i965: rewrite brw_setup_vue_interpolation()
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42 #include "compiler/nir/nir_builder.h"
43 #include "program/prog_parameter.h"
44
45 using namespace brw;
46
47 static unsigned get_lowered_simd_width(const struct gen_device_info *devinfo,
48 const fs_inst *inst);
49
50 void
51 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
52 const fs_reg *src, unsigned sources)
53 {
54 memset(this, 0, sizeof(*this));
55
56 this->src = new fs_reg[MAX2(sources, 3)];
57 for (unsigned i = 0; i < sources; i++)
58 this->src[i] = src[i];
59
60 this->opcode = opcode;
61 this->dst = dst;
62 this->sources = sources;
63 this->exec_size = exec_size;
64 this->base_mrf = -1;
65
66 assert(dst.file != IMM && dst.file != UNIFORM);
67
68 assert(this->exec_size != 0);
69
70 this->conditional_mod = BRW_CONDITIONAL_NONE;
71
72 /* This will be the case for almost all instructions. */
73 switch (dst.file) {
74 case VGRF:
75 case ARF:
76 case FIXED_GRF:
77 case MRF:
78 case ATTR:
79 this->size_written = dst.component_size(exec_size);
80 break;
81 case BAD_FILE:
82 this->size_written = 0;
83 break;
84 case IMM:
85 case UNIFORM:
86 unreachable("Invalid destination register file");
87 }
88
89 this->writes_accumulator = false;
90 }
91
92 fs_inst::fs_inst()
93 {
94 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
98 {
99 init(opcode, exec_size, reg_undef, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
103 {
104 init(opcode, exec_size, dst, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
108 const fs_reg &src0)
109 {
110 const fs_reg src[1] = { src0 };
111 init(opcode, exec_size, dst, src, 1);
112 }
113
114 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
115 const fs_reg &src0, const fs_reg &src1)
116 {
117 const fs_reg src[2] = { src0, src1 };
118 init(opcode, exec_size, dst, src, 2);
119 }
120
121 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
122 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
123 {
124 const fs_reg src[3] = { src0, src1, src2 };
125 init(opcode, exec_size, dst, src, 3);
126 }
127
128 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
129 const fs_reg src[], unsigned sources)
130 {
131 init(opcode, exec_width, dst, src, sources);
132 }
133
134 fs_inst::fs_inst(const fs_inst &that)
135 {
136 memcpy(this, &that, sizeof(that));
137
138 this->src = new fs_reg[MAX2(that.sources, 3)];
139
140 for (unsigned i = 0; i < that.sources; i++)
141 this->src[i] = that.src[i];
142 }
143
144 fs_inst::~fs_inst()
145 {
146 delete[] this->src;
147 }
148
149 void
150 fs_inst::resize_sources(uint8_t num_sources)
151 {
152 if (this->sources != num_sources) {
153 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
154
155 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
156 src[i] = this->src[i];
157
158 delete[] this->src;
159 this->src = src;
160 this->sources = num_sources;
161 }
162 }
163
164 void
165 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
166 const fs_reg &dst,
167 const fs_reg &surf_index,
168 const fs_reg &varying_offset,
169 uint32_t const_offset)
170 {
171 /* We have our constant surface use a pitch of 4 bytes, so our index can
172 * be any component of a vector, and then we load 4 contiguous
173 * components starting from that.
174 *
175 * We break down the const_offset to a portion added to the variable offset
176 * and a portion done using fs_reg::offset, which means that if you have
177 * GLSL using something like "uniform vec4 a[20]; gl_FragColor = a[i]",
178 * we'll temporarily generate 4 vec4 loads from offset i * 4, and CSE can
179 * later notice that those loads are all the same and eliminate the
180 * redundant ones.
181 */
182 fs_reg vec4_offset = vgrf(glsl_type::uint_type);
183 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
184
185 /* The pull load message will load a vec4 (16 bytes). If we are loading
186 * a double this means we are only loading 2 elements worth of data.
187 * We also want to use a 32-bit data type for the dst of the load operation
188 * so other parts of the driver don't get confused about the size of the
189 * result.
190 */
191 fs_reg vec4_result = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
192 fs_inst *inst = bld.emit(FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL,
193 vec4_result, surf_index, vec4_offset);
194 inst->size_written = 4 * vec4_result.component_size(inst->exec_size);
195
196 if (type_sz(dst.type) == 8) {
197 shuffle_32bit_load_result_to_64bit_data(
198 bld, retype(vec4_result, dst.type), vec4_result, 2);
199 }
200
201 vec4_result.type = dst.type;
202 bld.MOV(dst, offset(vec4_result, bld,
203 (const_offset & 0xf) / type_sz(vec4_result.type)));
204 }
205
206 /**
207 * A helper for MOV generation for fixing up broken hardware SEND dependency
208 * handling.
209 */
210 void
211 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
212 {
213 /* The caller always wants uncompressed to emit the minimal extra
214 * dependencies, and to avoid having to deal with aligning its regs to 2.
215 */
216 const fs_builder ubld = bld.annotate("send dependency resolve")
217 .half(0);
218
219 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
220 }
221
222 bool
223 fs_inst::equals(fs_inst *inst) const
224 {
225 return (opcode == inst->opcode &&
226 dst.equals(inst->dst) &&
227 src[0].equals(inst->src[0]) &&
228 src[1].equals(inst->src[1]) &&
229 src[2].equals(inst->src[2]) &&
230 saturate == inst->saturate &&
231 predicate == inst->predicate &&
232 conditional_mod == inst->conditional_mod &&
233 mlen == inst->mlen &&
234 base_mrf == inst->base_mrf &&
235 target == inst->target &&
236 eot == inst->eot &&
237 header_size == inst->header_size &&
238 shadow_compare == inst->shadow_compare &&
239 exec_size == inst->exec_size &&
240 offset == inst->offset);
241 }
242
243 bool
244 fs_inst::is_send_from_grf() const
245 {
246 switch (opcode) {
247 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
248 case SHADER_OPCODE_SHADER_TIME_ADD:
249 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
250 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
251 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
252 case SHADER_OPCODE_UNTYPED_ATOMIC:
253 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
254 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
255 case SHADER_OPCODE_TYPED_ATOMIC:
256 case SHADER_OPCODE_TYPED_SURFACE_READ:
257 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
258 case SHADER_OPCODE_URB_WRITE_SIMD8:
259 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
260 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
261 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
262 case SHADER_OPCODE_URB_READ_SIMD8:
263 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
264 return true;
265 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
266 return src[1].file == VGRF;
267 case FS_OPCODE_FB_WRITE:
268 case FS_OPCODE_FB_READ:
269 return src[0].file == VGRF;
270 default:
271 if (is_tex())
272 return src[0].file == VGRF;
273
274 return false;
275 }
276 }
277
278 /**
279 * Returns true if this instruction's sources and destinations cannot
280 * safely be the same register.
281 *
282 * In most cases, a register can be written over safely by the same
283 * instruction that is its last use. For a single instruction, the
284 * sources are dereferenced before writing of the destination starts
285 * (naturally).
286 *
287 * However, there are a few cases where this can be problematic:
288 *
289 * - Virtual opcodes that translate to multiple instructions in the
290 * code generator: if src == dst and one instruction writes the
291 * destination before a later instruction reads the source, then
292 * src will have been clobbered.
293 *
294 * - SIMD16 compressed instructions with certain regioning (see below).
295 *
296 * The register allocator uses this information to set up conflicts between
297 * GRF sources and the destination.
298 */
299 bool
300 fs_inst::has_source_and_destination_hazard() const
301 {
302 switch (opcode) {
303 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
304 /* Multiple partial writes to the destination */
305 return true;
306 default:
307 /* The SIMD16 compressed instruction
308 *
309 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
310 *
311 * is actually decoded in hardware as:
312 *
313 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
314 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
315 *
316 * Which is safe. However, if we have uniform accesses
317 * happening, we get into trouble:
318 *
319 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
320 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
321 *
322 * Now our destination for the first instruction overwrote the
323 * second instruction's src0, and we get garbage for those 8
324 * pixels. There's a similar issue for the pre-gen6
325 * pixel_x/pixel_y, which are registers of 16-bit values and thus
326 * would get stomped by the first decode as well.
327 */
328 if (exec_size == 16) {
329 for (int i = 0; i < sources; i++) {
330 if (src[i].file == VGRF && (src[i].stride == 0 ||
331 src[i].type == BRW_REGISTER_TYPE_UW ||
332 src[i].type == BRW_REGISTER_TYPE_W ||
333 src[i].type == BRW_REGISTER_TYPE_UB ||
334 src[i].type == BRW_REGISTER_TYPE_B)) {
335 return true;
336 }
337 }
338 }
339 return false;
340 }
341 }
342
343 bool
344 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
345 {
346 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
347 return false;
348
349 fs_reg reg = this->src[0];
350 if (reg.file != VGRF || reg.offset != 0 || reg.stride != 1)
351 return false;
352
353 if (grf_alloc.sizes[reg.nr] * REG_SIZE != this->size_written)
354 return false;
355
356 for (int i = 0; i < this->sources; i++) {
357 reg.type = this->src[i].type;
358 if (!this->src[i].equals(reg))
359 return false;
360
361 if (i < this->header_size) {
362 reg.offset += REG_SIZE;
363 } else {
364 reg = horiz_offset(reg, this->exec_size);
365 }
366 }
367
368 return true;
369 }
370
371 bool
372 fs_inst::can_do_source_mods(const struct gen_device_info *devinfo)
373 {
374 if (devinfo->gen == 6 && is_math())
375 return false;
376
377 if (is_send_from_grf())
378 return false;
379
380 if (!backend_instruction::can_do_source_mods())
381 return false;
382
383 return true;
384 }
385
386 bool
387 fs_inst::can_change_types() const
388 {
389 return dst.type == src[0].type &&
390 !src[0].abs && !src[0].negate && !saturate &&
391 (opcode == BRW_OPCODE_MOV ||
392 (opcode == BRW_OPCODE_SEL &&
393 dst.type == src[1].type &&
394 predicate != BRW_PREDICATE_NONE &&
395 !src[1].abs && !src[1].negate));
396 }
397
398 bool
399 fs_inst::has_side_effects() const
400 {
401 return this->eot || backend_instruction::has_side_effects();
402 }
403
404 void
405 fs_reg::init()
406 {
407 memset(this, 0, sizeof(*this));
408 stride = 1;
409 }
410
411 /** Generic unset register constructor. */
412 fs_reg::fs_reg()
413 {
414 init();
415 this->file = BAD_FILE;
416 }
417
418 fs_reg::fs_reg(struct ::brw_reg reg) :
419 backend_reg(reg)
420 {
421 this->offset = 0;
422 this->stride = 1;
423 if (this->file == IMM &&
424 (this->type != BRW_REGISTER_TYPE_V &&
425 this->type != BRW_REGISTER_TYPE_UV &&
426 this->type != BRW_REGISTER_TYPE_VF)) {
427 this->stride = 0;
428 }
429 }
430
431 bool
432 fs_reg::equals(const fs_reg &r) const
433 {
434 return (this->backend_reg::equals(r) &&
435 stride == r.stride);
436 }
437
438 bool
439 fs_reg::is_contiguous() const
440 {
441 return stride == 1;
442 }
443
444 unsigned
445 fs_reg::component_size(unsigned width) const
446 {
447 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
448 hstride == 0 ? 0 :
449 1 << (hstride - 1));
450 return MAX2(width * stride, 1) * type_sz(type);
451 }
452
453 extern "C" int
454 type_size_scalar(const struct glsl_type *type)
455 {
456 unsigned int size, i;
457
458 switch (type->base_type) {
459 case GLSL_TYPE_UINT:
460 case GLSL_TYPE_INT:
461 case GLSL_TYPE_FLOAT:
462 case GLSL_TYPE_BOOL:
463 return type->components();
464 case GLSL_TYPE_DOUBLE:
465 return type->components() * 2;
466 case GLSL_TYPE_ARRAY:
467 return type_size_scalar(type->fields.array) * type->length;
468 case GLSL_TYPE_STRUCT:
469 size = 0;
470 for (i = 0; i < type->length; i++) {
471 size += type_size_scalar(type->fields.structure[i].type);
472 }
473 return size;
474 case GLSL_TYPE_SAMPLER:
475 /* Samplers take up no register space, since they're baked in at
476 * link time.
477 */
478 return 0;
479 case GLSL_TYPE_ATOMIC_UINT:
480 return 0;
481 case GLSL_TYPE_SUBROUTINE:
482 return 1;
483 case GLSL_TYPE_IMAGE:
484 return BRW_IMAGE_PARAM_SIZE;
485 case GLSL_TYPE_VOID:
486 case GLSL_TYPE_ERROR:
487 case GLSL_TYPE_INTERFACE:
488 case GLSL_TYPE_FUNCTION:
489 unreachable("not reached");
490 }
491
492 return 0;
493 }
494
495 /* Attribute arrays are loaded as one vec4 per element (or matrix column),
496 * except for double-precision types, which are loaded as one dvec4.
497 */
498 extern "C" int
499 type_size_vs_input(const struct glsl_type *type)
500 {
501 if (type->is_double()) {
502 return type_size_dvec4(type);
503 } else {
504 return type_size_vec4(type);
505 }
506 }
507
508 /**
509 * Create a MOV to read the timestamp register.
510 *
511 * The caller is responsible for emitting the MOV. The return value is
512 * the destination of the MOV, with extra parameters set.
513 */
514 fs_reg
515 fs_visitor::get_timestamp(const fs_builder &bld)
516 {
517 assert(devinfo->gen >= 7);
518
519 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
520 BRW_ARF_TIMESTAMP,
521 0),
522 BRW_REGISTER_TYPE_UD));
523
524 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
525
526 /* We want to read the 3 fields we care about even if it's not enabled in
527 * the dispatch.
528 */
529 bld.group(4, 0).exec_all().MOV(dst, ts);
530
531 return dst;
532 }
533
534 void
535 fs_visitor::emit_shader_time_begin()
536 {
537 /* We want only the low 32 bits of the timestamp. Since it's running
538 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
539 * which is plenty of time for our purposes. It is identical across the
540 * EUs, but since it's tracking GPU core speed it will increment at a
541 * varying rate as render P-states change.
542 */
543 shader_start_time = component(
544 get_timestamp(bld.annotate("shader time start")), 0);
545 }
546
547 void
548 fs_visitor::emit_shader_time_end()
549 {
550 /* Insert our code just before the final SEND with EOT. */
551 exec_node *end = this->instructions.get_tail();
552 assert(end && ((fs_inst *) end)->eot);
553 const fs_builder ibld = bld.annotate("shader time end")
554 .exec_all().at(NULL, end);
555 const fs_reg timestamp = get_timestamp(ibld);
556
557 /* We only use the low 32 bits of the timestamp - see
558 * emit_shader_time_begin()).
559 *
560 * We could also check if render P-states have changed (or anything
561 * else that might disrupt timing) by setting smear to 2 and checking if
562 * that field is != 0.
563 */
564 const fs_reg shader_end_time = component(timestamp, 0);
565
566 /* Check that there weren't any timestamp reset events (assuming these
567 * were the only two timestamp reads that happened).
568 */
569 const fs_reg reset = component(timestamp, 2);
570 set_condmod(BRW_CONDITIONAL_Z,
571 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
572 ibld.IF(BRW_PREDICATE_NORMAL);
573
574 fs_reg start = shader_start_time;
575 start.negate = true;
576 const fs_reg diff = component(fs_reg(VGRF, alloc.allocate(1),
577 BRW_REGISTER_TYPE_UD),
578 0);
579 const fs_builder cbld = ibld.group(1, 0);
580 cbld.group(1, 0).ADD(diff, start, shader_end_time);
581
582 /* If there were no instructions between the two timestamp gets, the diff
583 * is 2 cycles. Remove that overhead, so I can forget about that when
584 * trying to determine the time taken for single instructions.
585 */
586 cbld.ADD(diff, diff, brw_imm_ud(-2u));
587 SHADER_TIME_ADD(cbld, 0, diff);
588 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
589 ibld.emit(BRW_OPCODE_ELSE);
590 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
591 ibld.emit(BRW_OPCODE_ENDIF);
592 }
593
594 void
595 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
596 int shader_time_subindex,
597 fs_reg value)
598 {
599 int index = shader_time_index * 3 + shader_time_subindex;
600 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
601
602 fs_reg payload;
603 if (dispatch_width == 8)
604 payload = vgrf(glsl_type::uvec2_type);
605 else
606 payload = vgrf(glsl_type::uint_type);
607
608 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
609 }
610
611 void
612 fs_visitor::vfail(const char *format, va_list va)
613 {
614 char *msg;
615
616 if (failed)
617 return;
618
619 failed = true;
620
621 msg = ralloc_vasprintf(mem_ctx, format, va);
622 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
623
624 this->fail_msg = msg;
625
626 if (debug_enabled) {
627 fprintf(stderr, "%s", msg);
628 }
629 }
630
631 void
632 fs_visitor::fail(const char *format, ...)
633 {
634 va_list va;
635
636 va_start(va, format);
637 vfail(format, va);
638 va_end(va);
639 }
640
641 /**
642 * Mark this program as impossible to compile with dispatch width greater
643 * than n.
644 *
645 * During the SIMD8 compile (which happens first), we can detect and flag
646 * things that are unsupported in SIMD16+ mode, so the compiler can skip the
647 * SIMD16+ compile altogether.
648 *
649 * During a compile of dispatch width greater than n (if one happens anyway),
650 * this just calls fail().
651 */
652 void
653 fs_visitor::limit_dispatch_width(unsigned n, const char *msg)
654 {
655 if (dispatch_width > n) {
656 fail("%s", msg);
657 } else {
658 max_dispatch_width = n;
659 compiler->shader_perf_log(log_data,
660 "Shader dispatch width limited to SIMD%d: %s",
661 n, msg);
662 }
663 }
664
665 /**
666 * Returns true if the instruction has a flag that means it won't
667 * update an entire destination register.
668 *
669 * For example, dead code elimination and live variable analysis want to know
670 * when a write to a variable screens off any preceding values that were in
671 * it.
672 */
673 bool
674 fs_inst::is_partial_write() const
675 {
676 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
677 (this->exec_size * type_sz(this->dst.type)) < 32 ||
678 !this->dst.is_contiguous() ||
679 this->dst.offset % REG_SIZE != 0);
680 }
681
682 unsigned
683 fs_inst::components_read(unsigned i) const
684 {
685 /* Return zero if the source is not present. */
686 if (src[i].file == BAD_FILE)
687 return 0;
688
689 switch (opcode) {
690 case FS_OPCODE_LINTERP:
691 if (i == 0)
692 return 2;
693 else
694 return 1;
695
696 case FS_OPCODE_PIXEL_X:
697 case FS_OPCODE_PIXEL_Y:
698 assert(i == 0);
699 return 2;
700
701 case FS_OPCODE_FB_WRITE_LOGICAL:
702 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
703 /* First/second FB write color. */
704 if (i < 2)
705 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
706 else
707 return 1;
708
709 case SHADER_OPCODE_TEX_LOGICAL:
710 case SHADER_OPCODE_TXD_LOGICAL:
711 case SHADER_OPCODE_TXF_LOGICAL:
712 case SHADER_OPCODE_TXL_LOGICAL:
713 case SHADER_OPCODE_TXS_LOGICAL:
714 case FS_OPCODE_TXB_LOGICAL:
715 case SHADER_OPCODE_TXF_CMS_LOGICAL:
716 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
717 case SHADER_OPCODE_TXF_UMS_LOGICAL:
718 case SHADER_OPCODE_TXF_MCS_LOGICAL:
719 case SHADER_OPCODE_LOD_LOGICAL:
720 case SHADER_OPCODE_TG4_LOGICAL:
721 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
722 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
723 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
724 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
725 /* Texture coordinates. */
726 if (i == TEX_LOGICAL_SRC_COORDINATE)
727 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
728 /* Texture derivatives. */
729 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
730 opcode == SHADER_OPCODE_TXD_LOGICAL)
731 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
732 /* Texture offset. */
733 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
734 return 2;
735 /* MCS */
736 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
737 return 2;
738 else
739 return 1;
740
741 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
742 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
743 assert(src[3].file == IMM);
744 /* Surface coordinates. */
745 if (i == 0)
746 return src[3].ud;
747 /* Surface operation source (ignored for reads). */
748 else if (i == 1)
749 return 0;
750 else
751 return 1;
752
753 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
754 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
755 assert(src[3].file == IMM &&
756 src[4].file == IMM);
757 /* Surface coordinates. */
758 if (i == 0)
759 return src[3].ud;
760 /* Surface operation source. */
761 else if (i == 1)
762 return src[4].ud;
763 else
764 return 1;
765
766 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
767 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
768 assert(src[3].file == IMM &&
769 src[4].file == IMM);
770 const unsigned op = src[4].ud;
771 /* Surface coordinates. */
772 if (i == 0)
773 return src[3].ud;
774 /* Surface operation source. */
775 else if (i == 1 && op == BRW_AOP_CMPWR)
776 return 2;
777 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
778 op == BRW_AOP_PREDEC))
779 return 0;
780 else
781 return 1;
782 }
783
784 default:
785 return 1;
786 }
787 }
788
789 unsigned
790 fs_inst::size_read(int arg) const
791 {
792 switch (opcode) {
793 case FS_OPCODE_FB_WRITE:
794 case FS_OPCODE_FB_READ:
795 case SHADER_OPCODE_URB_WRITE_SIMD8:
796 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
797 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
798 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
799 case SHADER_OPCODE_URB_READ_SIMD8:
800 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
801 case SHADER_OPCODE_UNTYPED_ATOMIC:
802 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
803 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
804 case SHADER_OPCODE_TYPED_ATOMIC:
805 case SHADER_OPCODE_TYPED_SURFACE_READ:
806 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
807 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
808 if (arg == 0)
809 return mlen * REG_SIZE;
810 break;
811
812 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
813 /* The payload is actually stored in src1 */
814 if (arg == 1)
815 return mlen * REG_SIZE;
816 break;
817
818 case FS_OPCODE_LINTERP:
819 if (arg == 1)
820 return 16;
821 break;
822
823 case SHADER_OPCODE_LOAD_PAYLOAD:
824 if (arg < this->header_size)
825 return REG_SIZE;
826 break;
827
828 case CS_OPCODE_CS_TERMINATE:
829 case SHADER_OPCODE_BARRIER:
830 return REG_SIZE;
831
832 case SHADER_OPCODE_MOV_INDIRECT:
833 if (arg == 0) {
834 assert(src[2].file == IMM);
835 return src[2].ud;
836 }
837 break;
838
839 default:
840 if (is_tex() && arg == 0 && src[0].file == VGRF)
841 return mlen * REG_SIZE;
842 break;
843 }
844
845 switch (src[arg].file) {
846 case UNIFORM:
847 case IMM:
848 return components_read(arg) * type_sz(src[arg].type);
849 case BAD_FILE:
850 case ARF:
851 case FIXED_GRF:
852 case VGRF:
853 case ATTR:
854 return components_read(arg) * src[arg].component_size(exec_size);
855 case MRF:
856 unreachable("MRF registers are not allowed as sources");
857 }
858 return 0;
859 }
860
861 namespace {
862 /* Return the subset of flag registers that an instruction could
863 * potentially read or write based on the execution controls and flag
864 * subregister number of the instruction.
865 */
866 unsigned
867 flag_mask(const fs_inst *inst)
868 {
869 const unsigned start = inst->flag_subreg * 16 + inst->group;
870 const unsigned end = start + inst->exec_size;
871 return ((1 << DIV_ROUND_UP(end, 8)) - 1) & ~((1 << (start / 8)) - 1);
872 }
873 }
874
875 unsigned
876 fs_inst::flags_read(const gen_device_info *devinfo) const
877 {
878 /* XXX - This doesn't consider explicit uses of the flag register as source
879 * region.
880 */
881 if (predicate == BRW_PREDICATE_ALIGN1_ANYV ||
882 predicate == BRW_PREDICATE_ALIGN1_ALLV) {
883 /* The vertical predication modes combine corresponding bits from
884 * f0.0 and f1.0 on Gen7+, and f0.0 and f0.1 on older hardware.
885 */
886 const unsigned shift = devinfo->gen >= 7 ? 4 : 2;
887 return flag_mask(this) << shift | flag_mask(this);
888 } else if (predicate) {
889 return flag_mask(this);
890 } else {
891 return 0;
892 }
893 }
894
895 unsigned
896 fs_inst::flags_written() const
897 {
898 /* XXX - This doesn't consider explicit uses of the flag register as
899 * destination region.
900 */
901 if ((conditional_mod && (opcode != BRW_OPCODE_SEL &&
902 opcode != BRW_OPCODE_IF &&
903 opcode != BRW_OPCODE_WHILE)) ||
904 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
905 return flag_mask(this);
906 } else {
907 return 0;
908 }
909 }
910
911 /**
912 * Returns how many MRFs an FS opcode will write over.
913 *
914 * Note that this is not the 0 or 1 implied writes in an actual gen
915 * instruction -- the FS opcodes often generate MOVs in addition.
916 */
917 int
918 fs_visitor::implied_mrf_writes(fs_inst *inst)
919 {
920 if (inst->mlen == 0)
921 return 0;
922
923 if (inst->base_mrf == -1)
924 return 0;
925
926 switch (inst->opcode) {
927 case SHADER_OPCODE_RCP:
928 case SHADER_OPCODE_RSQ:
929 case SHADER_OPCODE_SQRT:
930 case SHADER_OPCODE_EXP2:
931 case SHADER_OPCODE_LOG2:
932 case SHADER_OPCODE_SIN:
933 case SHADER_OPCODE_COS:
934 return 1 * dispatch_width / 8;
935 case SHADER_OPCODE_POW:
936 case SHADER_OPCODE_INT_QUOTIENT:
937 case SHADER_OPCODE_INT_REMAINDER:
938 return 2 * dispatch_width / 8;
939 case SHADER_OPCODE_TEX:
940 case FS_OPCODE_TXB:
941 case SHADER_OPCODE_TXD:
942 case SHADER_OPCODE_TXF:
943 case SHADER_OPCODE_TXF_CMS:
944 case SHADER_OPCODE_TXF_MCS:
945 case SHADER_OPCODE_TG4:
946 case SHADER_OPCODE_TG4_OFFSET:
947 case SHADER_OPCODE_TXL:
948 case SHADER_OPCODE_TXS:
949 case SHADER_OPCODE_LOD:
950 case SHADER_OPCODE_SAMPLEINFO:
951 return 1;
952 case FS_OPCODE_FB_WRITE:
953 return 2;
954 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
955 case SHADER_OPCODE_GEN4_SCRATCH_READ:
956 return 1;
957 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4:
958 return inst->mlen;
959 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
960 return inst->mlen;
961 default:
962 unreachable("not reached");
963 }
964 }
965
966 fs_reg
967 fs_visitor::vgrf(const glsl_type *const type)
968 {
969 int reg_width = dispatch_width / 8;
970 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
971 brw_type_for_base_type(type));
972 }
973
974 fs_reg::fs_reg(enum brw_reg_file file, int nr)
975 {
976 init();
977 this->file = file;
978 this->nr = nr;
979 this->type = BRW_REGISTER_TYPE_F;
980 this->stride = (file == UNIFORM ? 0 : 1);
981 }
982
983 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
984 {
985 init();
986 this->file = file;
987 this->nr = nr;
988 this->type = type;
989 this->stride = (file == UNIFORM ? 0 : 1);
990 }
991
992 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
993 * This brings in those uniform definitions
994 */
995 void
996 fs_visitor::import_uniforms(fs_visitor *v)
997 {
998 this->push_constant_loc = v->push_constant_loc;
999 this->pull_constant_loc = v->pull_constant_loc;
1000 this->uniforms = v->uniforms;
1001 }
1002
1003 void
1004 fs_visitor::emit_fragcoord_interpolation(fs_reg wpos)
1005 {
1006 assert(stage == MESA_SHADER_FRAGMENT);
1007
1008 /* gl_FragCoord.x */
1009 bld.MOV(wpos, this->pixel_x);
1010 wpos = offset(wpos, bld, 1);
1011
1012 /* gl_FragCoord.y */
1013 bld.MOV(wpos, this->pixel_y);
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.z */
1017 if (devinfo->gen >= 6) {
1018 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1019 } else {
1020 bld.emit(FS_OPCODE_LINTERP, wpos,
1021 this->delta_xy[BRW_BARYCENTRIC_PERSPECTIVE_PIXEL],
1022 interp_reg(VARYING_SLOT_POS, 2));
1023 }
1024 wpos = offset(wpos, bld, 1);
1025
1026 /* gl_FragCoord.w: Already set up in emit_interpolation */
1027 bld.MOV(wpos, this->wpos_w);
1028 }
1029
1030 enum brw_barycentric_mode
1031 brw_barycentric_mode(enum glsl_interp_mode mode, nir_intrinsic_op op)
1032 {
1033 /* Barycentric modes don't make sense for flat inputs. */
1034 assert(mode != INTERP_MODE_FLAT);
1035
1036 unsigned bary;
1037 switch (op) {
1038 case nir_intrinsic_load_barycentric_pixel:
1039 case nir_intrinsic_load_barycentric_at_offset:
1040 bary = BRW_BARYCENTRIC_PERSPECTIVE_PIXEL;
1041 break;
1042 case nir_intrinsic_load_barycentric_centroid:
1043 bary = BRW_BARYCENTRIC_PERSPECTIVE_CENTROID;
1044 break;
1045 case nir_intrinsic_load_barycentric_sample:
1046 case nir_intrinsic_load_barycentric_at_sample:
1047 bary = BRW_BARYCENTRIC_PERSPECTIVE_SAMPLE;
1048 break;
1049 default:
1050 unreachable("invalid intrinsic");
1051 }
1052
1053 if (mode == INTERP_MODE_NOPERSPECTIVE)
1054 bary += 3;
1055
1056 return (enum brw_barycentric_mode) bary;
1057 }
1058
1059 /**
1060 * Turn one of the two CENTROID barycentric modes into PIXEL mode.
1061 */
1062 static enum brw_barycentric_mode
1063 centroid_to_pixel(enum brw_barycentric_mode bary)
1064 {
1065 assert(bary == BRW_BARYCENTRIC_PERSPECTIVE_CENTROID ||
1066 bary == BRW_BARYCENTRIC_NONPERSPECTIVE_CENTROID);
1067 return (enum brw_barycentric_mode) ((unsigned) bary - 1);
1068 }
1069
1070 fs_reg *
1071 fs_visitor::emit_frontfacing_interpolation()
1072 {
1073 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1074
1075 if (devinfo->gen >= 6) {
1076 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1077 * a boolean result from this (~0/true or 0/false).
1078 *
1079 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1080 * this task in only one instruction:
1081 * - a negation source modifier will flip the bit; and
1082 * - a W -> D type conversion will sign extend the bit into the high
1083 * word of the destination.
1084 *
1085 * An ASR 15 fills the low word of the destination.
1086 */
1087 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1088 g0.negate = true;
1089
1090 bld.ASR(*reg, g0, brw_imm_d(15));
1091 } else {
1092 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1093 * a boolean result from this (1/true or 0/false).
1094 *
1095 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1096 * the negation source modifier to flip it. Unfortunately the SHR
1097 * instruction only operates on UD (or D with an abs source modifier)
1098 * sources without negation.
1099 *
1100 * Instead, use ASR (which will give ~0/true or 0/false).
1101 */
1102 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1103 g1_6.negate = true;
1104
1105 bld.ASR(*reg, g1_6, brw_imm_d(31));
1106 }
1107
1108 return reg;
1109 }
1110
1111 void
1112 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1113 {
1114 assert(stage == MESA_SHADER_FRAGMENT);
1115 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1116 assert(dst.type == BRW_REGISTER_TYPE_F);
1117
1118 if (wm_prog_data->persample_dispatch) {
1119 /* Convert int_sample_pos to floating point */
1120 bld.MOV(dst, int_sample_pos);
1121 /* Scale to the range [0, 1] */
1122 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1123 }
1124 else {
1125 /* From ARB_sample_shading specification:
1126 * "When rendering to a non-multisample buffer, or if multisample
1127 * rasterization is disabled, gl_SamplePosition will always be
1128 * (0.5, 0.5).
1129 */
1130 bld.MOV(dst, brw_imm_f(0.5f));
1131 }
1132 }
1133
1134 fs_reg *
1135 fs_visitor::emit_samplepos_setup()
1136 {
1137 assert(devinfo->gen >= 6);
1138
1139 const fs_builder abld = bld.annotate("compute sample position");
1140 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1141 fs_reg pos = *reg;
1142 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1143 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1144
1145 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1146 * mode will be enabled.
1147 *
1148 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1149 * R31.1:0 Position Offset X/Y for Slot[3:0]
1150 * R31.3:2 Position Offset X/Y for Slot[7:4]
1151 * .....
1152 *
1153 * The X, Y sample positions come in as bytes in thread payload. So, read
1154 * the positions using vstride=16, width=8, hstride=2.
1155 */
1156 struct brw_reg sample_pos_reg =
1157 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1158 BRW_REGISTER_TYPE_B), 16, 8, 2);
1159
1160 if (dispatch_width == 8) {
1161 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1162 } else {
1163 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1164 abld.half(1).MOV(half(int_sample_x, 1),
1165 fs_reg(suboffset(sample_pos_reg, 16)));
1166 }
1167 /* Compute gl_SamplePosition.x */
1168 compute_sample_position(pos, int_sample_x);
1169 pos = offset(pos, abld, 1);
1170 if (dispatch_width == 8) {
1171 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1172 } else {
1173 abld.half(0).MOV(half(int_sample_y, 0),
1174 fs_reg(suboffset(sample_pos_reg, 1)));
1175 abld.half(1).MOV(half(int_sample_y, 1),
1176 fs_reg(suboffset(sample_pos_reg, 17)));
1177 }
1178 /* Compute gl_SamplePosition.y */
1179 compute_sample_position(pos, int_sample_y);
1180 return reg;
1181 }
1182
1183 fs_reg *
1184 fs_visitor::emit_sampleid_setup()
1185 {
1186 assert(stage == MESA_SHADER_FRAGMENT);
1187 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1188 assert(devinfo->gen >= 6);
1189
1190 const fs_builder abld = bld.annotate("compute sample id");
1191 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1192
1193 if (!key->multisample_fbo) {
1194 /* As per GL_ARB_sample_shading specification:
1195 * "When rendering to a non-multisample buffer, or if multisample
1196 * rasterization is disabled, gl_SampleID will always be zero."
1197 */
1198 abld.MOV(*reg, brw_imm_d(0));
1199 } else if (devinfo->gen >= 8) {
1200 /* Sample ID comes in as 4-bit numbers in g1.0:
1201 *
1202 * 15:12 Slot 3 SampleID (only used in SIMD16)
1203 * 11:8 Slot 2 SampleID (only used in SIMD16)
1204 * 7:4 Slot 1 SampleID
1205 * 3:0 Slot 0 SampleID
1206 *
1207 * Each slot corresponds to four channels, so we want to replicate each
1208 * half-byte value to 4 channels in a row:
1209 *
1210 * dst+0: .7 .6 .5 .4 .3 .2 .1 .0
1211 * 7:4 7:4 7:4 7:4 3:0 3:0 3:0 3:0
1212 *
1213 * dst+1: .7 .6 .5 .4 .3 .2 .1 .0 (if SIMD16)
1214 * 15:12 15:12 15:12 15:12 11:8 11:8 11:8 11:8
1215 *
1216 * First, we read g1.0 with a <1,8,0>UB region, causing the first 8
1217 * channels to read the first byte (7:0), and the second group of 8
1218 * channels to read the second byte (15:8). Then, we shift right by
1219 * a vector immediate of <4, 4, 4, 4, 0, 0, 0, 0>, moving the slot 1 / 3
1220 * values into place. Finally, we AND with 0xf to keep the low nibble.
1221 *
1222 * shr(16) tmp<1>W g1.0<1,8,0>B 0x44440000:V
1223 * and(16) dst<1>D tmp<8,8,1>W 0xf:W
1224 *
1225 * TODO: These payload bits exist on Gen7 too, but they appear to always
1226 * be zero, so this code fails to work. We should find out why.
1227 */
1228 fs_reg tmp(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1229
1230 abld.SHR(tmp, fs_reg(stride(retype(brw_vec1_grf(1, 0),
1231 BRW_REGISTER_TYPE_B), 1, 8, 0)),
1232 brw_imm_v(0x44440000));
1233 abld.AND(*reg, tmp, brw_imm_w(0xf));
1234 } else {
1235 const fs_reg t1 = component(fs_reg(VGRF, alloc.allocate(1),
1236 BRW_REGISTER_TYPE_D), 0);
1237 const fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1238
1239 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1240 * 8x multisampling, subspan 0 will represent sample N (where N
1241 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1242 * 7. We can find the value of N by looking at R0.0 bits 7:6
1243 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1244 * (since samples are always delivered in pairs). That is, we
1245 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1246 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1247 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1248 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1249 * populating a temporary variable with the sequence (0, 1, 2, 3),
1250 * and then reading from it using vstride=1, width=4, hstride=0.
1251 * These computations hold good for 4x multisampling as well.
1252 *
1253 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1254 * the first four slots are sample 0 of subspan 0; the next four
1255 * are sample 1 of subspan 0; the third group is sample 0 of
1256 * subspan 1, and finally sample 1 of subspan 1.
1257 */
1258
1259 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1260 * accomodate 16x MSAA.
1261 */
1262 abld.exec_all().group(1, 0)
1263 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1264 brw_imm_ud(0xc0));
1265 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1266
1267 /* This works for both SIMD8 and SIMD16 */
1268 abld.exec_all().group(4, 0).MOV(t2, brw_imm_v(0x3210));
1269
1270 /* This special instruction takes care of setting vstride=1,
1271 * width=4, hstride=0 of t2 during an ADD instruction.
1272 */
1273 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1274 }
1275
1276 return reg;
1277 }
1278
1279 fs_reg *
1280 fs_visitor::emit_samplemaskin_setup()
1281 {
1282 assert(stage == MESA_SHADER_FRAGMENT);
1283 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
1284 assert(devinfo->gen >= 6);
1285
1286 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1287
1288 fs_reg coverage_mask(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1289 BRW_REGISTER_TYPE_D));
1290
1291 if (wm_prog_data->persample_dispatch) {
1292 /* gl_SampleMaskIn[] comes from two sources: the input coverage mask,
1293 * and a mask representing which sample is being processed by the
1294 * current shader invocation.
1295 *
1296 * From the OES_sample_variables specification:
1297 * "When per-sample shading is active due to the use of a fragment input
1298 * qualified by "sample" or due to the use of the gl_SampleID or
1299 * gl_SamplePosition variables, only the bit for the current sample is
1300 * set in gl_SampleMaskIn."
1301 */
1302 const fs_builder abld = bld.annotate("compute gl_SampleMaskIn");
1303
1304 if (nir_system_values[SYSTEM_VALUE_SAMPLE_ID].file == BAD_FILE)
1305 nir_system_values[SYSTEM_VALUE_SAMPLE_ID] = *emit_sampleid_setup();
1306
1307 fs_reg one = vgrf(glsl_type::int_type);
1308 fs_reg enabled_mask = vgrf(glsl_type::int_type);
1309 abld.MOV(one, brw_imm_d(1));
1310 abld.SHL(enabled_mask, one, nir_system_values[SYSTEM_VALUE_SAMPLE_ID]);
1311 abld.AND(*reg, enabled_mask, coverage_mask);
1312 } else {
1313 /* In per-pixel mode, the coverage mask is sufficient. */
1314 *reg = coverage_mask;
1315 }
1316 return reg;
1317 }
1318
1319 fs_reg
1320 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1321 {
1322 if (!src.abs && !src.negate)
1323 return src;
1324
1325 fs_reg temp = bld.vgrf(src.type);
1326 bld.MOV(temp, src);
1327
1328 return temp;
1329 }
1330
1331 void
1332 fs_visitor::emit_discard_jump()
1333 {
1334 assert(brw_wm_prog_data(this->prog_data)->uses_kill);
1335
1336 /* For performance, after a discard, jump to the end of the
1337 * shader if all relevant channels have been discarded.
1338 */
1339 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1340 discard_jump->flag_subreg = 1;
1341
1342 discard_jump->predicate = BRW_PREDICATE_ALIGN1_ANY4H;
1343 discard_jump->predicate_inverse = true;
1344 }
1345
1346 void
1347 fs_visitor::emit_gs_thread_end()
1348 {
1349 assert(stage == MESA_SHADER_GEOMETRY);
1350
1351 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
1352
1353 if (gs_compile->control_data_header_size_bits > 0) {
1354 emit_gs_control_data_bits(this->final_gs_vertex_count);
1355 }
1356
1357 const fs_builder abld = bld.annotate("thread end");
1358 fs_inst *inst;
1359
1360 if (gs_prog_data->static_vertex_count != -1) {
1361 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1362 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1363 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1364 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1365 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1366 prev->eot = true;
1367
1368 /* Delete now dead instructions. */
1369 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1370 if (dead == prev)
1371 break;
1372 dead->remove();
1373 }
1374 return;
1375 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1376 break;
1377 }
1378 }
1379 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1380 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1381 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1382 inst->mlen = 1;
1383 } else {
1384 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1385 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1386 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1387 sources[1] = this->final_gs_vertex_count;
1388 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1389 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1390 inst->mlen = 2;
1391 }
1392 inst->eot = true;
1393 inst->offset = 0;
1394 }
1395
1396 void
1397 fs_visitor::assign_curb_setup()
1398 {
1399 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1400
1401 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1402 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1403 for (unsigned int i = 0; i < inst->sources; i++) {
1404 if (inst->src[i].file == UNIFORM) {
1405 int uniform_nr = inst->src[i].nr + inst->src[i].offset / 4;
1406 int constant_nr;
1407 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1408 constant_nr = push_constant_loc[uniform_nr];
1409 } else {
1410 /* Section 5.11 of the OpenGL 4.1 spec says:
1411 * "Out-of-bounds reads return undefined values, which include
1412 * values from other variables of the active program or zero."
1413 * Just return the first push constant.
1414 */
1415 constant_nr = 0;
1416 }
1417
1418 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1419 constant_nr / 8,
1420 constant_nr % 8);
1421 brw_reg.abs = inst->src[i].abs;
1422 brw_reg.negate = inst->src[i].negate;
1423
1424 assert(inst->src[i].stride == 0);
1425 inst->src[i] = byte_offset(
1426 retype(brw_reg, inst->src[i].type),
1427 inst->src[i].offset % 4);
1428 }
1429 }
1430 }
1431
1432 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1433 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1434 }
1435
1436 void
1437 fs_visitor::calculate_urb_setup()
1438 {
1439 assert(stage == MESA_SHADER_FRAGMENT);
1440 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1441 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1442
1443 memset(prog_data->urb_setup, -1,
1444 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1445
1446 int urb_next = 0;
1447 /* Figure out where each of the incoming setup attributes lands. */
1448 if (devinfo->gen >= 6) {
1449 if (_mesa_bitcount_64(nir->info->inputs_read &
1450 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1451 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1452 * first 16 varying inputs, so we can put them wherever we want.
1453 * Just put them in order.
1454 *
1455 * This is useful because it means that (a) inputs not used by the
1456 * fragment shader won't take up valuable register space, and (b) we
1457 * won't have to recompile the fragment shader if it gets paired with
1458 * a different vertex (or geometry) shader.
1459 */
1460 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1461 if (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1462 BITFIELD64_BIT(i)) {
1463 prog_data->urb_setup[i] = urb_next++;
1464 }
1465 }
1466 } else {
1467 bool include_vue_header =
1468 nir->info->inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1469
1470 /* We have enough input varyings that the SF/SBE pipeline stage can't
1471 * arbitrarily rearrange them to suit our whim; we have to put them
1472 * in an order that matches the output of the previous pipeline stage
1473 * (geometry or vertex shader).
1474 */
1475 struct brw_vue_map prev_stage_vue_map;
1476 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1477 key->input_slots_valid,
1478 nir->info->separate_shader);
1479 int first_slot =
1480 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1481
1482 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1483 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1484 slot++) {
1485 int varying = prev_stage_vue_map.slot_to_varying[slot];
1486 if (varying != BRW_VARYING_SLOT_PAD &&
1487 (nir->info->inputs_read & BRW_FS_VARYING_INPUT_MASK &
1488 BITFIELD64_BIT(varying))) {
1489 prog_data->urb_setup[varying] = slot - first_slot;
1490 }
1491 }
1492 urb_next = prev_stage_vue_map.num_slots - first_slot;
1493 }
1494 } else {
1495 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1496 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1497 /* Point size is packed into the header, not as a general attribute */
1498 if (i == VARYING_SLOT_PSIZ)
1499 continue;
1500
1501 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1502 /* The back color slot is skipped when the front color is
1503 * also written to. In addition, some slots can be
1504 * written in the vertex shader and not read in the
1505 * fragment shader. So the register number must always be
1506 * incremented, mapped or not.
1507 */
1508 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1509 prog_data->urb_setup[i] = urb_next;
1510 urb_next++;
1511 }
1512 }
1513
1514 /*
1515 * It's a FS only attribute, and we did interpolation for this attribute
1516 * in SF thread. So, count it here, too.
1517 *
1518 * See compile_sf_prog() for more info.
1519 */
1520 if (nir->info->inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1521 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1522 }
1523
1524 prog_data->num_varying_inputs = urb_next;
1525 }
1526
1527 void
1528 fs_visitor::assign_urb_setup()
1529 {
1530 assert(stage == MESA_SHADER_FRAGMENT);
1531 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
1532
1533 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1534
1535 /* Offset all the urb_setup[] index by the actual position of the
1536 * setup regs, now that the location of the constants has been chosen.
1537 */
1538 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1539 if (inst->opcode == FS_OPCODE_LINTERP) {
1540 assert(inst->src[1].file == FIXED_GRF);
1541 inst->src[1].nr += urb_start;
1542 }
1543
1544 if (inst->opcode == FS_OPCODE_CINTERP) {
1545 assert(inst->src[0].file == FIXED_GRF);
1546 inst->src[0].nr += urb_start;
1547 }
1548 }
1549
1550 /* Each attribute is 4 setup channels, each of which is half a reg. */
1551 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1552 }
1553
1554 void
1555 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1556 {
1557 for (int i = 0; i < inst->sources; i++) {
1558 if (inst->src[i].file == ATTR) {
1559 int grf = payload.num_regs +
1560 prog_data->curb_read_length +
1561 inst->src[i].nr +
1562 inst->src[i].offset / REG_SIZE;
1563
1564 /* As explained at brw_reg_from_fs_reg, From the Haswell PRM:
1565 *
1566 * VertStride must be used to cross GRF register boundaries. This
1567 * rule implies that elements within a 'Width' cannot cross GRF
1568 * boundaries.
1569 *
1570 * So, for registers that are large enough, we have to split the exec
1571 * size in two and trust the compression state to sort it out.
1572 */
1573 unsigned total_size = inst->exec_size *
1574 inst->src[i].stride *
1575 type_sz(inst->src[i].type);
1576
1577 assert(total_size <= 2 * REG_SIZE);
1578 const unsigned exec_size =
1579 (total_size <= REG_SIZE) ? inst->exec_size : inst->exec_size / 2;
1580
1581 unsigned width = inst->src[i].stride == 0 ? 1 : exec_size;
1582 struct brw_reg reg =
1583 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1584 inst->src[i].offset % REG_SIZE),
1585 exec_size * inst->src[i].stride,
1586 width, inst->src[i].stride);
1587 reg.abs = inst->src[i].abs;
1588 reg.negate = inst->src[i].negate;
1589
1590 inst->src[i] = reg;
1591 }
1592 }
1593 }
1594
1595 void
1596 fs_visitor::assign_vs_urb_setup()
1597 {
1598 struct brw_vs_prog_data *vs_prog_data = brw_vs_prog_data(prog_data);
1599
1600 assert(stage == MESA_SHADER_VERTEX);
1601
1602 /* Each attribute is 4 regs. */
1603 this->first_non_payload_grf += 4 * vs_prog_data->nr_attribute_slots;
1604
1605 assert(vs_prog_data->base.urb_read_length <= 15);
1606
1607 /* Rewrite all ATTR file references to the hw grf that they land in. */
1608 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1609 convert_attr_sources_to_hw_regs(inst);
1610 }
1611 }
1612
1613 void
1614 fs_visitor::assign_tcs_single_patch_urb_setup()
1615 {
1616 assert(stage == MESA_SHADER_TESS_CTRL);
1617
1618 /* Rewrite all ATTR file references to HW_REGs. */
1619 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1620 convert_attr_sources_to_hw_regs(inst);
1621 }
1622 }
1623
1624 void
1625 fs_visitor::assign_tes_urb_setup()
1626 {
1627 assert(stage == MESA_SHADER_TESS_EVAL);
1628
1629 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1630
1631 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1632
1633 /* Rewrite all ATTR file references to HW_REGs. */
1634 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1635 convert_attr_sources_to_hw_regs(inst);
1636 }
1637 }
1638
1639 void
1640 fs_visitor::assign_gs_urb_setup()
1641 {
1642 assert(stage == MESA_SHADER_GEOMETRY);
1643
1644 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
1645
1646 first_non_payload_grf +=
1647 8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in;
1648
1649 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1650 /* Rewrite all ATTR file references to GRFs. */
1651 convert_attr_sources_to_hw_regs(inst);
1652 }
1653 }
1654
1655
1656 /**
1657 * Split large virtual GRFs into separate components if we can.
1658 *
1659 * This is mostly duplicated with what brw_fs_vector_splitting does,
1660 * but that's really conservative because it's afraid of doing
1661 * splitting that doesn't result in real progress after the rest of
1662 * the optimization phases, which would cause infinite looping in
1663 * optimization. We can do it once here, safely. This also has the
1664 * opportunity to split interpolated values, or maybe even uniforms,
1665 * which we don't have at the IR level.
1666 *
1667 * We want to split, because virtual GRFs are what we register
1668 * allocate and spill (due to contiguousness requirements for some
1669 * instructions), and they're what we naturally generate in the
1670 * codegen process, but most virtual GRFs don't actually need to be
1671 * contiguous sets of GRFs. If we split, we'll end up with reduced
1672 * live intervals and better dead code elimination and coalescing.
1673 */
1674 void
1675 fs_visitor::split_virtual_grfs()
1676 {
1677 /* Compact the register file so we eliminate dead vgrfs. This
1678 * only defines split points for live registers, so if we have
1679 * too large dead registers they will hit assertions later.
1680 */
1681 compact_virtual_grfs();
1682
1683 int num_vars = this->alloc.count;
1684
1685 /* Count the total number of registers */
1686 int reg_count = 0;
1687 int vgrf_to_reg[num_vars];
1688 for (int i = 0; i < num_vars; i++) {
1689 vgrf_to_reg[i] = reg_count;
1690 reg_count += alloc.sizes[i];
1691 }
1692
1693 /* An array of "split points". For each register slot, this indicates
1694 * if this slot can be separated from the previous slot. Every time an
1695 * instruction uses multiple elements of a register (as a source or
1696 * destination), we mark the used slots as inseparable. Then we go
1697 * through and split the registers into the smallest pieces we can.
1698 */
1699 bool split_points[reg_count];
1700 memset(split_points, 0, sizeof(split_points));
1701
1702 /* Mark all used registers as fully splittable */
1703 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1704 if (inst->dst.file == VGRF) {
1705 int reg = vgrf_to_reg[inst->dst.nr];
1706 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1707 split_points[reg + j] = true;
1708 }
1709
1710 for (int i = 0; i < inst->sources; i++) {
1711 if (inst->src[i].file == VGRF) {
1712 int reg = vgrf_to_reg[inst->src[i].nr];
1713 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1714 split_points[reg + j] = true;
1715 }
1716 }
1717 }
1718
1719 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1720 if (inst->dst.file == VGRF) {
1721 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1722 for (unsigned j = 1; j < regs_written(inst); j++)
1723 split_points[reg + j] = false;
1724 }
1725 for (int i = 0; i < inst->sources; i++) {
1726 if (inst->src[i].file == VGRF) {
1727 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1728 for (unsigned j = 1; j < regs_read(inst, i); j++)
1729 split_points[reg + j] = false;
1730 }
1731 }
1732 }
1733
1734 int new_virtual_grf[reg_count];
1735 int new_reg_offset[reg_count];
1736
1737 int reg = 0;
1738 for (int i = 0; i < num_vars; i++) {
1739 /* The first one should always be 0 as a quick sanity check. */
1740 assert(split_points[reg] == false);
1741
1742 /* j = 0 case */
1743 new_reg_offset[reg] = 0;
1744 reg++;
1745 int offset = 1;
1746
1747 /* j > 0 case */
1748 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1749 /* If this is a split point, reset the offset to 0 and allocate a
1750 * new virtual GRF for the previous offset many registers
1751 */
1752 if (split_points[reg]) {
1753 assert(offset <= MAX_VGRF_SIZE);
1754 int grf = alloc.allocate(offset);
1755 for (int k = reg - offset; k < reg; k++)
1756 new_virtual_grf[k] = grf;
1757 offset = 0;
1758 }
1759 new_reg_offset[reg] = offset;
1760 offset++;
1761 reg++;
1762 }
1763
1764 /* The last one gets the original register number */
1765 assert(offset <= MAX_VGRF_SIZE);
1766 alloc.sizes[i] = offset;
1767 for (int k = reg - offset; k < reg; k++)
1768 new_virtual_grf[k] = i;
1769 }
1770 assert(reg == reg_count);
1771
1772 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1773 if (inst->dst.file == VGRF) {
1774 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.offset / REG_SIZE;
1775 inst->dst.nr = new_virtual_grf[reg];
1776 inst->dst.offset = new_reg_offset[reg] * REG_SIZE +
1777 inst->dst.offset % REG_SIZE;
1778 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1779 }
1780 for (int i = 0; i < inst->sources; i++) {
1781 if (inst->src[i].file == VGRF) {
1782 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].offset / REG_SIZE;
1783 inst->src[i].nr = new_virtual_grf[reg];
1784 inst->src[i].offset = new_reg_offset[reg] * REG_SIZE +
1785 inst->src[i].offset % REG_SIZE;
1786 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1787 }
1788 }
1789 }
1790 invalidate_live_intervals();
1791 }
1792
1793 /**
1794 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1795 *
1796 * During code generation, we create tons of temporary variables, many of
1797 * which get immediately killed and are never used again. Yet, in later
1798 * optimization and analysis passes, such as compute_live_intervals, we need
1799 * to loop over all the virtual GRFs. Compacting them can save a lot of
1800 * overhead.
1801 */
1802 bool
1803 fs_visitor::compact_virtual_grfs()
1804 {
1805 bool progress = false;
1806 int remap_table[this->alloc.count];
1807 memset(remap_table, -1, sizeof(remap_table));
1808
1809 /* Mark which virtual GRFs are used. */
1810 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1811 if (inst->dst.file == VGRF)
1812 remap_table[inst->dst.nr] = 0;
1813
1814 for (int i = 0; i < inst->sources; i++) {
1815 if (inst->src[i].file == VGRF)
1816 remap_table[inst->src[i].nr] = 0;
1817 }
1818 }
1819
1820 /* Compact the GRF arrays. */
1821 int new_index = 0;
1822 for (unsigned i = 0; i < this->alloc.count; i++) {
1823 if (remap_table[i] == -1) {
1824 /* We just found an unused register. This means that we are
1825 * actually going to compact something.
1826 */
1827 progress = true;
1828 } else {
1829 remap_table[i] = new_index;
1830 alloc.sizes[new_index] = alloc.sizes[i];
1831 invalidate_live_intervals();
1832 ++new_index;
1833 }
1834 }
1835
1836 this->alloc.count = new_index;
1837
1838 /* Patch all the instructions to use the newly renumbered registers */
1839 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1840 if (inst->dst.file == VGRF)
1841 inst->dst.nr = remap_table[inst->dst.nr];
1842
1843 for (int i = 0; i < inst->sources; i++) {
1844 if (inst->src[i].file == VGRF)
1845 inst->src[i].nr = remap_table[inst->src[i].nr];
1846 }
1847 }
1848
1849 /* Patch all the references to delta_xy, since they're used in register
1850 * allocation. If they're unused, switch them to BAD_FILE so we don't
1851 * think some random VGRF is delta_xy.
1852 */
1853 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1854 if (delta_xy[i].file == VGRF) {
1855 if (remap_table[delta_xy[i].nr] != -1) {
1856 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1857 } else {
1858 delta_xy[i].file = BAD_FILE;
1859 }
1860 }
1861 }
1862
1863 return progress;
1864 }
1865
1866 static void
1867 set_push_pull_constant_loc(unsigned uniform, int *chunk_start, bool contiguous,
1868 int *push_constant_loc, int *pull_constant_loc,
1869 unsigned *num_push_constants,
1870 unsigned *num_pull_constants,
1871 const unsigned max_push_components,
1872 const unsigned max_chunk_size,
1873 struct brw_stage_prog_data *stage_prog_data)
1874 {
1875 /* This is the first live uniform in the chunk */
1876 if (*chunk_start < 0)
1877 *chunk_start = uniform;
1878
1879 /* If this element does not need to be contiguous with the next, we
1880 * split at this point and everything between chunk_start and u forms a
1881 * single chunk.
1882 */
1883 if (!contiguous) {
1884 unsigned chunk_size = uniform - *chunk_start + 1;
1885
1886 /* Decide whether we should push or pull this parameter. In the
1887 * Vulkan driver, push constants are explicitly exposed via the API
1888 * so we push everything. In GL, we only push small arrays.
1889 */
1890 if (stage_prog_data->pull_param == NULL ||
1891 (*num_push_constants + chunk_size <= max_push_components &&
1892 chunk_size <= max_chunk_size)) {
1893 assert(*num_push_constants + chunk_size <= max_push_components);
1894 for (unsigned j = *chunk_start; j <= uniform; j++)
1895 push_constant_loc[j] = (*num_push_constants)++;
1896 } else {
1897 for (unsigned j = *chunk_start; j <= uniform; j++)
1898 pull_constant_loc[j] = (*num_pull_constants)++;
1899 }
1900
1901 *chunk_start = -1;
1902 }
1903 }
1904
1905 /**
1906 * Assign UNIFORM file registers to either push constants or pull constants.
1907 *
1908 * We allow a fragment shader to have more than the specified minimum
1909 * maximum number of fragment shader uniform components (64). If
1910 * there are too many of these, they'd fill up all of register space.
1911 * So, this will push some of them out to the pull constant buffer and
1912 * update the program to load them.
1913 */
1914 void
1915 fs_visitor::assign_constant_locations()
1916 {
1917 /* Only the first compile gets to decide on locations. */
1918 if (dispatch_width != min_dispatch_width)
1919 return;
1920
1921 bool is_live[uniforms];
1922 memset(is_live, 0, sizeof(is_live));
1923 bool is_live_64bit[uniforms];
1924 memset(is_live_64bit, 0, sizeof(is_live_64bit));
1925
1926 /* For each uniform slot, a value of true indicates that the given slot and
1927 * the next slot must remain contiguous. This is used to keep us from
1928 * splitting arrays apart.
1929 */
1930 bool contiguous[uniforms];
1931 memset(contiguous, 0, sizeof(contiguous));
1932
1933 int thread_local_id_index =
1934 (stage == MESA_SHADER_COMPUTE) ?
1935 brw_cs_prog_data(stage_prog_data)->thread_local_id_index : -1;
1936
1937 /* First, we walk through the instructions and do two things:
1938 *
1939 * 1) Figure out which uniforms are live.
1940 *
1941 * 2) Mark any indirectly used ranges of registers as contiguous.
1942 *
1943 * Note that we don't move constant-indexed accesses to arrays. No
1944 * testing has been done of the performance impact of this choice.
1945 */
1946 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1947 for (int i = 0 ; i < inst->sources; i++) {
1948 if (inst->src[i].file != UNIFORM)
1949 continue;
1950
1951 int constant_nr = inst->src[i].nr + inst->src[i].offset / 4;
1952
1953 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0) {
1954 assert(inst->src[2].ud % 4 == 0);
1955 unsigned last = constant_nr + (inst->src[2].ud / 4) - 1;
1956 assert(last < uniforms);
1957
1958 for (unsigned j = constant_nr; j < last; j++) {
1959 is_live[j] = true;
1960 contiguous[j] = true;
1961 if (type_sz(inst->src[i].type) == 8) {
1962 is_live_64bit[j] = true;
1963 }
1964 }
1965 is_live[last] = true;
1966 } else {
1967 if (constant_nr >= 0 && constant_nr < (int) uniforms) {
1968 int regs_read = inst->components_read(i) *
1969 type_sz(inst->src[i].type) / 4;
1970 for (int j = 0; j < regs_read; j++) {
1971 is_live[constant_nr + j] = true;
1972 if (type_sz(inst->src[i].type) == 8) {
1973 is_live_64bit[constant_nr + j] = true;
1974 }
1975 }
1976 }
1977 }
1978 }
1979 }
1980
1981 if (thread_local_id_index >= 0 && !is_live[thread_local_id_index])
1982 thread_local_id_index = -1;
1983
1984 /* Only allow 16 registers (128 uniform components) as push constants.
1985 *
1986 * Just demote the end of the list. We could probably do better
1987 * here, demoting things that are rarely used in the program first.
1988 *
1989 * If changing this value, note the limitation about total_regs in
1990 * brw_curbe.c.
1991 */
1992 unsigned int max_push_components = 16 * 8;
1993 if (thread_local_id_index >= 0)
1994 max_push_components--; /* Save a slot for the thread ID */
1995
1996 /* We push small arrays, but no bigger than 16 floats. This is big enough
1997 * for a vec4 but hopefully not large enough to push out other stuff. We
1998 * should probably use a better heuristic at some point.
1999 */
2000 const unsigned int max_chunk_size = 16;
2001
2002 unsigned int num_push_constants = 0;
2003 unsigned int num_pull_constants = 0;
2004
2005 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2006 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2007
2008 /* Default to -1 meaning no location */
2009 memset(push_constant_loc, -1, uniforms * sizeof(*push_constant_loc));
2010 memset(pull_constant_loc, -1, uniforms * sizeof(*pull_constant_loc));
2011
2012 int chunk_start = -1;
2013
2014 /* First push 64-bit uniforms to ensure they are properly aligned */
2015 for (unsigned u = 0; u < uniforms; u++) {
2016 if (!is_live[u] || !is_live_64bit[u])
2017 continue;
2018
2019 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2020 push_constant_loc, pull_constant_loc,
2021 &num_push_constants, &num_pull_constants,
2022 max_push_components, max_chunk_size,
2023 stage_prog_data);
2024
2025 }
2026
2027 /* Then push the rest of uniforms */
2028 for (unsigned u = 0; u < uniforms; u++) {
2029 if (!is_live[u] || is_live_64bit[u])
2030 continue;
2031
2032 /* Skip thread_local_id_index to put it in the last push register. */
2033 if (thread_local_id_index == (int)u)
2034 continue;
2035
2036 set_push_pull_constant_loc(u, &chunk_start, contiguous[u],
2037 push_constant_loc, pull_constant_loc,
2038 &num_push_constants, &num_pull_constants,
2039 max_push_components, max_chunk_size,
2040 stage_prog_data);
2041 }
2042
2043 /* Add the CS local thread ID uniform at the end of the push constants */
2044 if (thread_local_id_index >= 0)
2045 push_constant_loc[thread_local_id_index] = num_push_constants++;
2046
2047 /* As the uniforms are going to be reordered, take the data from a temporary
2048 * copy of the original param[].
2049 */
2050 gl_constant_value **param = ralloc_array(NULL, gl_constant_value*,
2051 stage_prog_data->nr_params);
2052 memcpy(param, stage_prog_data->param,
2053 sizeof(gl_constant_value*) * stage_prog_data->nr_params);
2054 stage_prog_data->nr_params = num_push_constants;
2055 stage_prog_data->nr_pull_params = num_pull_constants;
2056
2057 /* Up until now, the param[] array has been indexed by reg + offset
2058 * of UNIFORM registers. Move pull constants into pull_param[] and
2059 * condense param[] to only contain the uniforms we chose to push.
2060 *
2061 * NOTE: Because we are condensing the params[] array, we know that
2062 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2063 * having to make a copy.
2064 */
2065 int new_thread_local_id_index = -1;
2066 for (unsigned int i = 0; i < uniforms; i++) {
2067 const gl_constant_value *value = param[i];
2068
2069 if (pull_constant_loc[i] != -1) {
2070 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2071 } else if (push_constant_loc[i] != -1) {
2072 stage_prog_data->param[push_constant_loc[i]] = value;
2073 if (thread_local_id_index == (int)i)
2074 new_thread_local_id_index = push_constant_loc[i];
2075 }
2076 }
2077 ralloc_free(param);
2078
2079 if (stage == MESA_SHADER_COMPUTE)
2080 brw_cs_prog_data(stage_prog_data)->thread_local_id_index =
2081 new_thread_local_id_index;
2082 }
2083
2084 /**
2085 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2086 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2087 */
2088 void
2089 fs_visitor::lower_constant_loads()
2090 {
2091 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2092
2093 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2094 /* Set up the annotation tracking for new generated instructions. */
2095 const fs_builder ibld(this, block, inst);
2096
2097 for (int i = 0; i < inst->sources; i++) {
2098 if (inst->src[i].file != UNIFORM)
2099 continue;
2100
2101 /* We'll handle this case later */
2102 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT && i == 0)
2103 continue;
2104
2105 unsigned location = inst->src[i].nr + inst->src[i].offset / 4;
2106 if (location >= uniforms)
2107 continue; /* Out of bounds access */
2108
2109 int pull_index = pull_constant_loc[location];
2110
2111 if (pull_index == -1)
2112 continue;
2113
2114 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2115 fs_reg dst;
2116
2117 if (type_sz(inst->src[i].type) <= 4)
2118 dst = vgrf(glsl_type::float_type);
2119 else
2120 dst = vgrf(glsl_type::double_type);
2121
2122 assert(inst->src[i].stride == 0);
2123
2124 const fs_builder ubld = ibld.exec_all().group(8, 0);
2125 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2126 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2127 dst, brw_imm_ud(index), offset);
2128
2129 /* Rewrite the instruction to use the temporary VGRF. */
2130 inst->src[i].file = VGRF;
2131 inst->src[i].nr = dst.nr;
2132 inst->src[i].offset = (pull_index & 3) * 4 + inst->src[i].offset % 4;
2133
2134 brw_mark_surface_used(prog_data, index);
2135 }
2136
2137 if (inst->opcode == SHADER_OPCODE_MOV_INDIRECT &&
2138 inst->src[0].file == UNIFORM) {
2139
2140 unsigned location = inst->src[0].nr + inst->src[0].offset / 4;
2141 if (location >= uniforms)
2142 continue; /* Out of bounds access */
2143
2144 int pull_index = pull_constant_loc[location];
2145
2146 if (pull_index == -1)
2147 continue;
2148
2149 VARYING_PULL_CONSTANT_LOAD(ibld, inst->dst,
2150 brw_imm_ud(index),
2151 inst->src[1],
2152 pull_index * 4);
2153 inst->remove(block);
2154
2155 brw_mark_surface_used(prog_data, index);
2156 }
2157 }
2158 invalidate_live_intervals();
2159 }
2160
2161 bool
2162 fs_visitor::opt_algebraic()
2163 {
2164 bool progress = false;
2165
2166 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2167 switch (inst->opcode) {
2168 case BRW_OPCODE_MOV:
2169 if (inst->src[0].file != IMM)
2170 break;
2171
2172 if (inst->saturate) {
2173 if (inst->dst.type != inst->src[0].type)
2174 assert(!"unimplemented: saturate mixed types");
2175
2176 if (brw_saturate_immediate(inst->dst.type,
2177 &inst->src[0].as_brw_reg())) {
2178 inst->saturate = false;
2179 progress = true;
2180 }
2181 }
2182 break;
2183
2184 case BRW_OPCODE_MUL:
2185 if (inst->src[1].file != IMM)
2186 continue;
2187
2188 /* a * 1.0 = a */
2189 if (inst->src[1].is_one()) {
2190 inst->opcode = BRW_OPCODE_MOV;
2191 inst->src[1] = reg_undef;
2192 progress = true;
2193 break;
2194 }
2195
2196 /* a * -1.0 = -a */
2197 if (inst->src[1].is_negative_one()) {
2198 inst->opcode = BRW_OPCODE_MOV;
2199 inst->src[0].negate = !inst->src[0].negate;
2200 inst->src[1] = reg_undef;
2201 progress = true;
2202 break;
2203 }
2204
2205 /* a * 0.0 = 0.0 */
2206 if (inst->src[1].is_zero()) {
2207 inst->opcode = BRW_OPCODE_MOV;
2208 inst->src[0] = inst->src[1];
2209 inst->src[1] = reg_undef;
2210 progress = true;
2211 break;
2212 }
2213
2214 if (inst->src[0].file == IMM) {
2215 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2216 inst->opcode = BRW_OPCODE_MOV;
2217 inst->src[0].f *= inst->src[1].f;
2218 inst->src[1] = reg_undef;
2219 progress = true;
2220 break;
2221 }
2222 break;
2223 case BRW_OPCODE_ADD:
2224 if (inst->src[1].file != IMM)
2225 continue;
2226
2227 /* a + 0.0 = a */
2228 if (inst->src[1].is_zero()) {
2229 inst->opcode = BRW_OPCODE_MOV;
2230 inst->src[1] = reg_undef;
2231 progress = true;
2232 break;
2233 }
2234
2235 if (inst->src[0].file == IMM) {
2236 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2237 inst->opcode = BRW_OPCODE_MOV;
2238 inst->src[0].f += inst->src[1].f;
2239 inst->src[1] = reg_undef;
2240 progress = true;
2241 break;
2242 }
2243 break;
2244 case BRW_OPCODE_OR:
2245 if (inst->src[0].equals(inst->src[1])) {
2246 inst->opcode = BRW_OPCODE_MOV;
2247 inst->src[1] = reg_undef;
2248 progress = true;
2249 break;
2250 }
2251 break;
2252 case BRW_OPCODE_LRP:
2253 if (inst->src[1].equals(inst->src[2])) {
2254 inst->opcode = BRW_OPCODE_MOV;
2255 inst->src[0] = inst->src[1];
2256 inst->src[1] = reg_undef;
2257 inst->src[2] = reg_undef;
2258 progress = true;
2259 break;
2260 }
2261 break;
2262 case BRW_OPCODE_CMP:
2263 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2264 inst->src[0].abs &&
2265 inst->src[0].negate &&
2266 inst->src[1].is_zero()) {
2267 inst->src[0].abs = false;
2268 inst->src[0].negate = false;
2269 inst->conditional_mod = BRW_CONDITIONAL_Z;
2270 progress = true;
2271 break;
2272 }
2273 break;
2274 case BRW_OPCODE_SEL:
2275 if (inst->src[0].equals(inst->src[1])) {
2276 inst->opcode = BRW_OPCODE_MOV;
2277 inst->src[1] = reg_undef;
2278 inst->predicate = BRW_PREDICATE_NONE;
2279 inst->predicate_inverse = false;
2280 progress = true;
2281 } else if (inst->saturate && inst->src[1].file == IMM) {
2282 switch (inst->conditional_mod) {
2283 case BRW_CONDITIONAL_LE:
2284 case BRW_CONDITIONAL_L:
2285 switch (inst->src[1].type) {
2286 case BRW_REGISTER_TYPE_F:
2287 if (inst->src[1].f >= 1.0f) {
2288 inst->opcode = BRW_OPCODE_MOV;
2289 inst->src[1] = reg_undef;
2290 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2291 progress = true;
2292 }
2293 break;
2294 default:
2295 break;
2296 }
2297 break;
2298 case BRW_CONDITIONAL_GE:
2299 case BRW_CONDITIONAL_G:
2300 switch (inst->src[1].type) {
2301 case BRW_REGISTER_TYPE_F:
2302 if (inst->src[1].f <= 0.0f) {
2303 inst->opcode = BRW_OPCODE_MOV;
2304 inst->src[1] = reg_undef;
2305 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2306 progress = true;
2307 }
2308 break;
2309 default:
2310 break;
2311 }
2312 default:
2313 break;
2314 }
2315 }
2316 break;
2317 case BRW_OPCODE_MAD:
2318 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2319 inst->opcode = BRW_OPCODE_MOV;
2320 inst->src[1] = reg_undef;
2321 inst->src[2] = reg_undef;
2322 progress = true;
2323 } else if (inst->src[0].is_zero()) {
2324 inst->opcode = BRW_OPCODE_MUL;
2325 inst->src[0] = inst->src[2];
2326 inst->src[2] = reg_undef;
2327 progress = true;
2328 } else if (inst->src[1].is_one()) {
2329 inst->opcode = BRW_OPCODE_ADD;
2330 inst->src[1] = inst->src[2];
2331 inst->src[2] = reg_undef;
2332 progress = true;
2333 } else if (inst->src[2].is_one()) {
2334 inst->opcode = BRW_OPCODE_ADD;
2335 inst->src[2] = reg_undef;
2336 progress = true;
2337 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2338 inst->opcode = BRW_OPCODE_ADD;
2339 inst->src[1].f *= inst->src[2].f;
2340 inst->src[2] = reg_undef;
2341 progress = true;
2342 }
2343 break;
2344 case SHADER_OPCODE_BROADCAST:
2345 if (is_uniform(inst->src[0])) {
2346 inst->opcode = BRW_OPCODE_MOV;
2347 inst->sources = 1;
2348 inst->force_writemask_all = true;
2349 progress = true;
2350 } else if (inst->src[1].file == IMM) {
2351 inst->opcode = BRW_OPCODE_MOV;
2352 inst->src[0] = component(inst->src[0],
2353 inst->src[1].ud);
2354 inst->sources = 1;
2355 inst->force_writemask_all = true;
2356 progress = true;
2357 }
2358 break;
2359
2360 default:
2361 break;
2362 }
2363
2364 /* Swap if src[0] is immediate. */
2365 if (progress && inst->is_commutative()) {
2366 if (inst->src[0].file == IMM) {
2367 fs_reg tmp = inst->src[1];
2368 inst->src[1] = inst->src[0];
2369 inst->src[0] = tmp;
2370 }
2371 }
2372 }
2373 return progress;
2374 }
2375
2376 /**
2377 * Optimize sample messages that have constant zero values for the trailing
2378 * texture coordinates. We can just reduce the message length for these
2379 * instructions instead of reserving a register for it. Trailing parameters
2380 * that aren't sent default to zero anyway. This will cause the dead code
2381 * eliminator to remove the MOV instruction that would otherwise be emitted to
2382 * set up the zero value.
2383 */
2384 bool
2385 fs_visitor::opt_zero_samples()
2386 {
2387 /* Gen4 infers the texturing opcode based on the message length so we can't
2388 * change it.
2389 */
2390 if (devinfo->gen < 5)
2391 return false;
2392
2393 bool progress = false;
2394
2395 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2396 if (!inst->is_tex())
2397 continue;
2398
2399 fs_inst *load_payload = (fs_inst *) inst->prev;
2400
2401 if (load_payload->is_head_sentinel() ||
2402 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2403 continue;
2404
2405 /* We don't want to remove the message header or the first parameter.
2406 * Removing the first parameter is not allowed, see the Haswell PRM
2407 * volume 7, page 149:
2408 *
2409 * "Parameter 0 is required except for the sampleinfo message, which
2410 * has no parameter 0"
2411 */
2412 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2413 load_payload->src[(inst->mlen - inst->header_size) /
2414 (inst->exec_size / 8) +
2415 inst->header_size - 1].is_zero()) {
2416 inst->mlen -= inst->exec_size / 8;
2417 progress = true;
2418 }
2419 }
2420
2421 if (progress)
2422 invalidate_live_intervals();
2423
2424 return progress;
2425 }
2426
2427 /**
2428 * Optimize sample messages which are followed by the final RT write.
2429 *
2430 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2431 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2432 * final texturing results copied to the framebuffer write payload and modify
2433 * them to write to the framebuffer directly.
2434 */
2435 bool
2436 fs_visitor::opt_sampler_eot()
2437 {
2438 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2439
2440 if (stage != MESA_SHADER_FRAGMENT)
2441 return false;
2442
2443 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2444 return false;
2445
2446 /* FINISHME: It should be possible to implement this optimization when there
2447 * are multiple drawbuffers.
2448 */
2449 if (key->nr_color_regions != 1)
2450 return false;
2451
2452 /* Requires emitting a bunch of saturating MOV instructions during logical
2453 * send lowering to clamp the color payload, which the sampler unit isn't
2454 * going to do for us.
2455 */
2456 if (key->clamp_fragment_color)
2457 return false;
2458
2459 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2460 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2461 fs_inst *fb_write = (fs_inst *)block->end();
2462 assert(fb_write->eot);
2463 assert(fb_write->opcode == FS_OPCODE_FB_WRITE_LOGICAL);
2464
2465 /* There wasn't one; nothing to do. */
2466 if (unlikely(fb_write->prev->is_head_sentinel()))
2467 return false;
2468
2469 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2470
2471 /* 3D Sampler » Messages » Message Format
2472 *
2473 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2474 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2475 */
2476 if (tex_inst->opcode != SHADER_OPCODE_TEX_LOGICAL &&
2477 tex_inst->opcode != SHADER_OPCODE_TXD_LOGICAL &&
2478 tex_inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
2479 tex_inst->opcode != SHADER_OPCODE_TXL_LOGICAL &&
2480 tex_inst->opcode != FS_OPCODE_TXB_LOGICAL &&
2481 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL &&
2482 tex_inst->opcode != SHADER_OPCODE_TXF_CMS_W_LOGICAL &&
2483 tex_inst->opcode != SHADER_OPCODE_TXF_UMS_LOGICAL)
2484 return false;
2485
2486 /* XXX - This shouldn't be necessary. */
2487 if (tex_inst->prev->is_head_sentinel())
2488 return false;
2489
2490 /* Check that the FB write sources are fully initialized by the single
2491 * texturing instruction.
2492 */
2493 for (unsigned i = 0; i < FB_WRITE_LOGICAL_NUM_SRCS; i++) {
2494 if (i == FB_WRITE_LOGICAL_SRC_COLOR0) {
2495 if (!fb_write->src[i].equals(tex_inst->dst) ||
2496 fb_write->size_read(i) != tex_inst->size_written)
2497 return false;
2498 } else if (i != FB_WRITE_LOGICAL_SRC_COMPONENTS) {
2499 if (fb_write->src[i].file != BAD_FILE)
2500 return false;
2501 }
2502 }
2503
2504 assert(!tex_inst->eot); /* We can't get here twice */
2505 assert((tex_inst->offset & (0xff << 24)) == 0);
2506
2507 const fs_builder ibld(this, block, tex_inst);
2508
2509 tex_inst->offset |= fb_write->target << 24;
2510 tex_inst->eot = true;
2511 tex_inst->dst = ibld.null_reg_ud();
2512 tex_inst->size_written = 0;
2513 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2514
2515 /* Marking EOT is sufficient, lower_logical_sends() will notice the EOT
2516 * flag and submit a header together with the sampler message as required
2517 * by the hardware.
2518 */
2519 invalidate_live_intervals();
2520 return true;
2521 }
2522
2523 bool
2524 fs_visitor::opt_register_renaming()
2525 {
2526 bool progress = false;
2527 int depth = 0;
2528
2529 int remap[alloc.count];
2530 memset(remap, -1, sizeof(int) * alloc.count);
2531
2532 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2533 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2534 depth++;
2535 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2536 inst->opcode == BRW_OPCODE_WHILE) {
2537 depth--;
2538 }
2539
2540 /* Rewrite instruction sources. */
2541 for (int i = 0; i < inst->sources; i++) {
2542 if (inst->src[i].file == VGRF &&
2543 remap[inst->src[i].nr] != -1 &&
2544 remap[inst->src[i].nr] != inst->src[i].nr) {
2545 inst->src[i].nr = remap[inst->src[i].nr];
2546 progress = true;
2547 }
2548 }
2549
2550 const int dst = inst->dst.nr;
2551
2552 if (depth == 0 &&
2553 inst->dst.file == VGRF &&
2554 alloc.sizes[inst->dst.nr] * REG_SIZE == inst->size_written &&
2555 !inst->is_partial_write()) {
2556 if (remap[dst] == -1) {
2557 remap[dst] = dst;
2558 } else {
2559 remap[dst] = alloc.allocate(regs_written(inst));
2560 inst->dst.nr = remap[dst];
2561 progress = true;
2562 }
2563 } else if (inst->dst.file == VGRF &&
2564 remap[dst] != -1 &&
2565 remap[dst] != dst) {
2566 inst->dst.nr = remap[dst];
2567 progress = true;
2568 }
2569 }
2570
2571 if (progress) {
2572 invalidate_live_intervals();
2573
2574 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2575 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2576 delta_xy[i].nr = remap[delta_xy[i].nr];
2577 }
2578 }
2579 }
2580
2581 return progress;
2582 }
2583
2584 /**
2585 * Remove redundant or useless discard jumps.
2586 *
2587 * For example, we can eliminate jumps in the following sequence:
2588 *
2589 * discard-jump (redundant with the next jump)
2590 * discard-jump (useless; jumps to the next instruction)
2591 * placeholder-halt
2592 */
2593 bool
2594 fs_visitor::opt_redundant_discard_jumps()
2595 {
2596 bool progress = false;
2597
2598 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2599
2600 fs_inst *placeholder_halt = NULL;
2601 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2602 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2603 placeholder_halt = inst;
2604 break;
2605 }
2606 }
2607
2608 if (!placeholder_halt)
2609 return false;
2610
2611 /* Delete any HALTs immediately before the placeholder halt. */
2612 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2613 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2614 prev = (fs_inst *) placeholder_halt->prev) {
2615 prev->remove(last_bblock);
2616 progress = true;
2617 }
2618
2619 if (progress)
2620 invalidate_live_intervals();
2621
2622 return progress;
2623 }
2624
2625 /**
2626 * Compute a bitmask with GRF granularity with a bit set for each GRF starting
2627 * from \p r.offset which overlaps the region starting at \p s.offset and
2628 * spanning \p ds bytes.
2629 */
2630 static inline unsigned
2631 mask_relative_to(const fs_reg &r, const fs_reg &s, unsigned ds)
2632 {
2633 const int rel_offset = reg_offset(s) - reg_offset(r);
2634 const int shift = rel_offset / REG_SIZE;
2635 const unsigned n = DIV_ROUND_UP(rel_offset % REG_SIZE + ds, REG_SIZE);
2636 assert(reg_space(r) == reg_space(s) &&
2637 shift >= 0 && shift < int(8 * sizeof(unsigned)));
2638 return ((1 << n) - 1) << shift;
2639 }
2640
2641 bool
2642 fs_visitor::compute_to_mrf()
2643 {
2644 bool progress = false;
2645 int next_ip = 0;
2646
2647 /* No MRFs on Gen >= 7. */
2648 if (devinfo->gen >= 7)
2649 return false;
2650
2651 calculate_live_intervals();
2652
2653 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2654 int ip = next_ip;
2655 next_ip++;
2656
2657 if (inst->opcode != BRW_OPCODE_MOV ||
2658 inst->is_partial_write() ||
2659 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2660 inst->dst.type != inst->src[0].type ||
2661 inst->src[0].abs || inst->src[0].negate ||
2662 !inst->src[0].is_contiguous() ||
2663 inst->src[0].offset % REG_SIZE != 0)
2664 continue;
2665
2666 /* Can't compute-to-MRF this GRF if someone else was going to
2667 * read it later.
2668 */
2669 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2670 continue;
2671
2672 /* Found a move of a GRF to a MRF. Let's see if we can go rewrite the
2673 * things that computed the value of all GRFs of the source region. The
2674 * regs_left bitset keeps track of the registers we haven't yet found a
2675 * generating instruction for.
2676 */
2677 unsigned regs_left = (1 << regs_read(inst, 0)) - 1;
2678
2679 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2680 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2681 inst->src[0], inst->size_read(0))) {
2682 /* Found the last thing to write our reg we want to turn
2683 * into a compute-to-MRF.
2684 */
2685
2686 /* If this one instruction didn't populate all the
2687 * channels, bail. We might be able to rewrite everything
2688 * that writes that reg, but it would require smarter
2689 * tracking.
2690 */
2691 if (scan_inst->is_partial_write())
2692 break;
2693
2694 /* Handling things not fully contained in the source of the copy
2695 * would need us to understand coalescing out more than one MOV at
2696 * a time.
2697 */
2698 if (!region_contained_in(scan_inst->dst, scan_inst->size_written,
2699 inst->src[0], inst->size_read(0)))
2700 break;
2701
2702 /* SEND instructions can't have MRF as a destination. */
2703 if (scan_inst->mlen)
2704 break;
2705
2706 if (devinfo->gen == 6) {
2707 /* gen6 math instructions must have the destination be
2708 * GRF, so no compute-to-MRF for them.
2709 */
2710 if (scan_inst->is_math()) {
2711 break;
2712 }
2713 }
2714
2715 /* Clear the bits for any registers this instruction overwrites. */
2716 regs_left &= ~mask_relative_to(
2717 inst->src[0], scan_inst->dst, scan_inst->size_written);
2718 if (!regs_left)
2719 break;
2720 }
2721
2722 /* We don't handle control flow here. Most computation of
2723 * values that end up in MRFs are shortly before the MRF
2724 * write anyway.
2725 */
2726 if (block->start() == scan_inst)
2727 break;
2728
2729 /* You can't read from an MRF, so if someone else reads our
2730 * MRF's source GRF that we wanted to rewrite, that stops us.
2731 */
2732 bool interfered = false;
2733 for (int i = 0; i < scan_inst->sources; i++) {
2734 if (regions_overlap(scan_inst->src[i], scan_inst->size_read(i),
2735 inst->src[0], inst->size_read(0))) {
2736 interfered = true;
2737 }
2738 }
2739 if (interfered)
2740 break;
2741
2742 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2743 inst->dst, inst->size_written)) {
2744 /* If somebody else writes our MRF here, we can't
2745 * compute-to-MRF before that.
2746 */
2747 break;
2748 }
2749
2750 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1 &&
2751 regions_overlap(fs_reg(MRF, scan_inst->base_mrf), scan_inst->mlen * REG_SIZE,
2752 inst->dst, inst->size_written)) {
2753 /* Found a SEND instruction, which means that there are
2754 * live values in MRFs from base_mrf to base_mrf +
2755 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2756 * above it.
2757 */
2758 break;
2759 }
2760 }
2761
2762 if (regs_left)
2763 continue;
2764
2765 /* Found all generating instructions of our MRF's source value, so it
2766 * should be safe to rewrite them to point to the MRF directly.
2767 */
2768 regs_left = (1 << regs_read(inst, 0)) - 1;
2769
2770 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2771 if (regions_overlap(scan_inst->dst, scan_inst->size_written,
2772 inst->src[0], inst->size_read(0))) {
2773 /* Clear the bits for any registers this instruction overwrites. */
2774 regs_left &= ~mask_relative_to(
2775 inst->src[0], scan_inst->dst, scan_inst->size_written);
2776
2777 const unsigned rel_offset = reg_offset(scan_inst->dst) -
2778 reg_offset(inst->src[0]);
2779
2780 if (inst->dst.nr & BRW_MRF_COMPR4) {
2781 /* Apply the same address transformation done by the hardware
2782 * for COMPR4 MRF writes.
2783 */
2784 assert(rel_offset < 2 * REG_SIZE);
2785 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE * 4;
2786
2787 /* Clear the COMPR4 bit if the generating instruction is not
2788 * compressed.
2789 */
2790 if (scan_inst->size_written < 2 * REG_SIZE)
2791 scan_inst->dst.nr &= ~BRW_MRF_COMPR4;
2792
2793 } else {
2794 /* Calculate the MRF number the result of this instruction is
2795 * ultimately written to.
2796 */
2797 scan_inst->dst.nr = inst->dst.nr + rel_offset / REG_SIZE;
2798 }
2799
2800 scan_inst->dst.file = MRF;
2801 scan_inst->dst.offset = inst->dst.offset + rel_offset % REG_SIZE;
2802 scan_inst->saturate |= inst->saturate;
2803 if (!regs_left)
2804 break;
2805 }
2806 }
2807
2808 assert(!regs_left);
2809 inst->remove(block);
2810 progress = true;
2811 }
2812
2813 if (progress)
2814 invalidate_live_intervals();
2815
2816 return progress;
2817 }
2818
2819 /**
2820 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2821 * flow. We could probably do better here with some form of divergence
2822 * analysis.
2823 */
2824 bool
2825 fs_visitor::eliminate_find_live_channel()
2826 {
2827 bool progress = false;
2828 unsigned depth = 0;
2829
2830 if (!brw_stage_has_packed_dispatch(devinfo, stage, stage_prog_data)) {
2831 /* The optimization below assumes that channel zero is live on thread
2832 * dispatch, which may not be the case if the fixed function dispatches
2833 * threads sparsely.
2834 */
2835 return false;
2836 }
2837
2838 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2839 switch (inst->opcode) {
2840 case BRW_OPCODE_IF:
2841 case BRW_OPCODE_DO:
2842 depth++;
2843 break;
2844
2845 case BRW_OPCODE_ENDIF:
2846 case BRW_OPCODE_WHILE:
2847 depth--;
2848 break;
2849
2850 case FS_OPCODE_DISCARD_JUMP:
2851 /* This can potentially make control flow non-uniform until the end
2852 * of the program.
2853 */
2854 return progress;
2855
2856 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2857 if (depth == 0) {
2858 inst->opcode = BRW_OPCODE_MOV;
2859 inst->src[0] = brw_imm_ud(0u);
2860 inst->sources = 1;
2861 inst->force_writemask_all = true;
2862 progress = true;
2863 }
2864 break;
2865
2866 default:
2867 break;
2868 }
2869 }
2870
2871 return progress;
2872 }
2873
2874 /**
2875 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2876 * instructions to FS_OPCODE_REP_FB_WRITE.
2877 */
2878 void
2879 fs_visitor::emit_repclear_shader()
2880 {
2881 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2882 int base_mrf = 0;
2883 int color_mrf = base_mrf + 2;
2884 fs_inst *mov;
2885
2886 if (uniforms > 0) {
2887 mov = bld.exec_all().group(4, 0)
2888 .MOV(brw_message_reg(color_mrf),
2889 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2890 } else {
2891 struct brw_reg reg =
2892 brw_reg(BRW_GENERAL_REGISTER_FILE, 2, 3, 0, 0, BRW_REGISTER_TYPE_F,
2893 BRW_VERTICAL_STRIDE_8, BRW_WIDTH_2, BRW_HORIZONTAL_STRIDE_4,
2894 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2895
2896 mov = bld.exec_all().group(4, 0)
2897 .MOV(vec4(brw_message_reg(color_mrf)), fs_reg(reg));
2898 }
2899
2900 fs_inst *write;
2901 if (key->nr_color_regions == 1) {
2902 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2903 write->saturate = key->clamp_fragment_color;
2904 write->base_mrf = color_mrf;
2905 write->target = 0;
2906 write->header_size = 0;
2907 write->mlen = 1;
2908 } else {
2909 assume(key->nr_color_regions > 0);
2910 for (int i = 0; i < key->nr_color_regions; ++i) {
2911 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2912 write->saturate = key->clamp_fragment_color;
2913 write->base_mrf = base_mrf;
2914 write->target = i;
2915 write->header_size = 2;
2916 write->mlen = 3;
2917 }
2918 }
2919 write->eot = true;
2920
2921 calculate_cfg();
2922
2923 assign_constant_locations();
2924 assign_curb_setup();
2925
2926 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2927 if (uniforms > 0) {
2928 assert(mov->src[0].file == FIXED_GRF);
2929 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2930 }
2931 }
2932
2933 /**
2934 * Walks through basic blocks, looking for repeated MRF writes and
2935 * removing the later ones.
2936 */
2937 bool
2938 fs_visitor::remove_duplicate_mrf_writes()
2939 {
2940 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2941 bool progress = false;
2942
2943 /* Need to update the MRF tracking for compressed instructions. */
2944 if (dispatch_width >= 16)
2945 return false;
2946
2947 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2948
2949 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2950 if (inst->is_control_flow()) {
2951 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2952 }
2953
2954 if (inst->opcode == BRW_OPCODE_MOV &&
2955 inst->dst.file == MRF) {
2956 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2957 if (prev_inst && inst->equals(prev_inst)) {
2958 inst->remove(block);
2959 progress = true;
2960 continue;
2961 }
2962 }
2963
2964 /* Clear out the last-write records for MRFs that were overwritten. */
2965 if (inst->dst.file == MRF) {
2966 last_mrf_move[inst->dst.nr] = NULL;
2967 }
2968
2969 if (inst->mlen > 0 && inst->base_mrf != -1) {
2970 /* Found a SEND instruction, which will include two or fewer
2971 * implied MRF writes. We could do better here.
2972 */
2973 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2974 last_mrf_move[inst->base_mrf + i] = NULL;
2975 }
2976 }
2977
2978 /* Clear out any MRF move records whose sources got overwritten. */
2979 for (unsigned i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2980 if (last_mrf_move[i] &&
2981 regions_overlap(inst->dst, inst->size_written,
2982 last_mrf_move[i]->src[0],
2983 last_mrf_move[i]->size_read(0))) {
2984 last_mrf_move[i] = NULL;
2985 }
2986 }
2987
2988 if (inst->opcode == BRW_OPCODE_MOV &&
2989 inst->dst.file == MRF &&
2990 inst->src[0].file != ARF &&
2991 !inst->is_partial_write()) {
2992 last_mrf_move[inst->dst.nr] = inst;
2993 }
2994 }
2995
2996 if (progress)
2997 invalidate_live_intervals();
2998
2999 return progress;
3000 }
3001
3002 static void
3003 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3004 {
3005 /* Clear the flag for registers that actually got read (as expected). */
3006 for (int i = 0; i < inst->sources; i++) {
3007 int grf;
3008 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
3009 grf = inst->src[i].nr;
3010 } else {
3011 continue;
3012 }
3013
3014 if (grf >= first_grf &&
3015 grf < first_grf + grf_len) {
3016 deps[grf - first_grf] = false;
3017 if (inst->exec_size == 16)
3018 deps[grf - first_grf + 1] = false;
3019 }
3020 }
3021 }
3022
3023 /**
3024 * Implements this workaround for the original 965:
3025 *
3026 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3027 * check for post destination dependencies on this instruction, software
3028 * must ensure that there is no destination hazard for the case of ‘write
3029 * followed by a posted write’ shown in the following example.
3030 *
3031 * 1. mov r3 0
3032 * 2. send r3.xy <rest of send instruction>
3033 * 3. mov r2 r3
3034 *
3035 * Due to no post-destination dependency check on the ‘send’, the above
3036 * code sequence could have two instructions (1 and 2) in flight at the
3037 * same time that both consider ‘r3’ as the target of their final writes.
3038 */
3039 void
3040 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3041 fs_inst *inst)
3042 {
3043 int write_len = regs_written(inst);
3044 int first_write_grf = inst->dst.nr;
3045 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3046 assert(write_len < (int)sizeof(needs_dep) - 1);
3047
3048 memset(needs_dep, false, sizeof(needs_dep));
3049 memset(needs_dep, true, write_len);
3050
3051 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3052
3053 /* Walk backwards looking for writes to registers we're writing which
3054 * aren't read since being written. If we hit the start of the program,
3055 * we assume that there are no outstanding dependencies on entry to the
3056 * program.
3057 */
3058 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
3059 /* If we hit control flow, assume that there *are* outstanding
3060 * dependencies, and force their cleanup before our instruction.
3061 */
3062 if (block->start() == scan_inst && block->num != 0) {
3063 for (int i = 0; i < write_len; i++) {
3064 if (needs_dep[i])
3065 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
3066 first_write_grf + i);
3067 }
3068 return;
3069 }
3070
3071 /* We insert our reads as late as possible on the assumption that any
3072 * instruction but a MOV that might have left us an outstanding
3073 * dependency has more latency than a MOV.
3074 */
3075 if (scan_inst->dst.file == VGRF) {
3076 for (unsigned i = 0; i < regs_written(scan_inst); i++) {
3077 int reg = scan_inst->dst.nr + i;
3078
3079 if (reg >= first_write_grf &&
3080 reg < first_write_grf + write_len &&
3081 needs_dep[reg - first_write_grf]) {
3082 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
3083 needs_dep[reg - first_write_grf] = false;
3084 if (scan_inst->exec_size == 16)
3085 needs_dep[reg - first_write_grf + 1] = false;
3086 }
3087 }
3088 }
3089
3090 /* Clear the flag for registers that actually got read (as expected). */
3091 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3092
3093 /* Continue the loop only if we haven't resolved all the dependencies */
3094 int i;
3095 for (i = 0; i < write_len; i++) {
3096 if (needs_dep[i])
3097 break;
3098 }
3099 if (i == write_len)
3100 return;
3101 }
3102 }
3103
3104 /**
3105 * Implements this workaround for the original 965:
3106 *
3107 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3108 * used as a destination register until after it has been sourced by an
3109 * instruction with a different destination register.
3110 */
3111 void
3112 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3113 {
3114 int write_len = regs_written(inst);
3115 int first_write_grf = inst->dst.nr;
3116 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3117 assert(write_len < (int)sizeof(needs_dep) - 1);
3118
3119 memset(needs_dep, false, sizeof(needs_dep));
3120 memset(needs_dep, true, write_len);
3121 /* Walk forwards looking for writes to registers we're writing which aren't
3122 * read before being written.
3123 */
3124 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3125 /* If we hit control flow, force resolve all remaining dependencies. */
3126 if (block->end() == scan_inst && block->num != cfg->num_blocks - 1) {
3127 for (int i = 0; i < write_len; i++) {
3128 if (needs_dep[i])
3129 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3130 first_write_grf + i);
3131 }
3132 return;
3133 }
3134
3135 /* Clear the flag for registers that actually got read (as expected). */
3136 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3137
3138 /* We insert our reads as late as possible since they're reading the
3139 * result of a SEND, which has massive latency.
3140 */
3141 if (scan_inst->dst.file == VGRF &&
3142 scan_inst->dst.nr >= first_write_grf &&
3143 scan_inst->dst.nr < first_write_grf + write_len &&
3144 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3145 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3146 scan_inst->dst.nr);
3147 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3148 }
3149
3150 /* Continue the loop only if we haven't resolved all the dependencies */
3151 int i;
3152 for (i = 0; i < write_len; i++) {
3153 if (needs_dep[i])
3154 break;
3155 }
3156 if (i == write_len)
3157 return;
3158 }
3159 }
3160
3161 void
3162 fs_visitor::insert_gen4_send_dependency_workarounds()
3163 {
3164 if (devinfo->gen != 4 || devinfo->is_g4x)
3165 return;
3166
3167 bool progress = false;
3168
3169 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3170 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3171 insert_gen4_pre_send_dependency_workarounds(block, inst);
3172 insert_gen4_post_send_dependency_workarounds(block, inst);
3173 progress = true;
3174 }
3175 }
3176
3177 if (progress)
3178 invalidate_live_intervals();
3179 }
3180
3181 /**
3182 * Turns the generic expression-style uniform pull constant load instruction
3183 * into a hardware-specific series of instructions for loading a pull
3184 * constant.
3185 *
3186 * The expression style allows the CSE pass before this to optimize out
3187 * repeated loads from the same offset, and gives the pre-register-allocation
3188 * scheduling full flexibility, while the conversion to native instructions
3189 * allows the post-register-allocation scheduler the best information
3190 * possible.
3191 *
3192 * Note that execution masking for setting up pull constant loads is special:
3193 * the channels that need to be written are unrelated to the current execution
3194 * mask, since a later instruction will use one of the result channels as a
3195 * source operand for all 8 or 16 of its channels.
3196 */
3197 void
3198 fs_visitor::lower_uniform_pull_constant_loads()
3199 {
3200 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3201 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3202 continue;
3203
3204 if (devinfo->gen >= 7) {
3205 /* The offset arg is a vec4-aligned immediate byte offset. */
3206 fs_reg const_offset_reg = inst->src[1];
3207 assert(const_offset_reg.file == IMM &&
3208 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3209 assert(const_offset_reg.ud % 16 == 0);
3210
3211 fs_reg payload, offset;
3212 if (devinfo->gen >= 9) {
3213 /* We have to use a message header on Skylake to get SIMD4x2
3214 * mode. Reserve space for the register.
3215 */
3216 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3217 offset.offset += REG_SIZE;
3218 inst->mlen = 2;
3219 } else {
3220 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3221 inst->mlen = 1;
3222 }
3223
3224 /* This is actually going to be a MOV, but since only the first dword
3225 * is accessed, we have a special opcode to do just that one. Note
3226 * that this needs to be an operation that will be considered a def
3227 * by live variable analysis, or register allocation will explode.
3228 */
3229 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3230 8, offset, const_offset_reg);
3231 setup->force_writemask_all = true;
3232
3233 setup->ir = inst->ir;
3234 setup->annotation = inst->annotation;
3235 inst->insert_before(block, setup);
3236
3237 /* Similarly, this will only populate the first 4 channels of the
3238 * result register (since we only use smear values from 0-3), but we
3239 * don't tell the optimizer.
3240 */
3241 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3242 inst->src[1] = payload;
3243
3244 invalidate_live_intervals();
3245 } else {
3246 /* Before register allocation, we didn't tell the scheduler about the
3247 * MRF we use. We know it's safe to use this MRF because nothing
3248 * else does except for register spill/unspill, which generates and
3249 * uses its MRF within a single IR instruction.
3250 */
3251 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3252 inst->mlen = 1;
3253 }
3254 }
3255 }
3256
3257 bool
3258 fs_visitor::lower_load_payload()
3259 {
3260 bool progress = false;
3261
3262 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3263 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3264 continue;
3265
3266 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3267 assert(inst->saturate == false);
3268 fs_reg dst = inst->dst;
3269
3270 /* Get rid of COMPR4. We'll add it back in if we need it */
3271 if (dst.file == MRF)
3272 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3273
3274 const fs_builder ibld(this, block, inst);
3275 const fs_builder hbld = ibld.exec_all().group(8, 0);
3276
3277 for (uint8_t i = 0; i < inst->header_size; i++) {
3278 if (inst->src[i].file != BAD_FILE) {
3279 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3280 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3281 hbld.MOV(mov_dst, mov_src);
3282 }
3283 dst = offset(dst, hbld, 1);
3284 }
3285
3286 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3287 inst->exec_size > 8) {
3288 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3289 * a straightforward copy. Instead, the result of the
3290 * LOAD_PAYLOAD is treated as interleaved and the first four
3291 * non-header sources are unpacked as:
3292 *
3293 * m + 0: r0
3294 * m + 1: g0
3295 * m + 2: b0
3296 * m + 3: a0
3297 * m + 4: r1
3298 * m + 5: g1
3299 * m + 6: b1
3300 * m + 7: a1
3301 *
3302 * This is used for gen <= 5 fb writes.
3303 */
3304 assert(inst->exec_size == 16);
3305 assert(inst->header_size + 4 <= inst->sources);
3306 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3307 if (inst->src[i].file != BAD_FILE) {
3308 if (devinfo->has_compr4) {
3309 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3310 compr4_dst.nr |= BRW_MRF_COMPR4;
3311 ibld.MOV(compr4_dst, inst->src[i]);
3312 } else {
3313 /* Platform doesn't have COMPR4. We have to fake it */
3314 fs_reg mov_dst = retype(dst, inst->src[i].type);
3315 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3316 mov_dst.nr += 4;
3317 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3318 }
3319 }
3320
3321 dst.nr++;
3322 }
3323
3324 /* The loop above only ever incremented us through the first set
3325 * of 4 registers. However, thanks to the magic of COMPR4, we
3326 * actually wrote to the first 8 registers, so we need to take
3327 * that into account now.
3328 */
3329 dst.nr += 4;
3330
3331 /* The COMPR4 code took care of the first 4 sources. We'll let
3332 * the regular path handle any remaining sources. Yes, we are
3333 * modifying the instruction but we're about to delete it so
3334 * this really doesn't hurt anything.
3335 */
3336 inst->header_size += 4;
3337 }
3338
3339 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3340 if (inst->src[i].file != BAD_FILE)
3341 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3342 dst = offset(dst, ibld, 1);
3343 }
3344
3345 inst->remove(block);
3346 progress = true;
3347 }
3348
3349 if (progress)
3350 invalidate_live_intervals();
3351
3352 return progress;
3353 }
3354
3355 bool
3356 fs_visitor::lower_integer_multiplication()
3357 {
3358 bool progress = false;
3359
3360 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3361 const fs_builder ibld(this, block, inst);
3362
3363 if (inst->opcode == BRW_OPCODE_MUL) {
3364 if (inst->dst.is_accumulator() ||
3365 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3366 inst->dst.type != BRW_REGISTER_TYPE_UD))
3367 continue;
3368
3369 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3370 * operation directly, but CHV/BXT cannot.
3371 */
3372 if (devinfo->gen >= 8 &&
3373 !devinfo->is_cherryview && !devinfo->is_broxton)
3374 continue;
3375
3376 if (inst->src[1].file == IMM &&
3377 inst->src[1].ud < (1 << 16)) {
3378 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3379 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3380 * src1 are used.
3381 *
3382 * If multiplying by an immediate value that fits in 16-bits, do a
3383 * single MUL instruction with that value in the proper location.
3384 */
3385 if (devinfo->gen < 7) {
3386 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3387 inst->dst.type);
3388 ibld.MOV(imm, inst->src[1]);
3389 ibld.MUL(inst->dst, imm, inst->src[0]);
3390 } else {
3391 const bool ud = (inst->src[1].type == BRW_REGISTER_TYPE_UD);
3392 ibld.MUL(inst->dst, inst->src[0],
3393 ud ? brw_imm_uw(inst->src[1].ud)
3394 : brw_imm_w(inst->src[1].d));
3395 }
3396 } else {
3397 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3398 * do 32-bit integer multiplication in one instruction, but instead
3399 * must do a sequence (which actually calculates a 64-bit result):
3400 *
3401 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3402 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3403 * mov(8) g2<1>D acc0<8,8,1>D
3404 *
3405 * But on Gen > 6, the ability to use second accumulator register
3406 * (acc1) for non-float data types was removed, preventing a simple
3407 * implementation in SIMD16. A 16-channel result can be calculated by
3408 * executing the three instructions twice in SIMD8, once with quarter
3409 * control of 1Q for the first eight channels and again with 2Q for
3410 * the second eight channels.
3411 *
3412 * Which accumulator register is implicitly accessed (by AccWrEnable
3413 * for instance) is determined by the quarter control. Unfortunately
3414 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3415 * implicit accumulator access by an instruction with 2Q will access
3416 * acc1 regardless of whether the data type is usable in acc1.
3417 *
3418 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3419 * integer data types.
3420 *
3421 * Since we only want the low 32-bits of the result, we can do two
3422 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3423 * adjust the high result and add them (like the mach is doing):
3424 *
3425 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3426 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3427 * shl(8) g9<1>D g8<8,8,1>D 16D
3428 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3429 *
3430 * We avoid the shl instruction by realizing that we only want to add
3431 * the low 16-bits of the "high" result to the high 16-bits of the
3432 * "low" result and using proper regioning on the add:
3433 *
3434 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3435 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3436 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3437 *
3438 * Since it does not use the (single) accumulator register, we can
3439 * schedule multi-component multiplications much better.
3440 */
3441
3442 fs_reg orig_dst = inst->dst;
3443 if (orig_dst.is_null() || orig_dst.file == MRF) {
3444 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3445 inst->dst.type);
3446 }
3447 fs_reg low = inst->dst;
3448 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3449 inst->dst.type);
3450
3451 if (devinfo->gen >= 7) {
3452 if (inst->src[1].file == IMM) {
3453 ibld.MUL(low, inst->src[0],
3454 brw_imm_uw(inst->src[1].ud & 0xffff));
3455 ibld.MUL(high, inst->src[0],
3456 brw_imm_uw(inst->src[1].ud >> 16));
3457 } else {
3458 ibld.MUL(low, inst->src[0],
3459 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 0));
3460 ibld.MUL(high, inst->src[0],
3461 subscript(inst->src[1], BRW_REGISTER_TYPE_UW, 1));
3462 }
3463 } else {
3464 ibld.MUL(low, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 0),
3465 inst->src[1]);
3466 ibld.MUL(high, subscript(inst->src[0], BRW_REGISTER_TYPE_UW, 1),
3467 inst->src[1]);
3468 }
3469
3470 ibld.ADD(subscript(inst->dst, BRW_REGISTER_TYPE_UW, 1),
3471 subscript(low, BRW_REGISTER_TYPE_UW, 1),
3472 subscript(high, BRW_REGISTER_TYPE_UW, 0));
3473
3474 if (inst->conditional_mod || orig_dst.file == MRF) {
3475 set_condmod(inst->conditional_mod,
3476 ibld.MOV(orig_dst, inst->dst));
3477 }
3478 }
3479
3480 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3481 /* Should have been lowered to 8-wide. */
3482 assert(inst->exec_size <= get_lowered_simd_width(devinfo, inst));
3483 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3484 inst->dst.type);
3485 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3486 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3487
3488 if (devinfo->gen >= 8) {
3489 /* Until Gen8, integer multiplies read 32-bits from one source,
3490 * and 16-bits from the other, and relying on the MACH instruction
3491 * to generate the high bits of the result.
3492 *
3493 * On Gen8, the multiply instruction does a full 32x32-bit
3494 * multiply, but in order to do a 64-bit multiply we can simulate
3495 * the previous behavior and then use a MACH instruction.
3496 *
3497 * FINISHME: Don't use source modifiers on src1.
3498 */
3499 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3500 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3501 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3502 mul->src[1].stride *= 2;
3503
3504 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3505 inst->group > 0) {
3506 /* Among other things the quarter control bits influence which
3507 * accumulator register is used by the hardware for instructions
3508 * that access the accumulator implicitly (e.g. MACH). A
3509 * second-half instruction would normally map to acc1, which
3510 * doesn't exist on Gen7 and up (the hardware does emulate it for
3511 * floating-point instructions *only* by taking advantage of the
3512 * extra precision of acc0 not normally used for floating point
3513 * arithmetic).
3514 *
3515 * HSW and up are careful enough not to try to access an
3516 * accumulator register that doesn't exist, but on earlier Gen7
3517 * hardware we need to make sure that the quarter control bits are
3518 * zero to avoid non-deterministic behaviour and emit an extra MOV
3519 * to get the result masked correctly according to the current
3520 * channel enables.
3521 */
3522 mach->group = 0;
3523 mach->force_writemask_all = true;
3524 mach->dst = ibld.vgrf(inst->dst.type);
3525 ibld.MOV(inst->dst, mach->dst);
3526 }
3527 } else {
3528 continue;
3529 }
3530
3531 inst->remove(block);
3532 progress = true;
3533 }
3534
3535 if (progress)
3536 invalidate_live_intervals();
3537
3538 return progress;
3539 }
3540
3541 bool
3542 fs_visitor::lower_minmax()
3543 {
3544 assert(devinfo->gen < 6);
3545
3546 bool progress = false;
3547
3548 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3549 const fs_builder ibld(this, block, inst);
3550
3551 if (inst->opcode == BRW_OPCODE_SEL &&
3552 inst->predicate == BRW_PREDICATE_NONE) {
3553 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3554 * the original SEL.L/GE instruction
3555 */
3556 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3557 inst->conditional_mod);
3558 inst->predicate = BRW_PREDICATE_NORMAL;
3559 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3560
3561 progress = true;
3562 }
3563 }
3564
3565 if (progress)
3566 invalidate_live_intervals();
3567
3568 return progress;
3569 }
3570
3571 static void
3572 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3573 fs_reg *dst, fs_reg color, unsigned components)
3574 {
3575 if (key->clamp_fragment_color) {
3576 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3577 assert(color.type == BRW_REGISTER_TYPE_F);
3578
3579 for (unsigned i = 0; i < components; i++)
3580 set_saturate(true,
3581 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3582
3583 color = tmp;
3584 }
3585
3586 for (unsigned i = 0; i < components; i++)
3587 dst[i] = offset(color, bld, i);
3588 }
3589
3590 static void
3591 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3592 const struct brw_wm_prog_data *prog_data,
3593 const brw_wm_prog_key *key,
3594 const fs_visitor::thread_payload &payload)
3595 {
3596 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3597 const gen_device_info *devinfo = bld.shader->devinfo;
3598 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3599 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3600 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3601 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3602 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3603 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3604 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3605 const unsigned components =
3606 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3607
3608 /* We can potentially have a message length of up to 15, so we have to set
3609 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3610 */
3611 fs_reg sources[15];
3612 int header_size = 2, payload_header_size;
3613 unsigned length = 0;
3614
3615 /* From the Sandy Bridge PRM, volume 4, page 198:
3616 *
3617 * "Dispatched Pixel Enables. One bit per pixel indicating
3618 * which pixels were originally enabled when the thread was
3619 * dispatched. This field is only required for the end-of-
3620 * thread message and on all dual-source messages."
3621 */
3622 if (devinfo->gen >= 6 &&
3623 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3624 color1.file == BAD_FILE &&
3625 key->nr_color_regions == 1) {
3626 header_size = 0;
3627 }
3628
3629 if (header_size != 0) {
3630 assert(header_size == 2);
3631 /* Allocate 2 registers for a header */
3632 length += 2;
3633 }
3634
3635 if (payload.aa_dest_stencil_reg) {
3636 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3637 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3638 .MOV(sources[length],
3639 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3640 length++;
3641 }
3642
3643 if (sample_mask.file != BAD_FILE) {
3644 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3645 BRW_REGISTER_TYPE_UD);
3646
3647 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3648 * relevant. Since it's unsigned single words one vgrf is always
3649 * 16-wide, but only the lower or higher 8 channels will be used by the
3650 * hardware when doing a SIMD8 write depending on whether we have
3651 * selected the subspans for the first or second half respectively.
3652 */
3653 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3654 sample_mask.type = BRW_REGISTER_TYPE_UW;
3655 sample_mask.stride *= 2;
3656
3657 bld.exec_all().annotate("FB write oMask")
3658 .MOV(horiz_offset(retype(sources[length], BRW_REGISTER_TYPE_UW),
3659 inst->group),
3660 sample_mask);
3661 length++;
3662 }
3663
3664 payload_header_size = length;
3665
3666 if (src0_alpha.file != BAD_FILE) {
3667 /* FIXME: This is being passed at the wrong location in the payload and
3668 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3669 * It's supposed to be immediately before oMask but there seems to be no
3670 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3671 * requires header sources to form a contiguous segment at the beginning
3672 * of the message and src0_alpha has per-channel semantics.
3673 */
3674 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3675 length++;
3676 }
3677
3678 setup_color_payload(bld, key, &sources[length], color0, components);
3679 length += 4;
3680
3681 if (color1.file != BAD_FILE) {
3682 setup_color_payload(bld, key, &sources[length], color1, components);
3683 length += 4;
3684 }
3685
3686 if (src_depth.file != BAD_FILE) {
3687 sources[length] = src_depth;
3688 length++;
3689 }
3690
3691 if (dst_depth.file != BAD_FILE) {
3692 sources[length] = dst_depth;
3693 length++;
3694 }
3695
3696 if (src_stencil.file != BAD_FILE) {
3697 assert(devinfo->gen >= 9);
3698 assert(bld.dispatch_width() != 16);
3699
3700 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3701 * available on gen9+. As such it's impossible to have both enabled at the
3702 * same time and therefore length cannot overrun the array.
3703 */
3704 assert(length < 15);
3705
3706 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3707 bld.exec_all().annotate("FB write OS")
3708 .MOV(retype(sources[length], BRW_REGISTER_TYPE_UB),
3709 subscript(src_stencil, BRW_REGISTER_TYPE_UB, 0));
3710 length++;
3711 }
3712
3713 fs_inst *load;
3714 if (devinfo->gen >= 7) {
3715 /* Send from the GRF */
3716 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3717 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3718 payload.nr = bld.shader->alloc.allocate(regs_written(load));
3719 load->dst = payload;
3720
3721 inst->src[0] = payload;
3722 inst->resize_sources(1);
3723 } else {
3724 /* Send from the MRF */
3725 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3726 sources, length, payload_header_size);
3727
3728 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3729 * will do this for us if we just give it a COMPR4 destination.
3730 */
3731 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3732 load->dst.nr |= BRW_MRF_COMPR4;
3733
3734 inst->resize_sources(0);
3735 inst->base_mrf = 1;
3736 }
3737
3738 inst->opcode = FS_OPCODE_FB_WRITE;
3739 inst->mlen = regs_written(load);
3740 inst->header_size = header_size;
3741 }
3742
3743 static void
3744 lower_fb_read_logical_send(const fs_builder &bld, fs_inst *inst)
3745 {
3746 const fs_builder &ubld = bld.exec_all();
3747 const unsigned length = 2;
3748 const fs_reg header = ubld.group(8, 0).vgrf(BRW_REGISTER_TYPE_UD, length);
3749
3750 ubld.group(16, 0)
3751 .MOV(header, retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UD));
3752
3753 inst->resize_sources(1);
3754 inst->src[0] = header;
3755 inst->opcode = FS_OPCODE_FB_READ;
3756 inst->mlen = length;
3757 inst->header_size = length;
3758 }
3759
3760 static void
3761 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3762 const fs_reg &coordinate,
3763 const fs_reg &shadow_c,
3764 const fs_reg &lod, const fs_reg &lod2,
3765 const fs_reg &surface,
3766 const fs_reg &sampler,
3767 unsigned coord_components,
3768 unsigned grad_components)
3769 {
3770 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3771 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3772 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3773 fs_reg msg_end = msg_begin;
3774
3775 /* g0 header. */
3776 msg_end = offset(msg_end, bld.group(8, 0), 1);
3777
3778 for (unsigned i = 0; i < coord_components; i++)
3779 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3780 offset(coordinate, bld, i));
3781
3782 msg_end = offset(msg_end, bld, coord_components);
3783
3784 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3785 * require all three components to be present and zero if they are unused.
3786 */
3787 if (coord_components > 0 &&
3788 (has_lod || shadow_c.file != BAD_FILE ||
3789 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3790 for (unsigned i = coord_components; i < 3; i++)
3791 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3792
3793 msg_end = offset(msg_end, bld, 3 - coord_components);
3794 }
3795
3796 if (op == SHADER_OPCODE_TXD) {
3797 /* TXD unsupported in SIMD16 mode. */
3798 assert(bld.dispatch_width() == 8);
3799
3800 /* the slots for u and v are always present, but r is optional */
3801 if (coord_components < 2)
3802 msg_end = offset(msg_end, bld, 2 - coord_components);
3803
3804 /* P = u, v, r
3805 * dPdx = dudx, dvdx, drdx
3806 * dPdy = dudy, dvdy, drdy
3807 *
3808 * 1-arg: Does not exist.
3809 *
3810 * 2-arg: dudx dvdx dudy dvdy
3811 * dPdx.x dPdx.y dPdy.x dPdy.y
3812 * m4 m5 m6 m7
3813 *
3814 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3815 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3816 * m5 m6 m7 m8 m9 m10
3817 */
3818 for (unsigned i = 0; i < grad_components; i++)
3819 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3820
3821 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3822
3823 for (unsigned i = 0; i < grad_components; i++)
3824 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3825
3826 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3827 }
3828
3829 if (has_lod) {
3830 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3831 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3832 */
3833 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3834 bld.dispatch_width() == 16);
3835
3836 const brw_reg_type type =
3837 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3838 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3839 bld.MOV(retype(msg_end, type), lod);
3840 msg_end = offset(msg_end, bld, 1);
3841 }
3842
3843 if (shadow_c.file != BAD_FILE) {
3844 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3845 /* There's no plain shadow compare message, so we use shadow
3846 * compare with a bias of 0.0.
3847 */
3848 bld.MOV(msg_end, brw_imm_f(0.0f));
3849 msg_end = offset(msg_end, bld, 1);
3850 }
3851
3852 bld.MOV(msg_end, shadow_c);
3853 msg_end = offset(msg_end, bld, 1);
3854 }
3855
3856 inst->opcode = op;
3857 inst->src[0] = reg_undef;
3858 inst->src[1] = surface;
3859 inst->src[2] = sampler;
3860 inst->resize_sources(3);
3861 inst->base_mrf = msg_begin.nr;
3862 inst->mlen = msg_end.nr - msg_begin.nr;
3863 inst->header_size = 1;
3864 }
3865
3866 static void
3867 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3868 const fs_reg &coordinate,
3869 const fs_reg &shadow_c,
3870 const fs_reg &lod, const fs_reg &lod2,
3871 const fs_reg &sample_index,
3872 const fs_reg &surface,
3873 const fs_reg &sampler,
3874 const fs_reg &offset_value,
3875 unsigned coord_components,
3876 unsigned grad_components)
3877 {
3878 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3879 fs_reg msg_coords = message;
3880 unsigned header_size = 0;
3881
3882 if (offset_value.file != BAD_FILE) {
3883 /* The offsets set up by the visitor are in the m1 header, so we can't
3884 * go headerless.
3885 */
3886 header_size = 1;
3887 message.nr--;
3888 }
3889
3890 for (unsigned i = 0; i < coord_components; i++)
3891 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type),
3892 offset(coordinate, bld, i));
3893
3894 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3895 fs_reg msg_lod = offset(msg_coords, bld, 4);
3896
3897 if (shadow_c.file != BAD_FILE) {
3898 fs_reg msg_shadow = msg_lod;
3899 bld.MOV(msg_shadow, shadow_c);
3900 msg_lod = offset(msg_shadow, bld, 1);
3901 msg_end = msg_lod;
3902 }
3903
3904 switch (op) {
3905 case SHADER_OPCODE_TXL:
3906 case FS_OPCODE_TXB:
3907 bld.MOV(msg_lod, lod);
3908 msg_end = offset(msg_lod, bld, 1);
3909 break;
3910 case SHADER_OPCODE_TXD:
3911 /**
3912 * P = u, v, r
3913 * dPdx = dudx, dvdx, drdx
3914 * dPdy = dudy, dvdy, drdy
3915 *
3916 * Load up these values:
3917 * - dudx dudy dvdx dvdy drdx drdy
3918 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3919 */
3920 msg_end = msg_lod;
3921 for (unsigned i = 0; i < grad_components; i++) {
3922 bld.MOV(msg_end, offset(lod, bld, i));
3923 msg_end = offset(msg_end, bld, 1);
3924
3925 bld.MOV(msg_end, offset(lod2, bld, i));
3926 msg_end = offset(msg_end, bld, 1);
3927 }
3928 break;
3929 case SHADER_OPCODE_TXS:
3930 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3931 bld.MOV(msg_lod, lod);
3932 msg_end = offset(msg_lod, bld, 1);
3933 break;
3934 case SHADER_OPCODE_TXF:
3935 msg_lod = offset(msg_coords, bld, 3);
3936 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3937 msg_end = offset(msg_lod, bld, 1);
3938 break;
3939 case SHADER_OPCODE_TXF_CMS:
3940 msg_lod = offset(msg_coords, bld, 3);
3941 /* lod */
3942 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3943 /* sample index */
3944 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3945 msg_end = offset(msg_lod, bld, 2);
3946 break;
3947 default:
3948 break;
3949 }
3950
3951 inst->opcode = op;
3952 inst->src[0] = reg_undef;
3953 inst->src[1] = surface;
3954 inst->src[2] = sampler;
3955 inst->resize_sources(3);
3956 inst->base_mrf = message.nr;
3957 inst->mlen = msg_end.nr - message.nr;
3958 inst->header_size = header_size;
3959
3960 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3961 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3962 }
3963
3964 static bool
3965 is_high_sampler(const struct gen_device_info *devinfo, const fs_reg &sampler)
3966 {
3967 if (devinfo->gen < 8 && !devinfo->is_haswell)
3968 return false;
3969
3970 return sampler.file != IMM || sampler.ud >= 16;
3971 }
3972
3973 static void
3974 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3975 const fs_reg &coordinate,
3976 const fs_reg &shadow_c,
3977 fs_reg lod, const fs_reg &lod2,
3978 const fs_reg &sample_index,
3979 const fs_reg &mcs,
3980 const fs_reg &surface,
3981 const fs_reg &sampler,
3982 const fs_reg &offset_value,
3983 unsigned coord_components,
3984 unsigned grad_components)
3985 {
3986 const gen_device_info *devinfo = bld.shader->devinfo;
3987 unsigned reg_width = bld.dispatch_width() / 8;
3988 unsigned header_size = 0, length = 0;
3989 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3990 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3991 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3992
3993 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3994 offset_value.file != BAD_FILE || inst->eot ||
3995 op == SHADER_OPCODE_SAMPLEINFO ||
3996 is_high_sampler(devinfo, sampler)) {
3997 /* For general texture offsets (no txf workaround), we need a header to
3998 * put them in. Note that we're only reserving space for it in the
3999 * message payload as it will be initialized implicitly by the
4000 * generator.
4001 *
4002 * TG4 needs to place its channel select in the header, for interaction
4003 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
4004 * larger sampler numbers we need to offset the Sampler State Pointer in
4005 * the header.
4006 */
4007 header_size = 1;
4008 sources[0] = fs_reg();
4009 length++;
4010
4011 /* If we're requesting fewer than four channels worth of response,
4012 * and we have an explicit header, we need to set up the sampler
4013 * writemask. It's reversed from normal: 1 means "don't write".
4014 */
4015 if (!inst->eot && regs_written(inst) != 4 * reg_width) {
4016 assert(regs_written(inst) % reg_width == 0);
4017 unsigned mask = ~((1 << (regs_written(inst) / reg_width)) - 1) & 0xf;
4018 inst->offset |= mask << 12;
4019 }
4020 }
4021
4022 if (shadow_c.file != BAD_FILE) {
4023 bld.MOV(sources[length], shadow_c);
4024 length++;
4025 }
4026
4027 bool coordinate_done = false;
4028
4029 /* Set up the LOD info */
4030 switch (op) {
4031 case FS_OPCODE_TXB:
4032 case SHADER_OPCODE_TXL:
4033 if (devinfo->gen >= 9 && op == SHADER_OPCODE_TXL && lod.is_zero()) {
4034 op = SHADER_OPCODE_TXL_LZ;
4035 break;
4036 }
4037 bld.MOV(sources[length], lod);
4038 length++;
4039 break;
4040 case SHADER_OPCODE_TXD:
4041 /* TXD should have been lowered in SIMD16 mode. */
4042 assert(bld.dispatch_width() == 8);
4043
4044 /* Load dPdx and the coordinate together:
4045 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
4046 */
4047 for (unsigned i = 0; i < coord_components; i++) {
4048 bld.MOV(sources[length++], offset(coordinate, bld, i));
4049
4050 /* For cube map array, the coordinate is (u,v,r,ai) but there are
4051 * only derivatives for (u, v, r).
4052 */
4053 if (i < grad_components) {
4054 bld.MOV(sources[length++], offset(lod, bld, i));
4055 bld.MOV(sources[length++], offset(lod2, bld, i));
4056 }
4057 }
4058
4059 coordinate_done = true;
4060 break;
4061 case SHADER_OPCODE_TXS:
4062 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
4063 length++;
4064 break;
4065 case SHADER_OPCODE_TXF:
4066 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
4067 * On Gen9 they are u, v, lod, r
4068 */
4069 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D), coordinate);
4070
4071 if (devinfo->gen >= 9) {
4072 if (coord_components >= 2) {
4073 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D),
4074 offset(coordinate, bld, 1));
4075 } else {
4076 sources[length] = brw_imm_d(0);
4077 }
4078 length++;
4079 }
4080
4081 if (devinfo->gen >= 9 && lod.is_zero()) {
4082 op = SHADER_OPCODE_TXF_LZ;
4083 } else {
4084 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4085 length++;
4086 }
4087
4088 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++)
4089 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4090 offset(coordinate, bld, i));
4091
4092 coordinate_done = true;
4093 break;
4094
4095 case SHADER_OPCODE_TXF_CMS:
4096 case SHADER_OPCODE_TXF_CMS_W:
4097 case SHADER_OPCODE_TXF_UMS:
4098 case SHADER_OPCODE_TXF_MCS:
4099 if (op == SHADER_OPCODE_TXF_UMS ||
4100 op == SHADER_OPCODE_TXF_CMS ||
4101 op == SHADER_OPCODE_TXF_CMS_W) {
4102 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4103 length++;
4104 }
4105
4106 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4107 /* Data from the multisample control surface. */
4108 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4109 length++;
4110
4111 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4112 * the MCS data.
4113 */
4114 if (op == SHADER_OPCODE_TXF_CMS_W) {
4115 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4116 mcs.file == IMM ?
4117 mcs :
4118 offset(mcs, bld, 1));
4119 length++;
4120 }
4121 }
4122
4123 /* There is no offsetting for this message; just copy in the integer
4124 * texture coordinates.
4125 */
4126 for (unsigned i = 0; i < coord_components; i++)
4127 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4128 offset(coordinate, bld, i));
4129
4130 coordinate_done = true;
4131 break;
4132 case SHADER_OPCODE_TG4_OFFSET:
4133 /* More crazy intermixing */
4134 for (unsigned i = 0; i < 2; i++) /* u, v */
4135 bld.MOV(sources[length++], offset(coordinate, bld, i));
4136
4137 for (unsigned i = 0; i < 2; i++) /* offu, offv */
4138 bld.MOV(retype(sources[length++], BRW_REGISTER_TYPE_D),
4139 offset(offset_value, bld, i));
4140
4141 if (coord_components == 3) /* r if present */
4142 bld.MOV(sources[length++], offset(coordinate, bld, 2));
4143
4144 coordinate_done = true;
4145 break;
4146 default:
4147 break;
4148 }
4149
4150 /* Set up the coordinate (except for cases where it was done above) */
4151 if (!coordinate_done) {
4152 for (unsigned i = 0; i < coord_components; i++)
4153 bld.MOV(sources[length++], offset(coordinate, bld, i));
4154 }
4155
4156 int mlen;
4157 if (reg_width == 2)
4158 mlen = length * reg_width - header_size;
4159 else
4160 mlen = length * reg_width;
4161
4162 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4163 BRW_REGISTER_TYPE_F);
4164 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4165
4166 /* Generate the SEND. */
4167 inst->opcode = op;
4168 inst->src[0] = src_payload;
4169 inst->src[1] = surface;
4170 inst->src[2] = sampler;
4171 inst->resize_sources(3);
4172 inst->mlen = mlen;
4173 inst->header_size = header_size;
4174
4175 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4176 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4177 }
4178
4179 static void
4180 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4181 {
4182 const gen_device_info *devinfo = bld.shader->devinfo;
4183 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4184 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4185 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4186 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4187 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4188 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4189 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4190 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4191 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4192 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4193 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4194 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4195 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4196
4197 if (devinfo->gen >= 7) {
4198 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4199 shadow_c, lod, lod2, sample_index,
4200 mcs, surface, sampler, offset_value,
4201 coord_components, grad_components);
4202 } else if (devinfo->gen >= 5) {
4203 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4204 shadow_c, lod, lod2, sample_index,
4205 surface, sampler, offset_value,
4206 coord_components, grad_components);
4207 } else {
4208 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4209 shadow_c, lod, lod2,
4210 surface, sampler,
4211 coord_components, grad_components);
4212 }
4213 }
4214
4215 /**
4216 * Initialize the header present in some typed and untyped surface
4217 * messages.
4218 */
4219 static fs_reg
4220 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4221 {
4222 fs_builder ubld = bld.exec_all().group(8, 0);
4223 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4224 ubld.MOV(dst, brw_imm_d(0));
4225 ubld.MOV(component(dst, 7), sample_mask);
4226 return dst;
4227 }
4228
4229 static void
4230 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4231 const fs_reg &sample_mask)
4232 {
4233 /* Get the logical send arguments. */
4234 const fs_reg &addr = inst->src[0];
4235 const fs_reg &src = inst->src[1];
4236 const fs_reg &surface = inst->src[2];
4237 const UNUSED fs_reg &dims = inst->src[3];
4238 const fs_reg &arg = inst->src[4];
4239
4240 /* Calculate the total number of components of the payload. */
4241 const unsigned addr_sz = inst->components_read(0);
4242 const unsigned src_sz = inst->components_read(1);
4243 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4244 const unsigned sz = header_sz + addr_sz + src_sz;
4245
4246 /* Allocate space for the payload. */
4247 fs_reg *const components = new fs_reg[sz];
4248 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4249 unsigned n = 0;
4250
4251 /* Construct the payload. */
4252 if (header_sz)
4253 components[n++] = emit_surface_header(bld, sample_mask);
4254
4255 for (unsigned i = 0; i < addr_sz; i++)
4256 components[n++] = offset(addr, bld, i);
4257
4258 for (unsigned i = 0; i < src_sz; i++)
4259 components[n++] = offset(src, bld, i);
4260
4261 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4262
4263 /* Update the original instruction. */
4264 inst->opcode = op;
4265 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4266 inst->header_size = header_sz;
4267
4268 inst->src[0] = payload;
4269 inst->src[1] = surface;
4270 inst->src[2] = arg;
4271 inst->resize_sources(3);
4272
4273 delete[] components;
4274 }
4275
4276 static void
4277 lower_varying_pull_constant_logical_send(const fs_builder &bld, fs_inst *inst)
4278 {
4279 const gen_device_info *devinfo = bld.shader->devinfo;
4280
4281 if (devinfo->gen >= 7) {
4282 /* We are switching the instruction from an ALU-like instruction to a
4283 * send-from-grf instruction. Since sends can't handle strides or
4284 * source modifiers, we have to make a copy of the offset source.
4285 */
4286 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD);
4287 bld.MOV(tmp, inst->src[1]);
4288 inst->src[1] = tmp;
4289
4290 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
4291
4292 } else {
4293 const fs_reg payload(MRF, FIRST_PULL_LOAD_MRF(devinfo->gen),
4294 BRW_REGISTER_TYPE_UD);
4295
4296 bld.MOV(byte_offset(payload, REG_SIZE), inst->src[1]);
4297
4298 inst->opcode = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN4;
4299 inst->resize_sources(1);
4300 inst->base_mrf = payload.nr;
4301 inst->header_size = 1;
4302 inst->mlen = 1 + inst->exec_size / 8;
4303 }
4304 }
4305
4306 static void
4307 lower_math_logical_send(const fs_builder &bld, fs_inst *inst)
4308 {
4309 assert(bld.shader->devinfo->gen < 6);
4310
4311 inst->base_mrf = 2;
4312 inst->mlen = inst->sources * inst->exec_size / 8;
4313
4314 if (inst->sources > 1) {
4315 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
4316 * "Message Payload":
4317 *
4318 * "Operand0[7]. For the INT DIV functions, this operand is the
4319 * denominator."
4320 * ...
4321 * "Operand1[7]. For the INT DIV functions, this operand is the
4322 * numerator."
4323 */
4324 const bool is_int_div = inst->opcode != SHADER_OPCODE_POW;
4325 const fs_reg src0 = is_int_div ? inst->src[1] : inst->src[0];
4326 const fs_reg src1 = is_int_div ? inst->src[0] : inst->src[1];
4327
4328 inst->resize_sources(1);
4329 inst->src[0] = src0;
4330
4331 assert(inst->exec_size == 8);
4332 bld.MOV(fs_reg(MRF, inst->base_mrf + 1, src1.type), src1);
4333 }
4334 }
4335
4336 bool
4337 fs_visitor::lower_logical_sends()
4338 {
4339 bool progress = false;
4340
4341 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4342 const fs_builder ibld(this, block, inst);
4343
4344 switch (inst->opcode) {
4345 case FS_OPCODE_FB_WRITE_LOGICAL:
4346 assert(stage == MESA_SHADER_FRAGMENT);
4347 lower_fb_write_logical_send(ibld, inst,
4348 brw_wm_prog_data(prog_data),
4349 (const brw_wm_prog_key *)key,
4350 payload);
4351 break;
4352
4353 case FS_OPCODE_FB_READ_LOGICAL:
4354 lower_fb_read_logical_send(ibld, inst);
4355 break;
4356
4357 case SHADER_OPCODE_TEX_LOGICAL:
4358 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4359 break;
4360
4361 case SHADER_OPCODE_TXD_LOGICAL:
4362 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4363 break;
4364
4365 case SHADER_OPCODE_TXF_LOGICAL:
4366 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4367 break;
4368
4369 case SHADER_OPCODE_TXL_LOGICAL:
4370 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4371 break;
4372
4373 case SHADER_OPCODE_TXS_LOGICAL:
4374 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4375 break;
4376
4377 case FS_OPCODE_TXB_LOGICAL:
4378 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4379 break;
4380
4381 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4382 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4383 break;
4384
4385 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4386 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4387 break;
4388
4389 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4390 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4391 break;
4392
4393 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4394 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4395 break;
4396
4397 case SHADER_OPCODE_LOD_LOGICAL:
4398 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4399 break;
4400
4401 case SHADER_OPCODE_TG4_LOGICAL:
4402 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4403 break;
4404
4405 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4406 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4407 break;
4408
4409 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4410 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_SAMPLEINFO);
4411 break;
4412
4413 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4414 lower_surface_logical_send(ibld, inst,
4415 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4416 fs_reg());
4417 break;
4418
4419 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4420 lower_surface_logical_send(ibld, inst,
4421 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4422 ibld.sample_mask_reg());
4423 break;
4424
4425 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4426 lower_surface_logical_send(ibld, inst,
4427 SHADER_OPCODE_UNTYPED_ATOMIC,
4428 ibld.sample_mask_reg());
4429 break;
4430
4431 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4432 lower_surface_logical_send(ibld, inst,
4433 SHADER_OPCODE_TYPED_SURFACE_READ,
4434 brw_imm_d(0xffff));
4435 break;
4436
4437 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4438 lower_surface_logical_send(ibld, inst,
4439 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4440 ibld.sample_mask_reg());
4441 break;
4442
4443 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4444 lower_surface_logical_send(ibld, inst,
4445 SHADER_OPCODE_TYPED_ATOMIC,
4446 ibld.sample_mask_reg());
4447 break;
4448
4449 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4450 lower_varying_pull_constant_logical_send(ibld, inst);
4451 break;
4452
4453 case SHADER_OPCODE_RCP:
4454 case SHADER_OPCODE_RSQ:
4455 case SHADER_OPCODE_SQRT:
4456 case SHADER_OPCODE_EXP2:
4457 case SHADER_OPCODE_LOG2:
4458 case SHADER_OPCODE_SIN:
4459 case SHADER_OPCODE_COS:
4460 case SHADER_OPCODE_POW:
4461 case SHADER_OPCODE_INT_QUOTIENT:
4462 case SHADER_OPCODE_INT_REMAINDER:
4463 /* The math opcodes are overloaded for the send-like and
4464 * expression-like instructions which seems kind of icky. Gen6+ has
4465 * a native (but rather quirky) MATH instruction so we don't need to
4466 * do anything here. On Gen4-5 we'll have to lower the Gen6-like
4467 * logical instructions (which we can easily recognize because they
4468 * have mlen = 0) into send-like virtual instructions.
4469 */
4470 if (devinfo->gen < 6 && inst->mlen == 0) {
4471 lower_math_logical_send(ibld, inst);
4472 break;
4473
4474 } else {
4475 continue;
4476 }
4477
4478 default:
4479 continue;
4480 }
4481
4482 progress = true;
4483 }
4484
4485 if (progress)
4486 invalidate_live_intervals();
4487
4488 return progress;
4489 }
4490
4491 /**
4492 * Get the closest allowed SIMD width for instruction \p inst accounting for
4493 * some common regioning and execution control restrictions that apply to FPU
4494 * instructions. These restrictions don't necessarily have any relevance to
4495 * instructions not executed by the FPU pipeline like extended math, control
4496 * flow or send message instructions.
4497 *
4498 * For virtual opcodes it's really up to the instruction -- In some cases
4499 * (e.g. where a virtual instruction unrolls into a simple sequence of FPU
4500 * instructions) it may simplify virtual instruction lowering if we can
4501 * enforce FPU-like regioning restrictions already on the virtual instruction,
4502 * in other cases (e.g. virtual send-like instructions) this may be
4503 * excessively restrictive.
4504 */
4505 static unsigned
4506 get_fpu_lowered_simd_width(const struct gen_device_info *devinfo,
4507 const fs_inst *inst)
4508 {
4509 /* Maximum execution size representable in the instruction controls. */
4510 unsigned max_width = MIN2(32, inst->exec_size);
4511
4512 /* According to the PRMs:
4513 * "A. In Direct Addressing mode, a source cannot span more than 2
4514 * adjacent GRF registers.
4515 * B. A destination cannot span more than 2 adjacent GRF registers."
4516 *
4517 * Look for the source or destination with the largest register region
4518 * which is the one that is going to limit the overall execution size of
4519 * the instruction due to this rule.
4520 */
4521 unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4522
4523 for (unsigned i = 0; i < inst->sources; i++)
4524 reg_count = MAX2(reg_count, DIV_ROUND_UP(inst->size_read(i), REG_SIZE));
4525
4526 /* Calculate the maximum execution size of the instruction based on the
4527 * factor by which it goes over the hardware limit of 2 GRFs.
4528 */
4529 if (reg_count > 2)
4530 max_width = MIN2(max_width, inst->exec_size / DIV_ROUND_UP(reg_count, 2));
4531
4532 /* According to the IVB PRMs:
4533 * "When destination spans two registers, the source MUST span two
4534 * registers. The exception to the above rule:
4535 *
4536 * - When source is scalar, the source registers are not incremented.
4537 * - When source is packed integer Word and destination is packed
4538 * integer DWord, the source register is not incremented but the
4539 * source sub register is incremented."
4540 *
4541 * The hardware specs from Gen4 to Gen7.5 mention similar regioning
4542 * restrictions. The code below intentionally doesn't check whether the
4543 * destination type is integer because empirically the hardware doesn't
4544 * seem to care what the actual type is as long as it's dword-aligned.
4545 */
4546 if (devinfo->gen < 8) {
4547 for (unsigned i = 0; i < inst->sources; i++) {
4548 if (inst->size_written > REG_SIZE &&
4549 inst->size_read(i) != 0 && inst->size_read(i) <= REG_SIZE &&
4550 !is_uniform(inst->src[i]) &&
4551 !(type_sz(inst->dst.type) == 4 && inst->dst.stride == 1 &&
4552 type_sz(inst->src[i].type) == 2 && inst->src[i].stride == 1)) {
4553 const unsigned reg_count = DIV_ROUND_UP(inst->size_written, REG_SIZE);
4554 max_width = MIN2(max_width, inst->exec_size / reg_count);
4555 }
4556 }
4557 }
4558
4559 /* From the IVB PRMs:
4560 * "When an instruction is SIMD32, the low 16 bits of the execution mask
4561 * are applied for both halves of the SIMD32 instruction. If different
4562 * execution mask channels are required, split the instruction into two
4563 * SIMD16 instructions."
4564 *
4565 * There is similar text in the HSW PRMs. Gen4-6 don't even implement
4566 * 32-wide control flow support in hardware and will behave similarly.
4567 */
4568 if (devinfo->gen < 8 && !inst->force_writemask_all)
4569 max_width = MIN2(max_width, 16);
4570
4571 /* From the IVB PRMs (applies to HSW too):
4572 * "Instructions with condition modifiers must not use SIMD32."
4573 *
4574 * From the BDW PRMs (applies to later hardware too):
4575 * "Ternary instruction with condition modifiers must not use SIMD32."
4576 */
4577 if (inst->conditional_mod && (devinfo->gen < 8 || inst->is_3src(devinfo)))
4578 max_width = MIN2(max_width, 16);
4579
4580 /* From the IVB PRMs (applies to other devices that don't have the
4581 * gen_device_info::supports_simd16_3src flag set):
4582 * "In Align16 access mode, SIMD16 is not allowed for DW operations and
4583 * SIMD8 is not allowed for DF operations."
4584 */
4585 if (inst->is_3src(devinfo) && !devinfo->supports_simd16_3src)
4586 max_width = MIN2(max_width, inst->exec_size / reg_count);
4587
4588 /* Pre-Gen8 EUs are hardwired to use the QtrCtrl+1 (where QtrCtrl is
4589 * the 8-bit quarter of the execution mask signals specified in the
4590 * instruction control fields) for the second compressed half of any
4591 * single-precision instruction (for double-precision instructions
4592 * it's hardwired to use NibCtrl+1, at least on HSW), which means that
4593 * the EU will apply the wrong execution controls for the second
4594 * sequential GRF write if the number of channels per GRF is not exactly
4595 * eight in single-precision mode (or four in double-float mode).
4596 *
4597 * In this situation we calculate the maximum size of the split
4598 * instructions so they only ever write to a single register.
4599 */
4600 if (devinfo->gen < 8 && inst->size_written > REG_SIZE &&
4601 !inst->force_writemask_all) {
4602 const unsigned channels_per_grf = inst->exec_size /
4603 DIV_ROUND_UP(inst->size_written, REG_SIZE);
4604 unsigned exec_type_size = 0;
4605 for (int i = 0; i < inst->sources; i++) {
4606 if (inst->src[i].file != BAD_FILE)
4607 exec_type_size = MAX2(exec_type_size, type_sz(inst->src[i].type));
4608 }
4609 assert(exec_type_size);
4610
4611 /* The hardware shifts exactly 8 channels per compressed half of the
4612 * instruction in single-precision mode and exactly 4 in double-precision.
4613 */
4614 if (channels_per_grf != (exec_type_size == 8 ? 4 : 8))
4615 max_width = MIN2(max_width, channels_per_grf);
4616 }
4617
4618 /* Only power-of-two execution sizes are representable in the instruction
4619 * control fields.
4620 */
4621 return 1 << _mesa_logbase2(max_width);
4622 }
4623
4624 /**
4625 * Get the maximum allowed SIMD width for instruction \p inst accounting for
4626 * various payload size restrictions that apply to sampler message
4627 * instructions.
4628 *
4629 * This is only intended to provide a maximum theoretical bound for the
4630 * execution size of the message based on the number of argument components
4631 * alone, which in most cases will determine whether the SIMD8 or SIMD16
4632 * variant of the message can be used, though some messages may have
4633 * additional restrictions not accounted for here (e.g. pre-ILK hardware uses
4634 * the message length to determine the exact SIMD width and argument count,
4635 * which makes a number of sampler message combinations impossible to
4636 * represent).
4637 */
4638 static unsigned
4639 get_sampler_lowered_simd_width(const struct gen_device_info *devinfo,
4640 const fs_inst *inst)
4641 {
4642 /* Calculate the number of coordinate components that have to be present
4643 * assuming that additional arguments follow the texel coordinates in the
4644 * message payload. On IVB+ there is no need for padding, on ILK-SNB we
4645 * need to pad to four or three components depending on the message,
4646 * pre-ILK we need to pad to at most three components.
4647 */
4648 const unsigned req_coord_components =
4649 (devinfo->gen >= 7 ||
4650 !inst->components_read(TEX_LOGICAL_SRC_COORDINATE)) ? 0 :
4651 (devinfo->gen >= 5 && inst->opcode != SHADER_OPCODE_TXF_LOGICAL &&
4652 inst->opcode != SHADER_OPCODE_TXF_CMS_LOGICAL) ? 4 :
4653 3;
4654
4655 /* On Gen9+ the LOD argument is for free if we're able to use the LZ
4656 * variant of the TXL or TXF message.
4657 */
4658 const bool implicit_lod = devinfo->gen >= 9 &&
4659 (inst->opcode == SHADER_OPCODE_TXL ||
4660 inst->opcode == SHADER_OPCODE_TXF) &&
4661 inst->src[TEX_LOGICAL_SRC_LOD].is_zero();
4662
4663 /* Calculate the total number of argument components that need to be passed
4664 * to the sampler unit.
4665 */
4666 const unsigned num_payload_components =
4667 MAX2(inst->components_read(TEX_LOGICAL_SRC_COORDINATE),
4668 req_coord_components) +
4669 inst->components_read(TEX_LOGICAL_SRC_SHADOW_C) +
4670 (implicit_lod ? 0 : inst->components_read(TEX_LOGICAL_SRC_LOD)) +
4671 inst->components_read(TEX_LOGICAL_SRC_LOD2) +
4672 inst->components_read(TEX_LOGICAL_SRC_SAMPLE_INDEX) +
4673 (inst->opcode == SHADER_OPCODE_TG4_OFFSET_LOGICAL ?
4674 inst->components_read(TEX_LOGICAL_SRC_OFFSET_VALUE) : 0) +
4675 inst->components_read(TEX_LOGICAL_SRC_MCS);
4676
4677 /* SIMD16 messages with more than five arguments exceed the maximum message
4678 * size supported by the sampler, regardless of whether a header is
4679 * provided or not.
4680 */
4681 return MIN2(inst->exec_size,
4682 num_payload_components > MAX_SAMPLER_MESSAGE_SIZE / 2 ? 8 : 16);
4683 }
4684
4685 /**
4686 * Get the closest native SIMD width supported by the hardware for instruction
4687 * \p inst. The instruction will be left untouched by
4688 * fs_visitor::lower_simd_width() if the returned value is equal to the
4689 * original execution size.
4690 */
4691 static unsigned
4692 get_lowered_simd_width(const struct gen_device_info *devinfo,
4693 const fs_inst *inst)
4694 {
4695 switch (inst->opcode) {
4696 case BRW_OPCODE_MOV:
4697 case BRW_OPCODE_SEL:
4698 case BRW_OPCODE_NOT:
4699 case BRW_OPCODE_AND:
4700 case BRW_OPCODE_OR:
4701 case BRW_OPCODE_XOR:
4702 case BRW_OPCODE_SHR:
4703 case BRW_OPCODE_SHL:
4704 case BRW_OPCODE_ASR:
4705 case BRW_OPCODE_CMPN:
4706 case BRW_OPCODE_CSEL:
4707 case BRW_OPCODE_F32TO16:
4708 case BRW_OPCODE_F16TO32:
4709 case BRW_OPCODE_BFREV:
4710 case BRW_OPCODE_BFE:
4711 case BRW_OPCODE_ADD:
4712 case BRW_OPCODE_MUL:
4713 case BRW_OPCODE_AVG:
4714 case BRW_OPCODE_FRC:
4715 case BRW_OPCODE_RNDU:
4716 case BRW_OPCODE_RNDD:
4717 case BRW_OPCODE_RNDE:
4718 case BRW_OPCODE_RNDZ:
4719 case BRW_OPCODE_LZD:
4720 case BRW_OPCODE_FBH:
4721 case BRW_OPCODE_FBL:
4722 case BRW_OPCODE_CBIT:
4723 case BRW_OPCODE_SAD2:
4724 case BRW_OPCODE_MAD:
4725 case BRW_OPCODE_LRP:
4726 case FS_OPCODE_PACK:
4727 return get_fpu_lowered_simd_width(devinfo, inst);
4728
4729 case BRW_OPCODE_CMP: {
4730 /* The Ivybridge/BayTrail WaCMPInstFlagDepClearedEarly workaround says that
4731 * when the destination is a GRF the dependency-clear bit on the flag
4732 * register is cleared early.
4733 *
4734 * Suggested workarounds are to disable coissuing CMP instructions
4735 * or to split CMP(16) instructions into two CMP(8) instructions.
4736 *
4737 * We choose to split into CMP(8) instructions since disabling
4738 * coissuing would affect CMP instructions not otherwise affected by
4739 * the errata.
4740 */
4741 const unsigned max_width = (devinfo->gen == 7 && !devinfo->is_haswell &&
4742 !inst->dst.is_null() ? 8 : ~0);
4743 return MIN2(max_width, get_fpu_lowered_simd_width(devinfo, inst));
4744 }
4745 case BRW_OPCODE_BFI1:
4746 case BRW_OPCODE_BFI2:
4747 /* The Haswell WaForceSIMD8ForBFIInstruction workaround says that we
4748 * should
4749 * "Force BFI instructions to be executed always in SIMD8."
4750 */
4751 return MIN2(devinfo->is_haswell ? 8 : ~0u,
4752 get_fpu_lowered_simd_width(devinfo, inst));
4753
4754 case BRW_OPCODE_IF:
4755 assert(inst->src[0].file == BAD_FILE || inst->exec_size <= 16);
4756 return inst->exec_size;
4757
4758 case SHADER_OPCODE_RCP:
4759 case SHADER_OPCODE_RSQ:
4760 case SHADER_OPCODE_SQRT:
4761 case SHADER_OPCODE_EXP2:
4762 case SHADER_OPCODE_LOG2:
4763 case SHADER_OPCODE_SIN:
4764 case SHADER_OPCODE_COS:
4765 /* Unary extended math instructions are limited to SIMD8 on Gen4 and
4766 * Gen6.
4767 */
4768 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4769 devinfo->gen == 5 || devinfo->is_g4x ? MIN2(16, inst->exec_size) :
4770 MIN2(8, inst->exec_size));
4771
4772 case SHADER_OPCODE_POW:
4773 /* SIMD16 is only allowed on Gen7+. */
4774 return (devinfo->gen >= 7 ? MIN2(16, inst->exec_size) :
4775 MIN2(8, inst->exec_size));
4776
4777 case SHADER_OPCODE_INT_QUOTIENT:
4778 case SHADER_OPCODE_INT_REMAINDER:
4779 /* Integer division is limited to SIMD8 on all generations. */
4780 return MIN2(8, inst->exec_size);
4781
4782 case FS_OPCODE_LINTERP:
4783 case FS_OPCODE_GET_BUFFER_SIZE:
4784 case FS_OPCODE_DDX_COARSE:
4785 case FS_OPCODE_DDX_FINE:
4786 case FS_OPCODE_DDY_COARSE:
4787 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
4788 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
4789 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
4790 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X:
4791 case FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y:
4792 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
4793 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
4794 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
4795 return MIN2(16, inst->exec_size);
4796
4797 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_LOGICAL:
4798 /* Pre-ILK hardware doesn't have a SIMD8 variant of the texel fetch
4799 * message used to implement varying pull constant loads, so expand it
4800 * to SIMD16. An alternative with longer message payload length but
4801 * shorter return payload would be to use the SIMD8 sampler message that
4802 * takes (header, u, v, r) as parameters instead of (header, u).
4803 */
4804 return (devinfo->gen == 4 ? 16 : MIN2(16, inst->exec_size));
4805
4806 case FS_OPCODE_DDY_FINE:
4807 /* The implementation of this virtual opcode may require emitting
4808 * compressed Align16 instructions, which are severely limited on some
4809 * generations.
4810 *
4811 * From the Ivy Bridge PRM, volume 4 part 3, section 3.3.9 (Register
4812 * Region Restrictions):
4813 *
4814 * "In Align16 access mode, SIMD16 is not allowed for DW operations
4815 * and SIMD8 is not allowed for DF operations."
4816 *
4817 * In this context, "DW operations" means "operations acting on 32-bit
4818 * values", so it includes operations on floats.
4819 *
4820 * Gen4 has a similar restriction. From the i965 PRM, section 11.5.3
4821 * (Instruction Compression -> Rules and Restrictions):
4822 *
4823 * "A compressed instruction must be in Align1 access mode. Align16
4824 * mode instructions cannot be compressed."
4825 *
4826 * Similar text exists in the g45 PRM.
4827 *
4828 * Empirically, compressed align16 instructions using odd register
4829 * numbers don't appear to work on Sandybridge either.
4830 */
4831 return (devinfo->gen == 4 || devinfo->gen == 6 ||
4832 (devinfo->gen == 7 && !devinfo->is_haswell) ?
4833 MIN2(8, inst->exec_size) : MIN2(16, inst->exec_size));
4834
4835 case SHADER_OPCODE_MULH:
4836 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4837 * is 8-wide on Gen7+.
4838 */
4839 return (devinfo->gen >= 7 ? 8 :
4840 get_fpu_lowered_simd_width(devinfo, inst));
4841
4842 case FS_OPCODE_FB_WRITE_LOGICAL:
4843 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4844 * here.
4845 */
4846 assert(devinfo->gen != 6 ||
4847 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4848 inst->exec_size == 8);
4849 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4850 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4851 8 : MIN2(16, inst->exec_size));
4852
4853 case FS_OPCODE_FB_READ_LOGICAL:
4854 return MIN2(16, inst->exec_size);
4855
4856 case SHADER_OPCODE_TEX_LOGICAL:
4857 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4858 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4859 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4860 case SHADER_OPCODE_LOD_LOGICAL:
4861 case SHADER_OPCODE_TG4_LOGICAL:
4862 case SHADER_OPCODE_SAMPLEINFO_LOGICAL:
4863 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4864 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4865 return get_sampler_lowered_simd_width(devinfo, inst);
4866
4867 case SHADER_OPCODE_TXD_LOGICAL:
4868 /* TXD is unsupported in SIMD16 mode. */
4869 return 8;
4870
4871 case SHADER_OPCODE_TXL_LOGICAL:
4872 case FS_OPCODE_TXB_LOGICAL:
4873 /* Only one execution size is representable pre-ILK depending on whether
4874 * the shadow reference argument is present.
4875 */
4876 if (devinfo->gen == 4)
4877 return inst->src[TEX_LOGICAL_SRC_SHADOW_C].file == BAD_FILE ? 16 : 8;
4878 else
4879 return get_sampler_lowered_simd_width(devinfo, inst);
4880
4881 case SHADER_OPCODE_TXF_LOGICAL:
4882 case SHADER_OPCODE_TXS_LOGICAL:
4883 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4884 * messages. Use SIMD16 instead.
4885 */
4886 if (devinfo->gen == 4)
4887 return 16;
4888 else
4889 return get_sampler_lowered_simd_width(devinfo, inst);
4890
4891 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4892 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4893 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4894 return 8;
4895
4896 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4897 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4898 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4899 return MIN2(16, inst->exec_size);
4900
4901 case SHADER_OPCODE_URB_READ_SIMD8:
4902 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
4903 case SHADER_OPCODE_URB_WRITE_SIMD8:
4904 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
4905 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
4906 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
4907 return MIN2(8, inst->exec_size);
4908
4909 case SHADER_OPCODE_MOV_INDIRECT:
4910 /* Prior to Broadwell, we only have 8 address subregisters */
4911 return MIN3(devinfo->gen >= 8 ? 16 : 8,
4912 2 * REG_SIZE / (inst->dst.stride * type_sz(inst->dst.type)),
4913 inst->exec_size);
4914
4915 case SHADER_OPCODE_LOAD_PAYLOAD: {
4916 const unsigned reg_count =
4917 DIV_ROUND_UP(inst->dst.component_size(inst->exec_size), REG_SIZE);
4918
4919 if (reg_count > 2) {
4920 /* Only LOAD_PAYLOAD instructions with per-channel destination region
4921 * can be easily lowered (which excludes headers and heterogeneous
4922 * types).
4923 */
4924 assert(!inst->header_size);
4925 for (unsigned i = 0; i < inst->sources; i++)
4926 assert(type_sz(inst->dst.type) == type_sz(inst->src[i].type) ||
4927 inst->src[i].file == BAD_FILE);
4928
4929 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4930 } else {
4931 return inst->exec_size;
4932 }
4933 }
4934 default:
4935 return inst->exec_size;
4936 }
4937 }
4938
4939 /**
4940 * Return true if splitting out the group of channels of instruction \p inst
4941 * given by lbld.group() requires allocating a temporary for the i-th source
4942 * of the lowered instruction.
4943 */
4944 static inline bool
4945 needs_src_copy(const fs_builder &lbld, const fs_inst *inst, unsigned i)
4946 {
4947 return !(is_periodic(inst->src[i], lbld.dispatch_width()) ||
4948 (inst->components_read(i) == 1 &&
4949 lbld.dispatch_width() <= inst->exec_size));
4950 }
4951
4952 /**
4953 * Extract the data that would be consumed by the channel group given by
4954 * lbld.group() from the i-th source region of instruction \p inst and return
4955 * it as result in packed form. If any copy instructions are required they
4956 * will be emitted before the given \p inst in \p block.
4957 */
4958 static fs_reg
4959 emit_unzip(const fs_builder &lbld, bblock_t *block, fs_inst *inst,
4960 unsigned i)
4961 {
4962 /* Specified channel group from the source region. */
4963 const fs_reg src = horiz_offset(inst->src[i], lbld.group());
4964
4965 if (needs_src_copy(lbld, inst, i)) {
4966 /* Builder of the right width to perform the copy avoiding uninitialized
4967 * data if the lowered execution size is greater than the original
4968 * execution size of the instruction.
4969 */
4970 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
4971 inst->exec_size), 0);
4972 const fs_reg tmp = lbld.vgrf(inst->src[i].type, inst->components_read(i));
4973
4974 for (unsigned k = 0; k < inst->components_read(i); ++k)
4975 cbld.at(block, inst)
4976 .MOV(offset(tmp, lbld, k), offset(src, inst->exec_size, k));
4977
4978 return tmp;
4979
4980 } else if (is_periodic(inst->src[i], lbld.dispatch_width())) {
4981 /* The source is invariant for all dispatch_width-wide groups of the
4982 * original region.
4983 */
4984 return inst->src[i];
4985
4986 } else {
4987 /* We can just point the lowered instruction at the right channel group
4988 * from the original region.
4989 */
4990 return src;
4991 }
4992 }
4993
4994 /**
4995 * Return true if splitting out the group of channels of instruction \p inst
4996 * given by lbld.group() requires allocating a temporary for the destination
4997 * of the lowered instruction and copying the data back to the original
4998 * destination region.
4999 */
5000 static inline bool
5001 needs_dst_copy(const fs_builder &lbld, const fs_inst *inst)
5002 {
5003 /* If the instruction writes more than one component we'll have to shuffle
5004 * the results of multiple lowered instructions in order to make sure that
5005 * they end up arranged correctly in the original destination region.
5006 */
5007 if (inst->size_written > inst->dst.component_size(inst->exec_size))
5008 return true;
5009
5010 /* If the lowered execution size is larger than the original the result of
5011 * the instruction won't fit in the original destination, so we'll have to
5012 * allocate a temporary in any case.
5013 */
5014 if (lbld.dispatch_width() > inst->exec_size)
5015 return true;
5016
5017 for (unsigned i = 0; i < inst->sources; i++) {
5018 /* If we already made a copy of the source for other reasons there won't
5019 * be any overlap with the destination.
5020 */
5021 if (needs_src_copy(lbld, inst, i))
5022 continue;
5023
5024 /* In order to keep the logic simple we emit a copy whenever the
5025 * destination region doesn't exactly match an overlapping source, which
5026 * may point at the source and destination not being aligned group by
5027 * group which could cause one of the lowered instructions to overwrite
5028 * the data read from the same source by other lowered instructions.
5029 */
5030 if (regions_overlap(inst->dst, inst->size_written,
5031 inst->src[i], inst->size_read(i)) &&
5032 !inst->dst.equals(inst->src[i]))
5033 return true;
5034 }
5035
5036 return false;
5037 }
5038
5039 /**
5040 * Insert data from a packed temporary into the channel group given by
5041 * lbld.group() of the destination region of instruction \p inst and return
5042 * the temporary as result. If any copy instructions are required they will
5043 * be emitted around the given \p inst in \p block.
5044 */
5045 static fs_reg
5046 emit_zip(const fs_builder &lbld, bblock_t *block, fs_inst *inst)
5047 {
5048 /* Builder of the right width to perform the copy avoiding uninitialized
5049 * data if the lowered execution size is greater than the original
5050 * execution size of the instruction.
5051 */
5052 const fs_builder cbld = lbld.group(MIN2(lbld.dispatch_width(),
5053 inst->exec_size), 0);
5054
5055 /* Specified channel group from the destination region. */
5056 const fs_reg dst = horiz_offset(inst->dst, lbld.group());
5057 const unsigned dst_size = inst->size_written /
5058 inst->dst.component_size(inst->exec_size);
5059
5060 if (needs_dst_copy(lbld, inst)) {
5061 const fs_reg tmp = lbld.vgrf(inst->dst.type, dst_size);
5062
5063 if (inst->predicate) {
5064 /* Handle predication by copying the original contents of
5065 * the destination into the temporary before emitting the
5066 * lowered instruction.
5067 */
5068 for (unsigned k = 0; k < dst_size; ++k)
5069 cbld.at(block, inst)
5070 .MOV(offset(tmp, lbld, k), offset(dst, inst->exec_size, k));
5071 }
5072
5073 for (unsigned k = 0; k < dst_size; ++k)
5074 cbld.at(block, inst->next)
5075 .MOV(offset(dst, inst->exec_size, k), offset(tmp, lbld, k));
5076
5077 return tmp;
5078
5079 } else {
5080 /* No need to allocate a temporary for the lowered instruction, just
5081 * take the right group of channels from the original region.
5082 */
5083 return dst;
5084 }
5085 }
5086
5087 bool
5088 fs_visitor::lower_simd_width()
5089 {
5090 bool progress = false;
5091
5092 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5093 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
5094
5095 if (lower_width != inst->exec_size) {
5096 /* Builder matching the original instruction. We may also need to
5097 * emit an instruction of width larger than the original, set the
5098 * execution size of the builder to the highest of both for now so
5099 * we're sure that both cases can be handled.
5100 */
5101 const unsigned max_width = MAX2(inst->exec_size, lower_width);
5102 const fs_builder ibld = bld.at(block, inst)
5103 .exec_all(inst->force_writemask_all)
5104 .group(max_width, inst->group / max_width);
5105
5106 /* Split the copies in chunks of the execution width of either the
5107 * original or the lowered instruction, whichever is lower.
5108 */
5109 const unsigned n = DIV_ROUND_UP(inst->exec_size, lower_width);
5110 const unsigned dst_size = inst->size_written /
5111 inst->dst.component_size(inst->exec_size);
5112
5113 assert(!inst->writes_accumulator && !inst->mlen);
5114
5115 for (unsigned i = 0; i < n; i++) {
5116 /* Emit a copy of the original instruction with the lowered width.
5117 * If the EOT flag was set throw it away except for the last
5118 * instruction to avoid killing the thread prematurely.
5119 */
5120 fs_inst split_inst = *inst;
5121 split_inst.exec_size = lower_width;
5122 split_inst.eot = inst->eot && i == n - 1;
5123
5124 /* Select the correct channel enables for the i-th group, then
5125 * transform the sources and destination and emit the lowered
5126 * instruction.
5127 */
5128 const fs_builder lbld = ibld.group(lower_width, i);
5129
5130 for (unsigned j = 0; j < inst->sources; j++)
5131 split_inst.src[j] = emit_unzip(lbld, block, inst, j);
5132
5133 split_inst.dst = emit_zip(lbld, block, inst);
5134 split_inst.size_written =
5135 split_inst.dst.component_size(lower_width) * dst_size;
5136
5137 lbld.emit(split_inst);
5138 }
5139
5140 inst->remove(block);
5141 progress = true;
5142 }
5143 }
5144
5145 if (progress)
5146 invalidate_live_intervals();
5147
5148 return progress;
5149 }
5150
5151 void
5152 fs_visitor::dump_instructions()
5153 {
5154 dump_instructions(NULL);
5155 }
5156
5157 void
5158 fs_visitor::dump_instructions(const char *name)
5159 {
5160 FILE *file = stderr;
5161 if (name && geteuid() != 0) {
5162 file = fopen(name, "w");
5163 if (!file)
5164 file = stderr;
5165 }
5166
5167 if (cfg) {
5168 calculate_register_pressure();
5169 int ip = 0, max_pressure = 0;
5170 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
5171 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
5172 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
5173 dump_instruction(inst, file);
5174 ip++;
5175 }
5176 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
5177 } else {
5178 int ip = 0;
5179 foreach_in_list(backend_instruction, inst, &instructions) {
5180 fprintf(file, "%4d: ", ip++);
5181 dump_instruction(inst, file);
5182 }
5183 }
5184
5185 if (file != stderr) {
5186 fclose(file);
5187 }
5188 }
5189
5190 void
5191 fs_visitor::dump_instruction(backend_instruction *be_inst)
5192 {
5193 dump_instruction(be_inst, stderr);
5194 }
5195
5196 void
5197 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
5198 {
5199 fs_inst *inst = (fs_inst *)be_inst;
5200
5201 if (inst->predicate) {
5202 fprintf(file, "(%cf0.%d) ",
5203 inst->predicate_inverse ? '-' : '+',
5204 inst->flag_subreg);
5205 }
5206
5207 fprintf(file, "%s", brw_instruction_name(devinfo, inst->opcode));
5208 if (inst->saturate)
5209 fprintf(file, ".sat");
5210 if (inst->conditional_mod) {
5211 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
5212 if (!inst->predicate &&
5213 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
5214 inst->opcode != BRW_OPCODE_IF &&
5215 inst->opcode != BRW_OPCODE_WHILE))) {
5216 fprintf(file, ".f0.%d", inst->flag_subreg);
5217 }
5218 }
5219 fprintf(file, "(%d) ", inst->exec_size);
5220
5221 if (inst->mlen) {
5222 fprintf(file, "(mlen: %d) ", inst->mlen);
5223 }
5224
5225 if (inst->eot) {
5226 fprintf(file, "(EOT) ");
5227 }
5228
5229 switch (inst->dst.file) {
5230 case VGRF:
5231 fprintf(file, "vgrf%d", inst->dst.nr);
5232 break;
5233 case FIXED_GRF:
5234 fprintf(file, "g%d", inst->dst.nr);
5235 break;
5236 case MRF:
5237 fprintf(file, "m%d", inst->dst.nr);
5238 break;
5239 case BAD_FILE:
5240 fprintf(file, "(null)");
5241 break;
5242 case UNIFORM:
5243 fprintf(file, "***u%d***", inst->dst.nr);
5244 break;
5245 case ATTR:
5246 fprintf(file, "***attr%d***", inst->dst.nr);
5247 break;
5248 case ARF:
5249 switch (inst->dst.nr) {
5250 case BRW_ARF_NULL:
5251 fprintf(file, "null");
5252 break;
5253 case BRW_ARF_ADDRESS:
5254 fprintf(file, "a0.%d", inst->dst.subnr);
5255 break;
5256 case BRW_ARF_ACCUMULATOR:
5257 fprintf(file, "acc%d", inst->dst.subnr);
5258 break;
5259 case BRW_ARF_FLAG:
5260 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5261 break;
5262 default:
5263 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
5264 break;
5265 }
5266 break;
5267 case IMM:
5268 unreachable("not reached");
5269 }
5270
5271 if (inst->dst.offset ||
5272 (inst->dst.file == VGRF &&
5273 alloc.sizes[inst->dst.nr] * REG_SIZE != inst->size_written)) {
5274 const unsigned reg_size = (inst->dst.file == UNIFORM ? 4 : REG_SIZE);
5275 fprintf(file, "+%d.%d", inst->dst.offset / reg_size,
5276 inst->dst.offset % reg_size);
5277 }
5278
5279 if (inst->dst.stride != 1)
5280 fprintf(file, "<%u>", inst->dst.stride);
5281 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
5282
5283 for (int i = 0; i < inst->sources; i++) {
5284 if (inst->src[i].negate)
5285 fprintf(file, "-");
5286 if (inst->src[i].abs)
5287 fprintf(file, "|");
5288 switch (inst->src[i].file) {
5289 case VGRF:
5290 fprintf(file, "vgrf%d", inst->src[i].nr);
5291 break;
5292 case FIXED_GRF:
5293 fprintf(file, "g%d", inst->src[i].nr);
5294 break;
5295 case MRF:
5296 fprintf(file, "***m%d***", inst->src[i].nr);
5297 break;
5298 case ATTR:
5299 fprintf(file, "attr%d", inst->src[i].nr);
5300 break;
5301 case UNIFORM:
5302 fprintf(file, "u%d", inst->src[i].nr);
5303 break;
5304 case BAD_FILE:
5305 fprintf(file, "(null)");
5306 break;
5307 case IMM:
5308 switch (inst->src[i].type) {
5309 case BRW_REGISTER_TYPE_F:
5310 fprintf(file, "%-gf", inst->src[i].f);
5311 break;
5312 case BRW_REGISTER_TYPE_DF:
5313 fprintf(file, "%fdf", inst->src[i].df);
5314 break;
5315 case BRW_REGISTER_TYPE_W:
5316 case BRW_REGISTER_TYPE_D:
5317 fprintf(file, "%dd", inst->src[i].d);
5318 break;
5319 case BRW_REGISTER_TYPE_UW:
5320 case BRW_REGISTER_TYPE_UD:
5321 fprintf(file, "%uu", inst->src[i].ud);
5322 break;
5323 case BRW_REGISTER_TYPE_VF:
5324 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
5325 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
5326 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
5327 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
5328 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
5329 break;
5330 default:
5331 fprintf(file, "???");
5332 break;
5333 }
5334 break;
5335 case ARF:
5336 switch (inst->src[i].nr) {
5337 case BRW_ARF_NULL:
5338 fprintf(file, "null");
5339 break;
5340 case BRW_ARF_ADDRESS:
5341 fprintf(file, "a0.%d", inst->src[i].subnr);
5342 break;
5343 case BRW_ARF_ACCUMULATOR:
5344 fprintf(file, "acc%d", inst->src[i].subnr);
5345 break;
5346 case BRW_ARF_FLAG:
5347 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5348 break;
5349 default:
5350 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
5351 break;
5352 }
5353 break;
5354 }
5355
5356 if (inst->src[i].offset ||
5357 (inst->src[i].file == VGRF &&
5358 alloc.sizes[inst->src[i].nr] * REG_SIZE != inst->size_read(i))) {
5359 const unsigned reg_size = (inst->src[i].file == UNIFORM ? 4 : REG_SIZE);
5360 fprintf(file, "+%d.%d", inst->src[i].offset / reg_size,
5361 inst->src[i].offset % reg_size);
5362 }
5363
5364 if (inst->src[i].abs)
5365 fprintf(file, "|");
5366
5367 if (inst->src[i].file != IMM) {
5368 unsigned stride;
5369 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
5370 unsigned hstride = inst->src[i].hstride;
5371 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
5372 } else {
5373 stride = inst->src[i].stride;
5374 }
5375 if (stride != 1)
5376 fprintf(file, "<%u>", stride);
5377
5378 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
5379 }
5380
5381 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
5382 fprintf(file, ", ");
5383 }
5384
5385 fprintf(file, " ");
5386
5387 if (inst->force_writemask_all)
5388 fprintf(file, "NoMask ");
5389
5390 if (inst->exec_size != dispatch_width)
5391 fprintf(file, "group%d ", inst->group);
5392
5393 fprintf(file, "\n");
5394 }
5395
5396 /**
5397 * Possibly returns an instruction that set up @param reg.
5398 *
5399 * Sometimes we want to take the result of some expression/variable
5400 * dereference tree and rewrite the instruction generating the result
5401 * of the tree. When processing the tree, we know that the
5402 * instructions generated are all writing temporaries that are dead
5403 * outside of this tree. So, if we have some instructions that write
5404 * a temporary, we're free to point that temp write somewhere else.
5405 *
5406 * Note that this doesn't guarantee that the instruction generated
5407 * only reg -- it might be the size=4 destination of a texture instruction.
5408 */
5409 fs_inst *
5410 fs_visitor::get_instruction_generating_reg(fs_inst *start,
5411 fs_inst *end,
5412 const fs_reg &reg)
5413 {
5414 if (end == start ||
5415 end->is_partial_write() ||
5416 !reg.equals(end->dst)) {
5417 return NULL;
5418 } else {
5419 return end;
5420 }
5421 }
5422
5423 void
5424 fs_visitor::setup_fs_payload_gen6()
5425 {
5426 assert(stage == MESA_SHADER_FRAGMENT);
5427 struct brw_wm_prog_data *prog_data = brw_wm_prog_data(this->prog_data);
5428
5429 assert(devinfo->gen >= 6);
5430
5431 /* R0-1: masks, pixel X/Y coordinates. */
5432 payload.num_regs = 2;
5433 /* R2: only for 32-pixel dispatch.*/
5434
5435 /* R3-26: barycentric interpolation coordinates. These appear in the
5436 * same order that they appear in the brw_barycentric_mode
5437 * enum. Each set of coordinates occupies 2 registers if dispatch width
5438 * == 8 and 4 registers if dispatch width == 16. Coordinates only
5439 * appear if they were enabled using the "Barycentric Interpolation
5440 * Mode" bits in WM_STATE.
5441 */
5442 for (int i = 0; i < BRW_BARYCENTRIC_MODE_COUNT; ++i) {
5443 if (prog_data->barycentric_interp_modes & (1 << i)) {
5444 payload.barycentric_coord_reg[i] = payload.num_regs;
5445 payload.num_regs += 2;
5446 if (dispatch_width == 16) {
5447 payload.num_regs += 2;
5448 }
5449 }
5450 }
5451
5452 /* R27: interpolated depth if uses source depth */
5453 prog_data->uses_src_depth =
5454 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5455 if (prog_data->uses_src_depth) {
5456 payload.source_depth_reg = payload.num_regs;
5457 payload.num_regs++;
5458 if (dispatch_width == 16) {
5459 /* R28: interpolated depth if not SIMD8. */
5460 payload.num_regs++;
5461 }
5462 }
5463
5464 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
5465 prog_data->uses_src_w =
5466 (nir->info->inputs_read & (1 << VARYING_SLOT_POS)) != 0;
5467 if (prog_data->uses_src_w) {
5468 payload.source_w_reg = payload.num_regs;
5469 payload.num_regs++;
5470 if (dispatch_width == 16) {
5471 /* R30: interpolated W if not SIMD8. */
5472 payload.num_regs++;
5473 }
5474 }
5475
5476 /* R31: MSAA position offsets. */
5477 if (prog_data->persample_dispatch &&
5478 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_POS)) {
5479 /* From the Ivy Bridge PRM documentation for 3DSTATE_PS:
5480 *
5481 * "MSDISPMODE_PERSAMPLE is required in order to select
5482 * POSOFFSET_SAMPLE"
5483 *
5484 * So we can only really get sample positions if we are doing real
5485 * per-sample dispatch. If we need gl_SamplePosition and we don't have
5486 * persample dispatch, we hard-code it to 0.5.
5487 */
5488 prog_data->uses_pos_offset = true;
5489 payload.sample_pos_reg = payload.num_regs;
5490 payload.num_regs++;
5491 }
5492
5493 /* R32: MSAA input coverage mask */
5494 prog_data->uses_sample_mask =
5495 (nir->info->system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
5496 if (prog_data->uses_sample_mask) {
5497 assert(devinfo->gen >= 7);
5498 payload.sample_mask_in_reg = payload.num_regs;
5499 payload.num_regs++;
5500 if (dispatch_width == 16) {
5501 /* R33: input coverage mask if not SIMD8. */
5502 payload.num_regs++;
5503 }
5504 }
5505
5506 /* R34-: bary for 32-pixel. */
5507 /* R58-59: interp W for 32-pixel. */
5508
5509 if (nir->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5510 source_depth_to_render_target = true;
5511 }
5512 }
5513
5514 void
5515 fs_visitor::setup_vs_payload()
5516 {
5517 /* R0: thread header, R1: urb handles */
5518 payload.num_regs = 2;
5519 }
5520
5521 void
5522 fs_visitor::setup_gs_payload()
5523 {
5524 assert(stage == MESA_SHADER_GEOMETRY);
5525
5526 struct brw_gs_prog_data *gs_prog_data = brw_gs_prog_data(prog_data);
5527 struct brw_vue_prog_data *vue_prog_data = brw_vue_prog_data(prog_data);
5528
5529 /* R0: thread header, R1: output URB handles */
5530 payload.num_regs = 2;
5531
5532 if (gs_prog_data->include_primitive_id) {
5533 /* R2: Primitive ID 0..7 */
5534 payload.num_regs++;
5535 }
5536
5537 /* Use a maximum of 24 registers for push-model inputs. */
5538 const unsigned max_push_components = 24;
5539
5540 /* If pushing our inputs would take too many registers, reduce the URB read
5541 * length (which is in HWords, or 8 registers), and resort to pulling.
5542 *
5543 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5544 * have to multiply by VerticesIn to obtain the total storage requirement.
5545 */
5546 if (8 * vue_prog_data->urb_read_length * nir->info->gs.vertices_in >
5547 max_push_components || gs_prog_data->invocations > 1) {
5548 gs_prog_data->base.include_vue_handles = true;
5549
5550 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5551 payload.num_regs += nir->info->gs.vertices_in;
5552
5553 vue_prog_data->urb_read_length =
5554 ROUND_DOWN_TO(max_push_components / nir->info->gs.vertices_in, 8) / 8;
5555 }
5556 }
5557
5558 void
5559 fs_visitor::setup_cs_payload()
5560 {
5561 assert(devinfo->gen >= 7);
5562 payload.num_regs = 1;
5563 }
5564
5565 void
5566 fs_visitor::calculate_register_pressure()
5567 {
5568 invalidate_live_intervals();
5569 calculate_live_intervals();
5570
5571 unsigned num_instructions = 0;
5572 foreach_block(block, cfg)
5573 num_instructions += block->instructions.length();
5574
5575 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5576
5577 for (unsigned reg = 0; reg < alloc.count; reg++) {
5578 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5579 regs_live_at_ip[ip] += alloc.sizes[reg];
5580 }
5581 }
5582
5583 /**
5584 * Look for repeated FS_OPCODE_MOV_DISPATCH_TO_FLAGS and drop the later ones.
5585 *
5586 * The needs_unlit_centroid_workaround ends up producing one of these per
5587 * channel of centroid input, so it's good to clean them up.
5588 *
5589 * An assumption here is that nothing ever modifies the dispatched pixels
5590 * value that FS_OPCODE_MOV_DISPATCH_TO_FLAGS reads from, but the hardware
5591 * dictates that anyway.
5592 */
5593 bool
5594 fs_visitor::opt_drop_redundant_mov_to_flags()
5595 {
5596 bool flag_mov_found[2] = {false};
5597 bool progress = false;
5598
5599 /* Instructions removed by this pass can only be added if this were true */
5600 if (!devinfo->needs_unlit_centroid_workaround)
5601 return false;
5602
5603 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
5604 if (inst->is_control_flow()) {
5605 memset(flag_mov_found, 0, sizeof(flag_mov_found));
5606 } else if (inst->opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS) {
5607 if (!flag_mov_found[inst->flag_subreg]) {
5608 flag_mov_found[inst->flag_subreg] = true;
5609 } else {
5610 inst->remove(block);
5611 progress = true;
5612 }
5613 } else if (inst->flags_written()) {
5614 flag_mov_found[inst->flag_subreg] = false;
5615 }
5616 }
5617
5618 return progress;
5619 }
5620
5621 void
5622 fs_visitor::optimize()
5623 {
5624 /* Start by validating the shader we currently have. */
5625 validate();
5626
5627 /* bld is the common builder object pointing at the end of the program we
5628 * used to translate it into i965 IR. For the optimization and lowering
5629 * passes coming next, any code added after the end of the program without
5630 * having explicitly called fs_builder::at() clearly points at a mistake.
5631 * Ideally optimization passes wouldn't be part of the visitor so they
5632 * wouldn't have access to bld at all, but they do, so just in case some
5633 * pass forgets to ask for a location explicitly set it to NULL here to
5634 * make it trip. The dispatch width is initialized to a bogus value to
5635 * make sure that optimizations set the execution controls explicitly to
5636 * match the code they are manipulating instead of relying on the defaults.
5637 */
5638 bld = fs_builder(this, 64);
5639
5640 assign_constant_locations();
5641 lower_constant_loads();
5642
5643 validate();
5644
5645 split_virtual_grfs();
5646 validate();
5647
5648 #define OPT(pass, args...) ({ \
5649 pass_num++; \
5650 bool this_progress = pass(args); \
5651 \
5652 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5653 char filename[64]; \
5654 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5655 stage_abbrev, dispatch_width, nir->info->name, iteration, pass_num); \
5656 \
5657 backend_shader::dump_instructions(filename); \
5658 } \
5659 \
5660 validate(); \
5661 \
5662 progress = progress || this_progress; \
5663 this_progress; \
5664 })
5665
5666 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5667 char filename[64];
5668 snprintf(filename, 64, "%s%d-%s-00-00-start",
5669 stage_abbrev, dispatch_width, nir->info->name);
5670
5671 backend_shader::dump_instructions(filename);
5672 }
5673
5674 bool progress = false;
5675 int iteration = 0;
5676 int pass_num = 0;
5677
5678 OPT(opt_drop_redundant_mov_to_flags);
5679
5680 do {
5681 progress = false;
5682 pass_num = 0;
5683 iteration++;
5684
5685 OPT(remove_duplicate_mrf_writes);
5686
5687 OPT(opt_algebraic);
5688 OPT(opt_cse);
5689 OPT(opt_copy_propagate);
5690 OPT(opt_predicated_break, this);
5691 OPT(opt_cmod_propagation);
5692 OPT(dead_code_eliminate);
5693 OPT(opt_peephole_sel);
5694 OPT(dead_control_flow_eliminate, this);
5695 OPT(opt_register_renaming);
5696 OPT(opt_saturate_propagation);
5697 OPT(register_coalesce);
5698 OPT(compute_to_mrf);
5699 OPT(eliminate_find_live_channel);
5700
5701 OPT(compact_virtual_grfs);
5702 } while (progress);
5703
5704 progress = false;
5705 pass_num = 0;
5706
5707 if (OPT(lower_pack)) {
5708 OPT(register_coalesce);
5709 OPT(dead_code_eliminate);
5710 }
5711
5712 if (OPT(lower_d2x)) {
5713 OPT(opt_copy_propagate);
5714 OPT(dead_code_eliminate);
5715 }
5716
5717 OPT(lower_simd_width);
5718
5719 /* After SIMD lowering just in case we had to unroll the EOT send. */
5720 OPT(opt_sampler_eot);
5721
5722 OPT(lower_logical_sends);
5723
5724 if (progress) {
5725 OPT(opt_copy_propagate);
5726 /* Only run after logical send lowering because it's easier to implement
5727 * in terms of physical sends.
5728 */
5729 if (OPT(opt_zero_samples))
5730 OPT(opt_copy_propagate);
5731 /* Run after logical send lowering to give it a chance to CSE the
5732 * LOAD_PAYLOAD instructions created to construct the payloads of
5733 * e.g. texturing messages in cases where it wasn't possible to CSE the
5734 * whole logical instruction.
5735 */
5736 OPT(opt_cse);
5737 OPT(register_coalesce);
5738 OPT(compute_to_mrf);
5739 OPT(dead_code_eliminate);
5740 OPT(remove_duplicate_mrf_writes);
5741 OPT(opt_peephole_sel);
5742 }
5743
5744 OPT(opt_redundant_discard_jumps);
5745
5746 if (OPT(lower_load_payload)) {
5747 split_virtual_grfs();
5748 OPT(register_coalesce);
5749 OPT(compute_to_mrf);
5750 OPT(dead_code_eliminate);
5751 }
5752
5753 OPT(opt_combine_constants);
5754 OPT(lower_integer_multiplication);
5755
5756 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5757 OPT(opt_cmod_propagation);
5758 OPT(opt_cse);
5759 OPT(opt_copy_propagate);
5760 OPT(dead_code_eliminate);
5761 }
5762
5763 lower_uniform_pull_constant_loads();
5764
5765 validate();
5766 }
5767
5768 /**
5769 * Three source instruction must have a GRF/MRF destination register.
5770 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5771 */
5772 void
5773 fs_visitor::fixup_3src_null_dest()
5774 {
5775 bool progress = false;
5776
5777 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5778 if (inst->is_3src(devinfo) && inst->dst.is_null()) {
5779 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5780 inst->dst.type);
5781 progress = true;
5782 }
5783 }
5784
5785 if (progress)
5786 invalidate_live_intervals();
5787 }
5788
5789 void
5790 fs_visitor::allocate_registers(bool allow_spilling)
5791 {
5792 bool allocated_without_spills;
5793
5794 static const enum instruction_scheduler_mode pre_modes[] = {
5795 SCHEDULE_PRE,
5796 SCHEDULE_PRE_NON_LIFO,
5797 SCHEDULE_PRE_LIFO,
5798 };
5799
5800 bool spill_all = allow_spilling && (INTEL_DEBUG & DEBUG_SPILL_FS);
5801
5802 /* Try each scheduling heuristic to see if it can successfully register
5803 * allocate without spilling. They should be ordered by decreasing
5804 * performance but increasing likelihood of allocating.
5805 */
5806 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5807 schedule_instructions(pre_modes[i]);
5808
5809 if (0) {
5810 assign_regs_trivial();
5811 allocated_without_spills = true;
5812 } else {
5813 allocated_without_spills = assign_regs(false, spill_all);
5814 }
5815 if (allocated_without_spills)
5816 break;
5817 }
5818
5819 if (!allocated_without_spills) {
5820 if (!allow_spilling)
5821 fail("Failure to register allocate and spilling is not allowed.");
5822
5823 /* We assume that any spilling is worse than just dropping back to
5824 * SIMD8. There's probably actually some intermediate point where
5825 * SIMD16 with a couple of spills is still better.
5826 */
5827 if (dispatch_width > min_dispatch_width) {
5828 fail("Failure to register allocate. Reduce number of "
5829 "live scalar values to avoid this.");
5830 } else {
5831 compiler->shader_perf_log(log_data,
5832 "%s shader triggered register spilling. "
5833 "Try reducing the number of live scalar "
5834 "values to improve performance.\n",
5835 stage_name);
5836 }
5837
5838 /* Since we're out of heuristics, just go spill registers until we
5839 * get an allocation.
5840 */
5841 while (!assign_regs(true, spill_all)) {
5842 if (failed)
5843 break;
5844 }
5845 }
5846
5847 /* This must come after all optimization and register allocation, since
5848 * it inserts dead code that happens to have side effects, and it does
5849 * so based on the actual physical registers in use.
5850 */
5851 insert_gen4_send_dependency_workarounds();
5852
5853 if (failed)
5854 return;
5855
5856 schedule_instructions(SCHEDULE_POST);
5857
5858 if (last_scratch > 0) {
5859 MAYBE_UNUSED unsigned max_scratch_size = 2 * 1024 * 1024;
5860
5861 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5862
5863 if (stage == MESA_SHADER_COMPUTE) {
5864 if (devinfo->is_haswell) {
5865 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5866 * field documentation, Haswell supports a minimum of 2kB of
5867 * scratch space for compute shaders, unlike every other stage
5868 * and platform.
5869 */
5870 prog_data->total_scratch = MAX2(prog_data->total_scratch, 2048);
5871 } else if (devinfo->gen <= 7) {
5872 /* According to the MEDIA_VFE_STATE's "Per Thread Scratch Space"
5873 * field documentation, platforms prior to Haswell measure scratch
5874 * size linearly with a range of [1kB, 12kB] and 1kB granularity.
5875 */
5876 prog_data->total_scratch = ALIGN(last_scratch, 1024);
5877 max_scratch_size = 12 * 1024;
5878 }
5879 }
5880
5881 /* We currently only support up to 2MB of scratch space. If we
5882 * need to support more eventually, the documentation suggests
5883 * that we could allocate a larger buffer, and partition it out
5884 * ourselves. We'd just have to undo the hardware's address
5885 * calculation by subtracting (FFTID * Per Thread Scratch Space)
5886 * and then add FFTID * (Larger Per Thread Scratch Space).
5887 *
5888 * See 3D-Media-GPGPU Engine > Media GPGPU Pipeline >
5889 * Thread Group Tracking > Local Memory/Scratch Space.
5890 */
5891 assert(prog_data->total_scratch < max_scratch_size);
5892 }
5893 }
5894
5895 bool
5896 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5897 {
5898 assert(stage == MESA_SHADER_VERTEX);
5899
5900 setup_vs_payload();
5901
5902 if (shader_time_index >= 0)
5903 emit_shader_time_begin();
5904
5905 emit_nir_code();
5906
5907 if (failed)
5908 return false;
5909
5910 compute_clip_distance(clip_planes);
5911
5912 emit_urb_writes();
5913
5914 if (shader_time_index >= 0)
5915 emit_shader_time_end();
5916
5917 calculate_cfg();
5918
5919 optimize();
5920
5921 assign_curb_setup();
5922 assign_vs_urb_setup();
5923
5924 fixup_3src_null_dest();
5925 allocate_registers(true);
5926
5927 return !failed;
5928 }
5929
5930 bool
5931 fs_visitor::run_tcs_single_patch()
5932 {
5933 assert(stage == MESA_SHADER_TESS_CTRL);
5934
5935 struct brw_tcs_prog_data *tcs_prog_data = brw_tcs_prog_data(prog_data);
5936
5937 /* r1-r4 contain the ICP handles. */
5938 payload.num_regs = 5;
5939
5940 if (shader_time_index >= 0)
5941 emit_shader_time_begin();
5942
5943 /* Initialize gl_InvocationID */
5944 fs_reg channels_uw = bld.vgrf(BRW_REGISTER_TYPE_UW);
5945 fs_reg channels_ud = bld.vgrf(BRW_REGISTER_TYPE_UD);
5946 bld.MOV(channels_uw, fs_reg(brw_imm_uv(0x76543210)));
5947 bld.MOV(channels_ud, channels_uw);
5948
5949 if (tcs_prog_data->instances == 1) {
5950 invocation_id = channels_ud;
5951 } else {
5952 invocation_id = bld.vgrf(BRW_REGISTER_TYPE_UD);
5953
5954 /* Get instance number from g0.2 bits 23:17, and multiply it by 8. */
5955 fs_reg t = bld.vgrf(BRW_REGISTER_TYPE_UD);
5956 fs_reg instance_times_8 = bld.vgrf(BRW_REGISTER_TYPE_UD);
5957 bld.AND(t, fs_reg(retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD)),
5958 brw_imm_ud(INTEL_MASK(23, 17)));
5959 bld.SHR(instance_times_8, t, brw_imm_ud(17 - 3));
5960
5961 bld.ADD(invocation_id, instance_times_8, channels_ud);
5962 }
5963
5964 /* Fix the disptach mask */
5965 if (nir->info->tcs.vertices_out % 8) {
5966 bld.CMP(bld.null_reg_ud(), invocation_id,
5967 brw_imm_ud(nir->info->tcs.vertices_out), BRW_CONDITIONAL_L);
5968 bld.IF(BRW_PREDICATE_NORMAL);
5969 }
5970
5971 emit_nir_code();
5972
5973 if (nir->info->tcs.vertices_out % 8) {
5974 bld.emit(BRW_OPCODE_ENDIF);
5975 }
5976
5977 /* Emit EOT write; set TR DS Cache bit */
5978 fs_reg srcs[3] = {
5979 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
5980 fs_reg(brw_imm_ud(WRITEMASK_X << 16)),
5981 fs_reg(brw_imm_ud(0)),
5982 };
5983 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 3);
5984 bld.LOAD_PAYLOAD(payload, srcs, 3, 2);
5985
5986 fs_inst *inst = bld.emit(SHADER_OPCODE_URB_WRITE_SIMD8_MASKED,
5987 bld.null_reg_ud(), payload);
5988 inst->mlen = 3;
5989 inst->eot = true;
5990
5991 if (shader_time_index >= 0)
5992 emit_shader_time_end();
5993
5994 if (failed)
5995 return false;
5996
5997 calculate_cfg();
5998
5999 optimize();
6000
6001 assign_curb_setup();
6002 assign_tcs_single_patch_urb_setup();
6003
6004 fixup_3src_null_dest();
6005 allocate_registers(true);
6006
6007 return !failed;
6008 }
6009
6010 bool
6011 fs_visitor::run_tes()
6012 {
6013 assert(stage == MESA_SHADER_TESS_EVAL);
6014
6015 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
6016 payload.num_regs = 5;
6017
6018 if (shader_time_index >= 0)
6019 emit_shader_time_begin();
6020
6021 emit_nir_code();
6022
6023 if (failed)
6024 return false;
6025
6026 emit_urb_writes();
6027
6028 if (shader_time_index >= 0)
6029 emit_shader_time_end();
6030
6031 calculate_cfg();
6032
6033 optimize();
6034
6035 assign_curb_setup();
6036 assign_tes_urb_setup();
6037
6038 fixup_3src_null_dest();
6039 allocate_registers(true);
6040
6041 return !failed;
6042 }
6043
6044 bool
6045 fs_visitor::run_gs()
6046 {
6047 assert(stage == MESA_SHADER_GEOMETRY);
6048
6049 setup_gs_payload();
6050
6051 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
6052
6053 if (gs_compile->control_data_header_size_bits > 0) {
6054 /* Create a VGRF to store accumulated control data bits. */
6055 this->control_data_bits = vgrf(glsl_type::uint_type);
6056
6057 /* If we're outputting more than 32 control data bits, then EmitVertex()
6058 * will set control_data_bits to 0 after emitting the first vertex.
6059 * Otherwise, we need to initialize it to 0 here.
6060 */
6061 if (gs_compile->control_data_header_size_bits <= 32) {
6062 const fs_builder abld = bld.annotate("initialize control data bits");
6063 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
6064 }
6065 }
6066
6067 if (shader_time_index >= 0)
6068 emit_shader_time_begin();
6069
6070 emit_nir_code();
6071
6072 emit_gs_thread_end();
6073
6074 if (shader_time_index >= 0)
6075 emit_shader_time_end();
6076
6077 if (failed)
6078 return false;
6079
6080 calculate_cfg();
6081
6082 optimize();
6083
6084 assign_curb_setup();
6085 assign_gs_urb_setup();
6086
6087 fixup_3src_null_dest();
6088 allocate_registers(true);
6089
6090 return !failed;
6091 }
6092
6093 bool
6094 fs_visitor::run_fs(bool allow_spilling, bool do_rep_send)
6095 {
6096 struct brw_wm_prog_data *wm_prog_data = brw_wm_prog_data(this->prog_data);
6097 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
6098
6099 assert(stage == MESA_SHADER_FRAGMENT);
6100
6101 if (devinfo->gen >= 6)
6102 setup_fs_payload_gen6();
6103 else
6104 setup_fs_payload_gen4();
6105
6106 if (0) {
6107 emit_dummy_fs();
6108 } else if (do_rep_send) {
6109 assert(dispatch_width == 16);
6110 emit_repclear_shader();
6111 } else {
6112 if (shader_time_index >= 0)
6113 emit_shader_time_begin();
6114
6115 calculate_urb_setup();
6116 if (nir->info->inputs_read > 0 ||
6117 (nir->info->outputs_read > 0 && !wm_key->coherent_fb_fetch)) {
6118 if (devinfo->gen < 6)
6119 emit_interpolation_setup_gen4();
6120 else
6121 emit_interpolation_setup_gen6();
6122 }
6123
6124 /* We handle discards by keeping track of the still-live pixels in f0.1.
6125 * Initialize it with the dispatched pixels.
6126 */
6127 if (wm_prog_data->uses_kill) {
6128 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
6129 discard_init->flag_subreg = 1;
6130 }
6131
6132 /* Generate FS IR for main(). (the visitor only descends into
6133 * functions called "main").
6134 */
6135 emit_nir_code();
6136
6137 if (failed)
6138 return false;
6139
6140 if (wm_prog_data->uses_kill)
6141 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
6142
6143 if (wm_key->alpha_test_func)
6144 emit_alpha_test();
6145
6146 emit_fb_writes();
6147
6148 if (shader_time_index >= 0)
6149 emit_shader_time_end();
6150
6151 calculate_cfg();
6152
6153 optimize();
6154
6155 assign_curb_setup();
6156 assign_urb_setup();
6157
6158 fixup_3src_null_dest();
6159 allocate_registers(allow_spilling);
6160
6161 if (failed)
6162 return false;
6163 }
6164
6165 return !failed;
6166 }
6167
6168 bool
6169 fs_visitor::run_cs()
6170 {
6171 assert(stage == MESA_SHADER_COMPUTE);
6172
6173 setup_cs_payload();
6174
6175 if (shader_time_index >= 0)
6176 emit_shader_time_begin();
6177
6178 if (devinfo->is_haswell && prog_data->total_shared > 0) {
6179 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
6180 const fs_builder abld = bld.exec_all().group(1, 0);
6181 abld.MOV(retype(brw_sr0_reg(1), BRW_REGISTER_TYPE_UW),
6182 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
6183 }
6184
6185 emit_nir_code();
6186
6187 if (failed)
6188 return false;
6189
6190 emit_cs_terminate();
6191
6192 if (shader_time_index >= 0)
6193 emit_shader_time_end();
6194
6195 calculate_cfg();
6196
6197 optimize();
6198
6199 assign_curb_setup();
6200
6201 fixup_3src_null_dest();
6202 allocate_registers(true);
6203
6204 if (failed)
6205 return false;
6206
6207 return !failed;
6208 }
6209
6210 /**
6211 * Return a bitfield where bit n is set if barycentric interpolation mode n
6212 * (see enum brw_barycentric_mode) is needed by the fragment shader.
6213 *
6214 * We examine the load_barycentric intrinsics rather than looking at input
6215 * variables so that we catch interpolateAtCentroid() messages too, which
6216 * also need the BRW_BARYCENTRIC_[NON]PERSPECTIVE_CENTROID mode set up.
6217 */
6218 static unsigned
6219 brw_compute_barycentric_interp_modes(const struct gen_device_info *devinfo,
6220 const nir_shader *shader)
6221 {
6222 unsigned barycentric_interp_modes = 0;
6223
6224 nir_foreach_function(f, shader) {
6225 if (!f->impl)
6226 continue;
6227
6228 nir_foreach_block(block, f->impl) {
6229 nir_foreach_instr(instr, block) {
6230 if (instr->type != nir_instr_type_intrinsic)
6231 continue;
6232
6233 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6234 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6235 continue;
6236
6237 /* Ignore WPOS; it doesn't require interpolation. */
6238 if (nir_intrinsic_base(intrin) == VARYING_SLOT_POS)
6239 continue;
6240
6241 intrin = nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6242 enum glsl_interp_mode interp = (enum glsl_interp_mode)
6243 nir_intrinsic_interp_mode(intrin);
6244 nir_intrinsic_op bary_op = intrin->intrinsic;
6245 enum brw_barycentric_mode bary =
6246 brw_barycentric_mode(interp, bary_op);
6247
6248 barycentric_interp_modes |= 1 << bary;
6249
6250 if (devinfo->needs_unlit_centroid_workaround &&
6251 bary_op == nir_intrinsic_load_barycentric_centroid)
6252 barycentric_interp_modes |= 1 << centroid_to_pixel(bary);
6253 }
6254 }
6255 }
6256
6257 return barycentric_interp_modes;
6258 }
6259
6260 static void
6261 brw_compute_flat_inputs(struct brw_wm_prog_data *prog_data,
6262 const nir_shader *shader)
6263 {
6264 prog_data->flat_inputs = 0;
6265
6266 nir_foreach_variable(var, &shader->inputs) {
6267 int input_index = prog_data->urb_setup[var->data.location];
6268
6269 if (input_index < 0)
6270 continue;
6271
6272 /* flat shading */
6273 if (var->data.interpolation == INTERP_MODE_FLAT)
6274 prog_data->flat_inputs |= (1 << input_index);
6275 }
6276 }
6277
6278 static uint8_t
6279 computed_depth_mode(const nir_shader *shader)
6280 {
6281 if (shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
6282 switch (shader->info->fs.depth_layout) {
6283 case FRAG_DEPTH_LAYOUT_NONE:
6284 case FRAG_DEPTH_LAYOUT_ANY:
6285 return BRW_PSCDEPTH_ON;
6286 case FRAG_DEPTH_LAYOUT_GREATER:
6287 return BRW_PSCDEPTH_ON_GE;
6288 case FRAG_DEPTH_LAYOUT_LESS:
6289 return BRW_PSCDEPTH_ON_LE;
6290 case FRAG_DEPTH_LAYOUT_UNCHANGED:
6291 return BRW_PSCDEPTH_OFF;
6292 }
6293 }
6294 return BRW_PSCDEPTH_OFF;
6295 }
6296
6297 /**
6298 * Move load_interpolated_input with simple (payload-based) barycentric modes
6299 * to the top of the program so we don't emit multiple PLNs for the same input.
6300 *
6301 * This works around CSE not being able to handle non-dominating cases
6302 * such as:
6303 *
6304 * if (...) {
6305 * interpolate input
6306 * } else {
6307 * interpolate the same exact input
6308 * }
6309 *
6310 * This should be replaced by global value numbering someday.
6311 */
6312 void
6313 move_interpolation_to_top(nir_shader *nir)
6314 {
6315 nir_foreach_function(f, nir) {
6316 if (!f->impl)
6317 continue;
6318
6319 nir_block *top = nir_start_block(f->impl);
6320 exec_node *cursor_node = NULL;
6321
6322 nir_foreach_block(block, f->impl) {
6323 if (block == top)
6324 continue;
6325
6326 nir_foreach_instr_safe(instr, block) {
6327 if (instr->type != nir_instr_type_intrinsic)
6328 continue;
6329
6330 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6331 if (intrin->intrinsic != nir_intrinsic_load_interpolated_input)
6332 continue;
6333 nir_intrinsic_instr *bary_intrinsic =
6334 nir_instr_as_intrinsic(intrin->src[0].ssa->parent_instr);
6335 nir_intrinsic_op op = bary_intrinsic->intrinsic;
6336
6337 /* Leave interpolateAtSample/Offset() where they are. */
6338 if (op == nir_intrinsic_load_barycentric_at_sample ||
6339 op == nir_intrinsic_load_barycentric_at_offset)
6340 continue;
6341
6342 nir_instr *move[3] = {
6343 &bary_intrinsic->instr,
6344 intrin->src[1].ssa->parent_instr,
6345 instr
6346 };
6347
6348 for (unsigned i = 0; i < ARRAY_SIZE(move); i++) {
6349 if (move[i]->block != top) {
6350 move[i]->block = top;
6351 exec_node_remove(&move[i]->node);
6352 if (cursor_node) {
6353 exec_node_insert_after(cursor_node, &move[i]->node);
6354 } else {
6355 exec_list_push_head(&top->instr_list, &move[i]->node);
6356 }
6357 cursor_node = &move[i]->node;
6358 }
6359 }
6360 }
6361 }
6362 nir_metadata_preserve(f->impl, (nir_metadata)
6363 ((unsigned) nir_metadata_block_index |
6364 (unsigned) nir_metadata_dominance));
6365 }
6366 }
6367
6368 /**
6369 * Demote per-sample barycentric intrinsics to centroid.
6370 *
6371 * Useful when rendering to a non-multisampled buffer.
6372 */
6373 static void
6374 demote_sample_qualifiers(nir_shader *nir)
6375 {
6376 nir_foreach_function(f, nir) {
6377 if (!f->impl)
6378 continue;
6379
6380 nir_builder b;
6381 nir_builder_init(&b, f->impl);
6382
6383 nir_foreach_block(block, f->impl) {
6384 nir_foreach_instr_safe(instr, block) {
6385 if (instr->type != nir_instr_type_intrinsic)
6386 continue;
6387
6388 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
6389 if (intrin->intrinsic != nir_intrinsic_load_barycentric_sample &&
6390 intrin->intrinsic != nir_intrinsic_load_barycentric_at_sample)
6391 continue;
6392
6393 b.cursor = nir_before_instr(instr);
6394 nir_ssa_def *centroid =
6395 nir_load_barycentric(&b, nir_intrinsic_load_barycentric_centroid,
6396 nir_intrinsic_interp_mode(intrin));
6397 nir_ssa_def_rewrite_uses(&intrin->dest.ssa,
6398 nir_src_for_ssa(centroid));
6399 nir_instr_remove(instr);
6400 }
6401 }
6402
6403 nir_metadata_preserve(f->impl, (nir_metadata)
6404 ((unsigned) nir_metadata_block_index |
6405 (unsigned) nir_metadata_dominance));
6406 }
6407 }
6408
6409 const unsigned *
6410 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
6411 void *mem_ctx,
6412 const struct brw_wm_prog_key *key,
6413 struct brw_wm_prog_data *prog_data,
6414 const nir_shader *src_shader,
6415 struct gl_program *prog,
6416 int shader_time_index8, int shader_time_index16,
6417 bool allow_spilling,
6418 bool use_rep_send, struct brw_vue_map *vue_map,
6419 unsigned *final_assembly_size,
6420 char **error_str)
6421 {
6422 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6423 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6424 true);
6425 brw_nir_lower_fs_inputs(shader, vue_map, prog, compiler->devinfo, key);
6426 brw_nir_lower_fs_outputs(shader);
6427 if (!key->multisample_fbo)
6428 NIR_PASS_V(shader, demote_sample_qualifiers);
6429 NIR_PASS_V(shader, move_interpolation_to_top);
6430 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6431
6432 /* key->alpha_test_func means simulating alpha testing via discards,
6433 * so the shader definitely kills pixels.
6434 */
6435 prog_data->uses_kill = shader->info->fs.uses_discard ||
6436 key->alpha_test_func;
6437 prog_data->uses_omask = key->multisample_fbo &&
6438 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
6439 prog_data->computed_depth_mode = computed_depth_mode(shader);
6440 prog_data->computed_stencil =
6441 shader->info->outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
6442
6443 prog_data->persample_dispatch =
6444 key->multisample_fbo &&
6445 (key->persample_interp ||
6446 (shader->info->system_values_read & (SYSTEM_BIT_SAMPLE_ID |
6447 SYSTEM_BIT_SAMPLE_POS)) ||
6448 shader->info->fs.uses_sample_qualifier ||
6449 shader->info->outputs_read);
6450
6451 prog_data->early_fragment_tests = shader->info->fs.early_fragment_tests;
6452
6453 prog_data->barycentric_interp_modes =
6454 brw_compute_barycentric_interp_modes(compiler->devinfo, shader);
6455
6456 cfg_t *simd8_cfg = NULL, *simd16_cfg = NULL;
6457 uint8_t simd8_grf_start = 0, simd16_grf_start = 0;
6458 unsigned simd8_grf_used = 0, simd16_grf_used = 0;
6459
6460 fs_visitor v8(compiler, log_data, mem_ctx, key,
6461 &prog_data->base, prog, shader, 8,
6462 shader_time_index8);
6463 if (!v8.run_fs(allow_spilling, false /* do_rep_send */)) {
6464 if (error_str)
6465 *error_str = ralloc_strdup(mem_ctx, v8.fail_msg);
6466
6467 return NULL;
6468 } else if (likely(!(INTEL_DEBUG & DEBUG_NO8))) {
6469 simd8_cfg = v8.cfg;
6470 simd8_grf_start = v8.payload.num_regs;
6471 simd8_grf_used = v8.grf_used;
6472 }
6473
6474 if (v8.max_dispatch_width >= 16 &&
6475 likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
6476 /* Try a SIMD16 compile */
6477 fs_visitor v16(compiler, log_data, mem_ctx, key,
6478 &prog_data->base, prog, shader, 16,
6479 shader_time_index16);
6480 v16.import_uniforms(&v8);
6481 if (!v16.run_fs(allow_spilling, use_rep_send)) {
6482 compiler->shader_perf_log(log_data,
6483 "SIMD16 shader failed to compile: %s",
6484 v16.fail_msg);
6485 } else {
6486 simd16_cfg = v16.cfg;
6487 simd16_grf_start = v16.payload.num_regs;
6488 simd16_grf_used = v16.grf_used;
6489 }
6490 }
6491
6492 /* When the caller requests a repclear shader, they want SIMD16-only */
6493 if (use_rep_send)
6494 simd8_cfg = NULL;
6495
6496 /* Prior to Iron Lake, the PS had a single shader offset with a jump table
6497 * at the top to select the shader. We've never implemented that.
6498 * Instead, we just give them exactly one shader and we pick the widest one
6499 * available.
6500 */
6501 if (compiler->devinfo->gen < 5 && simd16_cfg)
6502 simd8_cfg = NULL;
6503
6504 if (prog_data->persample_dispatch) {
6505 /* Starting with SandyBridge (where we first get MSAA), the different
6506 * pixel dispatch combinations are grouped into classifications A
6507 * through F (SNB PRM Vol. 2 Part 1 Section 7.7.1). On all hardware
6508 * generations, the only configurations supporting persample dispatch
6509 * are are this in which only one dispatch width is enabled.
6510 *
6511 * If computed depth is enabled, SNB only allows SIMD8 while IVB+
6512 * allow SIMD8 or SIMD16 so we choose SIMD16 if available.
6513 */
6514 if (compiler->devinfo->gen == 6 &&
6515 prog_data->computed_depth_mode != BRW_PSCDEPTH_OFF) {
6516 simd16_cfg = NULL;
6517 } else if (simd16_cfg) {
6518 simd8_cfg = NULL;
6519 }
6520 }
6521
6522 /* We have to compute the flat inputs after the visitor is finished running
6523 * because it relies on prog_data->urb_setup which is computed in
6524 * fs_visitor::calculate_urb_setup().
6525 */
6526 brw_compute_flat_inputs(prog_data, shader);
6527
6528 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
6529 v8.promoted_constants, v8.runtime_check_aads_emit,
6530 MESA_SHADER_FRAGMENT);
6531
6532 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
6533 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
6534 shader->info->label ?
6535 shader->info->label : "unnamed",
6536 shader->info->name));
6537 }
6538
6539 if (simd8_cfg) {
6540 prog_data->dispatch_8 = true;
6541 g.generate_code(simd8_cfg, 8);
6542 prog_data->base.dispatch_grf_start_reg = simd8_grf_start;
6543 prog_data->reg_blocks_0 = brw_register_blocks(simd8_grf_used);
6544
6545 if (simd16_cfg) {
6546 prog_data->dispatch_16 = true;
6547 prog_data->prog_offset_2 = g.generate_code(simd16_cfg, 16);
6548 prog_data->dispatch_grf_start_reg_2 = simd16_grf_start;
6549 prog_data->reg_blocks_2 = brw_register_blocks(simd16_grf_used);
6550 }
6551 } else if (simd16_cfg) {
6552 prog_data->dispatch_16 = true;
6553 g.generate_code(simd16_cfg, 16);
6554 prog_data->base.dispatch_grf_start_reg = simd16_grf_start;
6555 prog_data->reg_blocks_0 = brw_register_blocks(simd16_grf_used);
6556 }
6557
6558 return g.get_assembly(final_assembly_size);
6559 }
6560
6561 fs_reg *
6562 fs_visitor::emit_cs_work_group_id_setup()
6563 {
6564 assert(stage == MESA_SHADER_COMPUTE);
6565
6566 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
6567
6568 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
6569 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
6570 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
6571
6572 bld.MOV(*reg, r0_1);
6573 bld.MOV(offset(*reg, bld, 1), r0_6);
6574 bld.MOV(offset(*reg, bld, 2), r0_7);
6575
6576 return reg;
6577 }
6578
6579 static void
6580 fill_push_const_block_info(struct brw_push_const_block *block, unsigned dwords)
6581 {
6582 block->dwords = dwords;
6583 block->regs = DIV_ROUND_UP(dwords, 8);
6584 block->size = block->regs * 32;
6585 }
6586
6587 static void
6588 cs_fill_push_const_info(const struct gen_device_info *devinfo,
6589 struct brw_cs_prog_data *cs_prog_data)
6590 {
6591 const struct brw_stage_prog_data *prog_data = &cs_prog_data->base;
6592 bool fill_thread_id =
6593 cs_prog_data->thread_local_id_index >= 0 &&
6594 cs_prog_data->thread_local_id_index < (int)prog_data->nr_params;
6595 bool cross_thread_supported = devinfo->gen > 7 || devinfo->is_haswell;
6596
6597 /* The thread ID should be stored in the last param dword */
6598 assert(prog_data->nr_params > 0 || !fill_thread_id);
6599 assert(!fill_thread_id ||
6600 cs_prog_data->thread_local_id_index ==
6601 (int)prog_data->nr_params - 1);
6602
6603 unsigned cross_thread_dwords, per_thread_dwords;
6604 if (!cross_thread_supported) {
6605 cross_thread_dwords = 0u;
6606 per_thread_dwords = prog_data->nr_params;
6607 } else if (fill_thread_id) {
6608 /* Fill all but the last register with cross-thread payload */
6609 cross_thread_dwords = 8 * (cs_prog_data->thread_local_id_index / 8);
6610 per_thread_dwords = prog_data->nr_params - cross_thread_dwords;
6611 assert(per_thread_dwords > 0 && per_thread_dwords <= 8);
6612 } else {
6613 /* Fill all data using cross-thread payload */
6614 cross_thread_dwords = prog_data->nr_params;
6615 per_thread_dwords = 0u;
6616 }
6617
6618 fill_push_const_block_info(&cs_prog_data->push.cross_thread, cross_thread_dwords);
6619 fill_push_const_block_info(&cs_prog_data->push.per_thread, per_thread_dwords);
6620
6621 unsigned total_dwords =
6622 (cs_prog_data->push.per_thread.size * cs_prog_data->threads +
6623 cs_prog_data->push.cross_thread.size) / 4;
6624 fill_push_const_block_info(&cs_prog_data->push.total, total_dwords);
6625
6626 assert(cs_prog_data->push.cross_thread.dwords % 8 == 0 ||
6627 cs_prog_data->push.per_thread.size == 0);
6628 assert(cs_prog_data->push.cross_thread.dwords +
6629 cs_prog_data->push.per_thread.dwords ==
6630 prog_data->nr_params);
6631 }
6632
6633 static void
6634 cs_set_simd_size(struct brw_cs_prog_data *cs_prog_data, unsigned size)
6635 {
6636 cs_prog_data->simd_size = size;
6637 unsigned group_size = cs_prog_data->local_size[0] *
6638 cs_prog_data->local_size[1] * cs_prog_data->local_size[2];
6639 cs_prog_data->threads = (group_size + size - 1) / size;
6640 }
6641
6642 const unsigned *
6643 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
6644 void *mem_ctx,
6645 const struct brw_cs_prog_key *key,
6646 struct brw_cs_prog_data *prog_data,
6647 const nir_shader *src_shader,
6648 int shader_time_index,
6649 unsigned *final_assembly_size,
6650 char **error_str)
6651 {
6652 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
6653 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
6654 true);
6655 brw_nir_lower_cs_shared(shader);
6656 prog_data->base.total_shared += shader->num_shared;
6657
6658 /* Now that we cloned the nir_shader, we can update num_uniforms based on
6659 * the thread_local_id_index.
6660 */
6661 assert(prog_data->thread_local_id_index >= 0);
6662 shader->num_uniforms =
6663 MAX2(shader->num_uniforms,
6664 (unsigned)4 * (prog_data->thread_local_id_index + 1));
6665
6666 brw_nir_lower_intrinsics(shader, &prog_data->base);
6667 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
6668
6669 prog_data->local_size[0] = shader->info->cs.local_size[0];
6670 prog_data->local_size[1] = shader->info->cs.local_size[1];
6671 prog_data->local_size[2] = shader->info->cs.local_size[2];
6672 unsigned local_workgroup_size =
6673 shader->info->cs.local_size[0] * shader->info->cs.local_size[1] *
6674 shader->info->cs.local_size[2];
6675
6676 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
6677 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
6678
6679 cfg_t *cfg = NULL;
6680 const char *fail_msg = NULL;
6681
6682 /* Now the main event: Visit the shader IR and generate our CS IR for it.
6683 */
6684 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
6685 NULL, /* Never used in core profile */
6686 shader, 8, shader_time_index);
6687 if (simd_required <= 8) {
6688 if (!v8.run_cs()) {
6689 fail_msg = v8.fail_msg;
6690 } else {
6691 cfg = v8.cfg;
6692 cs_set_simd_size(prog_data, 8);
6693 cs_fill_push_const_info(compiler->devinfo, prog_data);
6694 prog_data->base.dispatch_grf_start_reg = v8.payload.num_regs;
6695 }
6696 }
6697
6698 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
6699 NULL, /* Never used in core profile */
6700 shader, 16, shader_time_index);
6701 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
6702 !fail_msg && v8.max_dispatch_width >= 16 &&
6703 simd_required <= 16) {
6704 /* Try a SIMD16 compile */
6705 if (simd_required <= 8)
6706 v16.import_uniforms(&v8);
6707 if (!v16.run_cs()) {
6708 compiler->shader_perf_log(log_data,
6709 "SIMD16 shader failed to compile: %s",
6710 v16.fail_msg);
6711 if (!cfg) {
6712 fail_msg =
6713 "Couldn't generate SIMD16 program and not "
6714 "enough threads for SIMD8";
6715 }
6716 } else {
6717 cfg = v16.cfg;
6718 cs_set_simd_size(prog_data, 16);
6719 cs_fill_push_const_info(compiler->devinfo, prog_data);
6720 prog_data->dispatch_grf_start_reg_16 = v16.payload.num_regs;
6721 }
6722 }
6723
6724 fs_visitor v32(compiler, log_data, mem_ctx, key, &prog_data->base,
6725 NULL, /* Never used in core profile */
6726 shader, 32, shader_time_index);
6727 if (!fail_msg && v8.max_dispatch_width >= 32 &&
6728 (simd_required > 16 || (INTEL_DEBUG & DEBUG_DO32))) {
6729 /* Try a SIMD32 compile */
6730 if (simd_required <= 8)
6731 v32.import_uniforms(&v8);
6732 else if (simd_required <= 16)
6733 v32.import_uniforms(&v16);
6734
6735 if (!v32.run_cs()) {
6736 compiler->shader_perf_log(log_data,
6737 "SIMD32 shader failed to compile: %s",
6738 v16.fail_msg);
6739 if (!cfg) {
6740 fail_msg =
6741 "Couldn't generate SIMD32 program and not "
6742 "enough threads for SIMD16";
6743 }
6744 } else {
6745 cfg = v32.cfg;
6746 cs_set_simd_size(prog_data, 32);
6747 cs_fill_push_const_info(compiler->devinfo, prog_data);
6748 }
6749 }
6750
6751 if (unlikely(cfg == NULL)) {
6752 assert(fail_msg);
6753 if (error_str)
6754 *error_str = ralloc_strdup(mem_ctx, fail_msg);
6755
6756 return NULL;
6757 }
6758
6759 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
6760 v8.promoted_constants, v8.runtime_check_aads_emit,
6761 MESA_SHADER_COMPUTE);
6762 if (INTEL_DEBUG & DEBUG_CS) {
6763 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
6764 shader->info->label ? shader->info->label :
6765 "unnamed",
6766 shader->info->name);
6767 g.enable_debug(name);
6768 }
6769
6770 g.generate_code(cfg, prog_data->simd_size);
6771
6772 return g.get_assembly(final_assembly_size);
6773 }
6774
6775 /**
6776 * Test the dispatch mask packing assumptions of
6777 * brw_stage_has_packed_dispatch(). Call this from e.g. the top of
6778 * fs_visitor::emit_nir_code() to cause a GPU hang if any shader invocation is
6779 * executed with an unexpected dispatch mask.
6780 */
6781 static UNUSED void
6782 brw_fs_test_dispatch_packing(const fs_builder &bld)
6783 {
6784 const gl_shader_stage stage = bld.shader->stage;
6785
6786 if (brw_stage_has_packed_dispatch(bld.shader->devinfo, stage,
6787 bld.shader->stage_prog_data)) {
6788 const fs_builder ubld = bld.exec_all().group(1, 0);
6789 const fs_reg tmp = component(bld.vgrf(BRW_REGISTER_TYPE_UD), 0);
6790 const fs_reg mask = (stage == MESA_SHADER_FRAGMENT ? brw_vmask_reg() :
6791 brw_dmask_reg());
6792
6793 ubld.ADD(tmp, mask, brw_imm_ud(1));
6794 ubld.AND(tmp, mask, tmp);
6795
6796 /* This will loop forever if the dispatch mask doesn't have the expected
6797 * form '2^n-1', in which case tmp will be non-zero.
6798 */
6799 bld.emit(BRW_OPCODE_DO);
6800 bld.CMP(bld.null_reg_ud(), tmp, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
6801 set_predicate(BRW_PREDICATE_NORMAL, bld.emit(BRW_OPCODE_WHILE));
6802 }
6803 }