i965/fs: Do not mark used direct surfaces in UNIFORM_PULL_CONSTANT_LOAD
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cs.h"
46 #include "brw_vec4_gs_visitor.h"
47 #include "brw_cfg.h"
48 #include "brw_dead_control_flow.h"
49 #include "main/uniforms.h"
50 #include "brw_fs_live_variables.h"
51 #include "glsl/nir/glsl_types.h"
52 #include "program/sampler.h"
53
54 using namespace brw;
55
56 void
57 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
58 const fs_reg *src, unsigned sources)
59 {
60 memset(this, 0, sizeof(*this));
61
62 this->src = new fs_reg[MAX2(sources, 3)];
63 for (unsigned i = 0; i < sources; i++)
64 this->src[i] = src[i];
65
66 this->opcode = opcode;
67 this->dst = dst;
68 this->sources = sources;
69 this->exec_size = exec_size;
70
71 assert(dst.file != IMM && dst.file != UNIFORM);
72
73 assert(this->exec_size != 0);
74
75 this->conditional_mod = BRW_CONDITIONAL_NONE;
76
77 /* This will be the case for almost all instructions. */
78 switch (dst.file) {
79 case GRF:
80 case HW_REG:
81 case MRF:
82 case ATTR:
83 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
84 REG_SIZE);
85 break;
86 case BAD_FILE:
87 this->regs_written = 0;
88 break;
89 case IMM:
90 case UNIFORM:
91 unreachable("Invalid destination register file");
92 }
93
94 this->writes_accumulator = false;
95 }
96
97 fs_inst::fs_inst()
98 {
99 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
100 }
101
102 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
103 {
104 init(opcode, exec_size, reg_undef, NULL, 0);
105 }
106
107 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
108 {
109 init(opcode, exec_size, dst, NULL, 0);
110 }
111
112 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
113 const fs_reg &src0)
114 {
115 const fs_reg src[1] = { src0 };
116 init(opcode, exec_size, dst, src, 1);
117 }
118
119 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
120 const fs_reg &src0, const fs_reg &src1)
121 {
122 const fs_reg src[2] = { src0, src1 };
123 init(opcode, exec_size, dst, src, 2);
124 }
125
126 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
127 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
128 {
129 const fs_reg src[3] = { src0, src1, src2 };
130 init(opcode, exec_size, dst, src, 3);
131 }
132
133 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
134 const fs_reg src[], unsigned sources)
135 {
136 init(opcode, exec_width, dst, src, sources);
137 }
138
139 fs_inst::fs_inst(const fs_inst &that)
140 {
141 memcpy(this, &that, sizeof(that));
142
143 this->src = new fs_reg[MAX2(that.sources, 3)];
144
145 for (unsigned i = 0; i < that.sources; i++)
146 this->src[i] = that.src[i];
147 }
148
149 fs_inst::~fs_inst()
150 {
151 delete[] this->src;
152 }
153
154 void
155 fs_inst::resize_sources(uint8_t num_sources)
156 {
157 if (this->sources != num_sources) {
158 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
159
160 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
161 src[i] = this->src[i];
162
163 delete[] this->src;
164 this->src = src;
165 this->sources = num_sources;
166 }
167 }
168
169 void
170 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
171 const fs_reg &dst,
172 const fs_reg &surf_index,
173 const fs_reg &varying_offset,
174 uint32_t const_offset)
175 {
176 /* We have our constant surface use a pitch of 4 bytes, so our index can
177 * be any component of a vector, and then we load 4 contiguous
178 * components starting from that.
179 *
180 * We break down the const_offset to a portion added to the variable
181 * offset and a portion done using reg_offset, which means that if you
182 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
183 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
184 * CSE can later notice that those loads are all the same and eliminate
185 * the redundant ones.
186 */
187 fs_reg vec4_offset = vgrf(glsl_type::int_type);
188 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
189
190 int scale = 1;
191 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
192 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
193 * u, v, r) as parameters, or we can just use the SIMD16 message
194 * consisting of (header, u). We choose the second, at the cost of a
195 * longer return length.
196 */
197 scale = 2;
198 }
199
200 enum opcode op;
201 if (devinfo->gen >= 7)
202 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
203 else
204 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
205
206 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
207 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written), dst.type);
208 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
209 inst->regs_written = regs_written;
210
211 if (devinfo->gen < 7) {
212 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
213 inst->header_size = 1;
214 if (devinfo->gen == 4)
215 inst->mlen = 3;
216 else
217 inst->mlen = 1 + bld.dispatch_width() / 8;
218 }
219
220 bld.MOV(dst, offset(vec4_result, bld, (const_offset & 3) * scale));
221 }
222
223 /**
224 * A helper for MOV generation for fixing up broken hardware SEND dependency
225 * handling.
226 */
227 void
228 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
229 {
230 /* The caller always wants uncompressed to emit the minimal extra
231 * dependencies, and to avoid having to deal with aligning its regs to 2.
232 */
233 const fs_builder ubld = bld.annotate("send dependency resolve")
234 .half(0);
235
236 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
237 }
238
239 bool
240 fs_inst::equals(fs_inst *inst) const
241 {
242 return (opcode == inst->opcode &&
243 dst.equals(inst->dst) &&
244 src[0].equals(inst->src[0]) &&
245 src[1].equals(inst->src[1]) &&
246 src[2].equals(inst->src[2]) &&
247 saturate == inst->saturate &&
248 predicate == inst->predicate &&
249 conditional_mod == inst->conditional_mod &&
250 mlen == inst->mlen &&
251 base_mrf == inst->base_mrf &&
252 target == inst->target &&
253 eot == inst->eot &&
254 header_size == inst->header_size &&
255 shadow_compare == inst->shadow_compare &&
256 exec_size == inst->exec_size &&
257 offset == inst->offset);
258 }
259
260 bool
261 fs_inst::overwrites_reg(const fs_reg &reg) const
262 {
263 return reg.in_range(dst, regs_written);
264 }
265
266 bool
267 fs_inst::is_send_from_grf() const
268 {
269 switch (opcode) {
270 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
271 case SHADER_OPCODE_SHADER_TIME_ADD:
272 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
273 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
274 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
275 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
276 case SHADER_OPCODE_UNTYPED_ATOMIC:
277 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
278 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
279 case SHADER_OPCODE_TYPED_ATOMIC:
280 case SHADER_OPCODE_TYPED_SURFACE_READ:
281 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
282 case SHADER_OPCODE_URB_WRITE_SIMD8:
283 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
284 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
285 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
286 case SHADER_OPCODE_URB_READ_SIMD8:
287 return true;
288 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
289 return src[1].file == GRF;
290 case FS_OPCODE_FB_WRITE:
291 return src[0].file == GRF;
292 default:
293 if (is_tex())
294 return src[0].file == GRF;
295
296 return false;
297 }
298 }
299
300 bool
301 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
302 {
303 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
304 return false;
305
306 fs_reg reg = this->src[0];
307 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
308 return false;
309
310 if (grf_alloc.sizes[reg.reg] != this->regs_written)
311 return false;
312
313 for (int i = 0; i < this->sources; i++) {
314 reg.type = this->src[i].type;
315 if (!this->src[i].equals(reg))
316 return false;
317
318 if (i < this->header_size) {
319 reg.reg_offset += 1;
320 } else {
321 reg.reg_offset += this->exec_size / 8;
322 }
323 }
324
325 return true;
326 }
327
328 bool
329 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
330 {
331 if (devinfo->gen == 6 && is_math())
332 return false;
333
334 if (is_send_from_grf())
335 return false;
336
337 if (!backend_instruction::can_do_source_mods())
338 return false;
339
340 return true;
341 }
342
343 bool
344 fs_inst::can_change_types() const
345 {
346 return dst.type == src[0].type &&
347 !src[0].abs && !src[0].negate && !saturate &&
348 (opcode == BRW_OPCODE_MOV ||
349 (opcode == BRW_OPCODE_SEL &&
350 dst.type == src[1].type &&
351 predicate != BRW_PREDICATE_NONE &&
352 !src[1].abs && !src[1].negate));
353 }
354
355 bool
356 fs_inst::has_side_effects() const
357 {
358 return this->eot || backend_instruction::has_side_effects();
359 }
360
361 void
362 fs_reg::init()
363 {
364 memset(this, 0, sizeof(*this));
365 stride = 1;
366 }
367
368 /** Generic unset register constructor. */
369 fs_reg::fs_reg()
370 {
371 init();
372 this->file = BAD_FILE;
373 }
374
375 /** Immediate value constructor. */
376 fs_reg::fs_reg(float f)
377 {
378 init();
379 this->file = IMM;
380 this->type = BRW_REGISTER_TYPE_F;
381 this->stride = 0;
382 this->fixed_hw_reg.dw1.f = f;
383 }
384
385 /** Immediate value constructor. */
386 fs_reg::fs_reg(int32_t i)
387 {
388 init();
389 this->file = IMM;
390 this->type = BRW_REGISTER_TYPE_D;
391 this->stride = 0;
392 this->fixed_hw_reg.dw1.d = i;
393 }
394
395 /** Immediate value constructor. */
396 fs_reg::fs_reg(uint32_t u)
397 {
398 init();
399 this->file = IMM;
400 this->type = BRW_REGISTER_TYPE_UD;
401 this->stride = 0;
402 this->fixed_hw_reg.dw1.ud = u;
403 }
404
405 /** Vector float immediate value constructor. */
406 fs_reg::fs_reg(uint8_t vf[4])
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_VF;
411 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
412 }
413
414 /** Vector float immediate value constructor. */
415 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
416 {
417 init();
418 this->file = IMM;
419 this->type = BRW_REGISTER_TYPE_VF;
420 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
421 (vf1 << 8) |
422 (vf2 << 16) |
423 (vf3 << 24);
424 }
425
426 /** Fixed brw_reg. */
427 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
428 {
429 init();
430 this->file = HW_REG;
431 this->fixed_hw_reg = fixed_hw_reg;
432 this->type = fixed_hw_reg.type;
433 }
434
435 bool
436 fs_reg::equals(const fs_reg &r) const
437 {
438 return (file == r.file &&
439 reg == r.reg &&
440 reg_offset == r.reg_offset &&
441 subreg_offset == r.subreg_offset &&
442 type == r.type &&
443 negate == r.negate &&
444 abs == r.abs &&
445 !reladdr && !r.reladdr &&
446 ((file != HW_REG && file != IMM) ||
447 memcmp(&fixed_hw_reg, &r.fixed_hw_reg,
448 sizeof(fixed_hw_reg)) == 0) &&
449 stride == r.stride);
450 }
451
452 fs_reg &
453 fs_reg::set_smear(unsigned subreg)
454 {
455 assert(file != HW_REG && file != IMM);
456 subreg_offset = subreg * type_sz(type);
457 stride = 0;
458 return *this;
459 }
460
461 bool
462 fs_reg::is_contiguous() const
463 {
464 return stride == 1;
465 }
466
467 unsigned
468 fs_reg::component_size(unsigned width) const
469 {
470 const unsigned stride = (file != HW_REG ? this->stride :
471 fixed_hw_reg.hstride == 0 ? 0 :
472 1 << (fixed_hw_reg.hstride - 1));
473 return MAX2(width * stride, 1) * type_sz(type);
474 }
475
476 extern "C" int
477 type_size_scalar(const struct glsl_type *type)
478 {
479 unsigned int size, i;
480
481 switch (type->base_type) {
482 case GLSL_TYPE_UINT:
483 case GLSL_TYPE_INT:
484 case GLSL_TYPE_FLOAT:
485 case GLSL_TYPE_BOOL:
486 return type->components();
487 case GLSL_TYPE_ARRAY:
488 return type_size_scalar(type->fields.array) * type->length;
489 case GLSL_TYPE_STRUCT:
490 size = 0;
491 for (i = 0; i < type->length; i++) {
492 size += type_size_scalar(type->fields.structure[i].type);
493 }
494 return size;
495 case GLSL_TYPE_SAMPLER:
496 /* Samplers take up no register space, since they're baked in at
497 * link time.
498 */
499 return 0;
500 case GLSL_TYPE_ATOMIC_UINT:
501 return 0;
502 case GLSL_TYPE_SUBROUTINE:
503 return 1;
504 case GLSL_TYPE_IMAGE:
505 return BRW_IMAGE_PARAM_SIZE;
506 case GLSL_TYPE_VOID:
507 case GLSL_TYPE_ERROR:
508 case GLSL_TYPE_INTERFACE:
509 case GLSL_TYPE_DOUBLE:
510 unreachable("not reached");
511 }
512
513 return 0;
514 }
515
516 /**
517 * Create a MOV to read the timestamp register.
518 *
519 * The caller is responsible for emitting the MOV. The return value is
520 * the destination of the MOV, with extra parameters set.
521 */
522 fs_reg
523 fs_visitor::get_timestamp(const fs_builder &bld)
524 {
525 assert(devinfo->gen >= 7);
526
527 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
528 BRW_ARF_TIMESTAMP,
529 0),
530 BRW_REGISTER_TYPE_UD));
531
532 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
533
534 /* We want to read the 3 fields we care about even if it's not enabled in
535 * the dispatch.
536 */
537 bld.group(4, 0).exec_all().MOV(dst, ts);
538
539 return dst;
540 }
541
542 void
543 fs_visitor::emit_shader_time_begin()
544 {
545 shader_start_time = get_timestamp(bld.annotate("shader time start"));
546
547 /* We want only the low 32 bits of the timestamp. Since it's running
548 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
549 * which is plenty of time for our purposes. It is identical across the
550 * EUs, but since it's tracking GPU core speed it will increment at a
551 * varying rate as render P-states change.
552 */
553 shader_start_time.set_smear(0);
554 }
555
556 void
557 fs_visitor::emit_shader_time_end()
558 {
559 /* Insert our code just before the final SEND with EOT. */
560 exec_node *end = this->instructions.get_tail();
561 assert(end && ((fs_inst *) end)->eot);
562 const fs_builder ibld = bld.annotate("shader time end")
563 .exec_all().at(NULL, end);
564
565 fs_reg shader_end_time = get_timestamp(ibld);
566
567 /* We only use the low 32 bits of the timestamp - see
568 * emit_shader_time_begin()).
569 *
570 * We could also check if render P-states have changed (or anything
571 * else that might disrupt timing) by setting smear to 2 and checking if
572 * that field is != 0.
573 */
574 shader_end_time.set_smear(0);
575
576 /* Check that there weren't any timestamp reset events (assuming these
577 * were the only two timestamp reads that happened).
578 */
579 fs_reg reset = shader_end_time;
580 reset.set_smear(2);
581 set_condmod(BRW_CONDITIONAL_Z,
582 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
583 ibld.IF(BRW_PREDICATE_NORMAL);
584
585 fs_reg start = shader_start_time;
586 start.negate = true;
587 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
588 diff.set_smear(0);
589
590 const fs_builder cbld = ibld.group(1, 0);
591 cbld.group(1, 0).ADD(diff, start, shader_end_time);
592
593 /* If there were no instructions between the two timestamp gets, the diff
594 * is 2 cycles. Remove that overhead, so I can forget about that when
595 * trying to determine the time taken for single instructions.
596 */
597 cbld.ADD(diff, diff, fs_reg(-2u));
598 SHADER_TIME_ADD(cbld, 0, diff);
599 SHADER_TIME_ADD(cbld, 1, fs_reg(1u));
600 ibld.emit(BRW_OPCODE_ELSE);
601 SHADER_TIME_ADD(cbld, 2, fs_reg(1u));
602 ibld.emit(BRW_OPCODE_ENDIF);
603 }
604
605 void
606 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
607 int shader_time_subindex,
608 fs_reg value)
609 {
610 int index = shader_time_index * 3 + shader_time_subindex;
611 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
612
613 fs_reg payload;
614 if (dispatch_width == 8)
615 payload = vgrf(glsl_type::uvec2_type);
616 else
617 payload = vgrf(glsl_type::uint_type);
618
619 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
620 }
621
622 void
623 fs_visitor::vfail(const char *format, va_list va)
624 {
625 char *msg;
626
627 if (failed)
628 return;
629
630 failed = true;
631
632 msg = ralloc_vasprintf(mem_ctx, format, va);
633 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
634
635 this->fail_msg = msg;
636
637 if (debug_enabled) {
638 fprintf(stderr, "%s", msg);
639 }
640 }
641
642 void
643 fs_visitor::fail(const char *format, ...)
644 {
645 va_list va;
646
647 va_start(va, format);
648 vfail(format, va);
649 va_end(va);
650 }
651
652 /**
653 * Mark this program as impossible to compile in SIMD16 mode.
654 *
655 * During the SIMD8 compile (which happens first), we can detect and flag
656 * things that are unsupported in SIMD16 mode, so the compiler can skip
657 * the SIMD16 compile altogether.
658 *
659 * During a SIMD16 compile (if one happens anyway), this just calls fail().
660 */
661 void
662 fs_visitor::no16(const char *msg)
663 {
664 if (dispatch_width == 16) {
665 fail("%s", msg);
666 } else {
667 simd16_unsupported = true;
668
669 compiler->shader_perf_log(log_data,
670 "SIMD16 shader failed to compile: %s", msg);
671 }
672 }
673
674 /**
675 * Returns true if the instruction has a flag that means it won't
676 * update an entire destination register.
677 *
678 * For example, dead code elimination and live variable analysis want to know
679 * when a write to a variable screens off any preceding values that were in
680 * it.
681 */
682 bool
683 fs_inst::is_partial_write() const
684 {
685 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
686 (this->exec_size * type_sz(this->dst.type)) < 32 ||
687 !this->dst.is_contiguous());
688 }
689
690 unsigned
691 fs_inst::components_read(unsigned i) const
692 {
693 switch (opcode) {
694 case FS_OPCODE_LINTERP:
695 if (i == 0)
696 return 2;
697 else
698 return 1;
699
700 case FS_OPCODE_PIXEL_X:
701 case FS_OPCODE_PIXEL_Y:
702 assert(i == 0);
703 return 2;
704
705 case FS_OPCODE_FB_WRITE_LOGICAL:
706 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
707 /* First/second FB write color. */
708 if (i < 2)
709 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].fixed_hw_reg.dw1.ud;
710 else
711 return 1;
712
713 case SHADER_OPCODE_TEX_LOGICAL:
714 case SHADER_OPCODE_TXD_LOGICAL:
715 case SHADER_OPCODE_TXF_LOGICAL:
716 case SHADER_OPCODE_TXL_LOGICAL:
717 case SHADER_OPCODE_TXS_LOGICAL:
718 case FS_OPCODE_TXB_LOGICAL:
719 case SHADER_OPCODE_TXF_CMS_LOGICAL:
720 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
721 case SHADER_OPCODE_TXF_UMS_LOGICAL:
722 case SHADER_OPCODE_TXF_MCS_LOGICAL:
723 case SHADER_OPCODE_LOD_LOGICAL:
724 case SHADER_OPCODE_TG4_LOGICAL:
725 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
726 assert(src[8].file == IMM && src[9].file == IMM);
727 /* Texture coordinates. */
728 if (i == 0)
729 return src[8].fixed_hw_reg.dw1.ud;
730 /* Texture derivatives. */
731 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
732 return src[9].fixed_hw_reg.dw1.ud;
733 /* Texture offset. */
734 else if (i == 7)
735 return 2;
736 /* MCS */
737 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
738 return 2;
739 else
740 return 1;
741
742 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
743 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
744 assert(src[3].file == IMM);
745 /* Surface coordinates. */
746 if (i == 0)
747 return src[3].fixed_hw_reg.dw1.ud;
748 /* Surface operation source (ignored for reads). */
749 else if (i == 1)
750 return 0;
751 else
752 return 1;
753
754 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
755 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
756 assert(src[3].file == IMM &&
757 src[4].file == IMM);
758 /* Surface coordinates. */
759 if (i == 0)
760 return src[3].fixed_hw_reg.dw1.ud;
761 /* Surface operation source. */
762 else if (i == 1)
763 return src[4].fixed_hw_reg.dw1.ud;
764 else
765 return 1;
766
767 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
768 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
769 assert(src[3].file == IMM &&
770 src[4].file == IMM);
771 const unsigned op = src[4].fixed_hw_reg.dw1.ud;
772 /* Surface coordinates. */
773 if (i == 0)
774 return src[3].fixed_hw_reg.dw1.ud;
775 /* Surface operation source. */
776 else if (i == 1 && op == BRW_AOP_CMPWR)
777 return 2;
778 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
779 op == BRW_AOP_PREDEC))
780 return 0;
781 else
782 return 1;
783 }
784
785 default:
786 return 1;
787 }
788 }
789
790 int
791 fs_inst::regs_read(int arg) const
792 {
793 switch (opcode) {
794 case FS_OPCODE_FB_WRITE:
795 case SHADER_OPCODE_URB_WRITE_SIMD8:
796 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
797 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
798 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
799 case SHADER_OPCODE_URB_READ_SIMD8:
800 case SHADER_OPCODE_UNTYPED_ATOMIC:
801 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
802 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
803 case SHADER_OPCODE_TYPED_ATOMIC:
804 case SHADER_OPCODE_TYPED_SURFACE_READ:
805 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
806 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
807 if (arg == 0)
808 return mlen;
809 break;
810
811 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
812 /* The payload is actually stored in src1 */
813 if (arg == 1)
814 return mlen;
815 break;
816
817 case FS_OPCODE_LINTERP:
818 if (arg == 1)
819 return 1;
820 break;
821
822 case SHADER_OPCODE_LOAD_PAYLOAD:
823 if (arg < this->header_size)
824 return 1;
825 break;
826
827 case CS_OPCODE_CS_TERMINATE:
828 case SHADER_OPCODE_BARRIER:
829 return 1;
830
831 default:
832 if (is_tex() && arg == 0 && src[0].file == GRF)
833 return mlen;
834 break;
835 }
836
837 switch (src[arg].file) {
838 case BAD_FILE:
839 return 0;
840 case UNIFORM:
841 case IMM:
842 return 1;
843 case GRF:
844 case ATTR:
845 case HW_REG:
846 return DIV_ROUND_UP(components_read(arg) *
847 src[arg].component_size(exec_size),
848 REG_SIZE);
849 case MRF:
850 unreachable("MRF registers are not allowed as sources");
851 }
852 return 0;
853 }
854
855 bool
856 fs_inst::reads_flag() const
857 {
858 return predicate;
859 }
860
861 bool
862 fs_inst::writes_flag() const
863 {
864 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
865 opcode != BRW_OPCODE_IF &&
866 opcode != BRW_OPCODE_WHILE)) ||
867 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
868 }
869
870 /**
871 * Returns how many MRFs an FS opcode will write over.
872 *
873 * Note that this is not the 0 or 1 implied writes in an actual gen
874 * instruction -- the FS opcodes often generate MOVs in addition.
875 */
876 int
877 fs_visitor::implied_mrf_writes(fs_inst *inst)
878 {
879 if (inst->mlen == 0)
880 return 0;
881
882 if (inst->base_mrf == -1)
883 return 0;
884
885 switch (inst->opcode) {
886 case SHADER_OPCODE_RCP:
887 case SHADER_OPCODE_RSQ:
888 case SHADER_OPCODE_SQRT:
889 case SHADER_OPCODE_EXP2:
890 case SHADER_OPCODE_LOG2:
891 case SHADER_OPCODE_SIN:
892 case SHADER_OPCODE_COS:
893 return 1 * dispatch_width / 8;
894 case SHADER_OPCODE_POW:
895 case SHADER_OPCODE_INT_QUOTIENT:
896 case SHADER_OPCODE_INT_REMAINDER:
897 return 2 * dispatch_width / 8;
898 case SHADER_OPCODE_TEX:
899 case FS_OPCODE_TXB:
900 case SHADER_OPCODE_TXD:
901 case SHADER_OPCODE_TXF:
902 case SHADER_OPCODE_TXF_CMS:
903 case SHADER_OPCODE_TXF_CMS_W:
904 case SHADER_OPCODE_TXF_MCS:
905 case SHADER_OPCODE_TG4:
906 case SHADER_OPCODE_TG4_OFFSET:
907 case SHADER_OPCODE_TXL:
908 case SHADER_OPCODE_TXS:
909 case SHADER_OPCODE_LOD:
910 case SHADER_OPCODE_SAMPLEINFO:
911 return 1;
912 case FS_OPCODE_FB_WRITE:
913 return 2;
914 case FS_OPCODE_GET_BUFFER_SIZE:
915 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
916 case SHADER_OPCODE_GEN4_SCRATCH_READ:
917 return 1;
918 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
919 return inst->mlen;
920 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
921 return inst->mlen;
922 case SHADER_OPCODE_UNTYPED_ATOMIC:
923 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
924 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
925 case SHADER_OPCODE_TYPED_ATOMIC:
926 case SHADER_OPCODE_TYPED_SURFACE_READ:
927 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
928 case SHADER_OPCODE_URB_WRITE_SIMD8:
929 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
930 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
931 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
932 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
933 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
934 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
935 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
936 return 0;
937 default:
938 unreachable("not reached");
939 }
940 }
941
942 fs_reg
943 fs_visitor::vgrf(const glsl_type *const type)
944 {
945 int reg_width = dispatch_width / 8;
946 return fs_reg(GRF, alloc.allocate(type_size_scalar(type) * reg_width),
947 brw_type_for_base_type(type));
948 }
949
950 /** Fixed HW reg constructor. */
951 fs_reg::fs_reg(enum register_file file, int reg)
952 {
953 init();
954 this->file = file;
955 this->reg = reg;
956 this->type = BRW_REGISTER_TYPE_F;
957 this->stride = (file == UNIFORM ? 0 : 1);
958 }
959
960 /** Fixed HW reg constructor. */
961 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
962 {
963 init();
964 this->file = file;
965 this->reg = reg;
966 this->type = type;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
971 * This brings in those uniform definitions
972 */
973 void
974 fs_visitor::import_uniforms(fs_visitor *v)
975 {
976 this->push_constant_loc = v->push_constant_loc;
977 this->pull_constant_loc = v->pull_constant_loc;
978 this->uniforms = v->uniforms;
979 this->param_size = v->param_size;
980 }
981
982 fs_reg *
983 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
984 bool origin_upper_left)
985 {
986 assert(stage == MESA_SHADER_FRAGMENT);
987 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
988 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
989 fs_reg wpos = *reg;
990 bool flip = !origin_upper_left ^ key->render_to_fbo;
991
992 /* gl_FragCoord.x */
993 if (pixel_center_integer) {
994 bld.MOV(wpos, this->pixel_x);
995 } else {
996 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
997 }
998 wpos = offset(wpos, bld, 1);
999
1000 /* gl_FragCoord.y */
1001 if (!flip && pixel_center_integer) {
1002 bld.MOV(wpos, this->pixel_y);
1003 } else {
1004 fs_reg pixel_y = this->pixel_y;
1005 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1006
1007 if (flip) {
1008 pixel_y.negate = true;
1009 offset += key->drawable_height - 1.0f;
1010 }
1011
1012 bld.ADD(wpos, pixel_y, fs_reg(offset));
1013 }
1014 wpos = offset(wpos, bld, 1);
1015
1016 /* gl_FragCoord.z */
1017 if (devinfo->gen >= 6) {
1018 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1019 } else {
1020 bld.emit(FS_OPCODE_LINTERP, wpos,
1021 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1022 interp_reg(VARYING_SLOT_POS, 2));
1023 }
1024 wpos = offset(wpos, bld, 1);
1025
1026 /* gl_FragCoord.w: Already set up in emit_interpolation */
1027 bld.MOV(wpos, this->wpos_w);
1028
1029 return reg;
1030 }
1031
1032 fs_inst *
1033 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1034 glsl_interp_qualifier interpolation_mode,
1035 bool is_centroid, bool is_sample)
1036 {
1037 brw_wm_barycentric_interp_mode barycoord_mode;
1038 if (devinfo->gen >= 6) {
1039 if (is_centroid) {
1040 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1041 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1042 else
1043 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1044 } else if (is_sample) {
1045 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1046 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1047 else
1048 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1049 } else {
1050 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1051 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1052 else
1053 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1054 }
1055 } else {
1056 /* On Ironlake and below, there is only one interpolation mode.
1057 * Centroid interpolation doesn't mean anything on this hardware --
1058 * there is no multisampling.
1059 */
1060 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1061 }
1062 return bld.emit(FS_OPCODE_LINTERP, attr,
1063 this->delta_xy[barycoord_mode], interp);
1064 }
1065
1066 void
1067 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1068 const glsl_type *type,
1069 glsl_interp_qualifier interpolation_mode,
1070 int location, bool mod_centroid,
1071 bool mod_sample)
1072 {
1073 attr.type = brw_type_for_base_type(type->get_scalar_type());
1074
1075 assert(stage == MESA_SHADER_FRAGMENT);
1076 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1077 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1078
1079 unsigned int array_elements;
1080
1081 if (type->is_array()) {
1082 array_elements = type->arrays_of_arrays_size();
1083 if (array_elements == 0) {
1084 fail("dereferenced array '%s' has length 0\n", name);
1085 }
1086 type = type->without_array();
1087 } else {
1088 array_elements = 1;
1089 }
1090
1091 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1092 bool is_gl_Color =
1093 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1094 if (key->flat_shade && is_gl_Color) {
1095 interpolation_mode = INTERP_QUALIFIER_FLAT;
1096 } else {
1097 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1098 }
1099 }
1100
1101 for (unsigned int i = 0; i < array_elements; i++) {
1102 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1103 if (prog_data->urb_setup[location] == -1) {
1104 /* If there's no incoming setup data for this slot, don't
1105 * emit interpolation for it.
1106 */
1107 attr = offset(attr, bld, type->vector_elements);
1108 location++;
1109 continue;
1110 }
1111
1112 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1113 /* Constant interpolation (flat shading) case. The SF has
1114 * handed us defined values in only the constant offset
1115 * field of the setup reg.
1116 */
1117 for (unsigned int k = 0; k < type->vector_elements; k++) {
1118 struct brw_reg interp = interp_reg(location, k);
1119 interp = suboffset(interp, 3);
1120 interp.type = attr.type;
1121 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1122 attr = offset(attr, bld, 1);
1123 }
1124 } else {
1125 /* Smooth/noperspective interpolation case. */
1126 for (unsigned int k = 0; k < type->vector_elements; k++) {
1127 struct brw_reg interp = interp_reg(location, k);
1128 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1129 /* Get the pixel/sample mask into f0 so that we know
1130 * which pixels are lit. Then, for each channel that is
1131 * unlit, replace the centroid data with non-centroid
1132 * data.
1133 */
1134 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1135
1136 fs_inst *inst;
1137 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1138 false, false);
1139 inst->predicate = BRW_PREDICATE_NORMAL;
1140 inst->predicate_inverse = true;
1141 if (devinfo->has_pln)
1142 inst->no_dd_clear = true;
1143
1144 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1145 mod_centroid && !key->persample_shading,
1146 mod_sample || key->persample_shading);
1147 inst->predicate = BRW_PREDICATE_NORMAL;
1148 inst->predicate_inverse = false;
1149 if (devinfo->has_pln)
1150 inst->no_dd_check = true;
1151
1152 } else {
1153 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1154 mod_centroid && !key->persample_shading,
1155 mod_sample || key->persample_shading);
1156 }
1157 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1158 bld.MUL(attr, attr, this->pixel_w);
1159 }
1160 attr = offset(attr, bld, 1);
1161 }
1162
1163 }
1164 location++;
1165 }
1166 }
1167 }
1168
1169 fs_reg *
1170 fs_visitor::emit_frontfacing_interpolation()
1171 {
1172 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1173
1174 if (devinfo->gen >= 6) {
1175 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1176 * a boolean result from this (~0/true or 0/false).
1177 *
1178 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1179 * this task in only one instruction:
1180 * - a negation source modifier will flip the bit; and
1181 * - a W -> D type conversion will sign extend the bit into the high
1182 * word of the destination.
1183 *
1184 * An ASR 15 fills the low word of the destination.
1185 */
1186 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1187 g0.negate = true;
1188
1189 bld.ASR(*reg, g0, fs_reg(15));
1190 } else {
1191 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1192 * a boolean result from this (1/true or 0/false).
1193 *
1194 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1195 * the negation source modifier to flip it. Unfortunately the SHR
1196 * instruction only operates on UD (or D with an abs source modifier)
1197 * sources without negation.
1198 *
1199 * Instead, use ASR (which will give ~0/true or 0/false).
1200 */
1201 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1202 g1_6.negate = true;
1203
1204 bld.ASR(*reg, g1_6, fs_reg(31));
1205 }
1206
1207 return reg;
1208 }
1209
1210 void
1211 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1212 {
1213 assert(stage == MESA_SHADER_FRAGMENT);
1214 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1215 assert(dst.type == BRW_REGISTER_TYPE_F);
1216
1217 if (key->compute_pos_offset) {
1218 /* Convert int_sample_pos to floating point */
1219 bld.MOV(dst, int_sample_pos);
1220 /* Scale to the range [0, 1] */
1221 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1222 }
1223 else {
1224 /* From ARB_sample_shading specification:
1225 * "When rendering to a non-multisample buffer, or if multisample
1226 * rasterization is disabled, gl_SamplePosition will always be
1227 * (0.5, 0.5).
1228 */
1229 bld.MOV(dst, fs_reg(0.5f));
1230 }
1231 }
1232
1233 fs_reg *
1234 fs_visitor::emit_samplepos_setup()
1235 {
1236 assert(devinfo->gen >= 6);
1237
1238 const fs_builder abld = bld.annotate("compute sample position");
1239 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1240 fs_reg pos = *reg;
1241 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1242 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1243
1244 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1245 * mode will be enabled.
1246 *
1247 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1248 * R31.1:0 Position Offset X/Y for Slot[3:0]
1249 * R31.3:2 Position Offset X/Y for Slot[7:4]
1250 * .....
1251 *
1252 * The X, Y sample positions come in as bytes in thread payload. So, read
1253 * the positions using vstride=16, width=8, hstride=2.
1254 */
1255 struct brw_reg sample_pos_reg =
1256 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1257 BRW_REGISTER_TYPE_B), 16, 8, 2);
1258
1259 if (dispatch_width == 8) {
1260 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1261 } else {
1262 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1263 abld.half(1).MOV(half(int_sample_x, 1),
1264 fs_reg(suboffset(sample_pos_reg, 16)));
1265 }
1266 /* Compute gl_SamplePosition.x */
1267 compute_sample_position(pos, int_sample_x);
1268 pos = offset(pos, abld, 1);
1269 if (dispatch_width == 8) {
1270 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1271 } else {
1272 abld.half(0).MOV(half(int_sample_y, 0),
1273 fs_reg(suboffset(sample_pos_reg, 1)));
1274 abld.half(1).MOV(half(int_sample_y, 1),
1275 fs_reg(suboffset(sample_pos_reg, 17)));
1276 }
1277 /* Compute gl_SamplePosition.y */
1278 compute_sample_position(pos, int_sample_y);
1279 return reg;
1280 }
1281
1282 fs_reg *
1283 fs_visitor::emit_sampleid_setup()
1284 {
1285 assert(stage == MESA_SHADER_FRAGMENT);
1286 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1287 assert(devinfo->gen >= 6);
1288
1289 const fs_builder abld = bld.annotate("compute sample id");
1290 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1291
1292 if (key->compute_sample_id) {
1293 fs_reg t1(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1294 t1.set_smear(0);
1295 fs_reg t2(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1296
1297 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1298 * 8x multisampling, subspan 0 will represent sample N (where N
1299 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1300 * 7. We can find the value of N by looking at R0.0 bits 7:6
1301 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1302 * (since samples are always delivered in pairs). That is, we
1303 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1304 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1305 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1306 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1307 * populating a temporary variable with the sequence (0, 1, 2, 3),
1308 * and then reading from it using vstride=1, width=4, hstride=0.
1309 * These computations hold good for 4x multisampling as well.
1310 *
1311 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1312 * the first four slots are sample 0 of subspan 0; the next four
1313 * are sample 1 of subspan 0; the third group is sample 0 of
1314 * subspan 1, and finally sample 1 of subspan 1.
1315 */
1316
1317 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1318 * accomodate 16x MSAA.
1319 */
1320 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1321
1322 abld.exec_all().group(1, 0)
1323 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1324 fs_reg(sspi_mask));
1325 abld.exec_all().group(1, 0).SHR(t1, t1, fs_reg(5));
1326
1327 /* This works for both SIMD8 and SIMD16 */
1328 abld.exec_all().group(4, 0)
1329 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1330
1331 /* This special instruction takes care of setting vstride=1,
1332 * width=4, hstride=0 of t2 during an ADD instruction.
1333 */
1334 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1335 } else {
1336 /* As per GL_ARB_sample_shading specification:
1337 * "When rendering to a non-multisample buffer, or if multisample
1338 * rasterization is disabled, gl_SampleID will always be zero."
1339 */
1340 abld.MOV(*reg, fs_reg(0));
1341 }
1342
1343 return reg;
1344 }
1345
1346 fs_reg
1347 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1348 {
1349 if (!src.abs && !src.negate)
1350 return src;
1351
1352 fs_reg temp = bld.vgrf(src.type);
1353 bld.MOV(temp, src);
1354
1355 return temp;
1356 }
1357
1358 void
1359 fs_visitor::emit_discard_jump()
1360 {
1361 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1362
1363 /* For performance, after a discard, jump to the end of the
1364 * shader if all relevant channels have been discarded.
1365 */
1366 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1367 discard_jump->flag_subreg = 1;
1368
1369 discard_jump->predicate = (dispatch_width == 8)
1370 ? BRW_PREDICATE_ALIGN1_ANY8H
1371 : BRW_PREDICATE_ALIGN1_ANY16H;
1372 discard_jump->predicate_inverse = true;
1373 }
1374
1375 void
1376 fs_visitor::emit_gs_thread_end()
1377 {
1378 assert(stage == MESA_SHADER_GEOMETRY);
1379
1380 struct brw_gs_prog_data *gs_prog_data =
1381 (struct brw_gs_prog_data *) prog_data;
1382
1383 if (gs_compile->control_data_header_size_bits > 0) {
1384 emit_gs_control_data_bits(this->final_gs_vertex_count);
1385 }
1386
1387 const fs_builder abld = bld.annotate("thread end");
1388 fs_inst *inst;
1389
1390 if (gs_prog_data->static_vertex_count != -1) {
1391 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1392 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1393 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1394 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1395 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1396 prev->eot = true;
1397
1398 /* Delete now dead instructions. */
1399 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1400 if (dead == prev)
1401 break;
1402 dead->remove();
1403 }
1404 return;
1405 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1406 break;
1407 }
1408 }
1409 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1410 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1411 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1412 inst->mlen = 1;
1413 } else {
1414 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1415 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1416 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1417 sources[1] = this->final_gs_vertex_count;
1418 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1419 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1420 inst->mlen = 2;
1421 }
1422 inst->eot = true;
1423 inst->offset = 0;
1424 }
1425
1426 void
1427 fs_visitor::assign_curb_setup()
1428 {
1429 if (dispatch_width == 8) {
1430 prog_data->dispatch_grf_start_reg = payload.num_regs;
1431 } else {
1432 if (stage == MESA_SHADER_FRAGMENT) {
1433 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1434 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1435 } else if (stage == MESA_SHADER_COMPUTE) {
1436 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1437 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1438 } else {
1439 unreachable("Unsupported shader type!");
1440 }
1441 }
1442
1443 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1444
1445 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1446 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1447 for (unsigned int i = 0; i < inst->sources; i++) {
1448 if (inst->src[i].file == UNIFORM) {
1449 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1450 int constant_nr;
1451 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1452 constant_nr = push_constant_loc[uniform_nr];
1453 } else {
1454 /* Section 5.11 of the OpenGL 4.1 spec says:
1455 * "Out-of-bounds reads return undefined values, which include
1456 * values from other variables of the active program or zero."
1457 * Just return the first push constant.
1458 */
1459 constant_nr = 0;
1460 }
1461
1462 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1463 constant_nr / 8,
1464 constant_nr % 8);
1465
1466 assert(inst->src[i].stride == 0);
1467 inst->src[i].file = HW_REG;
1468 inst->src[i].fixed_hw_reg = byte_offset(
1469 retype(brw_reg, inst->src[i].type),
1470 inst->src[i].subreg_offset);
1471 }
1472 }
1473 }
1474
1475 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1476 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1477 }
1478
1479 void
1480 fs_visitor::calculate_urb_setup()
1481 {
1482 assert(stage == MESA_SHADER_FRAGMENT);
1483 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1484 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1485
1486 memset(prog_data->urb_setup, -1,
1487 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1488
1489 int urb_next = 0;
1490 /* Figure out where each of the incoming setup attributes lands. */
1491 if (devinfo->gen >= 6) {
1492 if (_mesa_bitcount_64(nir->info.inputs_read &
1493 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1494 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1495 * first 16 varying inputs, so we can put them wherever we want.
1496 * Just put them in order.
1497 *
1498 * This is useful because it means that (a) inputs not used by the
1499 * fragment shader won't take up valuable register space, and (b) we
1500 * won't have to recompile the fragment shader if it gets paired with
1501 * a different vertex (or geometry) shader.
1502 */
1503 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1504 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1505 BITFIELD64_BIT(i)) {
1506 prog_data->urb_setup[i] = urb_next++;
1507 }
1508 }
1509 } else {
1510 bool include_vue_header =
1511 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1512
1513 /* We have enough input varyings that the SF/SBE pipeline stage can't
1514 * arbitrarily rearrange them to suit our whim; we have to put them
1515 * in an order that matches the output of the previous pipeline stage
1516 * (geometry or vertex shader).
1517 */
1518 struct brw_vue_map prev_stage_vue_map;
1519 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1520 key->input_slots_valid,
1521 nir->info.separate_shader);
1522 int first_slot =
1523 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1524
1525 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1526 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1527 slot++) {
1528 int varying = prev_stage_vue_map.slot_to_varying[slot];
1529 if (varying != BRW_VARYING_SLOT_PAD &&
1530 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1531 BITFIELD64_BIT(varying))) {
1532 prog_data->urb_setup[varying] = slot - first_slot;
1533 }
1534 }
1535 urb_next = prev_stage_vue_map.num_slots - first_slot;
1536 }
1537 } else {
1538 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1539 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1540 /* Point size is packed into the header, not as a general attribute */
1541 if (i == VARYING_SLOT_PSIZ)
1542 continue;
1543
1544 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1545 /* The back color slot is skipped when the front color is
1546 * also written to. In addition, some slots can be
1547 * written in the vertex shader and not read in the
1548 * fragment shader. So the register number must always be
1549 * incremented, mapped or not.
1550 */
1551 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1552 prog_data->urb_setup[i] = urb_next;
1553 urb_next++;
1554 }
1555 }
1556
1557 /*
1558 * It's a FS only attribute, and we did interpolation for this attribute
1559 * in SF thread. So, count it here, too.
1560 *
1561 * See compile_sf_prog() for more info.
1562 */
1563 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1564 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1565 }
1566
1567 prog_data->num_varying_inputs = urb_next;
1568 }
1569
1570 void
1571 fs_visitor::assign_urb_setup()
1572 {
1573 assert(stage == MESA_SHADER_FRAGMENT);
1574 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1575
1576 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1577
1578 /* Offset all the urb_setup[] index by the actual position of the
1579 * setup regs, now that the location of the constants has been chosen.
1580 */
1581 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1582 if (inst->opcode == FS_OPCODE_LINTERP) {
1583 assert(inst->src[1].file == HW_REG);
1584 inst->src[1].fixed_hw_reg.nr += urb_start;
1585 }
1586
1587 if (inst->opcode == FS_OPCODE_CINTERP) {
1588 assert(inst->src[0].file == HW_REG);
1589 inst->src[0].fixed_hw_reg.nr += urb_start;
1590 }
1591 }
1592
1593 /* Each attribute is 4 setup channels, each of which is half a reg. */
1594 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1595 }
1596
1597 void
1598 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1599 {
1600 for (int i = 0; i < inst->sources; i++) {
1601 if (inst->src[i].file == ATTR) {
1602 int grf = payload.num_regs +
1603 prog_data->curb_read_length +
1604 inst->src[i].reg +
1605 inst->src[i].reg_offset;
1606
1607 inst->src[i].file = HW_REG;
1608 inst->src[i].fixed_hw_reg =
1609 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1610 inst->src[i].subreg_offset),
1611 inst->exec_size * inst->src[i].stride,
1612 inst->exec_size, inst->src[i].stride);
1613 }
1614 }
1615 }
1616
1617 void
1618 fs_visitor::assign_vs_urb_setup()
1619 {
1620 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1621
1622 assert(stage == MESA_SHADER_VERTEX);
1623 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1624 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1625 count++;
1626
1627 /* Each attribute is 4 regs. */
1628 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1629
1630 assert(vs_prog_data->base.urb_read_length <= 15);
1631
1632 /* Rewrite all ATTR file references to the hw grf that they land in. */
1633 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1634 convert_attr_sources_to_hw_regs(inst);
1635 }
1636 }
1637
1638 void
1639 fs_visitor::assign_gs_urb_setup()
1640 {
1641 assert(stage == MESA_SHADER_GEOMETRY);
1642
1643 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1644
1645 first_non_payload_grf +=
1646 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1647
1648 const unsigned first_icp_handle = payload.num_regs -
1649 (vue_prog_data->include_vue_handles ? nir->info.gs.vertices_in : 0);
1650
1651 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1652 /* Lower URB_READ_SIMD8 opcodes into real messages. */
1653 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8) {
1654 assert(inst->src[0].file == IMM);
1655 inst->src[0] = retype(brw_vec8_grf(first_icp_handle +
1656 inst->src[0].fixed_hw_reg.dw1.ud,
1657 0), BRW_REGISTER_TYPE_UD);
1658 /* for now, assume constant - we can do per-slot offsets later */
1659 assert(inst->src[1].file == IMM);
1660 inst->offset = inst->src[1].fixed_hw_reg.dw1.ud;
1661 inst->src[1] = fs_reg();
1662 inst->mlen = 1;
1663 inst->base_mrf = -1;
1664 }
1665
1666 /* Rewrite all ATTR file references to HW_REGs. */
1667 convert_attr_sources_to_hw_regs(inst);
1668 }
1669 }
1670
1671
1672 /**
1673 * Split large virtual GRFs into separate components if we can.
1674 *
1675 * This is mostly duplicated with what brw_fs_vector_splitting does,
1676 * but that's really conservative because it's afraid of doing
1677 * splitting that doesn't result in real progress after the rest of
1678 * the optimization phases, which would cause infinite looping in
1679 * optimization. We can do it once here, safely. This also has the
1680 * opportunity to split interpolated values, or maybe even uniforms,
1681 * which we don't have at the IR level.
1682 *
1683 * We want to split, because virtual GRFs are what we register
1684 * allocate and spill (due to contiguousness requirements for some
1685 * instructions), and they're what we naturally generate in the
1686 * codegen process, but most virtual GRFs don't actually need to be
1687 * contiguous sets of GRFs. If we split, we'll end up with reduced
1688 * live intervals and better dead code elimination and coalescing.
1689 */
1690 void
1691 fs_visitor::split_virtual_grfs()
1692 {
1693 int num_vars = this->alloc.count;
1694
1695 /* Count the total number of registers */
1696 int reg_count = 0;
1697 int vgrf_to_reg[num_vars];
1698 for (int i = 0; i < num_vars; i++) {
1699 vgrf_to_reg[i] = reg_count;
1700 reg_count += alloc.sizes[i];
1701 }
1702
1703 /* An array of "split points". For each register slot, this indicates
1704 * if this slot can be separated from the previous slot. Every time an
1705 * instruction uses multiple elements of a register (as a source or
1706 * destination), we mark the used slots as inseparable. Then we go
1707 * through and split the registers into the smallest pieces we can.
1708 */
1709 bool split_points[reg_count];
1710 memset(split_points, 0, sizeof(split_points));
1711
1712 /* Mark all used registers as fully splittable */
1713 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1714 if (inst->dst.file == GRF) {
1715 int reg = vgrf_to_reg[inst->dst.reg];
1716 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1717 split_points[reg + j] = true;
1718 }
1719
1720 for (int i = 0; i < inst->sources; i++) {
1721 if (inst->src[i].file == GRF) {
1722 int reg = vgrf_to_reg[inst->src[i].reg];
1723 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1724 split_points[reg + j] = true;
1725 }
1726 }
1727 }
1728
1729 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1730 if (inst->dst.file == GRF) {
1731 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1732 for (int j = 1; j < inst->regs_written; j++)
1733 split_points[reg + j] = false;
1734 }
1735 for (int i = 0; i < inst->sources; i++) {
1736 if (inst->src[i].file == GRF) {
1737 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1738 for (int j = 1; j < inst->regs_read(i); j++)
1739 split_points[reg + j] = false;
1740 }
1741 }
1742 }
1743
1744 int new_virtual_grf[reg_count];
1745 int new_reg_offset[reg_count];
1746
1747 int reg = 0;
1748 for (int i = 0; i < num_vars; i++) {
1749 /* The first one should always be 0 as a quick sanity check. */
1750 assert(split_points[reg] == false);
1751
1752 /* j = 0 case */
1753 new_reg_offset[reg] = 0;
1754 reg++;
1755 int offset = 1;
1756
1757 /* j > 0 case */
1758 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1759 /* If this is a split point, reset the offset to 0 and allocate a
1760 * new virtual GRF for the previous offset many registers
1761 */
1762 if (split_points[reg]) {
1763 assert(offset <= MAX_VGRF_SIZE);
1764 int grf = alloc.allocate(offset);
1765 for (int k = reg - offset; k < reg; k++)
1766 new_virtual_grf[k] = grf;
1767 offset = 0;
1768 }
1769 new_reg_offset[reg] = offset;
1770 offset++;
1771 reg++;
1772 }
1773
1774 /* The last one gets the original register number */
1775 assert(offset <= MAX_VGRF_SIZE);
1776 alloc.sizes[i] = offset;
1777 for (int k = reg - offset; k < reg; k++)
1778 new_virtual_grf[k] = i;
1779 }
1780 assert(reg == reg_count);
1781
1782 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1783 if (inst->dst.file == GRF) {
1784 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1785 inst->dst.reg = new_virtual_grf[reg];
1786 inst->dst.reg_offset = new_reg_offset[reg];
1787 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1788 }
1789 for (int i = 0; i < inst->sources; i++) {
1790 if (inst->src[i].file == GRF) {
1791 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1792 inst->src[i].reg = new_virtual_grf[reg];
1793 inst->src[i].reg_offset = new_reg_offset[reg];
1794 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1795 }
1796 }
1797 }
1798 invalidate_live_intervals();
1799 }
1800
1801 /**
1802 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1803 *
1804 * During code generation, we create tons of temporary variables, many of
1805 * which get immediately killed and are never used again. Yet, in later
1806 * optimization and analysis passes, such as compute_live_intervals, we need
1807 * to loop over all the virtual GRFs. Compacting them can save a lot of
1808 * overhead.
1809 */
1810 bool
1811 fs_visitor::compact_virtual_grfs()
1812 {
1813 bool progress = false;
1814 int remap_table[this->alloc.count];
1815 memset(remap_table, -1, sizeof(remap_table));
1816
1817 /* Mark which virtual GRFs are used. */
1818 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1819 if (inst->dst.file == GRF)
1820 remap_table[inst->dst.reg] = 0;
1821
1822 for (int i = 0; i < inst->sources; i++) {
1823 if (inst->src[i].file == GRF)
1824 remap_table[inst->src[i].reg] = 0;
1825 }
1826 }
1827
1828 /* Compact the GRF arrays. */
1829 int new_index = 0;
1830 for (unsigned i = 0; i < this->alloc.count; i++) {
1831 if (remap_table[i] == -1) {
1832 /* We just found an unused register. This means that we are
1833 * actually going to compact something.
1834 */
1835 progress = true;
1836 } else {
1837 remap_table[i] = new_index;
1838 alloc.sizes[new_index] = alloc.sizes[i];
1839 invalidate_live_intervals();
1840 ++new_index;
1841 }
1842 }
1843
1844 this->alloc.count = new_index;
1845
1846 /* Patch all the instructions to use the newly renumbered registers */
1847 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1848 if (inst->dst.file == GRF)
1849 inst->dst.reg = remap_table[inst->dst.reg];
1850
1851 for (int i = 0; i < inst->sources; i++) {
1852 if (inst->src[i].file == GRF)
1853 inst->src[i].reg = remap_table[inst->src[i].reg];
1854 }
1855 }
1856
1857 /* Patch all the references to delta_xy, since they're used in register
1858 * allocation. If they're unused, switch them to BAD_FILE so we don't
1859 * think some random VGRF is delta_xy.
1860 */
1861 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1862 if (delta_xy[i].file == GRF) {
1863 if (remap_table[delta_xy[i].reg] != -1) {
1864 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1865 } else {
1866 delta_xy[i].file = BAD_FILE;
1867 }
1868 }
1869 }
1870
1871 return progress;
1872 }
1873
1874 /**
1875 * Assign UNIFORM file registers to either push constants or pull constants.
1876 *
1877 * We allow a fragment shader to have more than the specified minimum
1878 * maximum number of fragment shader uniform components (64). If
1879 * there are too many of these, they'd fill up all of register space.
1880 * So, this will push some of them out to the pull constant buffer and
1881 * update the program to load them. We also use pull constants for all
1882 * indirect constant loads because we don't support indirect accesses in
1883 * registers yet.
1884 */
1885 void
1886 fs_visitor::assign_constant_locations()
1887 {
1888 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1889 if (dispatch_width != 8)
1890 return;
1891
1892 unsigned int num_pull_constants = 0;
1893
1894 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1895 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1896
1897 bool is_live[uniforms];
1898 memset(is_live, 0, sizeof(is_live));
1899
1900 /* First, we walk through the instructions and do two things:
1901 *
1902 * 1) Figure out which uniforms are live.
1903 *
1904 * 2) Find all indirect access of uniform arrays and flag them as needing
1905 * to go into the pull constant buffer.
1906 *
1907 * Note that we don't move constant-indexed accesses to arrays. No
1908 * testing has been done of the performance impact of this choice.
1909 */
1910 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1911 for (int i = 0 ; i < inst->sources; i++) {
1912 if (inst->src[i].file != UNIFORM)
1913 continue;
1914
1915 if (inst->src[i].reladdr) {
1916 int uniform = inst->src[i].reg;
1917
1918 /* If this array isn't already present in the pull constant buffer,
1919 * add it.
1920 */
1921 if (pull_constant_loc[uniform] == -1) {
1922 assert(param_size[uniform]);
1923 for (int j = 0; j < param_size[uniform]; j++)
1924 pull_constant_loc[uniform + j] = num_pull_constants++;
1925 }
1926 } else {
1927 /* Mark the the one accessed uniform as live */
1928 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1929 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1930 is_live[constant_nr] = true;
1931 }
1932 }
1933 }
1934
1935 /* Only allow 16 registers (128 uniform components) as push constants.
1936 *
1937 * Just demote the end of the list. We could probably do better
1938 * here, demoting things that are rarely used in the program first.
1939 *
1940 * If changing this value, note the limitation about total_regs in
1941 * brw_curbe.c.
1942 */
1943 unsigned int max_push_components = 16 * 8;
1944 unsigned int num_push_constants = 0;
1945
1946 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1947
1948 for (unsigned int i = 0; i < uniforms; i++) {
1949 if (!is_live[i] || pull_constant_loc[i] != -1) {
1950 /* This UNIFORM register is either dead, or has already been demoted
1951 * to a pull const. Mark it as no longer living in the param[] array.
1952 */
1953 push_constant_loc[i] = -1;
1954 continue;
1955 }
1956
1957 if (num_push_constants < max_push_components) {
1958 /* Retain as a push constant. Record the location in the params[]
1959 * array.
1960 */
1961 push_constant_loc[i] = num_push_constants++;
1962 } else {
1963 /* Demote to a pull constant. */
1964 push_constant_loc[i] = -1;
1965 pull_constant_loc[i] = num_pull_constants++;
1966 }
1967 }
1968
1969 stage_prog_data->nr_params = num_push_constants;
1970 stage_prog_data->nr_pull_params = num_pull_constants;
1971
1972 /* Up until now, the param[] array has been indexed by reg + reg_offset
1973 * of UNIFORM registers. Move pull constants into pull_param[] and
1974 * condense param[] to only contain the uniforms we chose to push.
1975 *
1976 * NOTE: Because we are condensing the params[] array, we know that
1977 * push_constant_loc[i] <= i and we can do it in one smooth loop without
1978 * having to make a copy.
1979 */
1980 for (unsigned int i = 0; i < uniforms; i++) {
1981 const gl_constant_value *value = stage_prog_data->param[i];
1982
1983 if (pull_constant_loc[i] != -1) {
1984 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
1985 } else if (push_constant_loc[i] != -1) {
1986 stage_prog_data->param[push_constant_loc[i]] = value;
1987 }
1988 }
1989 }
1990
1991 /**
1992 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1993 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1994 */
1995 void
1996 fs_visitor::demote_pull_constants()
1997 {
1998 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1999 for (int i = 0; i < inst->sources; i++) {
2000 if (inst->src[i].file != UNIFORM)
2001 continue;
2002
2003 int pull_index;
2004 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
2005 if (location >= uniforms) /* Out of bounds access */
2006 pull_index = -1;
2007 else
2008 pull_index = pull_constant_loc[location];
2009
2010 if (pull_index == -1)
2011 continue;
2012
2013 /* Set up the annotation tracking for new generated instructions. */
2014 const fs_builder ibld(this, block, inst);
2015 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2016 fs_reg dst = vgrf(glsl_type::float_type);
2017
2018 assert(inst->src[i].stride == 0);
2019
2020 /* Generate a pull load into dst. */
2021 if (inst->src[i].reladdr) {
2022 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2023 fs_reg(index),
2024 *inst->src[i].reladdr,
2025 pull_index);
2026 inst->src[i].reladdr = NULL;
2027 inst->src[i].stride = 1;
2028 } else {
2029 const fs_builder ubld = ibld.exec_all().group(8, 0);
2030 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
2031 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2032 dst, fs_reg(index), offset);
2033 inst->src[i].set_smear(pull_index & 3);
2034 }
2035 brw_mark_surface_used(prog_data, index);
2036
2037 /* Rewrite the instruction to use the temporary VGRF. */
2038 inst->src[i].file = GRF;
2039 inst->src[i].reg = dst.reg;
2040 inst->src[i].reg_offset = 0;
2041 }
2042 }
2043 invalidate_live_intervals();
2044 }
2045
2046 bool
2047 fs_visitor::opt_algebraic()
2048 {
2049 bool progress = false;
2050
2051 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2052 switch (inst->opcode) {
2053 case BRW_OPCODE_MOV:
2054 if (inst->src[0].file != IMM)
2055 break;
2056
2057 if (inst->saturate) {
2058 if (inst->dst.type != inst->src[0].type)
2059 assert(!"unimplemented: saturate mixed types");
2060
2061 if (brw_saturate_immediate(inst->dst.type,
2062 &inst->src[0].fixed_hw_reg)) {
2063 inst->saturate = false;
2064 progress = true;
2065 }
2066 }
2067 break;
2068
2069 case BRW_OPCODE_MUL:
2070 if (inst->src[1].file != IMM)
2071 continue;
2072
2073 /* a * 1.0 = a */
2074 if (inst->src[1].is_one()) {
2075 inst->opcode = BRW_OPCODE_MOV;
2076 inst->src[1] = reg_undef;
2077 progress = true;
2078 break;
2079 }
2080
2081 /* a * -1.0 = -a */
2082 if (inst->src[1].is_negative_one()) {
2083 inst->opcode = BRW_OPCODE_MOV;
2084 inst->src[0].negate = !inst->src[0].negate;
2085 inst->src[1] = reg_undef;
2086 progress = true;
2087 break;
2088 }
2089
2090 /* a * 0.0 = 0.0 */
2091 if (inst->src[1].is_zero()) {
2092 inst->opcode = BRW_OPCODE_MOV;
2093 inst->src[0] = inst->src[1];
2094 inst->src[1] = reg_undef;
2095 progress = true;
2096 break;
2097 }
2098
2099 if (inst->src[0].file == IMM) {
2100 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2101 inst->opcode = BRW_OPCODE_MOV;
2102 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
2103 inst->src[1] = reg_undef;
2104 progress = true;
2105 break;
2106 }
2107 break;
2108 case BRW_OPCODE_ADD:
2109 if (inst->src[1].file != IMM)
2110 continue;
2111
2112 /* a + 0.0 = a */
2113 if (inst->src[1].is_zero()) {
2114 inst->opcode = BRW_OPCODE_MOV;
2115 inst->src[1] = reg_undef;
2116 progress = true;
2117 break;
2118 }
2119
2120 if (inst->src[0].file == IMM) {
2121 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2122 inst->opcode = BRW_OPCODE_MOV;
2123 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
2124 inst->src[1] = reg_undef;
2125 progress = true;
2126 break;
2127 }
2128 break;
2129 case BRW_OPCODE_OR:
2130 if (inst->src[0].equals(inst->src[1])) {
2131 inst->opcode = BRW_OPCODE_MOV;
2132 inst->src[1] = reg_undef;
2133 progress = true;
2134 break;
2135 }
2136 break;
2137 case BRW_OPCODE_LRP:
2138 if (inst->src[1].equals(inst->src[2])) {
2139 inst->opcode = BRW_OPCODE_MOV;
2140 inst->src[0] = inst->src[1];
2141 inst->src[1] = reg_undef;
2142 inst->src[2] = reg_undef;
2143 progress = true;
2144 break;
2145 }
2146 break;
2147 case BRW_OPCODE_CMP:
2148 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2149 inst->src[0].abs &&
2150 inst->src[0].negate &&
2151 inst->src[1].is_zero()) {
2152 inst->src[0].abs = false;
2153 inst->src[0].negate = false;
2154 inst->conditional_mod = BRW_CONDITIONAL_Z;
2155 progress = true;
2156 break;
2157 }
2158 break;
2159 case BRW_OPCODE_SEL:
2160 if (inst->src[0].equals(inst->src[1])) {
2161 inst->opcode = BRW_OPCODE_MOV;
2162 inst->src[1] = reg_undef;
2163 inst->predicate = BRW_PREDICATE_NONE;
2164 inst->predicate_inverse = false;
2165 progress = true;
2166 } else if (inst->saturate && inst->src[1].file == IMM) {
2167 switch (inst->conditional_mod) {
2168 case BRW_CONDITIONAL_LE:
2169 case BRW_CONDITIONAL_L:
2170 switch (inst->src[1].type) {
2171 case BRW_REGISTER_TYPE_F:
2172 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2173 inst->opcode = BRW_OPCODE_MOV;
2174 inst->src[1] = reg_undef;
2175 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2176 progress = true;
2177 }
2178 break;
2179 default:
2180 break;
2181 }
2182 break;
2183 case BRW_CONDITIONAL_GE:
2184 case BRW_CONDITIONAL_G:
2185 switch (inst->src[1].type) {
2186 case BRW_REGISTER_TYPE_F:
2187 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2188 inst->opcode = BRW_OPCODE_MOV;
2189 inst->src[1] = reg_undef;
2190 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2191 progress = true;
2192 }
2193 break;
2194 default:
2195 break;
2196 }
2197 default:
2198 break;
2199 }
2200 }
2201 break;
2202 case BRW_OPCODE_MAD:
2203 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2204 inst->opcode = BRW_OPCODE_MOV;
2205 inst->src[1] = reg_undef;
2206 inst->src[2] = reg_undef;
2207 progress = true;
2208 } else if (inst->src[0].is_zero()) {
2209 inst->opcode = BRW_OPCODE_MUL;
2210 inst->src[0] = inst->src[2];
2211 inst->src[2] = reg_undef;
2212 progress = true;
2213 } else if (inst->src[1].is_one()) {
2214 inst->opcode = BRW_OPCODE_ADD;
2215 inst->src[1] = inst->src[2];
2216 inst->src[2] = reg_undef;
2217 progress = true;
2218 } else if (inst->src[2].is_one()) {
2219 inst->opcode = BRW_OPCODE_ADD;
2220 inst->src[2] = reg_undef;
2221 progress = true;
2222 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2223 inst->opcode = BRW_OPCODE_ADD;
2224 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2225 inst->src[2] = reg_undef;
2226 progress = true;
2227 }
2228 break;
2229 case SHADER_OPCODE_RCP: {
2230 fs_inst *prev = (fs_inst *)inst->prev;
2231 if (prev->opcode == SHADER_OPCODE_SQRT) {
2232 if (inst->src[0].equals(prev->dst)) {
2233 inst->opcode = SHADER_OPCODE_RSQ;
2234 inst->src[0] = prev->src[0];
2235 progress = true;
2236 }
2237 }
2238 break;
2239 }
2240 case SHADER_OPCODE_BROADCAST:
2241 if (is_uniform(inst->src[0])) {
2242 inst->opcode = BRW_OPCODE_MOV;
2243 inst->sources = 1;
2244 inst->force_writemask_all = true;
2245 progress = true;
2246 } else if (inst->src[1].file == IMM) {
2247 inst->opcode = BRW_OPCODE_MOV;
2248 inst->src[0] = component(inst->src[0],
2249 inst->src[1].fixed_hw_reg.dw1.ud);
2250 inst->sources = 1;
2251 inst->force_writemask_all = true;
2252 progress = true;
2253 }
2254 break;
2255
2256 default:
2257 break;
2258 }
2259
2260 /* Swap if src[0] is immediate. */
2261 if (progress && inst->is_commutative()) {
2262 if (inst->src[0].file == IMM) {
2263 fs_reg tmp = inst->src[1];
2264 inst->src[1] = inst->src[0];
2265 inst->src[0] = tmp;
2266 }
2267 }
2268 }
2269 return progress;
2270 }
2271
2272 /**
2273 * Optimize sample messages that have constant zero values for the trailing
2274 * texture coordinates. We can just reduce the message length for these
2275 * instructions instead of reserving a register for it. Trailing parameters
2276 * that aren't sent default to zero anyway. This will cause the dead code
2277 * eliminator to remove the MOV instruction that would otherwise be emitted to
2278 * set up the zero value.
2279 */
2280 bool
2281 fs_visitor::opt_zero_samples()
2282 {
2283 /* Gen4 infers the texturing opcode based on the message length so we can't
2284 * change it.
2285 */
2286 if (devinfo->gen < 5)
2287 return false;
2288
2289 bool progress = false;
2290
2291 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2292 if (!inst->is_tex())
2293 continue;
2294
2295 fs_inst *load_payload = (fs_inst *) inst->prev;
2296
2297 if (load_payload->is_head_sentinel() ||
2298 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2299 continue;
2300
2301 /* We don't want to remove the message header or the first parameter.
2302 * Removing the first parameter is not allowed, see the Haswell PRM
2303 * volume 7, page 149:
2304 *
2305 * "Parameter 0 is required except for the sampleinfo message, which
2306 * has no parameter 0"
2307 */
2308 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2309 load_payload->src[(inst->mlen - inst->header_size) /
2310 (inst->exec_size / 8) +
2311 inst->header_size - 1].is_zero()) {
2312 inst->mlen -= inst->exec_size / 8;
2313 progress = true;
2314 }
2315 }
2316
2317 if (progress)
2318 invalidate_live_intervals();
2319
2320 return progress;
2321 }
2322
2323 /**
2324 * Optimize sample messages which are followed by the final RT write.
2325 *
2326 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2327 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2328 * final texturing results copied to the framebuffer write payload and modify
2329 * them to write to the framebuffer directly.
2330 */
2331 bool
2332 fs_visitor::opt_sampler_eot()
2333 {
2334 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2335
2336 if (stage != MESA_SHADER_FRAGMENT)
2337 return false;
2338
2339 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2340 return false;
2341
2342 /* FINISHME: It should be possible to implement this optimization when there
2343 * are multiple drawbuffers.
2344 */
2345 if (key->nr_color_regions != 1)
2346 return false;
2347
2348 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2349 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2350 fs_inst *fb_write = (fs_inst *)block->end();
2351 assert(fb_write->eot);
2352 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2353
2354 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2355
2356 /* There wasn't one; nothing to do. */
2357 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2358 return false;
2359
2360 /* 3D Sampler » Messages » Message Format
2361 *
2362 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2363 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2364 */
2365 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2366 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2367 tex_inst->opcode == SHADER_OPCODE_LOD ||
2368 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2369 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2370 return false;
2371
2372 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2373 * It's very likely to be the previous instruction.
2374 */
2375 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2376 if (load_payload->is_head_sentinel() ||
2377 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2378 return false;
2379
2380 assert(!tex_inst->eot); /* We can't get here twice */
2381 assert((tex_inst->offset & (0xff << 24)) == 0);
2382
2383 const fs_builder ibld(this, block, tex_inst);
2384
2385 tex_inst->offset |= fb_write->target << 24;
2386 tex_inst->eot = true;
2387 tex_inst->dst = ibld.null_reg_ud();
2388 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2389
2390 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2391 * to create a new LOAD_PAYLOAD command with the same sources and a space
2392 * saved for the header. Using a new destination register not only makes sure
2393 * we have enough space, but it will make sure the dead code eliminator kills
2394 * the instruction that this will replace.
2395 */
2396 if (tex_inst->header_size != 0)
2397 return true;
2398
2399 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2400 load_payload->sources + 1);
2401 fs_reg *new_sources =
2402 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2403
2404 new_sources[0] = fs_reg();
2405 for (int i = 0; i < load_payload->sources; i++)
2406 new_sources[i+1] = load_payload->src[i];
2407
2408 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2409 * requires a lot of information about the sources to appropriately figure
2410 * out the number of registers needed to be used. Given this stage in our
2411 * optimization, we may not have the appropriate GRFs required by
2412 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2413 * manually emit the instruction.
2414 */
2415 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2416 load_payload->exec_size,
2417 send_header,
2418 new_sources,
2419 load_payload->sources + 1);
2420
2421 new_load_payload->regs_written = load_payload->regs_written + 1;
2422 new_load_payload->header_size = 1;
2423 tex_inst->mlen++;
2424 tex_inst->header_size = 1;
2425 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2426 tex_inst->src[0] = send_header;
2427
2428 return true;
2429 }
2430
2431 bool
2432 fs_visitor::opt_register_renaming()
2433 {
2434 bool progress = false;
2435 int depth = 0;
2436
2437 int remap[alloc.count];
2438 memset(remap, -1, sizeof(int) * alloc.count);
2439
2440 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2441 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2442 depth++;
2443 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2444 inst->opcode == BRW_OPCODE_WHILE) {
2445 depth--;
2446 }
2447
2448 /* Rewrite instruction sources. */
2449 for (int i = 0; i < inst->sources; i++) {
2450 if (inst->src[i].file == GRF &&
2451 remap[inst->src[i].reg] != -1 &&
2452 remap[inst->src[i].reg] != inst->src[i].reg) {
2453 inst->src[i].reg = remap[inst->src[i].reg];
2454 progress = true;
2455 }
2456 }
2457
2458 const int dst = inst->dst.reg;
2459
2460 if (depth == 0 &&
2461 inst->dst.file == GRF &&
2462 alloc.sizes[inst->dst.reg] == inst->exec_size / 8 &&
2463 !inst->is_partial_write()) {
2464 if (remap[dst] == -1) {
2465 remap[dst] = dst;
2466 } else {
2467 remap[dst] = alloc.allocate(inst->exec_size / 8);
2468 inst->dst.reg = remap[dst];
2469 progress = true;
2470 }
2471 } else if (inst->dst.file == GRF &&
2472 remap[dst] != -1 &&
2473 remap[dst] != dst) {
2474 inst->dst.reg = remap[dst];
2475 progress = true;
2476 }
2477 }
2478
2479 if (progress) {
2480 invalidate_live_intervals();
2481
2482 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2483 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2484 delta_xy[i].reg = remap[delta_xy[i].reg];
2485 }
2486 }
2487 }
2488
2489 return progress;
2490 }
2491
2492 /**
2493 * Remove redundant or useless discard jumps.
2494 *
2495 * For example, we can eliminate jumps in the following sequence:
2496 *
2497 * discard-jump (redundant with the next jump)
2498 * discard-jump (useless; jumps to the next instruction)
2499 * placeholder-halt
2500 */
2501 bool
2502 fs_visitor::opt_redundant_discard_jumps()
2503 {
2504 bool progress = false;
2505
2506 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2507
2508 fs_inst *placeholder_halt = NULL;
2509 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2510 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2511 placeholder_halt = inst;
2512 break;
2513 }
2514 }
2515
2516 if (!placeholder_halt)
2517 return false;
2518
2519 /* Delete any HALTs immediately before the placeholder halt. */
2520 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2521 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2522 prev = (fs_inst *) placeholder_halt->prev) {
2523 prev->remove(last_bblock);
2524 progress = true;
2525 }
2526
2527 if (progress)
2528 invalidate_live_intervals();
2529
2530 return progress;
2531 }
2532
2533 bool
2534 fs_visitor::compute_to_mrf()
2535 {
2536 bool progress = false;
2537 int next_ip = 0;
2538
2539 /* No MRFs on Gen >= 7. */
2540 if (devinfo->gen >= 7)
2541 return false;
2542
2543 calculate_live_intervals();
2544
2545 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2546 int ip = next_ip;
2547 next_ip++;
2548
2549 if (inst->opcode != BRW_OPCODE_MOV ||
2550 inst->is_partial_write() ||
2551 inst->dst.file != MRF || inst->src[0].file != GRF ||
2552 inst->dst.type != inst->src[0].type ||
2553 inst->src[0].abs || inst->src[0].negate ||
2554 !inst->src[0].is_contiguous() ||
2555 inst->src[0].subreg_offset)
2556 continue;
2557
2558 /* Work out which hardware MRF registers are written by this
2559 * instruction.
2560 */
2561 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2562 int mrf_high;
2563 if (inst->dst.reg & BRW_MRF_COMPR4) {
2564 mrf_high = mrf_low + 4;
2565 } else if (inst->exec_size == 16) {
2566 mrf_high = mrf_low + 1;
2567 } else {
2568 mrf_high = mrf_low;
2569 }
2570
2571 /* Can't compute-to-MRF this GRF if someone else was going to
2572 * read it later.
2573 */
2574 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2575 continue;
2576
2577 /* Found a move of a GRF to a MRF. Let's see if we can go
2578 * rewrite the thing that made this GRF to write into the MRF.
2579 */
2580 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2581 if (scan_inst->dst.file == GRF &&
2582 scan_inst->dst.reg == inst->src[0].reg) {
2583 /* Found the last thing to write our reg we want to turn
2584 * into a compute-to-MRF.
2585 */
2586
2587 /* If this one instruction didn't populate all the
2588 * channels, bail. We might be able to rewrite everything
2589 * that writes that reg, but it would require smarter
2590 * tracking to delay the rewriting until complete success.
2591 */
2592 if (scan_inst->is_partial_write())
2593 break;
2594
2595 /* Things returning more than one register would need us to
2596 * understand coalescing out more than one MOV at a time.
2597 */
2598 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2599 break;
2600
2601 /* SEND instructions can't have MRF as a destination. */
2602 if (scan_inst->mlen)
2603 break;
2604
2605 if (devinfo->gen == 6) {
2606 /* gen6 math instructions must have the destination be
2607 * GRF, so no compute-to-MRF for them.
2608 */
2609 if (scan_inst->is_math()) {
2610 break;
2611 }
2612 }
2613
2614 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2615 /* Found the creator of our MRF's source value. */
2616 scan_inst->dst.file = MRF;
2617 scan_inst->dst.reg = inst->dst.reg;
2618 scan_inst->saturate |= inst->saturate;
2619 inst->remove(block);
2620 progress = true;
2621 }
2622 break;
2623 }
2624
2625 /* We don't handle control flow here. Most computation of
2626 * values that end up in MRFs are shortly before the MRF
2627 * write anyway.
2628 */
2629 if (block->start() == scan_inst)
2630 break;
2631
2632 /* You can't read from an MRF, so if someone else reads our
2633 * MRF's source GRF that we wanted to rewrite, that stops us.
2634 */
2635 bool interfered = false;
2636 for (int i = 0; i < scan_inst->sources; i++) {
2637 if (scan_inst->src[i].file == GRF &&
2638 scan_inst->src[i].reg == inst->src[0].reg &&
2639 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2640 interfered = true;
2641 }
2642 }
2643 if (interfered)
2644 break;
2645
2646 if (scan_inst->dst.file == MRF) {
2647 /* If somebody else writes our MRF here, we can't
2648 * compute-to-MRF before that.
2649 */
2650 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2651 int scan_mrf_high;
2652
2653 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2654 scan_mrf_high = scan_mrf_low + 4;
2655 } else if (scan_inst->exec_size == 16) {
2656 scan_mrf_high = scan_mrf_low + 1;
2657 } else {
2658 scan_mrf_high = scan_mrf_low;
2659 }
2660
2661 if (mrf_low == scan_mrf_low ||
2662 mrf_low == scan_mrf_high ||
2663 mrf_high == scan_mrf_low ||
2664 mrf_high == scan_mrf_high) {
2665 break;
2666 }
2667 }
2668
2669 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2670 /* Found a SEND instruction, which means that there are
2671 * live values in MRFs from base_mrf to base_mrf +
2672 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2673 * above it.
2674 */
2675 if (mrf_low >= scan_inst->base_mrf &&
2676 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2677 break;
2678 }
2679 if (mrf_high >= scan_inst->base_mrf &&
2680 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2681 break;
2682 }
2683 }
2684 }
2685 }
2686
2687 if (progress)
2688 invalidate_live_intervals();
2689
2690 return progress;
2691 }
2692
2693 /**
2694 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2695 * flow. We could probably do better here with some form of divergence
2696 * analysis.
2697 */
2698 bool
2699 fs_visitor::eliminate_find_live_channel()
2700 {
2701 bool progress = false;
2702 unsigned depth = 0;
2703
2704 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2705 switch (inst->opcode) {
2706 case BRW_OPCODE_IF:
2707 case BRW_OPCODE_DO:
2708 depth++;
2709 break;
2710
2711 case BRW_OPCODE_ENDIF:
2712 case BRW_OPCODE_WHILE:
2713 depth--;
2714 break;
2715
2716 case FS_OPCODE_DISCARD_JUMP:
2717 /* This can potentially make control flow non-uniform until the end
2718 * of the program.
2719 */
2720 return progress;
2721
2722 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2723 if (depth == 0) {
2724 inst->opcode = BRW_OPCODE_MOV;
2725 inst->src[0] = fs_reg(0u);
2726 inst->sources = 1;
2727 inst->force_writemask_all = true;
2728 progress = true;
2729 }
2730 break;
2731
2732 default:
2733 break;
2734 }
2735 }
2736
2737 return progress;
2738 }
2739
2740 /**
2741 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2742 * instructions to FS_OPCODE_REP_FB_WRITE.
2743 */
2744 void
2745 fs_visitor::emit_repclear_shader()
2746 {
2747 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2748 int base_mrf = 1;
2749 int color_mrf = base_mrf + 2;
2750
2751 fs_inst *mov = bld.exec_all().group(4, 0)
2752 .MOV(brw_message_reg(color_mrf),
2753 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2754
2755 fs_inst *write;
2756 if (key->nr_color_regions == 1) {
2757 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2758 write->saturate = key->clamp_fragment_color;
2759 write->base_mrf = color_mrf;
2760 write->target = 0;
2761 write->header_size = 0;
2762 write->mlen = 1;
2763 } else {
2764 assume(key->nr_color_regions > 0);
2765 for (int i = 0; i < key->nr_color_regions; ++i) {
2766 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2767 write->saturate = key->clamp_fragment_color;
2768 write->base_mrf = base_mrf;
2769 write->target = i;
2770 write->header_size = 2;
2771 write->mlen = 3;
2772 }
2773 }
2774 write->eot = true;
2775
2776 calculate_cfg();
2777
2778 assign_constant_locations();
2779 assign_curb_setup();
2780
2781 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2782 assert(mov->src[0].file == HW_REG);
2783 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2784 }
2785
2786 /**
2787 * Walks through basic blocks, looking for repeated MRF writes and
2788 * removing the later ones.
2789 */
2790 bool
2791 fs_visitor::remove_duplicate_mrf_writes()
2792 {
2793 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2794 bool progress = false;
2795
2796 /* Need to update the MRF tracking for compressed instructions. */
2797 if (dispatch_width == 16)
2798 return false;
2799
2800 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2801
2802 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2803 if (inst->is_control_flow()) {
2804 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2805 }
2806
2807 if (inst->opcode == BRW_OPCODE_MOV &&
2808 inst->dst.file == MRF) {
2809 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2810 if (prev_inst && inst->equals(prev_inst)) {
2811 inst->remove(block);
2812 progress = true;
2813 continue;
2814 }
2815 }
2816
2817 /* Clear out the last-write records for MRFs that were overwritten. */
2818 if (inst->dst.file == MRF) {
2819 last_mrf_move[inst->dst.reg] = NULL;
2820 }
2821
2822 if (inst->mlen > 0 && inst->base_mrf != -1) {
2823 /* Found a SEND instruction, which will include two or fewer
2824 * implied MRF writes. We could do better here.
2825 */
2826 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2827 last_mrf_move[inst->base_mrf + i] = NULL;
2828 }
2829 }
2830
2831 /* Clear out any MRF move records whose sources got overwritten. */
2832 if (inst->dst.file == GRF) {
2833 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2834 if (last_mrf_move[i] &&
2835 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2836 last_mrf_move[i] = NULL;
2837 }
2838 }
2839 }
2840
2841 if (inst->opcode == BRW_OPCODE_MOV &&
2842 inst->dst.file == MRF &&
2843 inst->src[0].file == GRF &&
2844 !inst->is_partial_write()) {
2845 last_mrf_move[inst->dst.reg] = inst;
2846 }
2847 }
2848
2849 if (progress)
2850 invalidate_live_intervals();
2851
2852 return progress;
2853 }
2854
2855 static void
2856 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2857 {
2858 /* Clear the flag for registers that actually got read (as expected). */
2859 for (int i = 0; i < inst->sources; i++) {
2860 int grf;
2861 if (inst->src[i].file == GRF) {
2862 grf = inst->src[i].reg;
2863 } else if (inst->src[i].file == HW_REG &&
2864 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2865 grf = inst->src[i].fixed_hw_reg.nr;
2866 } else {
2867 continue;
2868 }
2869
2870 if (grf >= first_grf &&
2871 grf < first_grf + grf_len) {
2872 deps[grf - first_grf] = false;
2873 if (inst->exec_size == 16)
2874 deps[grf - first_grf + 1] = false;
2875 }
2876 }
2877 }
2878
2879 /**
2880 * Implements this workaround for the original 965:
2881 *
2882 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2883 * check for post destination dependencies on this instruction, software
2884 * must ensure that there is no destination hazard for the case of ‘write
2885 * followed by a posted write’ shown in the following example.
2886 *
2887 * 1. mov r3 0
2888 * 2. send r3.xy <rest of send instruction>
2889 * 3. mov r2 r3
2890 *
2891 * Due to no post-destination dependency check on the ‘send’, the above
2892 * code sequence could have two instructions (1 and 2) in flight at the
2893 * same time that both consider ‘r3’ as the target of their final writes.
2894 */
2895 void
2896 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2897 fs_inst *inst)
2898 {
2899 int write_len = inst->regs_written;
2900 int first_write_grf = inst->dst.reg;
2901 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2902 assert(write_len < (int)sizeof(needs_dep) - 1);
2903
2904 memset(needs_dep, false, sizeof(needs_dep));
2905 memset(needs_dep, true, write_len);
2906
2907 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2908
2909 /* Walk backwards looking for writes to registers we're writing which
2910 * aren't read since being written. If we hit the start of the program,
2911 * we assume that there are no outstanding dependencies on entry to the
2912 * program.
2913 */
2914 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2915 /* If we hit control flow, assume that there *are* outstanding
2916 * dependencies, and force their cleanup before our instruction.
2917 */
2918 if (block->start() == scan_inst) {
2919 for (int i = 0; i < write_len; i++) {
2920 if (needs_dep[i])
2921 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2922 first_write_grf + i);
2923 }
2924 return;
2925 }
2926
2927 /* We insert our reads as late as possible on the assumption that any
2928 * instruction but a MOV that might have left us an outstanding
2929 * dependency has more latency than a MOV.
2930 */
2931 if (scan_inst->dst.file == GRF) {
2932 for (int i = 0; i < scan_inst->regs_written; i++) {
2933 int reg = scan_inst->dst.reg + i;
2934
2935 if (reg >= first_write_grf &&
2936 reg < first_write_grf + write_len &&
2937 needs_dep[reg - first_write_grf]) {
2938 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2939 needs_dep[reg - first_write_grf] = false;
2940 if (scan_inst->exec_size == 16)
2941 needs_dep[reg - first_write_grf + 1] = false;
2942 }
2943 }
2944 }
2945
2946 /* Clear the flag for registers that actually got read (as expected). */
2947 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2948
2949 /* Continue the loop only if we haven't resolved all the dependencies */
2950 int i;
2951 for (i = 0; i < write_len; i++) {
2952 if (needs_dep[i])
2953 break;
2954 }
2955 if (i == write_len)
2956 return;
2957 }
2958 }
2959
2960 /**
2961 * Implements this workaround for the original 965:
2962 *
2963 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2964 * used as a destination register until after it has been sourced by an
2965 * instruction with a different destination register.
2966 */
2967 void
2968 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2969 {
2970 int write_len = inst->regs_written;
2971 int first_write_grf = inst->dst.reg;
2972 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2973 assert(write_len < (int)sizeof(needs_dep) - 1);
2974
2975 memset(needs_dep, false, sizeof(needs_dep));
2976 memset(needs_dep, true, write_len);
2977 /* Walk forwards looking for writes to registers we're writing which aren't
2978 * read before being written.
2979 */
2980 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
2981 /* If we hit control flow, force resolve all remaining dependencies. */
2982 if (block->end() == scan_inst) {
2983 for (int i = 0; i < write_len; i++) {
2984 if (needs_dep[i])
2985 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
2986 first_write_grf + i);
2987 }
2988 return;
2989 }
2990
2991 /* Clear the flag for registers that actually got read (as expected). */
2992 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2993
2994 /* We insert our reads as late as possible since they're reading the
2995 * result of a SEND, which has massive latency.
2996 */
2997 if (scan_inst->dst.file == GRF &&
2998 scan_inst->dst.reg >= first_write_grf &&
2999 scan_inst->dst.reg < first_write_grf + write_len &&
3000 needs_dep[scan_inst->dst.reg - first_write_grf]) {
3001 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3002 scan_inst->dst.reg);
3003 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
3004 }
3005
3006 /* Continue the loop only if we haven't resolved all the dependencies */
3007 int i;
3008 for (i = 0; i < write_len; i++) {
3009 if (needs_dep[i])
3010 break;
3011 }
3012 if (i == write_len)
3013 return;
3014 }
3015 }
3016
3017 void
3018 fs_visitor::insert_gen4_send_dependency_workarounds()
3019 {
3020 if (devinfo->gen != 4 || devinfo->is_g4x)
3021 return;
3022
3023 bool progress = false;
3024
3025 /* Note that we're done with register allocation, so GRF fs_regs always
3026 * have a .reg_offset of 0.
3027 */
3028
3029 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3030 if (inst->mlen != 0 && inst->dst.file == GRF) {
3031 insert_gen4_pre_send_dependency_workarounds(block, inst);
3032 insert_gen4_post_send_dependency_workarounds(block, inst);
3033 progress = true;
3034 }
3035 }
3036
3037 if (progress)
3038 invalidate_live_intervals();
3039 }
3040
3041 /**
3042 * Turns the generic expression-style uniform pull constant load instruction
3043 * into a hardware-specific series of instructions for loading a pull
3044 * constant.
3045 *
3046 * The expression style allows the CSE pass before this to optimize out
3047 * repeated loads from the same offset, and gives the pre-register-allocation
3048 * scheduling full flexibility, while the conversion to native instructions
3049 * allows the post-register-allocation scheduler the best information
3050 * possible.
3051 *
3052 * Note that execution masking for setting up pull constant loads is special:
3053 * the channels that need to be written are unrelated to the current execution
3054 * mask, since a later instruction will use one of the result channels as a
3055 * source operand for all 8 or 16 of its channels.
3056 */
3057 void
3058 fs_visitor::lower_uniform_pull_constant_loads()
3059 {
3060 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3061 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3062 continue;
3063
3064 if (devinfo->gen >= 7) {
3065 /* The offset arg before was a vec4-aligned byte offset. We need to
3066 * turn it into a dword offset.
3067 */
3068 fs_reg const_offset_reg = inst->src[1];
3069 assert(const_offset_reg.file == IMM &&
3070 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3071 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
3072
3073 fs_reg payload, offset;
3074 if (devinfo->gen >= 9) {
3075 /* We have to use a message header on Skylake to get SIMD4x2
3076 * mode. Reserve space for the register.
3077 */
3078 offset = payload = fs_reg(GRF, alloc.allocate(2));
3079 offset.reg_offset++;
3080 inst->mlen = 2;
3081 } else {
3082 offset = payload = fs_reg(GRF, alloc.allocate(1));
3083 inst->mlen = 1;
3084 }
3085
3086 /* This is actually going to be a MOV, but since only the first dword
3087 * is accessed, we have a special opcode to do just that one. Note
3088 * that this needs to be an operation that will be considered a def
3089 * by live variable analysis, or register allocation will explode.
3090 */
3091 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3092 8, offset, const_offset_reg);
3093 setup->force_writemask_all = true;
3094
3095 setup->ir = inst->ir;
3096 setup->annotation = inst->annotation;
3097 inst->insert_before(block, setup);
3098
3099 /* Similarly, this will only populate the first 4 channels of the
3100 * result register (since we only use smear values from 0-3), but we
3101 * don't tell the optimizer.
3102 */
3103 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3104 inst->src[1] = payload;
3105 inst->base_mrf = -1;
3106
3107 invalidate_live_intervals();
3108 } else {
3109 /* Before register allocation, we didn't tell the scheduler about the
3110 * MRF we use. We know it's safe to use this MRF because nothing
3111 * else does except for register spill/unspill, which generates and
3112 * uses its MRF within a single IR instruction.
3113 */
3114 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3115 inst->mlen = 1;
3116 }
3117 }
3118 }
3119
3120 bool
3121 fs_visitor::lower_load_payload()
3122 {
3123 bool progress = false;
3124
3125 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3126 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3127 continue;
3128
3129 assert(inst->dst.file == MRF || inst->dst.file == GRF);
3130 assert(inst->saturate == false);
3131 fs_reg dst = inst->dst;
3132
3133 /* Get rid of COMPR4. We'll add it back in if we need it */
3134 if (dst.file == MRF)
3135 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
3136
3137 const fs_builder ibld(this, block, inst);
3138 const fs_builder hbld = ibld.exec_all().group(8, 0);
3139
3140 for (uint8_t i = 0; i < inst->header_size; i++) {
3141 if (inst->src[i].file != BAD_FILE) {
3142 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3143 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3144 hbld.MOV(mov_dst, mov_src);
3145 }
3146 dst = offset(dst, hbld, 1);
3147 }
3148
3149 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3150 inst->exec_size > 8) {
3151 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3152 * a straightforward copy. Instead, the result of the
3153 * LOAD_PAYLOAD is treated as interleaved and the first four
3154 * non-header sources are unpacked as:
3155 *
3156 * m + 0: r0
3157 * m + 1: g0
3158 * m + 2: b0
3159 * m + 3: a0
3160 * m + 4: r1
3161 * m + 5: g1
3162 * m + 6: b1
3163 * m + 7: a1
3164 *
3165 * This is used for gen <= 5 fb writes.
3166 */
3167 assert(inst->exec_size == 16);
3168 assert(inst->header_size + 4 <= inst->sources);
3169 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3170 if (inst->src[i].file != BAD_FILE) {
3171 if (devinfo->has_compr4) {
3172 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3173 compr4_dst.reg |= BRW_MRF_COMPR4;
3174 ibld.MOV(compr4_dst, inst->src[i]);
3175 } else {
3176 /* Platform doesn't have COMPR4. We have to fake it */
3177 fs_reg mov_dst = retype(dst, inst->src[i].type);
3178 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3179 mov_dst.reg += 4;
3180 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3181 }
3182 }
3183
3184 dst.reg++;
3185 }
3186
3187 /* The loop above only ever incremented us through the first set
3188 * of 4 registers. However, thanks to the magic of COMPR4, we
3189 * actually wrote to the first 8 registers, so we need to take
3190 * that into account now.
3191 */
3192 dst.reg += 4;
3193
3194 /* The COMPR4 code took care of the first 4 sources. We'll let
3195 * the regular path handle any remaining sources. Yes, we are
3196 * modifying the instruction but we're about to delete it so
3197 * this really doesn't hurt anything.
3198 */
3199 inst->header_size += 4;
3200 }
3201
3202 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3203 if (inst->src[i].file != BAD_FILE)
3204 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3205 dst = offset(dst, ibld, 1);
3206 }
3207
3208 inst->remove(block);
3209 progress = true;
3210 }
3211
3212 if (progress)
3213 invalidate_live_intervals();
3214
3215 return progress;
3216 }
3217
3218 bool
3219 fs_visitor::lower_integer_multiplication()
3220 {
3221 bool progress = false;
3222
3223 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3224 const fs_builder ibld(this, block, inst);
3225
3226 if (inst->opcode == BRW_OPCODE_MUL) {
3227 if (inst->dst.is_accumulator() ||
3228 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3229 inst->dst.type != BRW_REGISTER_TYPE_UD))
3230 continue;
3231
3232 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3233 * operation directly, but CHV/BXT cannot.
3234 */
3235 if (devinfo->gen >= 8 &&
3236 !devinfo->is_cherryview && !devinfo->is_broxton)
3237 continue;
3238
3239 if (inst->src[1].file == IMM &&
3240 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3241 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3242 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3243 * src1 are used.
3244 *
3245 * If multiplying by an immediate value that fits in 16-bits, do a
3246 * single MUL instruction with that value in the proper location.
3247 */
3248 if (devinfo->gen < 7) {
3249 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3250 inst->dst.type);
3251 ibld.MOV(imm, inst->src[1]);
3252 ibld.MUL(inst->dst, imm, inst->src[0]);
3253 } else {
3254 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3255 }
3256 } else {
3257 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3258 * do 32-bit integer multiplication in one instruction, but instead
3259 * must do a sequence (which actually calculates a 64-bit result):
3260 *
3261 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3262 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3263 * mov(8) g2<1>D acc0<8,8,1>D
3264 *
3265 * But on Gen > 6, the ability to use second accumulator register
3266 * (acc1) for non-float data types was removed, preventing a simple
3267 * implementation in SIMD16. A 16-channel result can be calculated by
3268 * executing the three instructions twice in SIMD8, once with quarter
3269 * control of 1Q for the first eight channels and again with 2Q for
3270 * the second eight channels.
3271 *
3272 * Which accumulator register is implicitly accessed (by AccWrEnable
3273 * for instance) is determined by the quarter control. Unfortunately
3274 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3275 * implicit accumulator access by an instruction with 2Q will access
3276 * acc1 regardless of whether the data type is usable in acc1.
3277 *
3278 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3279 * integer data types.
3280 *
3281 * Since we only want the low 32-bits of the result, we can do two
3282 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3283 * adjust the high result and add them (like the mach is doing):
3284 *
3285 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3286 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3287 * shl(8) g9<1>D g8<8,8,1>D 16D
3288 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3289 *
3290 * We avoid the shl instruction by realizing that we only want to add
3291 * the low 16-bits of the "high" result to the high 16-bits of the
3292 * "low" result and using proper regioning on the add:
3293 *
3294 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3295 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3296 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3297 *
3298 * Since it does not use the (single) accumulator register, we can
3299 * schedule multi-component multiplications much better.
3300 */
3301
3302 fs_reg orig_dst = inst->dst;
3303 if (orig_dst.is_null() || orig_dst.file == MRF) {
3304 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3305 inst->dst.type);
3306 }
3307 fs_reg low = inst->dst;
3308 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3309 inst->dst.type);
3310
3311 if (devinfo->gen >= 7) {
3312 fs_reg src1_0_w = inst->src[1];
3313 fs_reg src1_1_w = inst->src[1];
3314
3315 if (inst->src[1].file == IMM) {
3316 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3317 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3318 } else {
3319 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3320 if (src1_0_w.stride != 0) {
3321 assert(src1_0_w.stride == 1);
3322 src1_0_w.stride = 2;
3323 }
3324
3325 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3326 if (src1_1_w.stride != 0) {
3327 assert(src1_1_w.stride == 1);
3328 src1_1_w.stride = 2;
3329 }
3330 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3331 }
3332 ibld.MUL(low, inst->src[0], src1_0_w);
3333 ibld.MUL(high, inst->src[0], src1_1_w);
3334 } else {
3335 fs_reg src0_0_w = inst->src[0];
3336 fs_reg src0_1_w = inst->src[0];
3337
3338 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3339 if (src0_0_w.stride != 0) {
3340 assert(src0_0_w.stride == 1);
3341 src0_0_w.stride = 2;
3342 }
3343
3344 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3345 if (src0_1_w.stride != 0) {
3346 assert(src0_1_w.stride == 1);
3347 src0_1_w.stride = 2;
3348 }
3349 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3350
3351 ibld.MUL(low, src0_0_w, inst->src[1]);
3352 ibld.MUL(high, src0_1_w, inst->src[1]);
3353 }
3354
3355 fs_reg dst = inst->dst;
3356 dst.type = BRW_REGISTER_TYPE_UW;
3357 dst.subreg_offset = 2;
3358 dst.stride = 2;
3359
3360 high.type = BRW_REGISTER_TYPE_UW;
3361 high.stride = 2;
3362
3363 low.type = BRW_REGISTER_TYPE_UW;
3364 low.subreg_offset = 2;
3365 low.stride = 2;
3366
3367 ibld.ADD(dst, low, high);
3368
3369 if (inst->conditional_mod || orig_dst.file == MRF) {
3370 set_condmod(inst->conditional_mod,
3371 ibld.MOV(orig_dst, inst->dst));
3372 }
3373 }
3374
3375 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3376 /* Should have been lowered to 8-wide. */
3377 assert(inst->exec_size <= 8);
3378 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3379 inst->dst.type);
3380 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3381 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3382
3383 if (devinfo->gen >= 8) {
3384 /* Until Gen8, integer multiplies read 32-bits from one source,
3385 * and 16-bits from the other, and relying on the MACH instruction
3386 * to generate the high bits of the result.
3387 *
3388 * On Gen8, the multiply instruction does a full 32x32-bit
3389 * multiply, but in order to do a 64-bit multiply we can simulate
3390 * the previous behavior and then use a MACH instruction.
3391 *
3392 * FINISHME: Don't use source modifiers on src1.
3393 */
3394 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3395 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3396 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3397 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3398 mul->src[1].stride *= 2;
3399
3400 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3401 inst->force_sechalf) {
3402 /* Among other things the quarter control bits influence which
3403 * accumulator register is used by the hardware for instructions
3404 * that access the accumulator implicitly (e.g. MACH). A
3405 * second-half instruction would normally map to acc1, which
3406 * doesn't exist on Gen7 and up (the hardware does emulate it for
3407 * floating-point instructions *only* by taking advantage of the
3408 * extra precision of acc0 not normally used for floating point
3409 * arithmetic).
3410 *
3411 * HSW and up are careful enough not to try to access an
3412 * accumulator register that doesn't exist, but on earlier Gen7
3413 * hardware we need to make sure that the quarter control bits are
3414 * zero to avoid non-deterministic behaviour and emit an extra MOV
3415 * to get the result masked correctly according to the current
3416 * channel enables.
3417 */
3418 mach->force_sechalf = false;
3419 mach->force_writemask_all = true;
3420 mach->dst = ibld.vgrf(inst->dst.type);
3421 ibld.MOV(inst->dst, mach->dst);
3422 }
3423 } else {
3424 continue;
3425 }
3426
3427 inst->remove(block);
3428 progress = true;
3429 }
3430
3431 if (progress)
3432 invalidate_live_intervals();
3433
3434 return progress;
3435 }
3436
3437 static void
3438 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3439 fs_reg *dst, fs_reg color, unsigned components)
3440 {
3441 if (key->clamp_fragment_color) {
3442 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3443 assert(color.type == BRW_REGISTER_TYPE_F);
3444
3445 for (unsigned i = 0; i < components; i++)
3446 set_saturate(true,
3447 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3448
3449 color = tmp;
3450 }
3451
3452 for (unsigned i = 0; i < components; i++)
3453 dst[i] = offset(color, bld, i);
3454 }
3455
3456 static void
3457 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3458 const brw_wm_prog_data *prog_data,
3459 const brw_wm_prog_key *key,
3460 const fs_visitor::thread_payload &payload)
3461 {
3462 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3463 const brw_device_info *devinfo = bld.shader->devinfo;
3464 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3465 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3466 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3467 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3468 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3469 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3470 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3471 const unsigned components =
3472 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].fixed_hw_reg.dw1.ud;
3473
3474 /* We can potentially have a message length of up to 15, so we have to set
3475 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3476 */
3477 fs_reg sources[15];
3478 int header_size = 2, payload_header_size;
3479 unsigned length = 0;
3480
3481 /* From the Sandy Bridge PRM, volume 4, page 198:
3482 *
3483 * "Dispatched Pixel Enables. One bit per pixel indicating
3484 * which pixels were originally enabled when the thread was
3485 * dispatched. This field is only required for the end-of-
3486 * thread message and on all dual-source messages."
3487 */
3488 if (devinfo->gen >= 6 &&
3489 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3490 color1.file == BAD_FILE &&
3491 key->nr_color_regions == 1) {
3492 header_size = 0;
3493 }
3494
3495 if (header_size != 0) {
3496 assert(header_size == 2);
3497 /* Allocate 2 registers for a header */
3498 length += 2;
3499 }
3500
3501 if (payload.aa_dest_stencil_reg) {
3502 sources[length] = fs_reg(GRF, bld.shader->alloc.allocate(1));
3503 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3504 .MOV(sources[length],
3505 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3506 length++;
3507 }
3508
3509 if (prog_data->uses_omask) {
3510 sources[length] = fs_reg(GRF, bld.shader->alloc.allocate(1),
3511 BRW_REGISTER_TYPE_UD);
3512
3513 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3514 * relevant. Since it's unsigned single words one vgrf is always
3515 * 16-wide, but only the lower or higher 8 channels will be used by the
3516 * hardware when doing a SIMD8 write depending on whether we have
3517 * selected the subspans for the first or second half respectively.
3518 */
3519 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3520 sample_mask.type = BRW_REGISTER_TYPE_UW;
3521 sample_mask.stride *= 2;
3522
3523 bld.exec_all().annotate("FB write oMask")
3524 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3525 inst->force_sechalf),
3526 sample_mask);
3527 length++;
3528 }
3529
3530 payload_header_size = length;
3531
3532 if (src0_alpha.file != BAD_FILE) {
3533 /* FIXME: This is being passed at the wrong location in the payload and
3534 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3535 * It's supposed to be immediately before oMask but there seems to be no
3536 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3537 * requires header sources to form a contiguous segment at the beginning
3538 * of the message and src0_alpha has per-channel semantics.
3539 */
3540 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3541 length++;
3542 }
3543
3544 setup_color_payload(bld, key, &sources[length], color0, components);
3545 length += 4;
3546
3547 if (color1.file != BAD_FILE) {
3548 setup_color_payload(bld, key, &sources[length], color1, components);
3549 length += 4;
3550 }
3551
3552 if (src_depth.file != BAD_FILE) {
3553 sources[length] = src_depth;
3554 length++;
3555 }
3556
3557 if (dst_depth.file != BAD_FILE) {
3558 sources[length] = dst_depth;
3559 length++;
3560 }
3561
3562 if (src_stencil.file != BAD_FILE) {
3563 assert(devinfo->gen >= 9);
3564 assert(bld.dispatch_width() != 16);
3565
3566 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3567 bld.exec_all().annotate("FB write OS")
3568 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3569 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3570 length++;
3571 }
3572
3573 fs_inst *load;
3574 if (devinfo->gen >= 7) {
3575 /* Send from the GRF */
3576 fs_reg payload = fs_reg(GRF, -1, BRW_REGISTER_TYPE_F);
3577 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3578 payload.reg = bld.shader->alloc.allocate(load->regs_written);
3579 load->dst = payload;
3580
3581 inst->src[0] = payload;
3582 inst->resize_sources(1);
3583 inst->base_mrf = -1;
3584 } else {
3585 /* Send from the MRF */
3586 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3587 sources, length, payload_header_size);
3588
3589 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3590 * will do this for us if we just give it a COMPR4 destination.
3591 */
3592 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3593 load->dst.reg |= BRW_MRF_COMPR4;
3594
3595 inst->resize_sources(0);
3596 inst->base_mrf = 1;
3597 }
3598
3599 inst->opcode = FS_OPCODE_FB_WRITE;
3600 inst->mlen = load->regs_written;
3601 inst->header_size = header_size;
3602 }
3603
3604 static void
3605 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3606 const fs_reg &coordinate,
3607 const fs_reg &shadow_c,
3608 const fs_reg &lod, const fs_reg &lod2,
3609 const fs_reg &sampler,
3610 unsigned coord_components,
3611 unsigned grad_components)
3612 {
3613 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3614 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3615 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3616 fs_reg msg_end = msg_begin;
3617
3618 /* g0 header. */
3619 msg_end = offset(msg_end, bld.group(8, 0), 1);
3620
3621 for (unsigned i = 0; i < coord_components; i++)
3622 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3623 offset(coordinate, bld, i));
3624
3625 msg_end = offset(msg_end, bld, coord_components);
3626
3627 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3628 * require all three components to be present and zero if they are unused.
3629 */
3630 if (coord_components > 0 &&
3631 (has_lod || shadow_c.file != BAD_FILE ||
3632 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3633 for (unsigned i = coord_components; i < 3; i++)
3634 bld.MOV(offset(msg_end, bld, i), fs_reg(0.0f));
3635
3636 msg_end = offset(msg_end, bld, 3 - coord_components);
3637 }
3638
3639 if (op == SHADER_OPCODE_TXD) {
3640 /* TXD unsupported in SIMD16 mode. */
3641 assert(bld.dispatch_width() == 8);
3642
3643 /* the slots for u and v are always present, but r is optional */
3644 if (coord_components < 2)
3645 msg_end = offset(msg_end, bld, 2 - coord_components);
3646
3647 /* P = u, v, r
3648 * dPdx = dudx, dvdx, drdx
3649 * dPdy = dudy, dvdy, drdy
3650 *
3651 * 1-arg: Does not exist.
3652 *
3653 * 2-arg: dudx dvdx dudy dvdy
3654 * dPdx.x dPdx.y dPdy.x dPdy.y
3655 * m4 m5 m6 m7
3656 *
3657 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3658 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3659 * m5 m6 m7 m8 m9 m10
3660 */
3661 for (unsigned i = 0; i < grad_components; i++)
3662 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3663
3664 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3665
3666 for (unsigned i = 0; i < grad_components; i++)
3667 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3668
3669 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3670 }
3671
3672 if (has_lod) {
3673 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3674 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3675 */
3676 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3677 bld.dispatch_width() == 16);
3678
3679 const brw_reg_type type =
3680 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3681 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3682 bld.MOV(retype(msg_end, type), lod);
3683 msg_end = offset(msg_end, bld, 1);
3684 }
3685
3686 if (shadow_c.file != BAD_FILE) {
3687 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3688 /* There's no plain shadow compare message, so we use shadow
3689 * compare with a bias of 0.0.
3690 */
3691 bld.MOV(msg_end, fs_reg(0.0f));
3692 msg_end = offset(msg_end, bld, 1);
3693 }
3694
3695 bld.MOV(msg_end, shadow_c);
3696 msg_end = offset(msg_end, bld, 1);
3697 }
3698
3699 inst->opcode = op;
3700 inst->src[0] = reg_undef;
3701 inst->src[1] = sampler;
3702 inst->resize_sources(2);
3703 inst->base_mrf = msg_begin.reg;
3704 inst->mlen = msg_end.reg - msg_begin.reg;
3705 inst->header_size = 1;
3706 }
3707
3708 static void
3709 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3710 fs_reg coordinate,
3711 const fs_reg &shadow_c,
3712 fs_reg lod, fs_reg lod2,
3713 const fs_reg &sample_index,
3714 const fs_reg &sampler,
3715 const fs_reg &offset_value,
3716 unsigned coord_components,
3717 unsigned grad_components)
3718 {
3719 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3720 fs_reg msg_coords = message;
3721 unsigned header_size = 0;
3722
3723 if (offset_value.file != BAD_FILE) {
3724 /* The offsets set up by the visitor are in the m1 header, so we can't
3725 * go headerless.
3726 */
3727 header_size = 1;
3728 message.reg--;
3729 }
3730
3731 for (unsigned i = 0; i < coord_components; i++) {
3732 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3733 coordinate = offset(coordinate, bld, 1);
3734 }
3735 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3736 fs_reg msg_lod = offset(msg_coords, bld, 4);
3737
3738 if (shadow_c.file != BAD_FILE) {
3739 fs_reg msg_shadow = msg_lod;
3740 bld.MOV(msg_shadow, shadow_c);
3741 msg_lod = offset(msg_shadow, bld, 1);
3742 msg_end = msg_lod;
3743 }
3744
3745 switch (op) {
3746 case SHADER_OPCODE_TXL:
3747 case FS_OPCODE_TXB:
3748 bld.MOV(msg_lod, lod);
3749 msg_end = offset(msg_lod, bld, 1);
3750 break;
3751 case SHADER_OPCODE_TXD:
3752 /**
3753 * P = u, v, r
3754 * dPdx = dudx, dvdx, drdx
3755 * dPdy = dudy, dvdy, drdy
3756 *
3757 * Load up these values:
3758 * - dudx dudy dvdx dvdy drdx drdy
3759 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3760 */
3761 msg_end = msg_lod;
3762 for (unsigned i = 0; i < grad_components; i++) {
3763 bld.MOV(msg_end, lod);
3764 lod = offset(lod, bld, 1);
3765 msg_end = offset(msg_end, bld, 1);
3766
3767 bld.MOV(msg_end, lod2);
3768 lod2 = offset(lod2, bld, 1);
3769 msg_end = offset(msg_end, bld, 1);
3770 }
3771 break;
3772 case SHADER_OPCODE_TXS:
3773 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3774 bld.MOV(msg_lod, lod);
3775 msg_end = offset(msg_lod, bld, 1);
3776 break;
3777 case SHADER_OPCODE_TXF:
3778 msg_lod = offset(msg_coords, bld, 3);
3779 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3780 msg_end = offset(msg_lod, bld, 1);
3781 break;
3782 case SHADER_OPCODE_TXF_CMS:
3783 msg_lod = offset(msg_coords, bld, 3);
3784 /* lod */
3785 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
3786 /* sample index */
3787 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3788 msg_end = offset(msg_lod, bld, 2);
3789 break;
3790 default:
3791 break;
3792 }
3793
3794 inst->opcode = op;
3795 inst->src[0] = reg_undef;
3796 inst->src[1] = sampler;
3797 inst->resize_sources(2);
3798 inst->base_mrf = message.reg;
3799 inst->mlen = msg_end.reg - message.reg;
3800 inst->header_size = header_size;
3801
3802 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3803 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3804 }
3805
3806 static bool
3807 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3808 {
3809 if (devinfo->gen < 8 && !devinfo->is_haswell)
3810 return false;
3811
3812 return sampler.file != IMM || sampler.fixed_hw_reg.dw1.ud >= 16;
3813 }
3814
3815 static void
3816 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3817 fs_reg coordinate,
3818 const fs_reg &shadow_c,
3819 fs_reg lod, fs_reg lod2,
3820 const fs_reg &sample_index,
3821 const fs_reg &mcs, const fs_reg &sampler,
3822 fs_reg offset_value,
3823 unsigned coord_components,
3824 unsigned grad_components)
3825 {
3826 const brw_device_info *devinfo = bld.shader->devinfo;
3827 int reg_width = bld.dispatch_width() / 8;
3828 unsigned header_size = 0, length = 0;
3829 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3830 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3831 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3832
3833 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3834 offset_value.file != BAD_FILE ||
3835 is_high_sampler(devinfo, sampler)) {
3836 /* For general texture offsets (no txf workaround), we need a header to
3837 * put them in. Note that we're only reserving space for it in the
3838 * message payload as it will be initialized implicitly by the
3839 * generator.
3840 *
3841 * TG4 needs to place its channel select in the header, for interaction
3842 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3843 * larger sampler numbers we need to offset the Sampler State Pointer in
3844 * the header.
3845 */
3846 header_size = 1;
3847 sources[0] = fs_reg();
3848 length++;
3849 }
3850
3851 if (shadow_c.file != BAD_FILE) {
3852 bld.MOV(sources[length], shadow_c);
3853 length++;
3854 }
3855
3856 bool coordinate_done = false;
3857
3858 /* The sampler can only meaningfully compute LOD for fragment shader
3859 * messages. For all other stages, we change the opcode to TXL and
3860 * hardcode the LOD to 0.
3861 */
3862 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3863 op == SHADER_OPCODE_TEX) {
3864 op = SHADER_OPCODE_TXL;
3865 lod = fs_reg(0.0f);
3866 }
3867
3868 /* Set up the LOD info */
3869 switch (op) {
3870 case FS_OPCODE_TXB:
3871 case SHADER_OPCODE_TXL:
3872 bld.MOV(sources[length], lod);
3873 length++;
3874 break;
3875 case SHADER_OPCODE_TXD:
3876 /* TXD should have been lowered in SIMD16 mode. */
3877 assert(bld.dispatch_width() == 8);
3878
3879 /* Load dPdx and the coordinate together:
3880 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3881 */
3882 for (unsigned i = 0; i < coord_components; i++) {
3883 bld.MOV(sources[length], coordinate);
3884 coordinate = offset(coordinate, bld, 1);
3885 length++;
3886
3887 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3888 * only derivatives for (u, v, r).
3889 */
3890 if (i < grad_components) {
3891 bld.MOV(sources[length], lod);
3892 lod = offset(lod, bld, 1);
3893 length++;
3894
3895 bld.MOV(sources[length], lod2);
3896 lod2 = offset(lod2, bld, 1);
3897 length++;
3898 }
3899 }
3900
3901 coordinate_done = true;
3902 break;
3903 case SHADER_OPCODE_TXS:
3904 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3905 length++;
3906 break;
3907 case SHADER_OPCODE_TXF:
3908 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3909 * On Gen9 they are u, v, lod, r
3910 */
3911 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3912 coordinate = offset(coordinate, bld, 1);
3913 length++;
3914
3915 if (devinfo->gen >= 9) {
3916 if (coord_components >= 2) {
3917 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3918 coordinate = offset(coordinate, bld, 1);
3919 }
3920 length++;
3921 }
3922
3923 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3924 length++;
3925
3926 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3927 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3928 coordinate = offset(coordinate, bld, 1);
3929 length++;
3930 }
3931
3932 coordinate_done = true;
3933 break;
3934 case SHADER_OPCODE_TXF_CMS:
3935 case SHADER_OPCODE_TXF_CMS_W:
3936 case SHADER_OPCODE_TXF_UMS:
3937 case SHADER_OPCODE_TXF_MCS:
3938 if (op == SHADER_OPCODE_TXF_UMS ||
3939 op == SHADER_OPCODE_TXF_CMS ||
3940 op == SHADER_OPCODE_TXF_CMS_W) {
3941 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
3942 length++;
3943 }
3944
3945 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
3946 /* Data from the multisample control surface. */
3947 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
3948 length++;
3949
3950 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
3951 * the MCS data.
3952 */
3953 if (op == SHADER_OPCODE_TXF_CMS_W) {
3954 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
3955 mcs.file == IMM ?
3956 mcs :
3957 offset(mcs, bld, 1));
3958 length++;
3959 }
3960 }
3961
3962 /* There is no offsetting for this message; just copy in the integer
3963 * texture coordinates.
3964 */
3965 for (unsigned i = 0; i < coord_components; i++) {
3966 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3967 coordinate = offset(coordinate, bld, 1);
3968 length++;
3969 }
3970
3971 coordinate_done = true;
3972 break;
3973 case SHADER_OPCODE_TG4_OFFSET:
3974 /* gather4_po_c should have been lowered in SIMD16 mode. */
3975 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
3976
3977 /* More crazy intermixing */
3978 for (unsigned i = 0; i < 2; i++) { /* u, v */
3979 bld.MOV(sources[length], coordinate);
3980 coordinate = offset(coordinate, bld, 1);
3981 length++;
3982 }
3983
3984 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
3985 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
3986 offset_value = offset(offset_value, bld, 1);
3987 length++;
3988 }
3989
3990 if (coord_components == 3) { /* r if present */
3991 bld.MOV(sources[length], coordinate);
3992 coordinate = offset(coordinate, bld, 1);
3993 length++;
3994 }
3995
3996 coordinate_done = true;
3997 break;
3998 default:
3999 break;
4000 }
4001
4002 /* Set up the coordinate (except for cases where it was done above) */
4003 if (!coordinate_done) {
4004 for (unsigned i = 0; i < coord_components; i++) {
4005 bld.MOV(sources[length], coordinate);
4006 coordinate = offset(coordinate, bld, 1);
4007 length++;
4008 }
4009 }
4010
4011 int mlen;
4012 if (reg_width == 2)
4013 mlen = length * reg_width - header_size;
4014 else
4015 mlen = length * reg_width;
4016
4017 const fs_reg src_payload = fs_reg(GRF, bld.shader->alloc.allocate(mlen),
4018 BRW_REGISTER_TYPE_F);
4019 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4020
4021 /* Generate the SEND. */
4022 inst->opcode = op;
4023 inst->src[0] = src_payload;
4024 inst->src[1] = sampler;
4025 inst->resize_sources(2);
4026 inst->base_mrf = -1;
4027 inst->mlen = mlen;
4028 inst->header_size = header_size;
4029
4030 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4031 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4032 }
4033
4034 static void
4035 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4036 {
4037 const brw_device_info *devinfo = bld.shader->devinfo;
4038 const fs_reg &coordinate = inst->src[0];
4039 const fs_reg &shadow_c = inst->src[1];
4040 const fs_reg &lod = inst->src[2];
4041 const fs_reg &lod2 = inst->src[3];
4042 const fs_reg &sample_index = inst->src[4];
4043 const fs_reg &mcs = inst->src[5];
4044 const fs_reg &sampler = inst->src[6];
4045 const fs_reg &offset_value = inst->src[7];
4046 assert(inst->src[8].file == IMM && inst->src[9].file == IMM);
4047 const unsigned coord_components = inst->src[8].fixed_hw_reg.dw1.ud;
4048 const unsigned grad_components = inst->src[9].fixed_hw_reg.dw1.ud;
4049
4050 if (devinfo->gen >= 7) {
4051 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4052 shadow_c, lod, lod2, sample_index,
4053 mcs, sampler, offset_value,
4054 coord_components, grad_components);
4055 } else if (devinfo->gen >= 5) {
4056 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4057 shadow_c, lod, lod2, sample_index,
4058 sampler, offset_value,
4059 coord_components, grad_components);
4060 } else {
4061 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4062 shadow_c, lod, lod2, sampler,
4063 coord_components, grad_components);
4064 }
4065 }
4066
4067 /**
4068 * Initialize the header present in some typed and untyped surface
4069 * messages.
4070 */
4071 static fs_reg
4072 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4073 {
4074 fs_builder ubld = bld.exec_all().group(8, 0);
4075 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4076 ubld.MOV(dst, fs_reg(0));
4077 ubld.MOV(component(dst, 7), sample_mask);
4078 return dst;
4079 }
4080
4081 static void
4082 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4083 const fs_reg &sample_mask)
4084 {
4085 /* Get the logical send arguments. */
4086 const fs_reg &addr = inst->src[0];
4087 const fs_reg &src = inst->src[1];
4088 const fs_reg &surface = inst->src[2];
4089 const UNUSED fs_reg &dims = inst->src[3];
4090 const fs_reg &arg = inst->src[4];
4091
4092 /* Calculate the total number of components of the payload. */
4093 const unsigned addr_sz = inst->components_read(0);
4094 const unsigned src_sz = inst->components_read(1);
4095 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4096 const unsigned sz = header_sz + addr_sz + src_sz;
4097
4098 /* Allocate space for the payload. */
4099 fs_reg *const components = new fs_reg[sz];
4100 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4101 unsigned n = 0;
4102
4103 /* Construct the payload. */
4104 if (header_sz)
4105 components[n++] = emit_surface_header(bld, sample_mask);
4106
4107 for (unsigned i = 0; i < addr_sz; i++)
4108 components[n++] = offset(addr, bld, i);
4109
4110 for (unsigned i = 0; i < src_sz; i++)
4111 components[n++] = offset(src, bld, i);
4112
4113 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4114
4115 /* Update the original instruction. */
4116 inst->opcode = op;
4117 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4118 inst->header_size = header_sz;
4119
4120 inst->src[0] = payload;
4121 inst->src[1] = surface;
4122 inst->src[2] = arg;
4123 inst->resize_sources(3);
4124
4125 delete[] components;
4126 }
4127
4128 bool
4129 fs_visitor::lower_logical_sends()
4130 {
4131 bool progress = false;
4132
4133 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4134 const fs_builder ibld(this, block, inst);
4135
4136 switch (inst->opcode) {
4137 case FS_OPCODE_FB_WRITE_LOGICAL:
4138 assert(stage == MESA_SHADER_FRAGMENT);
4139 lower_fb_write_logical_send(ibld, inst,
4140 (const brw_wm_prog_data *)prog_data,
4141 (const brw_wm_prog_key *)key,
4142 payload);
4143 break;
4144
4145 case SHADER_OPCODE_TEX_LOGICAL:
4146 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4147 break;
4148
4149 case SHADER_OPCODE_TXD_LOGICAL:
4150 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4151 break;
4152
4153 case SHADER_OPCODE_TXF_LOGICAL:
4154 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4155 break;
4156
4157 case SHADER_OPCODE_TXL_LOGICAL:
4158 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4159 break;
4160
4161 case SHADER_OPCODE_TXS_LOGICAL:
4162 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4163 break;
4164
4165 case FS_OPCODE_TXB_LOGICAL:
4166 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4167 break;
4168
4169 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4170 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4171 break;
4172
4173 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4174 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4175 break;
4176
4177 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4178 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4179 break;
4180
4181 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4182 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4183 break;
4184
4185 case SHADER_OPCODE_LOD_LOGICAL:
4186 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4187 break;
4188
4189 case SHADER_OPCODE_TG4_LOGICAL:
4190 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4191 break;
4192
4193 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4194 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4195 break;
4196
4197 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4198 lower_surface_logical_send(ibld, inst,
4199 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4200 fs_reg());
4201 break;
4202
4203 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4204 lower_surface_logical_send(ibld, inst,
4205 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4206 ibld.sample_mask_reg());
4207 break;
4208
4209 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4210 lower_surface_logical_send(ibld, inst,
4211 SHADER_OPCODE_UNTYPED_ATOMIC,
4212 ibld.sample_mask_reg());
4213 break;
4214
4215 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4216 lower_surface_logical_send(ibld, inst,
4217 SHADER_OPCODE_TYPED_SURFACE_READ,
4218 fs_reg(0xffff));
4219 break;
4220
4221 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4222 lower_surface_logical_send(ibld, inst,
4223 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4224 ibld.sample_mask_reg());
4225 break;
4226
4227 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4228 lower_surface_logical_send(ibld, inst,
4229 SHADER_OPCODE_TYPED_ATOMIC,
4230 ibld.sample_mask_reg());
4231 break;
4232
4233 default:
4234 continue;
4235 }
4236
4237 progress = true;
4238 }
4239
4240 if (progress)
4241 invalidate_live_intervals();
4242
4243 return progress;
4244 }
4245
4246 /**
4247 * Get the closest native SIMD width supported by the hardware for instruction
4248 * \p inst. The instruction will be left untouched by
4249 * fs_visitor::lower_simd_width() if the returned value is equal to the
4250 * original execution size.
4251 */
4252 static unsigned
4253 get_lowered_simd_width(const struct brw_device_info *devinfo,
4254 const fs_inst *inst)
4255 {
4256 switch (inst->opcode) {
4257 case BRW_OPCODE_MOV:
4258 case BRW_OPCODE_SEL:
4259 case BRW_OPCODE_NOT:
4260 case BRW_OPCODE_AND:
4261 case BRW_OPCODE_OR:
4262 case BRW_OPCODE_XOR:
4263 case BRW_OPCODE_SHR:
4264 case BRW_OPCODE_SHL:
4265 case BRW_OPCODE_ASR:
4266 case BRW_OPCODE_CMP:
4267 case BRW_OPCODE_CMPN:
4268 case BRW_OPCODE_CSEL:
4269 case BRW_OPCODE_F32TO16:
4270 case BRW_OPCODE_F16TO32:
4271 case BRW_OPCODE_BFREV:
4272 case BRW_OPCODE_BFE:
4273 case BRW_OPCODE_BFI1:
4274 case BRW_OPCODE_BFI2:
4275 case BRW_OPCODE_ADD:
4276 case BRW_OPCODE_MUL:
4277 case BRW_OPCODE_AVG:
4278 case BRW_OPCODE_FRC:
4279 case BRW_OPCODE_RNDU:
4280 case BRW_OPCODE_RNDD:
4281 case BRW_OPCODE_RNDE:
4282 case BRW_OPCODE_RNDZ:
4283 case BRW_OPCODE_LZD:
4284 case BRW_OPCODE_FBH:
4285 case BRW_OPCODE_FBL:
4286 case BRW_OPCODE_CBIT:
4287 case BRW_OPCODE_SAD2:
4288 case BRW_OPCODE_MAD:
4289 case BRW_OPCODE_LRP:
4290 case SHADER_OPCODE_RCP:
4291 case SHADER_OPCODE_RSQ:
4292 case SHADER_OPCODE_SQRT:
4293 case SHADER_OPCODE_EXP2:
4294 case SHADER_OPCODE_LOG2:
4295 case SHADER_OPCODE_POW:
4296 case SHADER_OPCODE_INT_QUOTIENT:
4297 case SHADER_OPCODE_INT_REMAINDER:
4298 case SHADER_OPCODE_SIN:
4299 case SHADER_OPCODE_COS: {
4300 /* According to the PRMs:
4301 * "A. In Direct Addressing mode, a source cannot span more than 2
4302 * adjacent GRF registers.
4303 * B. A destination cannot span more than 2 adjacent GRF registers."
4304 *
4305 * Look for the source or destination with the largest register region
4306 * which is the one that is going to limit the overal execution size of
4307 * the instruction due to this rule.
4308 */
4309 unsigned reg_count = inst->regs_written;
4310
4311 for (unsigned i = 0; i < inst->sources; i++)
4312 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4313
4314 /* Calculate the maximum execution size of the instruction based on the
4315 * factor by which it goes over the hardware limit of 2 GRFs.
4316 */
4317 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4318 }
4319 case SHADER_OPCODE_MULH:
4320 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4321 * is 8-wide on Gen7+.
4322 */
4323 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4324
4325 case FS_OPCODE_FB_WRITE_LOGICAL:
4326 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4327 * here.
4328 */
4329 assert(devinfo->gen != 6 ||
4330 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4331 inst->exec_size == 8);
4332 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4333 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4334 8 : inst->exec_size);
4335
4336 case SHADER_OPCODE_TXD_LOGICAL:
4337 /* TXD is unsupported in SIMD16 mode. */
4338 return 8;
4339
4340 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4341 /* gather4_po_c is unsupported in SIMD16 mode. */
4342 const fs_reg &shadow_c = inst->src[1];
4343 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4344 }
4345 case SHADER_OPCODE_TXL_LOGICAL:
4346 case FS_OPCODE_TXB_LOGICAL: {
4347 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4348 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4349 * mode because the message exceeds the maximum length of 11.
4350 */
4351 const fs_reg &shadow_c = inst->src[1];
4352 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4353 return 16;
4354 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4355 return 8;
4356 else
4357 return inst->exec_size;
4358 }
4359 case SHADER_OPCODE_TXF_LOGICAL:
4360 case SHADER_OPCODE_TXS_LOGICAL:
4361 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4362 * messages. Use SIMD16 instead.
4363 */
4364 if (devinfo->gen == 4)
4365 return 16;
4366 else
4367 return inst->exec_size;
4368
4369 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4370 /* This opcode can take up to 6 arguments which means that in some
4371 * circumstances it can end up with a message that is too long in SIMD16
4372 * mode.
4373 */
4374 const unsigned coord_components = inst->src[8].fixed_hw_reg.dw1.ud;
4375 /* First three arguments are the sample index and the two arguments for
4376 * the MCS data.
4377 */
4378 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4379 return 8;
4380 else
4381 return inst->exec_size;
4382 }
4383
4384 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4385 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4386 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4387 return 8;
4388
4389 default:
4390 return inst->exec_size;
4391 }
4392 }
4393
4394 /**
4395 * The \p rows array of registers represents a \p num_rows by \p num_columns
4396 * matrix in row-major order, write it in column-major order into the register
4397 * passed as destination. \p stride gives the separation between matrix
4398 * elements in the input in fs_builder::dispatch_width() units.
4399 */
4400 static void
4401 emit_transpose(const fs_builder &bld,
4402 const fs_reg &dst, const fs_reg *rows,
4403 unsigned num_rows, unsigned num_columns, unsigned stride)
4404 {
4405 fs_reg *const components = new fs_reg[num_rows * num_columns];
4406
4407 for (unsigned i = 0; i < num_columns; ++i) {
4408 for (unsigned j = 0; j < num_rows; ++j)
4409 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4410 }
4411
4412 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4413
4414 delete[] components;
4415 }
4416
4417 bool
4418 fs_visitor::lower_simd_width()
4419 {
4420 bool progress = false;
4421
4422 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4423 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4424
4425 if (lower_width != inst->exec_size) {
4426 /* Builder matching the original instruction. We may also need to
4427 * emit an instruction of width larger than the original, set the
4428 * execution size of the builder to the highest of both for now so
4429 * we're sure that both cases can be handled.
4430 */
4431 const fs_builder ibld = bld.at(block, inst)
4432 .exec_all(inst->force_writemask_all)
4433 .group(MAX2(inst->exec_size, lower_width),
4434 inst->force_sechalf);
4435
4436 /* Split the copies in chunks of the execution width of either the
4437 * original or the lowered instruction, whichever is lower.
4438 */
4439 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4440 const unsigned n = inst->exec_size / copy_width;
4441 const unsigned dst_size = inst->regs_written * REG_SIZE /
4442 inst->dst.component_size(inst->exec_size);
4443 fs_reg dsts[4];
4444
4445 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4446 !inst->writes_accumulator && !inst->mlen);
4447
4448 for (unsigned i = 0; i < n; i++) {
4449 /* Emit a copy of the original instruction with the lowered width.
4450 * If the EOT flag was set throw it away except for the last
4451 * instruction to avoid killing the thread prematurely.
4452 */
4453 fs_inst split_inst = *inst;
4454 split_inst.exec_size = lower_width;
4455 split_inst.eot = inst->eot && i == n - 1;
4456
4457 /* Select the correct channel enables for the i-th group, then
4458 * transform the sources and destination and emit the lowered
4459 * instruction.
4460 */
4461 const fs_builder lbld = ibld.group(lower_width, i);
4462
4463 for (unsigned j = 0; j < inst->sources; j++) {
4464 if (inst->src[j].file != BAD_FILE &&
4465 !is_uniform(inst->src[j])) {
4466 /* Get the i-th copy_width-wide chunk of the source. */
4467 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4468 const unsigned src_size = inst->components_read(j);
4469
4470 /* Use a trivial transposition to copy one every n
4471 * copy_width-wide components of the register into a
4472 * temporary passed as source to the lowered instruction.
4473 */
4474 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4475 emit_transpose(lbld.group(copy_width, 0),
4476 split_inst.src[j], &src, 1, src_size, n);
4477 }
4478 }
4479
4480 if (inst->regs_written) {
4481 /* Allocate enough space to hold the result of the lowered
4482 * instruction and fix up the number of registers written.
4483 */
4484 split_inst.dst = dsts[i] =
4485 lbld.vgrf(inst->dst.type, dst_size);
4486 split_inst.regs_written =
4487 DIV_ROUND_UP(inst->regs_written * lower_width,
4488 inst->exec_size);
4489 }
4490
4491 lbld.emit(split_inst);
4492 }
4493
4494 if (inst->regs_written) {
4495 /* Distance between useful channels in the temporaries, skipping
4496 * garbage if the lowered instruction is wider than the original.
4497 */
4498 const unsigned m = lower_width / copy_width;
4499
4500 /* Interleave the components of the result from the lowered
4501 * instructions. We need to set exec_all() when copying more than
4502 * one half per component, because LOAD_PAYLOAD (in terms of which
4503 * emit_transpose is implemented) can only use the same channel
4504 * enable signals for all of its non-header sources.
4505 */
4506 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4507 .group(copy_width, 0),
4508 inst->dst, dsts, n, dst_size, m);
4509 }
4510
4511 inst->remove(block);
4512 progress = true;
4513 }
4514 }
4515
4516 if (progress)
4517 invalidate_live_intervals();
4518
4519 return progress;
4520 }
4521
4522 void
4523 fs_visitor::dump_instructions()
4524 {
4525 dump_instructions(NULL);
4526 }
4527
4528 void
4529 fs_visitor::dump_instructions(const char *name)
4530 {
4531 FILE *file = stderr;
4532 if (name && geteuid() != 0) {
4533 file = fopen(name, "w");
4534 if (!file)
4535 file = stderr;
4536 }
4537
4538 if (cfg) {
4539 calculate_register_pressure();
4540 int ip = 0, max_pressure = 0;
4541 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4542 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4543 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4544 dump_instruction(inst, file);
4545 ip++;
4546 }
4547 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4548 } else {
4549 int ip = 0;
4550 foreach_in_list(backend_instruction, inst, &instructions) {
4551 fprintf(file, "%4d: ", ip++);
4552 dump_instruction(inst, file);
4553 }
4554 }
4555
4556 if (file != stderr) {
4557 fclose(file);
4558 }
4559 }
4560
4561 void
4562 fs_visitor::dump_instruction(backend_instruction *be_inst)
4563 {
4564 dump_instruction(be_inst, stderr);
4565 }
4566
4567 void
4568 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4569 {
4570 fs_inst *inst = (fs_inst *)be_inst;
4571
4572 if (inst->predicate) {
4573 fprintf(file, "(%cf0.%d) ",
4574 inst->predicate_inverse ? '-' : '+',
4575 inst->flag_subreg);
4576 }
4577
4578 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4579 if (inst->saturate)
4580 fprintf(file, ".sat");
4581 if (inst->conditional_mod) {
4582 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4583 if (!inst->predicate &&
4584 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4585 inst->opcode != BRW_OPCODE_IF &&
4586 inst->opcode != BRW_OPCODE_WHILE))) {
4587 fprintf(file, ".f0.%d", inst->flag_subreg);
4588 }
4589 }
4590 fprintf(file, "(%d) ", inst->exec_size);
4591
4592 if (inst->mlen) {
4593 fprintf(file, "(mlen: %d) ", inst->mlen);
4594 }
4595
4596 switch (inst->dst.file) {
4597 case GRF:
4598 fprintf(file, "vgrf%d", inst->dst.reg);
4599 if (alloc.sizes[inst->dst.reg] != inst->regs_written ||
4600 inst->dst.subreg_offset)
4601 fprintf(file, "+%d.%d",
4602 inst->dst.reg_offset, inst->dst.subreg_offset);
4603 break;
4604 case MRF:
4605 fprintf(file, "m%d", inst->dst.reg);
4606 break;
4607 case BAD_FILE:
4608 fprintf(file, "(null)");
4609 break;
4610 case UNIFORM:
4611 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
4612 break;
4613 case ATTR:
4614 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
4615 break;
4616 case HW_REG:
4617 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
4618 switch (inst->dst.fixed_hw_reg.nr) {
4619 case BRW_ARF_NULL:
4620 fprintf(file, "null");
4621 break;
4622 case BRW_ARF_ADDRESS:
4623 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
4624 break;
4625 case BRW_ARF_ACCUMULATOR:
4626 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
4627 break;
4628 case BRW_ARF_FLAG:
4629 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
4630 inst->dst.fixed_hw_reg.subnr);
4631 break;
4632 default:
4633 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
4634 inst->dst.fixed_hw_reg.subnr);
4635 break;
4636 }
4637 } else {
4638 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
4639 }
4640 if (inst->dst.fixed_hw_reg.subnr)
4641 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
4642 break;
4643 case IMM:
4644 unreachable("not reached");
4645 }
4646 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4647
4648 for (int i = 0; i < inst->sources; i++) {
4649 if (inst->src[i].negate)
4650 fprintf(file, "-");
4651 if (inst->src[i].abs)
4652 fprintf(file, "|");
4653 switch (inst->src[i].file) {
4654 case GRF:
4655 fprintf(file, "vgrf%d", inst->src[i].reg);
4656 if (alloc.sizes[inst->src[i].reg] != (unsigned)inst->regs_read(i) ||
4657 inst->src[i].subreg_offset)
4658 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4659 inst->src[i].subreg_offset);
4660 break;
4661 case MRF:
4662 fprintf(file, "***m%d***", inst->src[i].reg);
4663 break;
4664 case ATTR:
4665 fprintf(file, "attr%d+%d", inst->src[i].reg, inst->src[i].reg_offset);
4666 break;
4667 case UNIFORM:
4668 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
4669 if (inst->src[i].reladdr) {
4670 fprintf(file, "+reladdr");
4671 } else if (inst->src[i].subreg_offset) {
4672 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4673 inst->src[i].subreg_offset);
4674 }
4675 break;
4676 case BAD_FILE:
4677 fprintf(file, "(null)");
4678 break;
4679 case IMM:
4680 switch (inst->src[i].type) {
4681 case BRW_REGISTER_TYPE_F:
4682 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
4683 break;
4684 case BRW_REGISTER_TYPE_W:
4685 case BRW_REGISTER_TYPE_D:
4686 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
4687 break;
4688 case BRW_REGISTER_TYPE_UW:
4689 case BRW_REGISTER_TYPE_UD:
4690 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
4691 break;
4692 case BRW_REGISTER_TYPE_VF:
4693 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4694 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
4695 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
4696 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
4697 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
4698 break;
4699 default:
4700 fprintf(file, "???");
4701 break;
4702 }
4703 break;
4704 case HW_REG:
4705 if (inst->src[i].fixed_hw_reg.negate)
4706 fprintf(file, "-");
4707 if (inst->src[i].fixed_hw_reg.abs)
4708 fprintf(file, "|");
4709 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
4710 switch (inst->src[i].fixed_hw_reg.nr) {
4711 case BRW_ARF_NULL:
4712 fprintf(file, "null");
4713 break;
4714 case BRW_ARF_ADDRESS:
4715 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
4716 break;
4717 case BRW_ARF_ACCUMULATOR:
4718 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
4719 break;
4720 case BRW_ARF_FLAG:
4721 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
4722 inst->src[i].fixed_hw_reg.subnr);
4723 break;
4724 default:
4725 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
4726 inst->src[i].fixed_hw_reg.subnr);
4727 break;
4728 }
4729 } else {
4730 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
4731 }
4732 if (inst->src[i].fixed_hw_reg.subnr)
4733 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
4734 if (inst->src[i].fixed_hw_reg.abs)
4735 fprintf(file, "|");
4736 break;
4737 }
4738 if (inst->src[i].abs)
4739 fprintf(file, "|");
4740
4741 if (inst->src[i].file != IMM) {
4742 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4743 }
4744
4745 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4746 fprintf(file, ", ");
4747 }
4748
4749 fprintf(file, " ");
4750
4751 if (dispatch_width == 16 && inst->exec_size == 8) {
4752 if (inst->force_sechalf)
4753 fprintf(file, "2ndhalf ");
4754 else
4755 fprintf(file, "1sthalf ");
4756 }
4757
4758 fprintf(file, "\n");
4759 }
4760
4761 /**
4762 * Possibly returns an instruction that set up @param reg.
4763 *
4764 * Sometimes we want to take the result of some expression/variable
4765 * dereference tree and rewrite the instruction generating the result
4766 * of the tree. When processing the tree, we know that the
4767 * instructions generated are all writing temporaries that are dead
4768 * outside of this tree. So, if we have some instructions that write
4769 * a temporary, we're free to point that temp write somewhere else.
4770 *
4771 * Note that this doesn't guarantee that the instruction generated
4772 * only reg -- it might be the size=4 destination of a texture instruction.
4773 */
4774 fs_inst *
4775 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4776 fs_inst *end,
4777 const fs_reg &reg)
4778 {
4779 if (end == start ||
4780 end->is_partial_write() ||
4781 reg.reladdr ||
4782 !reg.equals(end->dst)) {
4783 return NULL;
4784 } else {
4785 return end;
4786 }
4787 }
4788
4789 void
4790 fs_visitor::setup_payload_gen6()
4791 {
4792 bool uses_depth =
4793 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4794 unsigned barycentric_interp_modes =
4795 (stage == MESA_SHADER_FRAGMENT) ?
4796 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4797
4798 assert(devinfo->gen >= 6);
4799
4800 /* R0-1: masks, pixel X/Y coordinates. */
4801 payload.num_regs = 2;
4802 /* R2: only for 32-pixel dispatch.*/
4803
4804 /* R3-26: barycentric interpolation coordinates. These appear in the
4805 * same order that they appear in the brw_wm_barycentric_interp_mode
4806 * enum. Each set of coordinates occupies 2 registers if dispatch width
4807 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4808 * appear if they were enabled using the "Barycentric Interpolation
4809 * Mode" bits in WM_STATE.
4810 */
4811 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4812 if (barycentric_interp_modes & (1 << i)) {
4813 payload.barycentric_coord_reg[i] = payload.num_regs;
4814 payload.num_regs += 2;
4815 if (dispatch_width == 16) {
4816 payload.num_regs += 2;
4817 }
4818 }
4819 }
4820
4821 /* R27: interpolated depth if uses source depth */
4822 if (uses_depth) {
4823 payload.source_depth_reg = payload.num_regs;
4824 payload.num_regs++;
4825 if (dispatch_width == 16) {
4826 /* R28: interpolated depth if not SIMD8. */
4827 payload.num_regs++;
4828 }
4829 }
4830 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4831 if (uses_depth) {
4832 payload.source_w_reg = payload.num_regs;
4833 payload.num_regs++;
4834 if (dispatch_width == 16) {
4835 /* R30: interpolated W if not SIMD8. */
4836 payload.num_regs++;
4837 }
4838 }
4839
4840 if (stage == MESA_SHADER_FRAGMENT) {
4841 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4842 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4843 prog_data->uses_pos_offset = key->compute_pos_offset;
4844 /* R31: MSAA position offsets. */
4845 if (prog_data->uses_pos_offset) {
4846 payload.sample_pos_reg = payload.num_regs;
4847 payload.num_regs++;
4848 }
4849 }
4850
4851 /* R32: MSAA input coverage mask */
4852 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4853 assert(devinfo->gen >= 7);
4854 payload.sample_mask_in_reg = payload.num_regs;
4855 payload.num_regs++;
4856 if (dispatch_width == 16) {
4857 /* R33: input coverage mask if not SIMD8. */
4858 payload.num_regs++;
4859 }
4860 }
4861
4862 /* R34-: bary for 32-pixel. */
4863 /* R58-59: interp W for 32-pixel. */
4864
4865 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4866 source_depth_to_render_target = true;
4867 }
4868 }
4869
4870 void
4871 fs_visitor::setup_vs_payload()
4872 {
4873 /* R0: thread header, R1: urb handles */
4874 payload.num_regs = 2;
4875 }
4876
4877 /**
4878 * We are building the local ID push constant data using the simplest possible
4879 * method. We simply push the local IDs directly as they should appear in the
4880 * registers for the uvec3 gl_LocalInvocationID variable.
4881 *
4882 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4883 * registers worth of push constant space.
4884 *
4885 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4886 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4887 * to coordinated.
4888 *
4889 * FINISHME: There are a few easy optimizations to consider.
4890 *
4891 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4892 * no need for using push constant space for that dimension.
4893 *
4894 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4895 * easily use 16-bit words rather than 32-bit dwords in the push constant
4896 * data.
4897 *
4898 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4899 * conveying the data, and thereby reduce push constant usage.
4900 *
4901 */
4902 void
4903 fs_visitor::setup_gs_payload()
4904 {
4905 assert(stage == MESA_SHADER_GEOMETRY);
4906
4907 struct brw_gs_prog_data *gs_prog_data =
4908 (struct brw_gs_prog_data *) prog_data;
4909 struct brw_vue_prog_data *vue_prog_data =
4910 (struct brw_vue_prog_data *) prog_data;
4911
4912 /* R0: thread header, R1: output URB handles */
4913 payload.num_regs = 2;
4914
4915 if (gs_prog_data->include_primitive_id) {
4916 /* R2: Primitive ID 0..7 */
4917 payload.num_regs++;
4918 }
4919
4920 /* Use a maximum of 32 registers for push-model inputs. */
4921 const unsigned max_push_components = 32;
4922
4923 /* If pushing our inputs would take too many registers, reduce the URB read
4924 * length (which is in HWords, or 8 registers), and resort to pulling.
4925 *
4926 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
4927 * have to multiply by VerticesIn to obtain the total storage requirement.
4928 */
4929 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
4930 max_push_components) {
4931 gs_prog_data->base.include_vue_handles = true;
4932
4933 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
4934 payload.num_regs += nir->info.gs.vertices_in;
4935
4936 vue_prog_data->urb_read_length =
4937 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
4938 }
4939 }
4940
4941 void
4942 fs_visitor::setup_cs_payload()
4943 {
4944 assert(devinfo->gen >= 7);
4945 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
4946
4947 payload.num_regs = 1;
4948
4949 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
4950 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
4951 payload.local_invocation_id_reg = payload.num_regs;
4952 payload.num_regs += prog_data->local_invocation_id_regs;
4953 }
4954 }
4955
4956 void
4957 fs_visitor::calculate_register_pressure()
4958 {
4959 invalidate_live_intervals();
4960 calculate_live_intervals();
4961
4962 unsigned num_instructions = 0;
4963 foreach_block(block, cfg)
4964 num_instructions += block->instructions.length();
4965
4966 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
4967
4968 for (unsigned reg = 0; reg < alloc.count; reg++) {
4969 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
4970 regs_live_at_ip[ip] += alloc.sizes[reg];
4971 }
4972 }
4973
4974 void
4975 fs_visitor::optimize()
4976 {
4977 /* Start by validating the shader we currently have. */
4978 validate();
4979
4980 /* bld is the common builder object pointing at the end of the program we
4981 * used to translate it into i965 IR. For the optimization and lowering
4982 * passes coming next, any code added after the end of the program without
4983 * having explicitly called fs_builder::at() clearly points at a mistake.
4984 * Ideally optimization passes wouldn't be part of the visitor so they
4985 * wouldn't have access to bld at all, but they do, so just in case some
4986 * pass forgets to ask for a location explicitly set it to NULL here to
4987 * make it trip. The dispatch width is initialized to a bogus value to
4988 * make sure that optimizations set the execution controls explicitly to
4989 * match the code they are manipulating instead of relying on the defaults.
4990 */
4991 bld = fs_builder(this, 64);
4992
4993 assign_constant_locations();
4994 demote_pull_constants();
4995
4996 validate();
4997
4998 split_virtual_grfs();
4999 validate();
5000
5001 #define OPT(pass, args...) ({ \
5002 pass_num++; \
5003 bool this_progress = pass(args); \
5004 \
5005 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5006 char filename[64]; \
5007 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5008 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5009 \
5010 backend_shader::dump_instructions(filename); \
5011 } \
5012 \
5013 validate(); \
5014 \
5015 progress = progress || this_progress; \
5016 this_progress; \
5017 })
5018
5019 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5020 char filename[64];
5021 snprintf(filename, 64, "%s%d-%s-00-start",
5022 stage_abbrev, dispatch_width, nir->info.name);
5023
5024 backend_shader::dump_instructions(filename);
5025 }
5026
5027 bool progress = false;
5028 int iteration = 0;
5029 int pass_num = 0;
5030
5031 OPT(lower_simd_width);
5032 OPT(lower_logical_sends);
5033
5034 do {
5035 progress = false;
5036 pass_num = 0;
5037 iteration++;
5038
5039 OPT(remove_duplicate_mrf_writes);
5040
5041 OPT(opt_algebraic);
5042 OPT(opt_cse);
5043 OPT(opt_copy_propagate);
5044 OPT(opt_predicated_break, this);
5045 OPT(opt_cmod_propagation);
5046 OPT(dead_code_eliminate);
5047 OPT(opt_peephole_sel);
5048 OPT(dead_control_flow_eliminate, this);
5049 OPT(opt_register_renaming);
5050 OPT(opt_redundant_discard_jumps);
5051 OPT(opt_saturate_propagation);
5052 OPT(opt_zero_samples);
5053 OPT(register_coalesce);
5054 OPT(compute_to_mrf);
5055 OPT(eliminate_find_live_channel);
5056
5057 OPT(compact_virtual_grfs);
5058 } while (progress);
5059
5060 pass_num = 0;
5061
5062 OPT(opt_sampler_eot);
5063
5064 if (OPT(lower_load_payload)) {
5065 split_virtual_grfs();
5066 OPT(register_coalesce);
5067 OPT(compute_to_mrf);
5068 OPT(dead_code_eliminate);
5069 }
5070
5071 OPT(opt_combine_constants);
5072 OPT(lower_integer_multiplication);
5073
5074 lower_uniform_pull_constant_loads();
5075
5076 validate();
5077 }
5078
5079 /**
5080 * Three source instruction must have a GRF/MRF destination register.
5081 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5082 */
5083 void
5084 fs_visitor::fixup_3src_null_dest()
5085 {
5086 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5087 if (inst->is_3src() && inst->dst.is_null()) {
5088 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
5089 inst->dst.type);
5090 }
5091 }
5092 }
5093
5094 void
5095 fs_visitor::allocate_registers()
5096 {
5097 bool allocated_without_spills;
5098
5099 static const enum instruction_scheduler_mode pre_modes[] = {
5100 SCHEDULE_PRE,
5101 SCHEDULE_PRE_NON_LIFO,
5102 SCHEDULE_PRE_LIFO,
5103 };
5104
5105 /* Try each scheduling heuristic to see if it can successfully register
5106 * allocate without spilling. They should be ordered by decreasing
5107 * performance but increasing likelihood of allocating.
5108 */
5109 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5110 schedule_instructions(pre_modes[i]);
5111
5112 if (0) {
5113 assign_regs_trivial();
5114 allocated_without_spills = true;
5115 } else {
5116 allocated_without_spills = assign_regs(false);
5117 }
5118 if (allocated_without_spills)
5119 break;
5120 }
5121
5122 if (!allocated_without_spills) {
5123 /* We assume that any spilling is worse than just dropping back to
5124 * SIMD8. There's probably actually some intermediate point where
5125 * SIMD16 with a couple of spills is still better.
5126 */
5127 if (dispatch_width == 16) {
5128 fail("Failure to register allocate. Reduce number of "
5129 "live scalar values to avoid this.");
5130 } else {
5131 compiler->shader_perf_log(log_data,
5132 "%s shader triggered register spilling. "
5133 "Try reducing the number of live scalar "
5134 "values to improve performance.\n",
5135 stage_name);
5136 }
5137
5138 /* Since we're out of heuristics, just go spill registers until we
5139 * get an allocation.
5140 */
5141 while (!assign_regs(true)) {
5142 if (failed)
5143 break;
5144 }
5145 }
5146
5147 /* This must come after all optimization and register allocation, since
5148 * it inserts dead code that happens to have side effects, and it does
5149 * so based on the actual physical registers in use.
5150 */
5151 insert_gen4_send_dependency_workarounds();
5152
5153 if (failed)
5154 return;
5155
5156 schedule_instructions(SCHEDULE_POST);
5157
5158 if (last_scratch > 0)
5159 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5160 }
5161
5162 bool
5163 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5164 {
5165 assert(stage == MESA_SHADER_VERTEX);
5166
5167 setup_vs_payload();
5168
5169 if (shader_time_index >= 0)
5170 emit_shader_time_begin();
5171
5172 emit_nir_code();
5173
5174 if (failed)
5175 return false;
5176
5177 compute_clip_distance(clip_planes);
5178
5179 emit_urb_writes();
5180
5181 if (shader_time_index >= 0)
5182 emit_shader_time_end();
5183
5184 calculate_cfg();
5185
5186 optimize();
5187
5188 assign_curb_setup();
5189 assign_vs_urb_setup();
5190
5191 fixup_3src_null_dest();
5192 allocate_registers();
5193
5194 return !failed;
5195 }
5196
5197 bool
5198 fs_visitor::run_gs()
5199 {
5200 assert(stage == MESA_SHADER_GEOMETRY);
5201
5202 setup_gs_payload();
5203
5204 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5205
5206 if (gs_compile->control_data_header_size_bits > 0) {
5207 /* Create a VGRF to store accumulated control data bits. */
5208 this->control_data_bits = vgrf(glsl_type::uint_type);
5209
5210 /* If we're outputting more than 32 control data bits, then EmitVertex()
5211 * will set control_data_bits to 0 after emitting the first vertex.
5212 * Otherwise, we need to initialize it to 0 here.
5213 */
5214 if (gs_compile->control_data_header_size_bits <= 32) {
5215 const fs_builder abld = bld.annotate("initialize control data bits");
5216 abld.MOV(this->control_data_bits, fs_reg(0u));
5217 }
5218 }
5219
5220 if (shader_time_index >= 0)
5221 emit_shader_time_begin();
5222
5223 emit_nir_code();
5224
5225 emit_gs_thread_end();
5226
5227 if (shader_time_index >= 0)
5228 emit_shader_time_end();
5229
5230 if (failed)
5231 return false;
5232
5233 calculate_cfg();
5234
5235 optimize();
5236
5237 assign_curb_setup();
5238 assign_gs_urb_setup();
5239
5240 fixup_3src_null_dest();
5241 allocate_registers();
5242
5243 return !failed;
5244 }
5245
5246 bool
5247 fs_visitor::run_fs(bool do_rep_send)
5248 {
5249 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5250 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5251
5252 assert(stage == MESA_SHADER_FRAGMENT);
5253
5254 if (devinfo->gen >= 6)
5255 setup_payload_gen6();
5256 else
5257 setup_payload_gen4();
5258
5259 if (0) {
5260 emit_dummy_fs();
5261 } else if (do_rep_send) {
5262 assert(dispatch_width == 16);
5263 emit_repclear_shader();
5264 } else {
5265 if (shader_time_index >= 0)
5266 emit_shader_time_begin();
5267
5268 calculate_urb_setup();
5269 if (nir->info.inputs_read > 0) {
5270 if (devinfo->gen < 6)
5271 emit_interpolation_setup_gen4();
5272 else
5273 emit_interpolation_setup_gen6();
5274 }
5275
5276 /* We handle discards by keeping track of the still-live pixels in f0.1.
5277 * Initialize it with the dispatched pixels.
5278 */
5279 if (wm_prog_data->uses_kill) {
5280 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5281 discard_init->flag_subreg = 1;
5282 }
5283
5284 /* Generate FS IR for main(). (the visitor only descends into
5285 * functions called "main").
5286 */
5287 emit_nir_code();
5288
5289 if (failed)
5290 return false;
5291
5292 if (wm_prog_data->uses_kill)
5293 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5294
5295 if (wm_key->alpha_test_func)
5296 emit_alpha_test();
5297
5298 emit_fb_writes();
5299
5300 if (shader_time_index >= 0)
5301 emit_shader_time_end();
5302
5303 calculate_cfg();
5304
5305 optimize();
5306
5307 assign_curb_setup();
5308 assign_urb_setup();
5309
5310 fixup_3src_null_dest();
5311 allocate_registers();
5312
5313 if (failed)
5314 return false;
5315 }
5316
5317 if (dispatch_width == 8)
5318 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5319 else
5320 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5321
5322 return !failed;
5323 }
5324
5325 bool
5326 fs_visitor::run_cs()
5327 {
5328 assert(stage == MESA_SHADER_COMPUTE);
5329
5330 setup_cs_payload();
5331
5332 if (shader_time_index >= 0)
5333 emit_shader_time_begin();
5334
5335 emit_nir_code();
5336
5337 if (failed)
5338 return false;
5339
5340 emit_cs_terminate();
5341
5342 if (shader_time_index >= 0)
5343 emit_shader_time_end();
5344
5345 calculate_cfg();
5346
5347 optimize();
5348
5349 assign_curb_setup();
5350
5351 fixup_3src_null_dest();
5352 allocate_registers();
5353
5354 if (failed)
5355 return false;
5356
5357 return !failed;
5358 }
5359
5360 /**
5361 * Return a bitfield where bit n is set if barycentric interpolation mode n
5362 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5363 */
5364 static unsigned
5365 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5366 bool shade_model_flat,
5367 bool persample_shading,
5368 const nir_shader *shader)
5369 {
5370 unsigned barycentric_interp_modes = 0;
5371
5372 nir_foreach_variable(var, &shader->inputs) {
5373 enum glsl_interp_qualifier interp_qualifier =
5374 (enum glsl_interp_qualifier)var->data.interpolation;
5375 bool is_centroid = var->data.centroid && !persample_shading;
5376 bool is_sample = var->data.sample || persample_shading;
5377 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5378 (var->data.location == VARYING_SLOT_COL1);
5379
5380 /* Ignore WPOS and FACE, because they don't require interpolation. */
5381 if (var->data.location == VARYING_SLOT_POS ||
5382 var->data.location == VARYING_SLOT_FACE)
5383 continue;
5384
5385 /* Determine the set (or sets) of barycentric coordinates needed to
5386 * interpolate this variable. Note that when
5387 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5388 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5389 * for lit pixels, so we need both sets of barycentric coordinates.
5390 */
5391 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5392 if (is_centroid) {
5393 barycentric_interp_modes |=
5394 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5395 } else if (is_sample) {
5396 barycentric_interp_modes |=
5397 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5398 }
5399 if ((!is_centroid && !is_sample) ||
5400 devinfo->needs_unlit_centroid_workaround) {
5401 barycentric_interp_modes |=
5402 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5403 }
5404 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5405 (!(shade_model_flat && is_gl_Color) &&
5406 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5407 if (is_centroid) {
5408 barycentric_interp_modes |=
5409 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5410 } else if (is_sample) {
5411 barycentric_interp_modes |=
5412 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5413 }
5414 if ((!is_centroid && !is_sample) ||
5415 devinfo->needs_unlit_centroid_workaround) {
5416 barycentric_interp_modes |=
5417 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5418 }
5419 }
5420 }
5421
5422 return barycentric_interp_modes;
5423 }
5424
5425 static uint8_t
5426 computed_depth_mode(const nir_shader *shader)
5427 {
5428 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5429 switch (shader->info.fs.depth_layout) {
5430 case FRAG_DEPTH_LAYOUT_NONE:
5431 case FRAG_DEPTH_LAYOUT_ANY:
5432 return BRW_PSCDEPTH_ON;
5433 case FRAG_DEPTH_LAYOUT_GREATER:
5434 return BRW_PSCDEPTH_ON_GE;
5435 case FRAG_DEPTH_LAYOUT_LESS:
5436 return BRW_PSCDEPTH_ON_LE;
5437 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5438 return BRW_PSCDEPTH_OFF;
5439 }
5440 }
5441 return BRW_PSCDEPTH_OFF;
5442 }
5443
5444 const unsigned *
5445 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5446 void *mem_ctx,
5447 const struct brw_wm_prog_key *key,
5448 struct brw_wm_prog_data *prog_data,
5449 const nir_shader *shader,
5450 struct gl_program *prog,
5451 int shader_time_index8, int shader_time_index16,
5452 bool use_rep_send,
5453 unsigned *final_assembly_size,
5454 char **error_str)
5455 {
5456 /* key->alpha_test_func means simulating alpha testing via discards,
5457 * so the shader definitely kills pixels.
5458 */
5459 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5460 prog_data->uses_omask =
5461 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5462 prog_data->computed_depth_mode = computed_depth_mode(shader);
5463 prog_data->computed_stencil =
5464 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5465
5466 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5467
5468 prog_data->barycentric_interp_modes =
5469 brw_compute_barycentric_interp_modes(compiler->devinfo,
5470 key->flat_shade,
5471 key->persample_shading,
5472 shader);
5473
5474 fs_visitor v(compiler, log_data, mem_ctx, key,
5475 &prog_data->base, prog, shader, 8,
5476 shader_time_index8);
5477 if (!v.run_fs(false /* do_rep_send */)) {
5478 if (error_str)
5479 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5480
5481 return NULL;
5482 }
5483
5484 cfg_t *simd16_cfg = NULL;
5485 fs_visitor v2(compiler, log_data, mem_ctx, key,
5486 &prog_data->base, prog, shader, 16,
5487 shader_time_index16);
5488 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5489 if (!v.simd16_unsupported) {
5490 /* Try a SIMD16 compile */
5491 v2.import_uniforms(&v);
5492 if (!v2.run_fs(use_rep_send)) {
5493 compiler->shader_perf_log(log_data,
5494 "SIMD16 shader failed to compile: %s",
5495 v2.fail_msg);
5496 } else {
5497 simd16_cfg = v2.cfg;
5498 }
5499 }
5500 }
5501
5502 cfg_t *simd8_cfg;
5503 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5504 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5505 simd8_cfg = NULL;
5506 prog_data->no_8 = true;
5507 } else {
5508 simd8_cfg = v.cfg;
5509 prog_data->no_8 = false;
5510 }
5511
5512 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5513 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5514
5515 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5516 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5517 shader->info.label ? shader->info.label :
5518 "unnamed",
5519 shader->info.name));
5520 }
5521
5522 if (simd8_cfg)
5523 g.generate_code(simd8_cfg, 8);
5524 if (simd16_cfg)
5525 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5526
5527 return g.get_assembly(final_assembly_size);
5528 }
5529
5530 void
5531 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5532 void *buffer, uint32_t threads, uint32_t stride)
5533 {
5534 if (prog_data->local_invocation_id_regs == 0)
5535 return;
5536
5537 /* 'stride' should be an integer number of registers, that is, a multiple
5538 * of 32 bytes.
5539 */
5540 assert(stride % 32 == 0);
5541
5542 unsigned x = 0, y = 0, z = 0;
5543 for (unsigned t = 0; t < threads; t++) {
5544 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5545
5546 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5547 param[0 * prog_data->simd_size + i] = x;
5548 param[1 * prog_data->simd_size + i] = y;
5549 param[2 * prog_data->simd_size + i] = z;
5550
5551 x++;
5552 if (x == prog_data->local_size[0]) {
5553 x = 0;
5554 y++;
5555 if (y == prog_data->local_size[1]) {
5556 y = 0;
5557 z++;
5558 if (z == prog_data->local_size[2])
5559 z = 0;
5560 }
5561 }
5562 }
5563 }
5564 }
5565
5566 fs_reg *
5567 fs_visitor::emit_cs_local_invocation_id_setup()
5568 {
5569 assert(stage == MESA_SHADER_COMPUTE);
5570
5571 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5572
5573 struct brw_reg src =
5574 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5575 src = retype(src, BRW_REGISTER_TYPE_UD);
5576 bld.MOV(*reg, src);
5577 src.nr += dispatch_width / 8;
5578 bld.MOV(offset(*reg, bld, 1), src);
5579 src.nr += dispatch_width / 8;
5580 bld.MOV(offset(*reg, bld, 2), src);
5581
5582 return reg;
5583 }
5584
5585 fs_reg *
5586 fs_visitor::emit_cs_work_group_id_setup()
5587 {
5588 assert(stage == MESA_SHADER_COMPUTE);
5589
5590 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5591
5592 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5593 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5594 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5595
5596 bld.MOV(*reg, r0_1);
5597 bld.MOV(offset(*reg, bld, 1), r0_6);
5598 bld.MOV(offset(*reg, bld, 2), r0_7);
5599
5600 return reg;
5601 }
5602
5603 const unsigned *
5604 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5605 void *mem_ctx,
5606 const struct brw_cs_prog_key *key,
5607 struct brw_cs_prog_data *prog_data,
5608 const nir_shader *shader,
5609 int shader_time_index,
5610 unsigned *final_assembly_size,
5611 char **error_str)
5612 {
5613 prog_data->local_size[0] = shader->info.cs.local_size[0];
5614 prog_data->local_size[1] = shader->info.cs.local_size[1];
5615 prog_data->local_size[2] = shader->info.cs.local_size[2];
5616 unsigned local_workgroup_size =
5617 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5618 shader->info.cs.local_size[2];
5619
5620 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5621
5622 cfg_t *cfg = NULL;
5623 const char *fail_msg = NULL;
5624
5625 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5626 */
5627 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5628 NULL, /* Never used in core profile */
5629 shader, 8, shader_time_index);
5630 if (!v8.run_cs()) {
5631 fail_msg = v8.fail_msg;
5632 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5633 cfg = v8.cfg;
5634 prog_data->simd_size = 8;
5635 }
5636
5637 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5638 NULL, /* Never used in core profile */
5639 shader, 16, shader_time_index);
5640 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5641 !fail_msg && !v8.simd16_unsupported &&
5642 local_workgroup_size <= 16 * max_cs_threads) {
5643 /* Try a SIMD16 compile */
5644 v16.import_uniforms(&v8);
5645 if (!v16.run_cs()) {
5646 compiler->shader_perf_log(log_data,
5647 "SIMD16 shader failed to compile: %s",
5648 v16.fail_msg);
5649 if (!cfg) {
5650 fail_msg =
5651 "Couldn't generate SIMD16 program and not "
5652 "enough threads for SIMD8";
5653 }
5654 } else {
5655 cfg = v16.cfg;
5656 prog_data->simd_size = 16;
5657 }
5658 }
5659
5660 if (unlikely(cfg == NULL)) {
5661 assert(fail_msg);
5662 if (error_str)
5663 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5664
5665 return NULL;
5666 }
5667
5668 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5669 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5670 if (INTEL_DEBUG & DEBUG_CS) {
5671 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5672 shader->info.label ? shader->info.label :
5673 "unnamed",
5674 shader->info.name);
5675 g.enable_debug(name);
5676 }
5677
5678 g.generate_code(cfg, prog_data->simd_size);
5679
5680 return g.get_assembly(final_assembly_size);
5681 }