i965: Use a single index per shader for shader_time.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 unreachable("not reached");
529 }
530
531 return 0;
532 }
533
534 /**
535 * Create a MOV to read the timestamp register.
536 *
537 * The caller is responsible for emitting the MOV. The return value is
538 * the destination of the MOV, with extra parameters set.
539 */
540 fs_reg
541 fs_visitor::get_timestamp(const fs_builder &bld)
542 {
543 assert(devinfo->gen >= 7);
544
545 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
546 BRW_ARF_TIMESTAMP,
547 0),
548 BRW_REGISTER_TYPE_UD));
549
550 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
551
552 /* We want to read the 3 fields we care about even if it's not enabled in
553 * the dispatch.
554 */
555 bld.exec_all().MOV(dst, ts);
556
557 /* The caller wants the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 *
563 * The caller could also check if render P-states have changed (or anything
564 * else that might disrupt timing) by setting smear to 2 and checking if
565 * that field is != 0.
566 */
567 dst.set_smear(0);
568
569 return dst;
570 }
571
572 void
573 fs_visitor::emit_shader_time_begin()
574 {
575 shader_start_time = get_timestamp(bld.annotate("shader time start"));
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 enum shader_time_shader_type type;
582 switch (stage) {
583 case MESA_SHADER_VERTEX:
584 type = ST_VS;
585 break;
586 case MESA_SHADER_GEOMETRY:
587 type = ST_GS;
588 break;
589 case MESA_SHADER_FRAGMENT:
590 if (dispatch_width == 8) {
591 type = ST_FS8;
592 } else {
593 assert(dispatch_width == 16);
594 type = ST_FS16;
595 }
596 break;
597 case MESA_SHADER_COMPUTE:
598 type = ST_CS;
599 break;
600 default:
601 unreachable("fs_visitor::emit_shader_time_end missing code");
602 }
603 int shader_time_index = brw_get_shader_time_index(brw, shader_prog, prog,
604 type);
605
606 /* Insert our code just before the final SEND with EOT. */
607 exec_node *end = this->instructions.get_tail();
608 assert(end && ((fs_inst *) end)->eot);
609 const fs_builder ibld = bld.annotate("shader time end")
610 .exec_all().at(NULL, end);
611
612 fs_reg shader_end_time = get_timestamp(ibld);
613
614 /* Check that there weren't any timestamp reset events (assuming these
615 * were the only two timestamp reads that happened).
616 */
617 fs_reg reset = shader_end_time;
618 reset.set_smear(2);
619 set_condmod(BRW_CONDITIONAL_Z,
620 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
621 ibld.IF(BRW_PREDICATE_NORMAL);
622
623 fs_reg start = shader_start_time;
624 start.negate = true;
625 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
626 diff.set_smear(0);
627 ibld.ADD(diff, start, shader_end_time);
628
629 /* If there were no instructions between the two timestamp gets, the diff
630 * is 2 cycles. Remove that overhead, so I can forget about that when
631 * trying to determine the time taken for single instructions.
632 */
633 ibld.ADD(diff, diff, fs_reg(-2u));
634 SHADER_TIME_ADD(ibld, shader_time_index, 0, diff);
635 SHADER_TIME_ADD(ibld, shader_time_index, 1, fs_reg(1u));
636 ibld.emit(BRW_OPCODE_ELSE);
637 SHADER_TIME_ADD(ibld, shader_time_index, 2, fs_reg(1u));
638 ibld.emit(BRW_OPCODE_ENDIF);
639 }
640
641 void
642 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
643 int shader_time_index, int shader_time_subindex,
644 fs_reg value)
645 {
646 int index = shader_time_index * 3 + shader_time_subindex;
647 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
648
649 fs_reg payload;
650 if (dispatch_width == 8)
651 payload = vgrf(glsl_type::uvec2_type);
652 else
653 payload = vgrf(glsl_type::uint_type);
654
655 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
656 }
657
658 void
659 fs_visitor::vfail(const char *format, va_list va)
660 {
661 char *msg;
662
663 if (failed)
664 return;
665
666 failed = true;
667
668 msg = ralloc_vasprintf(mem_ctx, format, va);
669 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
670
671 this->fail_msg = msg;
672
673 if (debug_enabled) {
674 fprintf(stderr, "%s", msg);
675 }
676 }
677
678 void
679 fs_visitor::fail(const char *format, ...)
680 {
681 va_list va;
682
683 va_start(va, format);
684 vfail(format, va);
685 va_end(va);
686 }
687
688 /**
689 * Mark this program as impossible to compile in SIMD16 mode.
690 *
691 * During the SIMD8 compile (which happens first), we can detect and flag
692 * things that are unsupported in SIMD16 mode, so the compiler can skip
693 * the SIMD16 compile altogether.
694 *
695 * During a SIMD16 compile (if one happens anyway), this just calls fail().
696 */
697 void
698 fs_visitor::no16(const char *msg)
699 {
700 if (dispatch_width == 16) {
701 fail("%s", msg);
702 } else {
703 simd16_unsupported = true;
704
705 struct brw_compiler *compiler = brw->intelScreen->compiler;
706 compiler->shader_perf_log(brw,
707 "SIMD16 shader failed to compile: %s", msg);
708 }
709 }
710
711 /**
712 * Returns true if the instruction has a flag that means it won't
713 * update an entire destination register.
714 *
715 * For example, dead code elimination and live variable analysis want to know
716 * when a write to a variable screens off any preceding values that were in
717 * it.
718 */
719 bool
720 fs_inst::is_partial_write() const
721 {
722 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
723 (this->dst.width * type_sz(this->dst.type)) < 32 ||
724 !this->dst.is_contiguous());
725 }
726
727 int
728 fs_inst::regs_read(int arg) const
729 {
730 if (is_tex() && arg == 0 && src[0].file == GRF) {
731 return mlen;
732 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
733 return mlen;
734 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
735 return mlen;
736 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
737 return mlen;
738 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
739 return mlen;
740 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE && arg == 0) {
741 return mlen;
742 } else if (opcode == SHADER_OPCODE_TYPED_ATOMIC && arg == 0) {
743 return mlen;
744 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_READ && arg == 0) {
745 return mlen;
746 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE && arg == 0) {
747 return mlen;
748 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
749 return mlen;
750 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
751 return exec_size / 4;
752 }
753
754 switch (src[arg].file) {
755 case BAD_FILE:
756 case UNIFORM:
757 case IMM:
758 return 1;
759 case GRF:
760 case HW_REG:
761 if (src[arg].stride == 0) {
762 return 1;
763 } else {
764 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
765 return (size + 31) / 32;
766 }
767 case MRF:
768 unreachable("MRF registers are not allowed as sources");
769 default:
770 unreachable("Invalid register file");
771 }
772 }
773
774 bool
775 fs_inst::reads_flag() const
776 {
777 return predicate;
778 }
779
780 bool
781 fs_inst::writes_flag() const
782 {
783 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
784 opcode != BRW_OPCODE_IF &&
785 opcode != BRW_OPCODE_WHILE)) ||
786 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
787 }
788
789 /**
790 * Returns how many MRFs an FS opcode will write over.
791 *
792 * Note that this is not the 0 or 1 implied writes in an actual gen
793 * instruction -- the FS opcodes often generate MOVs in addition.
794 */
795 int
796 fs_visitor::implied_mrf_writes(fs_inst *inst)
797 {
798 if (inst->mlen == 0)
799 return 0;
800
801 if (inst->base_mrf == -1)
802 return 0;
803
804 switch (inst->opcode) {
805 case SHADER_OPCODE_RCP:
806 case SHADER_OPCODE_RSQ:
807 case SHADER_OPCODE_SQRT:
808 case SHADER_OPCODE_EXP2:
809 case SHADER_OPCODE_LOG2:
810 case SHADER_OPCODE_SIN:
811 case SHADER_OPCODE_COS:
812 return 1 * dispatch_width / 8;
813 case SHADER_OPCODE_POW:
814 case SHADER_OPCODE_INT_QUOTIENT:
815 case SHADER_OPCODE_INT_REMAINDER:
816 return 2 * dispatch_width / 8;
817 case SHADER_OPCODE_TEX:
818 case FS_OPCODE_TXB:
819 case SHADER_OPCODE_TXD:
820 case SHADER_OPCODE_TXF:
821 case SHADER_OPCODE_TXF_CMS:
822 case SHADER_OPCODE_TXF_MCS:
823 case SHADER_OPCODE_TG4:
824 case SHADER_OPCODE_TG4_OFFSET:
825 case SHADER_OPCODE_TXL:
826 case SHADER_OPCODE_TXS:
827 case SHADER_OPCODE_LOD:
828 return 1;
829 case FS_OPCODE_FB_WRITE:
830 return 2;
831 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
832 case SHADER_OPCODE_GEN4_SCRATCH_READ:
833 return 1;
834 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
835 return inst->mlen;
836 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
837 return inst->mlen;
838 case SHADER_OPCODE_UNTYPED_ATOMIC:
839 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
840 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
841 case SHADER_OPCODE_TYPED_ATOMIC:
842 case SHADER_OPCODE_TYPED_SURFACE_READ:
843 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
844 case SHADER_OPCODE_URB_WRITE_SIMD8:
845 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
846 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
847 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
848 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
849 return 0;
850 default:
851 unreachable("not reached");
852 }
853 }
854
855 fs_reg
856 fs_visitor::vgrf(const glsl_type *const type)
857 {
858 int reg_width = dispatch_width / 8;
859 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
860 brw_type_for_base_type(type), dispatch_width);
861 }
862
863 /** Fixed HW reg constructor. */
864 fs_reg::fs_reg(enum register_file file, int reg)
865 {
866 init();
867 this->file = file;
868 this->reg = reg;
869 this->type = BRW_REGISTER_TYPE_F;
870
871 switch (file) {
872 case UNIFORM:
873 this->width = 1;
874 break;
875 default:
876 this->width = 8;
877 }
878 }
879
880 /** Fixed HW reg constructor. */
881 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
882 {
883 init();
884 this->file = file;
885 this->reg = reg;
886 this->type = type;
887
888 switch (file) {
889 case UNIFORM:
890 this->width = 1;
891 break;
892 default:
893 this->width = 8;
894 }
895 }
896
897 /** Fixed HW reg constructor. */
898 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
899 uint8_t width)
900 {
901 init();
902 this->file = file;
903 this->reg = reg;
904 this->type = type;
905 this->width = width;
906 }
907
908 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
909 * This brings in those uniform definitions
910 */
911 void
912 fs_visitor::import_uniforms(fs_visitor *v)
913 {
914 this->push_constant_loc = v->push_constant_loc;
915 this->pull_constant_loc = v->pull_constant_loc;
916 this->uniforms = v->uniforms;
917 this->param_size = v->param_size;
918 }
919
920 fs_reg *
921 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
922 bool origin_upper_left)
923 {
924 assert(stage == MESA_SHADER_FRAGMENT);
925 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
926 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
927 fs_reg wpos = *reg;
928 bool flip = !origin_upper_left ^ key->render_to_fbo;
929
930 /* gl_FragCoord.x */
931 if (pixel_center_integer) {
932 bld.MOV(wpos, this->pixel_x);
933 } else {
934 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
935 }
936 wpos = offset(wpos, 1);
937
938 /* gl_FragCoord.y */
939 if (!flip && pixel_center_integer) {
940 bld.MOV(wpos, this->pixel_y);
941 } else {
942 fs_reg pixel_y = this->pixel_y;
943 float offset = (pixel_center_integer ? 0.0 : 0.5);
944
945 if (flip) {
946 pixel_y.negate = true;
947 offset += key->drawable_height - 1.0;
948 }
949
950 bld.ADD(wpos, pixel_y, fs_reg(offset));
951 }
952 wpos = offset(wpos, 1);
953
954 /* gl_FragCoord.z */
955 if (devinfo->gen >= 6) {
956 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
957 } else {
958 bld.emit(FS_OPCODE_LINTERP, wpos,
959 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
960 interp_reg(VARYING_SLOT_POS, 2));
961 }
962 wpos = offset(wpos, 1);
963
964 /* gl_FragCoord.w: Already set up in emit_interpolation */
965 bld.MOV(wpos, this->wpos_w);
966
967 return reg;
968 }
969
970 fs_inst *
971 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
972 glsl_interp_qualifier interpolation_mode,
973 bool is_centroid, bool is_sample)
974 {
975 brw_wm_barycentric_interp_mode barycoord_mode;
976 if (devinfo->gen >= 6) {
977 if (is_centroid) {
978 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
979 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
980 else
981 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
982 } else if (is_sample) {
983 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
984 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
985 else
986 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
987 } else {
988 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
989 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
990 else
991 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
992 }
993 } else {
994 /* On Ironlake and below, there is only one interpolation mode.
995 * Centroid interpolation doesn't mean anything on this hardware --
996 * there is no multisampling.
997 */
998 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
999 }
1000 return bld.emit(FS_OPCODE_LINTERP, attr,
1001 this->delta_xy[barycoord_mode], interp);
1002 }
1003
1004 void
1005 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1006 const glsl_type *type,
1007 glsl_interp_qualifier interpolation_mode,
1008 int location, bool mod_centroid,
1009 bool mod_sample)
1010 {
1011 attr.type = brw_type_for_base_type(type->get_scalar_type());
1012
1013 assert(stage == MESA_SHADER_FRAGMENT);
1014 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1015 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1016
1017 unsigned int array_elements;
1018
1019 if (type->is_array()) {
1020 array_elements = type->length;
1021 if (array_elements == 0) {
1022 fail("dereferenced array '%s' has length 0\n", name);
1023 }
1024 type = type->fields.array;
1025 } else {
1026 array_elements = 1;
1027 }
1028
1029 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1030 bool is_gl_Color =
1031 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1032 if (key->flat_shade && is_gl_Color) {
1033 interpolation_mode = INTERP_QUALIFIER_FLAT;
1034 } else {
1035 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1036 }
1037 }
1038
1039 for (unsigned int i = 0; i < array_elements; i++) {
1040 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1041 if (prog_data->urb_setup[location] == -1) {
1042 /* If there's no incoming setup data for this slot, don't
1043 * emit interpolation for it.
1044 */
1045 attr = offset(attr, type->vector_elements);
1046 location++;
1047 continue;
1048 }
1049
1050 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1051 /* Constant interpolation (flat shading) case. The SF has
1052 * handed us defined values in only the constant offset
1053 * field of the setup reg.
1054 */
1055 for (unsigned int k = 0; k < type->vector_elements; k++) {
1056 struct brw_reg interp = interp_reg(location, k);
1057 interp = suboffset(interp, 3);
1058 interp.type = attr.type;
1059 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1060 attr = offset(attr, 1);
1061 }
1062 } else {
1063 /* Smooth/noperspective interpolation case. */
1064 for (unsigned int k = 0; k < type->vector_elements; k++) {
1065 struct brw_reg interp = interp_reg(location, k);
1066 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1067 /* Get the pixel/sample mask into f0 so that we know
1068 * which pixels are lit. Then, for each channel that is
1069 * unlit, replace the centroid data with non-centroid
1070 * data.
1071 */
1072 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1073
1074 fs_inst *inst;
1075 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1076 false, false);
1077 inst->predicate = BRW_PREDICATE_NORMAL;
1078 inst->predicate_inverse = true;
1079 if (devinfo->has_pln)
1080 inst->no_dd_clear = true;
1081
1082 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1083 mod_centroid && !key->persample_shading,
1084 mod_sample || key->persample_shading);
1085 inst->predicate = BRW_PREDICATE_NORMAL;
1086 inst->predicate_inverse = false;
1087 if (devinfo->has_pln)
1088 inst->no_dd_check = true;
1089
1090 } else {
1091 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1092 mod_centroid && !key->persample_shading,
1093 mod_sample || key->persample_shading);
1094 }
1095 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1096 bld.MUL(attr, attr, this->pixel_w);
1097 }
1098 attr = offset(attr, 1);
1099 }
1100
1101 }
1102 location++;
1103 }
1104 }
1105 }
1106
1107 fs_reg *
1108 fs_visitor::emit_frontfacing_interpolation()
1109 {
1110 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1111
1112 if (devinfo->gen >= 6) {
1113 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1114 * a boolean result from this (~0/true or 0/false).
1115 *
1116 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1117 * this task in only one instruction:
1118 * - a negation source modifier will flip the bit; and
1119 * - a W -> D type conversion will sign extend the bit into the high
1120 * word of the destination.
1121 *
1122 * An ASR 15 fills the low word of the destination.
1123 */
1124 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1125 g0.negate = true;
1126
1127 bld.ASR(*reg, g0, fs_reg(15));
1128 } else {
1129 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1130 * a boolean result from this (1/true or 0/false).
1131 *
1132 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1133 * the negation source modifier to flip it. Unfortunately the SHR
1134 * instruction only operates on UD (or D with an abs source modifier)
1135 * sources without negation.
1136 *
1137 * Instead, use ASR (which will give ~0/true or 0/false).
1138 */
1139 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1140 g1_6.negate = true;
1141
1142 bld.ASR(*reg, g1_6, fs_reg(31));
1143 }
1144
1145 return reg;
1146 }
1147
1148 void
1149 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1150 {
1151 assert(stage == MESA_SHADER_FRAGMENT);
1152 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1153 assert(dst.type == BRW_REGISTER_TYPE_F);
1154
1155 if (key->compute_pos_offset) {
1156 /* Convert int_sample_pos to floating point */
1157 bld.MOV(dst, int_sample_pos);
1158 /* Scale to the range [0, 1] */
1159 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1160 }
1161 else {
1162 /* From ARB_sample_shading specification:
1163 * "When rendering to a non-multisample buffer, or if multisample
1164 * rasterization is disabled, gl_SamplePosition will always be
1165 * (0.5, 0.5).
1166 */
1167 bld.MOV(dst, fs_reg(0.5f));
1168 }
1169 }
1170
1171 fs_reg *
1172 fs_visitor::emit_samplepos_setup()
1173 {
1174 assert(devinfo->gen >= 6);
1175
1176 const fs_builder abld = bld.annotate("compute sample position");
1177 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1178 fs_reg pos = *reg;
1179 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1180 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1181
1182 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1183 * mode will be enabled.
1184 *
1185 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1186 * R31.1:0 Position Offset X/Y for Slot[3:0]
1187 * R31.3:2 Position Offset X/Y for Slot[7:4]
1188 * .....
1189 *
1190 * The X, Y sample positions come in as bytes in thread payload. So, read
1191 * the positions using vstride=16, width=8, hstride=2.
1192 */
1193 struct brw_reg sample_pos_reg =
1194 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1195 BRW_REGISTER_TYPE_B), 16, 8, 2);
1196
1197 if (dispatch_width == 8) {
1198 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1199 } else {
1200 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1201 abld.half(1).MOV(half(int_sample_x, 1),
1202 fs_reg(suboffset(sample_pos_reg, 16)));
1203 }
1204 /* Compute gl_SamplePosition.x */
1205 compute_sample_position(pos, int_sample_x);
1206 pos = offset(pos, 1);
1207 if (dispatch_width == 8) {
1208 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1209 } else {
1210 abld.half(0).MOV(half(int_sample_y, 0),
1211 fs_reg(suboffset(sample_pos_reg, 1)));
1212 abld.half(1).MOV(half(int_sample_y, 1),
1213 fs_reg(suboffset(sample_pos_reg, 17)));
1214 }
1215 /* Compute gl_SamplePosition.y */
1216 compute_sample_position(pos, int_sample_y);
1217 return reg;
1218 }
1219
1220 fs_reg *
1221 fs_visitor::emit_sampleid_setup()
1222 {
1223 assert(stage == MESA_SHADER_FRAGMENT);
1224 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1225 assert(devinfo->gen >= 6);
1226
1227 const fs_builder abld = bld.annotate("compute sample id");
1228 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1229
1230 if (key->compute_sample_id) {
1231 fs_reg t1 = vgrf(glsl_type::int_type);
1232 fs_reg t2 = vgrf(glsl_type::int_type);
1233 t2.type = BRW_REGISTER_TYPE_UW;
1234
1235 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1236 * 8x multisampling, subspan 0 will represent sample N (where N
1237 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1238 * 7. We can find the value of N by looking at R0.0 bits 7:6
1239 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1240 * (since samples are always delivered in pairs). That is, we
1241 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1242 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1243 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1244 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1245 * populating a temporary variable with the sequence (0, 1, 2, 3),
1246 * and then reading from it using vstride=1, width=4, hstride=0.
1247 * These computations hold good for 4x multisampling as well.
1248 *
1249 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1250 * the first four slots are sample 0 of subspan 0; the next four
1251 * are sample 1 of subspan 0; the third group is sample 0 of
1252 * subspan 1, and finally sample 1 of subspan 1.
1253 */
1254 abld.exec_all()
1255 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1256 fs_reg(0xc0));
1257 abld.exec_all().SHR(t1, t1, fs_reg(5));
1258
1259 /* This works for both SIMD8 and SIMD16 */
1260 abld.exec_all()
1261 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1262
1263 /* This special instruction takes care of setting vstride=1,
1264 * width=4, hstride=0 of t2 during an ADD instruction.
1265 */
1266 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1267 } else {
1268 /* As per GL_ARB_sample_shading specification:
1269 * "When rendering to a non-multisample buffer, or if multisample
1270 * rasterization is disabled, gl_SampleID will always be zero."
1271 */
1272 abld.MOV(*reg, fs_reg(0));
1273 }
1274
1275 return reg;
1276 }
1277
1278 void
1279 fs_visitor::resolve_source_modifiers(fs_reg *src)
1280 {
1281 if (!src->abs && !src->negate)
1282 return;
1283
1284 fs_reg temp = bld.vgrf(src->type);
1285 bld.MOV(temp, *src);
1286 *src = temp;
1287 }
1288
1289 void
1290 fs_visitor::emit_discard_jump()
1291 {
1292 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1293
1294 /* For performance, after a discard, jump to the end of the
1295 * shader if all relevant channels have been discarded.
1296 */
1297 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1298 discard_jump->flag_subreg = 1;
1299
1300 discard_jump->predicate = (dispatch_width == 8)
1301 ? BRW_PREDICATE_ALIGN1_ANY8H
1302 : BRW_PREDICATE_ALIGN1_ANY16H;
1303 discard_jump->predicate_inverse = true;
1304 }
1305
1306 void
1307 fs_visitor::assign_curb_setup()
1308 {
1309 if (dispatch_width == 8) {
1310 prog_data->dispatch_grf_start_reg = payload.num_regs;
1311 } else {
1312 if (stage == MESA_SHADER_FRAGMENT) {
1313 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1314 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1315 } else if (stage == MESA_SHADER_COMPUTE) {
1316 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1317 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1318 } else {
1319 unreachable("Unsupported shader type!");
1320 }
1321 }
1322
1323 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1324
1325 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1326 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1327 for (unsigned int i = 0; i < inst->sources; i++) {
1328 if (inst->src[i].file == UNIFORM) {
1329 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1330 int constant_nr;
1331 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1332 constant_nr = push_constant_loc[uniform_nr];
1333 } else {
1334 /* Section 5.11 of the OpenGL 4.1 spec says:
1335 * "Out-of-bounds reads return undefined values, which include
1336 * values from other variables of the active program or zero."
1337 * Just return the first push constant.
1338 */
1339 constant_nr = 0;
1340 }
1341
1342 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1343 constant_nr / 8,
1344 constant_nr % 8);
1345
1346 inst->src[i].file = HW_REG;
1347 inst->src[i].fixed_hw_reg = byte_offset(
1348 retype(brw_reg, inst->src[i].type),
1349 inst->src[i].subreg_offset);
1350 }
1351 }
1352 }
1353 }
1354
1355 void
1356 fs_visitor::calculate_urb_setup()
1357 {
1358 assert(stage == MESA_SHADER_FRAGMENT);
1359 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1360 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1361
1362 memset(prog_data->urb_setup, -1,
1363 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1364
1365 int urb_next = 0;
1366 /* Figure out where each of the incoming setup attributes lands. */
1367 if (devinfo->gen >= 6) {
1368 if (_mesa_bitcount_64(prog->InputsRead &
1369 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1370 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1371 * first 16 varying inputs, so we can put them wherever we want.
1372 * Just put them in order.
1373 *
1374 * This is useful because it means that (a) inputs not used by the
1375 * fragment shader won't take up valuable register space, and (b) we
1376 * won't have to recompile the fragment shader if it gets paired with
1377 * a different vertex (or geometry) shader.
1378 */
1379 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1380 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1381 BITFIELD64_BIT(i)) {
1382 prog_data->urb_setup[i] = urb_next++;
1383 }
1384 }
1385 } else {
1386 /* We have enough input varyings that the SF/SBE pipeline stage can't
1387 * arbitrarily rearrange them to suit our whim; we have to put them
1388 * in an order that matches the output of the previous pipeline stage
1389 * (geometry or vertex shader).
1390 */
1391 struct brw_vue_map prev_stage_vue_map;
1392 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1393 key->input_slots_valid);
1394 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1395 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1396 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1397 slot++) {
1398 int varying = prev_stage_vue_map.slot_to_varying[slot];
1399 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1400 * unused.
1401 */
1402 if (varying != BRW_VARYING_SLOT_COUNT &&
1403 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1404 BITFIELD64_BIT(varying))) {
1405 prog_data->urb_setup[varying] = slot - first_slot;
1406 }
1407 }
1408 urb_next = prev_stage_vue_map.num_slots - first_slot;
1409 }
1410 } else {
1411 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1412 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1413 /* Point size is packed into the header, not as a general attribute */
1414 if (i == VARYING_SLOT_PSIZ)
1415 continue;
1416
1417 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1418 /* The back color slot is skipped when the front color is
1419 * also written to. In addition, some slots can be
1420 * written in the vertex shader and not read in the
1421 * fragment shader. So the register number must always be
1422 * incremented, mapped or not.
1423 */
1424 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1425 prog_data->urb_setup[i] = urb_next;
1426 urb_next++;
1427 }
1428 }
1429
1430 /*
1431 * It's a FS only attribute, and we did interpolation for this attribute
1432 * in SF thread. So, count it here, too.
1433 *
1434 * See compile_sf_prog() for more info.
1435 */
1436 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1437 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1438 }
1439
1440 prog_data->num_varying_inputs = urb_next;
1441 }
1442
1443 void
1444 fs_visitor::assign_urb_setup()
1445 {
1446 assert(stage == MESA_SHADER_FRAGMENT);
1447 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1448
1449 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1450
1451 /* Offset all the urb_setup[] index by the actual position of the
1452 * setup regs, now that the location of the constants has been chosen.
1453 */
1454 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1455 if (inst->opcode == FS_OPCODE_LINTERP) {
1456 assert(inst->src[1].file == HW_REG);
1457 inst->src[1].fixed_hw_reg.nr += urb_start;
1458 }
1459
1460 if (inst->opcode == FS_OPCODE_CINTERP) {
1461 assert(inst->src[0].file == HW_REG);
1462 inst->src[0].fixed_hw_reg.nr += urb_start;
1463 }
1464 }
1465
1466 /* Each attribute is 4 setup channels, each of which is half a reg. */
1467 this->first_non_payload_grf =
1468 urb_start + prog_data->num_varying_inputs * 2;
1469 }
1470
1471 void
1472 fs_visitor::assign_vs_urb_setup()
1473 {
1474 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1475 int grf, count, slot, channel, attr;
1476
1477 assert(stage == MESA_SHADER_VERTEX);
1478 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1479 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1480 count++;
1481
1482 /* Each attribute is 4 regs. */
1483 this->first_non_payload_grf =
1484 payload.num_regs + prog_data->curb_read_length + count * 4;
1485
1486 unsigned vue_entries =
1487 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1488
1489 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1490 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1491
1492 assert(vs_prog_data->base.urb_read_length <= 15);
1493
1494 /* Rewrite all ATTR file references to the hw grf that they land in. */
1495 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1496 for (int i = 0; i < inst->sources; i++) {
1497 if (inst->src[i].file == ATTR) {
1498
1499 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1500 slot = count - 1;
1501 } else {
1502 /* Attributes come in in a contiguous block, ordered by their
1503 * gl_vert_attrib value. That means we can compute the slot
1504 * number for an attribute by masking out the enabled
1505 * attributes before it and counting the bits.
1506 */
1507 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1508 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1509 BITFIELD64_MASK(attr));
1510 }
1511
1512 channel = inst->src[i].reg_offset & 3;
1513
1514 grf = payload.num_regs +
1515 prog_data->curb_read_length +
1516 slot * 4 + channel;
1517
1518 inst->src[i].file = HW_REG;
1519 inst->src[i].fixed_hw_reg =
1520 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1521 }
1522 }
1523 }
1524 }
1525
1526 /**
1527 * Split large virtual GRFs into separate components if we can.
1528 *
1529 * This is mostly duplicated with what brw_fs_vector_splitting does,
1530 * but that's really conservative because it's afraid of doing
1531 * splitting that doesn't result in real progress after the rest of
1532 * the optimization phases, which would cause infinite looping in
1533 * optimization. We can do it once here, safely. This also has the
1534 * opportunity to split interpolated values, or maybe even uniforms,
1535 * which we don't have at the IR level.
1536 *
1537 * We want to split, because virtual GRFs are what we register
1538 * allocate and spill (due to contiguousness requirements for some
1539 * instructions), and they're what we naturally generate in the
1540 * codegen process, but most virtual GRFs don't actually need to be
1541 * contiguous sets of GRFs. If we split, we'll end up with reduced
1542 * live intervals and better dead code elimination and coalescing.
1543 */
1544 void
1545 fs_visitor::split_virtual_grfs()
1546 {
1547 int num_vars = this->alloc.count;
1548
1549 /* Count the total number of registers */
1550 int reg_count = 0;
1551 int vgrf_to_reg[num_vars];
1552 for (int i = 0; i < num_vars; i++) {
1553 vgrf_to_reg[i] = reg_count;
1554 reg_count += alloc.sizes[i];
1555 }
1556
1557 /* An array of "split points". For each register slot, this indicates
1558 * if this slot can be separated from the previous slot. Every time an
1559 * instruction uses multiple elements of a register (as a source or
1560 * destination), we mark the used slots as inseparable. Then we go
1561 * through and split the registers into the smallest pieces we can.
1562 */
1563 bool split_points[reg_count];
1564 memset(split_points, 0, sizeof(split_points));
1565
1566 /* Mark all used registers as fully splittable */
1567 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1568 if (inst->dst.file == GRF) {
1569 int reg = vgrf_to_reg[inst->dst.reg];
1570 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1571 split_points[reg + j] = true;
1572 }
1573
1574 for (int i = 0; i < inst->sources; i++) {
1575 if (inst->src[i].file == GRF) {
1576 int reg = vgrf_to_reg[inst->src[i].reg];
1577 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1578 split_points[reg + j] = true;
1579 }
1580 }
1581 }
1582
1583 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1584 if (inst->dst.file == GRF) {
1585 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1586 for (int j = 1; j < inst->regs_written; j++)
1587 split_points[reg + j] = false;
1588 }
1589 for (int i = 0; i < inst->sources; i++) {
1590 if (inst->src[i].file == GRF) {
1591 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1592 for (int j = 1; j < inst->regs_read(i); j++)
1593 split_points[reg + j] = false;
1594 }
1595 }
1596 }
1597
1598 int new_virtual_grf[reg_count];
1599 int new_reg_offset[reg_count];
1600
1601 int reg = 0;
1602 for (int i = 0; i < num_vars; i++) {
1603 /* The first one should always be 0 as a quick sanity check. */
1604 assert(split_points[reg] == false);
1605
1606 /* j = 0 case */
1607 new_reg_offset[reg] = 0;
1608 reg++;
1609 int offset = 1;
1610
1611 /* j > 0 case */
1612 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1613 /* If this is a split point, reset the offset to 0 and allocate a
1614 * new virtual GRF for the previous offset many registers
1615 */
1616 if (split_points[reg]) {
1617 assert(offset <= MAX_VGRF_SIZE);
1618 int grf = alloc.allocate(offset);
1619 for (int k = reg - offset; k < reg; k++)
1620 new_virtual_grf[k] = grf;
1621 offset = 0;
1622 }
1623 new_reg_offset[reg] = offset;
1624 offset++;
1625 reg++;
1626 }
1627
1628 /* The last one gets the original register number */
1629 assert(offset <= MAX_VGRF_SIZE);
1630 alloc.sizes[i] = offset;
1631 for (int k = reg - offset; k < reg; k++)
1632 new_virtual_grf[k] = i;
1633 }
1634 assert(reg == reg_count);
1635
1636 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1637 if (inst->dst.file == GRF) {
1638 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1639 inst->dst.reg = new_virtual_grf[reg];
1640 inst->dst.reg_offset = new_reg_offset[reg];
1641 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1642 }
1643 for (int i = 0; i < inst->sources; i++) {
1644 if (inst->src[i].file == GRF) {
1645 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1646 inst->src[i].reg = new_virtual_grf[reg];
1647 inst->src[i].reg_offset = new_reg_offset[reg];
1648 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1649 }
1650 }
1651 }
1652 invalidate_live_intervals();
1653 }
1654
1655 /**
1656 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1657 *
1658 * During code generation, we create tons of temporary variables, many of
1659 * which get immediately killed and are never used again. Yet, in later
1660 * optimization and analysis passes, such as compute_live_intervals, we need
1661 * to loop over all the virtual GRFs. Compacting them can save a lot of
1662 * overhead.
1663 */
1664 bool
1665 fs_visitor::compact_virtual_grfs()
1666 {
1667 bool progress = false;
1668 int remap_table[this->alloc.count];
1669 memset(remap_table, -1, sizeof(remap_table));
1670
1671 /* Mark which virtual GRFs are used. */
1672 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1673 if (inst->dst.file == GRF)
1674 remap_table[inst->dst.reg] = 0;
1675
1676 for (int i = 0; i < inst->sources; i++) {
1677 if (inst->src[i].file == GRF)
1678 remap_table[inst->src[i].reg] = 0;
1679 }
1680 }
1681
1682 /* Compact the GRF arrays. */
1683 int new_index = 0;
1684 for (unsigned i = 0; i < this->alloc.count; i++) {
1685 if (remap_table[i] == -1) {
1686 /* We just found an unused register. This means that we are
1687 * actually going to compact something.
1688 */
1689 progress = true;
1690 } else {
1691 remap_table[i] = new_index;
1692 alloc.sizes[new_index] = alloc.sizes[i];
1693 invalidate_live_intervals();
1694 ++new_index;
1695 }
1696 }
1697
1698 this->alloc.count = new_index;
1699
1700 /* Patch all the instructions to use the newly renumbered registers */
1701 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1702 if (inst->dst.file == GRF)
1703 inst->dst.reg = remap_table[inst->dst.reg];
1704
1705 for (int i = 0; i < inst->sources; i++) {
1706 if (inst->src[i].file == GRF)
1707 inst->src[i].reg = remap_table[inst->src[i].reg];
1708 }
1709 }
1710
1711 /* Patch all the references to delta_xy, since they're used in register
1712 * allocation. If they're unused, switch them to BAD_FILE so we don't
1713 * think some random VGRF is delta_xy.
1714 */
1715 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1716 if (delta_xy[i].file == GRF) {
1717 if (remap_table[delta_xy[i].reg] != -1) {
1718 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1719 } else {
1720 delta_xy[i].file = BAD_FILE;
1721 }
1722 }
1723 }
1724
1725 return progress;
1726 }
1727
1728 /*
1729 * Implements array access of uniforms by inserting a
1730 * PULL_CONSTANT_LOAD instruction.
1731 *
1732 * Unlike temporary GRF array access (where we don't support it due to
1733 * the difficulty of doing relative addressing on instruction
1734 * destinations), we could potentially do array access of uniforms
1735 * that were loaded in GRF space as push constants. In real-world
1736 * usage we've seen, though, the arrays being used are always larger
1737 * than we could load as push constants, so just always move all
1738 * uniform array access out to a pull constant buffer.
1739 */
1740 void
1741 fs_visitor::move_uniform_array_access_to_pull_constants()
1742 {
1743 if (dispatch_width != 8)
1744 return;
1745
1746 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1747 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1748
1749 /* Walk through and find array access of uniforms. Put a copy of that
1750 * uniform in the pull constant buffer.
1751 *
1752 * Note that we don't move constant-indexed accesses to arrays. No
1753 * testing has been done of the performance impact of this choice.
1754 */
1755 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1756 for (int i = 0 ; i < inst->sources; i++) {
1757 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1758 continue;
1759
1760 int uniform = inst->src[i].reg;
1761
1762 /* If this array isn't already present in the pull constant buffer,
1763 * add it.
1764 */
1765 if (pull_constant_loc[uniform] == -1) {
1766 const gl_constant_value **values = &stage_prog_data->param[uniform];
1767
1768 assert(param_size[uniform]);
1769
1770 for (int j = 0; j < param_size[uniform]; j++) {
1771 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1772
1773 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1774 values[j];
1775 }
1776 }
1777 }
1778 }
1779 }
1780
1781 /**
1782 * Assign UNIFORM file registers to either push constants or pull constants.
1783 *
1784 * We allow a fragment shader to have more than the specified minimum
1785 * maximum number of fragment shader uniform components (64). If
1786 * there are too many of these, they'd fill up all of register space.
1787 * So, this will push some of them out to the pull constant buffer and
1788 * update the program to load them.
1789 */
1790 void
1791 fs_visitor::assign_constant_locations()
1792 {
1793 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1794 if (dispatch_width != 8)
1795 return;
1796
1797 /* Find which UNIFORM registers are still in use. */
1798 bool is_live[uniforms];
1799 for (unsigned int i = 0; i < uniforms; i++) {
1800 is_live[i] = false;
1801 }
1802
1803 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1804 for (int i = 0; i < inst->sources; i++) {
1805 if (inst->src[i].file != UNIFORM)
1806 continue;
1807
1808 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1809 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1810 is_live[constant_nr] = true;
1811 }
1812 }
1813
1814 /* Only allow 16 registers (128 uniform components) as push constants.
1815 *
1816 * Just demote the end of the list. We could probably do better
1817 * here, demoting things that are rarely used in the program first.
1818 *
1819 * If changing this value, note the limitation about total_regs in
1820 * brw_curbe.c.
1821 */
1822 unsigned int max_push_components = 16 * 8;
1823 unsigned int num_push_constants = 0;
1824
1825 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1826
1827 for (unsigned int i = 0; i < uniforms; i++) {
1828 if (!is_live[i] || pull_constant_loc[i] != -1) {
1829 /* This UNIFORM register is either dead, or has already been demoted
1830 * to a pull const. Mark it as no longer living in the param[] array.
1831 */
1832 push_constant_loc[i] = -1;
1833 continue;
1834 }
1835
1836 if (num_push_constants < max_push_components) {
1837 /* Retain as a push constant. Record the location in the params[]
1838 * array.
1839 */
1840 push_constant_loc[i] = num_push_constants++;
1841 } else {
1842 /* Demote to a pull constant. */
1843 push_constant_loc[i] = -1;
1844
1845 int pull_index = stage_prog_data->nr_pull_params++;
1846 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1847 pull_constant_loc[i] = pull_index;
1848 }
1849 }
1850
1851 stage_prog_data->nr_params = num_push_constants;
1852
1853 /* Up until now, the param[] array has been indexed by reg + reg_offset
1854 * of UNIFORM registers. Condense it to only contain the uniforms we
1855 * chose to upload as push constants.
1856 */
1857 for (unsigned int i = 0; i < uniforms; i++) {
1858 int remapped = push_constant_loc[i];
1859
1860 if (remapped == -1)
1861 continue;
1862
1863 assert(remapped <= (int)i);
1864 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1865 }
1866 }
1867
1868 /**
1869 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1870 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1871 */
1872 void
1873 fs_visitor::demote_pull_constants()
1874 {
1875 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1876 for (int i = 0; i < inst->sources; i++) {
1877 if (inst->src[i].file != UNIFORM)
1878 continue;
1879
1880 int pull_index;
1881 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1882 if (location >= uniforms) /* Out of bounds access */
1883 pull_index = -1;
1884 else
1885 pull_index = pull_constant_loc[location];
1886
1887 if (pull_index == -1)
1888 continue;
1889
1890 /* Set up the annotation tracking for new generated instructions. */
1891 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1892 .at(block, inst);
1893 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1894 fs_reg dst = vgrf(glsl_type::float_type);
1895
1896 /* Generate a pull load into dst. */
1897 if (inst->src[i].reladdr) {
1898 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1899 surf_index,
1900 *inst->src[i].reladdr,
1901 pull_index);
1902 inst->src[i].reladdr = NULL;
1903 } else {
1904 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1905 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1906 dst, surf_index, offset);
1907 inst->src[i].set_smear(pull_index & 3);
1908 }
1909
1910 /* Rewrite the instruction to use the temporary VGRF. */
1911 inst->src[i].file = GRF;
1912 inst->src[i].reg = dst.reg;
1913 inst->src[i].reg_offset = 0;
1914 inst->src[i].width = dispatch_width;
1915 }
1916 }
1917 invalidate_live_intervals();
1918 }
1919
1920 bool
1921 fs_visitor::opt_algebraic()
1922 {
1923 bool progress = false;
1924
1925 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1926 switch (inst->opcode) {
1927 case BRW_OPCODE_MOV:
1928 if (inst->src[0].file != IMM)
1929 break;
1930
1931 if (inst->saturate) {
1932 if (inst->dst.type != inst->src[0].type)
1933 assert(!"unimplemented: saturate mixed types");
1934
1935 if (brw_saturate_immediate(inst->dst.type,
1936 &inst->src[0].fixed_hw_reg)) {
1937 inst->saturate = false;
1938 progress = true;
1939 }
1940 }
1941 break;
1942
1943 case BRW_OPCODE_MUL:
1944 if (inst->src[1].file != IMM)
1945 continue;
1946
1947 /* a * 1.0 = a */
1948 if (inst->src[1].is_one()) {
1949 inst->opcode = BRW_OPCODE_MOV;
1950 inst->src[1] = reg_undef;
1951 progress = true;
1952 break;
1953 }
1954
1955 /* a * -1.0 = -a */
1956 if (inst->src[1].is_negative_one()) {
1957 inst->opcode = BRW_OPCODE_MOV;
1958 inst->src[0].negate = !inst->src[0].negate;
1959 inst->src[1] = reg_undef;
1960 progress = true;
1961 break;
1962 }
1963
1964 /* a * 0.0 = 0.0 */
1965 if (inst->src[1].is_zero()) {
1966 inst->opcode = BRW_OPCODE_MOV;
1967 inst->src[0] = inst->src[1];
1968 inst->src[1] = reg_undef;
1969 progress = true;
1970 break;
1971 }
1972
1973 if (inst->src[0].file == IMM) {
1974 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1975 inst->opcode = BRW_OPCODE_MOV;
1976 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1977 inst->src[1] = reg_undef;
1978 progress = true;
1979 break;
1980 }
1981 break;
1982 case BRW_OPCODE_ADD:
1983 if (inst->src[1].file != IMM)
1984 continue;
1985
1986 /* a + 0.0 = a */
1987 if (inst->src[1].is_zero()) {
1988 inst->opcode = BRW_OPCODE_MOV;
1989 inst->src[1] = reg_undef;
1990 progress = true;
1991 break;
1992 }
1993
1994 if (inst->src[0].file == IMM) {
1995 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1996 inst->opcode = BRW_OPCODE_MOV;
1997 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
1998 inst->src[1] = reg_undef;
1999 progress = true;
2000 break;
2001 }
2002 break;
2003 case BRW_OPCODE_OR:
2004 if (inst->src[0].equals(inst->src[1])) {
2005 inst->opcode = BRW_OPCODE_MOV;
2006 inst->src[1] = reg_undef;
2007 progress = true;
2008 break;
2009 }
2010 break;
2011 case BRW_OPCODE_LRP:
2012 if (inst->src[1].equals(inst->src[2])) {
2013 inst->opcode = BRW_OPCODE_MOV;
2014 inst->src[0] = inst->src[1];
2015 inst->src[1] = reg_undef;
2016 inst->src[2] = reg_undef;
2017 progress = true;
2018 break;
2019 }
2020 break;
2021 case BRW_OPCODE_CMP:
2022 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2023 inst->src[0].abs &&
2024 inst->src[0].negate &&
2025 inst->src[1].is_zero()) {
2026 inst->src[0].abs = false;
2027 inst->src[0].negate = false;
2028 inst->conditional_mod = BRW_CONDITIONAL_Z;
2029 progress = true;
2030 break;
2031 }
2032 break;
2033 case BRW_OPCODE_SEL:
2034 if (inst->src[0].equals(inst->src[1])) {
2035 inst->opcode = BRW_OPCODE_MOV;
2036 inst->src[1] = reg_undef;
2037 inst->predicate = BRW_PREDICATE_NONE;
2038 inst->predicate_inverse = false;
2039 progress = true;
2040 } else if (inst->saturate && inst->src[1].file == IMM) {
2041 switch (inst->conditional_mod) {
2042 case BRW_CONDITIONAL_LE:
2043 case BRW_CONDITIONAL_L:
2044 switch (inst->src[1].type) {
2045 case BRW_REGISTER_TYPE_F:
2046 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2047 inst->opcode = BRW_OPCODE_MOV;
2048 inst->src[1] = reg_undef;
2049 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2050 progress = true;
2051 }
2052 break;
2053 default:
2054 break;
2055 }
2056 break;
2057 case BRW_CONDITIONAL_GE:
2058 case BRW_CONDITIONAL_G:
2059 switch (inst->src[1].type) {
2060 case BRW_REGISTER_TYPE_F:
2061 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2062 inst->opcode = BRW_OPCODE_MOV;
2063 inst->src[1] = reg_undef;
2064 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2065 progress = true;
2066 }
2067 break;
2068 default:
2069 break;
2070 }
2071 default:
2072 break;
2073 }
2074 }
2075 break;
2076 case BRW_OPCODE_MAD:
2077 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2078 inst->opcode = BRW_OPCODE_MOV;
2079 inst->src[1] = reg_undef;
2080 inst->src[2] = reg_undef;
2081 progress = true;
2082 } else if (inst->src[0].is_zero()) {
2083 inst->opcode = BRW_OPCODE_MUL;
2084 inst->src[0] = inst->src[2];
2085 inst->src[2] = reg_undef;
2086 progress = true;
2087 } else if (inst->src[1].is_one()) {
2088 inst->opcode = BRW_OPCODE_ADD;
2089 inst->src[1] = inst->src[2];
2090 inst->src[2] = reg_undef;
2091 progress = true;
2092 } else if (inst->src[2].is_one()) {
2093 inst->opcode = BRW_OPCODE_ADD;
2094 inst->src[2] = reg_undef;
2095 progress = true;
2096 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2097 inst->opcode = BRW_OPCODE_ADD;
2098 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2099 inst->src[2] = reg_undef;
2100 progress = true;
2101 }
2102 break;
2103 case SHADER_OPCODE_RCP: {
2104 fs_inst *prev = (fs_inst *)inst->prev;
2105 if (prev->opcode == SHADER_OPCODE_SQRT) {
2106 if (inst->src[0].equals(prev->dst)) {
2107 inst->opcode = SHADER_OPCODE_RSQ;
2108 inst->src[0] = prev->src[0];
2109 progress = true;
2110 }
2111 }
2112 break;
2113 }
2114 case SHADER_OPCODE_BROADCAST:
2115 if (is_uniform(inst->src[0])) {
2116 inst->opcode = BRW_OPCODE_MOV;
2117 inst->sources = 1;
2118 inst->force_writemask_all = true;
2119 progress = true;
2120 } else if (inst->src[1].file == IMM) {
2121 inst->opcode = BRW_OPCODE_MOV;
2122 inst->src[0] = component(inst->src[0],
2123 inst->src[1].fixed_hw_reg.dw1.ud);
2124 inst->sources = 1;
2125 inst->force_writemask_all = true;
2126 progress = true;
2127 }
2128 break;
2129
2130 default:
2131 break;
2132 }
2133
2134 /* Swap if src[0] is immediate. */
2135 if (progress && inst->is_commutative()) {
2136 if (inst->src[0].file == IMM) {
2137 fs_reg tmp = inst->src[1];
2138 inst->src[1] = inst->src[0];
2139 inst->src[0] = tmp;
2140 }
2141 }
2142 }
2143 return progress;
2144 }
2145
2146 /**
2147 * Optimize sample messages that have constant zero values for the trailing
2148 * texture coordinates. We can just reduce the message length for these
2149 * instructions instead of reserving a register for it. Trailing parameters
2150 * that aren't sent default to zero anyway. This will cause the dead code
2151 * eliminator to remove the MOV instruction that would otherwise be emitted to
2152 * set up the zero value.
2153 */
2154 bool
2155 fs_visitor::opt_zero_samples()
2156 {
2157 /* Gen4 infers the texturing opcode based on the message length so we can't
2158 * change it.
2159 */
2160 if (devinfo->gen < 5)
2161 return false;
2162
2163 bool progress = false;
2164
2165 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2166 if (!inst->is_tex())
2167 continue;
2168
2169 fs_inst *load_payload = (fs_inst *) inst->prev;
2170
2171 if (load_payload->is_head_sentinel() ||
2172 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2173 continue;
2174
2175 /* We don't want to remove the message header or the first parameter.
2176 * Removing the first parameter is not allowed, see the Haswell PRM
2177 * volume 7, page 149:
2178 *
2179 * "Parameter 0 is required except for the sampleinfo message, which
2180 * has no parameter 0"
2181 */
2182 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2183 load_payload->src[(inst->mlen - inst->header_size) /
2184 (dispatch_width / 8) +
2185 inst->header_size - 1].is_zero()) {
2186 inst->mlen -= dispatch_width / 8;
2187 progress = true;
2188 }
2189 }
2190
2191 if (progress)
2192 invalidate_live_intervals();
2193
2194 return progress;
2195 }
2196
2197 /**
2198 * Optimize sample messages which are followed by the final RT write.
2199 *
2200 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2201 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2202 * final texturing results copied to the framebuffer write payload and modify
2203 * them to write to the framebuffer directly.
2204 */
2205 bool
2206 fs_visitor::opt_sampler_eot()
2207 {
2208 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2209
2210 if (stage != MESA_SHADER_FRAGMENT)
2211 return false;
2212
2213 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2214 return false;
2215
2216 /* FINISHME: It should be possible to implement this optimization when there
2217 * are multiple drawbuffers.
2218 */
2219 if (key->nr_color_regions != 1)
2220 return false;
2221
2222 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2223 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2224 assert(fb_write->eot);
2225 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2226
2227 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2228
2229 /* There wasn't one; nothing to do. */
2230 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2231 return false;
2232
2233 /* This optimisation doesn't seem to work for textureGather for some
2234 * reason. I can't find any documentation or known workarounds to indicate
2235 * that this is expected, but considering that it is probably pretty
2236 * unlikely that a shader would directly write out the results from
2237 * textureGather we might as well just disable it.
2238 */
2239 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2240 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2241 return false;
2242
2243 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2244 * It's very likely to be the previous instruction.
2245 */
2246 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2247 if (load_payload->is_head_sentinel() ||
2248 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2249 return false;
2250
2251 assert(!tex_inst->eot); /* We can't get here twice */
2252 assert((tex_inst->offset & (0xff << 24)) == 0);
2253
2254 tex_inst->offset |= fb_write->target << 24;
2255 tex_inst->eot = true;
2256 tex_inst->dst = bld.null_reg_ud();
2257 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2258
2259 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2260 * to create a new LOAD_PAYLOAD command with the same sources and a space
2261 * saved for the header. Using a new destination register not only makes sure
2262 * we have enough space, but it will make sure the dead code eliminator kills
2263 * the instruction that this will replace.
2264 */
2265 if (tex_inst->header_size != 0)
2266 return true;
2267
2268 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2269 load_payload->sources + 1);
2270 fs_reg *new_sources =
2271 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2272
2273 new_sources[0] = fs_reg();
2274 for (int i = 0; i < load_payload->sources; i++)
2275 new_sources[i+1] = load_payload->src[i];
2276
2277 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2278 * requires a lot of information about the sources to appropriately figure
2279 * out the number of registers needed to be used. Given this stage in our
2280 * optimization, we may not have the appropriate GRFs required by
2281 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2282 * manually emit the instruction.
2283 */
2284 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2285 load_payload->exec_size,
2286 send_header,
2287 new_sources,
2288 load_payload->sources + 1);
2289
2290 new_load_payload->regs_written = load_payload->regs_written + 1;
2291 new_load_payload->header_size = 1;
2292 tex_inst->mlen++;
2293 tex_inst->header_size = 1;
2294 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2295 tex_inst->src[0] = send_header;
2296
2297 return true;
2298 }
2299
2300 bool
2301 fs_visitor::opt_register_renaming()
2302 {
2303 bool progress = false;
2304 int depth = 0;
2305
2306 int remap[alloc.count];
2307 memset(remap, -1, sizeof(int) * alloc.count);
2308
2309 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2310 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2311 depth++;
2312 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2313 inst->opcode == BRW_OPCODE_WHILE) {
2314 depth--;
2315 }
2316
2317 /* Rewrite instruction sources. */
2318 for (int i = 0; i < inst->sources; i++) {
2319 if (inst->src[i].file == GRF &&
2320 remap[inst->src[i].reg] != -1 &&
2321 remap[inst->src[i].reg] != inst->src[i].reg) {
2322 inst->src[i].reg = remap[inst->src[i].reg];
2323 progress = true;
2324 }
2325 }
2326
2327 const int dst = inst->dst.reg;
2328
2329 if (depth == 0 &&
2330 inst->dst.file == GRF &&
2331 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2332 !inst->is_partial_write()) {
2333 if (remap[dst] == -1) {
2334 remap[dst] = dst;
2335 } else {
2336 remap[dst] = alloc.allocate(inst->dst.width / 8);
2337 inst->dst.reg = remap[dst];
2338 progress = true;
2339 }
2340 } else if (inst->dst.file == GRF &&
2341 remap[dst] != -1 &&
2342 remap[dst] != dst) {
2343 inst->dst.reg = remap[dst];
2344 progress = true;
2345 }
2346 }
2347
2348 if (progress) {
2349 invalidate_live_intervals();
2350
2351 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2352 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2353 delta_xy[i].reg = remap[delta_xy[i].reg];
2354 }
2355 }
2356 }
2357
2358 return progress;
2359 }
2360
2361 /**
2362 * Remove redundant or useless discard jumps.
2363 *
2364 * For example, we can eliminate jumps in the following sequence:
2365 *
2366 * discard-jump (redundant with the next jump)
2367 * discard-jump (useless; jumps to the next instruction)
2368 * placeholder-halt
2369 */
2370 bool
2371 fs_visitor::opt_redundant_discard_jumps()
2372 {
2373 bool progress = false;
2374
2375 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2376
2377 fs_inst *placeholder_halt = NULL;
2378 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2379 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2380 placeholder_halt = inst;
2381 break;
2382 }
2383 }
2384
2385 if (!placeholder_halt)
2386 return false;
2387
2388 /* Delete any HALTs immediately before the placeholder halt. */
2389 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2390 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2391 prev = (fs_inst *) placeholder_halt->prev) {
2392 prev->remove(last_bblock);
2393 progress = true;
2394 }
2395
2396 if (progress)
2397 invalidate_live_intervals();
2398
2399 return progress;
2400 }
2401
2402 bool
2403 fs_visitor::compute_to_mrf()
2404 {
2405 bool progress = false;
2406 int next_ip = 0;
2407
2408 /* No MRFs on Gen >= 7. */
2409 if (devinfo->gen >= 7)
2410 return false;
2411
2412 calculate_live_intervals();
2413
2414 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2415 int ip = next_ip;
2416 next_ip++;
2417
2418 if (inst->opcode != BRW_OPCODE_MOV ||
2419 inst->is_partial_write() ||
2420 inst->dst.file != MRF || inst->src[0].file != GRF ||
2421 inst->dst.type != inst->src[0].type ||
2422 inst->src[0].abs || inst->src[0].negate ||
2423 !inst->src[0].is_contiguous() ||
2424 inst->src[0].subreg_offset)
2425 continue;
2426
2427 /* Work out which hardware MRF registers are written by this
2428 * instruction.
2429 */
2430 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2431 int mrf_high;
2432 if (inst->dst.reg & BRW_MRF_COMPR4) {
2433 mrf_high = mrf_low + 4;
2434 } else if (inst->exec_size == 16) {
2435 mrf_high = mrf_low + 1;
2436 } else {
2437 mrf_high = mrf_low;
2438 }
2439
2440 /* Can't compute-to-MRF this GRF if someone else was going to
2441 * read it later.
2442 */
2443 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2444 continue;
2445
2446 /* Found a move of a GRF to a MRF. Let's see if we can go
2447 * rewrite the thing that made this GRF to write into the MRF.
2448 */
2449 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2450 if (scan_inst->dst.file == GRF &&
2451 scan_inst->dst.reg == inst->src[0].reg) {
2452 /* Found the last thing to write our reg we want to turn
2453 * into a compute-to-MRF.
2454 */
2455
2456 /* If this one instruction didn't populate all the
2457 * channels, bail. We might be able to rewrite everything
2458 * that writes that reg, but it would require smarter
2459 * tracking to delay the rewriting until complete success.
2460 */
2461 if (scan_inst->is_partial_write())
2462 break;
2463
2464 /* Things returning more than one register would need us to
2465 * understand coalescing out more than one MOV at a time.
2466 */
2467 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2468 break;
2469
2470 /* SEND instructions can't have MRF as a destination. */
2471 if (scan_inst->mlen)
2472 break;
2473
2474 if (devinfo->gen == 6) {
2475 /* gen6 math instructions must have the destination be
2476 * GRF, so no compute-to-MRF for them.
2477 */
2478 if (scan_inst->is_math()) {
2479 break;
2480 }
2481 }
2482
2483 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2484 /* Found the creator of our MRF's source value. */
2485 scan_inst->dst.file = MRF;
2486 scan_inst->dst.reg = inst->dst.reg;
2487 scan_inst->saturate |= inst->saturate;
2488 inst->remove(block);
2489 progress = true;
2490 }
2491 break;
2492 }
2493
2494 /* We don't handle control flow here. Most computation of
2495 * values that end up in MRFs are shortly before the MRF
2496 * write anyway.
2497 */
2498 if (block->start() == scan_inst)
2499 break;
2500
2501 /* You can't read from an MRF, so if someone else reads our
2502 * MRF's source GRF that we wanted to rewrite, that stops us.
2503 */
2504 bool interfered = false;
2505 for (int i = 0; i < scan_inst->sources; i++) {
2506 if (scan_inst->src[i].file == GRF &&
2507 scan_inst->src[i].reg == inst->src[0].reg &&
2508 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2509 interfered = true;
2510 }
2511 }
2512 if (interfered)
2513 break;
2514
2515 if (scan_inst->dst.file == MRF) {
2516 /* If somebody else writes our MRF here, we can't
2517 * compute-to-MRF before that.
2518 */
2519 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2520 int scan_mrf_high;
2521
2522 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2523 scan_mrf_high = scan_mrf_low + 4;
2524 } else if (scan_inst->exec_size == 16) {
2525 scan_mrf_high = scan_mrf_low + 1;
2526 } else {
2527 scan_mrf_high = scan_mrf_low;
2528 }
2529
2530 if (mrf_low == scan_mrf_low ||
2531 mrf_low == scan_mrf_high ||
2532 mrf_high == scan_mrf_low ||
2533 mrf_high == scan_mrf_high) {
2534 break;
2535 }
2536 }
2537
2538 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2539 /* Found a SEND instruction, which means that there are
2540 * live values in MRFs from base_mrf to base_mrf +
2541 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2542 * above it.
2543 */
2544 if (mrf_low >= scan_inst->base_mrf &&
2545 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2546 break;
2547 }
2548 if (mrf_high >= scan_inst->base_mrf &&
2549 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2550 break;
2551 }
2552 }
2553 }
2554 }
2555
2556 if (progress)
2557 invalidate_live_intervals();
2558
2559 return progress;
2560 }
2561
2562 /**
2563 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2564 * flow. We could probably do better here with some form of divergence
2565 * analysis.
2566 */
2567 bool
2568 fs_visitor::eliminate_find_live_channel()
2569 {
2570 bool progress = false;
2571 unsigned depth = 0;
2572
2573 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2574 switch (inst->opcode) {
2575 case BRW_OPCODE_IF:
2576 case BRW_OPCODE_DO:
2577 depth++;
2578 break;
2579
2580 case BRW_OPCODE_ENDIF:
2581 case BRW_OPCODE_WHILE:
2582 depth--;
2583 break;
2584
2585 case FS_OPCODE_DISCARD_JUMP:
2586 /* This can potentially make control flow non-uniform until the end
2587 * of the program.
2588 */
2589 return progress;
2590
2591 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2592 if (depth == 0) {
2593 inst->opcode = BRW_OPCODE_MOV;
2594 inst->src[0] = fs_reg(0);
2595 inst->sources = 1;
2596 inst->force_writemask_all = true;
2597 progress = true;
2598 }
2599 break;
2600
2601 default:
2602 break;
2603 }
2604 }
2605
2606 return progress;
2607 }
2608
2609 /**
2610 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2611 * instructions to FS_OPCODE_REP_FB_WRITE.
2612 */
2613 void
2614 fs_visitor::emit_repclear_shader()
2615 {
2616 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2617 int base_mrf = 1;
2618 int color_mrf = base_mrf + 2;
2619
2620 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2621 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2622
2623 fs_inst *write;
2624 if (key->nr_color_regions == 1) {
2625 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2626 write->saturate = key->clamp_fragment_color;
2627 write->base_mrf = color_mrf;
2628 write->target = 0;
2629 write->header_size = 0;
2630 write->mlen = 1;
2631 } else {
2632 assume(key->nr_color_regions > 0);
2633 for (int i = 0; i < key->nr_color_regions; ++i) {
2634 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2635 write->saturate = key->clamp_fragment_color;
2636 write->base_mrf = base_mrf;
2637 write->target = i;
2638 write->header_size = 2;
2639 write->mlen = 3;
2640 }
2641 }
2642 write->eot = true;
2643
2644 calculate_cfg();
2645
2646 assign_constant_locations();
2647 assign_curb_setup();
2648
2649 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2650 assert(mov->src[0].file == HW_REG);
2651 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2652 }
2653
2654 /**
2655 * Walks through basic blocks, looking for repeated MRF writes and
2656 * removing the later ones.
2657 */
2658 bool
2659 fs_visitor::remove_duplicate_mrf_writes()
2660 {
2661 fs_inst *last_mrf_move[16];
2662 bool progress = false;
2663
2664 /* Need to update the MRF tracking for compressed instructions. */
2665 if (dispatch_width == 16)
2666 return false;
2667
2668 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2669
2670 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2671 if (inst->is_control_flow()) {
2672 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2673 }
2674
2675 if (inst->opcode == BRW_OPCODE_MOV &&
2676 inst->dst.file == MRF) {
2677 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2678 if (prev_inst && inst->equals(prev_inst)) {
2679 inst->remove(block);
2680 progress = true;
2681 continue;
2682 }
2683 }
2684
2685 /* Clear out the last-write records for MRFs that were overwritten. */
2686 if (inst->dst.file == MRF) {
2687 last_mrf_move[inst->dst.reg] = NULL;
2688 }
2689
2690 if (inst->mlen > 0 && inst->base_mrf != -1) {
2691 /* Found a SEND instruction, which will include two or fewer
2692 * implied MRF writes. We could do better here.
2693 */
2694 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2695 last_mrf_move[inst->base_mrf + i] = NULL;
2696 }
2697 }
2698
2699 /* Clear out any MRF move records whose sources got overwritten. */
2700 if (inst->dst.file == GRF) {
2701 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2702 if (last_mrf_move[i] &&
2703 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2704 last_mrf_move[i] = NULL;
2705 }
2706 }
2707 }
2708
2709 if (inst->opcode == BRW_OPCODE_MOV &&
2710 inst->dst.file == MRF &&
2711 inst->src[0].file == GRF &&
2712 !inst->is_partial_write()) {
2713 last_mrf_move[inst->dst.reg] = inst;
2714 }
2715 }
2716
2717 if (progress)
2718 invalidate_live_intervals();
2719
2720 return progress;
2721 }
2722
2723 static void
2724 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2725 {
2726 /* Clear the flag for registers that actually got read (as expected). */
2727 for (int i = 0; i < inst->sources; i++) {
2728 int grf;
2729 if (inst->src[i].file == GRF) {
2730 grf = inst->src[i].reg;
2731 } else if (inst->src[i].file == HW_REG &&
2732 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2733 grf = inst->src[i].fixed_hw_reg.nr;
2734 } else {
2735 continue;
2736 }
2737
2738 if (grf >= first_grf &&
2739 grf < first_grf + grf_len) {
2740 deps[grf - first_grf] = false;
2741 if (inst->exec_size == 16)
2742 deps[grf - first_grf + 1] = false;
2743 }
2744 }
2745 }
2746
2747 /**
2748 * Implements this workaround for the original 965:
2749 *
2750 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2751 * check for post destination dependencies on this instruction, software
2752 * must ensure that there is no destination hazard for the case of ‘write
2753 * followed by a posted write’ shown in the following example.
2754 *
2755 * 1. mov r3 0
2756 * 2. send r3.xy <rest of send instruction>
2757 * 3. mov r2 r3
2758 *
2759 * Due to no post-destination dependency check on the ‘send’, the above
2760 * code sequence could have two instructions (1 and 2) in flight at the
2761 * same time that both consider ‘r3’ as the target of their final writes.
2762 */
2763 void
2764 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2765 fs_inst *inst)
2766 {
2767 int write_len = inst->regs_written;
2768 int first_write_grf = inst->dst.reg;
2769 bool needs_dep[BRW_MAX_MRF];
2770 assert(write_len < (int)sizeof(needs_dep) - 1);
2771
2772 memset(needs_dep, false, sizeof(needs_dep));
2773 memset(needs_dep, true, write_len);
2774
2775 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2776
2777 /* Walk backwards looking for writes to registers we're writing which
2778 * aren't read since being written. If we hit the start of the program,
2779 * we assume that there are no outstanding dependencies on entry to the
2780 * program.
2781 */
2782 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2783 /* If we hit control flow, assume that there *are* outstanding
2784 * dependencies, and force their cleanup before our instruction.
2785 */
2786 if (block->start() == scan_inst) {
2787 for (int i = 0; i < write_len; i++) {
2788 if (needs_dep[i])
2789 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2790 }
2791 return;
2792 }
2793
2794 /* We insert our reads as late as possible on the assumption that any
2795 * instruction but a MOV that might have left us an outstanding
2796 * dependency has more latency than a MOV.
2797 */
2798 if (scan_inst->dst.file == GRF) {
2799 for (int i = 0; i < scan_inst->regs_written; i++) {
2800 int reg = scan_inst->dst.reg + i;
2801
2802 if (reg >= first_write_grf &&
2803 reg < first_write_grf + write_len &&
2804 needs_dep[reg - first_write_grf]) {
2805 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2806 needs_dep[reg - first_write_grf] = false;
2807 if (scan_inst->exec_size == 16)
2808 needs_dep[reg - first_write_grf + 1] = false;
2809 }
2810 }
2811 }
2812
2813 /* Clear the flag for registers that actually got read (as expected). */
2814 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2815
2816 /* Continue the loop only if we haven't resolved all the dependencies */
2817 int i;
2818 for (i = 0; i < write_len; i++) {
2819 if (needs_dep[i])
2820 break;
2821 }
2822 if (i == write_len)
2823 return;
2824 }
2825 }
2826
2827 /**
2828 * Implements this workaround for the original 965:
2829 *
2830 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2831 * used as a destination register until after it has been sourced by an
2832 * instruction with a different destination register.
2833 */
2834 void
2835 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2836 {
2837 int write_len = inst->regs_written;
2838 int first_write_grf = inst->dst.reg;
2839 bool needs_dep[BRW_MAX_MRF];
2840 assert(write_len < (int)sizeof(needs_dep) - 1);
2841
2842 memset(needs_dep, false, sizeof(needs_dep));
2843 memset(needs_dep, true, write_len);
2844 /* Walk forwards looking for writes to registers we're writing which aren't
2845 * read before being written.
2846 */
2847 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2848 /* If we hit control flow, force resolve all remaining dependencies. */
2849 if (block->end() == scan_inst) {
2850 for (int i = 0; i < write_len; i++) {
2851 if (needs_dep[i])
2852 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2853 }
2854 return;
2855 }
2856
2857 /* Clear the flag for registers that actually got read (as expected). */
2858 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2859
2860 /* We insert our reads as late as possible since they're reading the
2861 * result of a SEND, which has massive latency.
2862 */
2863 if (scan_inst->dst.file == GRF &&
2864 scan_inst->dst.reg >= first_write_grf &&
2865 scan_inst->dst.reg < first_write_grf + write_len &&
2866 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2867 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2868 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2869 }
2870
2871 /* Continue the loop only if we haven't resolved all the dependencies */
2872 int i;
2873 for (i = 0; i < write_len; i++) {
2874 if (needs_dep[i])
2875 break;
2876 }
2877 if (i == write_len)
2878 return;
2879 }
2880 }
2881
2882 void
2883 fs_visitor::insert_gen4_send_dependency_workarounds()
2884 {
2885 if (devinfo->gen != 4 || devinfo->is_g4x)
2886 return;
2887
2888 bool progress = false;
2889
2890 /* Note that we're done with register allocation, so GRF fs_regs always
2891 * have a .reg_offset of 0.
2892 */
2893
2894 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2895 if (inst->mlen != 0 && inst->dst.file == GRF) {
2896 insert_gen4_pre_send_dependency_workarounds(block, inst);
2897 insert_gen4_post_send_dependency_workarounds(block, inst);
2898 progress = true;
2899 }
2900 }
2901
2902 if (progress)
2903 invalidate_live_intervals();
2904 }
2905
2906 /**
2907 * Turns the generic expression-style uniform pull constant load instruction
2908 * into a hardware-specific series of instructions for loading a pull
2909 * constant.
2910 *
2911 * The expression style allows the CSE pass before this to optimize out
2912 * repeated loads from the same offset, and gives the pre-register-allocation
2913 * scheduling full flexibility, while the conversion to native instructions
2914 * allows the post-register-allocation scheduler the best information
2915 * possible.
2916 *
2917 * Note that execution masking for setting up pull constant loads is special:
2918 * the channels that need to be written are unrelated to the current execution
2919 * mask, since a later instruction will use one of the result channels as a
2920 * source operand for all 8 or 16 of its channels.
2921 */
2922 void
2923 fs_visitor::lower_uniform_pull_constant_loads()
2924 {
2925 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2926 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2927 continue;
2928
2929 if (devinfo->gen >= 7) {
2930 /* The offset arg before was a vec4-aligned byte offset. We need to
2931 * turn it into a dword offset.
2932 */
2933 fs_reg const_offset_reg = inst->src[1];
2934 assert(const_offset_reg.file == IMM &&
2935 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2936 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2937 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
2938
2939 /* We have to use a message header on Skylake to get SIMD4x2 mode.
2940 * Reserve space for the register.
2941 */
2942 if (devinfo->gen >= 9) {
2943 payload.reg_offset++;
2944 alloc.sizes[payload.reg] = 2;
2945 }
2946
2947 /* This is actually going to be a MOV, but since only the first dword
2948 * is accessed, we have a special opcode to do just that one. Note
2949 * that this needs to be an operation that will be considered a def
2950 * by live variable analysis, or register allocation will explode.
2951 */
2952 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2953 8, payload, const_offset_reg);
2954 setup->force_writemask_all = true;
2955
2956 setup->ir = inst->ir;
2957 setup->annotation = inst->annotation;
2958 inst->insert_before(block, setup);
2959
2960 /* Similarly, this will only populate the first 4 channels of the
2961 * result register (since we only use smear values from 0-3), but we
2962 * don't tell the optimizer.
2963 */
2964 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2965 inst->src[1] = payload;
2966
2967 invalidate_live_intervals();
2968 } else {
2969 /* Before register allocation, we didn't tell the scheduler about the
2970 * MRF we use. We know it's safe to use this MRF because nothing
2971 * else does except for register spill/unspill, which generates and
2972 * uses its MRF within a single IR instruction.
2973 */
2974 inst->base_mrf = 14;
2975 inst->mlen = 1;
2976 }
2977 }
2978 }
2979
2980 bool
2981 fs_visitor::lower_load_payload()
2982 {
2983 bool progress = false;
2984
2985 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2986 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2987 continue;
2988
2989 assert(inst->dst.file == MRF || inst->dst.file == GRF);
2990 assert(inst->saturate == false);
2991
2992 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
2993 .exec_all(inst->force_writemask_all)
2994 .at(block, inst);
2995 fs_reg dst = inst->dst;
2996
2997 /* Get rid of COMPR4. We'll add it back in if we need it */
2998 if (dst.file == MRF)
2999 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
3000
3001 dst.width = 8;
3002 for (uint8_t i = 0; i < inst->header_size; i++) {
3003 if (inst->src[i].file != BAD_FILE) {
3004 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3005 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3006 mov_src.width = 8;
3007 ibld.exec_all().MOV(mov_dst, mov_src);
3008 }
3009 dst = offset(dst, 1);
3010 }
3011
3012 dst.width = inst->exec_size;
3013 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3014 inst->exec_size > 8) {
3015 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3016 * a straightforward copy. Instead, the result of the
3017 * LOAD_PAYLOAD is treated as interleaved and the first four
3018 * non-header sources are unpacked as:
3019 *
3020 * m + 0: r0
3021 * m + 1: g0
3022 * m + 2: b0
3023 * m + 3: a0
3024 * m + 4: r1
3025 * m + 5: g1
3026 * m + 6: b1
3027 * m + 7: a1
3028 *
3029 * This is used for gen <= 5 fb writes.
3030 */
3031 assert(inst->exec_size == 16);
3032 assert(inst->header_size + 4 <= inst->sources);
3033 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3034 if (inst->src[i].file != BAD_FILE) {
3035 if (devinfo->has_compr4) {
3036 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3037 compr4_dst.reg |= BRW_MRF_COMPR4;
3038 ibld.MOV(compr4_dst, inst->src[i]);
3039 } else {
3040 /* Platform doesn't have COMPR4. We have to fake it */
3041 fs_reg mov_dst = retype(dst, inst->src[i].type);
3042 mov_dst.width = 8;
3043 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3044 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3045 }
3046 }
3047
3048 dst.reg++;
3049 }
3050
3051 /* The loop above only ever incremented us through the first set
3052 * of 4 registers. However, thanks to the magic of COMPR4, we
3053 * actually wrote to the first 8 registers, so we need to take
3054 * that into account now.
3055 */
3056 dst.reg += 4;
3057
3058 /* The COMPR4 code took care of the first 4 sources. We'll let
3059 * the regular path handle any remaining sources. Yes, we are
3060 * modifying the instruction but we're about to delete it so
3061 * this really doesn't hurt anything.
3062 */
3063 inst->header_size += 4;
3064 }
3065
3066 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3067 if (inst->src[i].file != BAD_FILE)
3068 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3069 dst = offset(dst, 1);
3070 }
3071
3072 inst->remove(block);
3073 progress = true;
3074 }
3075
3076 if (progress)
3077 invalidate_live_intervals();
3078
3079 return progress;
3080 }
3081
3082 bool
3083 fs_visitor::lower_integer_multiplication()
3084 {
3085 bool progress = false;
3086
3087 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3088 * directly, but Cherryview cannot.
3089 */
3090 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3091 return false;
3092
3093 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3094 if (inst->opcode != BRW_OPCODE_MUL ||
3095 inst->dst.is_accumulator() ||
3096 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3097 inst->dst.type != BRW_REGISTER_TYPE_UD))
3098 continue;
3099
3100 const fs_builder ibld = bld.at(block, inst);
3101
3102 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3103 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3104 * src1 are used.
3105 *
3106 * If multiplying by an immediate value that fits in 16-bits, do a
3107 * single MUL instruction with that value in the proper location.
3108 */
3109 if (inst->src[1].file == IMM &&
3110 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3111 if (devinfo->gen < 7) {
3112 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3113 inst->dst.type, dispatch_width);
3114 ibld.MOV(imm, inst->src[1]);
3115 ibld.MUL(inst->dst, imm, inst->src[0]);
3116 } else {
3117 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3118 }
3119 } else {
3120 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3121 * do 32-bit integer multiplication in one instruction, but instead
3122 * must do a sequence (which actually calculates a 64-bit result):
3123 *
3124 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3125 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3126 * mov(8) g2<1>D acc0<8,8,1>D
3127 *
3128 * But on Gen > 6, the ability to use second accumulator register
3129 * (acc1) for non-float data types was removed, preventing a simple
3130 * implementation in SIMD16. A 16-channel result can be calculated by
3131 * executing the three instructions twice in SIMD8, once with quarter
3132 * control of 1Q for the first eight channels and again with 2Q for
3133 * the second eight channels.
3134 *
3135 * Which accumulator register is implicitly accessed (by AccWrEnable
3136 * for instance) is determined by the quarter control. Unfortunately
3137 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3138 * implicit accumulator access by an instruction with 2Q will access
3139 * acc1 regardless of whether the data type is usable in acc1.
3140 *
3141 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3142 * integer data types.
3143 *
3144 * Since we only want the low 32-bits of the result, we can do two
3145 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3146 * adjust the high result and add them (like the mach is doing):
3147 *
3148 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3149 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3150 * shl(8) g9<1>D g8<8,8,1>D 16D
3151 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3152 *
3153 * We avoid the shl instruction by realizing that we only want to add
3154 * the low 16-bits of the "high" result to the high 16-bits of the
3155 * "low" result and using proper regioning on the add:
3156 *
3157 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3158 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3159 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3160 *
3161 * Since it does not use the (single) accumulator register, we can
3162 * schedule multi-component multiplications much better.
3163 */
3164
3165 if (inst->conditional_mod && inst->dst.is_null()) {
3166 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3167 inst->dst.type, dispatch_width);
3168 }
3169 fs_reg low = inst->dst;
3170 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3171 inst->dst.type, dispatch_width);
3172
3173 if (devinfo->gen >= 7) {
3174 fs_reg src1_0_w = inst->src[1];
3175 fs_reg src1_1_w = inst->src[1];
3176
3177 if (inst->src[1].file == IMM) {
3178 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3179 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3180 } else {
3181 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3182 if (src1_0_w.stride != 0) {
3183 assert(src1_0_w.stride == 1);
3184 src1_0_w.stride = 2;
3185 }
3186
3187 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3188 if (src1_1_w.stride != 0) {
3189 assert(src1_1_w.stride == 1);
3190 src1_1_w.stride = 2;
3191 }
3192 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3193 }
3194 ibld.MUL(low, inst->src[0], src1_0_w);
3195 ibld.MUL(high, inst->src[0], src1_1_w);
3196 } else {
3197 fs_reg src0_0_w = inst->src[0];
3198 fs_reg src0_1_w = inst->src[0];
3199
3200 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3201 if (src0_0_w.stride != 0) {
3202 assert(src0_0_w.stride == 1);
3203 src0_0_w.stride = 2;
3204 }
3205
3206 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3207 if (src0_1_w.stride != 0) {
3208 assert(src0_1_w.stride == 1);
3209 src0_1_w.stride = 2;
3210 }
3211 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3212
3213 ibld.MUL(low, src0_0_w, inst->src[1]);
3214 ibld.MUL(high, src0_1_w, inst->src[1]);
3215 }
3216
3217 fs_reg dst = inst->dst;
3218 dst.type = BRW_REGISTER_TYPE_UW;
3219 dst.subreg_offset = 2;
3220 dst.stride = 2;
3221
3222 high.type = BRW_REGISTER_TYPE_UW;
3223 high.stride = 2;
3224
3225 low.type = BRW_REGISTER_TYPE_UW;
3226 low.subreg_offset = 2;
3227 low.stride = 2;
3228
3229 ibld.ADD(dst, low, high);
3230
3231 if (inst->conditional_mod) {
3232 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3233 set_condmod(inst->conditional_mod,
3234 ibld.MOV(null, inst->dst));
3235 }
3236 }
3237
3238 inst->remove(block);
3239 progress = true;
3240 }
3241
3242 if (progress)
3243 invalidate_live_intervals();
3244
3245 return progress;
3246 }
3247
3248 void
3249 fs_visitor::dump_instructions()
3250 {
3251 dump_instructions(NULL);
3252 }
3253
3254 void
3255 fs_visitor::dump_instructions(const char *name)
3256 {
3257 FILE *file = stderr;
3258 if (name && geteuid() != 0) {
3259 file = fopen(name, "w");
3260 if (!file)
3261 file = stderr;
3262 }
3263
3264 if (cfg) {
3265 calculate_register_pressure();
3266 int ip = 0, max_pressure = 0;
3267 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3268 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3269 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3270 dump_instruction(inst, file);
3271 ip++;
3272 }
3273 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3274 } else {
3275 int ip = 0;
3276 foreach_in_list(backend_instruction, inst, &instructions) {
3277 fprintf(file, "%4d: ", ip++);
3278 dump_instruction(inst, file);
3279 }
3280 }
3281
3282 if (file != stderr) {
3283 fclose(file);
3284 }
3285 }
3286
3287 void
3288 fs_visitor::dump_instruction(backend_instruction *be_inst)
3289 {
3290 dump_instruction(be_inst, stderr);
3291 }
3292
3293 void
3294 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3295 {
3296 fs_inst *inst = (fs_inst *)be_inst;
3297
3298 if (inst->predicate) {
3299 fprintf(file, "(%cf0.%d) ",
3300 inst->predicate_inverse ? '-' : '+',
3301 inst->flag_subreg);
3302 }
3303
3304 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3305 if (inst->saturate)
3306 fprintf(file, ".sat");
3307 if (inst->conditional_mod) {
3308 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3309 if (!inst->predicate &&
3310 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3311 inst->opcode != BRW_OPCODE_IF &&
3312 inst->opcode != BRW_OPCODE_WHILE))) {
3313 fprintf(file, ".f0.%d", inst->flag_subreg);
3314 }
3315 }
3316 fprintf(file, "(%d) ", inst->exec_size);
3317
3318 if (inst->mlen) {
3319 fprintf(file, "(mlen: %d) ", inst->mlen);
3320 }
3321
3322 switch (inst->dst.file) {
3323 case GRF:
3324 fprintf(file, "vgrf%d", inst->dst.reg);
3325 if (inst->dst.width != dispatch_width)
3326 fprintf(file, "@%d", inst->dst.width);
3327 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3328 inst->dst.subreg_offset)
3329 fprintf(file, "+%d.%d",
3330 inst->dst.reg_offset, inst->dst.subreg_offset);
3331 break;
3332 case MRF:
3333 fprintf(file, "m%d", inst->dst.reg);
3334 break;
3335 case BAD_FILE:
3336 fprintf(file, "(null)");
3337 break;
3338 case UNIFORM:
3339 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3340 break;
3341 case ATTR:
3342 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3343 break;
3344 case HW_REG:
3345 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3346 switch (inst->dst.fixed_hw_reg.nr) {
3347 case BRW_ARF_NULL:
3348 fprintf(file, "null");
3349 break;
3350 case BRW_ARF_ADDRESS:
3351 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3352 break;
3353 case BRW_ARF_ACCUMULATOR:
3354 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3355 break;
3356 case BRW_ARF_FLAG:
3357 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3358 inst->dst.fixed_hw_reg.subnr);
3359 break;
3360 default:
3361 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3362 inst->dst.fixed_hw_reg.subnr);
3363 break;
3364 }
3365 } else {
3366 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3367 }
3368 if (inst->dst.fixed_hw_reg.subnr)
3369 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3370 break;
3371 default:
3372 fprintf(file, "???");
3373 break;
3374 }
3375 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3376
3377 for (int i = 0; i < inst->sources; i++) {
3378 if (inst->src[i].negate)
3379 fprintf(file, "-");
3380 if (inst->src[i].abs)
3381 fprintf(file, "|");
3382 switch (inst->src[i].file) {
3383 case GRF:
3384 fprintf(file, "vgrf%d", inst->src[i].reg);
3385 if (inst->src[i].width != dispatch_width)
3386 fprintf(file, "@%d", inst->src[i].width);
3387 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3388 inst->src[i].subreg_offset)
3389 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3390 inst->src[i].subreg_offset);
3391 break;
3392 case MRF:
3393 fprintf(file, "***m%d***", inst->src[i].reg);
3394 break;
3395 case ATTR:
3396 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3397 break;
3398 case UNIFORM:
3399 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3400 if (inst->src[i].reladdr) {
3401 fprintf(file, "+reladdr");
3402 } else if (inst->src[i].subreg_offset) {
3403 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3404 inst->src[i].subreg_offset);
3405 }
3406 break;
3407 case BAD_FILE:
3408 fprintf(file, "(null)");
3409 break;
3410 case IMM:
3411 switch (inst->src[i].type) {
3412 case BRW_REGISTER_TYPE_F:
3413 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3414 break;
3415 case BRW_REGISTER_TYPE_W:
3416 case BRW_REGISTER_TYPE_D:
3417 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3418 break;
3419 case BRW_REGISTER_TYPE_UW:
3420 case BRW_REGISTER_TYPE_UD:
3421 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3422 break;
3423 case BRW_REGISTER_TYPE_VF:
3424 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3425 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3426 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3427 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3428 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3429 break;
3430 default:
3431 fprintf(file, "???");
3432 break;
3433 }
3434 break;
3435 case HW_REG:
3436 if (inst->src[i].fixed_hw_reg.negate)
3437 fprintf(file, "-");
3438 if (inst->src[i].fixed_hw_reg.abs)
3439 fprintf(file, "|");
3440 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3441 switch (inst->src[i].fixed_hw_reg.nr) {
3442 case BRW_ARF_NULL:
3443 fprintf(file, "null");
3444 break;
3445 case BRW_ARF_ADDRESS:
3446 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3447 break;
3448 case BRW_ARF_ACCUMULATOR:
3449 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3450 break;
3451 case BRW_ARF_FLAG:
3452 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3453 inst->src[i].fixed_hw_reg.subnr);
3454 break;
3455 default:
3456 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3457 inst->src[i].fixed_hw_reg.subnr);
3458 break;
3459 }
3460 } else {
3461 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3462 }
3463 if (inst->src[i].fixed_hw_reg.subnr)
3464 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3465 if (inst->src[i].fixed_hw_reg.abs)
3466 fprintf(file, "|");
3467 break;
3468 default:
3469 fprintf(file, "???");
3470 break;
3471 }
3472 if (inst->src[i].abs)
3473 fprintf(file, "|");
3474
3475 if (inst->src[i].file != IMM) {
3476 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3477 }
3478
3479 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3480 fprintf(file, ", ");
3481 }
3482
3483 fprintf(file, " ");
3484
3485 if (dispatch_width == 16 && inst->exec_size == 8) {
3486 if (inst->force_sechalf)
3487 fprintf(file, "2ndhalf ");
3488 else
3489 fprintf(file, "1sthalf ");
3490 }
3491
3492 fprintf(file, "\n");
3493 }
3494
3495 /**
3496 * Possibly returns an instruction that set up @param reg.
3497 *
3498 * Sometimes we want to take the result of some expression/variable
3499 * dereference tree and rewrite the instruction generating the result
3500 * of the tree. When processing the tree, we know that the
3501 * instructions generated are all writing temporaries that are dead
3502 * outside of this tree. So, if we have some instructions that write
3503 * a temporary, we're free to point that temp write somewhere else.
3504 *
3505 * Note that this doesn't guarantee that the instruction generated
3506 * only reg -- it might be the size=4 destination of a texture instruction.
3507 */
3508 fs_inst *
3509 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3510 fs_inst *end,
3511 const fs_reg &reg)
3512 {
3513 if (end == start ||
3514 end->is_partial_write() ||
3515 reg.reladdr ||
3516 !reg.equals(end->dst)) {
3517 return NULL;
3518 } else {
3519 return end;
3520 }
3521 }
3522
3523 void
3524 fs_visitor::setup_payload_gen6()
3525 {
3526 bool uses_depth =
3527 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3528 unsigned barycentric_interp_modes =
3529 (stage == MESA_SHADER_FRAGMENT) ?
3530 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3531
3532 assert(devinfo->gen >= 6);
3533
3534 /* R0-1: masks, pixel X/Y coordinates. */
3535 payload.num_regs = 2;
3536 /* R2: only for 32-pixel dispatch.*/
3537
3538 /* R3-26: barycentric interpolation coordinates. These appear in the
3539 * same order that they appear in the brw_wm_barycentric_interp_mode
3540 * enum. Each set of coordinates occupies 2 registers if dispatch width
3541 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3542 * appear if they were enabled using the "Barycentric Interpolation
3543 * Mode" bits in WM_STATE.
3544 */
3545 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3546 if (barycentric_interp_modes & (1 << i)) {
3547 payload.barycentric_coord_reg[i] = payload.num_regs;
3548 payload.num_regs += 2;
3549 if (dispatch_width == 16) {
3550 payload.num_regs += 2;
3551 }
3552 }
3553 }
3554
3555 /* R27: interpolated depth if uses source depth */
3556 if (uses_depth) {
3557 payload.source_depth_reg = payload.num_regs;
3558 payload.num_regs++;
3559 if (dispatch_width == 16) {
3560 /* R28: interpolated depth if not SIMD8. */
3561 payload.num_regs++;
3562 }
3563 }
3564 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3565 if (uses_depth) {
3566 payload.source_w_reg = payload.num_regs;
3567 payload.num_regs++;
3568 if (dispatch_width == 16) {
3569 /* R30: interpolated W if not SIMD8. */
3570 payload.num_regs++;
3571 }
3572 }
3573
3574 if (stage == MESA_SHADER_FRAGMENT) {
3575 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3576 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3577 prog_data->uses_pos_offset = key->compute_pos_offset;
3578 /* R31: MSAA position offsets. */
3579 if (prog_data->uses_pos_offset) {
3580 payload.sample_pos_reg = payload.num_regs;
3581 payload.num_regs++;
3582 }
3583 }
3584
3585 /* R32: MSAA input coverage mask */
3586 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3587 assert(devinfo->gen >= 7);
3588 payload.sample_mask_in_reg = payload.num_regs;
3589 payload.num_regs++;
3590 if (dispatch_width == 16) {
3591 /* R33: input coverage mask if not SIMD8. */
3592 payload.num_regs++;
3593 }
3594 }
3595
3596 /* R34-: bary for 32-pixel. */
3597 /* R58-59: interp W for 32-pixel. */
3598
3599 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3600 source_depth_to_render_target = true;
3601 }
3602 }
3603
3604 void
3605 fs_visitor::setup_vs_payload()
3606 {
3607 /* R0: thread header, R1: urb handles */
3608 payload.num_regs = 2;
3609 }
3610
3611 void
3612 fs_visitor::setup_cs_payload()
3613 {
3614 assert(devinfo->gen >= 7);
3615
3616 payload.num_regs = 1;
3617 }
3618
3619 void
3620 fs_visitor::assign_binding_table_offsets()
3621 {
3622 assert(stage == MESA_SHADER_FRAGMENT);
3623 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3624 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3625 uint32_t next_binding_table_offset = 0;
3626
3627 /* If there are no color regions, we still perform an FB write to a null
3628 * renderbuffer, which we place at surface index 0.
3629 */
3630 prog_data->binding_table.render_target_start = next_binding_table_offset;
3631 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3632
3633 assign_common_binding_table_offsets(next_binding_table_offset);
3634 }
3635
3636 void
3637 fs_visitor::calculate_register_pressure()
3638 {
3639 invalidate_live_intervals();
3640 calculate_live_intervals();
3641
3642 unsigned num_instructions = 0;
3643 foreach_block(block, cfg)
3644 num_instructions += block->instructions.length();
3645
3646 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3647
3648 for (unsigned reg = 0; reg < alloc.count; reg++) {
3649 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3650 regs_live_at_ip[ip] += alloc.sizes[reg];
3651 }
3652 }
3653
3654 void
3655 fs_visitor::optimize()
3656 {
3657 /* bld is the common builder object pointing at the end of the program we
3658 * used to translate it into i965 IR. For the optimization and lowering
3659 * passes coming next, any code added after the end of the program without
3660 * having explicitly called fs_builder::at() clearly points at a mistake.
3661 * Ideally optimization passes wouldn't be part of the visitor so they
3662 * wouldn't have access to bld at all, but they do, so just in case some
3663 * pass forgets to ask for a location explicitly set it to NULL here to
3664 * make it trip.
3665 */
3666 bld = bld.at(NULL, NULL);
3667
3668 split_virtual_grfs();
3669
3670 move_uniform_array_access_to_pull_constants();
3671 assign_constant_locations();
3672 demote_pull_constants();
3673
3674 #define OPT(pass, args...) ({ \
3675 pass_num++; \
3676 bool this_progress = pass(args); \
3677 \
3678 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3679 char filename[64]; \
3680 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3681 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3682 \
3683 backend_shader::dump_instructions(filename); \
3684 } \
3685 \
3686 progress = progress || this_progress; \
3687 this_progress; \
3688 })
3689
3690 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3691 char filename[64];
3692 snprintf(filename, 64, "%s%d-%04d-00-start",
3693 stage_abbrev, dispatch_width,
3694 shader_prog ? shader_prog->Name : 0);
3695
3696 backend_shader::dump_instructions(filename);
3697 }
3698
3699 bool progress;
3700 int iteration = 0;
3701 int pass_num = 0;
3702 do {
3703 progress = false;
3704 pass_num = 0;
3705 iteration++;
3706
3707 OPT(remove_duplicate_mrf_writes);
3708
3709 OPT(opt_algebraic);
3710 OPT(opt_cse);
3711 OPT(opt_copy_propagate);
3712 OPT(opt_peephole_predicated_break);
3713 OPT(opt_cmod_propagation);
3714 OPT(dead_code_eliminate);
3715 OPT(opt_peephole_sel);
3716 OPT(dead_control_flow_eliminate, this);
3717 OPT(opt_register_renaming);
3718 OPT(opt_redundant_discard_jumps);
3719 OPT(opt_saturate_propagation);
3720 OPT(opt_zero_samples);
3721 OPT(register_coalesce);
3722 OPT(compute_to_mrf);
3723 OPT(eliminate_find_live_channel);
3724
3725 OPT(compact_virtual_grfs);
3726 } while (progress);
3727
3728 pass_num = 0;
3729
3730 OPT(opt_sampler_eot);
3731
3732 if (OPT(lower_load_payload)) {
3733 split_virtual_grfs();
3734 OPT(register_coalesce);
3735 OPT(compute_to_mrf);
3736 OPT(dead_code_eliminate);
3737 }
3738
3739 OPT(opt_combine_constants);
3740 OPT(lower_integer_multiplication);
3741
3742 lower_uniform_pull_constant_loads();
3743 }
3744
3745 /**
3746 * Three source instruction must have a GRF/MRF destination register.
3747 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3748 */
3749 void
3750 fs_visitor::fixup_3src_null_dest()
3751 {
3752 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3753 if (inst->is_3src() && inst->dst.is_null()) {
3754 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3755 inst->dst.type);
3756 }
3757 }
3758 }
3759
3760 void
3761 fs_visitor::allocate_registers()
3762 {
3763 bool allocated_without_spills;
3764
3765 static const enum instruction_scheduler_mode pre_modes[] = {
3766 SCHEDULE_PRE,
3767 SCHEDULE_PRE_NON_LIFO,
3768 SCHEDULE_PRE_LIFO,
3769 };
3770
3771 /* Try each scheduling heuristic to see if it can successfully register
3772 * allocate without spilling. They should be ordered by decreasing
3773 * performance but increasing likelihood of allocating.
3774 */
3775 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3776 schedule_instructions(pre_modes[i]);
3777
3778 if (0) {
3779 assign_regs_trivial();
3780 allocated_without_spills = true;
3781 } else {
3782 allocated_without_spills = assign_regs(false);
3783 }
3784 if (allocated_without_spills)
3785 break;
3786 }
3787
3788 if (!allocated_without_spills) {
3789 /* We assume that any spilling is worse than just dropping back to
3790 * SIMD8. There's probably actually some intermediate point where
3791 * SIMD16 with a couple of spills is still better.
3792 */
3793 if (dispatch_width == 16) {
3794 fail("Failure to register allocate. Reduce number of "
3795 "live scalar values to avoid this.");
3796 } else {
3797 struct brw_compiler *compiler = brw->intelScreen->compiler;
3798 compiler->shader_perf_log(brw,
3799 "%s shader triggered register spilling. "
3800 "Try reducing the number of live scalar "
3801 "values to improve performance.\n",
3802 stage_name);
3803 }
3804
3805 /* Since we're out of heuristics, just go spill registers until we
3806 * get an allocation.
3807 */
3808 while (!assign_regs(true)) {
3809 if (failed)
3810 break;
3811 }
3812 }
3813
3814 /* This must come after all optimization and register allocation, since
3815 * it inserts dead code that happens to have side effects, and it does
3816 * so based on the actual physical registers in use.
3817 */
3818 insert_gen4_send_dependency_workarounds();
3819
3820 if (failed)
3821 return;
3822
3823 if (!allocated_without_spills)
3824 schedule_instructions(SCHEDULE_POST);
3825
3826 if (last_scratch > 0)
3827 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3828 }
3829
3830 bool
3831 fs_visitor::run_vs()
3832 {
3833 assert(stage == MESA_SHADER_VERTEX);
3834
3835 assign_common_binding_table_offsets(0);
3836 setup_vs_payload();
3837
3838 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3839 emit_shader_time_begin();
3840
3841 emit_nir_code();
3842
3843 if (failed)
3844 return false;
3845
3846 emit_urb_writes();
3847
3848 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3849 emit_shader_time_end();
3850
3851 calculate_cfg();
3852
3853 optimize();
3854
3855 assign_curb_setup();
3856 assign_vs_urb_setup();
3857
3858 fixup_3src_null_dest();
3859 allocate_registers();
3860
3861 return !failed;
3862 }
3863
3864 bool
3865 fs_visitor::run_fs()
3866 {
3867 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3868 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3869
3870 assert(stage == MESA_SHADER_FRAGMENT);
3871
3872 sanity_param_count = prog->Parameters->NumParameters;
3873
3874 assign_binding_table_offsets();
3875
3876 if (devinfo->gen >= 6)
3877 setup_payload_gen6();
3878 else
3879 setup_payload_gen4();
3880
3881 if (0) {
3882 emit_dummy_fs();
3883 } else if (brw->use_rep_send && dispatch_width == 16) {
3884 emit_repclear_shader();
3885 } else {
3886 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3887 emit_shader_time_begin();
3888
3889 calculate_urb_setup();
3890 if (prog->InputsRead > 0) {
3891 if (devinfo->gen < 6)
3892 emit_interpolation_setup_gen4();
3893 else
3894 emit_interpolation_setup_gen6();
3895 }
3896
3897 /* We handle discards by keeping track of the still-live pixels in f0.1.
3898 * Initialize it with the dispatched pixels.
3899 */
3900 if (wm_prog_data->uses_kill) {
3901 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3902 discard_init->flag_subreg = 1;
3903 }
3904
3905 /* Generate FS IR for main(). (the visitor only descends into
3906 * functions called "main").
3907 */
3908 emit_nir_code();
3909
3910 if (failed)
3911 return false;
3912
3913 if (wm_prog_data->uses_kill)
3914 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3915
3916 if (wm_key->alpha_test_func)
3917 emit_alpha_test();
3918
3919 emit_fb_writes();
3920
3921 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3922 emit_shader_time_end();
3923
3924 calculate_cfg();
3925
3926 optimize();
3927
3928 assign_curb_setup();
3929 assign_urb_setup();
3930
3931 fixup_3src_null_dest();
3932 allocate_registers();
3933
3934 if (failed)
3935 return false;
3936 }
3937
3938 if (dispatch_width == 8)
3939 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3940 else
3941 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3942
3943 /* If any state parameters were appended, then ParameterValues could have
3944 * been realloced, in which case the driver uniform storage set up by
3945 * _mesa_associate_uniform_storage() would point to freed memory. Make
3946 * sure that didn't happen.
3947 */
3948 assert(sanity_param_count == prog->Parameters->NumParameters);
3949
3950 return !failed;
3951 }
3952
3953 bool
3954 fs_visitor::run_cs()
3955 {
3956 assert(stage == MESA_SHADER_COMPUTE);
3957 assert(shader);
3958
3959 sanity_param_count = prog->Parameters->NumParameters;
3960
3961 assign_common_binding_table_offsets(0);
3962
3963 setup_cs_payload();
3964
3965 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3966 emit_shader_time_begin();
3967
3968 emit_nir_code();
3969
3970 if (failed)
3971 return false;
3972
3973 emit_cs_terminate();
3974
3975 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3976 emit_shader_time_end();
3977
3978 calculate_cfg();
3979
3980 optimize();
3981
3982 assign_curb_setup();
3983
3984 fixup_3src_null_dest();
3985 allocate_registers();
3986
3987 if (failed)
3988 return false;
3989
3990 /* If any state parameters were appended, then ParameterValues could have
3991 * been realloced, in which case the driver uniform storage set up by
3992 * _mesa_associate_uniform_storage() would point to freed memory. Make
3993 * sure that didn't happen.
3994 */
3995 assert(sanity_param_count == prog->Parameters->NumParameters);
3996
3997 return !failed;
3998 }
3999
4000 const unsigned *
4001 brw_wm_fs_emit(struct brw_context *brw,
4002 void *mem_ctx,
4003 const struct brw_wm_prog_key *key,
4004 struct brw_wm_prog_data *prog_data,
4005 struct gl_fragment_program *fp,
4006 struct gl_shader_program *prog,
4007 unsigned *final_assembly_size)
4008 {
4009 bool start_busy = false;
4010 double start_time = 0;
4011
4012 if (unlikely(brw->perf_debug)) {
4013 start_busy = (brw->batch.last_bo &&
4014 drm_intel_bo_busy(brw->batch.last_bo));
4015 start_time = get_time();
4016 }
4017
4018 struct brw_shader *shader = NULL;
4019 if (prog)
4020 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4021
4022 if (unlikely(INTEL_DEBUG & DEBUG_WM))
4023 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4024
4025 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4026 */
4027 fs_visitor v(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4028 prog, &fp->Base, 8);
4029 if (!v.run_fs()) {
4030 if (prog) {
4031 prog->LinkStatus = false;
4032 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4033 }
4034
4035 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4036 v.fail_msg);
4037
4038 return NULL;
4039 }
4040
4041 cfg_t *simd16_cfg = NULL;
4042 fs_visitor v2(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4043 prog, &fp->Base, 16);
4044 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4045 if (!v.simd16_unsupported) {
4046 /* Try a SIMD16 compile */
4047 v2.import_uniforms(&v);
4048 if (!v2.run_fs()) {
4049 perf_debug("SIMD16 shader failed to compile: %s", v2.fail_msg);
4050 } else {
4051 simd16_cfg = v2.cfg;
4052 }
4053 }
4054 }
4055
4056 cfg_t *simd8_cfg;
4057 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4058 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4059 simd8_cfg = NULL;
4060 prog_data->no_8 = true;
4061 } else {
4062 simd8_cfg = v.cfg;
4063 prog_data->no_8 = false;
4064 }
4065
4066 fs_generator g(brw->intelScreen->compiler, brw,
4067 mem_ctx, (void *) key, &prog_data->base,
4068 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4069
4070 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4071 char *name;
4072 if (prog)
4073 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4074 prog->Label ? prog->Label : "unnamed",
4075 prog->Name);
4076 else
4077 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4078
4079 g.enable_debug(name);
4080 }
4081
4082 if (simd8_cfg)
4083 g.generate_code(simd8_cfg, 8);
4084 if (simd16_cfg)
4085 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4086
4087 if (unlikely(brw->perf_debug) && shader) {
4088 if (shader->compiled_once)
4089 brw_wm_debug_recompile(brw, prog, key);
4090 shader->compiled_once = true;
4091
4092 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4093 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4094 (get_time() - start_time) * 1000);
4095 }
4096 }
4097
4098 return g.get_assembly(final_assembly_size);
4099 }
4100
4101 extern "C" bool
4102 brw_fs_precompile(struct gl_context *ctx,
4103 struct gl_shader_program *shader_prog,
4104 struct gl_program *prog)
4105 {
4106 struct brw_context *brw = brw_context(ctx);
4107 struct brw_wm_prog_key key;
4108
4109 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4110 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4111 bool program_uses_dfdy = fp->UsesDFdy;
4112
4113 memset(&key, 0, sizeof(key));
4114
4115 if (brw->gen < 6) {
4116 if (fp->UsesKill)
4117 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4118
4119 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4120 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4121
4122 /* Just assume depth testing. */
4123 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4124 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4125 }
4126
4127 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4128 BRW_FS_VARYING_INPUT_MASK) > 16)
4129 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4130
4131 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4132
4133 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4134 key.drawable_height = ctx->DrawBuffer->Height;
4135 }
4136
4137 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4138 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4139 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4140
4141 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4142 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4143 key.nr_color_regions > 1;
4144 }
4145
4146 key.program_string_id = bfp->id;
4147
4148 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4149 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4150
4151 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4152
4153 brw->wm.base.prog_offset = old_prog_offset;
4154 brw->wm.prog_data = old_prog_data;
4155
4156 return success;
4157 }
4158
4159 void
4160 brw_setup_tex_for_precompile(struct brw_context *brw,
4161 struct brw_sampler_prog_key_data *tex,
4162 struct gl_program *prog)
4163 {
4164 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4165 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4166 for (unsigned i = 0; i < sampler_count; i++) {
4167 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4168 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4169 tex->swizzles[i] =
4170 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4171 } else {
4172 /* Color sampler: assume no swizzling. */
4173 tex->swizzles[i] = SWIZZLE_XYZW;
4174 }
4175 }
4176 }