i965: Use device_info instead of the context for computing vue maps
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 void
53 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
54 const fs_reg *src, unsigned sources)
55 {
56 memset(this, 0, sizeof(*this));
57
58 this->src = new fs_reg[MAX2(sources, 3)];
59 for (unsigned i = 0; i < sources; i++)
60 this->src[i] = src[i];
61
62 this->opcode = opcode;
63 this->dst = dst;
64 this->sources = sources;
65 this->exec_size = exec_size;
66
67 assert(dst.file != IMM && dst.file != UNIFORM);
68
69 /* If exec_size == 0, try to guess it from the registers. Since all
70 * manner of things may use hardware registers, we first try to guess
71 * based on GRF registers. If this fails, we will go ahead and take the
72 * width from the destination register.
73 */
74 if (this->exec_size == 0) {
75 if (dst.file == GRF) {
76 this->exec_size = dst.width;
77 } else {
78 for (unsigned i = 0; i < sources; ++i) {
79 if (src[i].file != GRF && src[i].file != ATTR)
80 continue;
81
82 if (this->exec_size <= 1)
83 this->exec_size = src[i].width;
84 assert(src[i].width == 1 || src[i].width == this->exec_size);
85 }
86 }
87
88 if (this->exec_size == 0 && dst.file != BAD_FILE)
89 this->exec_size = dst.width;
90 }
91 assert(this->exec_size != 0);
92
93 for (unsigned i = 0; i < sources; ++i) {
94 switch (this->src[i].file) {
95 case BAD_FILE:
96 this->src[i].effective_width = 8;
97 break;
98 case GRF:
99 case HW_REG:
100 case ATTR:
101 assert(this->src[i].width > 0);
102 if (this->src[i].width == 1) {
103 this->src[i].effective_width = this->exec_size;
104 } else {
105 this->src[i].effective_width = this->src[i].width;
106 }
107 break;
108 case IMM:
109 case UNIFORM:
110 this->src[i].effective_width = this->exec_size;
111 break;
112 default:
113 unreachable("Invalid source register file");
114 }
115 }
116 this->dst.effective_width = this->exec_size;
117
118 this->conditional_mod = BRW_CONDITIONAL_NONE;
119
120 /* This will be the case for almost all instructions. */
121 switch (dst.file) {
122 case GRF:
123 case HW_REG:
124 case MRF:
125 case ATTR:
126 this->regs_written =
127 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
128 break;
129 case BAD_FILE:
130 this->regs_written = 0;
131 break;
132 case IMM:
133 case UNIFORM:
134 unreachable("Invalid destination register file");
135 default:
136 unreachable("Invalid register file");
137 }
138
139 this->writes_accumulator = false;
140 }
141
142 fs_inst::fs_inst()
143 {
144 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
148 {
149 init(opcode, exec_size, reg_undef, NULL, 0);
150 }
151
152 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
153 {
154 init(opcode, 0, dst, NULL, 0);
155 }
156
157 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
158 const fs_reg &src0)
159 {
160 const fs_reg src[1] = { src0 };
161 init(opcode, exec_size, dst, src, 1);
162 }
163
164 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
165 {
166 const fs_reg src[1] = { src0 };
167 init(opcode, 0, dst, src, 1);
168 }
169
170 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
171 const fs_reg &src0, const fs_reg &src1)
172 {
173 const fs_reg src[2] = { src0, src1 };
174 init(opcode, exec_size, dst, src, 2);
175 }
176
177 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
178 const fs_reg &src1)
179 {
180 const fs_reg src[2] = { src0, src1 };
181 init(opcode, 0, dst, src, 2);
182 }
183
184 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
185 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
186 {
187 const fs_reg src[3] = { src0, src1, src2 };
188 init(opcode, exec_size, dst, src, 3);
189 }
190
191 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
192 const fs_reg &src1, const fs_reg &src2)
193 {
194 const fs_reg src[3] = { src0, src1, src2 };
195 init(opcode, 0, dst, src, 3);
196 }
197
198 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
199 const fs_reg src[], unsigned sources)
200 {
201 init(opcode, 0, dst, src, sources);
202 }
203
204 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
205 const fs_reg src[], unsigned sources)
206 {
207 init(opcode, exec_width, dst, src, sources);
208 }
209
210 fs_inst::fs_inst(const fs_inst &that)
211 {
212 memcpy(this, &that, sizeof(that));
213
214 this->src = new fs_reg[MAX2(that.sources, 3)];
215
216 for (unsigned i = 0; i < that.sources; i++)
217 this->src[i] = that.src[i];
218 }
219
220 fs_inst::~fs_inst()
221 {
222 delete[] this->src;
223 }
224
225 void
226 fs_inst::resize_sources(uint8_t num_sources)
227 {
228 if (this->sources != num_sources) {
229 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
230
231 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
232 src[i] = this->src[i];
233
234 delete[] this->src;
235 this->src = src;
236 this->sources = num_sources;
237 }
238 }
239
240 #define ALU1(op) \
241 fs_inst * \
242 fs_visitor::op(const fs_reg &dst, const fs_reg &src0) \
243 { \
244 return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0); \
245 }
246
247 #define ALU2(op) \
248 fs_inst * \
249 fs_visitor::op(const fs_reg &dst, const fs_reg &src0, \
250 const fs_reg &src1) \
251 { \
252 return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1); \
253 }
254
255 #define ALU2_ACC(op) \
256 fs_inst * \
257 fs_visitor::op(const fs_reg &dst, const fs_reg &src0, \
258 const fs_reg &src1) \
259 { \
260 fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1);\
261 inst->writes_accumulator = true; \
262 return inst; \
263 }
264
265 #define ALU3(op) \
266 fs_inst * \
267 fs_visitor::op(const fs_reg &dst, const fs_reg &src0, \
268 const fs_reg &src1, const fs_reg &src2) \
269 { \
270 return new(mem_ctx) fs_inst(BRW_OPCODE_##op, dst, src0, src1, src2);\
271 }
272
273 ALU1(NOT)
274 ALU1(MOV)
275 ALU1(FRC)
276 ALU1(RNDD)
277 ALU1(RNDE)
278 ALU1(RNDZ)
279 ALU2(ADD)
280 ALU2(MUL)
281 ALU2_ACC(MACH)
282 ALU2(AND)
283 ALU2(OR)
284 ALU2(XOR)
285 ALU2(SHL)
286 ALU2(SHR)
287 ALU2(ASR)
288 ALU3(LRP)
289 ALU1(BFREV)
290 ALU3(BFE)
291 ALU2(BFI1)
292 ALU3(BFI2)
293 ALU1(FBH)
294 ALU1(FBL)
295 ALU1(CBIT)
296 ALU3(MAD)
297 ALU2_ACC(ADDC)
298 ALU2_ACC(SUBB)
299 ALU2(SEL)
300 ALU2(MAC)
301
302 /** Gen4 predicated IF. */
303 fs_inst *
304 fs_visitor::IF(enum brw_predicate predicate)
305 {
306 fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_IF, dispatch_width);
307 inst->predicate = predicate;
308 return inst;
309 }
310
311 /** Gen6 IF with embedded comparison. */
312 fs_inst *
313 fs_visitor::IF(const fs_reg &src0, const fs_reg &src1,
314 enum brw_conditional_mod condition)
315 {
316 assert(devinfo->gen == 6);
317 fs_inst *inst = new(mem_ctx) fs_inst(BRW_OPCODE_IF, dispatch_width,
318 reg_null_d, src0, src1);
319 inst->conditional_mod = condition;
320 return inst;
321 }
322
323 /**
324 * CMP: Sets the low bit of the destination channels with the result
325 * of the comparison, while the upper bits are undefined, and updates
326 * the flag register with the packed 16 bits of the result.
327 */
328 fs_inst *
329 fs_visitor::CMP(fs_reg dst, fs_reg src0, fs_reg src1,
330 enum brw_conditional_mod condition)
331 {
332 fs_inst *inst;
333
334 /* Take the instruction:
335 *
336 * CMP null<d> src0<f> src1<f>
337 *
338 * Original gen4 does type conversion to the destination type before
339 * comparison, producing garbage results for floating point comparisons.
340 *
341 * The destination type doesn't matter on newer generations, so we set the
342 * type to match src0 so we can compact the instruction.
343 */
344 dst.type = src0.type;
345 if (dst.file == HW_REG)
346 dst.fixed_hw_reg.type = dst.type;
347
348 resolve_ud_negate(&src0);
349 resolve_ud_negate(&src1);
350
351 inst = new(mem_ctx) fs_inst(BRW_OPCODE_CMP, dst, src0, src1);
352 inst->conditional_mod = condition;
353
354 return inst;
355 }
356
357 fs_inst *
358 fs_visitor::LOAD_PAYLOAD(const fs_reg &dst, fs_reg *src, int sources)
359 {
360 uint8_t exec_size = dst.width;
361 for (int i = 0; i < sources; ++i) {
362 assert(src[i].width % dst.width == 0);
363 if (src[i].width > exec_size)
364 exec_size = src[i].width;
365 }
366
367 fs_inst *inst = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD, exec_size,
368 dst, src, sources);
369 inst->regs_written = 0;
370 for (int i = 0; i < sources; ++i) {
371 /* The LOAD_PAYLOAD instruction only really makes sense if we are
372 * dealing with whole registers. If this ever changes, we can deal
373 * with it later.
374 */
375 int size = inst->src[i].effective_width * type_sz(src[i].type);
376 assert(size % 32 == 0);
377 inst->regs_written += (size + 31) / 32;
378 }
379
380 return inst;
381 }
382
383 exec_list
384 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_reg &dst,
385 const fs_reg &surf_index,
386 const fs_reg &varying_offset,
387 uint32_t const_offset)
388 {
389 exec_list instructions;
390 fs_inst *inst;
391
392 /* We have our constant surface use a pitch of 4 bytes, so our index can
393 * be any component of a vector, and then we load 4 contiguous
394 * components starting from that.
395 *
396 * We break down the const_offset to a portion added to the variable
397 * offset and a portion done using reg_offset, which means that if you
398 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
399 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
400 * CSE can later notice that those loads are all the same and eliminate
401 * the redundant ones.
402 */
403 fs_reg vec4_offset = vgrf(glsl_type::int_type);
404 instructions.push_tail(ADD(vec4_offset,
405 varying_offset, fs_reg(const_offset & ~3)));
406
407 int scale = 1;
408 if (devinfo->gen == 4 && dst.width == 8) {
409 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
410 * u, v, r) as parameters, or we can just use the SIMD16 message
411 * consisting of (header, u). We choose the second, at the cost of a
412 * longer return length.
413 */
414 scale = 2;
415 }
416
417 enum opcode op;
418 if (devinfo->gen >= 7)
419 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
420 else
421 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
422
423 assert(dst.width % 8 == 0);
424 int regs_written = 4 * (dst.width / 8) * scale;
425 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
426 dst.type, dst.width);
427 inst = new(mem_ctx) fs_inst(op, vec4_result, surf_index, vec4_offset);
428 inst->regs_written = regs_written;
429 instructions.push_tail(inst);
430
431 if (devinfo->gen < 7) {
432 inst->base_mrf = 13;
433 inst->header_present = true;
434 if (devinfo->gen == 4)
435 inst->mlen = 3;
436 else
437 inst->mlen = 1 + dispatch_width / 8;
438 }
439
440 fs_reg result = offset(vec4_result, (const_offset & 3) * scale);
441 instructions.push_tail(MOV(dst, result));
442
443 return instructions;
444 }
445
446 /**
447 * A helper for MOV generation for fixing up broken hardware SEND dependency
448 * handling.
449 */
450 fs_inst *
451 fs_visitor::DEP_RESOLVE_MOV(int grf)
452 {
453 fs_inst *inst = MOV(brw_null_reg(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
454
455 inst->ir = NULL;
456 inst->annotation = "send dependency resolve";
457
458 /* The caller always wants uncompressed to emit the minimal extra
459 * dependencies, and to avoid having to deal with aligning its regs to 2.
460 */
461 inst->exec_size = 8;
462
463 return inst;
464 }
465
466 bool
467 fs_inst::equals(fs_inst *inst) const
468 {
469 return (opcode == inst->opcode &&
470 dst.equals(inst->dst) &&
471 src[0].equals(inst->src[0]) &&
472 src[1].equals(inst->src[1]) &&
473 src[2].equals(inst->src[2]) &&
474 saturate == inst->saturate &&
475 predicate == inst->predicate &&
476 conditional_mod == inst->conditional_mod &&
477 mlen == inst->mlen &&
478 base_mrf == inst->base_mrf &&
479 target == inst->target &&
480 eot == inst->eot &&
481 header_present == inst->header_present &&
482 shadow_compare == inst->shadow_compare &&
483 exec_size == inst->exec_size &&
484 offset == inst->offset);
485 }
486
487 bool
488 fs_inst::overwrites_reg(const fs_reg &reg) const
489 {
490 return reg.in_range(dst, regs_written);
491 }
492
493 bool
494 fs_inst::is_send_from_grf() const
495 {
496 switch (opcode) {
497 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
498 case SHADER_OPCODE_SHADER_TIME_ADD:
499 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
500 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
501 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
502 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
503 case SHADER_OPCODE_UNTYPED_ATOMIC:
504 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
505 case SHADER_OPCODE_URB_WRITE_SIMD8:
506 return true;
507 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
508 return src[1].file == GRF;
509 case FS_OPCODE_FB_WRITE:
510 return src[0].file == GRF;
511 default:
512 if (is_tex())
513 return src[0].file == GRF;
514
515 return false;
516 }
517 }
518
519 bool
520 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
521 {
522 if (devinfo->gen == 6 && is_math())
523 return false;
524
525 if (is_send_from_grf())
526 return false;
527
528 if (!backend_instruction::can_do_source_mods())
529 return false;
530
531 return true;
532 }
533
534 bool
535 fs_inst::has_side_effects() const
536 {
537 return this->eot || backend_instruction::has_side_effects();
538 }
539
540 void
541 fs_reg::init()
542 {
543 memset(this, 0, sizeof(*this));
544 stride = 1;
545 }
546
547 /** Generic unset register constructor. */
548 fs_reg::fs_reg()
549 {
550 init();
551 this->file = BAD_FILE;
552 }
553
554 /** Immediate value constructor. */
555 fs_reg::fs_reg(float f)
556 {
557 init();
558 this->file = IMM;
559 this->type = BRW_REGISTER_TYPE_F;
560 this->fixed_hw_reg.dw1.f = f;
561 this->width = 1;
562 }
563
564 /** Immediate value constructor. */
565 fs_reg::fs_reg(int32_t i)
566 {
567 init();
568 this->file = IMM;
569 this->type = BRW_REGISTER_TYPE_D;
570 this->fixed_hw_reg.dw1.d = i;
571 this->width = 1;
572 }
573
574 /** Immediate value constructor. */
575 fs_reg::fs_reg(uint32_t u)
576 {
577 init();
578 this->file = IMM;
579 this->type = BRW_REGISTER_TYPE_UD;
580 this->fixed_hw_reg.dw1.ud = u;
581 this->width = 1;
582 }
583
584 /** Vector float immediate value constructor. */
585 fs_reg::fs_reg(uint8_t vf[4])
586 {
587 init();
588 this->file = IMM;
589 this->type = BRW_REGISTER_TYPE_VF;
590 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
591 }
592
593 /** Vector float immediate value constructor. */
594 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
595 {
596 init();
597 this->file = IMM;
598 this->type = BRW_REGISTER_TYPE_VF;
599 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
600 (vf1 << 8) |
601 (vf2 << 16) |
602 (vf3 << 24);
603 }
604
605 /** Fixed brw_reg. */
606 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
607 {
608 init();
609 this->file = HW_REG;
610 this->fixed_hw_reg = fixed_hw_reg;
611 this->type = fixed_hw_reg.type;
612 this->width = 1 << fixed_hw_reg.width;
613 }
614
615 bool
616 fs_reg::equals(const fs_reg &r) const
617 {
618 return (file == r.file &&
619 reg == r.reg &&
620 reg_offset == r.reg_offset &&
621 subreg_offset == r.subreg_offset &&
622 type == r.type &&
623 negate == r.negate &&
624 abs == r.abs &&
625 !reladdr && !r.reladdr &&
626 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
627 width == r.width &&
628 stride == r.stride);
629 }
630
631 fs_reg &
632 fs_reg::set_smear(unsigned subreg)
633 {
634 assert(file != HW_REG && file != IMM);
635 subreg_offset = subreg * type_sz(type);
636 stride = 0;
637 return *this;
638 }
639
640 bool
641 fs_reg::is_contiguous() const
642 {
643 return stride == 1;
644 }
645
646 int
647 fs_visitor::type_size(const struct glsl_type *type)
648 {
649 unsigned int size, i;
650
651 switch (type->base_type) {
652 case GLSL_TYPE_UINT:
653 case GLSL_TYPE_INT:
654 case GLSL_TYPE_FLOAT:
655 case GLSL_TYPE_BOOL:
656 return type->components();
657 case GLSL_TYPE_ARRAY:
658 return type_size(type->fields.array) * type->length;
659 case GLSL_TYPE_STRUCT:
660 size = 0;
661 for (i = 0; i < type->length; i++) {
662 size += type_size(type->fields.structure[i].type);
663 }
664 return size;
665 case GLSL_TYPE_SAMPLER:
666 /* Samplers take up no register space, since they're baked in at
667 * link time.
668 */
669 return 0;
670 case GLSL_TYPE_ATOMIC_UINT:
671 return 0;
672 case GLSL_TYPE_IMAGE:
673 case GLSL_TYPE_VOID:
674 case GLSL_TYPE_ERROR:
675 case GLSL_TYPE_INTERFACE:
676 case GLSL_TYPE_DOUBLE:
677 unreachable("not reached");
678 }
679
680 return 0;
681 }
682
683 /**
684 * Create a MOV to read the timestamp register.
685 *
686 * The caller is responsible for emitting the MOV. The return value is
687 * the destination of the MOV, with extra parameters set.
688 */
689 fs_reg
690 fs_visitor::get_timestamp(fs_inst **out_mov)
691 {
692 assert(devinfo->gen >= 7);
693
694 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
695 BRW_ARF_TIMESTAMP,
696 0),
697 BRW_REGISTER_TYPE_UD));
698
699 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
700
701 fs_inst *mov = MOV(dst, ts);
702 /* We want to read the 3 fields we care about even if it's not enabled in
703 * the dispatch.
704 */
705 mov->force_writemask_all = true;
706
707 /* The caller wants the low 32 bits of the timestamp. Since it's running
708 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
709 * which is plenty of time for our purposes. It is identical across the
710 * EUs, but since it's tracking GPU core speed it will increment at a
711 * varying rate as render P-states change.
712 *
713 * The caller could also check if render P-states have changed (or anything
714 * else that might disrupt timing) by setting smear to 2 and checking if
715 * that field is != 0.
716 */
717 dst.set_smear(0);
718
719 *out_mov = mov;
720 return dst;
721 }
722
723 void
724 fs_visitor::emit_shader_time_begin()
725 {
726 current_annotation = "shader time start";
727 fs_inst *mov;
728 shader_start_time = get_timestamp(&mov);
729 emit(mov);
730 }
731
732 void
733 fs_visitor::emit_shader_time_end()
734 {
735 current_annotation = "shader time end";
736
737 enum shader_time_shader_type type, written_type, reset_type;
738 switch (stage) {
739 case MESA_SHADER_VERTEX:
740 type = ST_VS;
741 written_type = ST_VS_WRITTEN;
742 reset_type = ST_VS_RESET;
743 break;
744 case MESA_SHADER_GEOMETRY:
745 type = ST_GS;
746 written_type = ST_GS_WRITTEN;
747 reset_type = ST_GS_RESET;
748 break;
749 case MESA_SHADER_FRAGMENT:
750 if (dispatch_width == 8) {
751 type = ST_FS8;
752 written_type = ST_FS8_WRITTEN;
753 reset_type = ST_FS8_RESET;
754 } else {
755 assert(dispatch_width == 16);
756 type = ST_FS16;
757 written_type = ST_FS16_WRITTEN;
758 reset_type = ST_FS16_RESET;
759 }
760 break;
761 default:
762 unreachable("fs_visitor::emit_shader_time_end missing code");
763 }
764
765 /* Insert our code just before the final SEND with EOT. */
766 exec_node *end = this->instructions.get_tail();
767 assert(end && ((fs_inst *) end)->eot);
768
769 fs_inst *tm_read;
770 fs_reg shader_end_time = get_timestamp(&tm_read);
771 end->insert_before(tm_read);
772
773 /* Check that there weren't any timestamp reset events (assuming these
774 * were the only two timestamp reads that happened).
775 */
776 fs_reg reset = shader_end_time;
777 reset.set_smear(2);
778 fs_inst *test = AND(reg_null_d, reset, fs_reg(1u));
779 test->conditional_mod = BRW_CONDITIONAL_Z;
780 test->force_writemask_all = true;
781 end->insert_before(test);
782 end->insert_before(IF(BRW_PREDICATE_NORMAL));
783
784 fs_reg start = shader_start_time;
785 start.negate = true;
786 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
787 diff.set_smear(0);
788 fs_inst *add = ADD(diff, start, shader_end_time);
789 add->force_writemask_all = true;
790 end->insert_before(add);
791
792 /* If there were no instructions between the two timestamp gets, the diff
793 * is 2 cycles. Remove that overhead, so I can forget about that when
794 * trying to determine the time taken for single instructions.
795 */
796 add = ADD(diff, diff, fs_reg(-2u));
797 add->force_writemask_all = true;
798 end->insert_before(add);
799
800 end->insert_before(SHADER_TIME_ADD(type, diff));
801 end->insert_before(SHADER_TIME_ADD(written_type, fs_reg(1u)));
802 end->insert_before(new(mem_ctx) fs_inst(BRW_OPCODE_ELSE, dispatch_width));
803 end->insert_before(SHADER_TIME_ADD(reset_type, fs_reg(1u)));
804 end->insert_before(new(mem_ctx) fs_inst(BRW_OPCODE_ENDIF, dispatch_width));
805 }
806
807 fs_inst *
808 fs_visitor::SHADER_TIME_ADD(enum shader_time_shader_type type, fs_reg value)
809 {
810 int shader_time_index =
811 brw_get_shader_time_index(brw, shader_prog, prog, type);
812 fs_reg offset = fs_reg(shader_time_index * SHADER_TIME_STRIDE);
813
814 fs_reg payload;
815 if (dispatch_width == 8)
816 payload = vgrf(glsl_type::uvec2_type);
817 else
818 payload = vgrf(glsl_type::uint_type);
819
820 return new(mem_ctx) fs_inst(SHADER_OPCODE_SHADER_TIME_ADD,
821 fs_reg(), payload, offset, value);
822 }
823
824 void
825 fs_visitor::vfail(const char *format, va_list va)
826 {
827 char *msg;
828
829 if (failed)
830 return;
831
832 failed = true;
833
834 msg = ralloc_vasprintf(mem_ctx, format, va);
835 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
836
837 this->fail_msg = msg;
838
839 if (debug_enabled) {
840 fprintf(stderr, "%s", msg);
841 }
842 }
843
844 void
845 fs_visitor::fail(const char *format, ...)
846 {
847 va_list va;
848
849 va_start(va, format);
850 vfail(format, va);
851 va_end(va);
852 }
853
854 /**
855 * Mark this program as impossible to compile in SIMD16 mode.
856 *
857 * During the SIMD8 compile (which happens first), we can detect and flag
858 * things that are unsupported in SIMD16 mode, so the compiler can skip
859 * the SIMD16 compile altogether.
860 *
861 * During a SIMD16 compile (if one happens anyway), this just calls fail().
862 */
863 void
864 fs_visitor::no16(const char *format, ...)
865 {
866 va_list va;
867
868 va_start(va, format);
869
870 if (dispatch_width == 16) {
871 vfail(format, va);
872 } else {
873 simd16_unsupported = true;
874
875 if (brw->perf_debug) {
876 if (no16_msg)
877 ralloc_vasprintf_append(&no16_msg, format, va);
878 else
879 no16_msg = ralloc_vasprintf(mem_ctx, format, va);
880 }
881 }
882
883 va_end(va);
884 }
885
886 fs_inst *
887 fs_visitor::emit(enum opcode opcode)
888 {
889 return emit(new(mem_ctx) fs_inst(opcode, dispatch_width));
890 }
891
892 fs_inst *
893 fs_visitor::emit(enum opcode opcode, const fs_reg &dst)
894 {
895 return emit(new(mem_ctx) fs_inst(opcode, dst));
896 }
897
898 fs_inst *
899 fs_visitor::emit(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
900 {
901 return emit(new(mem_ctx) fs_inst(opcode, dst, src0));
902 }
903
904 fs_inst *
905 fs_visitor::emit(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
906 const fs_reg &src1)
907 {
908 return emit(new(mem_ctx) fs_inst(opcode, dst, src0, src1));
909 }
910
911 fs_inst *
912 fs_visitor::emit(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
913 const fs_reg &src1, const fs_reg &src2)
914 {
915 return emit(new(mem_ctx) fs_inst(opcode, dst, src0, src1, src2));
916 }
917
918 fs_inst *
919 fs_visitor::emit(enum opcode opcode, const fs_reg &dst,
920 fs_reg src[], int sources)
921 {
922 return emit(new(mem_ctx) fs_inst(opcode, dst, src, sources));
923 }
924
925 /**
926 * Returns true if the instruction has a flag that means it won't
927 * update an entire destination register.
928 *
929 * For example, dead code elimination and live variable analysis want to know
930 * when a write to a variable screens off any preceding values that were in
931 * it.
932 */
933 bool
934 fs_inst::is_partial_write() const
935 {
936 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
937 (this->dst.width * type_sz(this->dst.type)) < 32 ||
938 !this->dst.is_contiguous());
939 }
940
941 int
942 fs_inst::regs_read(int arg) const
943 {
944 if (is_tex() && arg == 0 && src[0].file == GRF) {
945 return mlen;
946 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
947 return mlen;
948 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
949 return mlen;
950 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
951 return mlen;
952 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
953 return mlen;
954 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
955 return mlen;
956 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
957 return exec_size / 4;
958 }
959
960 switch (src[arg].file) {
961 case BAD_FILE:
962 case UNIFORM:
963 case IMM:
964 return 1;
965 case GRF:
966 case HW_REG:
967 if (src[arg].stride == 0) {
968 return 1;
969 } else {
970 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
971 return (size + 31) / 32;
972 }
973 case MRF:
974 unreachable("MRF registers are not allowed as sources");
975 default:
976 unreachable("Invalid register file");
977 }
978 }
979
980 bool
981 fs_inst::reads_flag() const
982 {
983 return predicate;
984 }
985
986 bool
987 fs_inst::writes_flag() const
988 {
989 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
990 opcode != BRW_OPCODE_IF &&
991 opcode != BRW_OPCODE_WHILE)) ||
992 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
993 }
994
995 /**
996 * Returns how many MRFs an FS opcode will write over.
997 *
998 * Note that this is not the 0 or 1 implied writes in an actual gen
999 * instruction -- the FS opcodes often generate MOVs in addition.
1000 */
1001 int
1002 fs_visitor::implied_mrf_writes(fs_inst *inst)
1003 {
1004 if (inst->mlen == 0)
1005 return 0;
1006
1007 if (inst->base_mrf == -1)
1008 return 0;
1009
1010 switch (inst->opcode) {
1011 case SHADER_OPCODE_RCP:
1012 case SHADER_OPCODE_RSQ:
1013 case SHADER_OPCODE_SQRT:
1014 case SHADER_OPCODE_EXP2:
1015 case SHADER_OPCODE_LOG2:
1016 case SHADER_OPCODE_SIN:
1017 case SHADER_OPCODE_COS:
1018 return 1 * dispatch_width / 8;
1019 case SHADER_OPCODE_POW:
1020 case SHADER_OPCODE_INT_QUOTIENT:
1021 case SHADER_OPCODE_INT_REMAINDER:
1022 return 2 * dispatch_width / 8;
1023 case SHADER_OPCODE_TEX:
1024 case FS_OPCODE_TXB:
1025 case SHADER_OPCODE_TXD:
1026 case SHADER_OPCODE_TXF:
1027 case SHADER_OPCODE_TXF_CMS:
1028 case SHADER_OPCODE_TXF_MCS:
1029 case SHADER_OPCODE_TG4:
1030 case SHADER_OPCODE_TG4_OFFSET:
1031 case SHADER_OPCODE_TXL:
1032 case SHADER_OPCODE_TXS:
1033 case SHADER_OPCODE_LOD:
1034 return 1;
1035 case FS_OPCODE_FB_WRITE:
1036 return 2;
1037 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
1038 case SHADER_OPCODE_GEN4_SCRATCH_READ:
1039 return 1;
1040 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
1041 return inst->mlen;
1042 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
1043 return 2;
1044 case SHADER_OPCODE_UNTYPED_ATOMIC:
1045 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
1046 case SHADER_OPCODE_URB_WRITE_SIMD8:
1047 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
1048 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
1049 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
1050 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
1051 return 0;
1052 default:
1053 unreachable("not reached");
1054 }
1055 }
1056
1057 fs_reg
1058 fs_visitor::vgrf(const glsl_type *const type)
1059 {
1060 int reg_width = dispatch_width / 8;
1061 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
1062 brw_type_for_base_type(type), dispatch_width);
1063 }
1064
1065 fs_reg
1066 fs_visitor::vgrf(int num_components)
1067 {
1068 int reg_width = dispatch_width / 8;
1069 return fs_reg(GRF, alloc.allocate(num_components * reg_width),
1070 BRW_REGISTER_TYPE_F, dispatch_width);
1071 }
1072
1073 /** Fixed HW reg constructor. */
1074 fs_reg::fs_reg(enum register_file file, int reg)
1075 {
1076 init();
1077 this->file = file;
1078 this->reg = reg;
1079 this->type = BRW_REGISTER_TYPE_F;
1080
1081 switch (file) {
1082 case UNIFORM:
1083 this->width = 1;
1084 break;
1085 default:
1086 this->width = 8;
1087 }
1088 }
1089
1090 /** Fixed HW reg constructor. */
1091 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
1092 {
1093 init();
1094 this->file = file;
1095 this->reg = reg;
1096 this->type = type;
1097
1098 switch (file) {
1099 case UNIFORM:
1100 this->width = 1;
1101 break;
1102 default:
1103 this->width = 8;
1104 }
1105 }
1106
1107 /** Fixed HW reg constructor. */
1108 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
1109 uint8_t width)
1110 {
1111 init();
1112 this->file = file;
1113 this->reg = reg;
1114 this->type = type;
1115 this->width = width;
1116 }
1117
1118 fs_reg *
1119 fs_visitor::variable_storage(ir_variable *var)
1120 {
1121 return (fs_reg *)hash_table_find(this->variable_ht, var);
1122 }
1123
1124 void
1125 import_uniforms_callback(const void *key,
1126 void *data,
1127 void *closure)
1128 {
1129 struct hash_table *dst_ht = (struct hash_table *)closure;
1130 const fs_reg *reg = (const fs_reg *)data;
1131
1132 if (reg->file != UNIFORM)
1133 return;
1134
1135 hash_table_insert(dst_ht, data, key);
1136 }
1137
1138 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
1139 * This brings in those uniform definitions
1140 */
1141 void
1142 fs_visitor::import_uniforms(fs_visitor *v)
1143 {
1144 hash_table_call_foreach(v->variable_ht,
1145 import_uniforms_callback,
1146 variable_ht);
1147 this->push_constant_loc = v->push_constant_loc;
1148 this->pull_constant_loc = v->pull_constant_loc;
1149 this->uniforms = v->uniforms;
1150 this->param_size = v->param_size;
1151 }
1152
1153 /* Our support for uniforms is piggy-backed on the struct
1154 * gl_fragment_program, because that's where the values actually
1155 * get stored, rather than in some global gl_shader_program uniform
1156 * store.
1157 */
1158 void
1159 fs_visitor::setup_uniform_values(ir_variable *ir)
1160 {
1161 int namelen = strlen(ir->name);
1162
1163 /* The data for our (non-builtin) uniforms is stored in a series of
1164 * gl_uniform_driver_storage structs for each subcomponent that
1165 * glGetUniformLocation() could name. We know it's been set up in the same
1166 * order we'd walk the type, so walk the list of storage and find anything
1167 * with our name, or the prefix of a component that starts with our name.
1168 */
1169 unsigned params_before = uniforms;
1170 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
1171 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
1172
1173 if (strncmp(ir->name, storage->name, namelen) != 0 ||
1174 (storage->name[namelen] != 0 &&
1175 storage->name[namelen] != '.' &&
1176 storage->name[namelen] != '[')) {
1177 continue;
1178 }
1179
1180 unsigned slots = storage->type->component_slots();
1181 if (storage->array_elements)
1182 slots *= storage->array_elements;
1183
1184 for (unsigned i = 0; i < slots; i++) {
1185 stage_prog_data->param[uniforms++] = &storage->storage[i];
1186 }
1187 }
1188
1189 /* Make sure we actually initialized the right amount of stuff here. */
1190 assert(params_before + ir->type->component_slots() == uniforms);
1191 (void)params_before;
1192 }
1193
1194
1195 /* Our support for builtin uniforms is even scarier than non-builtin.
1196 * It sits on top of the PROG_STATE_VAR parameters that are
1197 * automatically updated from GL context state.
1198 */
1199 void
1200 fs_visitor::setup_builtin_uniform_values(ir_variable *ir)
1201 {
1202 const ir_state_slot *const slots = ir->get_state_slots();
1203 assert(slots != NULL);
1204
1205 for (unsigned int i = 0; i < ir->get_num_state_slots(); i++) {
1206 /* This state reference has already been setup by ir_to_mesa, but we'll
1207 * get the same index back here.
1208 */
1209 int index = _mesa_add_state_reference(this->prog->Parameters,
1210 (gl_state_index *)slots[i].tokens);
1211
1212 /* Add each of the unique swizzles of the element as a parameter.
1213 * This'll end up matching the expected layout of the
1214 * array/matrix/structure we're trying to fill in.
1215 */
1216 int last_swiz = -1;
1217 for (unsigned int j = 0; j < 4; j++) {
1218 int swiz = GET_SWZ(slots[i].swizzle, j);
1219 if (swiz == last_swiz)
1220 break;
1221 last_swiz = swiz;
1222
1223 stage_prog_data->param[uniforms++] =
1224 &prog->Parameters->ParameterValues[index][swiz];
1225 }
1226 }
1227 }
1228
1229 fs_reg *
1230 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
1231 bool origin_upper_left)
1232 {
1233 assert(stage == MESA_SHADER_FRAGMENT);
1234 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1235 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
1236 fs_reg wpos = *reg;
1237 bool flip = !origin_upper_left ^ key->render_to_fbo;
1238
1239 /* gl_FragCoord.x */
1240 if (pixel_center_integer) {
1241 emit(MOV(wpos, this->pixel_x));
1242 } else {
1243 emit(ADD(wpos, this->pixel_x, fs_reg(0.5f)));
1244 }
1245 wpos = offset(wpos, 1);
1246
1247 /* gl_FragCoord.y */
1248 if (!flip && pixel_center_integer) {
1249 emit(MOV(wpos, this->pixel_y));
1250 } else {
1251 fs_reg pixel_y = this->pixel_y;
1252 float offset = (pixel_center_integer ? 0.0 : 0.5);
1253
1254 if (flip) {
1255 pixel_y.negate = true;
1256 offset += key->drawable_height - 1.0;
1257 }
1258
1259 emit(ADD(wpos, pixel_y, fs_reg(offset)));
1260 }
1261 wpos = offset(wpos, 1);
1262
1263 /* gl_FragCoord.z */
1264 if (devinfo->gen >= 6) {
1265 emit(MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0))));
1266 } else {
1267 emit(FS_OPCODE_LINTERP, wpos,
1268 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1269 interp_reg(VARYING_SLOT_POS, 2));
1270 }
1271 wpos = offset(wpos, 1);
1272
1273 /* gl_FragCoord.w: Already set up in emit_interpolation */
1274 emit(BRW_OPCODE_MOV, wpos, this->wpos_w);
1275
1276 return reg;
1277 }
1278
1279 fs_inst *
1280 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1281 glsl_interp_qualifier interpolation_mode,
1282 bool is_centroid, bool is_sample)
1283 {
1284 brw_wm_barycentric_interp_mode barycoord_mode;
1285 if (devinfo->gen >= 6) {
1286 if (is_centroid) {
1287 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1288 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1289 else
1290 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1291 } else if (is_sample) {
1292 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1293 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1294 else
1295 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1296 } else {
1297 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1298 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1299 else
1300 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1301 }
1302 } else {
1303 /* On Ironlake and below, there is only one interpolation mode.
1304 * Centroid interpolation doesn't mean anything on this hardware --
1305 * there is no multisampling.
1306 */
1307 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1308 }
1309 return emit(FS_OPCODE_LINTERP, attr,
1310 this->delta_xy[barycoord_mode], interp);
1311 }
1312
1313 void
1314 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1315 const glsl_type *type,
1316 glsl_interp_qualifier interpolation_mode,
1317 int location, bool mod_centroid,
1318 bool mod_sample)
1319 {
1320 attr.type = brw_type_for_base_type(type->get_scalar_type());
1321
1322 assert(stage == MESA_SHADER_FRAGMENT);
1323 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1324 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1325
1326 unsigned int array_elements;
1327
1328 if (type->is_array()) {
1329 array_elements = type->length;
1330 if (array_elements == 0) {
1331 fail("dereferenced array '%s' has length 0\n", name);
1332 }
1333 type = type->fields.array;
1334 } else {
1335 array_elements = 1;
1336 }
1337
1338 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1339 bool is_gl_Color =
1340 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1341 if (key->flat_shade && is_gl_Color) {
1342 interpolation_mode = INTERP_QUALIFIER_FLAT;
1343 } else {
1344 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1345 }
1346 }
1347
1348 for (unsigned int i = 0; i < array_elements; i++) {
1349 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1350 if (prog_data->urb_setup[location] == -1) {
1351 /* If there's no incoming setup data for this slot, don't
1352 * emit interpolation for it.
1353 */
1354 attr = offset(attr, type->vector_elements);
1355 location++;
1356 continue;
1357 }
1358
1359 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1360 /* Constant interpolation (flat shading) case. The SF has
1361 * handed us defined values in only the constant offset
1362 * field of the setup reg.
1363 */
1364 for (unsigned int k = 0; k < type->vector_elements; k++) {
1365 struct brw_reg interp = interp_reg(location, k);
1366 interp = suboffset(interp, 3);
1367 interp.type = attr.type;
1368 emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1369 attr = offset(attr, 1);
1370 }
1371 } else {
1372 /* Smooth/noperspective interpolation case. */
1373 for (unsigned int k = 0; k < type->vector_elements; k++) {
1374 struct brw_reg interp = interp_reg(location, k);
1375 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1376 /* Get the pixel/sample mask into f0 so that we know
1377 * which pixels are lit. Then, for each channel that is
1378 * unlit, replace the centroid data with non-centroid
1379 * data.
1380 */
1381 emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1382
1383 fs_inst *inst;
1384 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1385 false, false);
1386 inst->predicate = BRW_PREDICATE_NORMAL;
1387 inst->predicate_inverse = true;
1388 if (devinfo->has_pln)
1389 inst->no_dd_clear = true;
1390
1391 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1392 mod_centroid && !key->persample_shading,
1393 mod_sample || key->persample_shading);
1394 inst->predicate = BRW_PREDICATE_NORMAL;
1395 inst->predicate_inverse = false;
1396 if (devinfo->has_pln)
1397 inst->no_dd_check = true;
1398
1399 } else {
1400 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1401 mod_centroid && !key->persample_shading,
1402 mod_sample || key->persample_shading);
1403 }
1404 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1405 emit(BRW_OPCODE_MUL, attr, attr, this->pixel_w);
1406 }
1407 attr = offset(attr, 1);
1408 }
1409
1410 }
1411 location++;
1412 }
1413 }
1414 }
1415
1416 fs_reg *
1417 fs_visitor::emit_frontfacing_interpolation()
1418 {
1419 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1420
1421 if (devinfo->gen >= 6) {
1422 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1423 * a boolean result from this (~0/true or 0/false).
1424 *
1425 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1426 * this task in only one instruction:
1427 * - a negation source modifier will flip the bit; and
1428 * - a W -> D type conversion will sign extend the bit into the high
1429 * word of the destination.
1430 *
1431 * An ASR 15 fills the low word of the destination.
1432 */
1433 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1434 g0.negate = true;
1435
1436 emit(ASR(*reg, g0, fs_reg(15)));
1437 } else {
1438 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1439 * a boolean result from this (1/true or 0/false).
1440 *
1441 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1442 * the negation source modifier to flip it. Unfortunately the SHR
1443 * instruction only operates on UD (or D with an abs source modifier)
1444 * sources without negation.
1445 *
1446 * Instead, use ASR (which will give ~0/true or 0/false).
1447 */
1448 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1449 g1_6.negate = true;
1450
1451 emit(ASR(*reg, g1_6, fs_reg(31)));
1452 }
1453
1454 return reg;
1455 }
1456
1457 void
1458 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1459 {
1460 assert(stage == MESA_SHADER_FRAGMENT);
1461 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1462 assert(dst.type == BRW_REGISTER_TYPE_F);
1463
1464 if (key->compute_pos_offset) {
1465 /* Convert int_sample_pos to floating point */
1466 emit(MOV(dst, int_sample_pos));
1467 /* Scale to the range [0, 1] */
1468 emit(MUL(dst, dst, fs_reg(1 / 16.0f)));
1469 }
1470 else {
1471 /* From ARB_sample_shading specification:
1472 * "When rendering to a non-multisample buffer, or if multisample
1473 * rasterization is disabled, gl_SamplePosition will always be
1474 * (0.5, 0.5).
1475 */
1476 emit(MOV(dst, fs_reg(0.5f)));
1477 }
1478 }
1479
1480 fs_reg *
1481 fs_visitor::emit_samplepos_setup()
1482 {
1483 assert(devinfo->gen >= 6);
1484
1485 this->current_annotation = "compute sample position";
1486 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1487 fs_reg pos = *reg;
1488 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1489 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1490
1491 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1492 * mode will be enabled.
1493 *
1494 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1495 * R31.1:0 Position Offset X/Y for Slot[3:0]
1496 * R31.3:2 Position Offset X/Y for Slot[7:4]
1497 * .....
1498 *
1499 * The X, Y sample positions come in as bytes in thread payload. So, read
1500 * the positions using vstride=16, width=8, hstride=2.
1501 */
1502 struct brw_reg sample_pos_reg =
1503 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1504 BRW_REGISTER_TYPE_B), 16, 8, 2);
1505
1506 if (dispatch_width == 8) {
1507 emit(MOV(int_sample_x, fs_reg(sample_pos_reg)));
1508 } else {
1509 emit(MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg)));
1510 emit(MOV(half(int_sample_x, 1), fs_reg(suboffset(sample_pos_reg, 16))))
1511 ->force_sechalf = true;
1512 }
1513 /* Compute gl_SamplePosition.x */
1514 compute_sample_position(pos, int_sample_x);
1515 pos = offset(pos, 1);
1516 if (dispatch_width == 8) {
1517 emit(MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1))));
1518 } else {
1519 emit(MOV(half(int_sample_y, 0),
1520 fs_reg(suboffset(sample_pos_reg, 1))));
1521 emit(MOV(half(int_sample_y, 1), fs_reg(suboffset(sample_pos_reg, 17))))
1522 ->force_sechalf = true;
1523 }
1524 /* Compute gl_SamplePosition.y */
1525 compute_sample_position(pos, int_sample_y);
1526 return reg;
1527 }
1528
1529 fs_reg *
1530 fs_visitor::emit_sampleid_setup()
1531 {
1532 assert(stage == MESA_SHADER_FRAGMENT);
1533 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1534 assert(devinfo->gen >= 6);
1535
1536 this->current_annotation = "compute sample id";
1537 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1538
1539 if (key->compute_sample_id) {
1540 fs_reg t1 = vgrf(glsl_type::int_type);
1541 fs_reg t2 = vgrf(glsl_type::int_type);
1542 t2.type = BRW_REGISTER_TYPE_UW;
1543
1544 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1545 * 8x multisampling, subspan 0 will represent sample N (where N
1546 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1547 * 7. We can find the value of N by looking at R0.0 bits 7:6
1548 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1549 * (since samples are always delivered in pairs). That is, we
1550 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1551 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1552 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1553 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1554 * populating a temporary variable with the sequence (0, 1, 2, 3),
1555 * and then reading from it using vstride=1, width=4, hstride=0.
1556 * These computations hold good for 4x multisampling as well.
1557 *
1558 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1559 * the first four slots are sample 0 of subspan 0; the next four
1560 * are sample 1 of subspan 0; the third group is sample 0 of
1561 * subspan 1, and finally sample 1 of subspan 1.
1562 */
1563 fs_inst *inst;
1564 inst = emit(BRW_OPCODE_AND, t1,
1565 fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1566 fs_reg(0xc0));
1567 inst->force_writemask_all = true;
1568 inst = emit(BRW_OPCODE_SHR, t1, t1, fs_reg(5));
1569 inst->force_writemask_all = true;
1570 /* This works for both SIMD8 and SIMD16 */
1571 inst = emit(MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210)));
1572 inst->force_writemask_all = true;
1573 /* This special instruction takes care of setting vstride=1,
1574 * width=4, hstride=0 of t2 during an ADD instruction.
1575 */
1576 emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1577 } else {
1578 /* As per GL_ARB_sample_shading specification:
1579 * "When rendering to a non-multisample buffer, or if multisample
1580 * rasterization is disabled, gl_SampleID will always be zero."
1581 */
1582 emit(BRW_OPCODE_MOV, *reg, fs_reg(0));
1583 }
1584
1585 return reg;
1586 }
1587
1588 void
1589 fs_visitor::resolve_source_modifiers(fs_reg *src)
1590 {
1591 if (!src->abs && !src->negate)
1592 return;
1593
1594 fs_reg temp = retype(vgrf(1), src->type);
1595 emit(MOV(temp, *src));
1596 *src = temp;
1597 }
1598
1599 fs_reg
1600 fs_visitor::fix_math_operand(fs_reg src)
1601 {
1602 /* Can't do hstride == 0 args on gen6 math, so expand it out. We
1603 * might be able to do better by doing execsize = 1 math and then
1604 * expanding that result out, but we would need to be careful with
1605 * masking.
1606 *
1607 * The hardware ignores source modifiers (negate and abs) on math
1608 * instructions, so we also move to a temp to set those up.
1609 */
1610 if (devinfo->gen == 6 && src.file != UNIFORM && src.file != IMM &&
1611 !src.abs && !src.negate)
1612 return src;
1613
1614 /* Gen7 relaxes most of the above restrictions, but still can't use IMM
1615 * operands to math
1616 */
1617 if (devinfo->gen >= 7 && src.file != IMM)
1618 return src;
1619
1620 fs_reg expanded = vgrf(glsl_type::float_type);
1621 expanded.type = src.type;
1622 emit(BRW_OPCODE_MOV, expanded, src);
1623 return expanded;
1624 }
1625
1626 fs_inst *
1627 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src)
1628 {
1629 switch (opcode) {
1630 case SHADER_OPCODE_RCP:
1631 case SHADER_OPCODE_RSQ:
1632 case SHADER_OPCODE_SQRT:
1633 case SHADER_OPCODE_EXP2:
1634 case SHADER_OPCODE_LOG2:
1635 case SHADER_OPCODE_SIN:
1636 case SHADER_OPCODE_COS:
1637 break;
1638 default:
1639 unreachable("not reached: bad math opcode");
1640 }
1641
1642 /* Can't do hstride == 0 args to gen6 math, so expand it out. We
1643 * might be able to do better by doing execsize = 1 math and then
1644 * expanding that result out, but we would need to be careful with
1645 * masking.
1646 *
1647 * Gen 6 hardware ignores source modifiers (negate and abs) on math
1648 * instructions, so we also move to a temp to set those up.
1649 */
1650 if (devinfo->gen == 6 || devinfo->gen == 7)
1651 src = fix_math_operand(src);
1652
1653 fs_inst *inst = emit(opcode, dst, src);
1654
1655 if (devinfo->gen < 6) {
1656 inst->base_mrf = 2;
1657 inst->mlen = dispatch_width / 8;
1658 }
1659
1660 return inst;
1661 }
1662
1663 fs_inst *
1664 fs_visitor::emit_math(enum opcode opcode, fs_reg dst, fs_reg src0, fs_reg src1)
1665 {
1666 int base_mrf = 2;
1667 fs_inst *inst;
1668
1669 if (devinfo->gen >= 8) {
1670 inst = emit(opcode, dst, src0, src1);
1671 } else if (devinfo->gen >= 6) {
1672 src0 = fix_math_operand(src0);
1673 src1 = fix_math_operand(src1);
1674
1675 inst = emit(opcode, dst, src0, src1);
1676 } else {
1677 /* From the Ironlake PRM, Volume 4, Part 1, Section 6.1.13
1678 * "Message Payload":
1679 *
1680 * "Operand0[7]. For the INT DIV functions, this operand is the
1681 * denominator."
1682 * ...
1683 * "Operand1[7]. For the INT DIV functions, this operand is the
1684 * numerator."
1685 */
1686 bool is_int_div = opcode != SHADER_OPCODE_POW;
1687 fs_reg &op0 = is_int_div ? src1 : src0;
1688 fs_reg &op1 = is_int_div ? src0 : src1;
1689
1690 emit(MOV(fs_reg(MRF, base_mrf + 1, op1.type, dispatch_width), op1));
1691 inst = emit(opcode, dst, op0, reg_null_f);
1692
1693 inst->base_mrf = base_mrf;
1694 inst->mlen = 2 * dispatch_width / 8;
1695 }
1696 return inst;
1697 }
1698
1699 void
1700 fs_visitor::emit_discard_jump()
1701 {
1702 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1703
1704 /* For performance, after a discard, jump to the end of the
1705 * shader if all relevant channels have been discarded.
1706 */
1707 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1708 discard_jump->flag_subreg = 1;
1709
1710 discard_jump->predicate = (dispatch_width == 8)
1711 ? BRW_PREDICATE_ALIGN1_ANY8H
1712 : BRW_PREDICATE_ALIGN1_ANY16H;
1713 discard_jump->predicate_inverse = true;
1714 }
1715
1716 void
1717 fs_visitor::assign_curb_setup()
1718 {
1719 if (dispatch_width == 8) {
1720 prog_data->dispatch_grf_start_reg = payload.num_regs;
1721 } else {
1722 assert(stage == MESA_SHADER_FRAGMENT);
1723 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1724 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1725 }
1726
1727 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1728
1729 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1730 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1731 for (unsigned int i = 0; i < inst->sources; i++) {
1732 if (inst->src[i].file == UNIFORM) {
1733 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1734 int constant_nr;
1735 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1736 constant_nr = push_constant_loc[uniform_nr];
1737 } else {
1738 /* Section 5.11 of the OpenGL 4.1 spec says:
1739 * "Out-of-bounds reads return undefined values, which include
1740 * values from other variables of the active program or zero."
1741 * Just return the first push constant.
1742 */
1743 constant_nr = 0;
1744 }
1745
1746 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1747 constant_nr / 8,
1748 constant_nr % 8);
1749
1750 inst->src[i].file = HW_REG;
1751 inst->src[i].fixed_hw_reg = byte_offset(
1752 retype(brw_reg, inst->src[i].type),
1753 inst->src[i].subreg_offset);
1754 }
1755 }
1756 }
1757 }
1758
1759 void
1760 fs_visitor::calculate_urb_setup()
1761 {
1762 assert(stage == MESA_SHADER_FRAGMENT);
1763 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1764 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1765
1766 memset(prog_data->urb_setup, -1,
1767 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1768
1769 int urb_next = 0;
1770 /* Figure out where each of the incoming setup attributes lands. */
1771 if (devinfo->gen >= 6) {
1772 if (_mesa_bitcount_64(prog->InputsRead &
1773 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1774 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1775 * first 16 varying inputs, so we can put them wherever we want.
1776 * Just put them in order.
1777 *
1778 * This is useful because it means that (a) inputs not used by the
1779 * fragment shader won't take up valuable register space, and (b) we
1780 * won't have to recompile the fragment shader if it gets paired with
1781 * a different vertex (or geometry) shader.
1782 */
1783 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1784 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1785 BITFIELD64_BIT(i)) {
1786 prog_data->urb_setup[i] = urb_next++;
1787 }
1788 }
1789 } else {
1790 /* We have enough input varyings that the SF/SBE pipeline stage can't
1791 * arbitrarily rearrange them to suit our whim; we have to put them
1792 * in an order that matches the output of the previous pipeline stage
1793 * (geometry or vertex shader).
1794 */
1795 struct brw_vue_map prev_stage_vue_map;
1796 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1797 key->input_slots_valid);
1798 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1799 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1800 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1801 slot++) {
1802 int varying = prev_stage_vue_map.slot_to_varying[slot];
1803 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1804 * unused.
1805 */
1806 if (varying != BRW_VARYING_SLOT_COUNT &&
1807 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1808 BITFIELD64_BIT(varying))) {
1809 prog_data->urb_setup[varying] = slot - first_slot;
1810 }
1811 }
1812 urb_next = prev_stage_vue_map.num_slots - first_slot;
1813 }
1814 } else {
1815 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1816 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1817 /* Point size is packed into the header, not as a general attribute */
1818 if (i == VARYING_SLOT_PSIZ)
1819 continue;
1820
1821 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1822 /* The back color slot is skipped when the front color is
1823 * also written to. In addition, some slots can be
1824 * written in the vertex shader and not read in the
1825 * fragment shader. So the register number must always be
1826 * incremented, mapped or not.
1827 */
1828 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1829 prog_data->urb_setup[i] = urb_next;
1830 urb_next++;
1831 }
1832 }
1833
1834 /*
1835 * It's a FS only attribute, and we did interpolation for this attribute
1836 * in SF thread. So, count it here, too.
1837 *
1838 * See compile_sf_prog() for more info.
1839 */
1840 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1841 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1842 }
1843
1844 prog_data->num_varying_inputs = urb_next;
1845 }
1846
1847 void
1848 fs_visitor::assign_urb_setup()
1849 {
1850 assert(stage == MESA_SHADER_FRAGMENT);
1851 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1852
1853 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1854
1855 /* Offset all the urb_setup[] index by the actual position of the
1856 * setup regs, now that the location of the constants has been chosen.
1857 */
1858 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1859 if (inst->opcode == FS_OPCODE_LINTERP) {
1860 assert(inst->src[1].file == HW_REG);
1861 inst->src[1].fixed_hw_reg.nr += urb_start;
1862 }
1863
1864 if (inst->opcode == FS_OPCODE_CINTERP) {
1865 assert(inst->src[0].file == HW_REG);
1866 inst->src[0].fixed_hw_reg.nr += urb_start;
1867 }
1868 }
1869
1870 /* Each attribute is 4 setup channels, each of which is half a reg. */
1871 this->first_non_payload_grf =
1872 urb_start + prog_data->num_varying_inputs * 2;
1873 }
1874
1875 void
1876 fs_visitor::assign_vs_urb_setup()
1877 {
1878 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1879 int grf, count, slot, channel, attr;
1880
1881 assert(stage == MESA_SHADER_VERTEX);
1882 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1883 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1884 count++;
1885
1886 /* Each attribute is 4 regs. */
1887 this->first_non_payload_grf =
1888 payload.num_regs + prog_data->curb_read_length + count * 4;
1889
1890 unsigned vue_entries =
1891 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1892
1893 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1894 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1895
1896 assert(vs_prog_data->base.urb_read_length <= 15);
1897
1898 /* Rewrite all ATTR file references to the hw grf that they land in. */
1899 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1900 for (int i = 0; i < inst->sources; i++) {
1901 if (inst->src[i].file == ATTR) {
1902
1903 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1904 slot = count - 1;
1905 } else {
1906 /* Attributes come in in a contiguous block, ordered by their
1907 * gl_vert_attrib value. That means we can compute the slot
1908 * number for an attribute by masking out the enabled
1909 * attributes before it and counting the bits.
1910 */
1911 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1912 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1913 BITFIELD64_MASK(attr));
1914 }
1915
1916 channel = inst->src[i].reg_offset & 3;
1917
1918 grf = payload.num_regs +
1919 prog_data->curb_read_length +
1920 slot * 4 + channel;
1921
1922 inst->src[i].file = HW_REG;
1923 inst->src[i].fixed_hw_reg =
1924 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1925 }
1926 }
1927 }
1928 }
1929
1930 /**
1931 * Split large virtual GRFs into separate components if we can.
1932 *
1933 * This is mostly duplicated with what brw_fs_vector_splitting does,
1934 * but that's really conservative because it's afraid of doing
1935 * splitting that doesn't result in real progress after the rest of
1936 * the optimization phases, which would cause infinite looping in
1937 * optimization. We can do it once here, safely. This also has the
1938 * opportunity to split interpolated values, or maybe even uniforms,
1939 * which we don't have at the IR level.
1940 *
1941 * We want to split, because virtual GRFs are what we register
1942 * allocate and spill (due to contiguousness requirements for some
1943 * instructions), and they're what we naturally generate in the
1944 * codegen process, but most virtual GRFs don't actually need to be
1945 * contiguous sets of GRFs. If we split, we'll end up with reduced
1946 * live intervals and better dead code elimination and coalescing.
1947 */
1948 void
1949 fs_visitor::split_virtual_grfs()
1950 {
1951 int num_vars = this->alloc.count;
1952
1953 /* Count the total number of registers */
1954 int reg_count = 0;
1955 int vgrf_to_reg[num_vars];
1956 for (int i = 0; i < num_vars; i++) {
1957 vgrf_to_reg[i] = reg_count;
1958 reg_count += alloc.sizes[i];
1959 }
1960
1961 /* An array of "split points". For each register slot, this indicates
1962 * if this slot can be separated from the previous slot. Every time an
1963 * instruction uses multiple elements of a register (as a source or
1964 * destination), we mark the used slots as inseparable. Then we go
1965 * through and split the registers into the smallest pieces we can.
1966 */
1967 bool split_points[reg_count];
1968 memset(split_points, 0, sizeof(split_points));
1969
1970 /* Mark all used registers as fully splittable */
1971 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1972 if (inst->dst.file == GRF) {
1973 int reg = vgrf_to_reg[inst->dst.reg];
1974 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1975 split_points[reg + j] = true;
1976 }
1977
1978 for (int i = 0; i < inst->sources; i++) {
1979 if (inst->src[i].file == GRF) {
1980 int reg = vgrf_to_reg[inst->src[i].reg];
1981 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1982 split_points[reg + j] = true;
1983 }
1984 }
1985 }
1986
1987 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1988 if (inst->dst.file == GRF) {
1989 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1990 for (int j = 1; j < inst->regs_written; j++)
1991 split_points[reg + j] = false;
1992 }
1993 for (int i = 0; i < inst->sources; i++) {
1994 if (inst->src[i].file == GRF) {
1995 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1996 for (int j = 1; j < inst->regs_read(i); j++)
1997 split_points[reg + j] = false;
1998 }
1999 }
2000 }
2001
2002 int new_virtual_grf[reg_count];
2003 int new_reg_offset[reg_count];
2004
2005 int reg = 0;
2006 for (int i = 0; i < num_vars; i++) {
2007 /* The first one should always be 0 as a quick sanity check. */
2008 assert(split_points[reg] == false);
2009
2010 /* j = 0 case */
2011 new_reg_offset[reg] = 0;
2012 reg++;
2013 int offset = 1;
2014
2015 /* j > 0 case */
2016 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
2017 /* If this is a split point, reset the offset to 0 and allocate a
2018 * new virtual GRF for the previous offset many registers
2019 */
2020 if (split_points[reg]) {
2021 assert(offset <= MAX_VGRF_SIZE);
2022 int grf = alloc.allocate(offset);
2023 for (int k = reg - offset; k < reg; k++)
2024 new_virtual_grf[k] = grf;
2025 offset = 0;
2026 }
2027 new_reg_offset[reg] = offset;
2028 offset++;
2029 reg++;
2030 }
2031
2032 /* The last one gets the original register number */
2033 assert(offset <= MAX_VGRF_SIZE);
2034 alloc.sizes[i] = offset;
2035 for (int k = reg - offset; k < reg; k++)
2036 new_virtual_grf[k] = i;
2037 }
2038 assert(reg == reg_count);
2039
2040 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2041 if (inst->dst.file == GRF) {
2042 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
2043 inst->dst.reg = new_virtual_grf[reg];
2044 inst->dst.reg_offset = new_reg_offset[reg];
2045 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2046 }
2047 for (int i = 0; i < inst->sources; i++) {
2048 if (inst->src[i].file == GRF) {
2049 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
2050 inst->src[i].reg = new_virtual_grf[reg];
2051 inst->src[i].reg_offset = new_reg_offset[reg];
2052 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
2053 }
2054 }
2055 }
2056 invalidate_live_intervals();
2057 }
2058
2059 /**
2060 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
2061 *
2062 * During code generation, we create tons of temporary variables, many of
2063 * which get immediately killed and are never used again. Yet, in later
2064 * optimization and analysis passes, such as compute_live_intervals, we need
2065 * to loop over all the virtual GRFs. Compacting them can save a lot of
2066 * overhead.
2067 */
2068 bool
2069 fs_visitor::compact_virtual_grfs()
2070 {
2071 bool progress = false;
2072 int remap_table[this->alloc.count];
2073 memset(remap_table, -1, sizeof(remap_table));
2074
2075 /* Mark which virtual GRFs are used. */
2076 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
2077 if (inst->dst.file == GRF)
2078 remap_table[inst->dst.reg] = 0;
2079
2080 for (int i = 0; i < inst->sources; i++) {
2081 if (inst->src[i].file == GRF)
2082 remap_table[inst->src[i].reg] = 0;
2083 }
2084 }
2085
2086 /* Compact the GRF arrays. */
2087 int new_index = 0;
2088 for (unsigned i = 0; i < this->alloc.count; i++) {
2089 if (remap_table[i] == -1) {
2090 /* We just found an unused register. This means that we are
2091 * actually going to compact something.
2092 */
2093 progress = true;
2094 } else {
2095 remap_table[i] = new_index;
2096 alloc.sizes[new_index] = alloc.sizes[i];
2097 invalidate_live_intervals();
2098 ++new_index;
2099 }
2100 }
2101
2102 this->alloc.count = new_index;
2103
2104 /* Patch all the instructions to use the newly renumbered registers */
2105 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2106 if (inst->dst.file == GRF)
2107 inst->dst.reg = remap_table[inst->dst.reg];
2108
2109 for (int i = 0; i < inst->sources; i++) {
2110 if (inst->src[i].file == GRF)
2111 inst->src[i].reg = remap_table[inst->src[i].reg];
2112 }
2113 }
2114
2115 /* Patch all the references to delta_xy, since they're used in register
2116 * allocation. If they're unused, switch them to BAD_FILE so we don't
2117 * think some random VGRF is delta_xy.
2118 */
2119 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2120 if (delta_xy[i].file == GRF) {
2121 if (remap_table[delta_xy[i].reg] != -1) {
2122 delta_xy[i].reg = remap_table[delta_xy[i].reg];
2123 } else {
2124 delta_xy[i].file = BAD_FILE;
2125 }
2126 }
2127 }
2128
2129 return progress;
2130 }
2131
2132 /*
2133 * Implements array access of uniforms by inserting a
2134 * PULL_CONSTANT_LOAD instruction.
2135 *
2136 * Unlike temporary GRF array access (where we don't support it due to
2137 * the difficulty of doing relative addressing on instruction
2138 * destinations), we could potentially do array access of uniforms
2139 * that were loaded in GRF space as push constants. In real-world
2140 * usage we've seen, though, the arrays being used are always larger
2141 * than we could load as push constants, so just always move all
2142 * uniform array access out to a pull constant buffer.
2143 */
2144 void
2145 fs_visitor::move_uniform_array_access_to_pull_constants()
2146 {
2147 if (dispatch_width != 8)
2148 return;
2149
2150 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2151 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
2152
2153 /* Walk through and find array access of uniforms. Put a copy of that
2154 * uniform in the pull constant buffer.
2155 *
2156 * Note that we don't move constant-indexed accesses to arrays. No
2157 * testing has been done of the performance impact of this choice.
2158 */
2159 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2160 for (int i = 0 ; i < inst->sources; i++) {
2161 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
2162 continue;
2163
2164 int uniform = inst->src[i].reg;
2165
2166 /* If this array isn't already present in the pull constant buffer,
2167 * add it.
2168 */
2169 if (pull_constant_loc[uniform] == -1) {
2170 const gl_constant_value **values = &stage_prog_data->param[uniform];
2171
2172 assert(param_size[uniform]);
2173
2174 for (int j = 0; j < param_size[uniform]; j++) {
2175 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
2176
2177 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
2178 values[j];
2179 }
2180 }
2181 }
2182 }
2183 }
2184
2185 /**
2186 * Assign UNIFORM file registers to either push constants or pull constants.
2187 *
2188 * We allow a fragment shader to have more than the specified minimum
2189 * maximum number of fragment shader uniform components (64). If
2190 * there are too many of these, they'd fill up all of register space.
2191 * So, this will push some of them out to the pull constant buffer and
2192 * update the program to load them.
2193 */
2194 void
2195 fs_visitor::assign_constant_locations()
2196 {
2197 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
2198 if (dispatch_width != 8)
2199 return;
2200
2201 /* Find which UNIFORM registers are still in use. */
2202 bool is_live[uniforms];
2203 for (unsigned int i = 0; i < uniforms; i++) {
2204 is_live[i] = false;
2205 }
2206
2207 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2208 for (int i = 0; i < inst->sources; i++) {
2209 if (inst->src[i].file != UNIFORM)
2210 continue;
2211
2212 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
2213 if (constant_nr >= 0 && constant_nr < (int) uniforms)
2214 is_live[constant_nr] = true;
2215 }
2216 }
2217
2218 /* Only allow 16 registers (128 uniform components) as push constants.
2219 *
2220 * Just demote the end of the list. We could probably do better
2221 * here, demoting things that are rarely used in the program first.
2222 *
2223 * If changing this value, note the limitation about total_regs in
2224 * brw_curbe.c.
2225 */
2226 unsigned int max_push_components = 16 * 8;
2227 unsigned int num_push_constants = 0;
2228
2229 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
2230
2231 for (unsigned int i = 0; i < uniforms; i++) {
2232 if (!is_live[i] || pull_constant_loc[i] != -1) {
2233 /* This UNIFORM register is either dead, or has already been demoted
2234 * to a pull const. Mark it as no longer living in the param[] array.
2235 */
2236 push_constant_loc[i] = -1;
2237 continue;
2238 }
2239
2240 if (num_push_constants < max_push_components) {
2241 /* Retain as a push constant. Record the location in the params[]
2242 * array.
2243 */
2244 push_constant_loc[i] = num_push_constants++;
2245 } else {
2246 /* Demote to a pull constant. */
2247 push_constant_loc[i] = -1;
2248
2249 int pull_index = stage_prog_data->nr_pull_params++;
2250 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
2251 pull_constant_loc[i] = pull_index;
2252 }
2253 }
2254
2255 stage_prog_data->nr_params = num_push_constants;
2256
2257 /* Up until now, the param[] array has been indexed by reg + reg_offset
2258 * of UNIFORM registers. Condense it to only contain the uniforms we
2259 * chose to upload as push constants.
2260 */
2261 for (unsigned int i = 0; i < uniforms; i++) {
2262 int remapped = push_constant_loc[i];
2263
2264 if (remapped == -1)
2265 continue;
2266
2267 assert(remapped <= (int)i);
2268 stage_prog_data->param[remapped] = stage_prog_data->param[i];
2269 }
2270 }
2271
2272 /**
2273 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2274 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2275 */
2276 void
2277 fs_visitor::demote_pull_constants()
2278 {
2279 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2280 for (int i = 0; i < inst->sources; i++) {
2281 if (inst->src[i].file != UNIFORM)
2282 continue;
2283
2284 int pull_index;
2285 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
2286 if (location >= uniforms) /* Out of bounds access */
2287 pull_index = -1;
2288 else
2289 pull_index = pull_constant_loc[location];
2290
2291 if (pull_index == -1)
2292 continue;
2293
2294 /* Set up the annotation tracking for new generated instructions. */
2295 base_ir = inst->ir;
2296 current_annotation = inst->annotation;
2297
2298 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
2299 fs_reg dst = vgrf(glsl_type::float_type);
2300
2301 /* Generate a pull load into dst. */
2302 if (inst->src[i].reladdr) {
2303 exec_list list = VARYING_PULL_CONSTANT_LOAD(dst,
2304 surf_index,
2305 *inst->src[i].reladdr,
2306 pull_index);
2307 inst->insert_before(block, &list);
2308 inst->src[i].reladdr = NULL;
2309 } else {
2310 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
2311 fs_inst *pull =
2312 new(mem_ctx) fs_inst(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, 8,
2313 dst, surf_index, offset);
2314 inst->insert_before(block, pull);
2315 inst->src[i].set_smear(pull_index & 3);
2316 }
2317
2318 /* Rewrite the instruction to use the temporary VGRF. */
2319 inst->src[i].file = GRF;
2320 inst->src[i].reg = dst.reg;
2321 inst->src[i].reg_offset = 0;
2322 inst->src[i].width = dispatch_width;
2323 }
2324 }
2325 invalidate_live_intervals();
2326 }
2327
2328 bool
2329 fs_visitor::opt_algebraic()
2330 {
2331 bool progress = false;
2332
2333 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2334 switch (inst->opcode) {
2335 case BRW_OPCODE_MOV:
2336 if (inst->src[0].file != IMM)
2337 break;
2338
2339 if (inst->saturate) {
2340 if (inst->dst.type != inst->src[0].type)
2341 assert(!"unimplemented: saturate mixed types");
2342
2343 if (brw_saturate_immediate(inst->dst.type,
2344 &inst->src[0].fixed_hw_reg)) {
2345 inst->saturate = false;
2346 progress = true;
2347 }
2348 }
2349 break;
2350
2351 case BRW_OPCODE_MUL:
2352 if (inst->src[1].file != IMM)
2353 continue;
2354
2355 /* a * 1.0 = a */
2356 if (inst->src[1].is_one()) {
2357 inst->opcode = BRW_OPCODE_MOV;
2358 inst->src[1] = reg_undef;
2359 progress = true;
2360 break;
2361 }
2362
2363 /* a * -1.0 = -a */
2364 if (inst->src[1].is_negative_one()) {
2365 inst->opcode = BRW_OPCODE_MOV;
2366 inst->src[0].negate = !inst->src[0].negate;
2367 inst->src[1] = reg_undef;
2368 progress = true;
2369 break;
2370 }
2371
2372 /* a * 0.0 = 0.0 */
2373 if (inst->src[1].is_zero()) {
2374 inst->opcode = BRW_OPCODE_MOV;
2375 inst->src[0] = inst->src[1];
2376 inst->src[1] = reg_undef;
2377 progress = true;
2378 break;
2379 }
2380
2381 if (inst->src[0].file == IMM) {
2382 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2383 inst->opcode = BRW_OPCODE_MOV;
2384 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
2385 inst->src[1] = reg_undef;
2386 progress = true;
2387 break;
2388 }
2389 break;
2390 case BRW_OPCODE_ADD:
2391 if (inst->src[1].file != IMM)
2392 continue;
2393
2394 /* a + 0.0 = a */
2395 if (inst->src[1].is_zero()) {
2396 inst->opcode = BRW_OPCODE_MOV;
2397 inst->src[1] = reg_undef;
2398 progress = true;
2399 break;
2400 }
2401
2402 if (inst->src[0].file == IMM) {
2403 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2404 inst->opcode = BRW_OPCODE_MOV;
2405 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
2406 inst->src[1] = reg_undef;
2407 progress = true;
2408 break;
2409 }
2410 break;
2411 case BRW_OPCODE_OR:
2412 if (inst->src[0].equals(inst->src[1])) {
2413 inst->opcode = BRW_OPCODE_MOV;
2414 inst->src[1] = reg_undef;
2415 progress = true;
2416 break;
2417 }
2418 break;
2419 case BRW_OPCODE_LRP:
2420 if (inst->src[1].equals(inst->src[2])) {
2421 inst->opcode = BRW_OPCODE_MOV;
2422 inst->src[0] = inst->src[1];
2423 inst->src[1] = reg_undef;
2424 inst->src[2] = reg_undef;
2425 progress = true;
2426 break;
2427 }
2428 break;
2429 case BRW_OPCODE_CMP:
2430 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2431 inst->src[0].abs &&
2432 inst->src[0].negate &&
2433 inst->src[1].is_zero()) {
2434 inst->src[0].abs = false;
2435 inst->src[0].negate = false;
2436 inst->conditional_mod = BRW_CONDITIONAL_Z;
2437 progress = true;
2438 break;
2439 }
2440 break;
2441 case BRW_OPCODE_SEL:
2442 if (inst->src[0].equals(inst->src[1])) {
2443 inst->opcode = BRW_OPCODE_MOV;
2444 inst->src[1] = reg_undef;
2445 inst->predicate = BRW_PREDICATE_NONE;
2446 inst->predicate_inverse = false;
2447 progress = true;
2448 } else if (inst->saturate && inst->src[1].file == IMM) {
2449 switch (inst->conditional_mod) {
2450 case BRW_CONDITIONAL_LE:
2451 case BRW_CONDITIONAL_L:
2452 switch (inst->src[1].type) {
2453 case BRW_REGISTER_TYPE_F:
2454 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2455 inst->opcode = BRW_OPCODE_MOV;
2456 inst->src[1] = reg_undef;
2457 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2458 progress = true;
2459 }
2460 break;
2461 default:
2462 break;
2463 }
2464 break;
2465 case BRW_CONDITIONAL_GE:
2466 case BRW_CONDITIONAL_G:
2467 switch (inst->src[1].type) {
2468 case BRW_REGISTER_TYPE_F:
2469 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2470 inst->opcode = BRW_OPCODE_MOV;
2471 inst->src[1] = reg_undef;
2472 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2473 progress = true;
2474 }
2475 break;
2476 default:
2477 break;
2478 }
2479 default:
2480 break;
2481 }
2482 }
2483 break;
2484 case BRW_OPCODE_MAD:
2485 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2486 inst->opcode = BRW_OPCODE_MOV;
2487 inst->src[1] = reg_undef;
2488 inst->src[2] = reg_undef;
2489 progress = true;
2490 } else if (inst->src[0].is_zero()) {
2491 inst->opcode = BRW_OPCODE_MUL;
2492 inst->src[0] = inst->src[2];
2493 inst->src[2] = reg_undef;
2494 progress = true;
2495 } else if (inst->src[1].is_one()) {
2496 inst->opcode = BRW_OPCODE_ADD;
2497 inst->src[1] = inst->src[2];
2498 inst->src[2] = reg_undef;
2499 progress = true;
2500 } else if (inst->src[2].is_one()) {
2501 inst->opcode = BRW_OPCODE_ADD;
2502 inst->src[2] = reg_undef;
2503 progress = true;
2504 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2505 inst->opcode = BRW_OPCODE_ADD;
2506 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2507 inst->src[2] = reg_undef;
2508 progress = true;
2509 }
2510 break;
2511 case SHADER_OPCODE_RCP: {
2512 fs_inst *prev = (fs_inst *)inst->prev;
2513 if (prev->opcode == SHADER_OPCODE_SQRT) {
2514 if (inst->src[0].equals(prev->dst)) {
2515 inst->opcode = SHADER_OPCODE_RSQ;
2516 inst->src[0] = prev->src[0];
2517 progress = true;
2518 }
2519 }
2520 break;
2521 }
2522 default:
2523 break;
2524 }
2525
2526 /* Swap if src[0] is immediate. */
2527 if (progress && inst->is_commutative()) {
2528 if (inst->src[0].file == IMM) {
2529 fs_reg tmp = inst->src[1];
2530 inst->src[1] = inst->src[0];
2531 inst->src[0] = tmp;
2532 }
2533 }
2534 }
2535 return progress;
2536 }
2537
2538 /**
2539 * Optimize sample messages which are followed by the final RT write.
2540 *
2541 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2542 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2543 * final texturing results copied to the framebuffer write payload and modify
2544 * them to write to the framebuffer directly.
2545 */
2546 bool
2547 fs_visitor::opt_sampler_eot()
2548 {
2549 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2550
2551 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2552 return false;
2553
2554 /* FINISHME: It should be possible to implement this optimization when there
2555 * are multiple drawbuffers.
2556 */
2557 if (key->nr_color_regions != 1)
2558 return false;
2559
2560 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2561 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2562 assert(fb_write->eot);
2563 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2564
2565 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2566
2567 /* There wasn't one; nothing to do. */
2568 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2569 return false;
2570
2571 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2572 * It's very likely to be the previous instruction.
2573 */
2574 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2575 if (load_payload->is_head_sentinel() ||
2576 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2577 return false;
2578
2579 assert(!tex_inst->eot); /* We can't get here twice */
2580 assert((tex_inst->offset & (0xff << 24)) == 0);
2581
2582 tex_inst->offset |= fb_write->target << 24;
2583 tex_inst->eot = true;
2584 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2585
2586 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2587 * to create a new LOAD_PAYLOAD command with the same sources and a space
2588 * saved for the header. Using a new destination register not only makes sure
2589 * we have enough space, but it will make sure the dead code eliminator kills
2590 * the instruction that this will replace.
2591 */
2592 if (tex_inst->header_present)
2593 return true;
2594
2595 fs_reg send_header = vgrf(load_payload->sources + 1);
2596 fs_reg *new_sources =
2597 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2598
2599 new_sources[0] = fs_reg();
2600 for (int i = 0; i < load_payload->sources; i++)
2601 new_sources[i+1] = load_payload->src[i];
2602
2603 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2604 * requires a lot of information about the sources to appropriately figure
2605 * out the number of registers needed to be used. Given this stage in our
2606 * optimization, we may not have the appropriate GRFs required by
2607 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2608 * manually emit the instruction.
2609 */
2610 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2611 load_payload->exec_size,
2612 send_header,
2613 new_sources,
2614 load_payload->sources + 1);
2615
2616 new_load_payload->regs_written = load_payload->regs_written + 1;
2617 tex_inst->mlen++;
2618 tex_inst->header_present = true;
2619 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2620 tex_inst->src[0] = send_header;
2621 tex_inst->dst = reg_null_ud;
2622
2623 return true;
2624 }
2625
2626 bool
2627 fs_visitor::opt_register_renaming()
2628 {
2629 bool progress = false;
2630 int depth = 0;
2631
2632 int remap[alloc.count];
2633 memset(remap, -1, sizeof(int) * alloc.count);
2634
2635 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2636 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2637 depth++;
2638 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2639 inst->opcode == BRW_OPCODE_WHILE) {
2640 depth--;
2641 }
2642
2643 /* Rewrite instruction sources. */
2644 for (int i = 0; i < inst->sources; i++) {
2645 if (inst->src[i].file == GRF &&
2646 remap[inst->src[i].reg] != -1 &&
2647 remap[inst->src[i].reg] != inst->src[i].reg) {
2648 inst->src[i].reg = remap[inst->src[i].reg];
2649 progress = true;
2650 }
2651 }
2652
2653 const int dst = inst->dst.reg;
2654
2655 if (depth == 0 &&
2656 inst->dst.file == GRF &&
2657 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2658 !inst->is_partial_write()) {
2659 if (remap[dst] == -1) {
2660 remap[dst] = dst;
2661 } else {
2662 remap[dst] = alloc.allocate(inst->dst.width / 8);
2663 inst->dst.reg = remap[dst];
2664 progress = true;
2665 }
2666 } else if (inst->dst.file == GRF &&
2667 remap[dst] != -1 &&
2668 remap[dst] != dst) {
2669 inst->dst.reg = remap[dst];
2670 progress = true;
2671 }
2672 }
2673
2674 if (progress) {
2675 invalidate_live_intervals();
2676
2677 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2678 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2679 delta_xy[i].reg = remap[delta_xy[i].reg];
2680 }
2681 }
2682 }
2683
2684 return progress;
2685 }
2686
2687 /**
2688 * Remove redundant or useless discard jumps.
2689 *
2690 * For example, we can eliminate jumps in the following sequence:
2691 *
2692 * discard-jump (redundant with the next jump)
2693 * discard-jump (useless; jumps to the next instruction)
2694 * placeholder-halt
2695 */
2696 bool
2697 fs_visitor::opt_redundant_discard_jumps()
2698 {
2699 bool progress = false;
2700
2701 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2702
2703 fs_inst *placeholder_halt = NULL;
2704 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2705 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2706 placeholder_halt = inst;
2707 break;
2708 }
2709 }
2710
2711 if (!placeholder_halt)
2712 return false;
2713
2714 /* Delete any HALTs immediately before the placeholder halt. */
2715 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2716 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2717 prev = (fs_inst *) placeholder_halt->prev) {
2718 prev->remove(last_bblock);
2719 progress = true;
2720 }
2721
2722 if (progress)
2723 invalidate_live_intervals();
2724
2725 return progress;
2726 }
2727
2728 bool
2729 fs_visitor::compute_to_mrf()
2730 {
2731 bool progress = false;
2732 int next_ip = 0;
2733
2734 /* No MRFs on Gen >= 7. */
2735 if (devinfo->gen >= 7)
2736 return false;
2737
2738 calculate_live_intervals();
2739
2740 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2741 int ip = next_ip;
2742 next_ip++;
2743
2744 if (inst->opcode != BRW_OPCODE_MOV ||
2745 inst->is_partial_write() ||
2746 inst->dst.file != MRF || inst->src[0].file != GRF ||
2747 inst->dst.type != inst->src[0].type ||
2748 inst->src[0].abs || inst->src[0].negate ||
2749 !inst->src[0].is_contiguous() ||
2750 inst->src[0].subreg_offset)
2751 continue;
2752
2753 /* Work out which hardware MRF registers are written by this
2754 * instruction.
2755 */
2756 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2757 int mrf_high;
2758 if (inst->dst.reg & BRW_MRF_COMPR4) {
2759 mrf_high = mrf_low + 4;
2760 } else if (inst->exec_size == 16) {
2761 mrf_high = mrf_low + 1;
2762 } else {
2763 mrf_high = mrf_low;
2764 }
2765
2766 /* Can't compute-to-MRF this GRF if someone else was going to
2767 * read it later.
2768 */
2769 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2770 continue;
2771
2772 /* Found a move of a GRF to a MRF. Let's see if we can go
2773 * rewrite the thing that made this GRF to write into the MRF.
2774 */
2775 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2776 if (scan_inst->dst.file == GRF &&
2777 scan_inst->dst.reg == inst->src[0].reg) {
2778 /* Found the last thing to write our reg we want to turn
2779 * into a compute-to-MRF.
2780 */
2781
2782 /* If this one instruction didn't populate all the
2783 * channels, bail. We might be able to rewrite everything
2784 * that writes that reg, but it would require smarter
2785 * tracking to delay the rewriting until complete success.
2786 */
2787 if (scan_inst->is_partial_write())
2788 break;
2789
2790 /* Things returning more than one register would need us to
2791 * understand coalescing out more than one MOV at a time.
2792 */
2793 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2794 break;
2795
2796 /* SEND instructions can't have MRF as a destination. */
2797 if (scan_inst->mlen)
2798 break;
2799
2800 if (devinfo->gen == 6) {
2801 /* gen6 math instructions must have the destination be
2802 * GRF, so no compute-to-MRF for them.
2803 */
2804 if (scan_inst->is_math()) {
2805 break;
2806 }
2807 }
2808
2809 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2810 /* Found the creator of our MRF's source value. */
2811 scan_inst->dst.file = MRF;
2812 scan_inst->dst.reg = inst->dst.reg;
2813 scan_inst->saturate |= inst->saturate;
2814 inst->remove(block);
2815 progress = true;
2816 }
2817 break;
2818 }
2819
2820 /* We don't handle control flow here. Most computation of
2821 * values that end up in MRFs are shortly before the MRF
2822 * write anyway.
2823 */
2824 if (block->start() == scan_inst)
2825 break;
2826
2827 /* You can't read from an MRF, so if someone else reads our
2828 * MRF's source GRF that we wanted to rewrite, that stops us.
2829 */
2830 bool interfered = false;
2831 for (int i = 0; i < scan_inst->sources; i++) {
2832 if (scan_inst->src[i].file == GRF &&
2833 scan_inst->src[i].reg == inst->src[0].reg &&
2834 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2835 interfered = true;
2836 }
2837 }
2838 if (interfered)
2839 break;
2840
2841 if (scan_inst->dst.file == MRF) {
2842 /* If somebody else writes our MRF here, we can't
2843 * compute-to-MRF before that.
2844 */
2845 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2846 int scan_mrf_high;
2847
2848 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2849 scan_mrf_high = scan_mrf_low + 4;
2850 } else if (scan_inst->exec_size == 16) {
2851 scan_mrf_high = scan_mrf_low + 1;
2852 } else {
2853 scan_mrf_high = scan_mrf_low;
2854 }
2855
2856 if (mrf_low == scan_mrf_low ||
2857 mrf_low == scan_mrf_high ||
2858 mrf_high == scan_mrf_low ||
2859 mrf_high == scan_mrf_high) {
2860 break;
2861 }
2862 }
2863
2864 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2865 /* Found a SEND instruction, which means that there are
2866 * live values in MRFs from base_mrf to base_mrf +
2867 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2868 * above it.
2869 */
2870 if (mrf_low >= scan_inst->base_mrf &&
2871 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2872 break;
2873 }
2874 if (mrf_high >= scan_inst->base_mrf &&
2875 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2876 break;
2877 }
2878 }
2879 }
2880 }
2881
2882 if (progress)
2883 invalidate_live_intervals();
2884
2885 return progress;
2886 }
2887
2888 /**
2889 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2890 * instructions to FS_OPCODE_REP_FB_WRITE.
2891 */
2892 void
2893 fs_visitor::emit_repclear_shader()
2894 {
2895 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2896 int base_mrf = 1;
2897 int color_mrf = base_mrf + 2;
2898
2899 fs_inst *mov = emit(MOV(vec4(brw_message_reg(color_mrf)),
2900 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F)));
2901 mov->force_writemask_all = true;
2902
2903 fs_inst *write;
2904 if (key->nr_color_regions == 1) {
2905 write = emit(FS_OPCODE_REP_FB_WRITE);
2906 write->saturate = key->clamp_fragment_color;
2907 write->base_mrf = color_mrf;
2908 write->target = 0;
2909 write->header_present = false;
2910 write->mlen = 1;
2911 } else {
2912 assume(key->nr_color_regions > 0);
2913 for (int i = 0; i < key->nr_color_regions; ++i) {
2914 write = emit(FS_OPCODE_REP_FB_WRITE);
2915 write->saturate = key->clamp_fragment_color;
2916 write->base_mrf = base_mrf;
2917 write->target = i;
2918 write->header_present = true;
2919 write->mlen = 3;
2920 }
2921 }
2922 write->eot = true;
2923
2924 calculate_cfg();
2925
2926 assign_constant_locations();
2927 assign_curb_setup();
2928
2929 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2930 assert(mov->src[0].file == HW_REG);
2931 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2932 }
2933
2934 /**
2935 * Walks through basic blocks, looking for repeated MRF writes and
2936 * removing the later ones.
2937 */
2938 bool
2939 fs_visitor::remove_duplicate_mrf_writes()
2940 {
2941 fs_inst *last_mrf_move[16];
2942 bool progress = false;
2943
2944 /* Need to update the MRF tracking for compressed instructions. */
2945 if (dispatch_width == 16)
2946 return false;
2947
2948 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2949
2950 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2951 if (inst->is_control_flow()) {
2952 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2953 }
2954
2955 if (inst->opcode == BRW_OPCODE_MOV &&
2956 inst->dst.file == MRF) {
2957 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2958 if (prev_inst && inst->equals(prev_inst)) {
2959 inst->remove(block);
2960 progress = true;
2961 continue;
2962 }
2963 }
2964
2965 /* Clear out the last-write records for MRFs that were overwritten. */
2966 if (inst->dst.file == MRF) {
2967 last_mrf_move[inst->dst.reg] = NULL;
2968 }
2969
2970 if (inst->mlen > 0 && inst->base_mrf != -1) {
2971 /* Found a SEND instruction, which will include two or fewer
2972 * implied MRF writes. We could do better here.
2973 */
2974 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2975 last_mrf_move[inst->base_mrf + i] = NULL;
2976 }
2977 }
2978
2979 /* Clear out any MRF move records whose sources got overwritten. */
2980 if (inst->dst.file == GRF) {
2981 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2982 if (last_mrf_move[i] &&
2983 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2984 last_mrf_move[i] = NULL;
2985 }
2986 }
2987 }
2988
2989 if (inst->opcode == BRW_OPCODE_MOV &&
2990 inst->dst.file == MRF &&
2991 inst->src[0].file == GRF &&
2992 !inst->is_partial_write()) {
2993 last_mrf_move[inst->dst.reg] = inst;
2994 }
2995 }
2996
2997 if (progress)
2998 invalidate_live_intervals();
2999
3000 return progress;
3001 }
3002
3003 static void
3004 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
3005 {
3006 /* Clear the flag for registers that actually got read (as expected). */
3007 for (int i = 0; i < inst->sources; i++) {
3008 int grf;
3009 if (inst->src[i].file == GRF) {
3010 grf = inst->src[i].reg;
3011 } else if (inst->src[i].file == HW_REG &&
3012 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
3013 grf = inst->src[i].fixed_hw_reg.nr;
3014 } else {
3015 continue;
3016 }
3017
3018 if (grf >= first_grf &&
3019 grf < first_grf + grf_len) {
3020 deps[grf - first_grf] = false;
3021 if (inst->exec_size == 16)
3022 deps[grf - first_grf + 1] = false;
3023 }
3024 }
3025 }
3026
3027 /**
3028 * Implements this workaround for the original 965:
3029 *
3030 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
3031 * check for post destination dependencies on this instruction, software
3032 * must ensure that there is no destination hazard for the case of ‘write
3033 * followed by a posted write’ shown in the following example.
3034 *
3035 * 1. mov r3 0
3036 * 2. send r3.xy <rest of send instruction>
3037 * 3. mov r2 r3
3038 *
3039 * Due to no post-destination dependency check on the ‘send’, the above
3040 * code sequence could have two instructions (1 and 2) in flight at the
3041 * same time that both consider ‘r3’ as the target of their final writes.
3042 */
3043 void
3044 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
3045 fs_inst *inst)
3046 {
3047 int write_len = inst->regs_written;
3048 int first_write_grf = inst->dst.reg;
3049 bool needs_dep[BRW_MAX_MRF];
3050 assert(write_len < (int)sizeof(needs_dep) - 1);
3051
3052 memset(needs_dep, false, sizeof(needs_dep));
3053 memset(needs_dep, true, write_len);
3054
3055 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
3056
3057 /* Walk backwards looking for writes to registers we're writing which
3058 * aren't read since being written. If we hit the start of the program,
3059 * we assume that there are no outstanding dependencies on entry to the
3060 * program.
3061 */
3062 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
3063 /* If we hit control flow, assume that there *are* outstanding
3064 * dependencies, and force their cleanup before our instruction.
3065 */
3066 if (block->start() == scan_inst) {
3067 for (int i = 0; i < write_len; i++) {
3068 if (needs_dep[i]) {
3069 inst->insert_before(block, DEP_RESOLVE_MOV(first_write_grf + i));
3070 }
3071 }
3072 return;
3073 }
3074
3075 /* We insert our reads as late as possible on the assumption that any
3076 * instruction but a MOV that might have left us an outstanding
3077 * dependency has more latency than a MOV.
3078 */
3079 if (scan_inst->dst.file == GRF) {
3080 for (int i = 0; i < scan_inst->regs_written; i++) {
3081 int reg = scan_inst->dst.reg + i;
3082
3083 if (reg >= first_write_grf &&
3084 reg < first_write_grf + write_len &&
3085 needs_dep[reg - first_write_grf]) {
3086 inst->insert_before(block, DEP_RESOLVE_MOV(reg));
3087 needs_dep[reg - first_write_grf] = false;
3088 if (scan_inst->exec_size == 16)
3089 needs_dep[reg - first_write_grf + 1] = false;
3090 }
3091 }
3092 }
3093
3094 /* Clear the flag for registers that actually got read (as expected). */
3095 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3096
3097 /* Continue the loop only if we haven't resolved all the dependencies */
3098 int i;
3099 for (i = 0; i < write_len; i++) {
3100 if (needs_dep[i])
3101 break;
3102 }
3103 if (i == write_len)
3104 return;
3105 }
3106 }
3107
3108 /**
3109 * Implements this workaround for the original 965:
3110 *
3111 * "[DevBW, DevCL] Errata: A destination register from a send can not be
3112 * used as a destination register until after it has been sourced by an
3113 * instruction with a different destination register.
3114 */
3115 void
3116 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
3117 {
3118 int write_len = inst->regs_written;
3119 int first_write_grf = inst->dst.reg;
3120 bool needs_dep[BRW_MAX_MRF];
3121 assert(write_len < (int)sizeof(needs_dep) - 1);
3122
3123 memset(needs_dep, false, sizeof(needs_dep));
3124 memset(needs_dep, true, write_len);
3125 /* Walk forwards looking for writes to registers we're writing which aren't
3126 * read before being written.
3127 */
3128 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
3129 /* If we hit control flow, force resolve all remaining dependencies. */
3130 if (block->end() == scan_inst) {
3131 for (int i = 0; i < write_len; i++) {
3132 if (needs_dep[i])
3133 scan_inst->insert_before(block,
3134 DEP_RESOLVE_MOV(first_write_grf + i));
3135 }
3136 return;
3137 }
3138
3139 /* Clear the flag for registers that actually got read (as expected). */
3140 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3141
3142 /* We insert our reads as late as possible since they're reading the
3143 * result of a SEND, which has massive latency.
3144 */
3145 if (scan_inst->dst.file == GRF &&
3146 scan_inst->dst.reg >= first_write_grf &&
3147 scan_inst->dst.reg < first_write_grf + write_len &&
3148 needs_dep[scan_inst->dst.reg - first_write_grf]) {
3149 scan_inst->insert_before(block, DEP_RESOLVE_MOV(scan_inst->dst.reg));
3150 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
3151 }
3152
3153 /* Continue the loop only if we haven't resolved all the dependencies */
3154 int i;
3155 for (i = 0; i < write_len; i++) {
3156 if (needs_dep[i])
3157 break;
3158 }
3159 if (i == write_len)
3160 return;
3161 }
3162 }
3163
3164 void
3165 fs_visitor::insert_gen4_send_dependency_workarounds()
3166 {
3167 if (devinfo->gen != 4 || devinfo->is_g4x)
3168 return;
3169
3170 bool progress = false;
3171
3172 /* Note that we're done with register allocation, so GRF fs_regs always
3173 * have a .reg_offset of 0.
3174 */
3175
3176 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3177 if (inst->mlen != 0 && inst->dst.file == GRF) {
3178 insert_gen4_pre_send_dependency_workarounds(block, inst);
3179 insert_gen4_post_send_dependency_workarounds(block, inst);
3180 progress = true;
3181 }
3182 }
3183
3184 if (progress)
3185 invalidate_live_intervals();
3186 }
3187
3188 /**
3189 * Turns the generic expression-style uniform pull constant load instruction
3190 * into a hardware-specific series of instructions for loading a pull
3191 * constant.
3192 *
3193 * The expression style allows the CSE pass before this to optimize out
3194 * repeated loads from the same offset, and gives the pre-register-allocation
3195 * scheduling full flexibility, while the conversion to native instructions
3196 * allows the post-register-allocation scheduler the best information
3197 * possible.
3198 *
3199 * Note that execution masking for setting up pull constant loads is special:
3200 * the channels that need to be written are unrelated to the current execution
3201 * mask, since a later instruction will use one of the result channels as a
3202 * source operand for all 8 or 16 of its channels.
3203 */
3204 void
3205 fs_visitor::lower_uniform_pull_constant_loads()
3206 {
3207 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3208 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3209 continue;
3210
3211 if (devinfo->gen >= 7) {
3212 /* The offset arg before was a vec4-aligned byte offset. We need to
3213 * turn it into a dword offset.
3214 */
3215 fs_reg const_offset_reg = inst->src[1];
3216 assert(const_offset_reg.file == IMM &&
3217 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3218 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
3219 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
3220
3221 /* We have to use a message header on Skylake to get SIMD4x2 mode.
3222 * Reserve space for the register.
3223 */
3224 if (devinfo->gen >= 9) {
3225 payload.reg_offset++;
3226 alloc.sizes[payload.reg] = 2;
3227 }
3228
3229 /* This is actually going to be a MOV, but since only the first dword
3230 * is accessed, we have a special opcode to do just that one. Note
3231 * that this needs to be an operation that will be considered a def
3232 * by live variable analysis, or register allocation will explode.
3233 */
3234 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3235 8, payload, const_offset_reg);
3236 setup->force_writemask_all = true;
3237
3238 setup->ir = inst->ir;
3239 setup->annotation = inst->annotation;
3240 inst->insert_before(block, setup);
3241
3242 /* Similarly, this will only populate the first 4 channels of the
3243 * result register (since we only use smear values from 0-3), but we
3244 * don't tell the optimizer.
3245 */
3246 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3247 inst->src[1] = payload;
3248
3249 invalidate_live_intervals();
3250 } else {
3251 /* Before register allocation, we didn't tell the scheduler about the
3252 * MRF we use. We know it's safe to use this MRF because nothing
3253 * else does except for register spill/unspill, which generates and
3254 * uses its MRF within a single IR instruction.
3255 */
3256 inst->base_mrf = 14;
3257 inst->mlen = 1;
3258 }
3259 }
3260 }
3261
3262 bool
3263 fs_visitor::lower_load_payload()
3264 {
3265 bool progress = false;
3266
3267 int vgrf_to_reg[alloc.count];
3268 int reg_count = 0;
3269 for (unsigned i = 0; i < alloc.count; ++i) {
3270 vgrf_to_reg[i] = reg_count;
3271 reg_count += alloc.sizes[i];
3272 }
3273
3274 struct {
3275 bool written:1; /* Whether this register has ever been written */
3276 bool force_writemask_all:1;
3277 bool force_sechalf:1;
3278 } metadata[reg_count];
3279 memset(metadata, 0, sizeof(metadata));
3280
3281 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3282 if (inst->dst.file == GRF) {
3283 const int dst_reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
3284 bool force_sechalf = inst->force_sechalf &&
3285 !inst->force_writemask_all;
3286 bool toggle_sechalf = inst->dst.width == 16 &&
3287 type_sz(inst->dst.type) == 4 &&
3288 !inst->force_writemask_all;
3289 for (int i = 0; i < inst->regs_written; ++i) {
3290 metadata[dst_reg + i].written = true;
3291 metadata[dst_reg + i].force_sechalf = force_sechalf;
3292 metadata[dst_reg + i].force_writemask_all = inst->force_writemask_all;
3293 force_sechalf = (toggle_sechalf != force_sechalf);
3294 }
3295 }
3296
3297 if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD) {
3298 assert(inst->dst.file == MRF || inst->dst.file == GRF);
3299 fs_reg dst = inst->dst;
3300
3301 for (int i = 0; i < inst->sources; i++) {
3302 dst.width = inst->src[i].effective_width;
3303 dst.type = inst->src[i].type;
3304
3305 if (inst->src[i].file == BAD_FILE) {
3306 /* Do nothing but otherwise increment as normal */
3307 } else if (dst.file == MRF &&
3308 dst.width == 8 &&
3309 devinfo->has_compr4 &&
3310 i + 4 < inst->sources &&
3311 inst->src[i + 4].equals(horiz_offset(inst->src[i], 8))) {
3312 fs_reg compr4_dst = dst;
3313 compr4_dst.reg += BRW_MRF_COMPR4;
3314 compr4_dst.width = 16;
3315 fs_reg compr4_src = inst->src[i];
3316 compr4_src.width = 16;
3317 fs_inst *mov = MOV(compr4_dst, compr4_src);
3318 mov->force_writemask_all = true;
3319 inst->insert_before(block, mov);
3320 /* Mark i+4 as BAD_FILE so we don't emit a MOV for it */
3321 inst->src[i + 4].file = BAD_FILE;
3322 } else {
3323 fs_inst *mov = MOV(dst, inst->src[i]);
3324 if (inst->src[i].file == GRF) {
3325 int src_reg = vgrf_to_reg[inst->src[i].reg] +
3326 inst->src[i].reg_offset;
3327 mov->force_sechalf = metadata[src_reg].force_sechalf;
3328 mov->force_writemask_all = metadata[src_reg].force_writemask_all;
3329 } else {
3330 /* We don't have any useful metadata for immediates or
3331 * uniforms. Assume that any of the channels of the
3332 * destination may be used.
3333 */
3334 assert(inst->src[i].file == IMM ||
3335 inst->src[i].file == UNIFORM);
3336 mov->force_writemask_all = true;
3337 }
3338
3339 if (dst.file == GRF) {
3340 const int dst_reg = vgrf_to_reg[dst.reg] + dst.reg_offset;
3341 const bool force_writemask = mov->force_writemask_all;
3342 metadata[dst_reg].force_writemask_all = force_writemask;
3343 metadata[dst_reg].force_sechalf = mov->force_sechalf;
3344 if (dst.width * type_sz(dst.type) > 32) {
3345 assert(!mov->force_sechalf);
3346 metadata[dst_reg + 1].force_writemask_all = force_writemask;
3347 metadata[dst_reg + 1].force_sechalf = !force_writemask;
3348 }
3349 }
3350
3351 inst->insert_before(block, mov);
3352 }
3353
3354 dst = offset(dst, 1);
3355 }
3356
3357 inst->remove(block);
3358 progress = true;
3359 }
3360 }
3361
3362 if (progress)
3363 invalidate_live_intervals();
3364
3365 return progress;
3366 }
3367
3368 void
3369 fs_visitor::dump_instructions()
3370 {
3371 dump_instructions(NULL);
3372 }
3373
3374 void
3375 fs_visitor::dump_instructions(const char *name)
3376 {
3377 FILE *file = stderr;
3378 if (name && geteuid() != 0) {
3379 file = fopen(name, "w");
3380 if (!file)
3381 file = stderr;
3382 }
3383
3384 if (cfg) {
3385 calculate_register_pressure();
3386 int ip = 0, max_pressure = 0;
3387 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3388 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3389 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3390 dump_instruction(inst, file);
3391 ip++;
3392 }
3393 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3394 } else {
3395 int ip = 0;
3396 foreach_in_list(backend_instruction, inst, &instructions) {
3397 fprintf(file, "%4d: ", ip++);
3398 dump_instruction(inst, file);
3399 }
3400 }
3401
3402 if (file != stderr) {
3403 fclose(file);
3404 }
3405 }
3406
3407 void
3408 fs_visitor::dump_instruction(backend_instruction *be_inst)
3409 {
3410 dump_instruction(be_inst, stderr);
3411 }
3412
3413 void
3414 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3415 {
3416 fs_inst *inst = (fs_inst *)be_inst;
3417
3418 if (inst->predicate) {
3419 fprintf(file, "(%cf0.%d) ",
3420 inst->predicate_inverse ? '-' : '+',
3421 inst->flag_subreg);
3422 }
3423
3424 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3425 if (inst->saturate)
3426 fprintf(file, ".sat");
3427 if (inst->conditional_mod) {
3428 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3429 if (!inst->predicate &&
3430 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3431 inst->opcode != BRW_OPCODE_IF &&
3432 inst->opcode != BRW_OPCODE_WHILE))) {
3433 fprintf(file, ".f0.%d", inst->flag_subreg);
3434 }
3435 }
3436 fprintf(file, "(%d) ", inst->exec_size);
3437
3438
3439 switch (inst->dst.file) {
3440 case GRF:
3441 fprintf(file, "vgrf%d", inst->dst.reg);
3442 if (inst->dst.width != dispatch_width)
3443 fprintf(file, "@%d", inst->dst.width);
3444 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3445 inst->dst.subreg_offset)
3446 fprintf(file, "+%d.%d",
3447 inst->dst.reg_offset, inst->dst.subreg_offset);
3448 break;
3449 case MRF:
3450 fprintf(file, "m%d", inst->dst.reg);
3451 break;
3452 case BAD_FILE:
3453 fprintf(file, "(null)");
3454 break;
3455 case UNIFORM:
3456 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3457 break;
3458 case ATTR:
3459 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3460 break;
3461 case HW_REG:
3462 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3463 switch (inst->dst.fixed_hw_reg.nr) {
3464 case BRW_ARF_NULL:
3465 fprintf(file, "null");
3466 break;
3467 case BRW_ARF_ADDRESS:
3468 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3469 break;
3470 case BRW_ARF_ACCUMULATOR:
3471 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3472 break;
3473 case BRW_ARF_FLAG:
3474 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3475 inst->dst.fixed_hw_reg.subnr);
3476 break;
3477 default:
3478 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3479 inst->dst.fixed_hw_reg.subnr);
3480 break;
3481 }
3482 } else {
3483 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3484 }
3485 if (inst->dst.fixed_hw_reg.subnr)
3486 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3487 break;
3488 default:
3489 fprintf(file, "???");
3490 break;
3491 }
3492 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3493
3494 for (int i = 0; i < inst->sources; i++) {
3495 if (inst->src[i].negate)
3496 fprintf(file, "-");
3497 if (inst->src[i].abs)
3498 fprintf(file, "|");
3499 switch (inst->src[i].file) {
3500 case GRF:
3501 fprintf(file, "vgrf%d", inst->src[i].reg);
3502 if (inst->src[i].width != dispatch_width)
3503 fprintf(file, "@%d", inst->src[i].width);
3504 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3505 inst->src[i].subreg_offset)
3506 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3507 inst->src[i].subreg_offset);
3508 break;
3509 case MRF:
3510 fprintf(file, "***m%d***", inst->src[i].reg);
3511 break;
3512 case ATTR:
3513 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3514 break;
3515 case UNIFORM:
3516 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3517 if (inst->src[i].reladdr) {
3518 fprintf(file, "+reladdr");
3519 } else if (inst->src[i].subreg_offset) {
3520 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3521 inst->src[i].subreg_offset);
3522 }
3523 break;
3524 case BAD_FILE:
3525 fprintf(file, "(null)");
3526 break;
3527 case IMM:
3528 switch (inst->src[i].type) {
3529 case BRW_REGISTER_TYPE_F:
3530 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3531 break;
3532 case BRW_REGISTER_TYPE_W:
3533 case BRW_REGISTER_TYPE_D:
3534 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3535 break;
3536 case BRW_REGISTER_TYPE_UW:
3537 case BRW_REGISTER_TYPE_UD:
3538 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3539 break;
3540 case BRW_REGISTER_TYPE_VF:
3541 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3542 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3543 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3544 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3545 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3546 break;
3547 default:
3548 fprintf(file, "???");
3549 break;
3550 }
3551 break;
3552 case HW_REG:
3553 if (inst->src[i].fixed_hw_reg.negate)
3554 fprintf(file, "-");
3555 if (inst->src[i].fixed_hw_reg.abs)
3556 fprintf(file, "|");
3557 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3558 switch (inst->src[i].fixed_hw_reg.nr) {
3559 case BRW_ARF_NULL:
3560 fprintf(file, "null");
3561 break;
3562 case BRW_ARF_ADDRESS:
3563 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3564 break;
3565 case BRW_ARF_ACCUMULATOR:
3566 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3567 break;
3568 case BRW_ARF_FLAG:
3569 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3570 inst->src[i].fixed_hw_reg.subnr);
3571 break;
3572 default:
3573 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3574 inst->src[i].fixed_hw_reg.subnr);
3575 break;
3576 }
3577 } else {
3578 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3579 }
3580 if (inst->src[i].fixed_hw_reg.subnr)
3581 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3582 if (inst->src[i].fixed_hw_reg.abs)
3583 fprintf(file, "|");
3584 break;
3585 default:
3586 fprintf(file, "???");
3587 break;
3588 }
3589 if (inst->src[i].abs)
3590 fprintf(file, "|");
3591
3592 if (inst->src[i].file != IMM) {
3593 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3594 }
3595
3596 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3597 fprintf(file, ", ");
3598 }
3599
3600 fprintf(file, " ");
3601
3602 if (dispatch_width == 16 && inst->exec_size == 8) {
3603 if (inst->force_sechalf)
3604 fprintf(file, "2ndhalf ");
3605 else
3606 fprintf(file, "1sthalf ");
3607 }
3608
3609 fprintf(file, "\n");
3610 }
3611
3612 /**
3613 * Possibly returns an instruction that set up @param reg.
3614 *
3615 * Sometimes we want to take the result of some expression/variable
3616 * dereference tree and rewrite the instruction generating the result
3617 * of the tree. When processing the tree, we know that the
3618 * instructions generated are all writing temporaries that are dead
3619 * outside of this tree. So, if we have some instructions that write
3620 * a temporary, we're free to point that temp write somewhere else.
3621 *
3622 * Note that this doesn't guarantee that the instruction generated
3623 * only reg -- it might be the size=4 destination of a texture instruction.
3624 */
3625 fs_inst *
3626 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3627 fs_inst *end,
3628 const fs_reg &reg)
3629 {
3630 if (end == start ||
3631 end->is_partial_write() ||
3632 reg.reladdr ||
3633 !reg.equals(end->dst)) {
3634 return NULL;
3635 } else {
3636 return end;
3637 }
3638 }
3639
3640 void
3641 fs_visitor::setup_payload_gen6()
3642 {
3643 bool uses_depth =
3644 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3645 unsigned barycentric_interp_modes =
3646 (stage == MESA_SHADER_FRAGMENT) ?
3647 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3648
3649 assert(devinfo->gen >= 6);
3650
3651 /* R0-1: masks, pixel X/Y coordinates. */
3652 payload.num_regs = 2;
3653 /* R2: only for 32-pixel dispatch.*/
3654
3655 /* R3-26: barycentric interpolation coordinates. These appear in the
3656 * same order that they appear in the brw_wm_barycentric_interp_mode
3657 * enum. Each set of coordinates occupies 2 registers if dispatch width
3658 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3659 * appear if they were enabled using the "Barycentric Interpolation
3660 * Mode" bits in WM_STATE.
3661 */
3662 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3663 if (barycentric_interp_modes & (1 << i)) {
3664 payload.barycentric_coord_reg[i] = payload.num_regs;
3665 payload.num_regs += 2;
3666 if (dispatch_width == 16) {
3667 payload.num_regs += 2;
3668 }
3669 }
3670 }
3671
3672 /* R27: interpolated depth if uses source depth */
3673 if (uses_depth) {
3674 payload.source_depth_reg = payload.num_regs;
3675 payload.num_regs++;
3676 if (dispatch_width == 16) {
3677 /* R28: interpolated depth if not SIMD8. */
3678 payload.num_regs++;
3679 }
3680 }
3681 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3682 if (uses_depth) {
3683 payload.source_w_reg = payload.num_regs;
3684 payload.num_regs++;
3685 if (dispatch_width == 16) {
3686 /* R30: interpolated W if not SIMD8. */
3687 payload.num_regs++;
3688 }
3689 }
3690
3691 if (stage == MESA_SHADER_FRAGMENT) {
3692 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3693 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3694 prog_data->uses_pos_offset = key->compute_pos_offset;
3695 /* R31: MSAA position offsets. */
3696 if (prog_data->uses_pos_offset) {
3697 payload.sample_pos_reg = payload.num_regs;
3698 payload.num_regs++;
3699 }
3700 }
3701
3702 /* R32: MSAA input coverage mask */
3703 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3704 assert(devinfo->gen >= 7);
3705 payload.sample_mask_in_reg = payload.num_regs;
3706 payload.num_regs++;
3707 if (dispatch_width == 16) {
3708 /* R33: input coverage mask if not SIMD8. */
3709 payload.num_regs++;
3710 }
3711 }
3712
3713 /* R34-: bary for 32-pixel. */
3714 /* R58-59: interp W for 32-pixel. */
3715
3716 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3717 source_depth_to_render_target = true;
3718 }
3719 }
3720
3721 void
3722 fs_visitor::setup_vs_payload()
3723 {
3724 /* R0: thread header, R1: urb handles */
3725 payload.num_regs = 2;
3726 }
3727
3728 void
3729 fs_visitor::assign_binding_table_offsets()
3730 {
3731 assert(stage == MESA_SHADER_FRAGMENT);
3732 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3733 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3734 uint32_t next_binding_table_offset = 0;
3735
3736 /* If there are no color regions, we still perform an FB write to a null
3737 * renderbuffer, which we place at surface index 0.
3738 */
3739 prog_data->binding_table.render_target_start = next_binding_table_offset;
3740 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3741
3742 assign_common_binding_table_offsets(next_binding_table_offset);
3743 }
3744
3745 void
3746 fs_visitor::calculate_register_pressure()
3747 {
3748 invalidate_live_intervals();
3749 calculate_live_intervals();
3750
3751 unsigned num_instructions = 0;
3752 foreach_block(block, cfg)
3753 num_instructions += block->instructions.length();
3754
3755 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3756
3757 for (unsigned reg = 0; reg < alloc.count; reg++) {
3758 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3759 regs_live_at_ip[ip] += alloc.sizes[reg];
3760 }
3761 }
3762
3763 void
3764 fs_visitor::optimize()
3765 {
3766 const char *stage_name = stage == MESA_SHADER_VERTEX ? "vs" : "fs";
3767
3768 split_virtual_grfs();
3769
3770 move_uniform_array_access_to_pull_constants();
3771 assign_constant_locations();
3772 demote_pull_constants();
3773
3774 #define OPT(pass, args...) ({ \
3775 pass_num++; \
3776 bool this_progress = pass(args); \
3777 \
3778 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3779 char filename[64]; \
3780 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3781 stage_name, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3782 \
3783 backend_visitor::dump_instructions(filename); \
3784 } \
3785 \
3786 progress = progress || this_progress; \
3787 this_progress; \
3788 })
3789
3790 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3791 char filename[64];
3792 snprintf(filename, 64, "%s%d-%04d-00-start",
3793 stage_name, dispatch_width, shader_prog ? shader_prog->Name : 0);
3794
3795 backend_visitor::dump_instructions(filename);
3796 }
3797
3798 bool progress;
3799 int iteration = 0;
3800 int pass_num = 0;
3801 do {
3802 progress = false;
3803 pass_num = 0;
3804 iteration++;
3805
3806 OPT(remove_duplicate_mrf_writes);
3807
3808 OPT(opt_algebraic);
3809 OPT(opt_cse);
3810 OPT(opt_copy_propagate);
3811 OPT(opt_peephole_predicated_break);
3812 OPT(opt_cmod_propagation);
3813 OPT(dead_code_eliminate);
3814 OPT(opt_peephole_sel);
3815 OPT(dead_control_flow_eliminate, this);
3816 OPT(opt_register_renaming);
3817 OPT(opt_redundant_discard_jumps);
3818 OPT(opt_saturate_propagation);
3819 OPT(register_coalesce);
3820 OPT(compute_to_mrf);
3821
3822 OPT(compact_virtual_grfs);
3823 } while (progress);
3824
3825 pass_num = 0;
3826
3827 OPT(opt_sampler_eot);
3828
3829 if (OPT(lower_load_payload)) {
3830 split_virtual_grfs();
3831 OPT(register_coalesce);
3832 OPT(compute_to_mrf);
3833 OPT(dead_code_eliminate);
3834 }
3835
3836 OPT(opt_combine_constants);
3837
3838 lower_uniform_pull_constant_loads();
3839 }
3840
3841 /**
3842 * Three source instruction must have a GRF/MRF destination register.
3843 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3844 */
3845 void
3846 fs_visitor::fixup_3src_null_dest()
3847 {
3848 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3849 if (inst->is_3src() && inst->dst.is_null()) {
3850 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3851 inst->dst.type);
3852 }
3853 }
3854 }
3855
3856 void
3857 fs_visitor::allocate_registers()
3858 {
3859 bool allocated_without_spills;
3860
3861 static const enum instruction_scheduler_mode pre_modes[] = {
3862 SCHEDULE_PRE,
3863 SCHEDULE_PRE_NON_LIFO,
3864 SCHEDULE_PRE_LIFO,
3865 };
3866
3867 /* Try each scheduling heuristic to see if it can successfully register
3868 * allocate without spilling. They should be ordered by decreasing
3869 * performance but increasing likelihood of allocating.
3870 */
3871 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3872 schedule_instructions(pre_modes[i]);
3873
3874 if (0) {
3875 assign_regs_trivial();
3876 allocated_without_spills = true;
3877 } else {
3878 allocated_without_spills = assign_regs(false);
3879 }
3880 if (allocated_without_spills)
3881 break;
3882 }
3883
3884 if (!allocated_without_spills) {
3885 const char *stage_name = stage == MESA_SHADER_VERTEX ?
3886 "Vertex" : "Fragment";
3887
3888 /* We assume that any spilling is worse than just dropping back to
3889 * SIMD8. There's probably actually some intermediate point where
3890 * SIMD16 with a couple of spills is still better.
3891 */
3892 if (dispatch_width == 16) {
3893 fail("Failure to register allocate. Reduce number of "
3894 "live scalar values to avoid this.");
3895 } else {
3896 perf_debug("%s shader triggered register spilling. "
3897 "Try reducing the number of live scalar values to "
3898 "improve performance.\n", stage_name);
3899 }
3900
3901 /* Since we're out of heuristics, just go spill registers until we
3902 * get an allocation.
3903 */
3904 while (!assign_regs(true)) {
3905 if (failed)
3906 break;
3907 }
3908 }
3909
3910 /* This must come after all optimization and register allocation, since
3911 * it inserts dead code that happens to have side effects, and it does
3912 * so based on the actual physical registers in use.
3913 */
3914 insert_gen4_send_dependency_workarounds();
3915
3916 if (failed)
3917 return;
3918
3919 if (!allocated_without_spills)
3920 schedule_instructions(SCHEDULE_POST);
3921
3922 if (last_scratch > 0)
3923 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3924 }
3925
3926 bool
3927 fs_visitor::run_vs()
3928 {
3929 assert(stage == MESA_SHADER_VERTEX);
3930
3931 assign_common_binding_table_offsets(0);
3932 setup_vs_payload();
3933
3934 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3935 emit_shader_time_begin();
3936
3937 if (brw->ctx.Const.ShaderCompilerOptions[MESA_SHADER_VERTEX].NirOptions) {
3938 emit_nir_code();
3939 } else {
3940 foreach_in_list(ir_instruction, ir, shader->base.ir) {
3941 base_ir = ir;
3942 this->result = reg_undef;
3943 ir->accept(this);
3944 }
3945 base_ir = NULL;
3946 }
3947
3948 if (failed)
3949 return false;
3950
3951 emit_urb_writes();
3952
3953 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3954 emit_shader_time_end();
3955
3956 calculate_cfg();
3957
3958 optimize();
3959
3960 assign_curb_setup();
3961 assign_vs_urb_setup();
3962
3963 fixup_3src_null_dest();
3964 allocate_registers();
3965
3966 return !failed;
3967 }
3968
3969 bool
3970 fs_visitor::run_fs()
3971 {
3972 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3973 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3974
3975 assert(stage == MESA_SHADER_FRAGMENT);
3976
3977 sanity_param_count = prog->Parameters->NumParameters;
3978
3979 assign_binding_table_offsets();
3980
3981 if (devinfo->gen >= 6)
3982 setup_payload_gen6();
3983 else
3984 setup_payload_gen4();
3985
3986 if (0) {
3987 emit_dummy_fs();
3988 } else if (brw->use_rep_send && dispatch_width == 16) {
3989 emit_repclear_shader();
3990 } else {
3991 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3992 emit_shader_time_begin();
3993
3994 calculate_urb_setup();
3995 if (prog->InputsRead > 0) {
3996 if (devinfo->gen < 6)
3997 emit_interpolation_setup_gen4();
3998 else
3999 emit_interpolation_setup_gen6();
4000 }
4001
4002 /* We handle discards by keeping track of the still-live pixels in f0.1.
4003 * Initialize it with the dispatched pixels.
4004 */
4005 if (wm_prog_data->uses_kill) {
4006 fs_inst *discard_init = emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
4007 discard_init->flag_subreg = 1;
4008 }
4009
4010 /* Generate FS IR for main(). (the visitor only descends into
4011 * functions called "main").
4012 */
4013 if (brw->ctx.Const.ShaderCompilerOptions[MESA_SHADER_FRAGMENT].NirOptions) {
4014 emit_nir_code();
4015 } else if (shader) {
4016 foreach_in_list(ir_instruction, ir, shader->base.ir) {
4017 base_ir = ir;
4018 this->result = reg_undef;
4019 ir->accept(this);
4020 }
4021 } else {
4022 emit_fragment_program_code();
4023 }
4024 base_ir = NULL;
4025 if (failed)
4026 return false;
4027
4028 if (wm_prog_data->uses_kill)
4029 emit(FS_OPCODE_PLACEHOLDER_HALT);
4030
4031 if (wm_key->alpha_test_func)
4032 emit_alpha_test();
4033
4034 emit_fb_writes();
4035
4036 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
4037 emit_shader_time_end();
4038
4039 calculate_cfg();
4040
4041 optimize();
4042
4043 assign_curb_setup();
4044 assign_urb_setup();
4045
4046 fixup_3src_null_dest();
4047 allocate_registers();
4048
4049 if (failed)
4050 return false;
4051 }
4052
4053 if (dispatch_width == 8)
4054 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
4055 else
4056 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
4057
4058 /* If any state parameters were appended, then ParameterValues could have
4059 * been realloced, in which case the driver uniform storage set up by
4060 * _mesa_associate_uniform_storage() would point to freed memory. Make
4061 * sure that didn't happen.
4062 */
4063 assert(sanity_param_count == prog->Parameters->NumParameters);
4064
4065 return !failed;
4066 }
4067
4068 const unsigned *
4069 brw_wm_fs_emit(struct brw_context *brw,
4070 void *mem_ctx,
4071 const struct brw_wm_prog_key *key,
4072 struct brw_wm_prog_data *prog_data,
4073 struct gl_fragment_program *fp,
4074 struct gl_shader_program *prog,
4075 unsigned *final_assembly_size)
4076 {
4077 bool start_busy = false;
4078 double start_time = 0;
4079
4080 if (unlikely(brw->perf_debug)) {
4081 start_busy = (brw->batch.last_bo &&
4082 drm_intel_bo_busy(brw->batch.last_bo));
4083 start_time = get_time();
4084 }
4085
4086 struct brw_shader *shader = NULL;
4087 if (prog)
4088 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4089
4090 if (unlikely(INTEL_DEBUG & DEBUG_WM))
4091 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4092
4093 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4094 */
4095 fs_visitor v(brw, mem_ctx, key, prog_data, prog, fp, 8);
4096 if (!v.run_fs()) {
4097 if (prog) {
4098 prog->LinkStatus = false;
4099 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4100 }
4101
4102 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4103 v.fail_msg);
4104
4105 return NULL;
4106 }
4107
4108 cfg_t *simd16_cfg = NULL;
4109 fs_visitor v2(brw, mem_ctx, key, prog_data, prog, fp, 16);
4110 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4111 if (!v.simd16_unsupported) {
4112 /* Try a SIMD16 compile */
4113 v2.import_uniforms(&v);
4114 if (!v2.run_fs()) {
4115 perf_debug("SIMD16 shader failed to compile, falling back to "
4116 "SIMD8 at a 10-20%% performance cost: %s", v2.fail_msg);
4117 } else {
4118 simd16_cfg = v2.cfg;
4119 }
4120 } else {
4121 perf_debug("SIMD16 shader unsupported, falling back to "
4122 "SIMD8 at a 10-20%% performance cost: %s", v.no16_msg);
4123 }
4124 }
4125
4126 cfg_t *simd8_cfg;
4127 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4128 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4129 simd8_cfg = NULL;
4130 prog_data->no_8 = true;
4131 } else {
4132 simd8_cfg = v.cfg;
4133 prog_data->no_8 = false;
4134 }
4135
4136 fs_generator g(brw, mem_ctx, (void *) key, &prog_data->base,
4137 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4138
4139 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4140 char *name;
4141 if (prog)
4142 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4143 prog->Label ? prog->Label : "unnamed",
4144 prog->Name);
4145 else
4146 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4147
4148 g.enable_debug(name);
4149 }
4150
4151 if (simd8_cfg)
4152 g.generate_code(simd8_cfg, 8);
4153 if (simd16_cfg)
4154 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4155
4156 if (unlikely(brw->perf_debug) && shader) {
4157 if (shader->compiled_once)
4158 brw_wm_debug_recompile(brw, prog, key);
4159 shader->compiled_once = true;
4160
4161 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4162 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4163 (get_time() - start_time) * 1000);
4164 }
4165 }
4166
4167 return g.get_assembly(final_assembly_size);
4168 }
4169
4170 extern "C" bool
4171 brw_fs_precompile(struct gl_context *ctx,
4172 struct gl_shader_program *shader_prog,
4173 struct gl_program *prog)
4174 {
4175 struct brw_context *brw = brw_context(ctx);
4176 struct brw_wm_prog_key key;
4177
4178 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4179 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4180 bool program_uses_dfdy = fp->UsesDFdy;
4181
4182 memset(&key, 0, sizeof(key));
4183
4184 if (brw->gen < 6) {
4185 if (fp->UsesKill)
4186 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4187
4188 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4189 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4190
4191 /* Just assume depth testing. */
4192 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4193 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4194 }
4195
4196 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4197 BRW_FS_VARYING_INPUT_MASK) > 16)
4198 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4199
4200 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4201 unsigned sampler_count = _mesa_fls(fp->Base.SamplersUsed);
4202 for (unsigned i = 0; i < sampler_count; i++) {
4203 if (!has_shader_channel_select && (fp->Base.ShadowSamplers & (1 << i))) {
4204 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4205 key.tex.swizzles[i] =
4206 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4207 } else {
4208 /* Color sampler: assume no swizzling. */
4209 key.tex.swizzles[i] = SWIZZLE_XYZW;
4210 }
4211 }
4212
4213 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4214 key.drawable_height = ctx->DrawBuffer->Height;
4215 }
4216
4217 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4218 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4219 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4220
4221 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4222 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4223 key.nr_color_regions > 1;
4224 }
4225
4226 key.program_string_id = bfp->id;
4227
4228 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4229 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4230
4231 bool success = brw_compile_wm_prog(brw, shader_prog, bfp, &key);
4232
4233 brw->wm.base.prog_offset = old_prog_offset;
4234 brw->wm.prog_data = old_prog_data;
4235
4236 return success;
4237 }