i965: Restore the forcing of aligned pairs for delta_xy on chips with PLN.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 extern "C" {
29
30 #include <sys/types.h>
31
32 #include "main/macros.h"
33 #include "main/shaderobj.h"
34 #include "main/uniforms.h"
35 #include "program/prog_parameter.h"
36 #include "program/prog_print.h"
37 #include "program/prog_optimize.h"
38 #include "program/register_allocate.h"
39 #include "program/sampler.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "talloc.h"
45 }
46 #include "../glsl/glsl_types.h"
47 #include "../glsl/ir_optimization.h"
48 #include "../glsl/ir_print_visitor.h"
49
50 enum register_file {
51 ARF = BRW_ARCHITECTURE_REGISTER_FILE,
52 GRF = BRW_GENERAL_REGISTER_FILE,
53 MRF = BRW_MESSAGE_REGISTER_FILE,
54 IMM = BRW_IMMEDIATE_VALUE,
55 FIXED_HW_REG, /* a struct brw_reg */
56 UNIFORM, /* prog_data->params[hw_reg] */
57 BAD_FILE
58 };
59
60 enum fs_opcodes {
61 FS_OPCODE_FB_WRITE = 256,
62 FS_OPCODE_RCP,
63 FS_OPCODE_RSQ,
64 FS_OPCODE_SQRT,
65 FS_OPCODE_EXP2,
66 FS_OPCODE_LOG2,
67 FS_OPCODE_POW,
68 FS_OPCODE_SIN,
69 FS_OPCODE_COS,
70 FS_OPCODE_DDX,
71 FS_OPCODE_DDY,
72 FS_OPCODE_LINTERP,
73 FS_OPCODE_TEX,
74 FS_OPCODE_TXB,
75 FS_OPCODE_TXL,
76 FS_OPCODE_DISCARD,
77 };
78
79 static int using_new_fs = -1;
80 static struct brw_reg brw_reg_from_fs_reg(class fs_reg *reg);
81
82 struct gl_shader *
83 brw_new_shader(GLcontext *ctx, GLuint name, GLuint type)
84 {
85 struct brw_shader *shader;
86
87 shader = talloc_zero(NULL, struct brw_shader);
88 if (shader) {
89 shader->base.Type = type;
90 shader->base.Name = name;
91 _mesa_init_shader(ctx, &shader->base);
92 }
93
94 return &shader->base;
95 }
96
97 struct gl_shader_program *
98 brw_new_shader_program(GLcontext *ctx, GLuint name)
99 {
100 struct brw_shader_program *prog;
101 prog = talloc_zero(NULL, struct brw_shader_program);
102 if (prog) {
103 prog->base.Name = name;
104 _mesa_init_shader_program(ctx, &prog->base);
105 }
106 return &prog->base;
107 }
108
109 GLboolean
110 brw_compile_shader(GLcontext *ctx, struct gl_shader *shader)
111 {
112 if (!_mesa_ir_compile_shader(ctx, shader))
113 return GL_FALSE;
114
115 return GL_TRUE;
116 }
117
118 GLboolean
119 brw_link_shader(GLcontext *ctx, struct gl_shader_program *prog)
120 {
121 if (using_new_fs == -1)
122 using_new_fs = getenv("INTEL_NEW_FS") != NULL;
123
124 for (unsigned i = 0; i < prog->_NumLinkedShaders; i++) {
125 struct brw_shader *shader = (struct brw_shader *)prog->_LinkedShaders[i];
126
127 if (using_new_fs && shader->base.Type == GL_FRAGMENT_SHADER) {
128 void *mem_ctx = talloc_new(NULL);
129 bool progress;
130
131 if (shader->ir)
132 talloc_free(shader->ir);
133 shader->ir = new(shader) exec_list;
134 clone_ir_list(mem_ctx, shader->ir, shader->base.ir);
135
136 do_mat_op_to_vec(shader->ir);
137 do_mod_to_fract(shader->ir);
138 do_div_to_mul_rcp(shader->ir);
139 do_sub_to_add_neg(shader->ir);
140 do_explog_to_explog2(shader->ir);
141 do_lower_texture_projection(shader->ir);
142
143 do {
144 progress = false;
145
146 brw_do_channel_expressions(shader->ir);
147 brw_do_vector_splitting(shader->ir);
148
149 progress = do_lower_jumps(shader->ir, true, true,
150 true, /* main return */
151 false, /* continue */
152 false /* loops */
153 ) || progress;
154
155 progress = do_common_optimization(shader->ir, true, 32) || progress;
156
157 progress = lower_noise(shader->ir) || progress;
158 progress =
159 lower_variable_index_to_cond_assign(shader->ir,
160 GL_TRUE, /* input */
161 GL_TRUE, /* output */
162 GL_TRUE, /* temp */
163 GL_TRUE /* uniform */
164 ) || progress;
165 } while (progress);
166
167 validate_ir_tree(shader->ir);
168
169 reparent_ir(shader->ir, shader->ir);
170 talloc_free(mem_ctx);
171 }
172 }
173
174 if (!_mesa_ir_link_shader(ctx, prog))
175 return GL_FALSE;
176
177 return GL_TRUE;
178 }
179
180 static int
181 type_size(const struct glsl_type *type)
182 {
183 unsigned int size, i;
184
185 switch (type->base_type) {
186 case GLSL_TYPE_UINT:
187 case GLSL_TYPE_INT:
188 case GLSL_TYPE_FLOAT:
189 case GLSL_TYPE_BOOL:
190 return type->components();
191 case GLSL_TYPE_ARRAY:
192 return type_size(type->fields.array) * type->length;
193 case GLSL_TYPE_STRUCT:
194 size = 0;
195 for (i = 0; i < type->length; i++) {
196 size += type_size(type->fields.structure[i].type);
197 }
198 return size;
199 case GLSL_TYPE_SAMPLER:
200 /* Samplers take up no register space, since they're baked in at
201 * link time.
202 */
203 return 0;
204 default:
205 assert(!"not reached");
206 return 0;
207 }
208 }
209
210 class fs_reg {
211 public:
212 /* Callers of this talloc-based new need not call delete. It's
213 * easier to just talloc_free 'ctx' (or any of its ancestors). */
214 static void* operator new(size_t size, void *ctx)
215 {
216 void *node;
217
218 node = talloc_size(ctx, size);
219 assert(node != NULL);
220
221 return node;
222 }
223
224 void init()
225 {
226 this->reg = 0;
227 this->reg_offset = 0;
228 this->negate = 0;
229 this->abs = 0;
230 this->hw_reg = -1;
231 }
232
233 /** Generic unset register constructor. */
234 fs_reg()
235 {
236 init();
237 this->file = BAD_FILE;
238 }
239
240 /** Immediate value constructor. */
241 fs_reg(float f)
242 {
243 init();
244 this->file = IMM;
245 this->type = BRW_REGISTER_TYPE_F;
246 this->imm.f = f;
247 }
248
249 /** Immediate value constructor. */
250 fs_reg(int32_t i)
251 {
252 init();
253 this->file = IMM;
254 this->type = BRW_REGISTER_TYPE_D;
255 this->imm.i = i;
256 }
257
258 /** Immediate value constructor. */
259 fs_reg(uint32_t u)
260 {
261 init();
262 this->file = IMM;
263 this->type = BRW_REGISTER_TYPE_UD;
264 this->imm.u = u;
265 }
266
267 /** Fixed brw_reg Immediate value constructor. */
268 fs_reg(struct brw_reg fixed_hw_reg)
269 {
270 init();
271 this->file = FIXED_HW_REG;
272 this->fixed_hw_reg = fixed_hw_reg;
273 this->type = fixed_hw_reg.type;
274 }
275
276 fs_reg(enum register_file file, int hw_reg);
277 fs_reg(class fs_visitor *v, const struct glsl_type *type);
278
279 /** Register file: ARF, GRF, MRF, IMM. */
280 enum register_file file;
281 /** virtual register number. 0 = fixed hw reg */
282 int reg;
283 /** Offset within the virtual register. */
284 int reg_offset;
285 /** HW register number. Generally unset until register allocation. */
286 int hw_reg;
287 /** Register type. BRW_REGISTER_TYPE_* */
288 int type;
289 bool negate;
290 bool abs;
291 struct brw_reg fixed_hw_reg;
292
293 /** Value for file == BRW_IMMMEDIATE_FILE */
294 union {
295 int32_t i;
296 uint32_t u;
297 float f;
298 } imm;
299 };
300
301 static const fs_reg reg_undef;
302 static const fs_reg reg_null(ARF, BRW_ARF_NULL);
303
304 class fs_inst : public exec_node {
305 public:
306 /* Callers of this talloc-based new need not call delete. It's
307 * easier to just talloc_free 'ctx' (or any of its ancestors). */
308 static void* operator new(size_t size, void *ctx)
309 {
310 void *node;
311
312 node = talloc_zero_size(ctx, size);
313 assert(node != NULL);
314
315 return node;
316 }
317
318 void init()
319 {
320 this->opcode = BRW_OPCODE_NOP;
321 this->saturate = false;
322 this->conditional_mod = BRW_CONDITIONAL_NONE;
323 this->predicated = false;
324 this->sampler = 0;
325 this->target = 0;
326 this->eot = false;
327 this->shadow_compare = false;
328 }
329
330 fs_inst()
331 {
332 init();
333 }
334
335 fs_inst(int opcode)
336 {
337 init();
338 this->opcode = opcode;
339 }
340
341 fs_inst(int opcode, fs_reg dst, fs_reg src0)
342 {
343 init();
344 this->opcode = opcode;
345 this->dst = dst;
346 this->src[0] = src0;
347 }
348
349 fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1)
350 {
351 init();
352 this->opcode = opcode;
353 this->dst = dst;
354 this->src[0] = src0;
355 this->src[1] = src1;
356 }
357
358 fs_inst(int opcode, fs_reg dst, fs_reg src0, fs_reg src1, fs_reg src2)
359 {
360 init();
361 this->opcode = opcode;
362 this->dst = dst;
363 this->src[0] = src0;
364 this->src[1] = src1;
365 this->src[2] = src2;
366 }
367
368 int opcode; /* BRW_OPCODE_* or FS_OPCODE_* */
369 fs_reg dst;
370 fs_reg src[3];
371 bool saturate;
372 bool predicated;
373 int conditional_mod; /**< BRW_CONDITIONAL_* */
374
375 int mlen; /**< SEND message length */
376 int sampler;
377 int target; /**< MRT target. */
378 bool eot;
379 bool shadow_compare;
380
381 /** @{
382 * Annotation for the generated IR. One of the two can be set.
383 */
384 ir_instruction *ir;
385 const char *annotation;
386 /** @} */
387 };
388
389 class fs_visitor : public ir_visitor
390 {
391 public:
392
393 fs_visitor(struct brw_wm_compile *c, struct brw_shader *shader)
394 {
395 this->c = c;
396 this->p = &c->func;
397 this->brw = p->brw;
398 this->fp = brw->fragment_program;
399 this->intel = &brw->intel;
400 this->ctx = &intel->ctx;
401 this->mem_ctx = talloc_new(NULL);
402 this->shader = shader;
403 this->fail = false;
404 this->variable_ht = hash_table_ctor(0,
405 hash_table_pointer_hash,
406 hash_table_pointer_compare);
407
408 this->frag_color = NULL;
409 this->frag_data = NULL;
410 this->frag_depth = NULL;
411 this->first_non_payload_grf = 0;
412
413 this->current_annotation = NULL;
414 this->annotation_string = NULL;
415 this->annotation_ir = NULL;
416 this->base_ir = NULL;
417
418 this->virtual_grf_sizes = NULL;
419 this->virtual_grf_next = 1;
420 this->virtual_grf_array_size = 0;
421 this->virtual_grf_def = NULL;
422 this->virtual_grf_use = NULL;
423 }
424 ~fs_visitor()
425 {
426 talloc_free(this->mem_ctx);
427 hash_table_dtor(this->variable_ht);
428 }
429
430 fs_reg *variable_storage(ir_variable *var);
431 int virtual_grf_alloc(int size);
432
433 void visit(ir_variable *ir);
434 void visit(ir_assignment *ir);
435 void visit(ir_dereference_variable *ir);
436 void visit(ir_dereference_record *ir);
437 void visit(ir_dereference_array *ir);
438 void visit(ir_expression *ir);
439 void visit(ir_texture *ir);
440 void visit(ir_if *ir);
441 void visit(ir_constant *ir);
442 void visit(ir_swizzle *ir);
443 void visit(ir_return *ir);
444 void visit(ir_loop *ir);
445 void visit(ir_loop_jump *ir);
446 void visit(ir_discard *ir);
447 void visit(ir_call *ir);
448 void visit(ir_function *ir);
449 void visit(ir_function_signature *ir);
450
451 fs_inst *emit(fs_inst inst);
452 void assign_curb_setup();
453 void calculate_urb_setup();
454 void assign_urb_setup();
455 void assign_regs();
456 void assign_regs_trivial();
457 void calculate_live_intervals();
458 bool virtual_grf_interferes(int a, int b);
459 void generate_code();
460 void generate_fb_write(fs_inst *inst);
461 void generate_linterp(fs_inst *inst, struct brw_reg dst,
462 struct brw_reg *src);
463 void generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
464 void generate_math(fs_inst *inst, struct brw_reg dst, struct brw_reg *src);
465 void generate_discard(fs_inst *inst, struct brw_reg temp);
466 void generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
467 void generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src);
468
469 void emit_dummy_fs();
470 void emit_fragcoord_interpolation(ir_variable *ir);
471 void emit_general_interpolation(ir_variable *ir);
472 void emit_interpolation_setup_gen4();
473 void emit_interpolation_setup_gen6();
474 fs_inst *emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate);
475 fs_inst *emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate);
476 void emit_fb_writes();
477 void emit_assignment_writes(fs_reg &l, fs_reg &r,
478 const glsl_type *type, bool predicated);
479
480 struct brw_reg interp_reg(int location, int channel);
481 int setup_uniform_values(int loc, const glsl_type *type);
482 void setup_builtin_uniform_values(ir_variable *ir);
483
484 struct brw_context *brw;
485 const struct gl_fragment_program *fp;
486 struct intel_context *intel;
487 GLcontext *ctx;
488 struct brw_wm_compile *c;
489 struct brw_compile *p;
490 struct brw_shader *shader;
491 void *mem_ctx;
492 exec_list instructions;
493
494 int *virtual_grf_sizes;
495 int virtual_grf_next;
496 int virtual_grf_array_size;
497 int *virtual_grf_def;
498 int *virtual_grf_use;
499
500 struct hash_table *variable_ht;
501 ir_variable *frag_color, *frag_data, *frag_depth;
502 int first_non_payload_grf;
503 int urb_setup[FRAG_ATTRIB_MAX];
504
505 /** @{ debug annotation info */
506 const char *current_annotation;
507 ir_instruction *base_ir;
508 const char **annotation_string;
509 ir_instruction **annotation_ir;
510 /** @} */
511
512 bool fail;
513
514 /* Result of last visit() method. */
515 fs_reg result;
516
517 fs_reg pixel_x;
518 fs_reg pixel_y;
519 fs_reg wpos_w;
520 fs_reg pixel_w;
521 fs_reg delta_x;
522 fs_reg delta_y;
523
524 int grf_used;
525
526 };
527
528 int
529 fs_visitor::virtual_grf_alloc(int size)
530 {
531 if (virtual_grf_array_size <= virtual_grf_next) {
532 if (virtual_grf_array_size == 0)
533 virtual_grf_array_size = 16;
534 else
535 virtual_grf_array_size *= 2;
536 virtual_grf_sizes = talloc_realloc(mem_ctx, virtual_grf_sizes,
537 int, virtual_grf_array_size);
538
539 /* This slot is always unused. */
540 virtual_grf_sizes[0] = 0;
541 }
542 virtual_grf_sizes[virtual_grf_next] = size;
543 return virtual_grf_next++;
544 }
545
546 /** Fixed HW reg constructor. */
547 fs_reg::fs_reg(enum register_file file, int hw_reg)
548 {
549 init();
550 this->file = file;
551 this->hw_reg = hw_reg;
552 this->type = BRW_REGISTER_TYPE_F;
553 }
554
555 int
556 brw_type_for_base_type(const struct glsl_type *type)
557 {
558 switch (type->base_type) {
559 case GLSL_TYPE_FLOAT:
560 return BRW_REGISTER_TYPE_F;
561 case GLSL_TYPE_INT:
562 case GLSL_TYPE_BOOL:
563 return BRW_REGISTER_TYPE_D;
564 case GLSL_TYPE_UINT:
565 return BRW_REGISTER_TYPE_UD;
566 case GLSL_TYPE_ARRAY:
567 case GLSL_TYPE_STRUCT:
568 /* These should be overridden with the type of the member when
569 * dereferenced into. BRW_REGISTER_TYPE_UD seems like a likely
570 * way to trip up if we don't.
571 */
572 return BRW_REGISTER_TYPE_UD;
573 default:
574 assert(!"not reached");
575 return BRW_REGISTER_TYPE_F;
576 }
577 }
578
579 /** Automatic reg constructor. */
580 fs_reg::fs_reg(class fs_visitor *v, const struct glsl_type *type)
581 {
582 init();
583
584 this->file = GRF;
585 this->reg = v->virtual_grf_alloc(type_size(type));
586 this->reg_offset = 0;
587 this->type = brw_type_for_base_type(type);
588 }
589
590 fs_reg *
591 fs_visitor::variable_storage(ir_variable *var)
592 {
593 return (fs_reg *)hash_table_find(this->variable_ht, var);
594 }
595
596 /* Our support for uniforms is piggy-backed on the struct
597 * gl_fragment_program, because that's where the values actually
598 * get stored, rather than in some global gl_shader_program uniform
599 * store.
600 */
601 int
602 fs_visitor::setup_uniform_values(int loc, const glsl_type *type)
603 {
604 unsigned int offset = 0;
605 float *vec_values;
606
607 if (type->is_matrix()) {
608 const glsl_type *column = glsl_type::get_instance(GLSL_TYPE_FLOAT,
609 type->vector_elements,
610 1);
611
612 for (unsigned int i = 0; i < type->matrix_columns; i++) {
613 offset += setup_uniform_values(loc + offset, column);
614 }
615
616 return offset;
617 }
618
619 switch (type->base_type) {
620 case GLSL_TYPE_FLOAT:
621 case GLSL_TYPE_UINT:
622 case GLSL_TYPE_INT:
623 case GLSL_TYPE_BOOL:
624 vec_values = fp->Base.Parameters->ParameterValues[loc];
625 for (unsigned int i = 0; i < type->vector_elements; i++) {
626 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[i];
627 }
628 return 1;
629
630 case GLSL_TYPE_STRUCT:
631 for (unsigned int i = 0; i < type->length; i++) {
632 offset += setup_uniform_values(loc + offset,
633 type->fields.structure[i].type);
634 }
635 return offset;
636
637 case GLSL_TYPE_ARRAY:
638 for (unsigned int i = 0; i < type->length; i++) {
639 offset += setup_uniform_values(loc + offset, type->fields.array);
640 }
641 return offset;
642
643 case GLSL_TYPE_SAMPLER:
644 /* The sampler takes up a slot, but we don't use any values from it. */
645 return 1;
646
647 default:
648 assert(!"not reached");
649 return 0;
650 }
651 }
652
653
654 /* Our support for builtin uniforms is even scarier than non-builtin.
655 * It sits on top of the PROG_STATE_VAR parameters that are
656 * automatically updated from GL context state.
657 */
658 void
659 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
660 {
661 const struct gl_builtin_uniform_desc *statevar = NULL;
662
663 for (unsigned int i = 0; _mesa_builtin_uniform_desc[i].name; i++) {
664 statevar = &_mesa_builtin_uniform_desc[i];
665 if (strcmp(ir->name, _mesa_builtin_uniform_desc[i].name) == 0)
666 break;
667 }
668
669 if (!statevar->name) {
670 this->fail = true;
671 printf("Failed to find builtin uniform `%s'\n", ir->name);
672 return;
673 }
674
675 int array_count;
676 if (ir->type->is_array()) {
677 array_count = ir->type->length;
678 } else {
679 array_count = 1;
680 }
681
682 for (int a = 0; a < array_count; a++) {
683 for (unsigned int i = 0; i < statevar->num_elements; i++) {
684 struct gl_builtin_uniform_element *element = &statevar->elements[i];
685 int tokens[STATE_LENGTH];
686
687 memcpy(tokens, element->tokens, sizeof(element->tokens));
688 if (ir->type->is_array()) {
689 tokens[1] = a;
690 }
691
692 /* This state reference has already been setup by ir_to_mesa,
693 * but we'll get the same index back here.
694 */
695 int index = _mesa_add_state_reference(this->fp->Base.Parameters,
696 (gl_state_index *)tokens);
697 float *vec_values = this->fp->Base.Parameters->ParameterValues[index];
698
699 /* Add each of the unique swizzles of the element as a
700 * parameter. This'll end up matching the expected layout of
701 * the array/matrix/structure we're trying to fill in.
702 */
703 int last_swiz = -1;
704 for (unsigned int i = 0; i < 4; i++) {
705 int swiz = GET_SWZ(element->swizzle, i);
706 if (swiz == last_swiz)
707 break;
708 last_swiz = swiz;
709
710 c->prog_data.param[c->prog_data.nr_params++] = &vec_values[swiz];
711 }
712 }
713 }
714 }
715
716 void
717 fs_visitor::emit_fragcoord_interpolation(ir_variable *ir)
718 {
719 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
720 fs_reg wpos = *reg;
721 fs_reg neg_y = this->pixel_y;
722 neg_y.negate = true;
723
724 /* gl_FragCoord.x */
725 if (ir->pixel_center_integer) {
726 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_x));
727 } else {
728 emit(fs_inst(BRW_OPCODE_ADD, wpos, this->pixel_x, fs_reg(0.5f)));
729 }
730 wpos.reg_offset++;
731
732 /* gl_FragCoord.y */
733 if (ir->origin_upper_left && ir->pixel_center_integer) {
734 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->pixel_y));
735 } else {
736 fs_reg pixel_y = this->pixel_y;
737 float offset = (ir->pixel_center_integer ? 0.0 : 0.5);
738
739 if (!ir->origin_upper_left) {
740 pixel_y.negate = true;
741 offset += c->key.drawable_height - 1.0;
742 }
743
744 emit(fs_inst(BRW_OPCODE_ADD, wpos, pixel_y, fs_reg(offset)));
745 }
746 wpos.reg_offset++;
747
748 /* gl_FragCoord.z */
749 emit(fs_inst(FS_OPCODE_LINTERP, wpos, this->delta_x, this->delta_y,
750 interp_reg(FRAG_ATTRIB_WPOS, 2)));
751 wpos.reg_offset++;
752
753 /* gl_FragCoord.w: Already set up in emit_interpolation */
754 emit(fs_inst(BRW_OPCODE_MOV, wpos, this->wpos_w));
755
756 hash_table_insert(this->variable_ht, reg, ir);
757 }
758
759
760 void
761 fs_visitor::emit_general_interpolation(ir_variable *ir)
762 {
763 fs_reg *reg = new(this->mem_ctx) fs_reg(this, ir->type);
764 /* Interpolation is always in floating point regs. */
765 reg->type = BRW_REGISTER_TYPE_F;
766 fs_reg attr = *reg;
767
768 unsigned int array_elements;
769 const glsl_type *type;
770
771 if (ir->type->is_array()) {
772 array_elements = ir->type->length;
773 if (array_elements == 0) {
774 this->fail = true;
775 }
776 type = ir->type->fields.array;
777 } else {
778 array_elements = 1;
779 type = ir->type;
780 }
781
782 int location = ir->location;
783 for (unsigned int i = 0; i < array_elements; i++) {
784 for (unsigned int j = 0; j < type->matrix_columns; j++) {
785 if (urb_setup[location] == -1) {
786 /* If there's no incoming setup data for this slot, don't
787 * emit interpolation for it.
788 */
789 attr.reg_offset += type->vector_elements;
790 location++;
791 continue;
792 }
793
794 for (unsigned int c = 0; c < type->vector_elements; c++) {
795 struct brw_reg interp = interp_reg(location, c);
796 emit(fs_inst(FS_OPCODE_LINTERP,
797 attr,
798 this->delta_x,
799 this->delta_y,
800 fs_reg(interp)));
801 attr.reg_offset++;
802 }
803 attr.reg_offset -= type->vector_elements;
804
805 for (unsigned int c = 0; c < type->vector_elements; c++) {
806 emit(fs_inst(BRW_OPCODE_MUL,
807 attr,
808 attr,
809 this->pixel_w));
810 attr.reg_offset++;
811 }
812 location++;
813 }
814 }
815
816 hash_table_insert(this->variable_ht, reg, ir);
817 }
818
819 void
820 fs_visitor::visit(ir_variable *ir)
821 {
822 fs_reg *reg = NULL;
823
824 if (variable_storage(ir))
825 return;
826
827 if (strcmp(ir->name, "gl_FragColor") == 0) {
828 this->frag_color = ir;
829 } else if (strcmp(ir->name, "gl_FragData") == 0) {
830 this->frag_data = ir;
831 } else if (strcmp(ir->name, "gl_FragDepth") == 0) {
832 this->frag_depth = ir;
833 }
834
835 if (ir->mode == ir_var_in) {
836 if (!strcmp(ir->name, "gl_FragCoord")) {
837 emit_fragcoord_interpolation(ir);
838 return;
839 } else if (!strcmp(ir->name, "gl_FrontFacing")) {
840 reg = new(this->mem_ctx) fs_reg(this, ir->type);
841 struct brw_reg r1_6ud = retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_UD);
842 /* bit 31 is "primitive is back face", so checking < (1 << 31) gives
843 * us front face
844 */
845 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP,
846 *reg,
847 fs_reg(r1_6ud),
848 fs_reg(1u << 31)));
849 inst->conditional_mod = BRW_CONDITIONAL_L;
850 emit(fs_inst(BRW_OPCODE_AND, *reg, *reg, fs_reg(1u)));
851 } else {
852 emit_general_interpolation(ir);
853 return;
854 }
855 }
856
857 if (ir->mode == ir_var_uniform) {
858 int param_index = c->prog_data.nr_params;
859
860 if (!strncmp(ir->name, "gl_", 3)) {
861 setup_builtin_uniform_values(ir);
862 } else {
863 setup_uniform_values(ir->location, ir->type);
864 }
865
866 reg = new(this->mem_ctx) fs_reg(UNIFORM, param_index);
867 }
868
869 if (!reg)
870 reg = new(this->mem_ctx) fs_reg(this, ir->type);
871
872 hash_table_insert(this->variable_ht, reg, ir);
873 }
874
875 void
876 fs_visitor::visit(ir_dereference_variable *ir)
877 {
878 fs_reg *reg = variable_storage(ir->var);
879 this->result = *reg;
880 }
881
882 void
883 fs_visitor::visit(ir_dereference_record *ir)
884 {
885 const glsl_type *struct_type = ir->record->type;
886
887 ir->record->accept(this);
888
889 unsigned int offset = 0;
890 for (unsigned int i = 0; i < struct_type->length; i++) {
891 if (strcmp(struct_type->fields.structure[i].name, ir->field) == 0)
892 break;
893 offset += type_size(struct_type->fields.structure[i].type);
894 }
895 this->result.reg_offset += offset;
896 this->result.type = brw_type_for_base_type(ir->type);
897 }
898
899 void
900 fs_visitor::visit(ir_dereference_array *ir)
901 {
902 ir_constant *index;
903 int element_size;
904
905 ir->array->accept(this);
906 index = ir->array_index->as_constant();
907
908 element_size = type_size(ir->type);
909 this->result.type = brw_type_for_base_type(ir->type);
910
911 if (index) {
912 assert(this->result.file == UNIFORM ||
913 (this->result.file == GRF &&
914 this->result.reg != 0));
915 this->result.reg_offset += index->value.i[0] * element_size;
916 } else {
917 assert(!"FINISHME: non-constant array element");
918 }
919 }
920
921 void
922 fs_visitor::visit(ir_expression *ir)
923 {
924 unsigned int operand;
925 fs_reg op[2], temp;
926 fs_reg result;
927 fs_inst *inst;
928
929 for (operand = 0; operand < ir->get_num_operands(); operand++) {
930 ir->operands[operand]->accept(this);
931 if (this->result.file == BAD_FILE) {
932 ir_print_visitor v;
933 printf("Failed to get tree for expression operand:\n");
934 ir->operands[operand]->accept(&v);
935 this->fail = true;
936 }
937 op[operand] = this->result;
938
939 /* Matrix expression operands should have been broken down to vector
940 * operations already.
941 */
942 assert(!ir->operands[operand]->type->is_matrix());
943 /* And then those vector operands should have been broken down to scalar.
944 */
945 assert(!ir->operands[operand]->type->is_vector());
946 }
947
948 /* Storage for our result. If our result goes into an assignment, it will
949 * just get copy-propagated out, so no worries.
950 */
951 this->result = fs_reg(this, ir->type);
952
953 switch (ir->operation) {
954 case ir_unop_logic_not:
955 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], fs_reg(-1)));
956 break;
957 case ir_unop_neg:
958 op[0].negate = !op[0].negate;
959 this->result = op[0];
960 break;
961 case ir_unop_abs:
962 op[0].abs = true;
963 this->result = op[0];
964 break;
965 case ir_unop_sign:
966 temp = fs_reg(this, ir->type);
967
968 emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(0.0f)));
969
970 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
971 inst->conditional_mod = BRW_CONDITIONAL_G;
972 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(1.0f)));
973 inst->predicated = true;
974
975 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, op[0], fs_reg(0.0f)));
976 inst->conditional_mod = BRW_CONDITIONAL_L;
977 inst = emit(fs_inst(BRW_OPCODE_MOV, this->result, fs_reg(-1.0f)));
978 inst->predicated = true;
979
980 break;
981 case ir_unop_rcp:
982 emit(fs_inst(FS_OPCODE_RCP, this->result, op[0]));
983 break;
984
985 case ir_unop_exp2:
986 emit(fs_inst(FS_OPCODE_EXP2, this->result, op[0]));
987 break;
988 case ir_unop_log2:
989 emit(fs_inst(FS_OPCODE_LOG2, this->result, op[0]));
990 break;
991 case ir_unop_exp:
992 case ir_unop_log:
993 assert(!"not reached: should be handled by ir_explog_to_explog2");
994 break;
995 case ir_unop_sin:
996 emit(fs_inst(FS_OPCODE_SIN, this->result, op[0]));
997 break;
998 case ir_unop_cos:
999 emit(fs_inst(FS_OPCODE_COS, this->result, op[0]));
1000 break;
1001
1002 case ir_unop_dFdx:
1003 emit(fs_inst(FS_OPCODE_DDX, this->result, op[0]));
1004 break;
1005 case ir_unop_dFdy:
1006 emit(fs_inst(FS_OPCODE_DDY, this->result, op[0]));
1007 break;
1008
1009 case ir_binop_add:
1010 emit(fs_inst(BRW_OPCODE_ADD, this->result, op[0], op[1]));
1011 break;
1012 case ir_binop_sub:
1013 assert(!"not reached: should be handled by ir_sub_to_add_neg");
1014 break;
1015
1016 case ir_binop_mul:
1017 emit(fs_inst(BRW_OPCODE_MUL, this->result, op[0], op[1]));
1018 break;
1019 case ir_binop_div:
1020 assert(!"not reached: should be handled by ir_div_to_mul_rcp");
1021 break;
1022 case ir_binop_mod:
1023 assert(!"ir_binop_mod should have been converted to b * fract(a/b)");
1024 break;
1025
1026 case ir_binop_less:
1027 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1028 inst->conditional_mod = BRW_CONDITIONAL_L;
1029 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1030 break;
1031 case ir_binop_greater:
1032 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1033 inst->conditional_mod = BRW_CONDITIONAL_G;
1034 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1035 break;
1036 case ir_binop_lequal:
1037 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1038 inst->conditional_mod = BRW_CONDITIONAL_LE;
1039 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1040 break;
1041 case ir_binop_gequal:
1042 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1043 inst->conditional_mod = BRW_CONDITIONAL_GE;
1044 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1045 break;
1046 case ir_binop_equal:
1047 case ir_binop_all_equal: /* same as nequal for scalars */
1048 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1049 inst->conditional_mod = BRW_CONDITIONAL_Z;
1050 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1051 break;
1052 case ir_binop_nequal:
1053 case ir_binop_any_nequal: /* same as nequal for scalars */
1054 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1055 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1056 emit(fs_inst(BRW_OPCODE_AND, this->result, this->result, fs_reg(0x1)));
1057 break;
1058
1059 case ir_binop_logic_xor:
1060 emit(fs_inst(BRW_OPCODE_XOR, this->result, op[0], op[1]));
1061 break;
1062
1063 case ir_binop_logic_or:
1064 emit(fs_inst(BRW_OPCODE_OR, this->result, op[0], op[1]));
1065 break;
1066
1067 case ir_binop_logic_and:
1068 emit(fs_inst(BRW_OPCODE_AND, this->result, op[0], op[1]));
1069 break;
1070
1071 case ir_binop_dot:
1072 case ir_binop_cross:
1073 case ir_unop_any:
1074 assert(!"not reached: should be handled by brw_fs_channel_expressions");
1075 break;
1076
1077 case ir_unop_noise:
1078 assert(!"not reached: should be handled by lower_noise");
1079 break;
1080
1081 case ir_unop_sqrt:
1082 emit(fs_inst(FS_OPCODE_SQRT, this->result, op[0]));
1083 break;
1084
1085 case ir_unop_rsq:
1086 emit(fs_inst(FS_OPCODE_RSQ, this->result, op[0]));
1087 break;
1088
1089 case ir_unop_i2f:
1090 case ir_unop_b2f:
1091 case ir_unop_b2i:
1092 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1093 break;
1094 case ir_unop_f2i:
1095 emit(fs_inst(BRW_OPCODE_MOV, this->result, op[0]));
1096 break;
1097 case ir_unop_f2b:
1098 case ir_unop_i2b:
1099 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], fs_reg(0.0f)));
1100 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1101
1102 case ir_unop_trunc:
1103 emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1104 break;
1105 case ir_unop_ceil:
1106 op[0].negate = ~op[0].negate;
1107 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1108 this->result.negate = true;
1109 break;
1110 case ir_unop_floor:
1111 inst = emit(fs_inst(BRW_OPCODE_RNDD, this->result, op[0]));
1112 break;
1113 case ir_unop_fract:
1114 inst = emit(fs_inst(BRW_OPCODE_FRC, this->result, op[0]));
1115 break;
1116
1117 case ir_binop_min:
1118 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1119 inst->conditional_mod = BRW_CONDITIONAL_L;
1120
1121 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1122 inst->predicated = true;
1123 break;
1124 case ir_binop_max:
1125 inst = emit(fs_inst(BRW_OPCODE_CMP, this->result, op[0], op[1]));
1126 inst->conditional_mod = BRW_CONDITIONAL_G;
1127
1128 inst = emit(fs_inst(BRW_OPCODE_SEL, this->result, op[0], op[1]));
1129 inst->predicated = true;
1130 break;
1131
1132 case ir_binop_pow:
1133 inst = emit(fs_inst(FS_OPCODE_POW, this->result, op[0], op[1]));
1134 break;
1135
1136 case ir_unop_bit_not:
1137 case ir_unop_u2f:
1138 case ir_binop_lshift:
1139 case ir_binop_rshift:
1140 case ir_binop_bit_and:
1141 case ir_binop_bit_xor:
1142 case ir_binop_bit_or:
1143 assert(!"GLSL 1.30 features unsupported");
1144 break;
1145 }
1146 }
1147
1148 void
1149 fs_visitor::emit_assignment_writes(fs_reg &l, fs_reg &r,
1150 const glsl_type *type, bool predicated)
1151 {
1152 switch (type->base_type) {
1153 case GLSL_TYPE_FLOAT:
1154 case GLSL_TYPE_UINT:
1155 case GLSL_TYPE_INT:
1156 case GLSL_TYPE_BOOL:
1157 for (unsigned int i = 0; i < type->components(); i++) {
1158 l.type = brw_type_for_base_type(type);
1159 r.type = brw_type_for_base_type(type);
1160
1161 fs_inst *inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1162 inst->predicated = predicated;
1163
1164 l.reg_offset++;
1165 r.reg_offset++;
1166 }
1167 break;
1168 case GLSL_TYPE_ARRAY:
1169 for (unsigned int i = 0; i < type->length; i++) {
1170 emit_assignment_writes(l, r, type->fields.array, predicated);
1171 }
1172
1173 case GLSL_TYPE_STRUCT:
1174 for (unsigned int i = 0; i < type->length; i++) {
1175 emit_assignment_writes(l, r, type->fields.structure[i].type,
1176 predicated);
1177 }
1178 break;
1179
1180 case GLSL_TYPE_SAMPLER:
1181 break;
1182
1183 default:
1184 assert(!"not reached");
1185 break;
1186 }
1187 }
1188
1189 void
1190 fs_visitor::visit(ir_assignment *ir)
1191 {
1192 struct fs_reg l, r;
1193 fs_inst *inst;
1194
1195 /* FINISHME: arrays on the lhs */
1196 ir->lhs->accept(this);
1197 l = this->result;
1198
1199 ir->rhs->accept(this);
1200 r = this->result;
1201
1202 assert(l.file != BAD_FILE);
1203 assert(r.file != BAD_FILE);
1204
1205 if (ir->condition) {
1206 /* Get the condition bool into the predicate. */
1207 ir->condition->accept(this);
1208 inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null, this->result, fs_reg(0)));
1209 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1210 }
1211
1212 if (ir->lhs->type->is_scalar() ||
1213 ir->lhs->type->is_vector()) {
1214 for (int i = 0; i < ir->lhs->type->vector_elements; i++) {
1215 if (ir->write_mask & (1 << i)) {
1216 inst = emit(fs_inst(BRW_OPCODE_MOV, l, r));
1217 if (ir->condition)
1218 inst->predicated = true;
1219 r.reg_offset++;
1220 }
1221 l.reg_offset++;
1222 }
1223 } else {
1224 emit_assignment_writes(l, r, ir->lhs->type, ir->condition != NULL);
1225 }
1226 }
1227
1228 fs_inst *
1229 fs_visitor::emit_texture_gen4(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1230 {
1231 int mlen;
1232 int base_mrf = 2;
1233 bool simd16 = false;
1234 fs_reg orig_dst;
1235
1236 if (ir->shadow_comparitor) {
1237 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1238 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1239 coordinate));
1240 coordinate.reg_offset++;
1241 }
1242 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1243 mlen = 3;
1244
1245 if (ir->op == ir_tex) {
1246 /* There's no plain shadow compare message, so we use shadow
1247 * compare with a bias of 0.0.
1248 */
1249 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1250 fs_reg(0.0f)));
1251 mlen++;
1252 } else if (ir->op == ir_txb) {
1253 ir->lod_info.bias->accept(this);
1254 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1255 this->result));
1256 mlen++;
1257 } else {
1258 assert(ir->op == ir_txl);
1259 ir->lod_info.lod->accept(this);
1260 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1261 this->result));
1262 mlen++;
1263 }
1264
1265 ir->shadow_comparitor->accept(this);
1266 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1267 mlen++;
1268 } else if (ir->op == ir_tex) {
1269 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1270 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1271 coordinate));
1272 coordinate.reg_offset++;
1273 }
1274 /* gen4's SIMD8 sampler always has the slots for u,v,r present. */
1275 mlen = 3;
1276 } else {
1277 /* Oh joy. gen4 doesn't have SIMD8 non-shadow-compare bias/lod
1278 * instructions. We'll need to do SIMD16 here.
1279 */
1280 assert(ir->op == ir_txb || ir->op == ir_txl);
1281
1282 for (mlen = 0; mlen < ir->coordinate->type->vector_elements * 2;) {
1283 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1284 coordinate));
1285 coordinate.reg_offset++;
1286 mlen++;
1287
1288 /* The unused upper half. */
1289 mlen++;
1290 }
1291
1292 /* lod/bias appears after u/v/r. */
1293 mlen = 6;
1294
1295 if (ir->op == ir_txb) {
1296 ir->lod_info.bias->accept(this);
1297 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1298 this->result));
1299 mlen++;
1300 } else {
1301 ir->lod_info.lod->accept(this);
1302 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen),
1303 this->result));
1304 mlen++;
1305 }
1306
1307 /* The unused upper half. */
1308 mlen++;
1309
1310 /* Now, since we're doing simd16, the return is 2 interleaved
1311 * vec4s where the odd-indexed ones are junk. We'll need to move
1312 * this weirdness around to the expected layout.
1313 */
1314 simd16 = true;
1315 orig_dst = dst;
1316 dst = fs_reg(this, glsl_type::get_array_instance(glsl_type::vec4_type,
1317 2));
1318 dst.type = BRW_REGISTER_TYPE_F;
1319 }
1320
1321 fs_inst *inst = NULL;
1322 switch (ir->op) {
1323 case ir_tex:
1324 inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1325 break;
1326 case ir_txb:
1327 inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1328 break;
1329 case ir_txl:
1330 inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1331 break;
1332 case ir_txd:
1333 case ir_txf:
1334 assert(!"GLSL 1.30 features unsupported");
1335 break;
1336 }
1337 inst->mlen = mlen;
1338
1339 if (simd16) {
1340 for (int i = 0; i < 4; i++) {
1341 emit(fs_inst(BRW_OPCODE_MOV, orig_dst, dst));
1342 orig_dst.reg_offset++;
1343 dst.reg_offset += 2;
1344 }
1345 }
1346
1347 return inst;
1348 }
1349
1350 fs_inst *
1351 fs_visitor::emit_texture_gen5(ir_texture *ir, fs_reg dst, fs_reg coordinate)
1352 {
1353 /* gen5's SIMD8 sampler has slots for u, v, r, array index, then
1354 * optional parameters like shadow comparitor or LOD bias. If
1355 * optional parameters aren't present, those base slots are
1356 * optional and don't need to be included in the message.
1357 *
1358 * We don't fill in the unnecessary slots regardless, which may
1359 * look surprising in the disassembly.
1360 */
1361 int mlen;
1362 int base_mrf = 2;
1363
1364 for (mlen = 0; mlen < ir->coordinate->type->vector_elements; mlen++) {
1365 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), coordinate));
1366 coordinate.reg_offset++;
1367 }
1368
1369 if (ir->shadow_comparitor) {
1370 mlen = MAX2(mlen, 4);
1371
1372 ir->shadow_comparitor->accept(this);
1373 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1374 mlen++;
1375 }
1376
1377 fs_inst *inst = NULL;
1378 switch (ir->op) {
1379 case ir_tex:
1380 inst = emit(fs_inst(FS_OPCODE_TEX, dst, fs_reg(MRF, base_mrf)));
1381 break;
1382 case ir_txb:
1383 ir->lod_info.bias->accept(this);
1384 mlen = MAX2(mlen, 4);
1385 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1386 mlen++;
1387
1388 inst = emit(fs_inst(FS_OPCODE_TXB, dst, fs_reg(MRF, base_mrf)));
1389 break;
1390 case ir_txl:
1391 ir->lod_info.lod->accept(this);
1392 mlen = MAX2(mlen, 4);
1393 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, base_mrf + mlen), this->result));
1394 mlen++;
1395
1396 inst = emit(fs_inst(FS_OPCODE_TXL, dst, fs_reg(MRF, base_mrf)));
1397 break;
1398 case ir_txd:
1399 case ir_txf:
1400 assert(!"GLSL 1.30 features unsupported");
1401 break;
1402 }
1403 inst->mlen = mlen;
1404
1405 return inst;
1406 }
1407
1408 void
1409 fs_visitor::visit(ir_texture *ir)
1410 {
1411 fs_inst *inst = NULL;
1412
1413 ir->coordinate->accept(this);
1414 fs_reg coordinate = this->result;
1415
1416 /* Should be lowered by do_lower_texture_projection */
1417 assert(!ir->projector);
1418
1419 /* Writemasking doesn't eliminate channels on SIMD8 texture
1420 * samples, so don't worry about them.
1421 */
1422 fs_reg dst = fs_reg(this, glsl_type::vec4_type);
1423
1424 if (intel->gen < 5) {
1425 inst = emit_texture_gen4(ir, dst, coordinate);
1426 } else {
1427 inst = emit_texture_gen5(ir, dst, coordinate);
1428 }
1429
1430 inst->sampler =
1431 _mesa_get_sampler_uniform_value(ir->sampler,
1432 ctx->Shader.CurrentProgram,
1433 &brw->fragment_program->Base);
1434 inst->sampler = c->fp->program.Base.SamplerUnits[inst->sampler];
1435
1436 this->result = dst;
1437
1438 if (ir->shadow_comparitor)
1439 inst->shadow_compare = true;
1440 }
1441
1442 void
1443 fs_visitor::visit(ir_swizzle *ir)
1444 {
1445 ir->val->accept(this);
1446 fs_reg val = this->result;
1447
1448 fs_reg result = fs_reg(this, ir->type);
1449 this->result = result;
1450
1451 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1452 fs_reg channel = val;
1453 int swiz = 0;
1454
1455 switch (i) {
1456 case 0:
1457 swiz = ir->mask.x;
1458 break;
1459 case 1:
1460 swiz = ir->mask.y;
1461 break;
1462 case 2:
1463 swiz = ir->mask.z;
1464 break;
1465 case 3:
1466 swiz = ir->mask.w;
1467 break;
1468 }
1469
1470 channel.reg_offset += swiz;
1471 emit(fs_inst(BRW_OPCODE_MOV, result, channel));
1472 result.reg_offset++;
1473 }
1474 }
1475
1476 void
1477 fs_visitor::visit(ir_discard *ir)
1478 {
1479 fs_reg temp = fs_reg(this, glsl_type::uint_type);
1480
1481 assert(ir->condition == NULL); /* FINISHME */
1482
1483 emit(fs_inst(FS_OPCODE_DISCARD, temp, temp));
1484 }
1485
1486 void
1487 fs_visitor::visit(ir_constant *ir)
1488 {
1489 fs_reg reg(this, ir->type);
1490 this->result = reg;
1491
1492 for (unsigned int i = 0; i < ir->type->vector_elements; i++) {
1493 switch (ir->type->base_type) {
1494 case GLSL_TYPE_FLOAT:
1495 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.f[i])));
1496 break;
1497 case GLSL_TYPE_UINT:
1498 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.u[i])));
1499 break;
1500 case GLSL_TYPE_INT:
1501 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg(ir->value.i[i])));
1502 break;
1503 case GLSL_TYPE_BOOL:
1504 emit(fs_inst(BRW_OPCODE_MOV, reg, fs_reg((int)ir->value.b[i])));
1505 break;
1506 default:
1507 assert(!"Non-float/uint/int/bool constant");
1508 }
1509 reg.reg_offset++;
1510 }
1511 }
1512
1513 void
1514 fs_visitor::visit(ir_if *ir)
1515 {
1516 fs_inst *inst;
1517
1518 /* Don't point the annotation at the if statement, because then it plus
1519 * the then and else blocks get printed.
1520 */
1521 this->base_ir = ir->condition;
1522
1523 /* Generate the condition into the condition code. */
1524 ir->condition->accept(this);
1525 inst = emit(fs_inst(BRW_OPCODE_MOV, fs_reg(brw_null_reg()), this->result));
1526 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1527
1528 inst = emit(fs_inst(BRW_OPCODE_IF));
1529 inst->predicated = true;
1530
1531 foreach_iter(exec_list_iterator, iter, ir->then_instructions) {
1532 ir_instruction *ir = (ir_instruction *)iter.get();
1533 this->base_ir = ir;
1534
1535 ir->accept(this);
1536 }
1537
1538 if (!ir->else_instructions.is_empty()) {
1539 emit(fs_inst(BRW_OPCODE_ELSE));
1540
1541 foreach_iter(exec_list_iterator, iter, ir->else_instructions) {
1542 ir_instruction *ir = (ir_instruction *)iter.get();
1543 this->base_ir = ir;
1544
1545 ir->accept(this);
1546 }
1547 }
1548
1549 emit(fs_inst(BRW_OPCODE_ENDIF));
1550 }
1551
1552 void
1553 fs_visitor::visit(ir_loop *ir)
1554 {
1555 fs_reg counter = reg_undef;
1556
1557 if (ir->counter) {
1558 this->base_ir = ir->counter;
1559 ir->counter->accept(this);
1560 counter = *(variable_storage(ir->counter));
1561
1562 if (ir->from) {
1563 this->base_ir = ir->from;
1564 ir->from->accept(this);
1565
1566 emit(fs_inst(BRW_OPCODE_MOV, counter, this->result));
1567 }
1568 }
1569
1570 emit(fs_inst(BRW_OPCODE_DO));
1571
1572 if (ir->to) {
1573 this->base_ir = ir->to;
1574 ir->to->accept(this);
1575
1576 fs_inst *inst = emit(fs_inst(BRW_OPCODE_CMP, reg_null,
1577 counter, this->result));
1578 switch (ir->cmp) {
1579 case ir_binop_equal:
1580 inst->conditional_mod = BRW_CONDITIONAL_Z;
1581 break;
1582 case ir_binop_nequal:
1583 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1584 break;
1585 case ir_binop_gequal:
1586 inst->conditional_mod = BRW_CONDITIONAL_GE;
1587 break;
1588 case ir_binop_lequal:
1589 inst->conditional_mod = BRW_CONDITIONAL_LE;
1590 break;
1591 case ir_binop_greater:
1592 inst->conditional_mod = BRW_CONDITIONAL_G;
1593 break;
1594 case ir_binop_less:
1595 inst->conditional_mod = BRW_CONDITIONAL_L;
1596 break;
1597 default:
1598 assert(!"not reached: unknown loop condition");
1599 this->fail = true;
1600 break;
1601 }
1602
1603 inst = emit(fs_inst(BRW_OPCODE_BREAK));
1604 inst->predicated = true;
1605 }
1606
1607 foreach_iter(exec_list_iterator, iter, ir->body_instructions) {
1608 ir_instruction *ir = (ir_instruction *)iter.get();
1609
1610 this->base_ir = ir;
1611 ir->accept(this);
1612 }
1613
1614 if (ir->increment) {
1615 this->base_ir = ir->increment;
1616 ir->increment->accept(this);
1617 emit(fs_inst(BRW_OPCODE_ADD, counter, counter, this->result));
1618 }
1619
1620 emit(fs_inst(BRW_OPCODE_WHILE));
1621 }
1622
1623 void
1624 fs_visitor::visit(ir_loop_jump *ir)
1625 {
1626 switch (ir->mode) {
1627 case ir_loop_jump::jump_break:
1628 emit(fs_inst(BRW_OPCODE_BREAK));
1629 break;
1630 case ir_loop_jump::jump_continue:
1631 emit(fs_inst(BRW_OPCODE_CONTINUE));
1632 break;
1633 }
1634 }
1635
1636 void
1637 fs_visitor::visit(ir_call *ir)
1638 {
1639 assert(!"FINISHME");
1640 }
1641
1642 void
1643 fs_visitor::visit(ir_return *ir)
1644 {
1645 assert(!"FINISHME");
1646 }
1647
1648 void
1649 fs_visitor::visit(ir_function *ir)
1650 {
1651 /* Ignore function bodies other than main() -- we shouldn't see calls to
1652 * them since they should all be inlined before we get to ir_to_mesa.
1653 */
1654 if (strcmp(ir->name, "main") == 0) {
1655 const ir_function_signature *sig;
1656 exec_list empty;
1657
1658 sig = ir->matching_signature(&empty);
1659
1660 assert(sig);
1661
1662 foreach_iter(exec_list_iterator, iter, sig->body) {
1663 ir_instruction *ir = (ir_instruction *)iter.get();
1664 this->base_ir = ir;
1665
1666 ir->accept(this);
1667 }
1668 }
1669 }
1670
1671 void
1672 fs_visitor::visit(ir_function_signature *ir)
1673 {
1674 assert(!"not reached");
1675 (void)ir;
1676 }
1677
1678 fs_inst *
1679 fs_visitor::emit(fs_inst inst)
1680 {
1681 fs_inst *list_inst = new(mem_ctx) fs_inst;
1682 *list_inst = inst;
1683
1684 list_inst->annotation = this->current_annotation;
1685 list_inst->ir = this->base_ir;
1686
1687 this->instructions.push_tail(list_inst);
1688
1689 return list_inst;
1690 }
1691
1692 /** Emits a dummy fragment shader consisting of magenta for bringup purposes. */
1693 void
1694 fs_visitor::emit_dummy_fs()
1695 {
1696 /* Everyone's favorite color. */
1697 emit(fs_inst(BRW_OPCODE_MOV,
1698 fs_reg(MRF, 2),
1699 fs_reg(1.0f)));
1700 emit(fs_inst(BRW_OPCODE_MOV,
1701 fs_reg(MRF, 3),
1702 fs_reg(0.0f)));
1703 emit(fs_inst(BRW_OPCODE_MOV,
1704 fs_reg(MRF, 4),
1705 fs_reg(1.0f)));
1706 emit(fs_inst(BRW_OPCODE_MOV,
1707 fs_reg(MRF, 5),
1708 fs_reg(0.0f)));
1709
1710 fs_inst *write;
1711 write = emit(fs_inst(FS_OPCODE_FB_WRITE,
1712 fs_reg(0),
1713 fs_reg(0)));
1714 }
1715
1716 /* The register location here is relative to the start of the URB
1717 * data. It will get adjusted to be a real location before
1718 * generate_code() time.
1719 */
1720 struct brw_reg
1721 fs_visitor::interp_reg(int location, int channel)
1722 {
1723 int regnr = urb_setup[location] * 2 + channel / 2;
1724 int stride = (channel & 1) * 4;
1725
1726 assert(urb_setup[location] != -1);
1727
1728 return brw_vec1_grf(regnr, stride);
1729 }
1730
1731 /** Emits the interpolation for the varying inputs. */
1732 void
1733 fs_visitor::emit_interpolation_setup_gen4()
1734 {
1735 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1736
1737 this->current_annotation = "compute pixel centers";
1738 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1739 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1740 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1741 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1742 emit(fs_inst(BRW_OPCODE_ADD,
1743 this->pixel_x,
1744 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1745 fs_reg(brw_imm_v(0x10101010))));
1746 emit(fs_inst(BRW_OPCODE_ADD,
1747 this->pixel_y,
1748 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1749 fs_reg(brw_imm_v(0x11001100))));
1750
1751 this->current_annotation = "compute pixel deltas from v0";
1752 if (brw->has_pln) {
1753 this->delta_x = fs_reg(this, glsl_type::vec2_type);
1754 this->delta_y = this->delta_x;
1755 this->delta_y.reg_offset++;
1756 } else {
1757 this->delta_x = fs_reg(this, glsl_type::float_type);
1758 this->delta_y = fs_reg(this, glsl_type::float_type);
1759 }
1760 emit(fs_inst(BRW_OPCODE_ADD,
1761 this->delta_x,
1762 this->pixel_x,
1763 fs_reg(negate(brw_vec1_grf(1, 0)))));
1764 emit(fs_inst(BRW_OPCODE_ADD,
1765 this->delta_y,
1766 this->pixel_y,
1767 fs_reg(negate(brw_vec1_grf(1, 1)))));
1768
1769 this->current_annotation = "compute pos.w and 1/pos.w";
1770 /* Compute wpos.w. It's always in our setup, since it's needed to
1771 * interpolate the other attributes.
1772 */
1773 this->wpos_w = fs_reg(this, glsl_type::float_type);
1774 emit(fs_inst(FS_OPCODE_LINTERP, wpos_w, this->delta_x, this->delta_y,
1775 interp_reg(FRAG_ATTRIB_WPOS, 3)));
1776 /* Compute the pixel 1/W value from wpos.w. */
1777 this->pixel_w = fs_reg(this, glsl_type::float_type);
1778 emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1779 this->current_annotation = NULL;
1780 }
1781
1782 /** Emits the interpolation for the varying inputs. */
1783 void
1784 fs_visitor::emit_interpolation_setup_gen6()
1785 {
1786 struct brw_reg g1_uw = retype(brw_vec1_grf(1, 0), BRW_REGISTER_TYPE_UW);
1787
1788 /* If the pixel centers end up used, the setup is the same as for gen4. */
1789 this->current_annotation = "compute pixel centers";
1790 this->pixel_x = fs_reg(this, glsl_type::uint_type);
1791 this->pixel_y = fs_reg(this, glsl_type::uint_type);
1792 this->pixel_x.type = BRW_REGISTER_TYPE_UW;
1793 this->pixel_y.type = BRW_REGISTER_TYPE_UW;
1794 emit(fs_inst(BRW_OPCODE_ADD,
1795 this->pixel_x,
1796 fs_reg(stride(suboffset(g1_uw, 4), 2, 4, 0)),
1797 fs_reg(brw_imm_v(0x10101010))));
1798 emit(fs_inst(BRW_OPCODE_ADD,
1799 this->pixel_y,
1800 fs_reg(stride(suboffset(g1_uw, 5), 2, 4, 0)),
1801 fs_reg(brw_imm_v(0x11001100))));
1802
1803 this->current_annotation = "compute 1/pos.w";
1804 this->wpos_w = fs_reg(brw_vec8_grf(c->key.source_w_reg, 0));
1805 this->pixel_w = fs_reg(this, glsl_type::float_type);
1806 emit(fs_inst(FS_OPCODE_RCP, this->pixel_w, wpos_w));
1807
1808 this->delta_x = fs_reg(brw_vec8_grf(2, 0));
1809 this->delta_y = fs_reg(brw_vec8_grf(3, 0));
1810
1811 this->current_annotation = NULL;
1812 }
1813
1814 void
1815 fs_visitor::emit_fb_writes()
1816 {
1817 this->current_annotation = "FB write header";
1818 int nr = 0;
1819
1820 /* m0, m1 header */
1821 nr += 2;
1822
1823 if (c->key.aa_dest_stencil_reg) {
1824 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1825 fs_reg(brw_vec8_grf(c->key.aa_dest_stencil_reg, 0))));
1826 }
1827
1828 /* Reserve space for color. It'll be filled in per MRT below. */
1829 int color_mrf = nr;
1830 nr += 4;
1831
1832 if (c->key.source_depth_to_render_target) {
1833 if (c->key.computes_depth) {
1834 /* Hand over gl_FragDepth. */
1835 assert(this->frag_depth);
1836 fs_reg depth = *(variable_storage(this->frag_depth));
1837
1838 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++), depth));
1839 } else {
1840 /* Pass through the payload depth. */
1841 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1842 fs_reg(brw_vec8_grf(c->key.source_depth_reg, 0))));
1843 }
1844 }
1845
1846 if (c->key.dest_depth_reg) {
1847 emit(fs_inst(BRW_OPCODE_MOV, fs_reg(MRF, nr++),
1848 fs_reg(brw_vec8_grf(c->key.dest_depth_reg, 0))));
1849 }
1850
1851 fs_reg color = reg_undef;
1852 if (this->frag_color)
1853 color = *(variable_storage(this->frag_color));
1854 else if (this->frag_data)
1855 color = *(variable_storage(this->frag_data));
1856
1857 for (int target = 0; target < c->key.nr_color_regions; target++) {
1858 this->current_annotation = talloc_asprintf(this->mem_ctx,
1859 "FB write target %d",
1860 target);
1861 if (this->frag_color || this->frag_data) {
1862 for (int i = 0; i < 4; i++) {
1863 emit(fs_inst(BRW_OPCODE_MOV,
1864 fs_reg(MRF, color_mrf + i),
1865 color));
1866 color.reg_offset++;
1867 }
1868 }
1869
1870 if (this->frag_color)
1871 color.reg_offset -= 4;
1872
1873 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1874 reg_undef, reg_undef));
1875 inst->target = target;
1876 inst->mlen = nr;
1877 if (target == c->key.nr_color_regions - 1)
1878 inst->eot = true;
1879 }
1880
1881 if (c->key.nr_color_regions == 0) {
1882 fs_inst *inst = emit(fs_inst(FS_OPCODE_FB_WRITE,
1883 reg_undef, reg_undef));
1884 inst->mlen = nr;
1885 inst->eot = true;
1886 }
1887
1888 this->current_annotation = NULL;
1889 }
1890
1891 void
1892 fs_visitor::generate_fb_write(fs_inst *inst)
1893 {
1894 GLboolean eot = inst->eot;
1895
1896 /* Header is 2 regs, g0 and g1 are the contents. g0 will be implied
1897 * move, here's g1.
1898 */
1899 brw_push_insn_state(p);
1900 brw_set_mask_control(p, BRW_MASK_DISABLE);
1901 brw_set_compression_control(p, BRW_COMPRESSION_NONE);
1902 brw_MOV(p,
1903 brw_message_reg(1),
1904 brw_vec8_grf(1, 0));
1905 brw_pop_insn_state(p);
1906
1907 brw_fb_WRITE(p,
1908 8, /* dispatch_width */
1909 retype(vec8(brw_null_reg()), BRW_REGISTER_TYPE_UW),
1910 0, /* base MRF */
1911 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
1912 inst->target,
1913 inst->mlen,
1914 0,
1915 eot);
1916 }
1917
1918 void
1919 fs_visitor::generate_linterp(fs_inst *inst,
1920 struct brw_reg dst, struct brw_reg *src)
1921 {
1922 struct brw_reg delta_x = src[0];
1923 struct brw_reg delta_y = src[1];
1924 struct brw_reg interp = src[2];
1925
1926 if (brw->has_pln &&
1927 delta_y.nr == delta_x.nr + 1 &&
1928 (intel->gen >= 6 || (delta_x.nr & 1) == 0)) {
1929 brw_PLN(p, dst, interp, delta_x);
1930 } else {
1931 brw_LINE(p, brw_null_reg(), interp, delta_x);
1932 brw_MAC(p, dst, suboffset(interp, 1), delta_y);
1933 }
1934 }
1935
1936 void
1937 fs_visitor::generate_math(fs_inst *inst,
1938 struct brw_reg dst, struct brw_reg *src)
1939 {
1940 int op;
1941
1942 switch (inst->opcode) {
1943 case FS_OPCODE_RCP:
1944 op = BRW_MATH_FUNCTION_INV;
1945 break;
1946 case FS_OPCODE_RSQ:
1947 op = BRW_MATH_FUNCTION_RSQ;
1948 break;
1949 case FS_OPCODE_SQRT:
1950 op = BRW_MATH_FUNCTION_SQRT;
1951 break;
1952 case FS_OPCODE_EXP2:
1953 op = BRW_MATH_FUNCTION_EXP;
1954 break;
1955 case FS_OPCODE_LOG2:
1956 op = BRW_MATH_FUNCTION_LOG;
1957 break;
1958 case FS_OPCODE_POW:
1959 op = BRW_MATH_FUNCTION_POW;
1960 break;
1961 case FS_OPCODE_SIN:
1962 op = BRW_MATH_FUNCTION_SIN;
1963 break;
1964 case FS_OPCODE_COS:
1965 op = BRW_MATH_FUNCTION_COS;
1966 break;
1967 default:
1968 assert(!"not reached: unknown math function");
1969 op = 0;
1970 break;
1971 }
1972
1973 if (inst->opcode == FS_OPCODE_POW) {
1974 brw_MOV(p, brw_message_reg(3), src[1]);
1975 }
1976
1977 brw_math(p, dst,
1978 op,
1979 inst->saturate ? BRW_MATH_SATURATE_SATURATE :
1980 BRW_MATH_SATURATE_NONE,
1981 2, src[0],
1982 BRW_MATH_DATA_VECTOR,
1983 BRW_MATH_PRECISION_FULL);
1984 }
1985
1986 void
1987 fs_visitor::generate_tex(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
1988 {
1989 int msg_type = -1;
1990 int rlen = 4;
1991 uint32_t simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD8;
1992
1993 if (intel->gen == 5) {
1994 switch (inst->opcode) {
1995 case FS_OPCODE_TEX:
1996 if (inst->shadow_compare) {
1997 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_COMPARE_GEN5;
1998 } else {
1999 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_GEN5;
2000 }
2001 break;
2002 case FS_OPCODE_TXB:
2003 if (inst->shadow_compare) {
2004 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_COMPARE_GEN5;
2005 } else {
2006 msg_type = BRW_SAMPLER_MESSAGE_SAMPLE_BIAS_GEN5;
2007 }
2008 break;
2009 }
2010 } else {
2011 switch (inst->opcode) {
2012 case FS_OPCODE_TEX:
2013 /* Note that G45 and older determines shadow compare and dispatch width
2014 * from message length for most messages.
2015 */
2016 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2017 if (inst->shadow_compare) {
2018 assert(inst->mlen == 5);
2019 } else {
2020 assert(inst->mlen <= 6);
2021 }
2022 break;
2023 case FS_OPCODE_TXB:
2024 if (inst->shadow_compare) {
2025 assert(inst->mlen == 5);
2026 msg_type = BRW_SAMPLER_MESSAGE_SIMD8_SAMPLE;
2027 } else {
2028 assert(inst->mlen == 8);
2029 msg_type = BRW_SAMPLER_MESSAGE_SIMD16_SAMPLE_BIAS;
2030 simd_mode = BRW_SAMPLER_SIMD_MODE_SIMD16;
2031 }
2032 break;
2033 }
2034 }
2035 assert(msg_type != -1);
2036
2037 if (simd_mode == BRW_SAMPLER_SIMD_MODE_SIMD16) {
2038 rlen = 8;
2039 dst = vec16(dst);
2040 }
2041
2042 /* g0 header. */
2043 src.nr--;
2044
2045 brw_SAMPLE(p,
2046 retype(dst, BRW_REGISTER_TYPE_UW),
2047 src.nr,
2048 retype(brw_vec8_grf(0, 0), BRW_REGISTER_TYPE_UW),
2049 SURF_INDEX_TEXTURE(inst->sampler),
2050 inst->sampler,
2051 WRITEMASK_XYZW,
2052 msg_type,
2053 rlen,
2054 inst->mlen + 1,
2055 0,
2056 1,
2057 simd_mode);
2058 }
2059
2060
2061 /* For OPCODE_DDX and OPCODE_DDY, per channel of output we've got input
2062 * looking like:
2063 *
2064 * arg0: ss0.tl ss0.tr ss0.bl ss0.br ss1.tl ss1.tr ss1.bl ss1.br
2065 *
2066 * and we're trying to produce:
2067 *
2068 * DDX DDY
2069 * dst: (ss0.tr - ss0.tl) (ss0.tl - ss0.bl)
2070 * (ss0.tr - ss0.tl) (ss0.tr - ss0.br)
2071 * (ss0.br - ss0.bl) (ss0.tl - ss0.bl)
2072 * (ss0.br - ss0.bl) (ss0.tr - ss0.br)
2073 * (ss1.tr - ss1.tl) (ss1.tl - ss1.bl)
2074 * (ss1.tr - ss1.tl) (ss1.tr - ss1.br)
2075 * (ss1.br - ss1.bl) (ss1.tl - ss1.bl)
2076 * (ss1.br - ss1.bl) (ss1.tr - ss1.br)
2077 *
2078 * and add another set of two more subspans if in 16-pixel dispatch mode.
2079 *
2080 * For DDX, it ends up being easy: width = 2, horiz=0 gets us the same result
2081 * for each pair, and vertstride = 2 jumps us 2 elements after processing a
2082 * pair. But for DDY, it's harder, as we want to produce the pairs swizzled
2083 * between each other. We could probably do it like ddx and swizzle the right
2084 * order later, but bail for now and just produce
2085 * ((ss0.tl - ss0.bl)x4 (ss1.tl - ss1.bl)x4)
2086 */
2087 void
2088 fs_visitor::generate_ddx(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2089 {
2090 struct brw_reg src0 = brw_reg(src.file, src.nr, 1,
2091 BRW_REGISTER_TYPE_F,
2092 BRW_VERTICAL_STRIDE_2,
2093 BRW_WIDTH_2,
2094 BRW_HORIZONTAL_STRIDE_0,
2095 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2096 struct brw_reg src1 = brw_reg(src.file, src.nr, 0,
2097 BRW_REGISTER_TYPE_F,
2098 BRW_VERTICAL_STRIDE_2,
2099 BRW_WIDTH_2,
2100 BRW_HORIZONTAL_STRIDE_0,
2101 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2102 brw_ADD(p, dst, src0, negate(src1));
2103 }
2104
2105 void
2106 fs_visitor::generate_ddy(fs_inst *inst, struct brw_reg dst, struct brw_reg src)
2107 {
2108 struct brw_reg src0 = brw_reg(src.file, src.nr, 0,
2109 BRW_REGISTER_TYPE_F,
2110 BRW_VERTICAL_STRIDE_4,
2111 BRW_WIDTH_4,
2112 BRW_HORIZONTAL_STRIDE_0,
2113 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2114 struct brw_reg src1 = brw_reg(src.file, src.nr, 2,
2115 BRW_REGISTER_TYPE_F,
2116 BRW_VERTICAL_STRIDE_4,
2117 BRW_WIDTH_4,
2118 BRW_HORIZONTAL_STRIDE_0,
2119 BRW_SWIZZLE_XYZW, WRITEMASK_XYZW);
2120 brw_ADD(p, dst, src0, negate(src1));
2121 }
2122
2123 void
2124 fs_visitor::generate_discard(fs_inst *inst, struct brw_reg temp)
2125 {
2126 struct brw_reg g0 = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW);
2127 temp = brw_uw1_reg(temp.file, temp.nr, 0);
2128
2129 brw_push_insn_state(p);
2130 brw_set_mask_control(p, BRW_MASK_DISABLE);
2131 brw_NOT(p, temp, brw_mask_reg(1)); /* IMASK */
2132 brw_AND(p, g0, temp, g0);
2133 brw_pop_insn_state(p);
2134 }
2135
2136 void
2137 fs_visitor::assign_curb_setup()
2138 {
2139 c->prog_data.first_curbe_grf = c->key.nr_payload_regs;
2140 c->prog_data.curb_read_length = ALIGN(c->prog_data.nr_params, 8) / 8;
2141
2142 /* Map the offsets in the UNIFORM file to fixed HW regs. */
2143 foreach_iter(exec_list_iterator, iter, this->instructions) {
2144 fs_inst *inst = (fs_inst *)iter.get();
2145
2146 for (unsigned int i = 0; i < 3; i++) {
2147 if (inst->src[i].file == UNIFORM) {
2148 int constant_nr = inst->src[i].hw_reg + inst->src[i].reg_offset;
2149 struct brw_reg brw_reg = brw_vec1_grf(c->prog_data.first_curbe_grf +
2150 constant_nr / 8,
2151 constant_nr % 8);
2152
2153 inst->src[i].file = FIXED_HW_REG;
2154 inst->src[i].fixed_hw_reg = brw_reg;
2155 }
2156 }
2157 }
2158 }
2159
2160 void
2161 fs_visitor::calculate_urb_setup()
2162 {
2163 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2164 urb_setup[i] = -1;
2165 }
2166
2167 int urb_next = 0;
2168 /* Figure out where each of the incoming setup attributes lands. */
2169 if (intel->gen >= 6) {
2170 for (unsigned int i = 0; i < FRAG_ATTRIB_MAX; i++) {
2171 if (i == FRAG_ATTRIB_WPOS ||
2172 (brw->fragment_program->Base.InputsRead & BITFIELD64_BIT(i))) {
2173 urb_setup[i] = urb_next++;
2174 }
2175 }
2176 } else {
2177 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
2178 for (unsigned int i = 0; i < VERT_RESULT_MAX; i++) {
2179 if (c->key.vp_outputs_written & BITFIELD64_BIT(i)) {
2180 int fp_index;
2181
2182 if (i >= VERT_RESULT_VAR0)
2183 fp_index = i - (VERT_RESULT_VAR0 - FRAG_ATTRIB_VAR0);
2184 else if (i <= VERT_RESULT_TEX7)
2185 fp_index = i;
2186 else
2187 fp_index = -1;
2188
2189 if (fp_index >= 0)
2190 urb_setup[fp_index] = urb_next++;
2191 }
2192 }
2193 }
2194
2195 /* Each attribute is 4 setup channels, each of which is half a reg. */
2196 c->prog_data.urb_read_length = urb_next * 2;
2197 }
2198
2199 void
2200 fs_visitor::assign_urb_setup()
2201 {
2202 int urb_start = c->prog_data.first_curbe_grf + c->prog_data.curb_read_length;
2203
2204 /* Offset all the urb_setup[] index by the actual position of the
2205 * setup regs, now that the location of the constants has been chosen.
2206 */
2207 foreach_iter(exec_list_iterator, iter, this->instructions) {
2208 fs_inst *inst = (fs_inst *)iter.get();
2209
2210 if (inst->opcode != FS_OPCODE_LINTERP)
2211 continue;
2212
2213 assert(inst->src[2].file == FIXED_HW_REG);
2214
2215 inst->src[2].fixed_hw_reg.nr += urb_start;
2216 }
2217
2218 this->first_non_payload_grf = urb_start + c->prog_data.urb_read_length;
2219 }
2220
2221 static void
2222 assign_reg(int *reg_hw_locations, fs_reg *reg)
2223 {
2224 if (reg->file == GRF && reg->reg != 0) {
2225 reg->hw_reg = reg_hw_locations[reg->reg] + reg->reg_offset;
2226 reg->reg = 0;
2227 }
2228 }
2229
2230 void
2231 fs_visitor::assign_regs_trivial()
2232 {
2233 int last_grf = 0;
2234 int hw_reg_mapping[this->virtual_grf_next];
2235 int i;
2236
2237 hw_reg_mapping[0] = 0;
2238 hw_reg_mapping[1] = this->first_non_payload_grf;
2239 for (i = 2; i < this->virtual_grf_next; i++) {
2240 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
2241 this->virtual_grf_sizes[i - 1]);
2242 }
2243 last_grf = hw_reg_mapping[i - 1] + this->virtual_grf_sizes[i - 1];
2244
2245 foreach_iter(exec_list_iterator, iter, this->instructions) {
2246 fs_inst *inst = (fs_inst *)iter.get();
2247
2248 assign_reg(hw_reg_mapping, &inst->dst);
2249 assign_reg(hw_reg_mapping, &inst->src[0]);
2250 assign_reg(hw_reg_mapping, &inst->src[1]);
2251 }
2252
2253 this->grf_used = last_grf + 1;
2254 }
2255
2256 void
2257 fs_visitor::assign_regs()
2258 {
2259 int last_grf = 0;
2260 int hw_reg_mapping[this->virtual_grf_next + 1];
2261 int base_reg_count = BRW_MAX_GRF - this->first_non_payload_grf;
2262 int class_sizes[base_reg_count];
2263 int class_count = 0;
2264 int aligned_pair_class = -1;
2265
2266 calculate_live_intervals();
2267
2268 /* Set up the register classes.
2269 *
2270 * The base registers store a scalar value. For texture samples,
2271 * we get virtual GRFs composed of 4 contiguous hw register. For
2272 * structures and arrays, we store them as contiguous larger things
2273 * than that, though we should be able to do better most of the
2274 * time.
2275 */
2276 class_sizes[class_count++] = 1;
2277 if (brw->has_pln && intel->gen < 6) {
2278 /* Always set up the (unaligned) pairs for gen5, so we can find
2279 * them for making the aligned pair class.
2280 */
2281 class_sizes[class_count++] = 2;
2282 }
2283 for (int r = 1; r < this->virtual_grf_next; r++) {
2284 int i;
2285
2286 for (i = 0; i < class_count; i++) {
2287 if (class_sizes[i] == this->virtual_grf_sizes[r])
2288 break;
2289 }
2290 if (i == class_count) {
2291 class_sizes[class_count++] = this->virtual_grf_sizes[r];
2292 }
2293 }
2294
2295 int ra_reg_count = 0;
2296 int class_base_reg[class_count];
2297 int class_reg_count[class_count];
2298 int classes[class_count + 1];
2299
2300 for (int i = 0; i < class_count; i++) {
2301 class_base_reg[i] = ra_reg_count;
2302 class_reg_count[i] = base_reg_count - (class_sizes[i] - 1);
2303 ra_reg_count += class_reg_count[i];
2304 }
2305
2306 struct ra_regs *regs = ra_alloc_reg_set(ra_reg_count);
2307 for (int i = 0; i < class_count; i++) {
2308 classes[i] = ra_alloc_reg_class(regs);
2309
2310 for (int i_r = 0; i_r < class_reg_count[i]; i_r++) {
2311 ra_class_add_reg(regs, classes[i], class_base_reg[i] + i_r);
2312 }
2313
2314 /* Add conflicts between our contiguous registers aliasing
2315 * base regs and other register classes' contiguous registers
2316 * that alias base regs, or the base regs themselves for classes[0].
2317 */
2318 for (int c = 0; c <= i; c++) {
2319 for (int i_r = 0; i_r < class_reg_count[i] - 1; i_r++) {
2320 for (int c_r = MAX2(0, i_r - (class_sizes[c] - 1));
2321 c_r <= MIN2(class_reg_count[c] - 1, i_r + class_sizes[i] - 1);
2322 c_r++) {
2323
2324 if (0) {
2325 printf("%d/%d conflicts %d/%d\n",
2326 class_sizes[i], i_r,
2327 class_sizes[c], c_r);
2328 }
2329
2330 ra_add_reg_conflict(regs,
2331 class_base_reg[i] + i_r,
2332 class_base_reg[c] + c_r);
2333 }
2334 }
2335 }
2336 }
2337
2338 /* Add a special class for aligned pairs, which we'll put delta_x/y
2339 * in on gen5 so that we can do PLN.
2340 */
2341 if (brw->has_pln && intel->gen < 6) {
2342 int reg_count = (base_reg_count - 1) / 2;
2343 int unaligned_pair_class = 1;
2344 assert(class_sizes[unaligned_pair_class] == 2);
2345
2346 aligned_pair_class = class_count;
2347 classes[aligned_pair_class] = ra_alloc_reg_class(regs);
2348 class_base_reg[aligned_pair_class] = 0;
2349 class_reg_count[aligned_pair_class] = 0;
2350 int start = (this->first_non_payload_grf & 1) ? 1 : 0;
2351
2352 for (int i = 0; i < reg_count; i++) {
2353 ra_class_add_reg(regs, classes[aligned_pair_class],
2354 class_base_reg[unaligned_pair_class] + i * 2 + start);
2355 }
2356 class_count++;
2357 }
2358
2359 ra_set_finalize(regs);
2360
2361 struct ra_graph *g = ra_alloc_interference_graph(regs,
2362 this->virtual_grf_next);
2363 /* Node 0 is just a placeholder to keep virtual_grf[] mapping 1:1
2364 * with nodes.
2365 */
2366 ra_set_node_class(g, 0, classes[0]);
2367
2368 for (int i = 1; i < this->virtual_grf_next; i++) {
2369 for (int c = 0; c < class_count; c++) {
2370 if (class_sizes[c] == this->virtual_grf_sizes[i]) {
2371 if (aligned_pair_class >= 0 &&
2372 this->delta_x.reg == i) {
2373 ra_set_node_class(g, i, classes[aligned_pair_class]);
2374 } else {
2375 ra_set_node_class(g, i, classes[c]);
2376 }
2377 break;
2378 }
2379 }
2380
2381 for (int j = 1; j < i; j++) {
2382 if (virtual_grf_interferes(i, j)) {
2383 ra_add_node_interference(g, i, j);
2384 }
2385 }
2386 }
2387
2388 /* FINISHME: Handle spilling */
2389 if (!ra_allocate_no_spills(g)) {
2390 fprintf(stderr, "Failed to allocate registers.\n");
2391 this->fail = true;
2392 return;
2393 }
2394
2395 /* Get the chosen virtual registers for each node, and map virtual
2396 * regs in the register classes back down to real hardware reg
2397 * numbers.
2398 */
2399 hw_reg_mapping[0] = 0; /* unused */
2400 for (int i = 1; i < this->virtual_grf_next; i++) {
2401 int reg = ra_get_node_reg(g, i);
2402 int hw_reg = -1;
2403
2404 for (int c = 0; c < class_count; c++) {
2405 if (reg >= class_base_reg[c] &&
2406 reg < class_base_reg[c] + class_reg_count[c] - 1) {
2407 hw_reg = reg - class_base_reg[c];
2408 break;
2409 }
2410 }
2411
2412 assert(hw_reg != -1);
2413 hw_reg_mapping[i] = this->first_non_payload_grf + hw_reg;
2414 last_grf = MAX2(last_grf,
2415 hw_reg_mapping[i] + this->virtual_grf_sizes[i] - 1);
2416 }
2417
2418 foreach_iter(exec_list_iterator, iter, this->instructions) {
2419 fs_inst *inst = (fs_inst *)iter.get();
2420
2421 assign_reg(hw_reg_mapping, &inst->dst);
2422 assign_reg(hw_reg_mapping, &inst->src[0]);
2423 assign_reg(hw_reg_mapping, &inst->src[1]);
2424 }
2425
2426 this->grf_used = last_grf + 1;
2427
2428 talloc_free(g);
2429 talloc_free(regs);
2430 }
2431
2432 void
2433 fs_visitor::calculate_live_intervals()
2434 {
2435 int num_vars = this->virtual_grf_next;
2436 int *def = talloc_array(mem_ctx, int, num_vars);
2437 int *use = talloc_array(mem_ctx, int, num_vars);
2438 int loop_depth = 0;
2439 int loop_start = 0;
2440
2441 for (int i = 0; i < num_vars; i++) {
2442 def[i] = 1 << 30;
2443 use[i] = 0;
2444 }
2445
2446 int ip = 0;
2447 foreach_iter(exec_list_iterator, iter, this->instructions) {
2448 fs_inst *inst = (fs_inst *)iter.get();
2449
2450 if (inst->opcode == BRW_OPCODE_DO) {
2451 if (loop_depth++ == 0)
2452 loop_start = ip;
2453 } else if (inst->opcode == BRW_OPCODE_WHILE) {
2454 loop_depth--;
2455
2456 if (loop_depth == 0) {
2457 /* FINISHME:
2458 *
2459 * Patches up any vars marked for use within the loop as
2460 * live until the end. This is conservative, as there
2461 * will often be variables defined and used inside the
2462 * loop but dead at the end of the loop body.
2463 */
2464 for (int i = 0; i < num_vars; i++) {
2465 if (use[i] == loop_start) {
2466 use[i] = ip;
2467 }
2468 }
2469 }
2470 } else {
2471 int eip = ip;
2472
2473 if (loop_depth)
2474 eip = loop_start;
2475
2476 for (unsigned int i = 0; i < 3; i++) {
2477 if (inst->src[i].file == GRF && inst->src[i].reg != 0) {
2478 def[inst->src[i].reg] = MIN2(def[inst->src[i].reg], eip);
2479 use[inst->src[i].reg] = MAX2(use[inst->src[i].reg], eip);
2480 }
2481 }
2482 if (inst->dst.file == GRF && inst->dst.reg != 0) {
2483 def[inst->dst.reg] = MIN2(def[inst->dst.reg], eip);
2484 use[inst->dst.reg] = MAX2(use[inst->dst.reg], eip);
2485 }
2486 }
2487
2488 ip++;
2489 }
2490
2491 this->virtual_grf_def = def;
2492 this->virtual_grf_use = use;
2493 }
2494
2495 bool
2496 fs_visitor::virtual_grf_interferes(int a, int b)
2497 {
2498 int start = MAX2(this->virtual_grf_def[a], this->virtual_grf_def[b]);
2499 int end = MIN2(this->virtual_grf_use[a], this->virtual_grf_use[b]);
2500
2501 return start <= end;
2502 }
2503
2504 static struct brw_reg brw_reg_from_fs_reg(fs_reg *reg)
2505 {
2506 struct brw_reg brw_reg;
2507
2508 switch (reg->file) {
2509 case GRF:
2510 case ARF:
2511 case MRF:
2512 brw_reg = brw_vec8_reg(reg->file,
2513 reg->hw_reg, 0);
2514 brw_reg = retype(brw_reg, reg->type);
2515 break;
2516 case IMM:
2517 switch (reg->type) {
2518 case BRW_REGISTER_TYPE_F:
2519 brw_reg = brw_imm_f(reg->imm.f);
2520 break;
2521 case BRW_REGISTER_TYPE_D:
2522 brw_reg = brw_imm_d(reg->imm.i);
2523 break;
2524 case BRW_REGISTER_TYPE_UD:
2525 brw_reg = brw_imm_ud(reg->imm.u);
2526 break;
2527 default:
2528 assert(!"not reached");
2529 break;
2530 }
2531 break;
2532 case FIXED_HW_REG:
2533 brw_reg = reg->fixed_hw_reg;
2534 break;
2535 case BAD_FILE:
2536 /* Probably unused. */
2537 brw_reg = brw_null_reg();
2538 break;
2539 case UNIFORM:
2540 assert(!"not reached");
2541 brw_reg = brw_null_reg();
2542 break;
2543 }
2544 if (reg->abs)
2545 brw_reg = brw_abs(brw_reg);
2546 if (reg->negate)
2547 brw_reg = negate(brw_reg);
2548
2549 return brw_reg;
2550 }
2551
2552 void
2553 fs_visitor::generate_code()
2554 {
2555 unsigned int annotation_len = 0;
2556 int last_native_inst = 0;
2557 struct brw_instruction *if_stack[16], *loop_stack[16];
2558 int if_stack_depth = 0, loop_stack_depth = 0;
2559 int if_depth_in_loop[16];
2560
2561 if_depth_in_loop[loop_stack_depth] = 0;
2562
2563 memset(&if_stack, 0, sizeof(if_stack));
2564 foreach_iter(exec_list_iterator, iter, this->instructions) {
2565 fs_inst *inst = (fs_inst *)iter.get();
2566 struct brw_reg src[3], dst;
2567
2568 for (unsigned int i = 0; i < 3; i++) {
2569 src[i] = brw_reg_from_fs_reg(&inst->src[i]);
2570 }
2571 dst = brw_reg_from_fs_reg(&inst->dst);
2572
2573 brw_set_conditionalmod(p, inst->conditional_mod);
2574 brw_set_predicate_control(p, inst->predicated);
2575
2576 switch (inst->opcode) {
2577 case BRW_OPCODE_MOV:
2578 brw_MOV(p, dst, src[0]);
2579 break;
2580 case BRW_OPCODE_ADD:
2581 brw_ADD(p, dst, src[0], src[1]);
2582 break;
2583 case BRW_OPCODE_MUL:
2584 brw_MUL(p, dst, src[0], src[1]);
2585 break;
2586
2587 case BRW_OPCODE_FRC:
2588 brw_FRC(p, dst, src[0]);
2589 break;
2590 case BRW_OPCODE_RNDD:
2591 brw_RNDD(p, dst, src[0]);
2592 break;
2593 case BRW_OPCODE_RNDZ:
2594 brw_RNDZ(p, dst, src[0]);
2595 break;
2596
2597 case BRW_OPCODE_AND:
2598 brw_AND(p, dst, src[0], src[1]);
2599 break;
2600 case BRW_OPCODE_OR:
2601 brw_OR(p, dst, src[0], src[1]);
2602 break;
2603 case BRW_OPCODE_XOR:
2604 brw_XOR(p, dst, src[0], src[1]);
2605 break;
2606
2607 case BRW_OPCODE_CMP:
2608 brw_CMP(p, dst, inst->conditional_mod, src[0], src[1]);
2609 break;
2610 case BRW_OPCODE_SEL:
2611 brw_SEL(p, dst, src[0], src[1]);
2612 break;
2613
2614 case BRW_OPCODE_IF:
2615 assert(if_stack_depth < 16);
2616 if_stack[if_stack_depth] = brw_IF(p, BRW_EXECUTE_8);
2617 if_depth_in_loop[loop_stack_depth]++;
2618 if_stack_depth++;
2619 break;
2620 case BRW_OPCODE_ELSE:
2621 if_stack[if_stack_depth - 1] =
2622 brw_ELSE(p, if_stack[if_stack_depth - 1]);
2623 break;
2624 case BRW_OPCODE_ENDIF:
2625 if_stack_depth--;
2626 brw_ENDIF(p , if_stack[if_stack_depth]);
2627 if_depth_in_loop[loop_stack_depth]--;
2628 break;
2629
2630 case BRW_OPCODE_DO:
2631 loop_stack[loop_stack_depth++] = brw_DO(p, BRW_EXECUTE_8);
2632 if_depth_in_loop[loop_stack_depth] = 0;
2633 break;
2634
2635 case BRW_OPCODE_BREAK:
2636 brw_BREAK(p, if_depth_in_loop[loop_stack_depth]);
2637 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2638 break;
2639 case BRW_OPCODE_CONTINUE:
2640 brw_CONT(p, if_depth_in_loop[loop_stack_depth]);
2641 brw_set_predicate_control(p, BRW_PREDICATE_NONE);
2642 break;
2643
2644 case BRW_OPCODE_WHILE: {
2645 struct brw_instruction *inst0, *inst1;
2646 GLuint br = 1;
2647
2648 if (intel->gen >= 5)
2649 br = 2;
2650
2651 assert(loop_stack_depth > 0);
2652 loop_stack_depth--;
2653 inst0 = inst1 = brw_WHILE(p, loop_stack[loop_stack_depth]);
2654 /* patch all the BREAK/CONT instructions from last BGNLOOP */
2655 while (inst0 > loop_stack[loop_stack_depth]) {
2656 inst0--;
2657 if (inst0->header.opcode == BRW_OPCODE_BREAK &&
2658 inst0->bits3.if_else.jump_count == 0) {
2659 inst0->bits3.if_else.jump_count = br * (inst1 - inst0 + 1);
2660 }
2661 else if (inst0->header.opcode == BRW_OPCODE_CONTINUE &&
2662 inst0->bits3.if_else.jump_count == 0) {
2663 inst0->bits3.if_else.jump_count = br * (inst1 - inst0);
2664 }
2665 }
2666 }
2667 break;
2668
2669 case FS_OPCODE_RCP:
2670 case FS_OPCODE_RSQ:
2671 case FS_OPCODE_SQRT:
2672 case FS_OPCODE_EXP2:
2673 case FS_OPCODE_LOG2:
2674 case FS_OPCODE_POW:
2675 case FS_OPCODE_SIN:
2676 case FS_OPCODE_COS:
2677 generate_math(inst, dst, src);
2678 break;
2679 case FS_OPCODE_LINTERP:
2680 generate_linterp(inst, dst, src);
2681 break;
2682 case FS_OPCODE_TEX:
2683 case FS_OPCODE_TXB:
2684 case FS_OPCODE_TXL:
2685 generate_tex(inst, dst, src[0]);
2686 break;
2687 case FS_OPCODE_DISCARD:
2688 generate_discard(inst, dst /* src0 == dst */);
2689 break;
2690 case FS_OPCODE_DDX:
2691 generate_ddx(inst, dst, src[0]);
2692 break;
2693 case FS_OPCODE_DDY:
2694 generate_ddy(inst, dst, src[0]);
2695 break;
2696 case FS_OPCODE_FB_WRITE:
2697 generate_fb_write(inst);
2698 break;
2699 default:
2700 if (inst->opcode < (int)ARRAY_SIZE(brw_opcodes)) {
2701 _mesa_problem(ctx, "Unsupported opcode `%s' in FS",
2702 brw_opcodes[inst->opcode].name);
2703 } else {
2704 _mesa_problem(ctx, "Unsupported opcode %d in FS", inst->opcode);
2705 }
2706 this->fail = true;
2707 }
2708
2709 if (annotation_len < p->nr_insn) {
2710 annotation_len *= 2;
2711 if (annotation_len < 16)
2712 annotation_len = 16;
2713
2714 this->annotation_string = talloc_realloc(this->mem_ctx,
2715 annotation_string,
2716 const char *,
2717 annotation_len);
2718 this->annotation_ir = talloc_realloc(this->mem_ctx,
2719 annotation_ir,
2720 ir_instruction *,
2721 annotation_len);
2722 }
2723
2724 for (unsigned int i = last_native_inst; i < p->nr_insn; i++) {
2725 this->annotation_string[i] = inst->annotation;
2726 this->annotation_ir[i] = inst->ir;
2727 }
2728 last_native_inst = p->nr_insn;
2729 }
2730 }
2731
2732 GLboolean
2733 brw_wm_fs_emit(struct brw_context *brw, struct brw_wm_compile *c)
2734 {
2735 struct brw_compile *p = &c->func;
2736 struct intel_context *intel = &brw->intel;
2737 GLcontext *ctx = &intel->ctx;
2738 struct brw_shader *shader = NULL;
2739 struct gl_shader_program *prog = ctx->Shader.CurrentProgram;
2740
2741 if (!prog)
2742 return GL_FALSE;
2743
2744 if (!using_new_fs)
2745 return GL_FALSE;
2746
2747 for (unsigned int i = 0; i < prog->_NumLinkedShaders; i++) {
2748 if (prog->_LinkedShaders[i]->Type == GL_FRAGMENT_SHADER) {
2749 shader = (struct brw_shader *)prog->_LinkedShaders[i];
2750 break;
2751 }
2752 }
2753 if (!shader)
2754 return GL_FALSE;
2755
2756 /* We always use 8-wide mode, at least for now. For one, flow
2757 * control only works in 8-wide. Also, when we're fragment shader
2758 * bound, we're almost always under register pressure as well, so
2759 * 8-wide would save us from the performance cliff of spilling
2760 * regs.
2761 */
2762 c->dispatch_width = 8;
2763
2764 if (INTEL_DEBUG & DEBUG_WM) {
2765 printf("GLSL IR for native fragment shader %d:\n", prog->Name);
2766 _mesa_print_ir(shader->ir, NULL);
2767 printf("\n");
2768 }
2769
2770 /* Now the main event: Visit the shader IR and generate our FS IR for it.
2771 */
2772 fs_visitor v(c, shader);
2773
2774 if (0) {
2775 v.emit_dummy_fs();
2776 } else {
2777 v.calculate_urb_setup();
2778 if (intel->gen < 6)
2779 v.emit_interpolation_setup_gen4();
2780 else
2781 v.emit_interpolation_setup_gen6();
2782
2783 /* Generate FS IR for main(). (the visitor only descends into
2784 * functions called "main").
2785 */
2786 foreach_iter(exec_list_iterator, iter, *shader->ir) {
2787 ir_instruction *ir = (ir_instruction *)iter.get();
2788 v.base_ir = ir;
2789 ir->accept(&v);
2790 }
2791
2792 v.emit_fb_writes();
2793 v.assign_curb_setup();
2794 v.assign_urb_setup();
2795 if (0)
2796 v.assign_regs_trivial();
2797 else
2798 v.assign_regs();
2799 }
2800
2801 v.generate_code();
2802
2803 assert(!v.fail); /* FINISHME: Cleanly fail, tested at link time, etc. */
2804
2805 if (v.fail)
2806 return GL_FALSE;
2807
2808 if (INTEL_DEBUG & DEBUG_WM) {
2809 const char *last_annotation_string = NULL;
2810 ir_instruction *last_annotation_ir = NULL;
2811
2812 printf("Native code for fragment shader %d:\n", prog->Name);
2813 for (unsigned int i = 0; i < p->nr_insn; i++) {
2814 if (last_annotation_ir != v.annotation_ir[i]) {
2815 last_annotation_ir = v.annotation_ir[i];
2816 if (last_annotation_ir) {
2817 printf(" ");
2818 last_annotation_ir->print();
2819 printf("\n");
2820 }
2821 }
2822 if (last_annotation_string != v.annotation_string[i]) {
2823 last_annotation_string = v.annotation_string[i];
2824 if (last_annotation_string)
2825 printf(" %s\n", last_annotation_string);
2826 }
2827 brw_disasm(stdout, &p->store[i], intel->gen);
2828 }
2829 printf("\n");
2830 }
2831
2832 c->prog_data.total_grf = v.grf_used;
2833 c->prog_data.total_scratch = 0;
2834
2835 return GL_TRUE;
2836 }