i965/hsw: Initialize SLM index in state register
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include "main/macros.h"
32 #include "brw_context.h"
33 #include "brw_eu.h"
34 #include "brw_fs.h"
35 #include "brw_cs.h"
36 #include "brw_nir.h"
37 #include "brw_vec4_gs_visitor.h"
38 #include "brw_cfg.h"
39 #include "brw_program.h"
40 #include "brw_dead_control_flow.h"
41 #include "compiler/glsl_types.h"
42
43 using namespace brw;
44
45 void
46 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
47 const fs_reg *src, unsigned sources)
48 {
49 memset(this, 0, sizeof(*this));
50
51 this->src = new fs_reg[MAX2(sources, 3)];
52 for (unsigned i = 0; i < sources; i++)
53 this->src[i] = src[i];
54
55 this->opcode = opcode;
56 this->dst = dst;
57 this->sources = sources;
58 this->exec_size = exec_size;
59
60 assert(dst.file != IMM && dst.file != UNIFORM);
61
62 assert(this->exec_size != 0);
63
64 this->conditional_mod = BRW_CONDITIONAL_NONE;
65
66 /* This will be the case for almost all instructions. */
67 switch (dst.file) {
68 case VGRF:
69 case ARF:
70 case FIXED_GRF:
71 case MRF:
72 case ATTR:
73 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
74 REG_SIZE);
75 break;
76 case BAD_FILE:
77 this->regs_written = 0;
78 break;
79 case IMM:
80 case UNIFORM:
81 unreachable("Invalid destination register file");
82 }
83
84 this->writes_accumulator = false;
85 }
86
87 fs_inst::fs_inst()
88 {
89 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
90 }
91
92 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
93 {
94 init(opcode, exec_size, reg_undef, NULL, 0);
95 }
96
97 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
98 {
99 init(opcode, exec_size, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
103 const fs_reg &src0)
104 {
105 const fs_reg src[1] = { src0 };
106 init(opcode, exec_size, dst, src, 1);
107 }
108
109 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
110 const fs_reg &src0, const fs_reg &src1)
111 {
112 const fs_reg src[2] = { src0, src1 };
113 init(opcode, exec_size, dst, src, 2);
114 }
115
116 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
117 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
118 {
119 const fs_reg src[3] = { src0, src1, src2 };
120 init(opcode, exec_size, dst, src, 3);
121 }
122
123 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
124 const fs_reg src[], unsigned sources)
125 {
126 init(opcode, exec_width, dst, src, sources);
127 }
128
129 fs_inst::fs_inst(const fs_inst &that)
130 {
131 memcpy(this, &that, sizeof(that));
132
133 this->src = new fs_reg[MAX2(that.sources, 3)];
134
135 for (unsigned i = 0; i < that.sources; i++)
136 this->src[i] = that.src[i];
137 }
138
139 fs_inst::~fs_inst()
140 {
141 delete[] this->src;
142 }
143
144 void
145 fs_inst::resize_sources(uint8_t num_sources)
146 {
147 if (this->sources != num_sources) {
148 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
149
150 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
151 src[i] = this->src[i];
152
153 delete[] this->src;
154 this->src = src;
155 this->sources = num_sources;
156 }
157 }
158
159 void
160 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
161 const fs_reg &dst,
162 const fs_reg &surf_index,
163 const fs_reg &varying_offset,
164 uint32_t const_offset)
165 {
166 /* We have our constant surface use a pitch of 4 bytes, so our index can
167 * be any component of a vector, and then we load 4 contiguous
168 * components starting from that.
169 *
170 * We break down the const_offset to a portion added to the variable
171 * offset and a portion done using reg_offset, which means that if you
172 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
173 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
174 * CSE can later notice that those loads are all the same and eliminate
175 * the redundant ones.
176 */
177 fs_reg vec4_offset = vgrf(glsl_type::int_type);
178 bld.ADD(vec4_offset, varying_offset, brw_imm_ud(const_offset & ~0xf));
179
180 int scale = 1;
181 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
182 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
183 * u, v, r) as parameters, or we can just use the SIMD16 message
184 * consisting of (header, u). We choose the second, at the cost of a
185 * longer return length.
186 */
187 scale = 2;
188 }
189
190 enum opcode op;
191 if (devinfo->gen >= 7)
192 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
193 else
194 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
195
196 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
197 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
198 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
199 inst->regs_written = regs_written;
200
201 if (devinfo->gen < 7) {
202 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
203 inst->header_size = 1;
204 if (devinfo->gen == 4)
205 inst->mlen = 3;
206 else
207 inst->mlen = 1 + bld.dispatch_width() / 8;
208 }
209
210 bld.MOV(dst, offset(vec4_result, bld, ((const_offset & 0xf) / 4) * scale));
211 }
212
213 /**
214 * A helper for MOV generation for fixing up broken hardware SEND dependency
215 * handling.
216 */
217 void
218 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
219 {
220 /* The caller always wants uncompressed to emit the minimal extra
221 * dependencies, and to avoid having to deal with aligning its regs to 2.
222 */
223 const fs_builder ubld = bld.annotate("send dependency resolve")
224 .half(0);
225
226 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
227 }
228
229 bool
230 fs_inst::equals(fs_inst *inst) const
231 {
232 return (opcode == inst->opcode &&
233 dst.equals(inst->dst) &&
234 src[0].equals(inst->src[0]) &&
235 src[1].equals(inst->src[1]) &&
236 src[2].equals(inst->src[2]) &&
237 saturate == inst->saturate &&
238 predicate == inst->predicate &&
239 conditional_mod == inst->conditional_mod &&
240 mlen == inst->mlen &&
241 base_mrf == inst->base_mrf &&
242 target == inst->target &&
243 eot == inst->eot &&
244 header_size == inst->header_size &&
245 shadow_compare == inst->shadow_compare &&
246 exec_size == inst->exec_size &&
247 offset == inst->offset);
248 }
249
250 bool
251 fs_inst::overwrites_reg(const fs_reg &reg) const
252 {
253 return reg.in_range(dst, regs_written);
254 }
255
256 bool
257 fs_inst::is_send_from_grf() const
258 {
259 switch (opcode) {
260 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
261 case SHADER_OPCODE_SHADER_TIME_ADD:
262 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
263 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
264 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
265 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
266 case SHADER_OPCODE_UNTYPED_ATOMIC:
267 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
268 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
269 case SHADER_OPCODE_TYPED_ATOMIC:
270 case SHADER_OPCODE_TYPED_SURFACE_READ:
271 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
272 case SHADER_OPCODE_URB_WRITE_SIMD8:
273 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
274 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
275 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
276 case SHADER_OPCODE_URB_READ_SIMD8:
277 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
278 return true;
279 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
280 return src[1].file == VGRF;
281 case FS_OPCODE_FB_WRITE:
282 return src[0].file == VGRF;
283 default:
284 if (is_tex())
285 return src[0].file == VGRF;
286
287 return false;
288 }
289 }
290
291 /**
292 * Returns true if this instruction's sources and destinations cannot
293 * safely be the same register.
294 *
295 * In most cases, a register can be written over safely by the same
296 * instruction that is its last use. For a single instruction, the
297 * sources are dereferenced before writing of the destination starts
298 * (naturally).
299 *
300 * However, there are a few cases where this can be problematic:
301 *
302 * - Virtual opcodes that translate to multiple instructions in the
303 * code generator: if src == dst and one instruction writes the
304 * destination before a later instruction reads the source, then
305 * src will have been clobbered.
306 *
307 * - SIMD16 compressed instructions with certain regioning (see below).
308 *
309 * The register allocator uses this information to set up conflicts between
310 * GRF sources and the destination.
311 */
312 bool
313 fs_inst::has_source_and_destination_hazard() const
314 {
315 switch (opcode) {
316 case FS_OPCODE_PACK_HALF_2x16_SPLIT:
317 /* Multiple partial writes to the destination */
318 return true;
319 default:
320 /* The SIMD16 compressed instruction
321 *
322 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
323 *
324 * is actually decoded in hardware as:
325 *
326 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
327 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
328 *
329 * Which is safe. However, if we have uniform accesses
330 * happening, we get into trouble:
331 *
332 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
333 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
334 *
335 * Now our destination for the first instruction overwrote the
336 * second instruction's src0, and we get garbage for those 8
337 * pixels. There's a similar issue for the pre-gen6
338 * pixel_x/pixel_y, which are registers of 16-bit values and thus
339 * would get stomped by the first decode as well.
340 */
341 if (exec_size == 16) {
342 for (int i = 0; i < sources; i++) {
343 if (src[i].file == VGRF && (src[i].stride == 0 ||
344 src[i].type == BRW_REGISTER_TYPE_UW ||
345 src[i].type == BRW_REGISTER_TYPE_W ||
346 src[i].type == BRW_REGISTER_TYPE_UB ||
347 src[i].type == BRW_REGISTER_TYPE_B)) {
348 return true;
349 }
350 }
351 }
352 return false;
353 }
354 }
355
356 bool
357 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
358 {
359 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
360 return false;
361
362 fs_reg reg = this->src[0];
363 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
364 return false;
365
366 if (grf_alloc.sizes[reg.nr] != this->regs_written)
367 return false;
368
369 for (int i = 0; i < this->sources; i++) {
370 reg.type = this->src[i].type;
371 if (!this->src[i].equals(reg))
372 return false;
373
374 if (i < this->header_size) {
375 reg.reg_offset += 1;
376 } else {
377 reg.reg_offset += this->exec_size / 8;
378 }
379 }
380
381 return true;
382 }
383
384 bool
385 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
386 {
387 if (devinfo->gen == 6 && is_math())
388 return false;
389
390 if (is_send_from_grf())
391 return false;
392
393 if (!backend_instruction::can_do_source_mods())
394 return false;
395
396 return true;
397 }
398
399 bool
400 fs_inst::can_change_types() const
401 {
402 return dst.type == src[0].type &&
403 !src[0].abs && !src[0].negate && !saturate &&
404 (opcode == BRW_OPCODE_MOV ||
405 (opcode == BRW_OPCODE_SEL &&
406 dst.type == src[1].type &&
407 predicate != BRW_PREDICATE_NONE &&
408 !src[1].abs && !src[1].negate));
409 }
410
411 bool
412 fs_inst::has_side_effects() const
413 {
414 return this->eot || backend_instruction::has_side_effects();
415 }
416
417 void
418 fs_reg::init()
419 {
420 memset(this, 0, sizeof(*this));
421 stride = 1;
422 }
423
424 /** Generic unset register constructor. */
425 fs_reg::fs_reg()
426 {
427 init();
428 this->file = BAD_FILE;
429 }
430
431 fs_reg::fs_reg(struct ::brw_reg reg) :
432 backend_reg(reg)
433 {
434 this->reg_offset = 0;
435 this->subreg_offset = 0;
436 this->reladdr = NULL;
437 this->stride = 1;
438 if (this->file == IMM &&
439 (this->type != BRW_REGISTER_TYPE_V &&
440 this->type != BRW_REGISTER_TYPE_UV &&
441 this->type != BRW_REGISTER_TYPE_VF)) {
442 this->stride = 0;
443 }
444 }
445
446 bool
447 fs_reg::equals(const fs_reg &r) const
448 {
449 return (this->backend_reg::equals(r) &&
450 subreg_offset == r.subreg_offset &&
451 !reladdr && !r.reladdr &&
452 stride == r.stride);
453 }
454
455 fs_reg &
456 fs_reg::set_smear(unsigned subreg)
457 {
458 assert(file != ARF && file != FIXED_GRF && file != IMM);
459 subreg_offset = subreg * type_sz(type);
460 stride = 0;
461 return *this;
462 }
463
464 bool
465 fs_reg::is_contiguous() const
466 {
467 return stride == 1;
468 }
469
470 unsigned
471 fs_reg::component_size(unsigned width) const
472 {
473 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
474 hstride == 0 ? 0 :
475 1 << (hstride - 1));
476 return MAX2(width * stride, 1) * type_sz(type);
477 }
478
479 extern "C" int
480 type_size_scalar(const struct glsl_type *type)
481 {
482 unsigned int size, i;
483
484 switch (type->base_type) {
485 case GLSL_TYPE_UINT:
486 case GLSL_TYPE_INT:
487 case GLSL_TYPE_FLOAT:
488 case GLSL_TYPE_BOOL:
489 return type->components();
490 case GLSL_TYPE_ARRAY:
491 return type_size_scalar(type->fields.array) * type->length;
492 case GLSL_TYPE_STRUCT:
493 size = 0;
494 for (i = 0; i < type->length; i++) {
495 size += type_size_scalar(type->fields.structure[i].type);
496 }
497 return size;
498 case GLSL_TYPE_SAMPLER:
499 /* Samplers take up no register space, since they're baked in at
500 * link time.
501 */
502 return 0;
503 case GLSL_TYPE_ATOMIC_UINT:
504 return 0;
505 case GLSL_TYPE_SUBROUTINE:
506 return 1;
507 case GLSL_TYPE_IMAGE:
508 return BRW_IMAGE_PARAM_SIZE;
509 case GLSL_TYPE_VOID:
510 case GLSL_TYPE_ERROR:
511 case GLSL_TYPE_INTERFACE:
512 case GLSL_TYPE_DOUBLE:
513 case GLSL_TYPE_FUNCTION:
514 unreachable("not reached");
515 }
516
517 return 0;
518 }
519
520 /**
521 * Returns the number of scalar components needed to store type, assuming
522 * that vectors are padded out to vec4.
523 *
524 * This has the packing rules of type_size_vec4(), but counts components
525 * similar to type_size_scalar().
526 */
527 extern "C" int
528 type_size_vec4_times_4(const struct glsl_type *type)
529 {
530 return 4 * type_size_vec4(type);
531 }
532
533 /**
534 * Create a MOV to read the timestamp register.
535 *
536 * The caller is responsible for emitting the MOV. The return value is
537 * the destination of the MOV, with extra parameters set.
538 */
539 fs_reg
540 fs_visitor::get_timestamp(const fs_builder &bld)
541 {
542 assert(devinfo->gen >= 7);
543
544 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
545 BRW_ARF_TIMESTAMP,
546 0),
547 BRW_REGISTER_TYPE_UD));
548
549 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
550
551 /* We want to read the 3 fields we care about even if it's not enabled in
552 * the dispatch.
553 */
554 bld.group(4, 0).exec_all().MOV(dst, ts);
555
556 return dst;
557 }
558
559 void
560 fs_visitor::emit_shader_time_begin()
561 {
562 shader_start_time = get_timestamp(bld.annotate("shader time start"));
563
564 /* We want only the low 32 bits of the timestamp. Since it's running
565 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
566 * which is plenty of time for our purposes. It is identical across the
567 * EUs, but since it's tracking GPU core speed it will increment at a
568 * varying rate as render P-states change.
569 */
570 shader_start_time.set_smear(0);
571 }
572
573 void
574 fs_visitor::emit_shader_time_end()
575 {
576 /* Insert our code just before the final SEND with EOT. */
577 exec_node *end = this->instructions.get_tail();
578 assert(end && ((fs_inst *) end)->eot);
579 const fs_builder ibld = bld.annotate("shader time end")
580 .exec_all().at(NULL, end);
581
582 fs_reg shader_end_time = get_timestamp(ibld);
583
584 /* We only use the low 32 bits of the timestamp - see
585 * emit_shader_time_begin()).
586 *
587 * We could also check if render P-states have changed (or anything
588 * else that might disrupt timing) by setting smear to 2 and checking if
589 * that field is != 0.
590 */
591 shader_end_time.set_smear(0);
592
593 /* Check that there weren't any timestamp reset events (assuming these
594 * were the only two timestamp reads that happened).
595 */
596 fs_reg reset = shader_end_time;
597 reset.set_smear(2);
598 set_condmod(BRW_CONDITIONAL_Z,
599 ibld.AND(ibld.null_reg_ud(), reset, brw_imm_ud(1u)));
600 ibld.IF(BRW_PREDICATE_NORMAL);
601
602 fs_reg start = shader_start_time;
603 start.negate = true;
604 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
605 diff.set_smear(0);
606
607 const fs_builder cbld = ibld.group(1, 0);
608 cbld.group(1, 0).ADD(diff, start, shader_end_time);
609
610 /* If there were no instructions between the two timestamp gets, the diff
611 * is 2 cycles. Remove that overhead, so I can forget about that when
612 * trying to determine the time taken for single instructions.
613 */
614 cbld.ADD(diff, diff, brw_imm_ud(-2u));
615 SHADER_TIME_ADD(cbld, 0, diff);
616 SHADER_TIME_ADD(cbld, 1, brw_imm_ud(1u));
617 ibld.emit(BRW_OPCODE_ELSE);
618 SHADER_TIME_ADD(cbld, 2, brw_imm_ud(1u));
619 ibld.emit(BRW_OPCODE_ENDIF);
620 }
621
622 void
623 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
624 int shader_time_subindex,
625 fs_reg value)
626 {
627 int index = shader_time_index * 3 + shader_time_subindex;
628 struct brw_reg offset = brw_imm_d(index * SHADER_TIME_STRIDE);
629
630 fs_reg payload;
631 if (dispatch_width == 8)
632 payload = vgrf(glsl_type::uvec2_type);
633 else
634 payload = vgrf(glsl_type::uint_type);
635
636 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
637 }
638
639 void
640 fs_visitor::vfail(const char *format, va_list va)
641 {
642 char *msg;
643
644 if (failed)
645 return;
646
647 failed = true;
648
649 msg = ralloc_vasprintf(mem_ctx, format, va);
650 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
651
652 this->fail_msg = msg;
653
654 if (debug_enabled) {
655 fprintf(stderr, "%s", msg);
656 }
657 }
658
659 void
660 fs_visitor::fail(const char *format, ...)
661 {
662 va_list va;
663
664 va_start(va, format);
665 vfail(format, va);
666 va_end(va);
667 }
668
669 /**
670 * Mark this program as impossible to compile in SIMD16 mode.
671 *
672 * During the SIMD8 compile (which happens first), we can detect and flag
673 * things that are unsupported in SIMD16 mode, so the compiler can skip
674 * the SIMD16 compile altogether.
675 *
676 * During a SIMD16 compile (if one happens anyway), this just calls fail().
677 */
678 void
679 fs_visitor::no16(const char *msg)
680 {
681 if (dispatch_width == 16) {
682 fail("%s", msg);
683 } else {
684 simd16_unsupported = true;
685
686 compiler->shader_perf_log(log_data,
687 "SIMD16 shader failed to compile: %s", msg);
688 }
689 }
690
691 /**
692 * Returns true if the instruction has a flag that means it won't
693 * update an entire destination register.
694 *
695 * For example, dead code elimination and live variable analysis want to know
696 * when a write to a variable screens off any preceding values that were in
697 * it.
698 */
699 bool
700 fs_inst::is_partial_write() const
701 {
702 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
703 (this->exec_size * type_sz(this->dst.type)) < 32 ||
704 !this->dst.is_contiguous());
705 }
706
707 unsigned
708 fs_inst::components_read(unsigned i) const
709 {
710 switch (opcode) {
711 case FS_OPCODE_LINTERP:
712 if (i == 0)
713 return 2;
714 else
715 return 1;
716
717 case FS_OPCODE_PIXEL_X:
718 case FS_OPCODE_PIXEL_Y:
719 assert(i == 0);
720 return 2;
721
722 case FS_OPCODE_FB_WRITE_LOGICAL:
723 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
724 /* First/second FB write color. */
725 if (i < 2)
726 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
727 else
728 return 1;
729
730 case SHADER_OPCODE_TEX_LOGICAL:
731 case SHADER_OPCODE_TXD_LOGICAL:
732 case SHADER_OPCODE_TXF_LOGICAL:
733 case SHADER_OPCODE_TXL_LOGICAL:
734 case SHADER_OPCODE_TXS_LOGICAL:
735 case FS_OPCODE_TXB_LOGICAL:
736 case SHADER_OPCODE_TXF_CMS_LOGICAL:
737 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
738 case SHADER_OPCODE_TXF_UMS_LOGICAL:
739 case SHADER_OPCODE_TXF_MCS_LOGICAL:
740 case SHADER_OPCODE_LOD_LOGICAL:
741 case SHADER_OPCODE_TG4_LOGICAL:
742 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
743 assert(src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM &&
744 src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
745 /* Texture coordinates. */
746 if (i == TEX_LOGICAL_SRC_COORDINATE)
747 return src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
748 /* Texture derivatives. */
749 else if ((i == TEX_LOGICAL_SRC_LOD || i == TEX_LOGICAL_SRC_LOD2) &&
750 opcode == SHADER_OPCODE_TXD_LOGICAL)
751 return src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
752 /* Texture offset. */
753 else if (i == TEX_LOGICAL_SRC_OFFSET_VALUE)
754 return 2;
755 /* MCS */
756 else if (i == TEX_LOGICAL_SRC_MCS && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
757 return 2;
758 else
759 return 1;
760
761 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
762 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
763 assert(src[3].file == IMM);
764 /* Surface coordinates. */
765 if (i == 0)
766 return src[3].ud;
767 /* Surface operation source (ignored for reads). */
768 else if (i == 1)
769 return 0;
770 else
771 return 1;
772
773 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
774 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
775 assert(src[3].file == IMM &&
776 src[4].file == IMM);
777 /* Surface coordinates. */
778 if (i == 0)
779 return src[3].ud;
780 /* Surface operation source. */
781 else if (i == 1)
782 return src[4].ud;
783 else
784 return 1;
785
786 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
787 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
788 assert(src[3].file == IMM &&
789 src[4].file == IMM);
790 const unsigned op = src[4].ud;
791 /* Surface coordinates. */
792 if (i == 0)
793 return src[3].ud;
794 /* Surface operation source. */
795 else if (i == 1 && op == BRW_AOP_CMPWR)
796 return 2;
797 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
798 op == BRW_AOP_PREDEC))
799 return 0;
800 else
801 return 1;
802 }
803
804 default:
805 return 1;
806 }
807 }
808
809 int
810 fs_inst::regs_read(int arg) const
811 {
812 switch (opcode) {
813 case FS_OPCODE_FB_WRITE:
814 case SHADER_OPCODE_URB_WRITE_SIMD8:
815 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
816 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
817 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
818 case SHADER_OPCODE_URB_READ_SIMD8:
819 case SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT:
820 case SHADER_OPCODE_UNTYPED_ATOMIC:
821 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
822 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
823 case SHADER_OPCODE_TYPED_ATOMIC:
824 case SHADER_OPCODE_TYPED_SURFACE_READ:
825 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
826 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
827 if (arg == 0)
828 return mlen;
829 break;
830
831 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
832 /* The payload is actually stored in src1 */
833 if (arg == 1)
834 return mlen;
835 break;
836
837 case FS_OPCODE_LINTERP:
838 if (arg == 1)
839 return 1;
840 break;
841
842 case SHADER_OPCODE_LOAD_PAYLOAD:
843 if (arg < this->header_size)
844 return 1;
845 break;
846
847 case CS_OPCODE_CS_TERMINATE:
848 case SHADER_OPCODE_BARRIER:
849 return 1;
850
851 case SHADER_OPCODE_MOV_INDIRECT:
852 if (arg == 0) {
853 assert(src[2].file == IMM);
854 unsigned region_length = src[2].ud;
855
856 if (src[0].file == FIXED_GRF) {
857 /* If the start of the region is not register aligned, then
858 * there's some portion of the register that's technically
859 * unread at the beginning.
860 *
861 * However, the register allocator works in terms of whole
862 * registers, and does not use subnr. It assumes that the
863 * read starts at the beginning of the register, and extends
864 * regs_read() whole registers beyond that.
865 *
866 * To compensate, we extend the region length to include this
867 * unread portion at the beginning.
868 */
869 if (src[0].subnr)
870 region_length += src[0].subnr * type_sz(src[0].type);
871
872 return DIV_ROUND_UP(region_length, REG_SIZE);
873 } else {
874 assert(!"Invalid register file");
875 }
876 }
877 break;
878
879 default:
880 if (is_tex() && arg == 0 && src[0].file == VGRF)
881 return mlen;
882 break;
883 }
884
885 switch (src[arg].file) {
886 case BAD_FILE:
887 return 0;
888 case UNIFORM:
889 case IMM:
890 return 1;
891 case ARF:
892 case FIXED_GRF:
893 case VGRF:
894 case ATTR:
895 return DIV_ROUND_UP(components_read(arg) *
896 src[arg].component_size(exec_size),
897 REG_SIZE);
898 case MRF:
899 unreachable("MRF registers are not allowed as sources");
900 }
901 return 0;
902 }
903
904 bool
905 fs_inst::reads_flag() const
906 {
907 return predicate;
908 }
909
910 bool
911 fs_inst::writes_flag() const
912 {
913 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
914 opcode != BRW_OPCODE_IF &&
915 opcode != BRW_OPCODE_WHILE)) ||
916 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
917 }
918
919 /**
920 * Returns how many MRFs an FS opcode will write over.
921 *
922 * Note that this is not the 0 or 1 implied writes in an actual gen
923 * instruction -- the FS opcodes often generate MOVs in addition.
924 */
925 int
926 fs_visitor::implied_mrf_writes(fs_inst *inst)
927 {
928 if (inst->mlen == 0)
929 return 0;
930
931 if (inst->base_mrf == -1)
932 return 0;
933
934 switch (inst->opcode) {
935 case SHADER_OPCODE_RCP:
936 case SHADER_OPCODE_RSQ:
937 case SHADER_OPCODE_SQRT:
938 case SHADER_OPCODE_EXP2:
939 case SHADER_OPCODE_LOG2:
940 case SHADER_OPCODE_SIN:
941 case SHADER_OPCODE_COS:
942 return 1 * dispatch_width / 8;
943 case SHADER_OPCODE_POW:
944 case SHADER_OPCODE_INT_QUOTIENT:
945 case SHADER_OPCODE_INT_REMAINDER:
946 return 2 * dispatch_width / 8;
947 case SHADER_OPCODE_TEX:
948 case FS_OPCODE_TXB:
949 case SHADER_OPCODE_TXD:
950 case SHADER_OPCODE_TXF:
951 case SHADER_OPCODE_TXF_CMS:
952 case SHADER_OPCODE_TXF_CMS_W:
953 case SHADER_OPCODE_TXF_MCS:
954 case SHADER_OPCODE_TG4:
955 case SHADER_OPCODE_TG4_OFFSET:
956 case SHADER_OPCODE_TXL:
957 case SHADER_OPCODE_TXS:
958 case SHADER_OPCODE_LOD:
959 case SHADER_OPCODE_SAMPLEINFO:
960 return 1;
961 case FS_OPCODE_FB_WRITE:
962 return 2;
963 case FS_OPCODE_GET_BUFFER_SIZE:
964 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
965 case SHADER_OPCODE_GEN4_SCRATCH_READ:
966 return 1;
967 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
968 return inst->mlen;
969 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
970 return inst->mlen;
971 case SHADER_OPCODE_UNTYPED_ATOMIC:
972 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
973 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
974 case SHADER_OPCODE_TYPED_ATOMIC:
975 case SHADER_OPCODE_TYPED_SURFACE_READ:
976 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
977 case SHADER_OPCODE_URB_WRITE_SIMD8:
978 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
979 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
980 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
981 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
982 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
983 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
984 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
985 return 0;
986 default:
987 unreachable("not reached");
988 }
989 }
990
991 fs_reg
992 fs_visitor::vgrf(const glsl_type *const type)
993 {
994 int reg_width = dispatch_width / 8;
995 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
996 brw_type_for_base_type(type));
997 }
998
999 fs_reg::fs_reg(enum brw_reg_file file, int nr)
1000 {
1001 init();
1002 this->file = file;
1003 this->nr = nr;
1004 this->type = BRW_REGISTER_TYPE_F;
1005 this->stride = (file == UNIFORM ? 0 : 1);
1006 }
1007
1008 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
1009 {
1010 init();
1011 this->file = file;
1012 this->nr = nr;
1013 this->type = type;
1014 this->stride = (file == UNIFORM ? 0 : 1);
1015 }
1016
1017 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1018 * This brings in those uniform definitions
1019 */
1020 void
1021 fs_visitor::import_uniforms(fs_visitor *v)
1022 {
1023 this->push_constant_loc = v->push_constant_loc;
1024 this->pull_constant_loc = v->pull_constant_loc;
1025 this->uniforms = v->uniforms;
1026 this->param_size = v->param_size;
1027 }
1028
1029 fs_reg *
1030 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1031 bool origin_upper_left)
1032 {
1033 assert(stage == MESA_SHADER_FRAGMENT);
1034 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1035 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1036 fs_reg wpos = *reg;
1037 bool flip = !origin_upper_left ^ key->render_to_fbo;
1038
1039 /* gl_FragCoord.x */
1040 if (pixel_center_integer) {
1041 bld.MOV(wpos, this->pixel_x);
1042 } else {
1043 bld.ADD(wpos, this->pixel_x, brw_imm_f(0.5f));
1044 }
1045 wpos = offset(wpos, bld, 1);
1046
1047 /* gl_FragCoord.y */
1048 if (!flip && pixel_center_integer) {
1049 bld.MOV(wpos, this->pixel_y);
1050 } else {
1051 fs_reg pixel_y = this->pixel_y;
1052 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1053
1054 if (flip) {
1055 pixel_y.negate = true;
1056 offset += key->drawable_height - 1.0f;
1057 }
1058
1059 bld.ADD(wpos, pixel_y, brw_imm_f(offset));
1060 }
1061 wpos = offset(wpos, bld, 1);
1062
1063 /* gl_FragCoord.z */
1064 if (devinfo->gen >= 6) {
1065 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1066 } else {
1067 bld.emit(FS_OPCODE_LINTERP, wpos,
1068 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1069 interp_reg(VARYING_SLOT_POS, 2));
1070 }
1071 wpos = offset(wpos, bld, 1);
1072
1073 /* gl_FragCoord.w: Already set up in emit_interpolation */
1074 bld.MOV(wpos, this->wpos_w);
1075
1076 return reg;
1077 }
1078
1079 fs_inst *
1080 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1081 glsl_interp_qualifier interpolation_mode,
1082 bool is_centroid, bool is_sample)
1083 {
1084 brw_wm_barycentric_interp_mode barycoord_mode;
1085 if (devinfo->gen >= 6) {
1086 if (is_centroid) {
1087 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1088 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1089 else
1090 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1091 } else if (is_sample) {
1092 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1093 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1094 else
1095 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1096 } else {
1097 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1098 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1099 else
1100 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1101 }
1102 } else {
1103 /* On Ironlake and below, there is only one interpolation mode.
1104 * Centroid interpolation doesn't mean anything on this hardware --
1105 * there is no multisampling.
1106 */
1107 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1108 }
1109 return bld.emit(FS_OPCODE_LINTERP, attr,
1110 this->delta_xy[barycoord_mode], interp);
1111 }
1112
1113 void
1114 fs_visitor::emit_general_interpolation(fs_reg *attr, const char *name,
1115 const glsl_type *type,
1116 glsl_interp_qualifier interpolation_mode,
1117 int *location, bool mod_centroid,
1118 bool mod_sample)
1119 {
1120 assert(stage == MESA_SHADER_FRAGMENT);
1121 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1122 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1123
1124 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1125 bool is_gl_Color =
1126 *location == VARYING_SLOT_COL0 || *location == VARYING_SLOT_COL1;
1127 if (key->flat_shade && is_gl_Color) {
1128 interpolation_mode = INTERP_QUALIFIER_FLAT;
1129 } else {
1130 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1131 }
1132 }
1133
1134 if (type->is_array() || type->is_matrix()) {
1135 const glsl_type *elem_type = glsl_get_array_element(type);
1136 const unsigned length = glsl_get_length(type);
1137
1138 for (unsigned i = 0; i < length; i++) {
1139 emit_general_interpolation(attr, name, elem_type, interpolation_mode,
1140 location, mod_centroid, mod_sample);
1141 }
1142 } else if (type->is_record()) {
1143 for (unsigned i = 0; i < type->length; i++) {
1144 const glsl_type *field_type = type->fields.structure[i].type;
1145 emit_general_interpolation(attr, name, field_type, interpolation_mode,
1146 location, mod_centroid, mod_sample);
1147 }
1148 } else {
1149 assert(type->is_scalar() || type->is_vector());
1150
1151 if (prog_data->urb_setup[*location] == -1) {
1152 /* If there's no incoming setup data for this slot, don't
1153 * emit interpolation for it.
1154 */
1155 *attr = offset(*attr, bld, type->vector_elements);
1156 (*location)++;
1157 return;
1158 }
1159
1160 attr->type = brw_type_for_base_type(type->get_scalar_type());
1161
1162 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1163 /* Constant interpolation (flat shading) case. The SF has
1164 * handed us defined values in only the constant offset
1165 * field of the setup reg.
1166 */
1167 for (unsigned int i = 0; i < type->vector_elements; i++) {
1168 struct brw_reg interp = interp_reg(*location, i);
1169 interp = suboffset(interp, 3);
1170 interp.type = attr->type;
1171 bld.emit(FS_OPCODE_CINTERP, *attr, fs_reg(interp));
1172 *attr = offset(*attr, bld, 1);
1173 }
1174 } else {
1175 /* Smooth/noperspective interpolation case. */
1176 for (unsigned int i = 0; i < type->vector_elements; i++) {
1177 struct brw_reg interp = interp_reg(*location, i);
1178 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1179 /* Get the pixel/sample mask into f0 so that we know
1180 * which pixels are lit. Then, for each channel that is
1181 * unlit, replace the centroid data with non-centroid
1182 * data.
1183 */
1184 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1185
1186 fs_inst *inst;
1187 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1188 false, false);
1189 inst->predicate = BRW_PREDICATE_NORMAL;
1190 inst->predicate_inverse = true;
1191 if (devinfo->has_pln)
1192 inst->no_dd_clear = true;
1193
1194 inst = emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1195 mod_centroid && !key->persample_shading,
1196 mod_sample || key->persample_shading);
1197 inst->predicate = BRW_PREDICATE_NORMAL;
1198 inst->predicate_inverse = false;
1199 if (devinfo->has_pln)
1200 inst->no_dd_check = true;
1201
1202 } else {
1203 emit_linterp(*attr, fs_reg(interp), interpolation_mode,
1204 mod_centroid && !key->persample_shading,
1205 mod_sample || key->persample_shading);
1206 }
1207 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1208 bld.MUL(*attr, *attr, this->pixel_w);
1209 }
1210 *attr = offset(*attr, bld, 1);
1211 }
1212 }
1213 (*location)++;
1214 }
1215 }
1216
1217 fs_reg *
1218 fs_visitor::emit_frontfacing_interpolation()
1219 {
1220 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1221
1222 if (devinfo->gen >= 6) {
1223 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1224 * a boolean result from this (~0/true or 0/false).
1225 *
1226 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1227 * this task in only one instruction:
1228 * - a negation source modifier will flip the bit; and
1229 * - a W -> D type conversion will sign extend the bit into the high
1230 * word of the destination.
1231 *
1232 * An ASR 15 fills the low word of the destination.
1233 */
1234 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1235 g0.negate = true;
1236
1237 bld.ASR(*reg, g0, brw_imm_d(15));
1238 } else {
1239 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1240 * a boolean result from this (1/true or 0/false).
1241 *
1242 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1243 * the negation source modifier to flip it. Unfortunately the SHR
1244 * instruction only operates on UD (or D with an abs source modifier)
1245 * sources without negation.
1246 *
1247 * Instead, use ASR (which will give ~0/true or 0/false).
1248 */
1249 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1250 g1_6.negate = true;
1251
1252 bld.ASR(*reg, g1_6, brw_imm_d(31));
1253 }
1254
1255 return reg;
1256 }
1257
1258 void
1259 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1260 {
1261 assert(stage == MESA_SHADER_FRAGMENT);
1262 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1263 assert(dst.type == BRW_REGISTER_TYPE_F);
1264
1265 if (key->compute_pos_offset) {
1266 /* Convert int_sample_pos to floating point */
1267 bld.MOV(dst, int_sample_pos);
1268 /* Scale to the range [0, 1] */
1269 bld.MUL(dst, dst, brw_imm_f(1 / 16.0f));
1270 }
1271 else {
1272 /* From ARB_sample_shading specification:
1273 * "When rendering to a non-multisample buffer, or if multisample
1274 * rasterization is disabled, gl_SamplePosition will always be
1275 * (0.5, 0.5).
1276 */
1277 bld.MOV(dst, brw_imm_f(0.5f));
1278 }
1279 }
1280
1281 fs_reg *
1282 fs_visitor::emit_samplepos_setup()
1283 {
1284 assert(devinfo->gen >= 6);
1285
1286 const fs_builder abld = bld.annotate("compute sample position");
1287 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1288 fs_reg pos = *reg;
1289 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1290 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1291
1292 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1293 * mode will be enabled.
1294 *
1295 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1296 * R31.1:0 Position Offset X/Y for Slot[3:0]
1297 * R31.3:2 Position Offset X/Y for Slot[7:4]
1298 * .....
1299 *
1300 * The X, Y sample positions come in as bytes in thread payload. So, read
1301 * the positions using vstride=16, width=8, hstride=2.
1302 */
1303 struct brw_reg sample_pos_reg =
1304 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1305 BRW_REGISTER_TYPE_B), 16, 8, 2);
1306
1307 if (dispatch_width == 8) {
1308 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1309 } else {
1310 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1311 abld.half(1).MOV(half(int_sample_x, 1),
1312 fs_reg(suboffset(sample_pos_reg, 16)));
1313 }
1314 /* Compute gl_SamplePosition.x */
1315 compute_sample_position(pos, int_sample_x);
1316 pos = offset(pos, abld, 1);
1317 if (dispatch_width == 8) {
1318 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1319 } else {
1320 abld.half(0).MOV(half(int_sample_y, 0),
1321 fs_reg(suboffset(sample_pos_reg, 1)));
1322 abld.half(1).MOV(half(int_sample_y, 1),
1323 fs_reg(suboffset(sample_pos_reg, 17)));
1324 }
1325 /* Compute gl_SamplePosition.y */
1326 compute_sample_position(pos, int_sample_y);
1327 return reg;
1328 }
1329
1330 fs_reg *
1331 fs_visitor::emit_sampleid_setup()
1332 {
1333 assert(stage == MESA_SHADER_FRAGMENT);
1334 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1335 assert(devinfo->gen >= 6);
1336
1337 const fs_builder abld = bld.annotate("compute sample id");
1338 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1339
1340 if (key->compute_sample_id) {
1341 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1342 t1.set_smear(0);
1343 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1344
1345 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1346 * 8x multisampling, subspan 0 will represent sample N (where N
1347 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1348 * 7. We can find the value of N by looking at R0.0 bits 7:6
1349 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1350 * (since samples are always delivered in pairs). That is, we
1351 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1352 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1353 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1354 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1355 * populating a temporary variable with the sequence (0, 1, 2, 3),
1356 * and then reading from it using vstride=1, width=4, hstride=0.
1357 * These computations hold good for 4x multisampling as well.
1358 *
1359 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1360 * the first four slots are sample 0 of subspan 0; the next four
1361 * are sample 1 of subspan 0; the third group is sample 0 of
1362 * subspan 1, and finally sample 1 of subspan 1.
1363 */
1364
1365 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1366 * accomodate 16x MSAA.
1367 */
1368 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1369
1370 abld.exec_all().group(1, 0)
1371 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1372 brw_imm_ud(sspi_mask));
1373 abld.exec_all().group(1, 0).SHR(t1, t1, brw_imm_d(5));
1374
1375 /* This works for both SIMD8 and SIMD16 */
1376 abld.exec_all().group(4, 0)
1377 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1378
1379 /* This special instruction takes care of setting vstride=1,
1380 * width=4, hstride=0 of t2 during an ADD instruction.
1381 */
1382 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1383 } else {
1384 /* As per GL_ARB_sample_shading specification:
1385 * "When rendering to a non-multisample buffer, or if multisample
1386 * rasterization is disabled, gl_SampleID will always be zero."
1387 */
1388 abld.MOV(*reg, brw_imm_d(0));
1389 }
1390
1391 return reg;
1392 }
1393
1394 fs_reg
1395 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1396 {
1397 if (!src.abs && !src.negate)
1398 return src;
1399
1400 fs_reg temp = bld.vgrf(src.type);
1401 bld.MOV(temp, src);
1402
1403 return temp;
1404 }
1405
1406 void
1407 fs_visitor::emit_discard_jump()
1408 {
1409 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1410
1411 /* For performance, after a discard, jump to the end of the
1412 * shader if all relevant channels have been discarded.
1413 */
1414 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1415 discard_jump->flag_subreg = 1;
1416
1417 discard_jump->predicate = (dispatch_width == 8)
1418 ? BRW_PREDICATE_ALIGN1_ANY8H
1419 : BRW_PREDICATE_ALIGN1_ANY16H;
1420 discard_jump->predicate_inverse = true;
1421 }
1422
1423 void
1424 fs_visitor::emit_gs_thread_end()
1425 {
1426 assert(stage == MESA_SHADER_GEOMETRY);
1427
1428 struct brw_gs_prog_data *gs_prog_data =
1429 (struct brw_gs_prog_data *) prog_data;
1430
1431 if (gs_compile->control_data_header_size_bits > 0) {
1432 emit_gs_control_data_bits(this->final_gs_vertex_count);
1433 }
1434
1435 const fs_builder abld = bld.annotate("thread end");
1436 fs_inst *inst;
1437
1438 if (gs_prog_data->static_vertex_count != -1) {
1439 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1440 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1441 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1442 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1443 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1444 prev->eot = true;
1445
1446 /* Delete now dead instructions. */
1447 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1448 if (dead == prev)
1449 break;
1450 dead->remove();
1451 }
1452 return;
1453 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1454 break;
1455 }
1456 }
1457 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1458 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1459 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1460 inst->mlen = 1;
1461 } else {
1462 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1463 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1464 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1465 sources[1] = this->final_gs_vertex_count;
1466 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1467 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1468 inst->mlen = 2;
1469 }
1470 inst->eot = true;
1471 inst->offset = 0;
1472 }
1473
1474 void
1475 fs_visitor::assign_curb_setup()
1476 {
1477 if (dispatch_width == 8) {
1478 prog_data->dispatch_grf_start_reg = payload.num_regs;
1479 } else {
1480 if (stage == MESA_SHADER_FRAGMENT) {
1481 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1482 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1483 } else if (stage == MESA_SHADER_COMPUTE) {
1484 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1485 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1486 } else {
1487 unreachable("Unsupported shader type!");
1488 }
1489 }
1490
1491 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1492
1493 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1494 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1495 for (unsigned int i = 0; i < inst->sources; i++) {
1496 if (inst->src[i].file == UNIFORM) {
1497 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1498 int constant_nr;
1499 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1500 constant_nr = push_constant_loc[uniform_nr];
1501 } else {
1502 /* Section 5.11 of the OpenGL 4.1 spec says:
1503 * "Out-of-bounds reads return undefined values, which include
1504 * values from other variables of the active program or zero."
1505 * Just return the first push constant.
1506 */
1507 constant_nr = 0;
1508 }
1509
1510 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1511 constant_nr / 8,
1512 constant_nr % 8);
1513 brw_reg.abs = inst->src[i].abs;
1514 brw_reg.negate = inst->src[i].negate;
1515
1516 assert(inst->src[i].stride == 0);
1517 inst->src[i] = byte_offset(
1518 retype(brw_reg, inst->src[i].type),
1519 inst->src[i].subreg_offset);
1520 }
1521 }
1522 }
1523
1524 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1525 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1526 }
1527
1528 void
1529 fs_visitor::calculate_urb_setup()
1530 {
1531 assert(stage == MESA_SHADER_FRAGMENT);
1532 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1533 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1534
1535 memset(prog_data->urb_setup, -1,
1536 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1537
1538 int urb_next = 0;
1539 /* Figure out where each of the incoming setup attributes lands. */
1540 if (devinfo->gen >= 6) {
1541 if (_mesa_bitcount_64(nir->info.inputs_read &
1542 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1543 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1544 * first 16 varying inputs, so we can put them wherever we want.
1545 * Just put them in order.
1546 *
1547 * This is useful because it means that (a) inputs not used by the
1548 * fragment shader won't take up valuable register space, and (b) we
1549 * won't have to recompile the fragment shader if it gets paired with
1550 * a different vertex (or geometry) shader.
1551 */
1552 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1553 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1554 BITFIELD64_BIT(i)) {
1555 prog_data->urb_setup[i] = urb_next++;
1556 }
1557 }
1558 } else {
1559 bool include_vue_header =
1560 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1561
1562 /* We have enough input varyings that the SF/SBE pipeline stage can't
1563 * arbitrarily rearrange them to suit our whim; we have to put them
1564 * in an order that matches the output of the previous pipeline stage
1565 * (geometry or vertex shader).
1566 */
1567 struct brw_vue_map prev_stage_vue_map;
1568 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1569 key->input_slots_valid,
1570 nir->info.separate_shader);
1571 int first_slot =
1572 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1573
1574 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1575 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1576 slot++) {
1577 int varying = prev_stage_vue_map.slot_to_varying[slot];
1578 if (varying != BRW_VARYING_SLOT_PAD &&
1579 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1580 BITFIELD64_BIT(varying))) {
1581 prog_data->urb_setup[varying] = slot - first_slot;
1582 }
1583 }
1584 urb_next = prev_stage_vue_map.num_slots - first_slot;
1585 }
1586 } else {
1587 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1588 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1589 /* Point size is packed into the header, not as a general attribute */
1590 if (i == VARYING_SLOT_PSIZ)
1591 continue;
1592
1593 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1594 /* The back color slot is skipped when the front color is
1595 * also written to. In addition, some slots can be
1596 * written in the vertex shader and not read in the
1597 * fragment shader. So the register number must always be
1598 * incremented, mapped or not.
1599 */
1600 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1601 prog_data->urb_setup[i] = urb_next;
1602 urb_next++;
1603 }
1604 }
1605
1606 /*
1607 * It's a FS only attribute, and we did interpolation for this attribute
1608 * in SF thread. So, count it here, too.
1609 *
1610 * See compile_sf_prog() for more info.
1611 */
1612 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1613 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1614 }
1615
1616 prog_data->num_varying_inputs = urb_next;
1617 }
1618
1619 void
1620 fs_visitor::assign_urb_setup()
1621 {
1622 assert(stage == MESA_SHADER_FRAGMENT);
1623 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1624
1625 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1626
1627 /* Offset all the urb_setup[] index by the actual position of the
1628 * setup regs, now that the location of the constants has been chosen.
1629 */
1630 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1631 if (inst->opcode == FS_OPCODE_LINTERP) {
1632 assert(inst->src[1].file == FIXED_GRF);
1633 inst->src[1].nr += urb_start;
1634 }
1635
1636 if (inst->opcode == FS_OPCODE_CINTERP) {
1637 assert(inst->src[0].file == FIXED_GRF);
1638 inst->src[0].nr += urb_start;
1639 }
1640 }
1641
1642 /* Each attribute is 4 setup channels, each of which is half a reg. */
1643 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1644 }
1645
1646 void
1647 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1648 {
1649 for (int i = 0; i < inst->sources; i++) {
1650 if (inst->src[i].file == ATTR) {
1651 int grf = payload.num_regs +
1652 prog_data->curb_read_length +
1653 inst->src[i].nr +
1654 inst->src[i].reg_offset;
1655
1656 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1657 struct brw_reg reg =
1658 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1659 inst->src[i].subreg_offset),
1660 inst->exec_size * inst->src[i].stride,
1661 width, inst->src[i].stride);
1662 reg.abs = inst->src[i].abs;
1663 reg.negate = inst->src[i].negate;
1664
1665 inst->src[i] = reg;
1666 }
1667 }
1668 }
1669
1670 void
1671 fs_visitor::assign_vs_urb_setup()
1672 {
1673 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1674
1675 assert(stage == MESA_SHADER_VERTEX);
1676
1677 /* Each attribute is 4 regs. */
1678 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1679
1680 assert(vs_prog_data->base.urb_read_length <= 15);
1681
1682 /* Rewrite all ATTR file references to the hw grf that they land in. */
1683 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1684 convert_attr_sources_to_hw_regs(inst);
1685 }
1686 }
1687
1688 void
1689 fs_visitor::assign_tes_urb_setup()
1690 {
1691 assert(stage == MESA_SHADER_TESS_EVAL);
1692
1693 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1694
1695 first_non_payload_grf += 8 * vue_prog_data->urb_read_length;
1696
1697 /* Rewrite all ATTR file references to HW_REGs. */
1698 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1699 convert_attr_sources_to_hw_regs(inst);
1700 }
1701 }
1702
1703 void
1704 fs_visitor::assign_gs_urb_setup()
1705 {
1706 assert(stage == MESA_SHADER_GEOMETRY);
1707
1708 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1709
1710 first_non_payload_grf +=
1711 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1712
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 /* Rewrite all ATTR file references to GRFs. */
1715 convert_attr_sources_to_hw_regs(inst);
1716 }
1717 }
1718
1719
1720 /**
1721 * Split large virtual GRFs into separate components if we can.
1722 *
1723 * This is mostly duplicated with what brw_fs_vector_splitting does,
1724 * but that's really conservative because it's afraid of doing
1725 * splitting that doesn't result in real progress after the rest of
1726 * the optimization phases, which would cause infinite looping in
1727 * optimization. We can do it once here, safely. This also has the
1728 * opportunity to split interpolated values, or maybe even uniforms,
1729 * which we don't have at the IR level.
1730 *
1731 * We want to split, because virtual GRFs are what we register
1732 * allocate and spill (due to contiguousness requirements for some
1733 * instructions), and they're what we naturally generate in the
1734 * codegen process, but most virtual GRFs don't actually need to be
1735 * contiguous sets of GRFs. If we split, we'll end up with reduced
1736 * live intervals and better dead code elimination and coalescing.
1737 */
1738 void
1739 fs_visitor::split_virtual_grfs()
1740 {
1741 int num_vars = this->alloc.count;
1742
1743 /* Count the total number of registers */
1744 int reg_count = 0;
1745 int vgrf_to_reg[num_vars];
1746 for (int i = 0; i < num_vars; i++) {
1747 vgrf_to_reg[i] = reg_count;
1748 reg_count += alloc.sizes[i];
1749 }
1750
1751 /* An array of "split points". For each register slot, this indicates
1752 * if this slot can be separated from the previous slot. Every time an
1753 * instruction uses multiple elements of a register (as a source or
1754 * destination), we mark the used slots as inseparable. Then we go
1755 * through and split the registers into the smallest pieces we can.
1756 */
1757 bool split_points[reg_count];
1758 memset(split_points, 0, sizeof(split_points));
1759
1760 /* Mark all used registers as fully splittable */
1761 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1762 if (inst->dst.file == VGRF) {
1763 int reg = vgrf_to_reg[inst->dst.nr];
1764 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1765 split_points[reg + j] = true;
1766 }
1767
1768 for (int i = 0; i < inst->sources; i++) {
1769 if (inst->src[i].file == VGRF) {
1770 int reg = vgrf_to_reg[inst->src[i].nr];
1771 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1772 split_points[reg + j] = true;
1773 }
1774 }
1775 }
1776
1777 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1778 if (inst->dst.file == VGRF) {
1779 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1780 for (int j = 1; j < inst->regs_written; j++)
1781 split_points[reg + j] = false;
1782 }
1783 for (int i = 0; i < inst->sources; i++) {
1784 if (inst->src[i].file == VGRF) {
1785 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1786 for (int j = 1; j < inst->regs_read(i); j++)
1787 split_points[reg + j] = false;
1788 }
1789 }
1790 }
1791
1792 int new_virtual_grf[reg_count];
1793 int new_reg_offset[reg_count];
1794
1795 int reg = 0;
1796 for (int i = 0; i < num_vars; i++) {
1797 /* The first one should always be 0 as a quick sanity check. */
1798 assert(split_points[reg] == false);
1799
1800 /* j = 0 case */
1801 new_reg_offset[reg] = 0;
1802 reg++;
1803 int offset = 1;
1804
1805 /* j > 0 case */
1806 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1807 /* If this is a split point, reset the offset to 0 and allocate a
1808 * new virtual GRF for the previous offset many registers
1809 */
1810 if (split_points[reg]) {
1811 assert(offset <= MAX_VGRF_SIZE);
1812 int grf = alloc.allocate(offset);
1813 for (int k = reg - offset; k < reg; k++)
1814 new_virtual_grf[k] = grf;
1815 offset = 0;
1816 }
1817 new_reg_offset[reg] = offset;
1818 offset++;
1819 reg++;
1820 }
1821
1822 /* The last one gets the original register number */
1823 assert(offset <= MAX_VGRF_SIZE);
1824 alloc.sizes[i] = offset;
1825 for (int k = reg - offset; k < reg; k++)
1826 new_virtual_grf[k] = i;
1827 }
1828 assert(reg == reg_count);
1829
1830 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1831 if (inst->dst.file == VGRF) {
1832 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1833 inst->dst.nr = new_virtual_grf[reg];
1834 inst->dst.reg_offset = new_reg_offset[reg];
1835 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1836 }
1837 for (int i = 0; i < inst->sources; i++) {
1838 if (inst->src[i].file == VGRF) {
1839 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1840 inst->src[i].nr = new_virtual_grf[reg];
1841 inst->src[i].reg_offset = new_reg_offset[reg];
1842 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1843 }
1844 }
1845 }
1846 invalidate_live_intervals();
1847 }
1848
1849 /**
1850 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1851 *
1852 * During code generation, we create tons of temporary variables, many of
1853 * which get immediately killed and are never used again. Yet, in later
1854 * optimization and analysis passes, such as compute_live_intervals, we need
1855 * to loop over all the virtual GRFs. Compacting them can save a lot of
1856 * overhead.
1857 */
1858 bool
1859 fs_visitor::compact_virtual_grfs()
1860 {
1861 bool progress = false;
1862 int remap_table[this->alloc.count];
1863 memset(remap_table, -1, sizeof(remap_table));
1864
1865 /* Mark which virtual GRFs are used. */
1866 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1867 if (inst->dst.file == VGRF)
1868 remap_table[inst->dst.nr] = 0;
1869
1870 for (int i = 0; i < inst->sources; i++) {
1871 if (inst->src[i].file == VGRF)
1872 remap_table[inst->src[i].nr] = 0;
1873 }
1874 }
1875
1876 /* Compact the GRF arrays. */
1877 int new_index = 0;
1878 for (unsigned i = 0; i < this->alloc.count; i++) {
1879 if (remap_table[i] == -1) {
1880 /* We just found an unused register. This means that we are
1881 * actually going to compact something.
1882 */
1883 progress = true;
1884 } else {
1885 remap_table[i] = new_index;
1886 alloc.sizes[new_index] = alloc.sizes[i];
1887 invalidate_live_intervals();
1888 ++new_index;
1889 }
1890 }
1891
1892 this->alloc.count = new_index;
1893
1894 /* Patch all the instructions to use the newly renumbered registers */
1895 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1896 if (inst->dst.file == VGRF)
1897 inst->dst.nr = remap_table[inst->dst.nr];
1898
1899 for (int i = 0; i < inst->sources; i++) {
1900 if (inst->src[i].file == VGRF)
1901 inst->src[i].nr = remap_table[inst->src[i].nr];
1902 }
1903 }
1904
1905 /* Patch all the references to delta_xy, since they're used in register
1906 * allocation. If they're unused, switch them to BAD_FILE so we don't
1907 * think some random VGRF is delta_xy.
1908 */
1909 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1910 if (delta_xy[i].file == VGRF) {
1911 if (remap_table[delta_xy[i].nr] != -1) {
1912 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1913 } else {
1914 delta_xy[i].file = BAD_FILE;
1915 }
1916 }
1917 }
1918
1919 return progress;
1920 }
1921
1922 /**
1923 * Assign UNIFORM file registers to either push constants or pull constants.
1924 *
1925 * We allow a fragment shader to have more than the specified minimum
1926 * maximum number of fragment shader uniform components (64). If
1927 * there are too many of these, they'd fill up all of register space.
1928 * So, this will push some of them out to the pull constant buffer and
1929 * update the program to load them. We also use pull constants for all
1930 * indirect constant loads because we don't support indirect accesses in
1931 * registers yet.
1932 */
1933 void
1934 fs_visitor::assign_constant_locations()
1935 {
1936 /* Only the first compile gets to decide on locations. */
1937 if (dispatch_width != min_dispatch_width)
1938 return;
1939
1940 unsigned int num_pull_constants = 0;
1941
1942 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1943 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1944
1945 bool is_live[uniforms];
1946 memset(is_live, 0, sizeof(is_live));
1947
1948 /* First, we walk through the instructions and do two things:
1949 *
1950 * 1) Figure out which uniforms are live.
1951 *
1952 * 2) Find all indirect access of uniform arrays and flag them as needing
1953 * to go into the pull constant buffer.
1954 *
1955 * Note that we don't move constant-indexed accesses to arrays. No
1956 * testing has been done of the performance impact of this choice.
1957 */
1958 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1959 for (int i = 0 ; i < inst->sources; i++) {
1960 if (inst->src[i].file != UNIFORM)
1961 continue;
1962
1963 if (inst->src[i].reladdr) {
1964 int uniform = inst->src[i].nr;
1965
1966 /* If this array isn't already present in the pull constant buffer,
1967 * add it.
1968 */
1969 if (pull_constant_loc[uniform] == -1) {
1970 assert(param_size[uniform]);
1971 for (int j = 0; j < param_size[uniform]; j++)
1972 pull_constant_loc[uniform + j] = num_pull_constants++;
1973 }
1974 } else {
1975 /* Mark the the one accessed uniform as live */
1976 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1977 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1978 is_live[constant_nr] = true;
1979 }
1980 }
1981 }
1982
1983 /* Only allow 16 registers (128 uniform components) as push constants.
1984 *
1985 * Just demote the end of the list. We could probably do better
1986 * here, demoting things that are rarely used in the program first.
1987 *
1988 * If changing this value, note the limitation about total_regs in
1989 * brw_curbe.c.
1990 */
1991 unsigned int max_push_components = 16 * 8;
1992 unsigned int num_push_constants = 0;
1993
1994 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1995
1996 for (unsigned int i = 0; i < uniforms; i++) {
1997 if (!is_live[i] || pull_constant_loc[i] != -1) {
1998 /* This UNIFORM register is either dead, or has already been demoted
1999 * to a pull const. Mark it as no longer living in the param[] array.
2000 */
2001 push_constant_loc[i] = -1;
2002 continue;
2003 }
2004
2005 if (num_push_constants < max_push_components) {
2006 /* Retain as a push constant. Record the location in the params[]
2007 * array.
2008 */
2009 push_constant_loc[i] = num_push_constants++;
2010 } else {
2011 /* Demote to a pull constant. */
2012 push_constant_loc[i] = -1;
2013 pull_constant_loc[i] = num_pull_constants++;
2014 }
2015 }
2016
2017 stage_prog_data->nr_params = num_push_constants;
2018 stage_prog_data->nr_pull_params = num_pull_constants;
2019
2020 /* Up until now, the param[] array has been indexed by reg + reg_offset
2021 * of UNIFORM registers. Move pull constants into pull_param[] and
2022 * condense param[] to only contain the uniforms we chose to push.
2023 *
2024 * NOTE: Because we are condensing the params[] array, we know that
2025 * push_constant_loc[i] <= i and we can do it in one smooth loop without
2026 * having to make a copy.
2027 */
2028 for (unsigned int i = 0; i < uniforms; i++) {
2029 const gl_constant_value *value = stage_prog_data->param[i];
2030
2031 if (pull_constant_loc[i] != -1) {
2032 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
2033 } else if (push_constant_loc[i] != -1) {
2034 stage_prog_data->param[push_constant_loc[i]] = value;
2035 }
2036 }
2037 }
2038
2039 /**
2040 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2041 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2042 */
2043 void
2044 fs_visitor::demote_pull_constants()
2045 {
2046 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2047 for (int i = 0; i < inst->sources; i++) {
2048 if (inst->src[i].file != UNIFORM)
2049 continue;
2050
2051 int pull_index;
2052 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2053 if (location >= uniforms) /* Out of bounds access */
2054 pull_index = -1;
2055 else
2056 pull_index = pull_constant_loc[location];
2057
2058 if (pull_index == -1)
2059 continue;
2060
2061 /* Set up the annotation tracking for new generated instructions. */
2062 const fs_builder ibld(this, block, inst);
2063 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2064 fs_reg dst = vgrf(glsl_type::float_type);
2065
2066 assert(inst->src[i].stride == 0);
2067
2068 /* Generate a pull load into dst. */
2069 if (inst->src[i].reladdr) {
2070 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2071 brw_imm_ud(index),
2072 *inst->src[i].reladdr,
2073 pull_index * 4);
2074 inst->src[i].reladdr = NULL;
2075 inst->src[i].stride = 1;
2076 } else {
2077 const fs_builder ubld = ibld.exec_all().group(8, 0);
2078 struct brw_reg offset = brw_imm_ud((unsigned)(pull_index * 4) & ~15);
2079 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2080 dst, brw_imm_ud(index), offset);
2081 inst->src[i].set_smear(pull_index & 3);
2082 }
2083 brw_mark_surface_used(prog_data, index);
2084
2085 /* Rewrite the instruction to use the temporary VGRF. */
2086 inst->src[i].file = VGRF;
2087 inst->src[i].nr = dst.nr;
2088 inst->src[i].reg_offset = 0;
2089 }
2090 }
2091 invalidate_live_intervals();
2092 }
2093
2094 bool
2095 fs_visitor::opt_algebraic()
2096 {
2097 bool progress = false;
2098
2099 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2100 switch (inst->opcode) {
2101 case BRW_OPCODE_MOV:
2102 if (inst->src[0].file != IMM)
2103 break;
2104
2105 if (inst->saturate) {
2106 if (inst->dst.type != inst->src[0].type)
2107 assert(!"unimplemented: saturate mixed types");
2108
2109 if (brw_saturate_immediate(inst->dst.type,
2110 &inst->src[0].as_brw_reg())) {
2111 inst->saturate = false;
2112 progress = true;
2113 }
2114 }
2115 break;
2116
2117 case BRW_OPCODE_MUL:
2118 if (inst->src[1].file != IMM)
2119 continue;
2120
2121 /* a * 1.0 = a */
2122 if (inst->src[1].is_one()) {
2123 inst->opcode = BRW_OPCODE_MOV;
2124 inst->src[1] = reg_undef;
2125 progress = true;
2126 break;
2127 }
2128
2129 /* a * -1.0 = -a */
2130 if (inst->src[1].is_negative_one()) {
2131 inst->opcode = BRW_OPCODE_MOV;
2132 inst->src[0].negate = !inst->src[0].negate;
2133 inst->src[1] = reg_undef;
2134 progress = true;
2135 break;
2136 }
2137
2138 /* a * 0.0 = 0.0 */
2139 if (inst->src[1].is_zero()) {
2140 inst->opcode = BRW_OPCODE_MOV;
2141 inst->src[0] = inst->src[1];
2142 inst->src[1] = reg_undef;
2143 progress = true;
2144 break;
2145 }
2146
2147 if (inst->src[0].file == IMM) {
2148 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2149 inst->opcode = BRW_OPCODE_MOV;
2150 inst->src[0].f *= inst->src[1].f;
2151 inst->src[1] = reg_undef;
2152 progress = true;
2153 break;
2154 }
2155 break;
2156 case BRW_OPCODE_ADD:
2157 if (inst->src[1].file != IMM)
2158 continue;
2159
2160 /* a + 0.0 = a */
2161 if (inst->src[1].is_zero()) {
2162 inst->opcode = BRW_OPCODE_MOV;
2163 inst->src[1] = reg_undef;
2164 progress = true;
2165 break;
2166 }
2167
2168 if (inst->src[0].file == IMM) {
2169 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2170 inst->opcode = BRW_OPCODE_MOV;
2171 inst->src[0].f += inst->src[1].f;
2172 inst->src[1] = reg_undef;
2173 progress = true;
2174 break;
2175 }
2176 break;
2177 case BRW_OPCODE_OR:
2178 if (inst->src[0].equals(inst->src[1])) {
2179 inst->opcode = BRW_OPCODE_MOV;
2180 inst->src[1] = reg_undef;
2181 progress = true;
2182 break;
2183 }
2184 break;
2185 case BRW_OPCODE_LRP:
2186 if (inst->src[1].equals(inst->src[2])) {
2187 inst->opcode = BRW_OPCODE_MOV;
2188 inst->src[0] = inst->src[1];
2189 inst->src[1] = reg_undef;
2190 inst->src[2] = reg_undef;
2191 progress = true;
2192 break;
2193 }
2194 break;
2195 case BRW_OPCODE_CMP:
2196 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2197 inst->src[0].abs &&
2198 inst->src[0].negate &&
2199 inst->src[1].is_zero()) {
2200 inst->src[0].abs = false;
2201 inst->src[0].negate = false;
2202 inst->conditional_mod = BRW_CONDITIONAL_Z;
2203 progress = true;
2204 break;
2205 }
2206 break;
2207 case BRW_OPCODE_SEL:
2208 if (inst->src[0].equals(inst->src[1])) {
2209 inst->opcode = BRW_OPCODE_MOV;
2210 inst->src[1] = reg_undef;
2211 inst->predicate = BRW_PREDICATE_NONE;
2212 inst->predicate_inverse = false;
2213 progress = true;
2214 } else if (inst->saturate && inst->src[1].file == IMM) {
2215 switch (inst->conditional_mod) {
2216 case BRW_CONDITIONAL_LE:
2217 case BRW_CONDITIONAL_L:
2218 switch (inst->src[1].type) {
2219 case BRW_REGISTER_TYPE_F:
2220 if (inst->src[1].f >= 1.0f) {
2221 inst->opcode = BRW_OPCODE_MOV;
2222 inst->src[1] = reg_undef;
2223 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2224 progress = true;
2225 }
2226 break;
2227 default:
2228 break;
2229 }
2230 break;
2231 case BRW_CONDITIONAL_GE:
2232 case BRW_CONDITIONAL_G:
2233 switch (inst->src[1].type) {
2234 case BRW_REGISTER_TYPE_F:
2235 if (inst->src[1].f <= 0.0f) {
2236 inst->opcode = BRW_OPCODE_MOV;
2237 inst->src[1] = reg_undef;
2238 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2239 progress = true;
2240 }
2241 break;
2242 default:
2243 break;
2244 }
2245 default:
2246 break;
2247 }
2248 }
2249 break;
2250 case BRW_OPCODE_MAD:
2251 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2252 inst->opcode = BRW_OPCODE_MOV;
2253 inst->src[1] = reg_undef;
2254 inst->src[2] = reg_undef;
2255 progress = true;
2256 } else if (inst->src[0].is_zero()) {
2257 inst->opcode = BRW_OPCODE_MUL;
2258 inst->src[0] = inst->src[2];
2259 inst->src[2] = reg_undef;
2260 progress = true;
2261 } else if (inst->src[1].is_one()) {
2262 inst->opcode = BRW_OPCODE_ADD;
2263 inst->src[1] = inst->src[2];
2264 inst->src[2] = reg_undef;
2265 progress = true;
2266 } else if (inst->src[2].is_one()) {
2267 inst->opcode = BRW_OPCODE_ADD;
2268 inst->src[2] = reg_undef;
2269 progress = true;
2270 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2271 inst->opcode = BRW_OPCODE_ADD;
2272 inst->src[1].f *= inst->src[2].f;
2273 inst->src[2] = reg_undef;
2274 progress = true;
2275 }
2276 break;
2277 case SHADER_OPCODE_RCP: {
2278 fs_inst *prev = (fs_inst *)inst->prev;
2279 if (prev->opcode == SHADER_OPCODE_SQRT) {
2280 if (inst->src[0].equals(prev->dst)) {
2281 inst->opcode = SHADER_OPCODE_RSQ;
2282 inst->src[0] = prev->src[0];
2283 progress = true;
2284 }
2285 }
2286 break;
2287 }
2288 case SHADER_OPCODE_BROADCAST:
2289 if (is_uniform(inst->src[0])) {
2290 inst->opcode = BRW_OPCODE_MOV;
2291 inst->sources = 1;
2292 inst->force_writemask_all = true;
2293 progress = true;
2294 } else if (inst->src[1].file == IMM) {
2295 inst->opcode = BRW_OPCODE_MOV;
2296 inst->src[0] = component(inst->src[0],
2297 inst->src[1].ud);
2298 inst->sources = 1;
2299 inst->force_writemask_all = true;
2300 progress = true;
2301 }
2302 break;
2303
2304 default:
2305 break;
2306 }
2307
2308 /* Swap if src[0] is immediate. */
2309 if (progress && inst->is_commutative()) {
2310 if (inst->src[0].file == IMM) {
2311 fs_reg tmp = inst->src[1];
2312 inst->src[1] = inst->src[0];
2313 inst->src[0] = tmp;
2314 }
2315 }
2316 }
2317 return progress;
2318 }
2319
2320 /**
2321 * Optimize sample messages that have constant zero values for the trailing
2322 * texture coordinates. We can just reduce the message length for these
2323 * instructions instead of reserving a register for it. Trailing parameters
2324 * that aren't sent default to zero anyway. This will cause the dead code
2325 * eliminator to remove the MOV instruction that would otherwise be emitted to
2326 * set up the zero value.
2327 */
2328 bool
2329 fs_visitor::opt_zero_samples()
2330 {
2331 /* Gen4 infers the texturing opcode based on the message length so we can't
2332 * change it.
2333 */
2334 if (devinfo->gen < 5)
2335 return false;
2336
2337 bool progress = false;
2338
2339 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2340 if (!inst->is_tex())
2341 continue;
2342
2343 fs_inst *load_payload = (fs_inst *) inst->prev;
2344
2345 if (load_payload->is_head_sentinel() ||
2346 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2347 continue;
2348
2349 /* We don't want to remove the message header or the first parameter.
2350 * Removing the first parameter is not allowed, see the Haswell PRM
2351 * volume 7, page 149:
2352 *
2353 * "Parameter 0 is required except for the sampleinfo message, which
2354 * has no parameter 0"
2355 */
2356 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2357 load_payload->src[(inst->mlen - inst->header_size) /
2358 (inst->exec_size / 8) +
2359 inst->header_size - 1].is_zero()) {
2360 inst->mlen -= inst->exec_size / 8;
2361 progress = true;
2362 }
2363 }
2364
2365 if (progress)
2366 invalidate_live_intervals();
2367
2368 return progress;
2369 }
2370
2371 /**
2372 * Optimize sample messages which are followed by the final RT write.
2373 *
2374 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2375 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2376 * final texturing results copied to the framebuffer write payload and modify
2377 * them to write to the framebuffer directly.
2378 */
2379 bool
2380 fs_visitor::opt_sampler_eot()
2381 {
2382 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2383
2384 if (stage != MESA_SHADER_FRAGMENT)
2385 return false;
2386
2387 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2388 return false;
2389
2390 /* FINISHME: It should be possible to implement this optimization when there
2391 * are multiple drawbuffers.
2392 */
2393 if (key->nr_color_regions != 1)
2394 return false;
2395
2396 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2397 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2398 fs_inst *fb_write = (fs_inst *)block->end();
2399 assert(fb_write->eot);
2400 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2401
2402 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2403
2404 /* There wasn't one; nothing to do. */
2405 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2406 return false;
2407
2408 /* 3D Sampler » Messages » Message Format
2409 *
2410 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2411 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2412 */
2413 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2414 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2415 tex_inst->opcode == SHADER_OPCODE_LOD ||
2416 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2417 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2418 return false;
2419
2420 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2421 * It's very likely to be the previous instruction.
2422 */
2423 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2424 if (load_payload->is_head_sentinel() ||
2425 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2426 return false;
2427
2428 assert(!tex_inst->eot); /* We can't get here twice */
2429 assert((tex_inst->offset & (0xff << 24)) == 0);
2430
2431 const fs_builder ibld(this, block, tex_inst);
2432
2433 tex_inst->offset |= fb_write->target << 24;
2434 tex_inst->eot = true;
2435 tex_inst->dst = ibld.null_reg_ud();
2436 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2437
2438 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2439 * to create a new LOAD_PAYLOAD command with the same sources and a space
2440 * saved for the header. Using a new destination register not only makes sure
2441 * we have enough space, but it will make sure the dead code eliminator kills
2442 * the instruction that this will replace.
2443 */
2444 if (tex_inst->header_size != 0)
2445 return true;
2446
2447 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2448 load_payload->sources + 1);
2449 fs_reg *new_sources =
2450 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2451
2452 new_sources[0] = fs_reg();
2453 for (int i = 0; i < load_payload->sources; i++)
2454 new_sources[i+1] = load_payload->src[i];
2455
2456 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2457 * requires a lot of information about the sources to appropriately figure
2458 * out the number of registers needed to be used. Given this stage in our
2459 * optimization, we may not have the appropriate GRFs required by
2460 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2461 * manually emit the instruction.
2462 */
2463 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2464 load_payload->exec_size,
2465 send_header,
2466 new_sources,
2467 load_payload->sources + 1);
2468
2469 new_load_payload->regs_written = load_payload->regs_written + 1;
2470 new_load_payload->header_size = 1;
2471 tex_inst->mlen++;
2472 tex_inst->header_size = 1;
2473 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2474 tex_inst->src[0] = send_header;
2475
2476 return true;
2477 }
2478
2479 bool
2480 fs_visitor::opt_register_renaming()
2481 {
2482 bool progress = false;
2483 int depth = 0;
2484
2485 int remap[alloc.count];
2486 memset(remap, -1, sizeof(int) * alloc.count);
2487
2488 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2489 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2490 depth++;
2491 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2492 inst->opcode == BRW_OPCODE_WHILE) {
2493 depth--;
2494 }
2495
2496 /* Rewrite instruction sources. */
2497 for (int i = 0; i < inst->sources; i++) {
2498 if (inst->src[i].file == VGRF &&
2499 remap[inst->src[i].nr] != -1 &&
2500 remap[inst->src[i].nr] != inst->src[i].nr) {
2501 inst->src[i].nr = remap[inst->src[i].nr];
2502 progress = true;
2503 }
2504 }
2505
2506 const int dst = inst->dst.nr;
2507
2508 if (depth == 0 &&
2509 inst->dst.file == VGRF &&
2510 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2511 !inst->is_partial_write()) {
2512 if (remap[dst] == -1) {
2513 remap[dst] = dst;
2514 } else {
2515 remap[dst] = alloc.allocate(inst->exec_size / 8);
2516 inst->dst.nr = remap[dst];
2517 progress = true;
2518 }
2519 } else if (inst->dst.file == VGRF &&
2520 remap[dst] != -1 &&
2521 remap[dst] != dst) {
2522 inst->dst.nr = remap[dst];
2523 progress = true;
2524 }
2525 }
2526
2527 if (progress) {
2528 invalidate_live_intervals();
2529
2530 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2531 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2532 delta_xy[i].nr = remap[delta_xy[i].nr];
2533 }
2534 }
2535 }
2536
2537 return progress;
2538 }
2539
2540 /**
2541 * Remove redundant or useless discard jumps.
2542 *
2543 * For example, we can eliminate jumps in the following sequence:
2544 *
2545 * discard-jump (redundant with the next jump)
2546 * discard-jump (useless; jumps to the next instruction)
2547 * placeholder-halt
2548 */
2549 bool
2550 fs_visitor::opt_redundant_discard_jumps()
2551 {
2552 bool progress = false;
2553
2554 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2555
2556 fs_inst *placeholder_halt = NULL;
2557 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2558 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2559 placeholder_halt = inst;
2560 break;
2561 }
2562 }
2563
2564 if (!placeholder_halt)
2565 return false;
2566
2567 /* Delete any HALTs immediately before the placeholder halt. */
2568 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2569 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2570 prev = (fs_inst *) placeholder_halt->prev) {
2571 prev->remove(last_bblock);
2572 progress = true;
2573 }
2574
2575 if (progress)
2576 invalidate_live_intervals();
2577
2578 return progress;
2579 }
2580
2581 bool
2582 fs_visitor::compute_to_mrf()
2583 {
2584 bool progress = false;
2585 int next_ip = 0;
2586
2587 /* No MRFs on Gen >= 7. */
2588 if (devinfo->gen >= 7)
2589 return false;
2590
2591 calculate_live_intervals();
2592
2593 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2594 int ip = next_ip;
2595 next_ip++;
2596
2597 if (inst->opcode != BRW_OPCODE_MOV ||
2598 inst->is_partial_write() ||
2599 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2600 inst->dst.type != inst->src[0].type ||
2601 inst->src[0].abs || inst->src[0].negate ||
2602 !inst->src[0].is_contiguous() ||
2603 inst->src[0].subreg_offset)
2604 continue;
2605
2606 /* Work out which hardware MRF registers are written by this
2607 * instruction.
2608 */
2609 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2610 int mrf_high;
2611 if (inst->dst.nr & BRW_MRF_COMPR4) {
2612 mrf_high = mrf_low + 4;
2613 } else if (inst->exec_size == 16) {
2614 mrf_high = mrf_low + 1;
2615 } else {
2616 mrf_high = mrf_low;
2617 }
2618
2619 /* Can't compute-to-MRF this GRF if someone else was going to
2620 * read it later.
2621 */
2622 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2623 continue;
2624
2625 /* Found a move of a GRF to a MRF. Let's see if we can go
2626 * rewrite the thing that made this GRF to write into the MRF.
2627 */
2628 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2629 if (scan_inst->dst.file == VGRF &&
2630 scan_inst->dst.nr == inst->src[0].nr) {
2631 /* Found the last thing to write our reg we want to turn
2632 * into a compute-to-MRF.
2633 */
2634
2635 /* If this one instruction didn't populate all the
2636 * channels, bail. We might be able to rewrite everything
2637 * that writes that reg, but it would require smarter
2638 * tracking to delay the rewriting until complete success.
2639 */
2640 if (scan_inst->is_partial_write())
2641 break;
2642
2643 /* Things returning more than one register would need us to
2644 * understand coalescing out more than one MOV at a time.
2645 */
2646 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2647 break;
2648
2649 /* SEND instructions can't have MRF as a destination. */
2650 if (scan_inst->mlen)
2651 break;
2652
2653 if (devinfo->gen == 6) {
2654 /* gen6 math instructions must have the destination be
2655 * GRF, so no compute-to-MRF for them.
2656 */
2657 if (scan_inst->is_math()) {
2658 break;
2659 }
2660 }
2661
2662 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2663 /* Found the creator of our MRF's source value. */
2664 scan_inst->dst.file = MRF;
2665 scan_inst->dst.nr = inst->dst.nr;
2666 scan_inst->saturate |= inst->saturate;
2667 inst->remove(block);
2668 progress = true;
2669 }
2670 break;
2671 }
2672
2673 /* We don't handle control flow here. Most computation of
2674 * values that end up in MRFs are shortly before the MRF
2675 * write anyway.
2676 */
2677 if (block->start() == scan_inst)
2678 break;
2679
2680 /* You can't read from an MRF, so if someone else reads our
2681 * MRF's source GRF that we wanted to rewrite, that stops us.
2682 */
2683 bool interfered = false;
2684 for (int i = 0; i < scan_inst->sources; i++) {
2685 if (scan_inst->src[i].file == VGRF &&
2686 scan_inst->src[i].nr == inst->src[0].nr &&
2687 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2688 interfered = true;
2689 }
2690 }
2691 if (interfered)
2692 break;
2693
2694 if (scan_inst->dst.file == MRF) {
2695 /* If somebody else writes our MRF here, we can't
2696 * compute-to-MRF before that.
2697 */
2698 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2699 int scan_mrf_high;
2700
2701 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2702 scan_mrf_high = scan_mrf_low + 4;
2703 } else if (scan_inst->exec_size == 16) {
2704 scan_mrf_high = scan_mrf_low + 1;
2705 } else {
2706 scan_mrf_high = scan_mrf_low;
2707 }
2708
2709 if (mrf_low == scan_mrf_low ||
2710 mrf_low == scan_mrf_high ||
2711 mrf_high == scan_mrf_low ||
2712 mrf_high == scan_mrf_high) {
2713 break;
2714 }
2715 }
2716
2717 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2718 /* Found a SEND instruction, which means that there are
2719 * live values in MRFs from base_mrf to base_mrf +
2720 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2721 * above it.
2722 */
2723 if (mrf_low >= scan_inst->base_mrf &&
2724 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2725 break;
2726 }
2727 if (mrf_high >= scan_inst->base_mrf &&
2728 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2729 break;
2730 }
2731 }
2732 }
2733 }
2734
2735 if (progress)
2736 invalidate_live_intervals();
2737
2738 return progress;
2739 }
2740
2741 /**
2742 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2743 * flow. We could probably do better here with some form of divergence
2744 * analysis.
2745 */
2746 bool
2747 fs_visitor::eliminate_find_live_channel()
2748 {
2749 bool progress = false;
2750 unsigned depth = 0;
2751
2752 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2753 switch (inst->opcode) {
2754 case BRW_OPCODE_IF:
2755 case BRW_OPCODE_DO:
2756 depth++;
2757 break;
2758
2759 case BRW_OPCODE_ENDIF:
2760 case BRW_OPCODE_WHILE:
2761 depth--;
2762 break;
2763
2764 case FS_OPCODE_DISCARD_JUMP:
2765 /* This can potentially make control flow non-uniform until the end
2766 * of the program.
2767 */
2768 return progress;
2769
2770 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2771 if (depth == 0) {
2772 inst->opcode = BRW_OPCODE_MOV;
2773 inst->src[0] = brw_imm_ud(0u);
2774 inst->sources = 1;
2775 inst->force_writemask_all = true;
2776 progress = true;
2777 }
2778 break;
2779
2780 default:
2781 break;
2782 }
2783 }
2784
2785 return progress;
2786 }
2787
2788 /**
2789 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2790 * instructions to FS_OPCODE_REP_FB_WRITE.
2791 */
2792 void
2793 fs_visitor::emit_repclear_shader()
2794 {
2795 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2796 int base_mrf = 1;
2797 int color_mrf = base_mrf + 2;
2798
2799 fs_inst *mov = bld.exec_all().group(4, 0)
2800 .MOV(brw_message_reg(color_mrf),
2801 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2802
2803 fs_inst *write;
2804 if (key->nr_color_regions == 1) {
2805 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2806 write->saturate = key->clamp_fragment_color;
2807 write->base_mrf = color_mrf;
2808 write->target = 0;
2809 write->header_size = 0;
2810 write->mlen = 1;
2811 } else {
2812 assume(key->nr_color_regions > 0);
2813 for (int i = 0; i < key->nr_color_regions; ++i) {
2814 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2815 write->saturate = key->clamp_fragment_color;
2816 write->base_mrf = base_mrf;
2817 write->target = i;
2818 write->header_size = 2;
2819 write->mlen = 3;
2820 }
2821 }
2822 write->eot = true;
2823
2824 calculate_cfg();
2825
2826 assign_constant_locations();
2827 assign_curb_setup();
2828
2829 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2830 assert(mov->src[0].file == FIXED_GRF);
2831 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2832 }
2833
2834 /**
2835 * Walks through basic blocks, looking for repeated MRF writes and
2836 * removing the later ones.
2837 */
2838 bool
2839 fs_visitor::remove_duplicate_mrf_writes()
2840 {
2841 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2842 bool progress = false;
2843
2844 /* Need to update the MRF tracking for compressed instructions. */
2845 if (dispatch_width == 16)
2846 return false;
2847
2848 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2849
2850 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2851 if (inst->is_control_flow()) {
2852 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2853 }
2854
2855 if (inst->opcode == BRW_OPCODE_MOV &&
2856 inst->dst.file == MRF) {
2857 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2858 if (prev_inst && inst->equals(prev_inst)) {
2859 inst->remove(block);
2860 progress = true;
2861 continue;
2862 }
2863 }
2864
2865 /* Clear out the last-write records for MRFs that were overwritten. */
2866 if (inst->dst.file == MRF) {
2867 last_mrf_move[inst->dst.nr] = NULL;
2868 }
2869
2870 if (inst->mlen > 0 && inst->base_mrf != -1) {
2871 /* Found a SEND instruction, which will include two or fewer
2872 * implied MRF writes. We could do better here.
2873 */
2874 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2875 last_mrf_move[inst->base_mrf + i] = NULL;
2876 }
2877 }
2878
2879 /* Clear out any MRF move records whose sources got overwritten. */
2880 if (inst->dst.file == VGRF) {
2881 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2882 if (last_mrf_move[i] &&
2883 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2884 last_mrf_move[i] = NULL;
2885 }
2886 }
2887 }
2888
2889 if (inst->opcode == BRW_OPCODE_MOV &&
2890 inst->dst.file == MRF &&
2891 inst->src[0].file == VGRF &&
2892 !inst->is_partial_write()) {
2893 last_mrf_move[inst->dst.nr] = inst;
2894 }
2895 }
2896
2897 if (progress)
2898 invalidate_live_intervals();
2899
2900 return progress;
2901 }
2902
2903 static void
2904 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2905 {
2906 /* Clear the flag for registers that actually got read (as expected). */
2907 for (int i = 0; i < inst->sources; i++) {
2908 int grf;
2909 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2910 grf = inst->src[i].nr;
2911 } else {
2912 continue;
2913 }
2914
2915 if (grf >= first_grf &&
2916 grf < first_grf + grf_len) {
2917 deps[grf - first_grf] = false;
2918 if (inst->exec_size == 16)
2919 deps[grf - first_grf + 1] = false;
2920 }
2921 }
2922 }
2923
2924 /**
2925 * Implements this workaround for the original 965:
2926 *
2927 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2928 * check for post destination dependencies on this instruction, software
2929 * must ensure that there is no destination hazard for the case of ‘write
2930 * followed by a posted write’ shown in the following example.
2931 *
2932 * 1. mov r3 0
2933 * 2. send r3.xy <rest of send instruction>
2934 * 3. mov r2 r3
2935 *
2936 * Due to no post-destination dependency check on the ‘send’, the above
2937 * code sequence could have two instructions (1 and 2) in flight at the
2938 * same time that both consider ‘r3’ as the target of their final writes.
2939 */
2940 void
2941 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2942 fs_inst *inst)
2943 {
2944 int write_len = inst->regs_written;
2945 int first_write_grf = inst->dst.nr;
2946 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2947 assert(write_len < (int)sizeof(needs_dep) - 1);
2948
2949 memset(needs_dep, false, sizeof(needs_dep));
2950 memset(needs_dep, true, write_len);
2951
2952 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2953
2954 /* Walk backwards looking for writes to registers we're writing which
2955 * aren't read since being written. If we hit the start of the program,
2956 * we assume that there are no outstanding dependencies on entry to the
2957 * program.
2958 */
2959 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2960 /* If we hit control flow, assume that there *are* outstanding
2961 * dependencies, and force their cleanup before our instruction.
2962 */
2963 if (block->start() == scan_inst) {
2964 for (int i = 0; i < write_len; i++) {
2965 if (needs_dep[i])
2966 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2967 first_write_grf + i);
2968 }
2969 return;
2970 }
2971
2972 /* We insert our reads as late as possible on the assumption that any
2973 * instruction but a MOV that might have left us an outstanding
2974 * dependency has more latency than a MOV.
2975 */
2976 if (scan_inst->dst.file == VGRF) {
2977 for (int i = 0; i < scan_inst->regs_written; i++) {
2978 int reg = scan_inst->dst.nr + i;
2979
2980 if (reg >= first_write_grf &&
2981 reg < first_write_grf + write_len &&
2982 needs_dep[reg - first_write_grf]) {
2983 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2984 needs_dep[reg - first_write_grf] = false;
2985 if (scan_inst->exec_size == 16)
2986 needs_dep[reg - first_write_grf + 1] = false;
2987 }
2988 }
2989 }
2990
2991 /* Clear the flag for registers that actually got read (as expected). */
2992 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2993
2994 /* Continue the loop only if we haven't resolved all the dependencies */
2995 int i;
2996 for (i = 0; i < write_len; i++) {
2997 if (needs_dep[i])
2998 break;
2999 }
3000 if (i == write_len)
3001 return;
3002 }
3003 }
3004
3005 /**
3006 * Implements this workaround for the original 965:
3007 *
3008 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3009 * used as a destination register until after it has been sourced by an
3010 * instruction with a different destination register.
3011 */
3012 void
3013 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3014 {
3015 int write_len = inst->regs_written;
3016 int first_write_grf = inst->dst.nr;
3017 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
3018 assert(write_len < (int)sizeof(needs_dep) - 1);
3019
3020 memset(needs_dep, false, sizeof(needs_dep));
3021 memset(needs_dep, true, write_len);
3022 /* Walk forwards looking for writes to registers we're writing which aren't
3023 * read before being written.
3024 */
3025 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
3026 /* If we hit control flow, force resolve all remaining dependencies. */
3027 if (block->end() == scan_inst) {
3028 for (int i = 0; i < write_len; i++) {
3029 if (needs_dep[i])
3030 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3031 first_write_grf + i);
3032 }
3033 return;
3034 }
3035
3036 /* Clear the flag for registers that actually got read (as expected). */
3037 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3038
3039 /* We insert our reads as late as possible since they're reading the
3040 * result of a SEND, which has massive latency.
3041 */
3042 if (scan_inst->dst.file == VGRF &&
3043 scan_inst->dst.nr >= first_write_grf &&
3044 scan_inst->dst.nr < first_write_grf + write_len &&
3045 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3046 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3047 scan_inst->dst.nr);
3048 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3049 }
3050
3051 /* Continue the loop only if we haven't resolved all the dependencies */
3052 int i;
3053 for (i = 0; i < write_len; i++) {
3054 if (needs_dep[i])
3055 break;
3056 }
3057 if (i == write_len)
3058 return;
3059 }
3060 }
3061
3062 void
3063 fs_visitor::insert_gen4_send_dependency_workarounds()
3064 {
3065 if (devinfo->gen != 4 || devinfo->is_g4x)
3066 return;
3067
3068 bool progress = false;
3069
3070 /* Note that we're done with register allocation, so GRF fs_regs always
3071 * have a .reg_offset of 0.
3072 */
3073
3074 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3075 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3076 insert_gen4_pre_send_dependency_workarounds(block, inst);
3077 insert_gen4_post_send_dependency_workarounds(block, inst);
3078 progress = true;
3079 }
3080 }
3081
3082 if (progress)
3083 invalidate_live_intervals();
3084 }
3085
3086 /**
3087 * Turns the generic expression-style uniform pull constant load instruction
3088 * into a hardware-specific series of instructions for loading a pull
3089 * constant.
3090 *
3091 * The expression style allows the CSE pass before this to optimize out
3092 * repeated loads from the same offset, and gives the pre-register-allocation
3093 * scheduling full flexibility, while the conversion to native instructions
3094 * allows the post-register-allocation scheduler the best information
3095 * possible.
3096 *
3097 * Note that execution masking for setting up pull constant loads is special:
3098 * the channels that need to be written are unrelated to the current execution
3099 * mask, since a later instruction will use one of the result channels as a
3100 * source operand for all 8 or 16 of its channels.
3101 */
3102 void
3103 fs_visitor::lower_uniform_pull_constant_loads()
3104 {
3105 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3106 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3107 continue;
3108
3109 if (devinfo->gen >= 7) {
3110 /* The offset arg is a vec4-aligned immediate byte offset. */
3111 fs_reg const_offset_reg = inst->src[1];
3112 assert(const_offset_reg.file == IMM &&
3113 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3114 assert(const_offset_reg.ud % 16 == 0);
3115
3116 fs_reg payload, offset;
3117 if (devinfo->gen >= 9) {
3118 /* We have to use a message header on Skylake to get SIMD4x2
3119 * mode. Reserve space for the register.
3120 */
3121 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3122 offset.reg_offset++;
3123 inst->mlen = 2;
3124 } else {
3125 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3126 inst->mlen = 1;
3127 }
3128
3129 /* This is actually going to be a MOV, but since only the first dword
3130 * is accessed, we have a special opcode to do just that one. Note
3131 * that this needs to be an operation that will be considered a def
3132 * by live variable analysis, or register allocation will explode.
3133 */
3134 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3135 8, offset, const_offset_reg);
3136 setup->force_writemask_all = true;
3137
3138 setup->ir = inst->ir;
3139 setup->annotation = inst->annotation;
3140 inst->insert_before(block, setup);
3141
3142 /* Similarly, this will only populate the first 4 channels of the
3143 * result register (since we only use smear values from 0-3), but we
3144 * don't tell the optimizer.
3145 */
3146 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3147 inst->src[1] = payload;
3148 inst->base_mrf = -1;
3149
3150 invalidate_live_intervals();
3151 } else {
3152 /* Before register allocation, we didn't tell the scheduler about the
3153 * MRF we use. We know it's safe to use this MRF because nothing
3154 * else does except for register spill/unspill, which generates and
3155 * uses its MRF within a single IR instruction.
3156 */
3157 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3158 inst->mlen = 1;
3159 }
3160 }
3161 }
3162
3163 bool
3164 fs_visitor::lower_load_payload()
3165 {
3166 bool progress = false;
3167
3168 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3169 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3170 continue;
3171
3172 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3173 assert(inst->saturate == false);
3174 fs_reg dst = inst->dst;
3175
3176 /* Get rid of COMPR4. We'll add it back in if we need it */
3177 if (dst.file == MRF)
3178 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3179
3180 const fs_builder ibld(this, block, inst);
3181 const fs_builder hbld = ibld.exec_all().group(8, 0);
3182
3183 for (uint8_t i = 0; i < inst->header_size; i++) {
3184 if (inst->src[i].file != BAD_FILE) {
3185 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3186 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3187 hbld.MOV(mov_dst, mov_src);
3188 }
3189 dst = offset(dst, hbld, 1);
3190 }
3191
3192 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3193 inst->exec_size > 8) {
3194 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3195 * a straightforward copy. Instead, the result of the
3196 * LOAD_PAYLOAD is treated as interleaved and the first four
3197 * non-header sources are unpacked as:
3198 *
3199 * m + 0: r0
3200 * m + 1: g0
3201 * m + 2: b0
3202 * m + 3: a0
3203 * m + 4: r1
3204 * m + 5: g1
3205 * m + 6: b1
3206 * m + 7: a1
3207 *
3208 * This is used for gen <= 5 fb writes.
3209 */
3210 assert(inst->exec_size == 16);
3211 assert(inst->header_size + 4 <= inst->sources);
3212 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3213 if (inst->src[i].file != BAD_FILE) {
3214 if (devinfo->has_compr4) {
3215 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3216 compr4_dst.nr |= BRW_MRF_COMPR4;
3217 ibld.MOV(compr4_dst, inst->src[i]);
3218 } else {
3219 /* Platform doesn't have COMPR4. We have to fake it */
3220 fs_reg mov_dst = retype(dst, inst->src[i].type);
3221 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3222 mov_dst.nr += 4;
3223 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3224 }
3225 }
3226
3227 dst.nr++;
3228 }
3229
3230 /* The loop above only ever incremented us through the first set
3231 * of 4 registers. However, thanks to the magic of COMPR4, we
3232 * actually wrote to the first 8 registers, so we need to take
3233 * that into account now.
3234 */
3235 dst.nr += 4;
3236
3237 /* The COMPR4 code took care of the first 4 sources. We'll let
3238 * the regular path handle any remaining sources. Yes, we are
3239 * modifying the instruction but we're about to delete it so
3240 * this really doesn't hurt anything.
3241 */
3242 inst->header_size += 4;
3243 }
3244
3245 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3246 if (inst->src[i].file != BAD_FILE)
3247 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3248 dst = offset(dst, ibld, 1);
3249 }
3250
3251 inst->remove(block);
3252 progress = true;
3253 }
3254
3255 if (progress)
3256 invalidate_live_intervals();
3257
3258 return progress;
3259 }
3260
3261 bool
3262 fs_visitor::lower_integer_multiplication()
3263 {
3264 bool progress = false;
3265
3266 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3267 const fs_builder ibld(this, block, inst);
3268
3269 if (inst->opcode == BRW_OPCODE_MUL) {
3270 if (inst->dst.is_accumulator() ||
3271 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3272 inst->dst.type != BRW_REGISTER_TYPE_UD))
3273 continue;
3274
3275 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3276 * operation directly, but CHV/BXT cannot.
3277 */
3278 if (devinfo->gen >= 8 &&
3279 !devinfo->is_cherryview && !devinfo->is_broxton)
3280 continue;
3281
3282 if (inst->src[1].file == IMM &&
3283 inst->src[1].ud < (1 << 16)) {
3284 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3285 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3286 * src1 are used.
3287 *
3288 * If multiplying by an immediate value that fits in 16-bits, do a
3289 * single MUL instruction with that value in the proper location.
3290 */
3291 if (devinfo->gen < 7) {
3292 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3293 inst->dst.type);
3294 ibld.MOV(imm, inst->src[1]);
3295 ibld.MUL(inst->dst, imm, inst->src[0]);
3296 } else {
3297 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3298 }
3299 } else {
3300 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3301 * do 32-bit integer multiplication in one instruction, but instead
3302 * must do a sequence (which actually calculates a 64-bit result):
3303 *
3304 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3305 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3306 * mov(8) g2<1>D acc0<8,8,1>D
3307 *
3308 * But on Gen > 6, the ability to use second accumulator register
3309 * (acc1) for non-float data types was removed, preventing a simple
3310 * implementation in SIMD16. A 16-channel result can be calculated by
3311 * executing the three instructions twice in SIMD8, once with quarter
3312 * control of 1Q for the first eight channels and again with 2Q for
3313 * the second eight channels.
3314 *
3315 * Which accumulator register is implicitly accessed (by AccWrEnable
3316 * for instance) is determined by the quarter control. Unfortunately
3317 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3318 * implicit accumulator access by an instruction with 2Q will access
3319 * acc1 regardless of whether the data type is usable in acc1.
3320 *
3321 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3322 * integer data types.
3323 *
3324 * Since we only want the low 32-bits of the result, we can do two
3325 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3326 * adjust the high result and add them (like the mach is doing):
3327 *
3328 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3329 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3330 * shl(8) g9<1>D g8<8,8,1>D 16D
3331 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3332 *
3333 * We avoid the shl instruction by realizing that we only want to add
3334 * the low 16-bits of the "high" result to the high 16-bits of the
3335 * "low" result and using proper regioning on the add:
3336 *
3337 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3338 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3339 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3340 *
3341 * Since it does not use the (single) accumulator register, we can
3342 * schedule multi-component multiplications much better.
3343 */
3344
3345 fs_reg orig_dst = inst->dst;
3346 if (orig_dst.is_null() || orig_dst.file == MRF) {
3347 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3348 inst->dst.type);
3349 }
3350 fs_reg low = inst->dst;
3351 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3352 inst->dst.type);
3353
3354 if (devinfo->gen >= 7) {
3355 fs_reg src1_0_w = inst->src[1];
3356 fs_reg src1_1_w = inst->src[1];
3357
3358 if (inst->src[1].file == IMM) {
3359 src1_0_w.ud &= 0xffff;
3360 src1_1_w.ud >>= 16;
3361 } else {
3362 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3363 if (src1_0_w.stride != 0) {
3364 assert(src1_0_w.stride == 1);
3365 src1_0_w.stride = 2;
3366 }
3367
3368 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3369 if (src1_1_w.stride != 0) {
3370 assert(src1_1_w.stride == 1);
3371 src1_1_w.stride = 2;
3372 }
3373 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3374 }
3375 ibld.MUL(low, inst->src[0], src1_0_w);
3376 ibld.MUL(high, inst->src[0], src1_1_w);
3377 } else {
3378 fs_reg src0_0_w = inst->src[0];
3379 fs_reg src0_1_w = inst->src[0];
3380
3381 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3382 if (src0_0_w.stride != 0) {
3383 assert(src0_0_w.stride == 1);
3384 src0_0_w.stride = 2;
3385 }
3386
3387 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3388 if (src0_1_w.stride != 0) {
3389 assert(src0_1_w.stride == 1);
3390 src0_1_w.stride = 2;
3391 }
3392 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3393
3394 ibld.MUL(low, src0_0_w, inst->src[1]);
3395 ibld.MUL(high, src0_1_w, inst->src[1]);
3396 }
3397
3398 fs_reg dst = inst->dst;
3399 dst.type = BRW_REGISTER_TYPE_UW;
3400 dst.subreg_offset = 2;
3401 dst.stride = 2;
3402
3403 high.type = BRW_REGISTER_TYPE_UW;
3404 high.stride = 2;
3405
3406 low.type = BRW_REGISTER_TYPE_UW;
3407 low.subreg_offset = 2;
3408 low.stride = 2;
3409
3410 ibld.ADD(dst, low, high);
3411
3412 if (inst->conditional_mod || orig_dst.file == MRF) {
3413 set_condmod(inst->conditional_mod,
3414 ibld.MOV(orig_dst, inst->dst));
3415 }
3416 }
3417
3418 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3419 /* Should have been lowered to 8-wide. */
3420 assert(inst->exec_size <= 8);
3421 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3422 inst->dst.type);
3423 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3424 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3425
3426 if (devinfo->gen >= 8) {
3427 /* Until Gen8, integer multiplies read 32-bits from one source,
3428 * and 16-bits from the other, and relying on the MACH instruction
3429 * to generate the high bits of the result.
3430 *
3431 * On Gen8, the multiply instruction does a full 32x32-bit
3432 * multiply, but in order to do a 64-bit multiply we can simulate
3433 * the previous behavior and then use a MACH instruction.
3434 *
3435 * FINISHME: Don't use source modifiers on src1.
3436 */
3437 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3438 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3439 mul->src[1].type = BRW_REGISTER_TYPE_UW;
3440 mul->src[1].stride *= 2;
3441
3442 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3443 inst->force_sechalf) {
3444 /* Among other things the quarter control bits influence which
3445 * accumulator register is used by the hardware for instructions
3446 * that access the accumulator implicitly (e.g. MACH). A
3447 * second-half instruction would normally map to acc1, which
3448 * doesn't exist on Gen7 and up (the hardware does emulate it for
3449 * floating-point instructions *only* by taking advantage of the
3450 * extra precision of acc0 not normally used for floating point
3451 * arithmetic).
3452 *
3453 * HSW and up are careful enough not to try to access an
3454 * accumulator register that doesn't exist, but on earlier Gen7
3455 * hardware we need to make sure that the quarter control bits are
3456 * zero to avoid non-deterministic behaviour and emit an extra MOV
3457 * to get the result masked correctly according to the current
3458 * channel enables.
3459 */
3460 mach->force_sechalf = false;
3461 mach->force_writemask_all = true;
3462 mach->dst = ibld.vgrf(inst->dst.type);
3463 ibld.MOV(inst->dst, mach->dst);
3464 }
3465 } else {
3466 continue;
3467 }
3468
3469 inst->remove(block);
3470 progress = true;
3471 }
3472
3473 if (progress)
3474 invalidate_live_intervals();
3475
3476 return progress;
3477 }
3478
3479 bool
3480 fs_visitor::lower_minmax()
3481 {
3482 assert(devinfo->gen < 6);
3483
3484 bool progress = false;
3485
3486 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3487 const fs_builder ibld(this, block, inst);
3488
3489 if (inst->opcode == BRW_OPCODE_SEL &&
3490 inst->predicate == BRW_PREDICATE_NONE) {
3491 /* FIXME: Using CMP doesn't preserve the NaN propagation semantics of
3492 * the original SEL.L/GE instruction
3493 */
3494 ibld.CMP(ibld.null_reg_d(), inst->src[0], inst->src[1],
3495 inst->conditional_mod);
3496 inst->predicate = BRW_PREDICATE_NORMAL;
3497 inst->conditional_mod = BRW_CONDITIONAL_NONE;
3498
3499 progress = true;
3500 }
3501 }
3502
3503 if (progress)
3504 invalidate_live_intervals();
3505
3506 return progress;
3507 }
3508
3509 static void
3510 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3511 fs_reg *dst, fs_reg color, unsigned components)
3512 {
3513 if (key->clamp_fragment_color) {
3514 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3515 assert(color.type == BRW_REGISTER_TYPE_F);
3516
3517 for (unsigned i = 0; i < components; i++)
3518 set_saturate(true,
3519 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3520
3521 color = tmp;
3522 }
3523
3524 for (unsigned i = 0; i < components; i++)
3525 dst[i] = offset(color, bld, i);
3526 }
3527
3528 static void
3529 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3530 const brw_wm_prog_data *prog_data,
3531 const brw_wm_prog_key *key,
3532 const fs_visitor::thread_payload &payload)
3533 {
3534 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3535 const brw_device_info *devinfo = bld.shader->devinfo;
3536 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3537 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3538 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3539 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3540 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3541 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3542 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3543 const unsigned components =
3544 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3545
3546 /* We can potentially have a message length of up to 15, so we have to set
3547 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3548 */
3549 fs_reg sources[15];
3550 int header_size = 2, payload_header_size;
3551 unsigned length = 0;
3552
3553 /* From the Sandy Bridge PRM, volume 4, page 198:
3554 *
3555 * "Dispatched Pixel Enables. One bit per pixel indicating
3556 * which pixels were originally enabled when the thread was
3557 * dispatched. This field is only required for the end-of-
3558 * thread message and on all dual-source messages."
3559 */
3560 if (devinfo->gen >= 6 &&
3561 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3562 color1.file == BAD_FILE &&
3563 key->nr_color_regions == 1) {
3564 header_size = 0;
3565 }
3566
3567 if (header_size != 0) {
3568 assert(header_size == 2);
3569 /* Allocate 2 registers for a header */
3570 length += 2;
3571 }
3572
3573 if (payload.aa_dest_stencil_reg) {
3574 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3575 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3576 .MOV(sources[length],
3577 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3578 length++;
3579 }
3580
3581 if (prog_data->uses_omask) {
3582 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3583 BRW_REGISTER_TYPE_UD);
3584
3585 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3586 * relevant. Since it's unsigned single words one vgrf is always
3587 * 16-wide, but only the lower or higher 8 channels will be used by the
3588 * hardware when doing a SIMD8 write depending on whether we have
3589 * selected the subspans for the first or second half respectively.
3590 */
3591 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3592 sample_mask.type = BRW_REGISTER_TYPE_UW;
3593 sample_mask.stride *= 2;
3594
3595 bld.exec_all().annotate("FB write oMask")
3596 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3597 inst->force_sechalf),
3598 sample_mask);
3599 length++;
3600 }
3601
3602 payload_header_size = length;
3603
3604 if (src0_alpha.file != BAD_FILE) {
3605 /* FIXME: This is being passed at the wrong location in the payload and
3606 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3607 * It's supposed to be immediately before oMask but there seems to be no
3608 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3609 * requires header sources to form a contiguous segment at the beginning
3610 * of the message and src0_alpha has per-channel semantics.
3611 */
3612 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3613 length++;
3614 }
3615
3616 setup_color_payload(bld, key, &sources[length], color0, components);
3617 length += 4;
3618
3619 if (color1.file != BAD_FILE) {
3620 setup_color_payload(bld, key, &sources[length], color1, components);
3621 length += 4;
3622 }
3623
3624 if (src_depth.file != BAD_FILE) {
3625 sources[length] = src_depth;
3626 length++;
3627 }
3628
3629 if (dst_depth.file != BAD_FILE) {
3630 sources[length] = dst_depth;
3631 length++;
3632 }
3633
3634 if (src_stencil.file != BAD_FILE) {
3635 assert(devinfo->gen >= 9);
3636 assert(bld.dispatch_width() != 16);
3637
3638 /* XXX: src_stencil is only available on gen9+. dst_depth is never
3639 * available on gen9+. As such it's impossible to have both enabled at the
3640 * same time and therefore length cannot overrun the array.
3641 */
3642 assert(length < 15);
3643
3644 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3645 bld.exec_all().annotate("FB write OS")
3646 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3647 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3648 length++;
3649 }
3650
3651 fs_inst *load;
3652 if (devinfo->gen >= 7) {
3653 /* Send from the GRF */
3654 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3655 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3656 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3657 load->dst = payload;
3658
3659 inst->src[0] = payload;
3660 inst->resize_sources(1);
3661 inst->base_mrf = -1;
3662 } else {
3663 /* Send from the MRF */
3664 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3665 sources, length, payload_header_size);
3666
3667 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3668 * will do this for us if we just give it a COMPR4 destination.
3669 */
3670 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3671 load->dst.nr |= BRW_MRF_COMPR4;
3672
3673 inst->resize_sources(0);
3674 inst->base_mrf = 1;
3675 }
3676
3677 inst->opcode = FS_OPCODE_FB_WRITE;
3678 inst->mlen = load->regs_written;
3679 inst->header_size = header_size;
3680 }
3681
3682 static void
3683 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3684 const fs_reg &coordinate,
3685 const fs_reg &shadow_c,
3686 const fs_reg &lod, const fs_reg &lod2,
3687 const fs_reg &surface,
3688 const fs_reg &sampler,
3689 unsigned coord_components,
3690 unsigned grad_components)
3691 {
3692 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3693 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3694 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3695 fs_reg msg_end = msg_begin;
3696
3697 /* g0 header. */
3698 msg_end = offset(msg_end, bld.group(8, 0), 1);
3699
3700 for (unsigned i = 0; i < coord_components; i++)
3701 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3702 offset(coordinate, bld, i));
3703
3704 msg_end = offset(msg_end, bld, coord_components);
3705
3706 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3707 * require all three components to be present and zero if they are unused.
3708 */
3709 if (coord_components > 0 &&
3710 (has_lod || shadow_c.file != BAD_FILE ||
3711 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3712 for (unsigned i = coord_components; i < 3; i++)
3713 bld.MOV(offset(msg_end, bld, i), brw_imm_f(0.0f));
3714
3715 msg_end = offset(msg_end, bld, 3 - coord_components);
3716 }
3717
3718 if (op == SHADER_OPCODE_TXD) {
3719 /* TXD unsupported in SIMD16 mode. */
3720 assert(bld.dispatch_width() == 8);
3721
3722 /* the slots for u and v are always present, but r is optional */
3723 if (coord_components < 2)
3724 msg_end = offset(msg_end, bld, 2 - coord_components);
3725
3726 /* P = u, v, r
3727 * dPdx = dudx, dvdx, drdx
3728 * dPdy = dudy, dvdy, drdy
3729 *
3730 * 1-arg: Does not exist.
3731 *
3732 * 2-arg: dudx dvdx dudy dvdy
3733 * dPdx.x dPdx.y dPdy.x dPdy.y
3734 * m4 m5 m6 m7
3735 *
3736 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3737 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3738 * m5 m6 m7 m8 m9 m10
3739 */
3740 for (unsigned i = 0; i < grad_components; i++)
3741 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3742
3743 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3744
3745 for (unsigned i = 0; i < grad_components; i++)
3746 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3747
3748 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3749 }
3750
3751 if (has_lod) {
3752 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3753 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3754 */
3755 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3756 bld.dispatch_width() == 16);
3757
3758 const brw_reg_type type =
3759 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3760 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3761 bld.MOV(retype(msg_end, type), lod);
3762 msg_end = offset(msg_end, bld, 1);
3763 }
3764
3765 if (shadow_c.file != BAD_FILE) {
3766 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3767 /* There's no plain shadow compare message, so we use shadow
3768 * compare with a bias of 0.0.
3769 */
3770 bld.MOV(msg_end, brw_imm_f(0.0f));
3771 msg_end = offset(msg_end, bld, 1);
3772 }
3773
3774 bld.MOV(msg_end, shadow_c);
3775 msg_end = offset(msg_end, bld, 1);
3776 }
3777
3778 inst->opcode = op;
3779 inst->src[0] = reg_undef;
3780 inst->src[1] = surface;
3781 inst->src[2] = sampler;
3782 inst->resize_sources(3);
3783 inst->base_mrf = msg_begin.nr;
3784 inst->mlen = msg_end.nr - msg_begin.nr;
3785 inst->header_size = 1;
3786 }
3787
3788 static void
3789 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3790 fs_reg coordinate,
3791 const fs_reg &shadow_c,
3792 fs_reg lod, fs_reg lod2,
3793 const fs_reg &sample_index,
3794 const fs_reg &surface,
3795 const fs_reg &sampler,
3796 const fs_reg &offset_value,
3797 unsigned coord_components,
3798 unsigned grad_components)
3799 {
3800 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3801 fs_reg msg_coords = message;
3802 unsigned header_size = 0;
3803
3804 if (offset_value.file != BAD_FILE) {
3805 /* The offsets set up by the visitor are in the m1 header, so we can't
3806 * go headerless.
3807 */
3808 header_size = 1;
3809 message.nr--;
3810 }
3811
3812 for (unsigned i = 0; i < coord_components; i++) {
3813 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3814 coordinate = offset(coordinate, bld, 1);
3815 }
3816 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3817 fs_reg msg_lod = offset(msg_coords, bld, 4);
3818
3819 if (shadow_c.file != BAD_FILE) {
3820 fs_reg msg_shadow = msg_lod;
3821 bld.MOV(msg_shadow, shadow_c);
3822 msg_lod = offset(msg_shadow, bld, 1);
3823 msg_end = msg_lod;
3824 }
3825
3826 switch (op) {
3827 case SHADER_OPCODE_TXL:
3828 case FS_OPCODE_TXB:
3829 bld.MOV(msg_lod, lod);
3830 msg_end = offset(msg_lod, bld, 1);
3831 break;
3832 case SHADER_OPCODE_TXD:
3833 /**
3834 * P = u, v, r
3835 * dPdx = dudx, dvdx, drdx
3836 * dPdy = dudy, dvdy, drdy
3837 *
3838 * Load up these values:
3839 * - dudx dudy dvdx dvdy drdx drdy
3840 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3841 */
3842 msg_end = msg_lod;
3843 for (unsigned i = 0; i < grad_components; i++) {
3844 bld.MOV(msg_end, lod);
3845 lod = offset(lod, bld, 1);
3846 msg_end = offset(msg_end, bld, 1);
3847
3848 bld.MOV(msg_end, lod2);
3849 lod2 = offset(lod2, bld, 1);
3850 msg_end = offset(msg_end, bld, 1);
3851 }
3852 break;
3853 case SHADER_OPCODE_TXS:
3854 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3855 bld.MOV(msg_lod, lod);
3856 msg_end = offset(msg_lod, bld, 1);
3857 break;
3858 case SHADER_OPCODE_TXF:
3859 msg_lod = offset(msg_coords, bld, 3);
3860 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3861 msg_end = offset(msg_lod, bld, 1);
3862 break;
3863 case SHADER_OPCODE_TXF_CMS:
3864 msg_lod = offset(msg_coords, bld, 3);
3865 /* lod */
3866 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), brw_imm_ud(0u));
3867 /* sample index */
3868 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3869 msg_end = offset(msg_lod, bld, 2);
3870 break;
3871 default:
3872 break;
3873 }
3874
3875 inst->opcode = op;
3876 inst->src[0] = reg_undef;
3877 inst->src[1] = surface;
3878 inst->src[2] = sampler;
3879 inst->resize_sources(3);
3880 inst->base_mrf = message.nr;
3881 inst->mlen = msg_end.nr - message.nr;
3882 inst->header_size = header_size;
3883
3884 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3885 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3886 }
3887
3888 static bool
3889 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3890 {
3891 if (devinfo->gen < 8 && !devinfo->is_haswell)
3892 return false;
3893
3894 return sampler.file != IMM || sampler.ud >= 16;
3895 }
3896
3897 static void
3898 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3899 fs_reg coordinate,
3900 const fs_reg &shadow_c,
3901 fs_reg lod, fs_reg lod2,
3902 const fs_reg &sample_index,
3903 const fs_reg &mcs,
3904 const fs_reg &surface,
3905 const fs_reg &sampler,
3906 fs_reg offset_value,
3907 unsigned coord_components,
3908 unsigned grad_components)
3909 {
3910 const brw_device_info *devinfo = bld.shader->devinfo;
3911 int reg_width = bld.dispatch_width() / 8;
3912 unsigned header_size = 0, length = 0;
3913 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3914 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3915 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3916
3917 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3918 offset_value.file != BAD_FILE ||
3919 is_high_sampler(devinfo, sampler)) {
3920 /* For general texture offsets (no txf workaround), we need a header to
3921 * put them in. Note that we're only reserving space for it in the
3922 * message payload as it will be initialized implicitly by the
3923 * generator.
3924 *
3925 * TG4 needs to place its channel select in the header, for interaction
3926 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3927 * larger sampler numbers we need to offset the Sampler State Pointer in
3928 * the header.
3929 */
3930 header_size = 1;
3931 sources[0] = fs_reg();
3932 length++;
3933 }
3934
3935 if (shadow_c.file != BAD_FILE) {
3936 bld.MOV(sources[length], shadow_c);
3937 length++;
3938 }
3939
3940 bool coordinate_done = false;
3941
3942 /* The sampler can only meaningfully compute LOD for fragment shader
3943 * messages. For all other stages, we change the opcode to TXL and
3944 * hardcode the LOD to 0.
3945 */
3946 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3947 op == SHADER_OPCODE_TEX) {
3948 op = SHADER_OPCODE_TXL;
3949 lod = brw_imm_f(0.0f);
3950 }
3951
3952 /* Set up the LOD info */
3953 switch (op) {
3954 case FS_OPCODE_TXB:
3955 case SHADER_OPCODE_TXL:
3956 bld.MOV(sources[length], lod);
3957 length++;
3958 break;
3959 case SHADER_OPCODE_TXD:
3960 /* TXD should have been lowered in SIMD16 mode. */
3961 assert(bld.dispatch_width() == 8);
3962
3963 /* Load dPdx and the coordinate together:
3964 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3965 */
3966 for (unsigned i = 0; i < coord_components; i++) {
3967 bld.MOV(sources[length], coordinate);
3968 coordinate = offset(coordinate, bld, 1);
3969 length++;
3970
3971 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3972 * only derivatives for (u, v, r).
3973 */
3974 if (i < grad_components) {
3975 bld.MOV(sources[length], lod);
3976 lod = offset(lod, bld, 1);
3977 length++;
3978
3979 bld.MOV(sources[length], lod2);
3980 lod2 = offset(lod2, bld, 1);
3981 length++;
3982 }
3983 }
3984
3985 coordinate_done = true;
3986 break;
3987 case SHADER_OPCODE_TXS:
3988 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3989 length++;
3990 break;
3991 case SHADER_OPCODE_TXF:
3992 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3993 * On Gen9 they are u, v, lod, r
3994 */
3995 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3996 coordinate = offset(coordinate, bld, 1);
3997 length++;
3998
3999 if (devinfo->gen >= 9) {
4000 if (coord_components >= 2) {
4001 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4002 coordinate = offset(coordinate, bld, 1);
4003 }
4004 length++;
4005 }
4006
4007 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
4008 length++;
4009
4010 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
4011 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4012 coordinate = offset(coordinate, bld, 1);
4013 length++;
4014 }
4015
4016 coordinate_done = true;
4017 break;
4018 case SHADER_OPCODE_TXF_CMS:
4019 case SHADER_OPCODE_TXF_CMS_W:
4020 case SHADER_OPCODE_TXF_UMS:
4021 case SHADER_OPCODE_TXF_MCS:
4022 if (op == SHADER_OPCODE_TXF_UMS ||
4023 op == SHADER_OPCODE_TXF_CMS ||
4024 op == SHADER_OPCODE_TXF_CMS_W) {
4025 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
4026 length++;
4027 }
4028
4029 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
4030 /* Data from the multisample control surface. */
4031 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
4032 length++;
4033
4034 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
4035 * the MCS data.
4036 */
4037 if (op == SHADER_OPCODE_TXF_CMS_W) {
4038 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
4039 mcs.file == IMM ?
4040 mcs :
4041 offset(mcs, bld, 1));
4042 length++;
4043 }
4044 }
4045
4046 /* There is no offsetting for this message; just copy in the integer
4047 * texture coordinates.
4048 */
4049 for (unsigned i = 0; i < coord_components; i++) {
4050 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
4051 coordinate = offset(coordinate, bld, 1);
4052 length++;
4053 }
4054
4055 coordinate_done = true;
4056 break;
4057 case SHADER_OPCODE_TG4_OFFSET:
4058 /* gather4_po_c should have been lowered in SIMD16 mode. */
4059 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
4060
4061 /* More crazy intermixing */
4062 for (unsigned i = 0; i < 2; i++) { /* u, v */
4063 bld.MOV(sources[length], coordinate);
4064 coordinate = offset(coordinate, bld, 1);
4065 length++;
4066 }
4067
4068 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
4069 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
4070 offset_value = offset(offset_value, bld, 1);
4071 length++;
4072 }
4073
4074 if (coord_components == 3) { /* r if present */
4075 bld.MOV(sources[length], coordinate);
4076 coordinate = offset(coordinate, bld, 1);
4077 length++;
4078 }
4079
4080 coordinate_done = true;
4081 break;
4082 default:
4083 break;
4084 }
4085
4086 /* Set up the coordinate (except for cases where it was done above) */
4087 if (!coordinate_done) {
4088 for (unsigned i = 0; i < coord_components; i++) {
4089 bld.MOV(sources[length], coordinate);
4090 coordinate = offset(coordinate, bld, 1);
4091 length++;
4092 }
4093 }
4094
4095 int mlen;
4096 if (reg_width == 2)
4097 mlen = length * reg_width - header_size;
4098 else
4099 mlen = length * reg_width;
4100
4101 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4102 BRW_REGISTER_TYPE_F);
4103 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4104
4105 /* Generate the SEND. */
4106 inst->opcode = op;
4107 inst->src[0] = src_payload;
4108 inst->src[1] = surface;
4109 inst->src[2] = sampler;
4110 inst->resize_sources(3);
4111 inst->base_mrf = -1;
4112 inst->mlen = mlen;
4113 inst->header_size = header_size;
4114
4115 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4116 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4117 }
4118
4119 static void
4120 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4121 {
4122 const brw_device_info *devinfo = bld.shader->devinfo;
4123 const fs_reg &coordinate = inst->src[TEX_LOGICAL_SRC_COORDINATE];
4124 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4125 const fs_reg &lod = inst->src[TEX_LOGICAL_SRC_LOD];
4126 const fs_reg &lod2 = inst->src[TEX_LOGICAL_SRC_LOD2];
4127 const fs_reg &sample_index = inst->src[TEX_LOGICAL_SRC_SAMPLE_INDEX];
4128 const fs_reg &mcs = inst->src[TEX_LOGICAL_SRC_MCS];
4129 const fs_reg &surface = inst->src[TEX_LOGICAL_SRC_SURFACE];
4130 const fs_reg &sampler = inst->src[TEX_LOGICAL_SRC_SAMPLER];
4131 const fs_reg &offset_value = inst->src[TEX_LOGICAL_SRC_OFFSET_VALUE];
4132 assert(inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].file == IMM);
4133 const unsigned coord_components = inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4134 assert(inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].file == IMM);
4135 const unsigned grad_components = inst->src[TEX_LOGICAL_SRC_GRAD_COMPONENTS].ud;
4136
4137 if (devinfo->gen >= 7) {
4138 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4139 shadow_c, lod, lod2, sample_index,
4140 mcs, surface, sampler, offset_value,
4141 coord_components, grad_components);
4142 } else if (devinfo->gen >= 5) {
4143 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4144 shadow_c, lod, lod2, sample_index,
4145 surface, sampler, offset_value,
4146 coord_components, grad_components);
4147 } else {
4148 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4149 shadow_c, lod, lod2,
4150 surface, sampler,
4151 coord_components, grad_components);
4152 }
4153 }
4154
4155 /**
4156 * Initialize the header present in some typed and untyped surface
4157 * messages.
4158 */
4159 static fs_reg
4160 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4161 {
4162 fs_builder ubld = bld.exec_all().group(8, 0);
4163 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4164 ubld.MOV(dst, brw_imm_d(0));
4165 ubld.MOV(component(dst, 7), sample_mask);
4166 return dst;
4167 }
4168
4169 static void
4170 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4171 const fs_reg &sample_mask)
4172 {
4173 /* Get the logical send arguments. */
4174 const fs_reg &addr = inst->src[0];
4175 const fs_reg &src = inst->src[1];
4176 const fs_reg &surface = inst->src[2];
4177 const UNUSED fs_reg &dims = inst->src[3];
4178 const fs_reg &arg = inst->src[4];
4179
4180 /* Calculate the total number of components of the payload. */
4181 const unsigned addr_sz = inst->components_read(0);
4182 const unsigned src_sz = inst->components_read(1);
4183 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4184 const unsigned sz = header_sz + addr_sz + src_sz;
4185
4186 /* Allocate space for the payload. */
4187 fs_reg *const components = new fs_reg[sz];
4188 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4189 unsigned n = 0;
4190
4191 /* Construct the payload. */
4192 if (header_sz)
4193 components[n++] = emit_surface_header(bld, sample_mask);
4194
4195 for (unsigned i = 0; i < addr_sz; i++)
4196 components[n++] = offset(addr, bld, i);
4197
4198 for (unsigned i = 0; i < src_sz; i++)
4199 components[n++] = offset(src, bld, i);
4200
4201 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4202
4203 /* Update the original instruction. */
4204 inst->opcode = op;
4205 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4206 inst->header_size = header_sz;
4207
4208 inst->src[0] = payload;
4209 inst->src[1] = surface;
4210 inst->src[2] = arg;
4211 inst->resize_sources(3);
4212
4213 delete[] components;
4214 }
4215
4216 bool
4217 fs_visitor::lower_logical_sends()
4218 {
4219 bool progress = false;
4220
4221 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4222 const fs_builder ibld(this, block, inst);
4223
4224 switch (inst->opcode) {
4225 case FS_OPCODE_FB_WRITE_LOGICAL:
4226 assert(stage == MESA_SHADER_FRAGMENT);
4227 lower_fb_write_logical_send(ibld, inst,
4228 (const brw_wm_prog_data *)prog_data,
4229 (const brw_wm_prog_key *)key,
4230 payload);
4231 break;
4232
4233 case SHADER_OPCODE_TEX_LOGICAL:
4234 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4235 break;
4236
4237 case SHADER_OPCODE_TXD_LOGICAL:
4238 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4239 break;
4240
4241 case SHADER_OPCODE_TXF_LOGICAL:
4242 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4243 break;
4244
4245 case SHADER_OPCODE_TXL_LOGICAL:
4246 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4247 break;
4248
4249 case SHADER_OPCODE_TXS_LOGICAL:
4250 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4251 break;
4252
4253 case FS_OPCODE_TXB_LOGICAL:
4254 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4255 break;
4256
4257 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4258 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4259 break;
4260
4261 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4262 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4263 break;
4264
4265 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4266 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4267 break;
4268
4269 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4270 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4271 break;
4272
4273 case SHADER_OPCODE_LOD_LOGICAL:
4274 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4275 break;
4276
4277 case SHADER_OPCODE_TG4_LOGICAL:
4278 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4279 break;
4280
4281 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4282 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4283 break;
4284
4285 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4286 lower_surface_logical_send(ibld, inst,
4287 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4288 fs_reg());
4289 break;
4290
4291 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4292 lower_surface_logical_send(ibld, inst,
4293 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4294 ibld.sample_mask_reg());
4295 break;
4296
4297 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4298 lower_surface_logical_send(ibld, inst,
4299 SHADER_OPCODE_UNTYPED_ATOMIC,
4300 ibld.sample_mask_reg());
4301 break;
4302
4303 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4304 lower_surface_logical_send(ibld, inst,
4305 SHADER_OPCODE_TYPED_SURFACE_READ,
4306 brw_imm_d(0xffff));
4307 break;
4308
4309 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4310 lower_surface_logical_send(ibld, inst,
4311 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4312 ibld.sample_mask_reg());
4313 break;
4314
4315 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4316 lower_surface_logical_send(ibld, inst,
4317 SHADER_OPCODE_TYPED_ATOMIC,
4318 ibld.sample_mask_reg());
4319 break;
4320
4321 default:
4322 continue;
4323 }
4324
4325 progress = true;
4326 }
4327
4328 if (progress)
4329 invalidate_live_intervals();
4330
4331 return progress;
4332 }
4333
4334 /**
4335 * Get the closest native SIMD width supported by the hardware for instruction
4336 * \p inst. The instruction will be left untouched by
4337 * fs_visitor::lower_simd_width() if the returned value is equal to the
4338 * original execution size.
4339 */
4340 static unsigned
4341 get_lowered_simd_width(const struct brw_device_info *devinfo,
4342 const fs_inst *inst)
4343 {
4344 switch (inst->opcode) {
4345 case BRW_OPCODE_MOV:
4346 case BRW_OPCODE_SEL:
4347 case BRW_OPCODE_NOT:
4348 case BRW_OPCODE_AND:
4349 case BRW_OPCODE_OR:
4350 case BRW_OPCODE_XOR:
4351 case BRW_OPCODE_SHR:
4352 case BRW_OPCODE_SHL:
4353 case BRW_OPCODE_ASR:
4354 case BRW_OPCODE_CMP:
4355 case BRW_OPCODE_CMPN:
4356 case BRW_OPCODE_CSEL:
4357 case BRW_OPCODE_F32TO16:
4358 case BRW_OPCODE_F16TO32:
4359 case BRW_OPCODE_BFREV:
4360 case BRW_OPCODE_BFE:
4361 case BRW_OPCODE_BFI1:
4362 case BRW_OPCODE_BFI2:
4363 case BRW_OPCODE_ADD:
4364 case BRW_OPCODE_MUL:
4365 case BRW_OPCODE_AVG:
4366 case BRW_OPCODE_FRC:
4367 case BRW_OPCODE_RNDU:
4368 case BRW_OPCODE_RNDD:
4369 case BRW_OPCODE_RNDE:
4370 case BRW_OPCODE_RNDZ:
4371 case BRW_OPCODE_LZD:
4372 case BRW_OPCODE_FBH:
4373 case BRW_OPCODE_FBL:
4374 case BRW_OPCODE_CBIT:
4375 case BRW_OPCODE_SAD2:
4376 case BRW_OPCODE_MAD:
4377 case BRW_OPCODE_LRP:
4378 case SHADER_OPCODE_RCP:
4379 case SHADER_OPCODE_RSQ:
4380 case SHADER_OPCODE_SQRT:
4381 case SHADER_OPCODE_EXP2:
4382 case SHADER_OPCODE_LOG2:
4383 case SHADER_OPCODE_POW:
4384 case SHADER_OPCODE_INT_QUOTIENT:
4385 case SHADER_OPCODE_INT_REMAINDER:
4386 case SHADER_OPCODE_SIN:
4387 case SHADER_OPCODE_COS: {
4388 /* According to the PRMs:
4389 * "A. In Direct Addressing mode, a source cannot span more than 2
4390 * adjacent GRF registers.
4391 * B. A destination cannot span more than 2 adjacent GRF registers."
4392 *
4393 * Look for the source or destination with the largest register region
4394 * which is the one that is going to limit the overal execution size of
4395 * the instruction due to this rule.
4396 */
4397 unsigned reg_count = inst->regs_written;
4398
4399 for (unsigned i = 0; i < inst->sources; i++)
4400 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4401
4402 /* Calculate the maximum execution size of the instruction based on the
4403 * factor by which it goes over the hardware limit of 2 GRFs.
4404 */
4405 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4406 }
4407 case SHADER_OPCODE_MULH:
4408 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4409 * is 8-wide on Gen7+.
4410 */
4411 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4412
4413 case FS_OPCODE_FB_WRITE_LOGICAL:
4414 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4415 * here.
4416 */
4417 assert(devinfo->gen != 6 ||
4418 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4419 inst->exec_size == 8);
4420 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4421 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4422 8 : inst->exec_size);
4423
4424 case SHADER_OPCODE_TXD_LOGICAL:
4425 /* TXD is unsupported in SIMD16 mode. */
4426 return 8;
4427
4428 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4429 /* gather4_po_c is unsupported in SIMD16 mode. */
4430 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4431 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4432 }
4433 case SHADER_OPCODE_TXL_LOGICAL:
4434 case FS_OPCODE_TXB_LOGICAL: {
4435 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4436 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4437 * mode because the message exceeds the maximum length of 11.
4438 */
4439 const fs_reg &shadow_c = inst->src[TEX_LOGICAL_SRC_SHADOW_C];
4440 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4441 return 16;
4442 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4443 return 8;
4444 else
4445 return inst->exec_size;
4446 }
4447 case SHADER_OPCODE_TXF_LOGICAL:
4448 case SHADER_OPCODE_TXS_LOGICAL:
4449 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4450 * messages. Use SIMD16 instead.
4451 */
4452 if (devinfo->gen == 4)
4453 return 16;
4454 else
4455 return inst->exec_size;
4456
4457 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4458 /* This opcode can take up to 6 arguments which means that in some
4459 * circumstances it can end up with a message that is too long in SIMD16
4460 * mode.
4461 */
4462 const unsigned coord_components =
4463 inst->src[TEX_LOGICAL_SRC_COORD_COMPONENTS].ud;
4464 /* First three arguments are the sample index and the two arguments for
4465 * the MCS data.
4466 */
4467 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4468 return 8;
4469 else
4470 return inst->exec_size;
4471 }
4472
4473 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4474 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4475 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4476 return 8;
4477
4478 default:
4479 return inst->exec_size;
4480 }
4481 }
4482
4483 /**
4484 * The \p rows array of registers represents a \p num_rows by \p num_columns
4485 * matrix in row-major order, write it in column-major order into the register
4486 * passed as destination. \p stride gives the separation between matrix
4487 * elements in the input in fs_builder::dispatch_width() units.
4488 */
4489 static void
4490 emit_transpose(const fs_builder &bld,
4491 const fs_reg &dst, const fs_reg *rows,
4492 unsigned num_rows, unsigned num_columns, unsigned stride)
4493 {
4494 fs_reg *const components = new fs_reg[num_rows * num_columns];
4495
4496 for (unsigned i = 0; i < num_columns; ++i) {
4497 for (unsigned j = 0; j < num_rows; ++j)
4498 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4499 }
4500
4501 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4502
4503 delete[] components;
4504 }
4505
4506 bool
4507 fs_visitor::lower_simd_width()
4508 {
4509 bool progress = false;
4510
4511 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4512 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4513
4514 if (lower_width != inst->exec_size) {
4515 /* Builder matching the original instruction. We may also need to
4516 * emit an instruction of width larger than the original, set the
4517 * execution size of the builder to the highest of both for now so
4518 * we're sure that both cases can be handled.
4519 */
4520 const fs_builder ibld = bld.at(block, inst)
4521 .exec_all(inst->force_writemask_all)
4522 .group(MAX2(inst->exec_size, lower_width),
4523 inst->force_sechalf);
4524
4525 /* Split the copies in chunks of the execution width of either the
4526 * original or the lowered instruction, whichever is lower.
4527 */
4528 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4529 const unsigned n = inst->exec_size / copy_width;
4530 const unsigned dst_size = inst->regs_written * REG_SIZE /
4531 inst->dst.component_size(inst->exec_size);
4532 fs_reg dsts[4];
4533
4534 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4535 !inst->writes_accumulator && !inst->mlen);
4536
4537 for (unsigned i = 0; i < n; i++) {
4538 /* Emit a copy of the original instruction with the lowered width.
4539 * If the EOT flag was set throw it away except for the last
4540 * instruction to avoid killing the thread prematurely.
4541 */
4542 fs_inst split_inst = *inst;
4543 split_inst.exec_size = lower_width;
4544 split_inst.eot = inst->eot && i == n - 1;
4545
4546 /* Select the correct channel enables for the i-th group, then
4547 * transform the sources and destination and emit the lowered
4548 * instruction.
4549 */
4550 const fs_builder lbld = ibld.group(lower_width, i);
4551
4552 for (unsigned j = 0; j < inst->sources; j++) {
4553 if (inst->src[j].file != BAD_FILE &&
4554 !is_uniform(inst->src[j])) {
4555 /* Get the i-th copy_width-wide chunk of the source. */
4556 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4557 const unsigned src_size = inst->components_read(j);
4558
4559 /* Use a trivial transposition to copy one every n
4560 * copy_width-wide components of the register into a
4561 * temporary passed as source to the lowered instruction.
4562 */
4563 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4564 emit_transpose(lbld.group(copy_width, 0),
4565 split_inst.src[j], &src, 1, src_size, n);
4566 }
4567 }
4568
4569 if (inst->regs_written) {
4570 /* Allocate enough space to hold the result of the lowered
4571 * instruction and fix up the number of registers written.
4572 */
4573 split_inst.dst = dsts[i] =
4574 lbld.vgrf(inst->dst.type, dst_size);
4575 split_inst.regs_written =
4576 DIV_ROUND_UP(inst->regs_written * lower_width,
4577 inst->exec_size);
4578 }
4579
4580 lbld.emit(split_inst);
4581 }
4582
4583 if (inst->regs_written) {
4584 /* Distance between useful channels in the temporaries, skipping
4585 * garbage if the lowered instruction is wider than the original.
4586 */
4587 const unsigned m = lower_width / copy_width;
4588
4589 /* Interleave the components of the result from the lowered
4590 * instructions. We need to set exec_all() when copying more than
4591 * one half per component, because LOAD_PAYLOAD (in terms of which
4592 * emit_transpose is implemented) can only use the same channel
4593 * enable signals for all of its non-header sources.
4594 */
4595 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4596 .group(copy_width, 0),
4597 inst->dst, dsts, n, dst_size, m);
4598 }
4599
4600 inst->remove(block);
4601 progress = true;
4602 }
4603 }
4604
4605 if (progress)
4606 invalidate_live_intervals();
4607
4608 return progress;
4609 }
4610
4611 void
4612 fs_visitor::dump_instructions()
4613 {
4614 dump_instructions(NULL);
4615 }
4616
4617 void
4618 fs_visitor::dump_instructions(const char *name)
4619 {
4620 FILE *file = stderr;
4621 if (name && geteuid() != 0) {
4622 file = fopen(name, "w");
4623 if (!file)
4624 file = stderr;
4625 }
4626
4627 if (cfg) {
4628 calculate_register_pressure();
4629 int ip = 0, max_pressure = 0;
4630 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4631 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4632 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4633 dump_instruction(inst, file);
4634 ip++;
4635 }
4636 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4637 } else {
4638 int ip = 0;
4639 foreach_in_list(backend_instruction, inst, &instructions) {
4640 fprintf(file, "%4d: ", ip++);
4641 dump_instruction(inst, file);
4642 }
4643 }
4644
4645 if (file != stderr) {
4646 fclose(file);
4647 }
4648 }
4649
4650 void
4651 fs_visitor::dump_instruction(backend_instruction *be_inst)
4652 {
4653 dump_instruction(be_inst, stderr);
4654 }
4655
4656 void
4657 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4658 {
4659 fs_inst *inst = (fs_inst *)be_inst;
4660
4661 if (inst->predicate) {
4662 fprintf(file, "(%cf0.%d) ",
4663 inst->predicate_inverse ? '-' : '+',
4664 inst->flag_subreg);
4665 }
4666
4667 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4668 if (inst->saturate)
4669 fprintf(file, ".sat");
4670 if (inst->conditional_mod) {
4671 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4672 if (!inst->predicate &&
4673 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4674 inst->opcode != BRW_OPCODE_IF &&
4675 inst->opcode != BRW_OPCODE_WHILE))) {
4676 fprintf(file, ".f0.%d", inst->flag_subreg);
4677 }
4678 }
4679 fprintf(file, "(%d) ", inst->exec_size);
4680
4681 if (inst->mlen) {
4682 fprintf(file, "(mlen: %d) ", inst->mlen);
4683 }
4684
4685 switch (inst->dst.file) {
4686 case VGRF:
4687 fprintf(file, "vgrf%d", inst->dst.nr);
4688 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4689 inst->dst.subreg_offset)
4690 fprintf(file, "+%d.%d",
4691 inst->dst.reg_offset, inst->dst.subreg_offset);
4692 break;
4693 case FIXED_GRF:
4694 fprintf(file, "g%d", inst->dst.nr);
4695 break;
4696 case MRF:
4697 fprintf(file, "m%d", inst->dst.nr);
4698 break;
4699 case BAD_FILE:
4700 fprintf(file, "(null)");
4701 break;
4702 case UNIFORM:
4703 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4704 break;
4705 case ATTR:
4706 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4707 break;
4708 case ARF:
4709 switch (inst->dst.nr) {
4710 case BRW_ARF_NULL:
4711 fprintf(file, "null");
4712 break;
4713 case BRW_ARF_ADDRESS:
4714 fprintf(file, "a0.%d", inst->dst.subnr);
4715 break;
4716 case BRW_ARF_ACCUMULATOR:
4717 fprintf(file, "acc%d", inst->dst.subnr);
4718 break;
4719 case BRW_ARF_FLAG:
4720 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4721 break;
4722 default:
4723 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4724 break;
4725 }
4726 if (inst->dst.subnr)
4727 fprintf(file, "+%d", inst->dst.subnr);
4728 break;
4729 case IMM:
4730 unreachable("not reached");
4731 }
4732 if (inst->dst.stride != 1)
4733 fprintf(file, "<%u>", inst->dst.stride);
4734 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4735
4736 for (int i = 0; i < inst->sources; i++) {
4737 if (inst->src[i].negate)
4738 fprintf(file, "-");
4739 if (inst->src[i].abs)
4740 fprintf(file, "|");
4741 switch (inst->src[i].file) {
4742 case VGRF:
4743 fprintf(file, "vgrf%d", inst->src[i].nr);
4744 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4745 inst->src[i].subreg_offset)
4746 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4747 inst->src[i].subreg_offset);
4748 break;
4749 case FIXED_GRF:
4750 fprintf(file, "g%d", inst->src[i].nr);
4751 break;
4752 case MRF:
4753 fprintf(file, "***m%d***", inst->src[i].nr);
4754 break;
4755 case ATTR:
4756 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4757 break;
4758 case UNIFORM:
4759 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4760 if (inst->src[i].reladdr) {
4761 fprintf(file, "+reladdr");
4762 } else if (inst->src[i].subreg_offset) {
4763 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4764 inst->src[i].subreg_offset);
4765 }
4766 break;
4767 case BAD_FILE:
4768 fprintf(file, "(null)");
4769 break;
4770 case IMM:
4771 switch (inst->src[i].type) {
4772 case BRW_REGISTER_TYPE_F:
4773 fprintf(file, "%-gf", inst->src[i].f);
4774 break;
4775 case BRW_REGISTER_TYPE_W:
4776 case BRW_REGISTER_TYPE_D:
4777 fprintf(file, "%dd", inst->src[i].d);
4778 break;
4779 case BRW_REGISTER_TYPE_UW:
4780 case BRW_REGISTER_TYPE_UD:
4781 fprintf(file, "%uu", inst->src[i].ud);
4782 break;
4783 case BRW_REGISTER_TYPE_VF:
4784 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4785 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4786 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4787 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4788 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4789 break;
4790 default:
4791 fprintf(file, "???");
4792 break;
4793 }
4794 break;
4795 case ARF:
4796 switch (inst->src[i].nr) {
4797 case BRW_ARF_NULL:
4798 fprintf(file, "null");
4799 break;
4800 case BRW_ARF_ADDRESS:
4801 fprintf(file, "a0.%d", inst->src[i].subnr);
4802 break;
4803 case BRW_ARF_ACCUMULATOR:
4804 fprintf(file, "acc%d", inst->src[i].subnr);
4805 break;
4806 case BRW_ARF_FLAG:
4807 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4808 break;
4809 default:
4810 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4811 break;
4812 }
4813 if (inst->src[i].subnr)
4814 fprintf(file, "+%d", inst->src[i].subnr);
4815 break;
4816 }
4817 if (inst->src[i].abs)
4818 fprintf(file, "|");
4819
4820 if (inst->src[i].file != IMM) {
4821 unsigned stride;
4822 if (inst->src[i].file == ARF || inst->src[i].file == FIXED_GRF) {
4823 unsigned hstride = inst->src[i].hstride;
4824 stride = (hstride == 0 ? 0 : (1 << (hstride - 1)));
4825 } else {
4826 stride = inst->src[i].stride;
4827 }
4828 if (stride != 1)
4829 fprintf(file, "<%u>", stride);
4830
4831 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4832 }
4833
4834 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4835 fprintf(file, ", ");
4836 }
4837
4838 fprintf(file, " ");
4839
4840 if (inst->force_writemask_all)
4841 fprintf(file, "NoMask ");
4842
4843 if (dispatch_width == 16 && inst->exec_size == 8) {
4844 if (inst->force_sechalf)
4845 fprintf(file, "2ndhalf ");
4846 else
4847 fprintf(file, "1sthalf ");
4848 }
4849
4850 fprintf(file, "\n");
4851 }
4852
4853 /**
4854 * Possibly returns an instruction that set up @param reg.
4855 *
4856 * Sometimes we want to take the result of some expression/variable
4857 * dereference tree and rewrite the instruction generating the result
4858 * of the tree. When processing the tree, we know that the
4859 * instructions generated are all writing temporaries that are dead
4860 * outside of this tree. So, if we have some instructions that write
4861 * a temporary, we're free to point that temp write somewhere else.
4862 *
4863 * Note that this doesn't guarantee that the instruction generated
4864 * only reg -- it might be the size=4 destination of a texture instruction.
4865 */
4866 fs_inst *
4867 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4868 fs_inst *end,
4869 const fs_reg &reg)
4870 {
4871 if (end == start ||
4872 end->is_partial_write() ||
4873 reg.reladdr ||
4874 !reg.equals(end->dst)) {
4875 return NULL;
4876 } else {
4877 return end;
4878 }
4879 }
4880
4881 void
4882 fs_visitor::setup_fs_payload_gen6()
4883 {
4884 assert(stage == MESA_SHADER_FRAGMENT);
4885 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4886 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4887
4888 unsigned barycentric_interp_modes =
4889 (stage == MESA_SHADER_FRAGMENT) ?
4890 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4891
4892 assert(devinfo->gen >= 6);
4893
4894 /* R0-1: masks, pixel X/Y coordinates. */
4895 payload.num_regs = 2;
4896 /* R2: only for 32-pixel dispatch.*/
4897
4898 /* R3-26: barycentric interpolation coordinates. These appear in the
4899 * same order that they appear in the brw_wm_barycentric_interp_mode
4900 * enum. Each set of coordinates occupies 2 registers if dispatch width
4901 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4902 * appear if they were enabled using the "Barycentric Interpolation
4903 * Mode" bits in WM_STATE.
4904 */
4905 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4906 if (barycentric_interp_modes & (1 << i)) {
4907 payload.barycentric_coord_reg[i] = payload.num_regs;
4908 payload.num_regs += 2;
4909 if (dispatch_width == 16) {
4910 payload.num_regs += 2;
4911 }
4912 }
4913 }
4914
4915 /* R27: interpolated depth if uses source depth */
4916 prog_data->uses_src_depth =
4917 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4918 if (prog_data->uses_src_depth) {
4919 payload.source_depth_reg = payload.num_regs;
4920 payload.num_regs++;
4921 if (dispatch_width == 16) {
4922 /* R28: interpolated depth if not SIMD8. */
4923 payload.num_regs++;
4924 }
4925 }
4926
4927 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4928 prog_data->uses_src_w =
4929 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4930 if (prog_data->uses_src_w) {
4931 payload.source_w_reg = payload.num_regs;
4932 payload.num_regs++;
4933 if (dispatch_width == 16) {
4934 /* R30: interpolated W if not SIMD8. */
4935 payload.num_regs++;
4936 }
4937 }
4938
4939 prog_data->uses_pos_offset = key->compute_pos_offset;
4940 /* R31: MSAA position offsets. */
4941 if (prog_data->uses_pos_offset) {
4942 payload.sample_pos_reg = payload.num_regs;
4943 payload.num_regs++;
4944 }
4945
4946 /* R32: MSAA input coverage mask */
4947 prog_data->uses_sample_mask =
4948 (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) != 0;
4949 if (prog_data->uses_sample_mask) {
4950 assert(devinfo->gen >= 7);
4951 payload.sample_mask_in_reg = payload.num_regs;
4952 payload.num_regs++;
4953 if (dispatch_width == 16) {
4954 /* R33: input coverage mask if not SIMD8. */
4955 payload.num_regs++;
4956 }
4957 }
4958
4959 /* R34-: bary for 32-pixel. */
4960 /* R58-59: interp W for 32-pixel. */
4961
4962 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4963 source_depth_to_render_target = true;
4964 }
4965 }
4966
4967 void
4968 fs_visitor::setup_vs_payload()
4969 {
4970 /* R0: thread header, R1: urb handles */
4971 payload.num_regs = 2;
4972 }
4973
4974 /**
4975 * We are building the local ID push constant data using the simplest possible
4976 * method. We simply push the local IDs directly as they should appear in the
4977 * registers for the uvec3 gl_LocalInvocationID variable.
4978 *
4979 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4980 * registers worth of push constant space.
4981 *
4982 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4983 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4984 * to coordinated.
4985 *
4986 * FINISHME: There are a few easy optimizations to consider.
4987 *
4988 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4989 * no need for using push constant space for that dimension.
4990 *
4991 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4992 * easily use 16-bit words rather than 32-bit dwords in the push constant
4993 * data.
4994 *
4995 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4996 * conveying the data, and thereby reduce push constant usage.
4997 *
4998 */
4999 void
5000 fs_visitor::setup_gs_payload()
5001 {
5002 assert(stage == MESA_SHADER_GEOMETRY);
5003
5004 struct brw_gs_prog_data *gs_prog_data =
5005 (struct brw_gs_prog_data *) prog_data;
5006 struct brw_vue_prog_data *vue_prog_data =
5007 (struct brw_vue_prog_data *) prog_data;
5008
5009 /* R0: thread header, R1: output URB handles */
5010 payload.num_regs = 2;
5011
5012 if (gs_prog_data->include_primitive_id) {
5013 /* R2: Primitive ID 0..7 */
5014 payload.num_regs++;
5015 }
5016
5017 /* Use a maximum of 32 registers for push-model inputs. */
5018 const unsigned max_push_components = 32;
5019
5020 /* If pushing our inputs would take too many registers, reduce the URB read
5021 * length (which is in HWords, or 8 registers), and resort to pulling.
5022 *
5023 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
5024 * have to multiply by VerticesIn to obtain the total storage requirement.
5025 */
5026 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
5027 max_push_components) {
5028 gs_prog_data->base.include_vue_handles = true;
5029
5030 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
5031 payload.num_regs += nir->info.gs.vertices_in;
5032
5033 vue_prog_data->urb_read_length =
5034 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
5035 }
5036 }
5037
5038 void
5039 fs_visitor::setup_cs_payload()
5040 {
5041 assert(devinfo->gen >= 7);
5042 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
5043
5044 payload.num_regs = 1;
5045
5046 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
5047 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
5048 payload.local_invocation_id_reg = payload.num_regs;
5049 payload.num_regs += prog_data->local_invocation_id_regs;
5050 }
5051 }
5052
5053 void
5054 fs_visitor::calculate_register_pressure()
5055 {
5056 invalidate_live_intervals();
5057 calculate_live_intervals();
5058
5059 unsigned num_instructions = 0;
5060 foreach_block(block, cfg)
5061 num_instructions += block->instructions.length();
5062
5063 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
5064
5065 for (unsigned reg = 0; reg < alloc.count; reg++) {
5066 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
5067 regs_live_at_ip[ip] += alloc.sizes[reg];
5068 }
5069 }
5070
5071 void
5072 fs_visitor::optimize()
5073 {
5074 /* Start by validating the shader we currently have. */
5075 validate();
5076
5077 /* bld is the common builder object pointing at the end of the program we
5078 * used to translate it into i965 IR. For the optimization and lowering
5079 * passes coming next, any code added after the end of the program without
5080 * having explicitly called fs_builder::at() clearly points at a mistake.
5081 * Ideally optimization passes wouldn't be part of the visitor so they
5082 * wouldn't have access to bld at all, but they do, so just in case some
5083 * pass forgets to ask for a location explicitly set it to NULL here to
5084 * make it trip. The dispatch width is initialized to a bogus value to
5085 * make sure that optimizations set the execution controls explicitly to
5086 * match the code they are manipulating instead of relying on the defaults.
5087 */
5088 bld = fs_builder(this, 64);
5089
5090 assign_constant_locations();
5091 demote_pull_constants();
5092
5093 validate();
5094
5095 split_virtual_grfs();
5096 validate();
5097
5098 #define OPT(pass, args...) ({ \
5099 pass_num++; \
5100 bool this_progress = pass(args); \
5101 \
5102 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5103 char filename[64]; \
5104 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5105 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5106 \
5107 backend_shader::dump_instructions(filename); \
5108 } \
5109 \
5110 validate(); \
5111 \
5112 progress = progress || this_progress; \
5113 this_progress; \
5114 })
5115
5116 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5117 char filename[64];
5118 snprintf(filename, 64, "%s%d-%s-00-00-start",
5119 stage_abbrev, dispatch_width, nir->info.name);
5120
5121 backend_shader::dump_instructions(filename);
5122 }
5123
5124 bool progress = false;
5125 int iteration = 0;
5126 int pass_num = 0;
5127
5128 OPT(lower_simd_width);
5129 OPT(lower_logical_sends);
5130
5131 do {
5132 progress = false;
5133 pass_num = 0;
5134 iteration++;
5135
5136 OPT(remove_duplicate_mrf_writes);
5137
5138 OPT(opt_algebraic);
5139 OPT(opt_cse);
5140 OPT(opt_copy_propagate);
5141 OPT(opt_predicated_break, this);
5142 OPT(opt_cmod_propagation);
5143 OPT(dead_code_eliminate);
5144 OPT(opt_peephole_sel);
5145 OPT(dead_control_flow_eliminate, this);
5146 OPT(opt_register_renaming);
5147 OPT(opt_redundant_discard_jumps);
5148 OPT(opt_saturate_propagation);
5149 OPT(opt_zero_samples);
5150 OPT(register_coalesce);
5151 OPT(compute_to_mrf);
5152 OPT(eliminate_find_live_channel);
5153
5154 OPT(compact_virtual_grfs);
5155 } while (progress);
5156
5157 pass_num = 0;
5158
5159 OPT(opt_sampler_eot);
5160
5161 if (OPT(lower_load_payload)) {
5162 split_virtual_grfs();
5163 OPT(register_coalesce);
5164 OPT(compute_to_mrf);
5165 OPT(dead_code_eliminate);
5166 }
5167
5168 OPT(opt_combine_constants);
5169 OPT(lower_integer_multiplication);
5170
5171 if (devinfo->gen <= 5 && OPT(lower_minmax)) {
5172 OPT(opt_cmod_propagation);
5173 OPT(opt_cse);
5174 OPT(opt_copy_propagate);
5175 OPT(dead_code_eliminate);
5176 }
5177
5178 lower_uniform_pull_constant_loads();
5179
5180 validate();
5181 }
5182
5183 /**
5184 * Three source instruction must have a GRF/MRF destination register.
5185 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5186 */
5187 void
5188 fs_visitor::fixup_3src_null_dest()
5189 {
5190 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5191 if (inst->is_3src() && inst->dst.is_null()) {
5192 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5193 inst->dst.type);
5194 }
5195 }
5196 }
5197
5198 void
5199 fs_visitor::allocate_registers()
5200 {
5201 bool allocated_without_spills;
5202
5203 static const enum instruction_scheduler_mode pre_modes[] = {
5204 SCHEDULE_PRE,
5205 SCHEDULE_PRE_NON_LIFO,
5206 SCHEDULE_PRE_LIFO,
5207 };
5208
5209 /* Try each scheduling heuristic to see if it can successfully register
5210 * allocate without spilling. They should be ordered by decreasing
5211 * performance but increasing likelihood of allocating.
5212 */
5213 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5214 schedule_instructions(pre_modes[i]);
5215
5216 if (0) {
5217 assign_regs_trivial();
5218 allocated_without_spills = true;
5219 } else {
5220 allocated_without_spills = assign_regs(false);
5221 }
5222 if (allocated_without_spills)
5223 break;
5224 }
5225
5226 if (!allocated_without_spills) {
5227 /* We assume that any spilling is worse than just dropping back to
5228 * SIMD8. There's probably actually some intermediate point where
5229 * SIMD16 with a couple of spills is still better.
5230 */
5231 if (dispatch_width == 16 && min_dispatch_width <= 8) {
5232 fail("Failure to register allocate. Reduce number of "
5233 "live scalar values to avoid this.");
5234 } else {
5235 compiler->shader_perf_log(log_data,
5236 "%s shader triggered register spilling. "
5237 "Try reducing the number of live scalar "
5238 "values to improve performance.\n",
5239 stage_name);
5240 }
5241
5242 /* Since we're out of heuristics, just go spill registers until we
5243 * get an allocation.
5244 */
5245 while (!assign_regs(true)) {
5246 if (failed)
5247 break;
5248 }
5249 }
5250
5251 /* This must come after all optimization and register allocation, since
5252 * it inserts dead code that happens to have side effects, and it does
5253 * so based on the actual physical registers in use.
5254 */
5255 insert_gen4_send_dependency_workarounds();
5256
5257 if (failed)
5258 return;
5259
5260 schedule_instructions(SCHEDULE_POST);
5261
5262 if (last_scratch > 0)
5263 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5264 }
5265
5266 bool
5267 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5268 {
5269 assert(stage == MESA_SHADER_VERTEX);
5270
5271 setup_vs_payload();
5272
5273 if (shader_time_index >= 0)
5274 emit_shader_time_begin();
5275
5276 emit_nir_code();
5277
5278 if (failed)
5279 return false;
5280
5281 compute_clip_distance(clip_planes);
5282
5283 emit_urb_writes();
5284
5285 if (shader_time_index >= 0)
5286 emit_shader_time_end();
5287
5288 calculate_cfg();
5289
5290 optimize();
5291
5292 assign_curb_setup();
5293 assign_vs_urb_setup();
5294
5295 fixup_3src_null_dest();
5296 allocate_registers();
5297
5298 return !failed;
5299 }
5300
5301 bool
5302 fs_visitor::run_tes()
5303 {
5304 assert(stage == MESA_SHADER_TESS_EVAL);
5305
5306 /* R0: thread header, R1-3: gl_TessCoord.xyz, R4: URB handles */
5307 payload.num_regs = 5;
5308
5309 if (shader_time_index >= 0)
5310 emit_shader_time_begin();
5311
5312 emit_nir_code();
5313
5314 if (failed)
5315 return false;
5316
5317 emit_urb_writes();
5318
5319 if (shader_time_index >= 0)
5320 emit_shader_time_end();
5321
5322 calculate_cfg();
5323
5324 optimize();
5325
5326 assign_curb_setup();
5327 assign_tes_urb_setup();
5328
5329 fixup_3src_null_dest();
5330 allocate_registers();
5331
5332 return !failed;
5333 }
5334
5335 bool
5336 fs_visitor::run_gs()
5337 {
5338 assert(stage == MESA_SHADER_GEOMETRY);
5339
5340 setup_gs_payload();
5341
5342 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5343
5344 if (gs_compile->control_data_header_size_bits > 0) {
5345 /* Create a VGRF to store accumulated control data bits. */
5346 this->control_data_bits = vgrf(glsl_type::uint_type);
5347
5348 /* If we're outputting more than 32 control data bits, then EmitVertex()
5349 * will set control_data_bits to 0 after emitting the first vertex.
5350 * Otherwise, we need to initialize it to 0 here.
5351 */
5352 if (gs_compile->control_data_header_size_bits <= 32) {
5353 const fs_builder abld = bld.annotate("initialize control data bits");
5354 abld.MOV(this->control_data_bits, brw_imm_ud(0u));
5355 }
5356 }
5357
5358 if (shader_time_index >= 0)
5359 emit_shader_time_begin();
5360
5361 emit_nir_code();
5362
5363 emit_gs_thread_end();
5364
5365 if (shader_time_index >= 0)
5366 emit_shader_time_end();
5367
5368 if (failed)
5369 return false;
5370
5371 calculate_cfg();
5372
5373 optimize();
5374
5375 assign_curb_setup();
5376 assign_gs_urb_setup();
5377
5378 fixup_3src_null_dest();
5379 allocate_registers();
5380
5381 return !failed;
5382 }
5383
5384 bool
5385 fs_visitor::run_fs(bool do_rep_send)
5386 {
5387 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5388 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5389
5390 assert(stage == MESA_SHADER_FRAGMENT);
5391
5392 if (devinfo->gen >= 6)
5393 setup_fs_payload_gen6();
5394 else
5395 setup_fs_payload_gen4();
5396
5397 if (0) {
5398 emit_dummy_fs();
5399 } else if (do_rep_send) {
5400 assert(dispatch_width == 16);
5401 emit_repclear_shader();
5402 } else {
5403 if (shader_time_index >= 0)
5404 emit_shader_time_begin();
5405
5406 calculate_urb_setup();
5407 if (nir->info.inputs_read > 0) {
5408 if (devinfo->gen < 6)
5409 emit_interpolation_setup_gen4();
5410 else
5411 emit_interpolation_setup_gen6();
5412 }
5413
5414 /* We handle discards by keeping track of the still-live pixels in f0.1.
5415 * Initialize it with the dispatched pixels.
5416 */
5417 if (wm_prog_data->uses_kill) {
5418 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5419 discard_init->flag_subreg = 1;
5420 }
5421
5422 /* Generate FS IR for main(). (the visitor only descends into
5423 * functions called "main").
5424 */
5425 emit_nir_code();
5426
5427 if (failed)
5428 return false;
5429
5430 if (wm_prog_data->uses_kill)
5431 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5432
5433 if (wm_key->alpha_test_func)
5434 emit_alpha_test();
5435
5436 emit_fb_writes();
5437
5438 if (shader_time_index >= 0)
5439 emit_shader_time_end();
5440
5441 calculate_cfg();
5442
5443 optimize();
5444
5445 assign_curb_setup();
5446 assign_urb_setup();
5447
5448 fixup_3src_null_dest();
5449 allocate_registers();
5450
5451 if (failed)
5452 return false;
5453 }
5454
5455 if (dispatch_width == 8)
5456 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5457 else
5458 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5459
5460 return !failed;
5461 }
5462
5463 bool
5464 fs_visitor::run_cs()
5465 {
5466 assert(stage == MESA_SHADER_COMPUTE);
5467
5468 setup_cs_payload();
5469
5470 if (shader_time_index >= 0)
5471 emit_shader_time_begin();
5472
5473 if (devinfo->is_haswell && prog_data->total_shared > 0) {
5474 /* Move SLM index from g0.0[27:24] to sr0.1[11:8] */
5475 const fs_builder abld = bld.exec_all().group(1, 0);
5476 abld.MOV(retype(suboffset(brw_sr0_reg(), 1), BRW_REGISTER_TYPE_UW),
5477 suboffset(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UW), 1));
5478 }
5479
5480 emit_nir_code();
5481
5482 if (failed)
5483 return false;
5484
5485 emit_cs_terminate();
5486
5487 if (shader_time_index >= 0)
5488 emit_shader_time_end();
5489
5490 calculate_cfg();
5491
5492 optimize();
5493
5494 assign_curb_setup();
5495
5496 fixup_3src_null_dest();
5497 allocate_registers();
5498
5499 if (failed)
5500 return false;
5501
5502 return !failed;
5503 }
5504
5505 /**
5506 * Return a bitfield where bit n is set if barycentric interpolation mode n
5507 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5508 */
5509 static unsigned
5510 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5511 bool shade_model_flat,
5512 bool persample_shading,
5513 const nir_shader *shader)
5514 {
5515 unsigned barycentric_interp_modes = 0;
5516
5517 nir_foreach_variable(var, &shader->inputs) {
5518 enum glsl_interp_qualifier interp_qualifier =
5519 (enum glsl_interp_qualifier)var->data.interpolation;
5520 bool is_centroid = var->data.centroid && !persample_shading;
5521 bool is_sample = var->data.sample || persample_shading;
5522 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5523 (var->data.location == VARYING_SLOT_COL1);
5524
5525 /* Ignore WPOS and FACE, because they don't require interpolation. */
5526 if (var->data.location == VARYING_SLOT_POS ||
5527 var->data.location == VARYING_SLOT_FACE)
5528 continue;
5529
5530 /* Determine the set (or sets) of barycentric coordinates needed to
5531 * interpolate this variable. Note that when
5532 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5533 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5534 * for lit pixels, so we need both sets of barycentric coordinates.
5535 */
5536 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5537 if (is_centroid) {
5538 barycentric_interp_modes |=
5539 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5540 } else if (is_sample) {
5541 barycentric_interp_modes |=
5542 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5543 }
5544 if ((!is_centroid && !is_sample) ||
5545 devinfo->needs_unlit_centroid_workaround) {
5546 barycentric_interp_modes |=
5547 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5548 }
5549 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5550 (!(shade_model_flat && is_gl_Color) &&
5551 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5552 if (is_centroid) {
5553 barycentric_interp_modes |=
5554 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5555 } else if (is_sample) {
5556 barycentric_interp_modes |=
5557 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5558 }
5559 if ((!is_centroid && !is_sample) ||
5560 devinfo->needs_unlit_centroid_workaround) {
5561 barycentric_interp_modes |=
5562 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5563 }
5564 }
5565 }
5566
5567 return barycentric_interp_modes;
5568 }
5569
5570 static uint8_t
5571 computed_depth_mode(const nir_shader *shader)
5572 {
5573 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5574 switch (shader->info.fs.depth_layout) {
5575 case FRAG_DEPTH_LAYOUT_NONE:
5576 case FRAG_DEPTH_LAYOUT_ANY:
5577 return BRW_PSCDEPTH_ON;
5578 case FRAG_DEPTH_LAYOUT_GREATER:
5579 return BRW_PSCDEPTH_ON_GE;
5580 case FRAG_DEPTH_LAYOUT_LESS:
5581 return BRW_PSCDEPTH_ON_LE;
5582 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5583 return BRW_PSCDEPTH_OFF;
5584 }
5585 }
5586 return BRW_PSCDEPTH_OFF;
5587 }
5588
5589 const unsigned *
5590 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5591 void *mem_ctx,
5592 const struct brw_wm_prog_key *key,
5593 struct brw_wm_prog_data *prog_data,
5594 const nir_shader *src_shader,
5595 struct gl_program *prog,
5596 int shader_time_index8, int shader_time_index16,
5597 bool use_rep_send,
5598 unsigned *final_assembly_size,
5599 char **error_str)
5600 {
5601 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5602 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5603 true);
5604 brw_nir_lower_fs_inputs(shader);
5605 brw_nir_lower_fs_outputs(shader);
5606 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5607
5608 /* key->alpha_test_func means simulating alpha testing via discards,
5609 * so the shader definitely kills pixels.
5610 */
5611 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5612 prog_data->uses_omask =
5613 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5614 prog_data->computed_depth_mode = computed_depth_mode(shader);
5615 prog_data->computed_stencil =
5616 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5617
5618 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5619
5620 prog_data->barycentric_interp_modes =
5621 brw_compute_barycentric_interp_modes(compiler->devinfo,
5622 key->flat_shade,
5623 key->persample_shading,
5624 shader);
5625
5626 fs_visitor v(compiler, log_data, mem_ctx, key,
5627 &prog_data->base, prog, shader, 8,
5628 shader_time_index8);
5629 if (!v.run_fs(false /* do_rep_send */)) {
5630 if (error_str)
5631 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5632
5633 return NULL;
5634 }
5635
5636 cfg_t *simd16_cfg = NULL;
5637 fs_visitor v2(compiler, log_data, mem_ctx, key,
5638 &prog_data->base, prog, shader, 16,
5639 shader_time_index16);
5640 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5641 if (!v.simd16_unsupported) {
5642 /* Try a SIMD16 compile */
5643 v2.import_uniforms(&v);
5644 if (!v2.run_fs(use_rep_send)) {
5645 compiler->shader_perf_log(log_data,
5646 "SIMD16 shader failed to compile: %s",
5647 v2.fail_msg);
5648 } else {
5649 simd16_cfg = v2.cfg;
5650 }
5651 }
5652 }
5653
5654 cfg_t *simd8_cfg;
5655 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5656 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5657 simd8_cfg = NULL;
5658 prog_data->no_8 = true;
5659 } else {
5660 simd8_cfg = v.cfg;
5661 prog_data->no_8 = false;
5662 }
5663
5664 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5665 v.promoted_constants, v.runtime_check_aads_emit,
5666 MESA_SHADER_FRAGMENT);
5667
5668 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5669 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5670 shader->info.label ? shader->info.label :
5671 "unnamed",
5672 shader->info.name));
5673 }
5674
5675 if (simd8_cfg)
5676 g.generate_code(simd8_cfg, 8);
5677 if (simd16_cfg)
5678 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5679
5680 return g.get_assembly(final_assembly_size);
5681 }
5682
5683 fs_reg *
5684 fs_visitor::emit_cs_local_invocation_id_setup()
5685 {
5686 assert(stage == MESA_SHADER_COMPUTE);
5687
5688 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5689
5690 struct brw_reg src =
5691 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5692 src = retype(src, BRW_REGISTER_TYPE_UD);
5693 bld.MOV(*reg, src);
5694 src.nr += dispatch_width / 8;
5695 bld.MOV(offset(*reg, bld, 1), src);
5696 src.nr += dispatch_width / 8;
5697 bld.MOV(offset(*reg, bld, 2), src);
5698
5699 return reg;
5700 }
5701
5702 fs_reg *
5703 fs_visitor::emit_cs_work_group_id_setup()
5704 {
5705 assert(stage == MESA_SHADER_COMPUTE);
5706
5707 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5708
5709 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5710 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5711 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5712
5713 bld.MOV(*reg, r0_1);
5714 bld.MOV(offset(*reg, bld, 1), r0_6);
5715 bld.MOV(offset(*reg, bld, 2), r0_7);
5716
5717 return reg;
5718 }
5719
5720 const unsigned *
5721 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5722 void *mem_ctx,
5723 const struct brw_cs_prog_key *key,
5724 struct brw_cs_prog_data *prog_data,
5725 const nir_shader *src_shader,
5726 int shader_time_index,
5727 unsigned *final_assembly_size,
5728 char **error_str)
5729 {
5730 nir_shader *shader = nir_shader_clone(mem_ctx, src_shader);
5731 shader = brw_nir_apply_sampler_key(shader, compiler->devinfo, &key->tex,
5732 true);
5733 shader = brw_postprocess_nir(shader, compiler->devinfo, true);
5734
5735 prog_data->local_size[0] = shader->info.cs.local_size[0];
5736 prog_data->local_size[1] = shader->info.cs.local_size[1];
5737 prog_data->local_size[2] = shader->info.cs.local_size[2];
5738 unsigned local_workgroup_size =
5739 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5740 shader->info.cs.local_size[2];
5741
5742 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5743 unsigned simd_required = DIV_ROUND_UP(local_workgroup_size, max_cs_threads);
5744
5745 cfg_t *cfg = NULL;
5746 const char *fail_msg = NULL;
5747
5748 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5749 */
5750 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5751 NULL, /* Never used in core profile */
5752 shader, 8, shader_time_index);
5753 if (simd_required <= 8) {
5754 if (!v8.run_cs()) {
5755 fail_msg = v8.fail_msg;
5756 } else {
5757 cfg = v8.cfg;
5758 prog_data->simd_size = 8;
5759 }
5760 }
5761
5762 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5763 NULL, /* Never used in core profile */
5764 shader, 16, shader_time_index);
5765 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5766 !fail_msg && !v8.simd16_unsupported &&
5767 local_workgroup_size <= 16 * max_cs_threads) {
5768 /* Try a SIMD16 compile */
5769 if (simd_required <= 8)
5770 v16.import_uniforms(&v8);
5771 if (!v16.run_cs()) {
5772 compiler->shader_perf_log(log_data,
5773 "SIMD16 shader failed to compile: %s",
5774 v16.fail_msg);
5775 if (!cfg) {
5776 fail_msg =
5777 "Couldn't generate SIMD16 program and not "
5778 "enough threads for SIMD8";
5779 }
5780 } else {
5781 cfg = v16.cfg;
5782 prog_data->simd_size = 16;
5783 }
5784 }
5785
5786 if (unlikely(cfg == NULL)) {
5787 assert(fail_msg);
5788 if (error_str)
5789 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5790
5791 return NULL;
5792 }
5793
5794 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5795 v8.promoted_constants, v8.runtime_check_aads_emit,
5796 MESA_SHADER_COMPUTE);
5797 if (INTEL_DEBUG & DEBUG_CS) {
5798 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5799 shader->info.label ? shader->info.label :
5800 "unnamed",
5801 shader->info.name);
5802 g.enable_debug(name);
5803 }
5804
5805 g.generate_code(cfg, prog_data->simd_size);
5806
5807 return g.get_assembly(final_assembly_size);
5808 }
5809
5810 void
5811 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5812 void *buffer, uint32_t threads, uint32_t stride)
5813 {
5814 if (prog_data->local_invocation_id_regs == 0)
5815 return;
5816
5817 /* 'stride' should be an integer number of registers, that is, a multiple
5818 * of 32 bytes.
5819 */
5820 assert(stride % 32 == 0);
5821
5822 unsigned x = 0, y = 0, z = 0;
5823 for (unsigned t = 0; t < threads; t++) {
5824 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5825
5826 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5827 param[0 * prog_data->simd_size + i] = x;
5828 param[1 * prog_data->simd_size + i] = y;
5829 param[2 * prog_data->simd_size + i] = z;
5830
5831 x++;
5832 if (x == prog_data->local_size[0]) {
5833 x = 0;
5834 y++;
5835 if (y == prog_data->local_size[1]) {
5836 y = 0;
5837 z++;
5838 if (z == prog_data->local_size[2])
5839 z = 0;
5840 }
5841 }
5842 }
5843 }
5844 }