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1365 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
1366 coordinate.reg_offset++;
1367 }
1368
1369 if (ir->shadow_comparitor) {
1370 mlen = MAX2(mlen, 4);
1371
1372 ir->shadow_comparitor->accept(this);
1373 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1374 mlen++;
1375 }
1376
1377 fs_inst *inst = NULL;
1378 switch (ir->op) {
1379 case ir_tex:
1380 inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1381 break;
1382 case ir_txb:
1383 ir->lod_info.bias->accept(this);
1384 mlen = MAX2(mlen, 4);
1385 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1386 mlen++;
1387
1388 inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1389 break;
1390 case ir_txl:
1391 ir->lod_info.lod->accept(this);
1392 mlen = MAX2(mlen, 4);
1393 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1394 mlen++;
1395
1396 inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1397 break;
1398 case ir_txd:
1399 case ir_txf:
1400 assert(!"GLSL 1.30 features unsupported");
1401 break;
1402 }
1403 inst->mlen = mlen;
1404
1405 return inst;
1406 }
1407
1408 void
1409 fs_visitor::visit(ir_texture *ir)
1410 {
1411 fs_inst *inst = NULL;
1412
1413 ir->coordinate->accept(this);
1414 fs_reg coordinate = this->result;
1415
1416 /* Should be lowered by do_lower_texture_projection */
1417 assert(!ir->projector);
1418
1419 /* Writemasking doesn't eliminate channels on SIMD8 texture
1420 * samples, so don't worry about them.
1421 */
1422 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1423
1424 if (intel->gen < 5) {
1425 inst = emit_texture_gen4(ir, dst, coordinate);
1426 } else {
1427 inst = emit_texture_gen5(ir, dst, coordinate);
1428 }
1429
1430 inst->sampler =
1431 _mesa_get_sampler_uniform_value(ir->sampler,
1432 ctx->Shader.CurrentProgram,
1433 &brw->fragment_program->Base);
1434 inst->sampler = c->fp->program.Base.SamplerUnits[inst->sampler];
1435
1436 this->result = dst;
1437
1438 if (ir->shadow_comparitor)
1439 inst->shadow_compare = true;
1440 }
1441
1442 void
1443 fs_visitor::visit(ir_swizzle *ir)
1444 {
1445 ir->val->accept(this);
1446 fs_reg val = this->result;
1447
1448 if (ir->type->vector_elements == 1) {
1449 this->result.reg_offset += ir->mask.x;
1450 return;
1451 }
1452
1453 fs_reg result = fs_reg(this, ir->type);
1454 this->result = result;
1455
1456 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1457 fs_reg channel = val;
1458 int swiz = 0;
1459
1460 switch (i) {
1461 case 0:
1462 swiz = ir->mask.x;
1463 break;
1464 case 1:
1465 swiz = ir->mask.y;
1466 break;
1467 case 2:
1468 swiz = ir->mask.z;
1469 break;
1470 case 3:
1471 swiz = ir->mask.w;
1472 break;
1473 }
1474
1475 channel.reg_offset += swiz;
1476 emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1477 result.reg_offset++;
1478 }
1479 }
1480
1481 void
1482 fs_visitor::visit(ir_discard *ir)
1483 {
1484 fs_reg temp = fs_reg(this, glsl_type::uint_type);
1485
1486 assert(ir->condition == NULL); /* FINISHME */
1487
1488 emit(fs_inst(FS_OPCODE_DISCARD, temp, temp));
1489 }
1490
1491 void
1492 fs_visitor::visit(ir_constant *ir)
1493 {
1494 fs_reg reg(this, ir->type);
1495 this->result = reg;
1496
1497 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1498 switch (ir->type->base_type) {
1499 case GLSL_TYPE_FLOAT:
1500 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1501 break;
1502 case GLSL_TYPE_UINT:
1503 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1504 break;
1505 case GLSL_TYPE_INT:
1506 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1507 break;
1508 case GLSL_TYPE_BOOL:
1509 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1510 break;
1511 default:
1512 assert(!"Non-float/uint/int/bool constant");
1513 }
1514 reg.reg_offset++;
1515 }
1516 }
1517
1518 void
1519 fs_visitor::visit(ir_if *ir)
1520 {
1521 fs_inst *inst;
1522
1523 /* Don't point the annotation at the if statement, because then it plus
1524 * the then and else blocks get printed.
1525 */
1526 this->base_ir = ir->condition;
1527
1528 /* Generate the condition into the condition code. */
1529 ir->condition->accept(this);
1530 inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1531 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1532
1533 inst = emit(fs_inst(BRW_OPCODE_IF));
1534 inst->predicated = true;
1535
1536 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1537 ir_instruction *ir = (ir_instruction *)iter.get();
1538 this->base_ir = ir;
1539
1540 ir->accept(this);
1541 }
1542
1543 if (!ir->else_instructions.is_empty()) {
1544 emit(fs_inst(BRW_OPCODE_ELSE));
1545
1546 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1547 ir_instruction *ir = (ir_instruction *)iter.get();
1548 this->base_ir = ir;
1549
1550 ir->accept(this);
1551 }
1552 }
1553
1554 emit(fs_inst(BRW_OPCODE_ENDIF));
1555 }
1556
1557 void
1558 fs_visitor::visit(ir_loop *ir)
1559 {
1560 fs_reg counter = reg_undef;
1561
1562 if (ir->counter) {
1563 this->base_ir = ir->counter;
1564 ir->counter->accept(this);
1565 counter = *(variable_storage(ir->counter));
1566
1567 if (ir->from) {
1568 this->base_ir = ir->from;
1569 ir->from->accept(this);
1570
1571 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1572 }
1573 }
1574
1575 emit(fs_inst(BRW_OPCODE_DO));
1576
1577 if (ir->to) {
1578 this->base_ir = ir->to;
1579 ir->to->accept(this);
1580
1581 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
1582 counter, this->result));
1583 switch (ir->cmp) {
1584 case ir_binop_equal:
1585 inst->conditional_mod = BRW_CONDITIONAL_Z;
1586 break;
1587 case ir_binop_nequal:
1588 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1589 break;
1590 case ir_binop_gequal:
1591 inst->conditional_mod = BRW_CONDITIONAL_GE;
1592 break;
1593 case ir_binop_lequal:
1594 inst->conditional_mod = BRW_CONDITIONAL_LE;
1595 break;
1596 case ir_binop_greater:
1597 inst->conditional_mod = BRW_CONDITIONAL_G;
1598 break;
1599 case ir_binop_less:
1600 inst->conditional_mod = BRW_CONDITIONAL_L;
1601 break;
1602 default:
1603 assert(!"not reached: unknown loop condition");
1604 this->fail = true;
1605 break;
1606 }
1607
1608 inst = emit(fs_inst(BRW_OPCODE_BREAK));
1609 inst->predicated = true;
1610 }
1611
1612 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1613 ir_instruction *ir = (ir_instruction *)iter.get();
1614
1615 this->base_ir = ir;
1616 ir->accept(this);
1617 }
1618
1619 if (ir->increment) {
1620 this->base_ir = ir->increment;
1621 ir->increment->accept(this);
1622 emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1623 }
1624
1625 emit(fs_inst(BRW_OPCODE_WHILE));
1626 }
1627
1628 void
1629 fs_visitor::visit(ir_loop_jump *ir)
1630 {
1631 switch (ir->mode) {
1632 case ir_loop_jump::jump_break:
1633 emit(fs_inst(BRW_OPCODE_BREAK));
1634 break;
1635 case ir_loop_jump::jump_continue:
1636 emit(fs_inst(BRW_OPCODE_CONTINUE));
1637 break;
1638 }
1639 }
1640
1641 void
1642 fs_visitor::visit(ir_call *ir)
1643 {
1644 assert(!"FINISHME");
1645 }
1646
1647 void
1648 fs_visitor::visit(ir_return *ir)
1649 {
1650 assert(!"FINISHME");
1651 }
1652
1653 void
1654 fs_visitor::visit(ir_function *ir)
1655 {
1656 /* Ignore function bodies other than main() -- we shouldn't see calls to
1657 * them since they should all be inlined before we get to ir_to_mesa.
1658 */
1659 if (strcmp(ir->name, "main") == 0) {
1660 const ir_function_signature *sig;
1661 exec_list empty;
1662
1663 sig = ir->matching_signature(&empty);
1664
1665 assert(sig);
1666
1667 foreach_iter(exec_list_iterator, iter, sig->body) {
1668 ir_instruction *ir = (ir_instruction *)iter.get();
1669 this->base_ir = ir;
1670
1671 ir->accept(this);
1672 }
1673 }
1674 }
1675
1676 void
1677 fs_visitor::visit(ir_function_signature *ir)
1678 {
1679 assert(!"not reached");
1680 (void)ir;
1681 }
1682
1683 fs_inst *
1684 fs_visitor::emit(fs_inst inst)
1685 {
1686 fs_inst *list_inst = new(mem_ctx) fs_inst;
1687 *list_inst = inst;
1688
1689 list_inst->annotation = this->current_annotation;
1690 list_inst->ir = this->base_ir;
1691
1692 this->instructions.push_tail(list_inst);
1693
1694 return list_inst;
1695 }
1696
1697 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1698 void
1699 fs_visitor::emit_dummy_fs()
1700 {
1701 /* Everyone's favorite color. */
1702 emit(fs_inst(BRW_OPCODE_MOV,
1703 fs_reg(MRF, 2),
1704 fs_reg(1.0f)));
1705 emit(fs_inst(BRW_OPCODE_MOV,
1706 fs_reg(MRF, 3),
1707 fs_reg(0.0f)));
1708 emit(fs_inst(BRW_OPCODE_MOV,
1709 fs_reg(MRF, 4),
1710 fs_reg(1.0f)));
1711 emit(fs_inst(BRW_OPCODE_MOV,
1712 fs_reg(MRF, 5),
1713 fs_reg(0.0f)));
1714
1715 fs_inst *write;
1716 write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1717 fs_reg(0),
1718 fs_reg(0)));
1719 }
1720
1721 /* The register location here is relative to the start of the URB
1722 * data. It will get adjusted to be a real location before
1723 * generate_code() time.
1724 */
1725 struct brw_reg
1726 fs_visitor::interp_reg(int location, int channel)
1727 {
1728 int regnr = urb_setup[location] * 2 + channel / 2;
1729 int stride = (channel & 1) * 4;
1730
1731 assert(urb_setup[location] != -1);
1732
1733 return brw_vec1_grf(regnr, stride);
1734 }
1735
1736 /** Emits the interpolation for the varying inputs. */
1737 void
1738 fs_visitor::emit_interpolation_setup_gen4()
1739 {
1740 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1741
1742 this->current_annotation = "compute pixel centers";
1743 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1744 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1745 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1746 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1747 emit(fs_inst(BRW_OPCODE_ADD,
1748 this->pixel_x,
1749 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1750 fs_reg(brw_imm_v(0x10101010))));
1751 emit(fs_inst(BRW_OPCODE_ADD,
1752 this->pixel_y,
1753 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1754 fs_reg(brw_imm_v(0x11001100))));
1755
1756 this->current_annotation = "compute pixel deltas from v0";
1757 if (brw->has_pln) {
1758 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1759 this->delta_y = this->delta_x;
1760 this->delta_y.reg_offset++;
1761 } else {
1762 this->delta_x = fs_reg(this, glsl_type::float_type);
1763 this->delta_y = fs_reg(this, glsl_type::float_type);
1764 }
1765 emit(fs_inst(BRW_OPCODE_ADD,
1766 this->delta_x,
1767 this->pixel_x,
1768 fs_reg(negate(brw_vec1_grf(1, 0)))));
1769 emit(fs_inst(BRW_OPCODE_ADD,
1770 this->delta_y,
1771 this->pixel_y,
1772 fs_reg(negate(brw_vec1_grf(1, 1)))));
1773
1774 this->current_annotation = "compute pos.w and 1/pos.w";
1775 /* Compute wpos.w. It's always in our setup, since it's needed to
1776 * interpolate the other attributes.
1777 */
1778 this->wpos_w = fs_reg(this, glsl_type::float_type);
1779 emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1780 interp_reg(FRAG_ATTRIB_WPOS, 3)));
1781 /* Compute the pixel 1/W value from wpos.w. */
1782 this->pixel_w = fs_reg(this, glsl_type::float_type);
1783 emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1784 this->current_annotation = NULL;
1785 }
1786
1787 /** Emits the interpolation for the varying inputs. */
1788 void
1789 fs_visitor::emit_interpolation_setup_gen6()
1790 {
1791 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1792
1793 /* If the pixel centers end up used, the setup is the same as for gen4. */
1794 this->current_annotation = "compute pixel centers";
1795 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1796 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1797 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1798 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1799 emit(fs_inst(BRW_OPCODE_ADD,
1800 this->pixel_x,
1801 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1802 fs_reg(brw_imm_v(0x10101010))));
1803 emit(fs_inst(BRW_OPCODE_ADD,
1804 this->pixel_y,
1805 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1806 fs_reg(brw_imm_v(0x11001100))));
1807
1808 this->current_annotation = "compute 1/pos.w";
1809 this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
1810 this->pixel_w = fs_reg(this, glsl_type::float_type);
1811 emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1812
1813 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1814 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1815
1816 this->current_annotation = NULL;
1817 }
1818
1819 void
1820 fs_visitor::emit_fb_writes()
1821 {
1822 this->current_annotation = "FB write header";
1823 int nr = 0;
1824
1825 /* m0, m1 header */
1826 nr += 2;
1827
1828 if (c->key.aa_dest_stencil_reg) {
1829 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1830 fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
1831 }
1832
1833 /* Reserve space for color. It'll be filled in per MRT below. */
1834 int color_mrf = nr;
1835 nr += 4;
1836
1837 if (c->key.source_depth_to_render_target) {
1838 if (c->key.computes_depth) {
1839 /* Hand over gl_FragDepth. */
1840 assert(this->frag_depth);
1841 fs_reg depth = *(variable_storage(this->frag_depth));
1842
1843 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
1844 } else {
1845 /* Pass through the payload depth. */
1846 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1847 fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
1848 }
1849 }
1850
1851 if (c->key.dest_depth_reg) {
1852 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1853 fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
1854 }
1855
1856 fs_reg color = reg_undef;
1857 if (this->frag_color)
1858 color = *(variable_storage(this->frag_color));
1859 else if (this->frag_data)
1860 color = *(variable_storage(this->frag_data));
1861
1862 for (int target = 0; target < c->key.nr_color_regions; target++) {
1863 this->current_annotation = talloc_asprintf(this->mem_ctx,
1864 "FB write target %d",
1865 target);
1866 if (this->frag_color || this->frag_data) {
1867 for (int i = 0; i < 4; i++) {
1868 emit(fs_inst(BRW_OPCODE_MOV,
1869 fs_reg(MRF, color_mrf + i),
1870 color));
1871 color.reg_offset++;
1872 }
1873 }
1874
1875 if (this->frag_color)
1876 color.reg_offset -= 4;
1877
1878 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1879 reg_undef, reg_undef));
1880 inst->target = target;
1881 inst->mlen = nr;
1882 if (target == c->key.nr_color_regions - 1)
1883 inst->eot = true;
1884 }
1885
1886 if (c->key.nr_color_regions == 0) {
1887 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1888 reg_undef, reg_undef));
1889 inst->mlen = nr;
1890 inst->eot = true;
1891 }
1892
1893 this->current_annotation = NULL;
1894 }
1895
1896 void
1897 fs_visitor::generate_fb_write(fs_inst *inst)
1898 {
1899 GLboolean eot = inst->eot;
1900
1901 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1902 * move, here's g1.
1903 */
1904 brw_push_insn_state(p);
1905 brw_set_mask_control(p, BRW_MASK_DISABLE);
1906 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1907 brw_MOV(p,
1908 brw_message_reg(1),
1909 brw_vec8_grf(1, 0));
1910 brw_pop_insn_state(p);
1911
1912 brw_fb_WRITE(p,
1913 8, /* dispatch_width */
1914 retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1915 0, /* base MRF */
1916 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1917 inst->target,
1918 inst->mlen,
1919 0,
1920 eot);
1921 }
1922
1923 void
1924 fs_visitor::generate_linterp(fs_inst *inst,
1925 struct brw_reg dst, struct brw_reg *src)
1926 {
1927 struct brw_reg delta_x = src[0];
1928 struct brw_reg delta_y = src[1];
1929 struct brw_reg interp = src[2];
1930
1931 if (brw->has_pln &&
1932 delta_y.nr == delta_x.nr + 1 &&
1933 (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1934 brw_PLN(p, dst, interp, delta_x);
1935 } else {
1936 brw_LINE(p, brw_null_reg(), interp, delta_x);
1937 brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1938 }
1939 }
1940
1941 void
1942 fs_visitor::generate_math(fs_inst *inst,
1943 struct brw_reg dst, struct brw_reg *src)
1944 {
1945 int op;
1946
1947 switch (inst->opcode) {
1948 case FS_OPCODE_RCP:
1949 op = BRW_MATH_FUNCTION_INV;
1950 break;
1951 case FS_OPCODE_RSQ:
1952 op = BRW_MATH_FUNCTION_RSQ;
1953 break;
1954 case FS_OPCODE_SQRT:
1955 op = BRW_MATH_FUNCTION_SQRT;
1956 break;
1957 case FS_OPCODE_EXP2:
1958 op = BRW_MATH_FUNCTION_EXP;
1959 break;
1960 case FS_OPCODE_LOG2:
1961 op = BRW_MATH_FUNCTION_LOG;
1962 break;
1963 case FS_OPCODE_POW:
1964 op = BRW_MATH_FUNCTION_POW;
1965 break;
1966 case FS_OPCODE_SIN:
1967 op = BRW_MATH_FUNCTION_SIN;
1968 break;
1969 case FS_OPCODE_COS:
1970 op = BRW_MATH_FUNCTION_COS;
1971 break;
1972 default:
1973 assert(!"not reached: unknown math function");
1974 op = 0;
1975 break;
1976 }
1977
1978 if (inst->opcode == FS_OPCODE_POW) {
1979 brw_MOV(p, brw_message_reg(3), src[1]);
1980 }
1981
1982 brw_math(p, dst,
1983 op,
1984 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1985 BRW_MATH_SATURATE_NONE,
1986 2, src[0],
1987 BRW_MATH_DATA_VECTOR,
1988 BRW_MATH_PRECISION_FULL);
1989 }
1990
1991 void
1992 fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
1993 {
1994 int msg_type = -1;
1995 int rlen = 4;
1996 uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1997
1998 if (intel->gen == 5) {
1999 switch (inst->opcode) {
2000 case FS_OPCODE_TEX:
2001 if (inst->shadow_compare) {
2002 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
2003 } else {
2004 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2005 }
2006 break;
2007 case FS_OPCODE_TXB:
2008 if (inst->shadow_compare) {
2009 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2010 } else {
2011 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2012 }
2013 break;
2014 }
2015 } else {
2016 switch (inst->opcode) {
2017 case FS_OPCODE_TEX:
2018 /* Note that G45 and older determines shadow compare and dispatch width
2019 * from message length for most messages.
2020 */
2021 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2022 if (inst->shadow_compare) {
2023 assert(inst->mlen == 5);
2024 } else {
2025 assert(inst->mlen <= 6);
2026 }
2027 break;
2028 case FS_OPCODE_TXB:
2029 if (inst->shadow_compare) {
2030 assert(inst->mlen == 5);
2031 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2032 } else {
2033 assert(inst->mlen == 8);
2034 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2035 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2036 }
2037 break;
2038 }
2039 }
2040 assert(msg_type != -1);
2041
2042 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2043 rlen = 8;
2044 dst = vec16(dst);
2045 }
2046
2047 /* g0 header. */
2048 src.nr--;
2049
2050 brw_SAMPLE(p,
2051 retype(dst, BRW_REGISTER_TYPE_UW),
2052 src.nr,
2053 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2054 SURF_INDEX_TEXTURE(inst->sampler),
2055 inst->sampler,
2056 WRITEMASK_XYZW,
2057 msg_type,
2058 rlen,
2059 inst->mlen + 1,
2060 0,
2061 1,
2062 simd_mode);
2063 }
2064
2065
2066 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2067 * looking like:
2068 *
2069 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2070 *
2071 * and we're trying to produce:
2072 *
2073 * DDX DDY
2074 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
2075 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
2076 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
2077 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
2078 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
2079 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
2080 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
2081 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
2082 *
2083 * and add another set of two more subspans if in 16-pixel dispatch mode.
2084 *
2085 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2086 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2087 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2088 * between each other. We could probably do it like ddx and swizzle the right
2089 * order later, but bail for now and just produce
2090 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2091 */
2092 void
2093 fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2094 {
2095 struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2096 BRW_REGISTER_TYPE_F,
2097 BRW_VERTICAL_STRIDE_2,
2098 BRW_WIDTH_2,
2099 BRW_HORIZONTAL_STRIDE_0,
2100 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2101 struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2102 BRW_REGISTER_TYPE_F,
2103 BRW_VERTICAL_STRIDE_2,
2104 BRW_WIDTH_2,
2105 BRW_HORIZONTAL_STRIDE_0,
2106 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2107 brw_ADD(p, dst, src0, negate(src1));
2108 }
2109
2110 void
2111 fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2112 {
2113 struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2114 BRW_REGISTER_TYPE_F,
2115 BRW_VERTICAL_STRIDE_4,
2116 BRW_WIDTH_4,
2117 BRW_HORIZONTAL_STRIDE_0,
2118 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2119 struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2120 BRW_REGISTER_TYPE_F,
2121 BRW_VERTICAL_STRIDE_4,
2122 BRW_WIDTH_4,
2123 BRW_HORIZONTAL_STRIDE_0,
2124 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2125 brw_ADD(p, dst, src0, negate(src1));
2126 }
2127
2128 void
2129 fs_visitor::generate_discard(fs_inst *inst, struct brw_reg temp)
2130 {
2131 struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2132 temp = brw_uw1_reg(temp.file, temp.nr, 0);
2133
2134 brw_push_insn_state(p);
2135 brw_set_mask_control(p, BRW_MASK_DISABLE);
2136 brw_NOT(p, temp, brw_mask_reg(1)); /* IMASK */
2137 brw_AND(p, g0, temp, g0);
2138 brw_pop_insn_state(p);
2139 }
2140
2141 void
2142 fs_visitor::assign_curb_setup()
2143 {
2144 c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
2145 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2146
2147 /* Map the offsets in the UNIFORM file to fixed HW regs. */
2148 foreach_iter(exec_list_iterator, iter, this->instructions) {
2149 fs_inst *inst = (fs_inst *)iter.get();
2150
2151 for (unsigned int i = 0; i < 3; i++) {
2152 if (inst->src[i].file == UNIFORM) {
2153 int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2154 struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2155 constant_nr / 8,
2156 constant_nr % 8);
2157
2158 inst->src[i].file = FIXED_HW_REG;
2159 inst->src[i].fixed_hw_reg = brw_reg;
2160 }
2161 }
2162 }
2163 }
2164
2165 void
2166 fs_visitor::calculate_urb_setup()
2167 {
2168 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2169 urb_setup[i] = -1;
2170 }
2171
2172 int urb_next = 0;
2173 /* Figure out where each of the incoming setup attributes lands. */
2174 if (intel->gen >= 6) {
2175 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2176 if (i == FRAG_ATTRIB_WPOS ||
2177 (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i))) {
2178 urb_setup[i] = urb_next++;
2179 }
2180 }
2181 } else {
2182 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2183 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2184 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2185 int fp_index;
2186
2187 if (i >= VERT_RESULT_VAR0)
2188 fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2189 else if (i <= VERT_RESULT_TEX7)
2190 fp_index = i;
2191 else
2192 fp_index = -1;
2193
2194 if (fp_index >= 0)
2195 urb_setup[fp_index] = urb_next++;
2196 }
2197 }
2198 }
2199
2200 /* Each attribute is 4 setup channels, each of which is half a reg. */
2201 c->prog_data.urb_read_length = urb_next * 2;
2202 }
2203
2204 void
2205 fs_visitor::assign_urb_setup()
2206 {
2207 int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2208
2209 /* Offset all the urb_setup[] index by the actual position of the
2210 * setup regs, now that the location of the constants has been chosen.
2211 */
2212 foreach_iter(exec_list_iterator, iter, this->instructions) {
2213 fs_inst *inst = (fs_inst *)iter.get();
2214
2215 if (inst->opcode != FS_OPCODE_LINTERP)
2216 continue;
2217
2218 assert(inst->src[2].file == FIXED_HW_REG);
2219
2220 inst->src[2].fixed_hw_reg.nr += urb_start;
2221 }
2222
2223 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2224 }
2225
2226 static void
2227 assign_reg(int *reg_hw_locations, fs_reg *reg)
2228 {
2229 if (reg->file == GRF && reg->reg != 0) {
2230 reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
2231 reg->reg = 0;
2232 }
2233 }
2234
2235 void
2236 fs_visitor::assign_regs_trivial()
2237 {
2238 int last_grf = 0;
2239 int hw_reg_mapping[this->virtual_grf_next];
2240 int i;
2241
2242 hw_reg_mapping[0] = 0;
2243 hw_reg_mapping[1] = this->first_non_payload_grf;
2244 for (i = 2; i < this->virtual_grf_next; i++) {
2245 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
2246 this->virtual_grf_sizes[i - 1]);
2247 }
2248 last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
2249
2250 foreach_iter(exec_list_iterator, iter, this->instructions) {
2251 fs_inst *inst = (fs_inst *)iter.get();
2252
2253 assign_reg(hw_reg_mapping, &inst->dst);
2254 assign_reg(hw_reg_mapping, &inst->src[0]);
2255 assign_reg(hw_reg_mapping, &inst->src[1]);
2256 }
2257
2258 this->grf_used = last_grf + 1;
2259 }
2260
2261 void
2262 fs_visitor::assign_regs()
2263 {
2264 int last_grf = 0;
2265 int hw_reg_mapping[this->virtual_grf_next + 1];
2266 int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
2267 int class_sizes[base_reg_count];
2268 int class_count = 0;
2269 int aligned_pair_class = -1;
2270
2271 calculate_live_intervals();
2272
2273 /* Set up the register classes.
2274 *
2275 * The base registers store a scalar value. For texture samples,
2276 * we get virtual GRFs composed of 4 contiguous hw register. For
2277 * structures and arrays, we store them as contiguous larger things
2278 * than that, though we should be able to do better most of the
2279 * time.
2280 */
2281 class_sizes[class_count++] = 1;
2282 if (brw->has_pln && intel->gen < 6) {
2283 /* Always set up the (unaligned) pairs for gen5, so we can find
2284 * them for making the aligned pair class.
2285 */
2286 class_sizes[class_count++] = 2;
2287 }
2288 for (int r = 1; r < this->virtual_grf_next; r++) {
2289 int i;
2290
2291 for (i = 0; i < class_count; i++) {
2292 if (class_sizes[i] == this->virtual_grf_sizes[r])
2293 break;
2294 }
2295 if (i == class_count) {
2296 if (this->virtual_grf_sizes[r] >= base_reg_count) {
2297 fprintf(stderr, "Object too large to register allocate.\n");
2298 this->fail = true;
2299 }
2300
2301 class_sizes[class_count++] = this->virtual_grf_sizes[r];
2302 }
2303 }
2304
2305 int ra_reg_count = 0;
2306 int class_base_reg[class_count];
2307 int class_reg_count[class_count];
2308 int classes[class_count + 1];
2309
2310 for (int i = 0; i < class_count; i++) {
2311 class_base_reg[i] = ra_reg_count;
2312 class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
2313 ra_reg_count += class_reg_count[i];
2314 }
2315
2316 struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
2317 for (int i = 0; i < class_count; i++) {
2318 classes[i] = ra_alloc_reg_class(regs);
2319
2320 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2321 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
2322 }
2323
2324 /* Add conflicts between our contiguous registers aliasing
2325 * base regs and other register classes' contiguous registers
2326 * that alias base regs, or the base regs themselves for classes[0].
2327 */
2328 for (int c = 0; c <= i; c++) {
2329 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2330 for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
2331 c_r < MIN2(class_reg_count[c], i_r + class_sizes[i]);
2332 c_r++) {
2333
2334 if (0) {
2335 printf("%d/%d conflicts %d/%d\n",
2336 class_sizes[i], this->first_non_payload_grf + i_r,
2337 class_sizes[c], this->first_non_payload_grf + c_r);
2338 }
2339
2340 ra_add_reg_conflict(regs,
2341 class_base_reg[i] + i_r,
2342 class_base_reg[c] + c_r);
2343 }
2344 }
2345 }
2346 }
2347
2348 /* Add a special class for aligned pairs, which we'll put delta_x/y
2349 * in on gen5 so that we can do PLN.
2350 */
2351 if (brw->has_pln && intel->gen < 6) {
2352 int reg_count = (base_reg_count - 1) / 2;
2353 int unaligned_pair_class = 1;
2354 assert(class_sizes[unaligned_pair_class] == 2);
2355
2356 aligned_pair_class = class_count;
2357 classes[aligned_pair_class] = ra_alloc_reg_class(regs);
2358 class_base_reg[aligned_pair_class] = 0;
2359 class_reg_count[aligned_pair_class] = 0;
2360 int start = (this->first_non_payload_grf & 1) ? 1 : 0;
2361
2362 for (int i = 0; i < reg_count; i++) {
2363 ra_class_add_reg(regs, classes[aligned_pair_class],
2364 class_base_reg[unaligned_pair_class] + i * 2 + start);
2365 }
2366 class_count++;
2367 }
2368
2369 ra_set_finalize(regs);
2370
2371 struct ra_graph *g = ra_alloc_interference_graph(regs,
2372 this->virtual_grf_next);
2373 /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
2374 * with nodes.
2375 */
2376 ra_set_node_class(g, 0, classes[0]);
2377
2378 for (int i = 1; i < this->virtual_grf_next; i++) {
2379 for (int c = 0; c < class_count; c++) {
2380 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
2381 if (aligned_pair_class >= 0 &&
2382 this->delta_x.reg == i) {
2383 ra_set_node_class(g, i, classes[aligned_pair_class]);
2384 } else {
2385 ra_set_node_class(g, i, classes[c]);
2386 }
2387 break;
2388 }
2389 }
2390
2391 for (int j = 1; j < i; j++) {
2392 if (virtual_grf_interferes(i, j)) {
2393 ra_add_node_interference(g, i, j);
2394 }
2395 }
2396 }
2397
2398 /* FINISHME: Handle spilling */
2399 if (!ra_allocate_no_spills(g)) {
2400 fprintf(stderr, "Failed to allocate registers.\n");
2401 this->fail = true;
2402 return;
2403 }
2404
2405 /* Get the chosen virtual registers for each node, and map virtual
2406 * regs in the register classes back down to real hardware reg
2407 * numbers.
2408 */
2409 hw_reg_mapping[0] = 0; /* unused */
2410 for (int i = 1; i < this->virtual_grf_next; i++) {
2411 int reg = ra_get_node_reg(g, i);
2412 int hw_reg = -1;
2413
2414 for (int c = 0; c < class_count; c++) {
2415 if (reg >= class_base_reg[c] &&
2416 reg < class_base_reg[c] + class_reg_count[c]) {
2417 hw_reg = reg - class_base_reg[c];
2418 break;
2419 }
2420 }
2421
2422 assert(hw_reg != -1);
2423 hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
2424 last_grf = MAX2(last_grf,
2425 hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
2426 }
2427
2428 foreach_iter(exec_list_iterator, iter, this->instructions) {
2429 fs_inst *inst = (fs_inst *)iter.get();
2430
2431 assign_reg(hw_reg_mapping, &inst->dst);
2432 assign_reg(hw_reg_mapping, &inst->src[0]);
2433 assign_reg(hw_reg_mapping, &inst->src[1]);
2434 }
2435
2436 this->grf_used = last_grf + 1;
2437
2438 talloc_free(g);
2439 talloc_free(regs);
2440 }
2441
2442 void
2443 fs_visitor::calculate_live_intervals()
2444 {
2445 int num_vars = this->virtual_grf_next;
2446 int *def = talloc_array(mem_ctx, int, num_vars);
2447 int *use = talloc_array(mem_ctx, int, num_vars);
2448 int loop_depth = 0;
2449 int loop_start = 0;
2450
2451 for (int i = 0; i < num_vars; i++) {
2452 def[i] = 1 << 30;
2453 use[i] = 0;
2454 }
2455
2456 int ip = 0;
2457 foreach_iter(exec_list_iterator, iter, this->instructions) {
2458 fs_inst *inst = (fs_inst *)iter.get();
2459
2460 if (inst->opcode == BRW_OPCODE_DO) {
2461 if (loop_depth++ == 0)
2462 loop_start = ip;
2463 } else if (inst->opcode == BRW_OPCODE_WHILE) {
2464 loop_depth--;
2465
2466 if (loop_depth == 0) {
2467 /* FINISHME:
2468 *
2469 * Patches up any vars marked for use within the loop as
2470 * live until the end. This is conservative, as there
2471 * will often be variables defined and used inside the
2472 * loop but dead at the end of the loop body.
2473 */
2474 for (int i = 0; i < num_vars; i++) {
2475 if (use[i] == loop_start) {
2476 use[i] = ip;
2477 }
2478 }
2479 }
2480 } else {
2481 int eip = ip;
2482
2483 if (loop_depth)
2484 eip = loop_start;
2485
2486 for (unsigned int i = 0; i < 3; i++) {
2487 if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2488 def[inst->src[i].reg] = MIN2(def[inst->src[i].reg], eip);
2489 use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
2490 }
2491 }
2492 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2493 def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
2494 use[inst->dst.reg] = MAX2(use[inst->dst.reg], eip);
2495 }
2496 }
2497
2498 ip++;
2499 }
2500
2501 this->virtual_grf_def = def;
2502 this->virtual_grf_use = use;
2503 }
2504
2505 bool
2506 fs_visitor::virtual_grf_interferes(int a, int b)
2507 {
2508 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
2509 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
2510
2511 return start <= end;
2512 }
2513
2514 static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
2515 {
2516 struct brw_reg brw_reg;
2517
2518 switch (reg->file) {
2519 case GRF:
2520 case ARF:
2521 case MRF:
2522 brw_reg = brw_vec8_reg(reg->file,
2523 reg->hw_reg, 0);
2524 brw_reg = retype(brw_reg, reg->type);
2525 break;
2526 case IMM:
2527 switch (reg->type) {
2528 case BRW_REGISTER_TYPE_F:
2529 brw_reg = brw_imm_f(reg->imm.f);
2530 break;
2531 case BRW_REGISTER_TYPE_D:
2532 brw_reg = brw_imm_d(reg->imm.i);
2533 break;
2534 case BRW_REGISTER_TYPE_UD:
2535 brw_reg = brw_imm_ud(reg->imm.u);
2536 break;
2537 default:
2538 assert(!"not reached");
2539 break;
2540 }
2541 break;
2542 case FIXED_HW_REG:
2543 brw_reg = reg->fixed_hw_reg;
2544 break;
2545 case BAD_FILE:
2546 /* Probably unused. */
2547 brw_reg = brw_null_reg();
2548 break;
2549 case UNIFORM:
2550 assert(!"not reached");
2551 brw_reg = brw_null_reg();
2552 break;
2553 }
2554 if (reg->abs)
2555 brw_reg = brw_abs(brw_reg);
2556 if (reg->negate)
2557 brw_reg = negate(brw_reg);
2558
2559 return brw_reg;
2560 }
2561
2562 void
2563 fs_visitor::generate_code()
2564 {
2565 unsigned int annotation_len = 0;
2566 int last_native_inst = 0;
2567 struct brw_instruction *if_stack[16], *loop_stack[16];
2568 int if_stack_depth = 0, loop_stack_depth = 0;
2569 int if_depth_in_loop[16];
2570
2571 if_depth_in_loop[loop_stack_depth] = 0;
2572
2573 memset(&if_stack, 0, sizeof(if_stack));
2574 foreach_iter(exec_list_iterator, iter, this->instructions) {
2575 fs_inst *inst = (fs_inst *)iter.get();
2576 struct brw_reg src[3], dst;
2577
2578 for (unsigned int i = 0; i < 3; i++) {
2579 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
2580 }
2581 dst = brw_reg_from_fs_reg(&inst->dst);
2582
2583 brw_set_conditionalmod(p, inst->conditional_mod);
2584 brw_set_predicate_control(p, inst->predicated);
2585
2586 switch (inst->opcode) {
2587 case BRW_OPCODE_MOV:
2588 brw_MOV(p, dst, src[0]);
2589 break;
2590 case BRW_OPCODE_ADD:
2591 brw_ADD(p, dst, src[0], src[1]);
2592 break;
2593 case BRW_OPCODE_MUL:
2594 brw_MUL(p, dst, src[0], src[1]);
2595 break;
2596
2597 case BRW_OPCODE_FRC:
2598 brw_FRC(p, dst, src[0]);
2599 break;
2600 case BRW_OPCODE_RNDD:
2601 brw_RNDD(p, dst, src[0]);
2602 break;
2603 case BRW_OPCODE_RNDZ:
2604 brw_RNDZ(p, dst, src[0]);
2605 break;
2606
2607 case BRW_OPCODE_AND:
2608 brw_AND(p, dst, src[0], src[1]);
2609 break;
2610 case BRW_OPCODE_OR:
2611 brw_OR(p, dst, src[0], src[1]);
2612 break;
2613 case BRW_OPCODE_XOR:
2614 brw_XOR(p, dst, src[0], src[1]);
2615 break;
2616
2617 case BRW_OPCODE_CMP:
2618 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2619 break;
2620 case BRW_OPCODE_SEL:
2621 brw_SEL(p, dst, src[0], src[1]);
2622 break;
2623
2624 case BRW_OPCODE_IF:
2625 assert(if_stack_depth < 16);
2626 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
2627 if_depth_in_loop[loop_stack_depth]++;
2628 if_stack_depth++;
2629 break;
2630 case BRW_OPCODE_ELSE:
2631 if_stack[if_stack_depth - 1] =
2632 brw_ELSE(p, if_stack[if_stack_depth - 1]);
2633 break;
2634 case BRW_OPCODE_ENDIF:
2635 if_stack_depth--;
2636 brw_ENDIF(p , if_stack[if_stack_depth]);
2637 if_depth_in_loop[loop_stack_depth]--;
2638 break;
2639
2640 case BRW_OPCODE_DO:
2641 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
2642 if_depth_in_loop[loop_stack_depth] = 0;
2643 break;
2644
2645 case BRW_OPCODE_BREAK:
2646 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
2647 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2648 break;
2649 case BRW_OPCODE_CONTINUE:
2650 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
2651 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2652 break;
2653
2654 case BRW_OPCODE_WHILE: {
2655 struct brw_instruction *inst0, *inst1;
2656 GLuint br = 1;
2657
2658 if (intel->gen >= 5)
2659 br = 2;
2660
2661 assert(loop_stack_depth > 0);
2662 loop_stack_depth--;
2663 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
2664 /* patch all the BREAK/CONT instructions from last BGNLOOP */
2665 while (inst0 > loop_stack[loop_stack_depth]) {
2666 inst0--;
2667 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
2668 inst0->bits3.if_else.jump_count == 0) {
2669 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
2670 }
2671 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
2672 inst0->bits3.if_else.jump_count == 0) {
2673 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
2674 }
2675 }
2676 }
2677 break;
2678
2679 case FS_OPCODE_RCP:
2680 case FS_OPCODE_RSQ:
2681 case FS_OPCODE_SQRT:
2682 case FS_OPCODE_EXP2:
2683 case FS_OPCODE_LOG2:
2684 case FS_OPCODE_POW:
2685 case FS_OPCODE_SIN:
2686 case FS_OPCODE_COS:
2687 generate_math(inst, dst, src);
2688 break;
2689 case FS_OPCODE_LINTERP:
2690 generate_linterp(inst, dst, src);
2691 break;
2692 case FS_OPCODE_TEX:
2693 case FS_OPCODE_TXB:
2694 case FS_OPCODE_TXL:
2695 generate_tex(inst, dst, src[0]);
2696 break;
2697 case FS_OPCODE_DISCARD:
2698 generate_discard(inst, dst /* src0 == dst */);
2699 break;
2700 case FS_OPCODE_DDX:
2701 generate_ddx(inst, dst, src[0]);
2702 break;
2703 case FS_OPCODE_DDY:
2704 generate_ddy(inst, dst, src[0]);
2705 break;
2706 case FS_OPCODE_FB_WRITE:
2707 generate_fb_write(inst);
2708 break;
2709 default:
2710 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
2711 _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
2712 brw_opcodes[inst->opcode].name);
2713 } else {
2714 _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
2715 }
2716 this->fail = true;
2717 }
2718
2719 if (annotation_len < p->nr_insn) {
2720 annotation_len *= 2;
2721 if (annotation_len < 16)
2722 annotation_len = 16;
2723
2724 this->annotation_string = talloc_realloc(this->mem_ctx,
2725 annotation_string,
2726 const char *,
2727 annotation_len);
2728 this->annotation_ir = talloc_realloc(this->mem_ctx,
2729 annotation_ir,
2730 ir_instruction *,
2731 annotation_len);
2732 }
2733
2734 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
2735 this->annotation_string[i] = inst->annotation;
2736 this->annotation_ir[i] = inst->ir;
2737 }
2738 last_native_inst = p->nr_insn;
2739 }
2740 }
2741
2742 GLboolean
2743 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
2744 {
2745 struct brw_compile *p = &c->func;
2746 struct intel_context *intel = &brw->intel;
2747 GLcontext *ctx = &intel->ctx;
2748 struct brw_shader *shader = NULL;
2749 struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
2750
2751 if (!prog)
2752 return GL_FALSE;
2753
2754 if (!using_new_fs)
2755 return GL_FALSE;
2756
2757 for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
2758 if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
2759 shader = (struct brw_shader *)prog->_LinkedShaders[i];
2760 break;
2761 }
2762 }
2763 if (!shader)
2764 return GL_FALSE;
2765
2766 /* We always use 8-wide mode, at least for now. For one, flow
2767 * control only works in 8-wide. Also, when we're fragment shader
2768 * bound, we're almost always under register pressure as well, so
2769 * 8-wide would save us from the performance cliff of spilling
2770 * regs.
2771 */
2772 c->dispatch_width = 8;
2773
2774 if (INTEL_DEBUG & DEBUG_WM) {
2775 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
2776 _mesa_print_ir(shader->ir, NULL);
2777 printf("\n");
2778 }
2779
2780 /* Now the main event: Visit the shader IR and generate our FS IR for it.
2781 */
2782 fs_visitor v(c, shader);
2783
2784 if (0) {
2785 v.emit_dummy_fs();
2786 } else {
2787 v.calculate_urb_setup();
2788 if (intel->gen < 6)
2789 v.emit_interpolation_setup_gen4();
2790 else
2791 v.emit_interpolation_setup_gen6();
2792
2793 /* Generate FS IR for main(). (the visitor only descends into
2794 * functions called "main").
2795 */
2796 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2797 ir_instruction *ir = (ir_instruction *)iter.get();
2798 v.base_ir = ir;
2799 ir->accept(&v);
2800 }
2801
2802 v.emit_fb_writes();
2803 v.assign_curb_setup();
2804 v.assign_urb_setup();
2805 if (0)
2806 v.assign_regs_trivial();
2807 else
2808 v.assign_regs();
2809 }
2810
2811 if (!v.fail)
2812 v.generate_code();
2813
2814 assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
2815
2816 if (v.fail)
2817 return GL_FALSE;
2818
2819 if (INTEL_DEBUG & DEBUG_WM) {
2820 const char *last_annotation_string = NULL;
2821 ir_instruction *last_annotation_ir = NULL;
2822
2823 printf("Native code for fragment shader %d:\n", prog->Name);
2824 for (unsigned int i = 0; i < p->nr_insn; i++) {
2825 if (last_annotation_ir != v.annotation_ir[i]) {
2826 last_annotation_ir = v.annotation_ir[i];
2827 if (last_annotation_ir) {
2828 printf(" ");
2829 last_annotation_ir->print();
2830 printf("\n");
2831 }
2832 }
2833 if (last_annotation_string != v.annotation_string[i]) {
2834 last_annotation_string = v.annotation_string[i];
2835 if (last_annotation_string)
2836 printf(" %s\n", last_annotation_string);
2837 }
2838 brw_disasm(stdout, &p->store[i], intel->gen);
2839 }
2840 printf("\n");
2841 }
2842
2843 c->prog_data.total_grf = v.grf_used;
2844 c->prog_data.total_scratch = 0;
2845
2846 return GL_TRUE;
2847 }