i965: Plumb compiler debug logging through a function pointer in brw_compiler
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cfg.h"
46 #include "brw_dead_control_flow.h"
47 #include "main/uniforms.h"
48 #include "brw_fs_live_variables.h"
49 #include "glsl/glsl_types.h"
50 #include "program/sampler.h"
51
52 using namespace brw;
53
54 void
55 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
56 const fs_reg *src, unsigned sources)
57 {
58 memset(this, 0, sizeof(*this));
59
60 this->src = new fs_reg[MAX2(sources, 3)];
61 for (unsigned i = 0; i < sources; i++)
62 this->src[i] = src[i];
63
64 this->opcode = opcode;
65 this->dst = dst;
66 this->sources = sources;
67 this->exec_size = exec_size;
68
69 assert(dst.file != IMM && dst.file != UNIFORM);
70
71 /* If exec_size == 0, try to guess it from the registers. Since all
72 * manner of things may use hardware registers, we first try to guess
73 * based on GRF registers. If this fails, we will go ahead and take the
74 * width from the destination register.
75 */
76 if (this->exec_size == 0) {
77 if (dst.file == GRF) {
78 this->exec_size = dst.width;
79 } else {
80 for (unsigned i = 0; i < sources; ++i) {
81 if (src[i].file != GRF && src[i].file != ATTR)
82 continue;
83
84 if (this->exec_size <= 1)
85 this->exec_size = src[i].width;
86 assert(src[i].width == 1 || src[i].width == this->exec_size);
87 }
88 }
89
90 if (this->exec_size == 0 && dst.file != BAD_FILE)
91 this->exec_size = dst.width;
92 }
93 assert(this->exec_size != 0);
94
95 this->conditional_mod = BRW_CONDITIONAL_NONE;
96
97 /* This will be the case for almost all instructions. */
98 switch (dst.file) {
99 case GRF:
100 case HW_REG:
101 case MRF:
102 case ATTR:
103 this->regs_written =
104 DIV_ROUND_UP(MAX2(dst.width * dst.stride, 1) * type_sz(dst.type), 32);
105 break;
106 case BAD_FILE:
107 this->regs_written = 0;
108 break;
109 case IMM:
110 case UNIFORM:
111 unreachable("Invalid destination register file");
112 default:
113 unreachable("Invalid register file");
114 }
115
116 this->writes_accumulator = false;
117 }
118
119 fs_inst::fs_inst()
120 {
121 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
122 }
123
124 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
125 {
126 init(opcode, exec_size, reg_undef, NULL, 0);
127 }
128
129 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst)
130 {
131 init(opcode, 0, dst, NULL, 0);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
135 const fs_reg &src0)
136 {
137 const fs_reg src[1] = { src0 };
138 init(opcode, exec_size, dst, src, 1);
139 }
140
141 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0)
142 {
143 const fs_reg src[1] = { src0 };
144 init(opcode, 0, dst, src, 1);
145 }
146
147 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
148 const fs_reg &src0, const fs_reg &src1)
149 {
150 const fs_reg src[2] = { src0, src1 };
151 init(opcode, exec_size, dst, src, 2);
152 }
153
154 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
155 const fs_reg &src1)
156 {
157 const fs_reg src[2] = { src0, src1 };
158 init(opcode, 0, dst, src, 2);
159 }
160
161 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
162 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
163 {
164 const fs_reg src[3] = { src0, src1, src2 };
165 init(opcode, exec_size, dst, src, 3);
166 }
167
168 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst, const fs_reg &src0,
169 const fs_reg &src1, const fs_reg &src2)
170 {
171 const fs_reg src[3] = { src0, src1, src2 };
172 init(opcode, 0, dst, src, 3);
173 }
174
175 fs_inst::fs_inst(enum opcode opcode, const fs_reg &dst,
176 const fs_reg src[], unsigned sources)
177 {
178 init(opcode, 0, dst, src, sources);
179 }
180
181 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
182 const fs_reg src[], unsigned sources)
183 {
184 init(opcode, exec_width, dst, src, sources);
185 }
186
187 fs_inst::fs_inst(const fs_inst &that)
188 {
189 memcpy(this, &that, sizeof(that));
190
191 this->src = new fs_reg[MAX2(that.sources, 3)];
192
193 for (unsigned i = 0; i < that.sources; i++)
194 this->src[i] = that.src[i];
195 }
196
197 fs_inst::~fs_inst()
198 {
199 delete[] this->src;
200 }
201
202 void
203 fs_inst::resize_sources(uint8_t num_sources)
204 {
205 if (this->sources != num_sources) {
206 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
207
208 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
209 src[i] = this->src[i];
210
211 delete[] this->src;
212 this->src = src;
213 this->sources = num_sources;
214 }
215 }
216
217 void
218 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
219 const fs_reg &dst,
220 const fs_reg &surf_index,
221 const fs_reg &varying_offset,
222 uint32_t const_offset)
223 {
224 /* We have our constant surface use a pitch of 4 bytes, so our index can
225 * be any component of a vector, and then we load 4 contiguous
226 * components starting from that.
227 *
228 * We break down the const_offset to a portion added to the variable
229 * offset and a portion done using reg_offset, which means that if you
230 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
231 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
232 * CSE can later notice that those loads are all the same and eliminate
233 * the redundant ones.
234 */
235 fs_reg vec4_offset = vgrf(glsl_type::int_type);
236 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
237
238 int scale = 1;
239 if (devinfo->gen == 4 && dst.width == 8) {
240 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
241 * u, v, r) as parameters, or we can just use the SIMD16 message
242 * consisting of (header, u). We choose the second, at the cost of a
243 * longer return length.
244 */
245 scale = 2;
246 }
247
248 enum opcode op;
249 if (devinfo->gen >= 7)
250 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
251 else
252 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
253
254 assert(dst.width % 8 == 0);
255 int regs_written = 4 * (dst.width / 8) * scale;
256 fs_reg vec4_result = fs_reg(GRF, alloc.allocate(regs_written),
257 dst.type, dst.width);
258 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
259 inst->regs_written = regs_written;
260
261 if (devinfo->gen < 7) {
262 inst->base_mrf = 13;
263 inst->header_size = 1;
264 if (devinfo->gen == 4)
265 inst->mlen = 3;
266 else
267 inst->mlen = 1 + dispatch_width / 8;
268 }
269
270 bld.MOV(dst, offset(vec4_result, (const_offset & 3) * scale));
271 }
272
273 /**
274 * A helper for MOV generation for fixing up broken hardware SEND dependency
275 * handling.
276 */
277 void
278 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
279 {
280 /* The caller always wants uncompressed to emit the minimal extra
281 * dependencies, and to avoid having to deal with aligning its regs to 2.
282 */
283 const fs_builder ubld = bld.annotate("send dependency resolve")
284 .half(0);
285
286 ubld.MOV(ubld.null_reg_f(), fs_reg(GRF, grf, BRW_REGISTER_TYPE_F));
287 }
288
289 bool
290 fs_inst::equals(fs_inst *inst) const
291 {
292 return (opcode == inst->opcode &&
293 dst.equals(inst->dst) &&
294 src[0].equals(inst->src[0]) &&
295 src[1].equals(inst->src[1]) &&
296 src[2].equals(inst->src[2]) &&
297 saturate == inst->saturate &&
298 predicate == inst->predicate &&
299 conditional_mod == inst->conditional_mod &&
300 mlen == inst->mlen &&
301 base_mrf == inst->base_mrf &&
302 target == inst->target &&
303 eot == inst->eot &&
304 header_size == inst->header_size &&
305 shadow_compare == inst->shadow_compare &&
306 exec_size == inst->exec_size &&
307 offset == inst->offset);
308 }
309
310 bool
311 fs_inst::overwrites_reg(const fs_reg &reg) const
312 {
313 return reg.in_range(dst, regs_written);
314 }
315
316 bool
317 fs_inst::is_send_from_grf() const
318 {
319 switch (opcode) {
320 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
321 case SHADER_OPCODE_SHADER_TIME_ADD:
322 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
323 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
324 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
325 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
326 case SHADER_OPCODE_UNTYPED_ATOMIC:
327 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
328 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
329 case SHADER_OPCODE_TYPED_ATOMIC:
330 case SHADER_OPCODE_TYPED_SURFACE_READ:
331 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
332 case SHADER_OPCODE_URB_WRITE_SIMD8:
333 return true;
334 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
335 return src[1].file == GRF;
336 case FS_OPCODE_FB_WRITE:
337 return src[0].file == GRF;
338 default:
339 if (is_tex())
340 return src[0].file == GRF;
341
342 return false;
343 }
344 }
345
346 bool
347 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
348 {
349 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
350 return false;
351
352 fs_reg reg = this->src[0];
353 if (reg.file != GRF || reg.reg_offset != 0 || reg.stride == 0)
354 return false;
355
356 if (grf_alloc.sizes[reg.reg] != this->regs_written)
357 return false;
358
359 for (int i = 0; i < this->sources; i++) {
360 reg.type = this->src[i].type;
361 reg.width = this->src[i].width;
362 if (!this->src[i].equals(reg))
363 return false;
364 reg = ::offset(reg, 1);
365 }
366
367 return true;
368 }
369
370 bool
371 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
372 {
373 if (devinfo->gen == 6 && is_math())
374 return false;
375
376 if (is_send_from_grf())
377 return false;
378
379 if (!backend_instruction::can_do_source_mods())
380 return false;
381
382 return true;
383 }
384
385 bool
386 fs_inst::has_side_effects() const
387 {
388 return this->eot || backend_instruction::has_side_effects();
389 }
390
391 void
392 fs_reg::init()
393 {
394 memset(this, 0, sizeof(*this));
395 stride = 1;
396 }
397
398 /** Generic unset register constructor. */
399 fs_reg::fs_reg()
400 {
401 init();
402 this->file = BAD_FILE;
403 }
404
405 /** Immediate value constructor. */
406 fs_reg::fs_reg(float f)
407 {
408 init();
409 this->file = IMM;
410 this->type = BRW_REGISTER_TYPE_F;
411 this->fixed_hw_reg.dw1.f = f;
412 this->width = 1;
413 }
414
415 /** Immediate value constructor. */
416 fs_reg::fs_reg(int32_t i)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_D;
421 this->fixed_hw_reg.dw1.d = i;
422 this->width = 1;
423 }
424
425 /** Immediate value constructor. */
426 fs_reg::fs_reg(uint32_t u)
427 {
428 init();
429 this->file = IMM;
430 this->type = BRW_REGISTER_TYPE_UD;
431 this->fixed_hw_reg.dw1.ud = u;
432 this->width = 1;
433 }
434
435 /** Vector float immediate value constructor. */
436 fs_reg::fs_reg(uint8_t vf[4])
437 {
438 init();
439 this->file = IMM;
440 this->type = BRW_REGISTER_TYPE_VF;
441 memcpy(&this->fixed_hw_reg.dw1.ud, vf, sizeof(unsigned));
442 }
443
444 /** Vector float immediate value constructor. */
445 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
446 {
447 init();
448 this->file = IMM;
449 this->type = BRW_REGISTER_TYPE_VF;
450 this->fixed_hw_reg.dw1.ud = (vf0 << 0) |
451 (vf1 << 8) |
452 (vf2 << 16) |
453 (vf3 << 24);
454 }
455
456 /** Fixed brw_reg. */
457 fs_reg::fs_reg(struct brw_reg fixed_hw_reg)
458 {
459 init();
460 this->file = HW_REG;
461 this->fixed_hw_reg = fixed_hw_reg;
462 this->type = fixed_hw_reg.type;
463 this->width = 1 << fixed_hw_reg.width;
464 }
465
466 bool
467 fs_reg::equals(const fs_reg &r) const
468 {
469 return (file == r.file &&
470 reg == r.reg &&
471 reg_offset == r.reg_offset &&
472 subreg_offset == r.subreg_offset &&
473 type == r.type &&
474 negate == r.negate &&
475 abs == r.abs &&
476 !reladdr && !r.reladdr &&
477 memcmp(&fixed_hw_reg, &r.fixed_hw_reg, sizeof(fixed_hw_reg)) == 0 &&
478 width == r.width &&
479 stride == r.stride);
480 }
481
482 fs_reg &
483 fs_reg::set_smear(unsigned subreg)
484 {
485 assert(file != HW_REG && file != IMM);
486 subreg_offset = subreg * type_sz(type);
487 stride = 0;
488 return *this;
489 }
490
491 bool
492 fs_reg::is_contiguous() const
493 {
494 return stride == 1;
495 }
496
497 int
498 fs_visitor::type_size(const struct glsl_type *type)
499 {
500 unsigned int size, i;
501
502 switch (type->base_type) {
503 case GLSL_TYPE_UINT:
504 case GLSL_TYPE_INT:
505 case GLSL_TYPE_FLOAT:
506 case GLSL_TYPE_BOOL:
507 return type->components();
508 case GLSL_TYPE_ARRAY:
509 return type_size(type->fields.array) * type->length;
510 case GLSL_TYPE_STRUCT:
511 size = 0;
512 for (i = 0; i < type->length; i++) {
513 size += type_size(type->fields.structure[i].type);
514 }
515 return size;
516 case GLSL_TYPE_SAMPLER:
517 /* Samplers take up no register space, since they're baked in at
518 * link time.
519 */
520 return 0;
521 case GLSL_TYPE_ATOMIC_UINT:
522 return 0;
523 case GLSL_TYPE_IMAGE:
524 case GLSL_TYPE_VOID:
525 case GLSL_TYPE_ERROR:
526 case GLSL_TYPE_INTERFACE:
527 case GLSL_TYPE_DOUBLE:
528 unreachable("not reached");
529 }
530
531 return 0;
532 }
533
534 /**
535 * Create a MOV to read the timestamp register.
536 *
537 * The caller is responsible for emitting the MOV. The return value is
538 * the destination of the MOV, with extra parameters set.
539 */
540 fs_reg
541 fs_visitor::get_timestamp(const fs_builder &bld)
542 {
543 assert(devinfo->gen >= 7);
544
545 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
546 BRW_ARF_TIMESTAMP,
547 0),
548 BRW_REGISTER_TYPE_UD));
549
550 fs_reg dst = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 4);
551
552 /* We want to read the 3 fields we care about even if it's not enabled in
553 * the dispatch.
554 */
555 bld.exec_all().MOV(dst, ts);
556
557 /* The caller wants the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 *
563 * The caller could also check if render P-states have changed (or anything
564 * else that might disrupt timing) by setting smear to 2 and checking if
565 * that field is != 0.
566 */
567 dst.set_smear(0);
568
569 return dst;
570 }
571
572 void
573 fs_visitor::emit_shader_time_begin()
574 {
575 shader_start_time = get_timestamp(bld.annotate("shader time start"));
576 }
577
578 void
579 fs_visitor::emit_shader_time_end()
580 {
581 enum shader_time_shader_type type, written_type, reset_type;
582 switch (stage) {
583 case MESA_SHADER_VERTEX:
584 type = ST_VS;
585 written_type = ST_VS_WRITTEN;
586 reset_type = ST_VS_RESET;
587 break;
588 case MESA_SHADER_GEOMETRY:
589 type = ST_GS;
590 written_type = ST_GS_WRITTEN;
591 reset_type = ST_GS_RESET;
592 break;
593 case MESA_SHADER_FRAGMENT:
594 if (dispatch_width == 8) {
595 type = ST_FS8;
596 written_type = ST_FS8_WRITTEN;
597 reset_type = ST_FS8_RESET;
598 } else {
599 assert(dispatch_width == 16);
600 type = ST_FS16;
601 written_type = ST_FS16_WRITTEN;
602 reset_type = ST_FS16_RESET;
603 }
604 break;
605 case MESA_SHADER_COMPUTE:
606 type = ST_CS;
607 written_type = ST_CS_WRITTEN;
608 reset_type = ST_CS_RESET;
609 break;
610 default:
611 unreachable("fs_visitor::emit_shader_time_end missing code");
612 }
613
614 /* Insert our code just before the final SEND with EOT. */
615 exec_node *end = this->instructions.get_tail();
616 assert(end && ((fs_inst *) end)->eot);
617 const fs_builder ibld = bld.annotate("shader time end")
618 .exec_all().at(NULL, end);
619
620 fs_reg shader_end_time = get_timestamp(ibld);
621
622 /* Check that there weren't any timestamp reset events (assuming these
623 * were the only two timestamp reads that happened).
624 */
625 fs_reg reset = shader_end_time;
626 reset.set_smear(2);
627 set_condmod(BRW_CONDITIONAL_Z,
628 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
629 ibld.IF(BRW_PREDICATE_NORMAL);
630
631 fs_reg start = shader_start_time;
632 start.negate = true;
633 fs_reg diff = fs_reg(GRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD, 1);
634 diff.set_smear(0);
635 ibld.ADD(diff, start, shader_end_time);
636
637 /* If there were no instructions between the two timestamp gets, the diff
638 * is 2 cycles. Remove that overhead, so I can forget about that when
639 * trying to determine the time taken for single instructions.
640 */
641 ibld.ADD(diff, diff, fs_reg(-2u));
642 SHADER_TIME_ADD(ibld, type, diff);
643 SHADER_TIME_ADD(ibld, written_type, fs_reg(1u));
644 ibld.emit(BRW_OPCODE_ELSE);
645 SHADER_TIME_ADD(ibld, reset_type, fs_reg(1u));
646 ibld.emit(BRW_OPCODE_ENDIF);
647 }
648
649 void
650 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
651 enum shader_time_shader_type type, fs_reg value)
652 {
653 int shader_time_index =
654 brw_get_shader_time_index(brw, shader_prog, prog, type);
655 fs_reg offset = fs_reg(shader_time_index * SHADER_TIME_STRIDE);
656
657 fs_reg payload;
658 if (dispatch_width == 8)
659 payload = vgrf(glsl_type::uvec2_type);
660 else
661 payload = vgrf(glsl_type::uint_type);
662
663 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
664 }
665
666 void
667 fs_visitor::vfail(const char *format, va_list va)
668 {
669 char *msg;
670
671 if (failed)
672 return;
673
674 failed = true;
675
676 msg = ralloc_vasprintf(mem_ctx, format, va);
677 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
678
679 this->fail_msg = msg;
680
681 if (debug_enabled) {
682 fprintf(stderr, "%s", msg);
683 }
684 }
685
686 void
687 fs_visitor::fail(const char *format, ...)
688 {
689 va_list va;
690
691 va_start(va, format);
692 vfail(format, va);
693 va_end(va);
694 }
695
696 /**
697 * Mark this program as impossible to compile in SIMD16 mode.
698 *
699 * During the SIMD8 compile (which happens first), we can detect and flag
700 * things that are unsupported in SIMD16 mode, so the compiler can skip
701 * the SIMD16 compile altogether.
702 *
703 * During a SIMD16 compile (if one happens anyway), this just calls fail().
704 */
705 void
706 fs_visitor::no16(const char *format, ...)
707 {
708 va_list va;
709
710 va_start(va, format);
711
712 if (dispatch_width == 16) {
713 vfail(format, va);
714 } else {
715 simd16_unsupported = true;
716
717 if (brw->perf_debug) {
718 if (no16_msg)
719 ralloc_vasprintf_append(&no16_msg, format, va);
720 else
721 no16_msg = ralloc_vasprintf(mem_ctx, format, va);
722 }
723 }
724
725 va_end(va);
726 }
727
728 /**
729 * Returns true if the instruction has a flag that means it won't
730 * update an entire destination register.
731 *
732 * For example, dead code elimination and live variable analysis want to know
733 * when a write to a variable screens off any preceding values that were in
734 * it.
735 */
736 bool
737 fs_inst::is_partial_write() const
738 {
739 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
740 (this->dst.width * type_sz(this->dst.type)) < 32 ||
741 !this->dst.is_contiguous());
742 }
743
744 int
745 fs_inst::regs_read(int arg) const
746 {
747 if (is_tex() && arg == 0 && src[0].file == GRF) {
748 return mlen;
749 } else if (opcode == FS_OPCODE_FB_WRITE && arg == 0) {
750 return mlen;
751 } else if (opcode == SHADER_OPCODE_URB_WRITE_SIMD8 && arg == 0) {
752 return mlen;
753 } else if (opcode == SHADER_OPCODE_UNTYPED_ATOMIC && arg == 0) {
754 return mlen;
755 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_READ && arg == 0) {
756 return mlen;
757 } else if (opcode == SHADER_OPCODE_UNTYPED_SURFACE_WRITE && arg == 0) {
758 return mlen;
759 } else if (opcode == SHADER_OPCODE_TYPED_ATOMIC && arg == 0) {
760 return mlen;
761 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_READ && arg == 0) {
762 return mlen;
763 } else if (opcode == SHADER_OPCODE_TYPED_SURFACE_WRITE && arg == 0) {
764 return mlen;
765 } else if (opcode == FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET && arg == 0) {
766 return mlen;
767 } else if (opcode == FS_OPCODE_LINTERP && arg == 0) {
768 return exec_size / 4;
769 }
770
771 switch (src[arg].file) {
772 case BAD_FILE:
773 case UNIFORM:
774 case IMM:
775 return 1;
776 case GRF:
777 case HW_REG:
778 if (src[arg].stride == 0) {
779 return 1;
780 } else {
781 int size = src[arg].width * src[arg].stride * type_sz(src[arg].type);
782 return (size + 31) / 32;
783 }
784 case MRF:
785 unreachable("MRF registers are not allowed as sources");
786 default:
787 unreachable("Invalid register file");
788 }
789 }
790
791 bool
792 fs_inst::reads_flag() const
793 {
794 return predicate;
795 }
796
797 bool
798 fs_inst::writes_flag() const
799 {
800 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
801 opcode != BRW_OPCODE_IF &&
802 opcode != BRW_OPCODE_WHILE)) ||
803 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
804 }
805
806 /**
807 * Returns how many MRFs an FS opcode will write over.
808 *
809 * Note that this is not the 0 or 1 implied writes in an actual gen
810 * instruction -- the FS opcodes often generate MOVs in addition.
811 */
812 int
813 fs_visitor::implied_mrf_writes(fs_inst *inst)
814 {
815 if (inst->mlen == 0)
816 return 0;
817
818 if (inst->base_mrf == -1)
819 return 0;
820
821 switch (inst->opcode) {
822 case SHADER_OPCODE_RCP:
823 case SHADER_OPCODE_RSQ:
824 case SHADER_OPCODE_SQRT:
825 case SHADER_OPCODE_EXP2:
826 case SHADER_OPCODE_LOG2:
827 case SHADER_OPCODE_SIN:
828 case SHADER_OPCODE_COS:
829 return 1 * dispatch_width / 8;
830 case SHADER_OPCODE_POW:
831 case SHADER_OPCODE_INT_QUOTIENT:
832 case SHADER_OPCODE_INT_REMAINDER:
833 return 2 * dispatch_width / 8;
834 case SHADER_OPCODE_TEX:
835 case FS_OPCODE_TXB:
836 case SHADER_OPCODE_TXD:
837 case SHADER_OPCODE_TXF:
838 case SHADER_OPCODE_TXF_CMS:
839 case SHADER_OPCODE_TXF_MCS:
840 case SHADER_OPCODE_TG4:
841 case SHADER_OPCODE_TG4_OFFSET:
842 case SHADER_OPCODE_TXL:
843 case SHADER_OPCODE_TXS:
844 case SHADER_OPCODE_LOD:
845 return 1;
846 case FS_OPCODE_FB_WRITE:
847 return 2;
848 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
849 case SHADER_OPCODE_GEN4_SCRATCH_READ:
850 return 1;
851 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
852 return inst->mlen;
853 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
854 return inst->mlen;
855 case SHADER_OPCODE_UNTYPED_ATOMIC:
856 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
857 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
858 case SHADER_OPCODE_TYPED_ATOMIC:
859 case SHADER_OPCODE_TYPED_SURFACE_READ:
860 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
861 case SHADER_OPCODE_URB_WRITE_SIMD8:
862 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
863 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
864 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
865 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
866 return 0;
867 default:
868 unreachable("not reached");
869 }
870 }
871
872 fs_reg
873 fs_visitor::vgrf(const glsl_type *const type)
874 {
875 int reg_width = dispatch_width / 8;
876 return fs_reg(GRF, alloc.allocate(type_size(type) * reg_width),
877 brw_type_for_base_type(type), dispatch_width);
878 }
879
880 /** Fixed HW reg constructor. */
881 fs_reg::fs_reg(enum register_file file, int reg)
882 {
883 init();
884 this->file = file;
885 this->reg = reg;
886 this->type = BRW_REGISTER_TYPE_F;
887
888 switch (file) {
889 case UNIFORM:
890 this->width = 1;
891 break;
892 default:
893 this->width = 8;
894 }
895 }
896
897 /** Fixed HW reg constructor. */
898 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type)
899 {
900 init();
901 this->file = file;
902 this->reg = reg;
903 this->type = type;
904
905 switch (file) {
906 case UNIFORM:
907 this->width = 1;
908 break;
909 default:
910 this->width = 8;
911 }
912 }
913
914 /** Fixed HW reg constructor. */
915 fs_reg::fs_reg(enum register_file file, int reg, enum brw_reg_type type,
916 uint8_t width)
917 {
918 init();
919 this->file = file;
920 this->reg = reg;
921 this->type = type;
922 this->width = width;
923 }
924
925 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
926 * This brings in those uniform definitions
927 */
928 void
929 fs_visitor::import_uniforms(fs_visitor *v)
930 {
931 this->push_constant_loc = v->push_constant_loc;
932 this->pull_constant_loc = v->pull_constant_loc;
933 this->uniforms = v->uniforms;
934 this->param_size = v->param_size;
935 }
936
937 fs_reg *
938 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
939 bool origin_upper_left)
940 {
941 assert(stage == MESA_SHADER_FRAGMENT);
942 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
943 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
944 fs_reg wpos = *reg;
945 bool flip = !origin_upper_left ^ key->render_to_fbo;
946
947 /* gl_FragCoord.x */
948 if (pixel_center_integer) {
949 bld.MOV(wpos, this->pixel_x);
950 } else {
951 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
952 }
953 wpos = offset(wpos, 1);
954
955 /* gl_FragCoord.y */
956 if (!flip && pixel_center_integer) {
957 bld.MOV(wpos, this->pixel_y);
958 } else {
959 fs_reg pixel_y = this->pixel_y;
960 float offset = (pixel_center_integer ? 0.0 : 0.5);
961
962 if (flip) {
963 pixel_y.negate = true;
964 offset += key->drawable_height - 1.0;
965 }
966
967 bld.ADD(wpos, pixel_y, fs_reg(offset));
968 }
969 wpos = offset(wpos, 1);
970
971 /* gl_FragCoord.z */
972 if (devinfo->gen >= 6) {
973 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
974 } else {
975 bld.emit(FS_OPCODE_LINTERP, wpos,
976 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
977 interp_reg(VARYING_SLOT_POS, 2));
978 }
979 wpos = offset(wpos, 1);
980
981 /* gl_FragCoord.w: Already set up in emit_interpolation */
982 bld.MOV(wpos, this->wpos_w);
983
984 return reg;
985 }
986
987 fs_inst *
988 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
989 glsl_interp_qualifier interpolation_mode,
990 bool is_centroid, bool is_sample)
991 {
992 brw_wm_barycentric_interp_mode barycoord_mode;
993 if (devinfo->gen >= 6) {
994 if (is_centroid) {
995 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
996 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
997 else
998 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
999 } else if (is_sample) {
1000 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1001 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1002 else
1003 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1004 } else {
1005 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1006 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1007 else
1008 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1009 }
1010 } else {
1011 /* On Ironlake and below, there is only one interpolation mode.
1012 * Centroid interpolation doesn't mean anything on this hardware --
1013 * there is no multisampling.
1014 */
1015 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1016 }
1017 return bld.emit(FS_OPCODE_LINTERP, attr,
1018 this->delta_xy[barycoord_mode], interp);
1019 }
1020
1021 void
1022 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1023 const glsl_type *type,
1024 glsl_interp_qualifier interpolation_mode,
1025 int location, bool mod_centroid,
1026 bool mod_sample)
1027 {
1028 attr.type = brw_type_for_base_type(type->get_scalar_type());
1029
1030 assert(stage == MESA_SHADER_FRAGMENT);
1031 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1032 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1033
1034 unsigned int array_elements;
1035
1036 if (type->is_array()) {
1037 array_elements = type->length;
1038 if (array_elements == 0) {
1039 fail("dereferenced array '%s' has length 0\n", name);
1040 }
1041 type = type->fields.array;
1042 } else {
1043 array_elements = 1;
1044 }
1045
1046 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1047 bool is_gl_Color =
1048 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1049 if (key->flat_shade && is_gl_Color) {
1050 interpolation_mode = INTERP_QUALIFIER_FLAT;
1051 } else {
1052 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1053 }
1054 }
1055
1056 for (unsigned int i = 0; i < array_elements; i++) {
1057 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1058 if (prog_data->urb_setup[location] == -1) {
1059 /* If there's no incoming setup data for this slot, don't
1060 * emit interpolation for it.
1061 */
1062 attr = offset(attr, type->vector_elements);
1063 location++;
1064 continue;
1065 }
1066
1067 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1068 /* Constant interpolation (flat shading) case. The SF has
1069 * handed us defined values in only the constant offset
1070 * field of the setup reg.
1071 */
1072 for (unsigned int k = 0; k < type->vector_elements; k++) {
1073 struct brw_reg interp = interp_reg(location, k);
1074 interp = suboffset(interp, 3);
1075 interp.type = attr.type;
1076 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1077 attr = offset(attr, 1);
1078 }
1079 } else {
1080 /* Smooth/noperspective interpolation case. */
1081 for (unsigned int k = 0; k < type->vector_elements; k++) {
1082 struct brw_reg interp = interp_reg(location, k);
1083 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1084 /* Get the pixel/sample mask into f0 so that we know
1085 * which pixels are lit. Then, for each channel that is
1086 * unlit, replace the centroid data with non-centroid
1087 * data.
1088 */
1089 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1090
1091 fs_inst *inst;
1092 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1093 false, false);
1094 inst->predicate = BRW_PREDICATE_NORMAL;
1095 inst->predicate_inverse = true;
1096 if (devinfo->has_pln)
1097 inst->no_dd_clear = true;
1098
1099 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1100 mod_centroid && !key->persample_shading,
1101 mod_sample || key->persample_shading);
1102 inst->predicate = BRW_PREDICATE_NORMAL;
1103 inst->predicate_inverse = false;
1104 if (devinfo->has_pln)
1105 inst->no_dd_check = true;
1106
1107 } else {
1108 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1109 mod_centroid && !key->persample_shading,
1110 mod_sample || key->persample_shading);
1111 }
1112 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1113 bld.MUL(attr, attr, this->pixel_w);
1114 }
1115 attr = offset(attr, 1);
1116 }
1117
1118 }
1119 location++;
1120 }
1121 }
1122 }
1123
1124 fs_reg *
1125 fs_visitor::emit_frontfacing_interpolation()
1126 {
1127 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1128
1129 if (devinfo->gen >= 6) {
1130 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1131 * a boolean result from this (~0/true or 0/false).
1132 *
1133 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1134 * this task in only one instruction:
1135 * - a negation source modifier will flip the bit; and
1136 * - a W -> D type conversion will sign extend the bit into the high
1137 * word of the destination.
1138 *
1139 * An ASR 15 fills the low word of the destination.
1140 */
1141 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1142 g0.negate = true;
1143
1144 bld.ASR(*reg, g0, fs_reg(15));
1145 } else {
1146 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1147 * a boolean result from this (1/true or 0/false).
1148 *
1149 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1150 * the negation source modifier to flip it. Unfortunately the SHR
1151 * instruction only operates on UD (or D with an abs source modifier)
1152 * sources without negation.
1153 *
1154 * Instead, use ASR (which will give ~0/true or 0/false).
1155 */
1156 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1157 g1_6.negate = true;
1158
1159 bld.ASR(*reg, g1_6, fs_reg(31));
1160 }
1161
1162 return reg;
1163 }
1164
1165 void
1166 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1167 {
1168 assert(stage == MESA_SHADER_FRAGMENT);
1169 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1170 assert(dst.type == BRW_REGISTER_TYPE_F);
1171
1172 if (key->compute_pos_offset) {
1173 /* Convert int_sample_pos to floating point */
1174 bld.MOV(dst, int_sample_pos);
1175 /* Scale to the range [0, 1] */
1176 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1177 }
1178 else {
1179 /* From ARB_sample_shading specification:
1180 * "When rendering to a non-multisample buffer, or if multisample
1181 * rasterization is disabled, gl_SamplePosition will always be
1182 * (0.5, 0.5).
1183 */
1184 bld.MOV(dst, fs_reg(0.5f));
1185 }
1186 }
1187
1188 fs_reg *
1189 fs_visitor::emit_samplepos_setup()
1190 {
1191 assert(devinfo->gen >= 6);
1192
1193 const fs_builder abld = bld.annotate("compute sample position");
1194 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1195 fs_reg pos = *reg;
1196 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1197 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1198
1199 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1200 * mode will be enabled.
1201 *
1202 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1203 * R31.1:0 Position Offset X/Y for Slot[3:0]
1204 * R31.3:2 Position Offset X/Y for Slot[7:4]
1205 * .....
1206 *
1207 * The X, Y sample positions come in as bytes in thread payload. So, read
1208 * the positions using vstride=16, width=8, hstride=2.
1209 */
1210 struct brw_reg sample_pos_reg =
1211 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1212 BRW_REGISTER_TYPE_B), 16, 8, 2);
1213
1214 if (dispatch_width == 8) {
1215 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1216 } else {
1217 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1218 abld.half(1).MOV(half(int_sample_x, 1),
1219 fs_reg(suboffset(sample_pos_reg, 16)));
1220 }
1221 /* Compute gl_SamplePosition.x */
1222 compute_sample_position(pos, int_sample_x);
1223 pos = offset(pos, 1);
1224 if (dispatch_width == 8) {
1225 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1226 } else {
1227 abld.half(0).MOV(half(int_sample_y, 0),
1228 fs_reg(suboffset(sample_pos_reg, 1)));
1229 abld.half(1).MOV(half(int_sample_y, 1),
1230 fs_reg(suboffset(sample_pos_reg, 17)));
1231 }
1232 /* Compute gl_SamplePosition.y */
1233 compute_sample_position(pos, int_sample_y);
1234 return reg;
1235 }
1236
1237 fs_reg *
1238 fs_visitor::emit_sampleid_setup()
1239 {
1240 assert(stage == MESA_SHADER_FRAGMENT);
1241 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1242 assert(devinfo->gen >= 6);
1243
1244 const fs_builder abld = bld.annotate("compute sample id");
1245 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1246
1247 if (key->compute_sample_id) {
1248 fs_reg t1 = vgrf(glsl_type::int_type);
1249 fs_reg t2 = vgrf(glsl_type::int_type);
1250 t2.type = BRW_REGISTER_TYPE_UW;
1251
1252 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1253 * 8x multisampling, subspan 0 will represent sample N (where N
1254 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1255 * 7. We can find the value of N by looking at R0.0 bits 7:6
1256 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1257 * (since samples are always delivered in pairs). That is, we
1258 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1259 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1260 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1261 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1262 * populating a temporary variable with the sequence (0, 1, 2, 3),
1263 * and then reading from it using vstride=1, width=4, hstride=0.
1264 * These computations hold good for 4x multisampling as well.
1265 *
1266 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1267 * the first four slots are sample 0 of subspan 0; the next four
1268 * are sample 1 of subspan 0; the third group is sample 0 of
1269 * subspan 1, and finally sample 1 of subspan 1.
1270 */
1271 abld.exec_all()
1272 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)),
1273 fs_reg(0xc0));
1274 abld.exec_all().SHR(t1, t1, fs_reg(5));
1275
1276 /* This works for both SIMD8 and SIMD16 */
1277 abld.exec_all()
1278 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1279
1280 /* This special instruction takes care of setting vstride=1,
1281 * width=4, hstride=0 of t2 during an ADD instruction.
1282 */
1283 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1284 } else {
1285 /* As per GL_ARB_sample_shading specification:
1286 * "When rendering to a non-multisample buffer, or if multisample
1287 * rasterization is disabled, gl_SampleID will always be zero."
1288 */
1289 abld.MOV(*reg, fs_reg(0));
1290 }
1291
1292 return reg;
1293 }
1294
1295 void
1296 fs_visitor::resolve_source_modifiers(fs_reg *src)
1297 {
1298 if (!src->abs && !src->negate)
1299 return;
1300
1301 fs_reg temp = bld.vgrf(src->type);
1302 bld.MOV(temp, *src);
1303 *src = temp;
1304 }
1305
1306 void
1307 fs_visitor::emit_discard_jump()
1308 {
1309 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1310
1311 /* For performance, after a discard, jump to the end of the
1312 * shader if all relevant channels have been discarded.
1313 */
1314 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1315 discard_jump->flag_subreg = 1;
1316
1317 discard_jump->predicate = (dispatch_width == 8)
1318 ? BRW_PREDICATE_ALIGN1_ANY8H
1319 : BRW_PREDICATE_ALIGN1_ANY16H;
1320 discard_jump->predicate_inverse = true;
1321 }
1322
1323 void
1324 fs_visitor::assign_curb_setup()
1325 {
1326 if (dispatch_width == 8) {
1327 prog_data->dispatch_grf_start_reg = payload.num_regs;
1328 } else {
1329 if (stage == MESA_SHADER_FRAGMENT) {
1330 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1331 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1332 } else if (stage == MESA_SHADER_COMPUTE) {
1333 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1334 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1335 } else {
1336 unreachable("Unsupported shader type!");
1337 }
1338 }
1339
1340 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1341
1342 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1343 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1344 for (unsigned int i = 0; i < inst->sources; i++) {
1345 if (inst->src[i].file == UNIFORM) {
1346 int uniform_nr = inst->src[i].reg + inst->src[i].reg_offset;
1347 int constant_nr;
1348 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1349 constant_nr = push_constant_loc[uniform_nr];
1350 } else {
1351 /* Section 5.11 of the OpenGL 4.1 spec says:
1352 * "Out-of-bounds reads return undefined values, which include
1353 * values from other variables of the active program or zero."
1354 * Just return the first push constant.
1355 */
1356 constant_nr = 0;
1357 }
1358
1359 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1360 constant_nr / 8,
1361 constant_nr % 8);
1362
1363 inst->src[i].file = HW_REG;
1364 inst->src[i].fixed_hw_reg = byte_offset(
1365 retype(brw_reg, inst->src[i].type),
1366 inst->src[i].subreg_offset);
1367 }
1368 }
1369 }
1370 }
1371
1372 void
1373 fs_visitor::calculate_urb_setup()
1374 {
1375 assert(stage == MESA_SHADER_FRAGMENT);
1376 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1377 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1378
1379 memset(prog_data->urb_setup, -1,
1380 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1381
1382 int urb_next = 0;
1383 /* Figure out where each of the incoming setup attributes lands. */
1384 if (devinfo->gen >= 6) {
1385 if (_mesa_bitcount_64(prog->InputsRead &
1386 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1387 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1388 * first 16 varying inputs, so we can put them wherever we want.
1389 * Just put them in order.
1390 *
1391 * This is useful because it means that (a) inputs not used by the
1392 * fragment shader won't take up valuable register space, and (b) we
1393 * won't have to recompile the fragment shader if it gets paired with
1394 * a different vertex (or geometry) shader.
1395 */
1396 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1397 if (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1398 BITFIELD64_BIT(i)) {
1399 prog_data->urb_setup[i] = urb_next++;
1400 }
1401 }
1402 } else {
1403 /* We have enough input varyings that the SF/SBE pipeline stage can't
1404 * arbitrarily rearrange them to suit our whim; we have to put them
1405 * in an order that matches the output of the previous pipeline stage
1406 * (geometry or vertex shader).
1407 */
1408 struct brw_vue_map prev_stage_vue_map;
1409 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1410 key->input_slots_valid);
1411 int first_slot = 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1412 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1413 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1414 slot++) {
1415 int varying = prev_stage_vue_map.slot_to_varying[slot];
1416 /* Note that varying == BRW_VARYING_SLOT_COUNT when a slot is
1417 * unused.
1418 */
1419 if (varying != BRW_VARYING_SLOT_COUNT &&
1420 (prog->InputsRead & BRW_FS_VARYING_INPUT_MASK &
1421 BITFIELD64_BIT(varying))) {
1422 prog_data->urb_setup[varying] = slot - first_slot;
1423 }
1424 }
1425 urb_next = prev_stage_vue_map.num_slots - first_slot;
1426 }
1427 } else {
1428 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1429 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1430 /* Point size is packed into the header, not as a general attribute */
1431 if (i == VARYING_SLOT_PSIZ)
1432 continue;
1433
1434 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1435 /* The back color slot is skipped when the front color is
1436 * also written to. In addition, some slots can be
1437 * written in the vertex shader and not read in the
1438 * fragment shader. So the register number must always be
1439 * incremented, mapped or not.
1440 */
1441 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1442 prog_data->urb_setup[i] = urb_next;
1443 urb_next++;
1444 }
1445 }
1446
1447 /*
1448 * It's a FS only attribute, and we did interpolation for this attribute
1449 * in SF thread. So, count it here, too.
1450 *
1451 * See compile_sf_prog() for more info.
1452 */
1453 if (prog->InputsRead & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1454 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1455 }
1456
1457 prog_data->num_varying_inputs = urb_next;
1458 }
1459
1460 void
1461 fs_visitor::assign_urb_setup()
1462 {
1463 assert(stage == MESA_SHADER_FRAGMENT);
1464 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1465
1466 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1467
1468 /* Offset all the urb_setup[] index by the actual position of the
1469 * setup regs, now that the location of the constants has been chosen.
1470 */
1471 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1472 if (inst->opcode == FS_OPCODE_LINTERP) {
1473 assert(inst->src[1].file == HW_REG);
1474 inst->src[1].fixed_hw_reg.nr += urb_start;
1475 }
1476
1477 if (inst->opcode == FS_OPCODE_CINTERP) {
1478 assert(inst->src[0].file == HW_REG);
1479 inst->src[0].fixed_hw_reg.nr += urb_start;
1480 }
1481 }
1482
1483 /* Each attribute is 4 setup channels, each of which is half a reg. */
1484 this->first_non_payload_grf =
1485 urb_start + prog_data->num_varying_inputs * 2;
1486 }
1487
1488 void
1489 fs_visitor::assign_vs_urb_setup()
1490 {
1491 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1492 int grf, count, slot, channel, attr;
1493
1494 assert(stage == MESA_SHADER_VERTEX);
1495 count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1496 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1497 count++;
1498
1499 /* Each attribute is 4 regs. */
1500 this->first_non_payload_grf =
1501 payload.num_regs + prog_data->curb_read_length + count * 4;
1502
1503 unsigned vue_entries =
1504 MAX2(count, vs_prog_data->base.vue_map.num_slots);
1505
1506 vs_prog_data->base.urb_entry_size = ALIGN(vue_entries, 4) / 4;
1507 vs_prog_data->base.urb_read_length = (count + 1) / 2;
1508
1509 assert(vs_prog_data->base.urb_read_length <= 15);
1510
1511 /* Rewrite all ATTR file references to the hw grf that they land in. */
1512 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1513 for (int i = 0; i < inst->sources; i++) {
1514 if (inst->src[i].file == ATTR) {
1515
1516 if (inst->src[i].reg == VERT_ATTRIB_MAX) {
1517 slot = count - 1;
1518 } else {
1519 /* Attributes come in in a contiguous block, ordered by their
1520 * gl_vert_attrib value. That means we can compute the slot
1521 * number for an attribute by masking out the enabled
1522 * attributes before it and counting the bits.
1523 */
1524 attr = inst->src[i].reg + inst->src[i].reg_offset / 4;
1525 slot = _mesa_bitcount_64(vs_prog_data->inputs_read &
1526 BITFIELD64_MASK(attr));
1527 }
1528
1529 channel = inst->src[i].reg_offset & 3;
1530
1531 grf = payload.num_regs +
1532 prog_data->curb_read_length +
1533 slot * 4 + channel;
1534
1535 inst->src[i].file = HW_REG;
1536 inst->src[i].fixed_hw_reg =
1537 retype(brw_vec8_grf(grf, 0), inst->src[i].type);
1538 }
1539 }
1540 }
1541 }
1542
1543 /**
1544 * Split large virtual GRFs into separate components if we can.
1545 *
1546 * This is mostly duplicated with what brw_fs_vector_splitting does,
1547 * but that's really conservative because it's afraid of doing
1548 * splitting that doesn't result in real progress after the rest of
1549 * the optimization phases, which would cause infinite looping in
1550 * optimization. We can do it once here, safely. This also has the
1551 * opportunity to split interpolated values, or maybe even uniforms,
1552 * which we don't have at the IR level.
1553 *
1554 * We want to split, because virtual GRFs are what we register
1555 * allocate and spill (due to contiguousness requirements for some
1556 * instructions), and they're what we naturally generate in the
1557 * codegen process, but most virtual GRFs don't actually need to be
1558 * contiguous sets of GRFs. If we split, we'll end up with reduced
1559 * live intervals and better dead code elimination and coalescing.
1560 */
1561 void
1562 fs_visitor::split_virtual_grfs()
1563 {
1564 int num_vars = this->alloc.count;
1565
1566 /* Count the total number of registers */
1567 int reg_count = 0;
1568 int vgrf_to_reg[num_vars];
1569 for (int i = 0; i < num_vars; i++) {
1570 vgrf_to_reg[i] = reg_count;
1571 reg_count += alloc.sizes[i];
1572 }
1573
1574 /* An array of "split points". For each register slot, this indicates
1575 * if this slot can be separated from the previous slot. Every time an
1576 * instruction uses multiple elements of a register (as a source or
1577 * destination), we mark the used slots as inseparable. Then we go
1578 * through and split the registers into the smallest pieces we can.
1579 */
1580 bool split_points[reg_count];
1581 memset(split_points, 0, sizeof(split_points));
1582
1583 /* Mark all used registers as fully splittable */
1584 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1585 if (inst->dst.file == GRF) {
1586 int reg = vgrf_to_reg[inst->dst.reg];
1587 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.reg]; j++)
1588 split_points[reg + j] = true;
1589 }
1590
1591 for (int i = 0; i < inst->sources; i++) {
1592 if (inst->src[i].file == GRF) {
1593 int reg = vgrf_to_reg[inst->src[i].reg];
1594 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].reg]; j++)
1595 split_points[reg + j] = true;
1596 }
1597 }
1598 }
1599
1600 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1601 if (inst->dst.file == GRF) {
1602 int reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1603 for (int j = 1; j < inst->regs_written; j++)
1604 split_points[reg + j] = false;
1605 }
1606 for (int i = 0; i < inst->sources; i++) {
1607 if (inst->src[i].file == GRF) {
1608 int reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1609 for (int j = 1; j < inst->regs_read(i); j++)
1610 split_points[reg + j] = false;
1611 }
1612 }
1613 }
1614
1615 int new_virtual_grf[reg_count];
1616 int new_reg_offset[reg_count];
1617
1618 int reg = 0;
1619 for (int i = 0; i < num_vars; i++) {
1620 /* The first one should always be 0 as a quick sanity check. */
1621 assert(split_points[reg] == false);
1622
1623 /* j = 0 case */
1624 new_reg_offset[reg] = 0;
1625 reg++;
1626 int offset = 1;
1627
1628 /* j > 0 case */
1629 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1630 /* If this is a split point, reset the offset to 0 and allocate a
1631 * new virtual GRF for the previous offset many registers
1632 */
1633 if (split_points[reg]) {
1634 assert(offset <= MAX_VGRF_SIZE);
1635 int grf = alloc.allocate(offset);
1636 for (int k = reg - offset; k < reg; k++)
1637 new_virtual_grf[k] = grf;
1638 offset = 0;
1639 }
1640 new_reg_offset[reg] = offset;
1641 offset++;
1642 reg++;
1643 }
1644
1645 /* The last one gets the original register number */
1646 assert(offset <= MAX_VGRF_SIZE);
1647 alloc.sizes[i] = offset;
1648 for (int k = reg - offset; k < reg; k++)
1649 new_virtual_grf[k] = i;
1650 }
1651 assert(reg == reg_count);
1652
1653 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1654 if (inst->dst.file == GRF) {
1655 reg = vgrf_to_reg[inst->dst.reg] + inst->dst.reg_offset;
1656 inst->dst.reg = new_virtual_grf[reg];
1657 inst->dst.reg_offset = new_reg_offset[reg];
1658 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1659 }
1660 for (int i = 0; i < inst->sources; i++) {
1661 if (inst->src[i].file == GRF) {
1662 reg = vgrf_to_reg[inst->src[i].reg] + inst->src[i].reg_offset;
1663 inst->src[i].reg = new_virtual_grf[reg];
1664 inst->src[i].reg_offset = new_reg_offset[reg];
1665 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1666 }
1667 }
1668 }
1669 invalidate_live_intervals();
1670 }
1671
1672 /**
1673 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1674 *
1675 * During code generation, we create tons of temporary variables, many of
1676 * which get immediately killed and are never used again. Yet, in later
1677 * optimization and analysis passes, such as compute_live_intervals, we need
1678 * to loop over all the virtual GRFs. Compacting them can save a lot of
1679 * overhead.
1680 */
1681 bool
1682 fs_visitor::compact_virtual_grfs()
1683 {
1684 bool progress = false;
1685 int remap_table[this->alloc.count];
1686 memset(remap_table, -1, sizeof(remap_table));
1687
1688 /* Mark which virtual GRFs are used. */
1689 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1690 if (inst->dst.file == GRF)
1691 remap_table[inst->dst.reg] = 0;
1692
1693 for (int i = 0; i < inst->sources; i++) {
1694 if (inst->src[i].file == GRF)
1695 remap_table[inst->src[i].reg] = 0;
1696 }
1697 }
1698
1699 /* Compact the GRF arrays. */
1700 int new_index = 0;
1701 for (unsigned i = 0; i < this->alloc.count; i++) {
1702 if (remap_table[i] == -1) {
1703 /* We just found an unused register. This means that we are
1704 * actually going to compact something.
1705 */
1706 progress = true;
1707 } else {
1708 remap_table[i] = new_index;
1709 alloc.sizes[new_index] = alloc.sizes[i];
1710 invalidate_live_intervals();
1711 ++new_index;
1712 }
1713 }
1714
1715 this->alloc.count = new_index;
1716
1717 /* Patch all the instructions to use the newly renumbered registers */
1718 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1719 if (inst->dst.file == GRF)
1720 inst->dst.reg = remap_table[inst->dst.reg];
1721
1722 for (int i = 0; i < inst->sources; i++) {
1723 if (inst->src[i].file == GRF)
1724 inst->src[i].reg = remap_table[inst->src[i].reg];
1725 }
1726 }
1727
1728 /* Patch all the references to delta_xy, since they're used in register
1729 * allocation. If they're unused, switch them to BAD_FILE so we don't
1730 * think some random VGRF is delta_xy.
1731 */
1732 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1733 if (delta_xy[i].file == GRF) {
1734 if (remap_table[delta_xy[i].reg] != -1) {
1735 delta_xy[i].reg = remap_table[delta_xy[i].reg];
1736 } else {
1737 delta_xy[i].file = BAD_FILE;
1738 }
1739 }
1740 }
1741
1742 return progress;
1743 }
1744
1745 /*
1746 * Implements array access of uniforms by inserting a
1747 * PULL_CONSTANT_LOAD instruction.
1748 *
1749 * Unlike temporary GRF array access (where we don't support it due to
1750 * the difficulty of doing relative addressing on instruction
1751 * destinations), we could potentially do array access of uniforms
1752 * that were loaded in GRF space as push constants. In real-world
1753 * usage we've seen, though, the arrays being used are always larger
1754 * than we could load as push constants, so just always move all
1755 * uniform array access out to a pull constant buffer.
1756 */
1757 void
1758 fs_visitor::move_uniform_array_access_to_pull_constants()
1759 {
1760 if (dispatch_width != 8)
1761 return;
1762
1763 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1764 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1765
1766 /* Walk through and find array access of uniforms. Put a copy of that
1767 * uniform in the pull constant buffer.
1768 *
1769 * Note that we don't move constant-indexed accesses to arrays. No
1770 * testing has been done of the performance impact of this choice.
1771 */
1772 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1773 for (int i = 0 ; i < inst->sources; i++) {
1774 if (inst->src[i].file != UNIFORM || !inst->src[i].reladdr)
1775 continue;
1776
1777 int uniform = inst->src[i].reg;
1778
1779 /* If this array isn't already present in the pull constant buffer,
1780 * add it.
1781 */
1782 if (pull_constant_loc[uniform] == -1) {
1783 const gl_constant_value **values = &stage_prog_data->param[uniform];
1784
1785 assert(param_size[uniform]);
1786
1787 for (int j = 0; j < param_size[uniform]; j++) {
1788 pull_constant_loc[uniform + j] = stage_prog_data->nr_pull_params;
1789
1790 stage_prog_data->pull_param[stage_prog_data->nr_pull_params++] =
1791 values[j];
1792 }
1793 }
1794 }
1795 }
1796 }
1797
1798 /**
1799 * Assign UNIFORM file registers to either push constants or pull constants.
1800 *
1801 * We allow a fragment shader to have more than the specified minimum
1802 * maximum number of fragment shader uniform components (64). If
1803 * there are too many of these, they'd fill up all of register space.
1804 * So, this will push some of them out to the pull constant buffer and
1805 * update the program to load them.
1806 */
1807 void
1808 fs_visitor::assign_constant_locations()
1809 {
1810 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1811 if (dispatch_width != 8)
1812 return;
1813
1814 /* Find which UNIFORM registers are still in use. */
1815 bool is_live[uniforms];
1816 for (unsigned int i = 0; i < uniforms; i++) {
1817 is_live[i] = false;
1818 }
1819
1820 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1821 for (int i = 0; i < inst->sources; i++) {
1822 if (inst->src[i].file != UNIFORM)
1823 continue;
1824
1825 int constant_nr = inst->src[i].reg + inst->src[i].reg_offset;
1826 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1827 is_live[constant_nr] = true;
1828 }
1829 }
1830
1831 /* Only allow 16 registers (128 uniform components) as push constants.
1832 *
1833 * Just demote the end of the list. We could probably do better
1834 * here, demoting things that are rarely used in the program first.
1835 *
1836 * If changing this value, note the limitation about total_regs in
1837 * brw_curbe.c.
1838 */
1839 unsigned int max_push_components = 16 * 8;
1840 unsigned int num_push_constants = 0;
1841
1842 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1843
1844 for (unsigned int i = 0; i < uniforms; i++) {
1845 if (!is_live[i] || pull_constant_loc[i] != -1) {
1846 /* This UNIFORM register is either dead, or has already been demoted
1847 * to a pull const. Mark it as no longer living in the param[] array.
1848 */
1849 push_constant_loc[i] = -1;
1850 continue;
1851 }
1852
1853 if (num_push_constants < max_push_components) {
1854 /* Retain as a push constant. Record the location in the params[]
1855 * array.
1856 */
1857 push_constant_loc[i] = num_push_constants++;
1858 } else {
1859 /* Demote to a pull constant. */
1860 push_constant_loc[i] = -1;
1861
1862 int pull_index = stage_prog_data->nr_pull_params++;
1863 stage_prog_data->pull_param[pull_index] = stage_prog_data->param[i];
1864 pull_constant_loc[i] = pull_index;
1865 }
1866 }
1867
1868 stage_prog_data->nr_params = num_push_constants;
1869
1870 /* Up until now, the param[] array has been indexed by reg + reg_offset
1871 * of UNIFORM registers. Condense it to only contain the uniforms we
1872 * chose to upload as push constants.
1873 */
1874 for (unsigned int i = 0; i < uniforms; i++) {
1875 int remapped = push_constant_loc[i];
1876
1877 if (remapped == -1)
1878 continue;
1879
1880 assert(remapped <= (int)i);
1881 stage_prog_data->param[remapped] = stage_prog_data->param[i];
1882 }
1883 }
1884
1885 /**
1886 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
1887 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
1888 */
1889 void
1890 fs_visitor::demote_pull_constants()
1891 {
1892 foreach_block_and_inst (block, fs_inst, inst, cfg) {
1893 for (int i = 0; i < inst->sources; i++) {
1894 if (inst->src[i].file != UNIFORM)
1895 continue;
1896
1897 int pull_index;
1898 unsigned location = inst->src[i].reg + inst->src[i].reg_offset;
1899 if (location >= uniforms) /* Out of bounds access */
1900 pull_index = -1;
1901 else
1902 pull_index = pull_constant_loc[location];
1903
1904 if (pull_index == -1)
1905 continue;
1906
1907 /* Set up the annotation tracking for new generated instructions. */
1908 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
1909 .at(block, inst);
1910 fs_reg surf_index(stage_prog_data->binding_table.pull_constants_start);
1911 fs_reg dst = vgrf(glsl_type::float_type);
1912
1913 /* Generate a pull load into dst. */
1914 if (inst->src[i].reladdr) {
1915 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
1916 surf_index,
1917 *inst->src[i].reladdr,
1918 pull_index);
1919 inst->src[i].reladdr = NULL;
1920 } else {
1921 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
1922 ibld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
1923 dst, surf_index, offset);
1924 inst->src[i].set_smear(pull_index & 3);
1925 }
1926
1927 /* Rewrite the instruction to use the temporary VGRF. */
1928 inst->src[i].file = GRF;
1929 inst->src[i].reg = dst.reg;
1930 inst->src[i].reg_offset = 0;
1931 inst->src[i].width = dispatch_width;
1932 }
1933 }
1934 invalidate_live_intervals();
1935 }
1936
1937 bool
1938 fs_visitor::opt_algebraic()
1939 {
1940 bool progress = false;
1941
1942 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1943 switch (inst->opcode) {
1944 case BRW_OPCODE_MOV:
1945 if (inst->src[0].file != IMM)
1946 break;
1947
1948 if (inst->saturate) {
1949 if (inst->dst.type != inst->src[0].type)
1950 assert(!"unimplemented: saturate mixed types");
1951
1952 if (brw_saturate_immediate(inst->dst.type,
1953 &inst->src[0].fixed_hw_reg)) {
1954 inst->saturate = false;
1955 progress = true;
1956 }
1957 }
1958 break;
1959
1960 case BRW_OPCODE_MUL:
1961 if (inst->src[1].file != IMM)
1962 continue;
1963
1964 /* a * 1.0 = a */
1965 if (inst->src[1].is_one()) {
1966 inst->opcode = BRW_OPCODE_MOV;
1967 inst->src[1] = reg_undef;
1968 progress = true;
1969 break;
1970 }
1971
1972 /* a * -1.0 = -a */
1973 if (inst->src[1].is_negative_one()) {
1974 inst->opcode = BRW_OPCODE_MOV;
1975 inst->src[0].negate = !inst->src[0].negate;
1976 inst->src[1] = reg_undef;
1977 progress = true;
1978 break;
1979 }
1980
1981 /* a * 0.0 = 0.0 */
1982 if (inst->src[1].is_zero()) {
1983 inst->opcode = BRW_OPCODE_MOV;
1984 inst->src[0] = inst->src[1];
1985 inst->src[1] = reg_undef;
1986 progress = true;
1987 break;
1988 }
1989
1990 if (inst->src[0].file == IMM) {
1991 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
1992 inst->opcode = BRW_OPCODE_MOV;
1993 inst->src[0].fixed_hw_reg.dw1.f *= inst->src[1].fixed_hw_reg.dw1.f;
1994 inst->src[1] = reg_undef;
1995 progress = true;
1996 break;
1997 }
1998 break;
1999 case BRW_OPCODE_ADD:
2000 if (inst->src[1].file != IMM)
2001 continue;
2002
2003 /* a + 0.0 = a */
2004 if (inst->src[1].is_zero()) {
2005 inst->opcode = BRW_OPCODE_MOV;
2006 inst->src[1] = reg_undef;
2007 progress = true;
2008 break;
2009 }
2010
2011 if (inst->src[0].file == IMM) {
2012 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2013 inst->opcode = BRW_OPCODE_MOV;
2014 inst->src[0].fixed_hw_reg.dw1.f += inst->src[1].fixed_hw_reg.dw1.f;
2015 inst->src[1] = reg_undef;
2016 progress = true;
2017 break;
2018 }
2019 break;
2020 case BRW_OPCODE_OR:
2021 if (inst->src[0].equals(inst->src[1])) {
2022 inst->opcode = BRW_OPCODE_MOV;
2023 inst->src[1] = reg_undef;
2024 progress = true;
2025 break;
2026 }
2027 break;
2028 case BRW_OPCODE_LRP:
2029 if (inst->src[1].equals(inst->src[2])) {
2030 inst->opcode = BRW_OPCODE_MOV;
2031 inst->src[0] = inst->src[1];
2032 inst->src[1] = reg_undef;
2033 inst->src[2] = reg_undef;
2034 progress = true;
2035 break;
2036 }
2037 break;
2038 case BRW_OPCODE_CMP:
2039 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2040 inst->src[0].abs &&
2041 inst->src[0].negate &&
2042 inst->src[1].is_zero()) {
2043 inst->src[0].abs = false;
2044 inst->src[0].negate = false;
2045 inst->conditional_mod = BRW_CONDITIONAL_Z;
2046 progress = true;
2047 break;
2048 }
2049 break;
2050 case BRW_OPCODE_SEL:
2051 if (inst->src[0].equals(inst->src[1])) {
2052 inst->opcode = BRW_OPCODE_MOV;
2053 inst->src[1] = reg_undef;
2054 inst->predicate = BRW_PREDICATE_NONE;
2055 inst->predicate_inverse = false;
2056 progress = true;
2057 } else if (inst->saturate && inst->src[1].file == IMM) {
2058 switch (inst->conditional_mod) {
2059 case BRW_CONDITIONAL_LE:
2060 case BRW_CONDITIONAL_L:
2061 switch (inst->src[1].type) {
2062 case BRW_REGISTER_TYPE_F:
2063 if (inst->src[1].fixed_hw_reg.dw1.f >= 1.0f) {
2064 inst->opcode = BRW_OPCODE_MOV;
2065 inst->src[1] = reg_undef;
2066 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2067 progress = true;
2068 }
2069 break;
2070 default:
2071 break;
2072 }
2073 break;
2074 case BRW_CONDITIONAL_GE:
2075 case BRW_CONDITIONAL_G:
2076 switch (inst->src[1].type) {
2077 case BRW_REGISTER_TYPE_F:
2078 if (inst->src[1].fixed_hw_reg.dw1.f <= 0.0f) {
2079 inst->opcode = BRW_OPCODE_MOV;
2080 inst->src[1] = reg_undef;
2081 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2082 progress = true;
2083 }
2084 break;
2085 default:
2086 break;
2087 }
2088 default:
2089 break;
2090 }
2091 }
2092 break;
2093 case BRW_OPCODE_MAD:
2094 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2095 inst->opcode = BRW_OPCODE_MOV;
2096 inst->src[1] = reg_undef;
2097 inst->src[2] = reg_undef;
2098 progress = true;
2099 } else if (inst->src[0].is_zero()) {
2100 inst->opcode = BRW_OPCODE_MUL;
2101 inst->src[0] = inst->src[2];
2102 inst->src[2] = reg_undef;
2103 progress = true;
2104 } else if (inst->src[1].is_one()) {
2105 inst->opcode = BRW_OPCODE_ADD;
2106 inst->src[1] = inst->src[2];
2107 inst->src[2] = reg_undef;
2108 progress = true;
2109 } else if (inst->src[2].is_one()) {
2110 inst->opcode = BRW_OPCODE_ADD;
2111 inst->src[2] = reg_undef;
2112 progress = true;
2113 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2114 inst->opcode = BRW_OPCODE_ADD;
2115 inst->src[1].fixed_hw_reg.dw1.f *= inst->src[2].fixed_hw_reg.dw1.f;
2116 inst->src[2] = reg_undef;
2117 progress = true;
2118 }
2119 break;
2120 case SHADER_OPCODE_RCP: {
2121 fs_inst *prev = (fs_inst *)inst->prev;
2122 if (prev->opcode == SHADER_OPCODE_SQRT) {
2123 if (inst->src[0].equals(prev->dst)) {
2124 inst->opcode = SHADER_OPCODE_RSQ;
2125 inst->src[0] = prev->src[0];
2126 progress = true;
2127 }
2128 }
2129 break;
2130 }
2131 case SHADER_OPCODE_BROADCAST:
2132 if (is_uniform(inst->src[0])) {
2133 inst->opcode = BRW_OPCODE_MOV;
2134 inst->sources = 1;
2135 inst->force_writemask_all = true;
2136 progress = true;
2137 } else if (inst->src[1].file == IMM) {
2138 inst->opcode = BRW_OPCODE_MOV;
2139 inst->src[0] = component(inst->src[0],
2140 inst->src[1].fixed_hw_reg.dw1.ud);
2141 inst->sources = 1;
2142 inst->force_writemask_all = true;
2143 progress = true;
2144 }
2145 break;
2146
2147 default:
2148 break;
2149 }
2150
2151 /* Swap if src[0] is immediate. */
2152 if (progress && inst->is_commutative()) {
2153 if (inst->src[0].file == IMM) {
2154 fs_reg tmp = inst->src[1];
2155 inst->src[1] = inst->src[0];
2156 inst->src[0] = tmp;
2157 }
2158 }
2159 }
2160 return progress;
2161 }
2162
2163 /**
2164 * Optimize sample messages that have constant zero values for the trailing
2165 * texture coordinates. We can just reduce the message length for these
2166 * instructions instead of reserving a register for it. Trailing parameters
2167 * that aren't sent default to zero anyway. This will cause the dead code
2168 * eliminator to remove the MOV instruction that would otherwise be emitted to
2169 * set up the zero value.
2170 */
2171 bool
2172 fs_visitor::opt_zero_samples()
2173 {
2174 /* Gen4 infers the texturing opcode based on the message length so we can't
2175 * change it.
2176 */
2177 if (devinfo->gen < 5)
2178 return false;
2179
2180 bool progress = false;
2181
2182 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2183 if (!inst->is_tex())
2184 continue;
2185
2186 fs_inst *load_payload = (fs_inst *) inst->prev;
2187
2188 if (load_payload->is_head_sentinel() ||
2189 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2190 continue;
2191
2192 /* We don't want to remove the message header or the first parameter.
2193 * Removing the first parameter is not allowed, see the Haswell PRM
2194 * volume 7, page 149:
2195 *
2196 * "Parameter 0 is required except for the sampleinfo message, which
2197 * has no parameter 0"
2198 */
2199 while (inst->mlen > inst->header_size + dispatch_width / 8 &&
2200 load_payload->src[(inst->mlen - inst->header_size) /
2201 (dispatch_width / 8) +
2202 inst->header_size - 1].is_zero()) {
2203 inst->mlen -= dispatch_width / 8;
2204 progress = true;
2205 }
2206 }
2207
2208 if (progress)
2209 invalidate_live_intervals();
2210
2211 return progress;
2212 }
2213
2214 /**
2215 * Optimize sample messages which are followed by the final RT write.
2216 *
2217 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2218 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2219 * final texturing results copied to the framebuffer write payload and modify
2220 * them to write to the framebuffer directly.
2221 */
2222 bool
2223 fs_visitor::opt_sampler_eot()
2224 {
2225 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2226
2227 if (stage != MESA_SHADER_FRAGMENT)
2228 return false;
2229
2230 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2231 return false;
2232
2233 /* FINISHME: It should be possible to implement this optimization when there
2234 * are multiple drawbuffers.
2235 */
2236 if (key->nr_color_regions != 1)
2237 return false;
2238
2239 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2240 fs_inst *fb_write = (fs_inst *) cfg->blocks[cfg->num_blocks - 1]->end();
2241 assert(fb_write->eot);
2242 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2243
2244 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2245
2246 /* There wasn't one; nothing to do. */
2247 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2248 return false;
2249
2250 /* This optimisation doesn't seem to work for textureGather for some
2251 * reason. I can't find any documentation or known workarounds to indicate
2252 * that this is expected, but considering that it is probably pretty
2253 * unlikely that a shader would directly write out the results from
2254 * textureGather we might as well just disable it.
2255 */
2256 if (tex_inst->opcode == SHADER_OPCODE_TG4 ||
2257 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2258 return false;
2259
2260 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2261 * It's very likely to be the previous instruction.
2262 */
2263 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2264 if (load_payload->is_head_sentinel() ||
2265 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2266 return false;
2267
2268 assert(!tex_inst->eot); /* We can't get here twice */
2269 assert((tex_inst->offset & (0xff << 24)) == 0);
2270
2271 tex_inst->offset |= fb_write->target << 24;
2272 tex_inst->eot = true;
2273 tex_inst->dst = bld.null_reg_ud();
2274 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2275
2276 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2277 * to create a new LOAD_PAYLOAD command with the same sources and a space
2278 * saved for the header. Using a new destination register not only makes sure
2279 * we have enough space, but it will make sure the dead code eliminator kills
2280 * the instruction that this will replace.
2281 */
2282 if (tex_inst->header_size != 0)
2283 return true;
2284
2285 fs_reg send_header = bld.vgrf(BRW_REGISTER_TYPE_F,
2286 load_payload->sources + 1);
2287 fs_reg *new_sources =
2288 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2289
2290 new_sources[0] = fs_reg();
2291 for (int i = 0; i < load_payload->sources; i++)
2292 new_sources[i+1] = load_payload->src[i];
2293
2294 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2295 * requires a lot of information about the sources to appropriately figure
2296 * out the number of registers needed to be used. Given this stage in our
2297 * optimization, we may not have the appropriate GRFs required by
2298 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2299 * manually emit the instruction.
2300 */
2301 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2302 load_payload->exec_size,
2303 send_header,
2304 new_sources,
2305 load_payload->sources + 1);
2306
2307 new_load_payload->regs_written = load_payload->regs_written + 1;
2308 new_load_payload->header_size = 1;
2309 tex_inst->mlen++;
2310 tex_inst->header_size = 1;
2311 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2312 tex_inst->src[0] = send_header;
2313
2314 return true;
2315 }
2316
2317 bool
2318 fs_visitor::opt_register_renaming()
2319 {
2320 bool progress = false;
2321 int depth = 0;
2322
2323 int remap[alloc.count];
2324 memset(remap, -1, sizeof(int) * alloc.count);
2325
2326 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2327 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2328 depth++;
2329 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2330 inst->opcode == BRW_OPCODE_WHILE) {
2331 depth--;
2332 }
2333
2334 /* Rewrite instruction sources. */
2335 for (int i = 0; i < inst->sources; i++) {
2336 if (inst->src[i].file == GRF &&
2337 remap[inst->src[i].reg] != -1 &&
2338 remap[inst->src[i].reg] != inst->src[i].reg) {
2339 inst->src[i].reg = remap[inst->src[i].reg];
2340 progress = true;
2341 }
2342 }
2343
2344 const int dst = inst->dst.reg;
2345
2346 if (depth == 0 &&
2347 inst->dst.file == GRF &&
2348 alloc.sizes[inst->dst.reg] == inst->dst.width / 8 &&
2349 !inst->is_partial_write()) {
2350 if (remap[dst] == -1) {
2351 remap[dst] = dst;
2352 } else {
2353 remap[dst] = alloc.allocate(inst->dst.width / 8);
2354 inst->dst.reg = remap[dst];
2355 progress = true;
2356 }
2357 } else if (inst->dst.file == GRF &&
2358 remap[dst] != -1 &&
2359 remap[dst] != dst) {
2360 inst->dst.reg = remap[dst];
2361 progress = true;
2362 }
2363 }
2364
2365 if (progress) {
2366 invalidate_live_intervals();
2367
2368 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2369 if (delta_xy[i].file == GRF && remap[delta_xy[i].reg] != -1) {
2370 delta_xy[i].reg = remap[delta_xy[i].reg];
2371 }
2372 }
2373 }
2374
2375 return progress;
2376 }
2377
2378 /**
2379 * Remove redundant or useless discard jumps.
2380 *
2381 * For example, we can eliminate jumps in the following sequence:
2382 *
2383 * discard-jump (redundant with the next jump)
2384 * discard-jump (useless; jumps to the next instruction)
2385 * placeholder-halt
2386 */
2387 bool
2388 fs_visitor::opt_redundant_discard_jumps()
2389 {
2390 bool progress = false;
2391
2392 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2393
2394 fs_inst *placeholder_halt = NULL;
2395 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2396 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2397 placeholder_halt = inst;
2398 break;
2399 }
2400 }
2401
2402 if (!placeholder_halt)
2403 return false;
2404
2405 /* Delete any HALTs immediately before the placeholder halt. */
2406 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2407 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2408 prev = (fs_inst *) placeholder_halt->prev) {
2409 prev->remove(last_bblock);
2410 progress = true;
2411 }
2412
2413 if (progress)
2414 invalidate_live_intervals();
2415
2416 return progress;
2417 }
2418
2419 bool
2420 fs_visitor::compute_to_mrf()
2421 {
2422 bool progress = false;
2423 int next_ip = 0;
2424
2425 /* No MRFs on Gen >= 7. */
2426 if (devinfo->gen >= 7)
2427 return false;
2428
2429 calculate_live_intervals();
2430
2431 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2432 int ip = next_ip;
2433 next_ip++;
2434
2435 if (inst->opcode != BRW_OPCODE_MOV ||
2436 inst->is_partial_write() ||
2437 inst->dst.file != MRF || inst->src[0].file != GRF ||
2438 inst->dst.type != inst->src[0].type ||
2439 inst->src[0].abs || inst->src[0].negate ||
2440 !inst->src[0].is_contiguous() ||
2441 inst->src[0].subreg_offset)
2442 continue;
2443
2444 /* Work out which hardware MRF registers are written by this
2445 * instruction.
2446 */
2447 int mrf_low = inst->dst.reg & ~BRW_MRF_COMPR4;
2448 int mrf_high;
2449 if (inst->dst.reg & BRW_MRF_COMPR4) {
2450 mrf_high = mrf_low + 4;
2451 } else if (inst->exec_size == 16) {
2452 mrf_high = mrf_low + 1;
2453 } else {
2454 mrf_high = mrf_low;
2455 }
2456
2457 /* Can't compute-to-MRF this GRF if someone else was going to
2458 * read it later.
2459 */
2460 if (this->virtual_grf_end[inst->src[0].reg] > ip)
2461 continue;
2462
2463 /* Found a move of a GRF to a MRF. Let's see if we can go
2464 * rewrite the thing that made this GRF to write into the MRF.
2465 */
2466 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2467 if (scan_inst->dst.file == GRF &&
2468 scan_inst->dst.reg == inst->src[0].reg) {
2469 /* Found the last thing to write our reg we want to turn
2470 * into a compute-to-MRF.
2471 */
2472
2473 /* If this one instruction didn't populate all the
2474 * channels, bail. We might be able to rewrite everything
2475 * that writes that reg, but it would require smarter
2476 * tracking to delay the rewriting until complete success.
2477 */
2478 if (scan_inst->is_partial_write())
2479 break;
2480
2481 /* Things returning more than one register would need us to
2482 * understand coalescing out more than one MOV at a time.
2483 */
2484 if (scan_inst->regs_written > scan_inst->dst.width / 8)
2485 break;
2486
2487 /* SEND instructions can't have MRF as a destination. */
2488 if (scan_inst->mlen)
2489 break;
2490
2491 if (devinfo->gen == 6) {
2492 /* gen6 math instructions must have the destination be
2493 * GRF, so no compute-to-MRF for them.
2494 */
2495 if (scan_inst->is_math()) {
2496 break;
2497 }
2498 }
2499
2500 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2501 /* Found the creator of our MRF's source value. */
2502 scan_inst->dst.file = MRF;
2503 scan_inst->dst.reg = inst->dst.reg;
2504 scan_inst->saturate |= inst->saturate;
2505 inst->remove(block);
2506 progress = true;
2507 }
2508 break;
2509 }
2510
2511 /* We don't handle control flow here. Most computation of
2512 * values that end up in MRFs are shortly before the MRF
2513 * write anyway.
2514 */
2515 if (block->start() == scan_inst)
2516 break;
2517
2518 /* You can't read from an MRF, so if someone else reads our
2519 * MRF's source GRF that we wanted to rewrite, that stops us.
2520 */
2521 bool interfered = false;
2522 for (int i = 0; i < scan_inst->sources; i++) {
2523 if (scan_inst->src[i].file == GRF &&
2524 scan_inst->src[i].reg == inst->src[0].reg &&
2525 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2526 interfered = true;
2527 }
2528 }
2529 if (interfered)
2530 break;
2531
2532 if (scan_inst->dst.file == MRF) {
2533 /* If somebody else writes our MRF here, we can't
2534 * compute-to-MRF before that.
2535 */
2536 int scan_mrf_low = scan_inst->dst.reg & ~BRW_MRF_COMPR4;
2537 int scan_mrf_high;
2538
2539 if (scan_inst->dst.reg & BRW_MRF_COMPR4) {
2540 scan_mrf_high = scan_mrf_low + 4;
2541 } else if (scan_inst->exec_size == 16) {
2542 scan_mrf_high = scan_mrf_low + 1;
2543 } else {
2544 scan_mrf_high = scan_mrf_low;
2545 }
2546
2547 if (mrf_low == scan_mrf_low ||
2548 mrf_low == scan_mrf_high ||
2549 mrf_high == scan_mrf_low ||
2550 mrf_high == scan_mrf_high) {
2551 break;
2552 }
2553 }
2554
2555 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2556 /* Found a SEND instruction, which means that there are
2557 * live values in MRFs from base_mrf to base_mrf +
2558 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2559 * above it.
2560 */
2561 if (mrf_low >= scan_inst->base_mrf &&
2562 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2563 break;
2564 }
2565 if (mrf_high >= scan_inst->base_mrf &&
2566 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2567 break;
2568 }
2569 }
2570 }
2571 }
2572
2573 if (progress)
2574 invalidate_live_intervals();
2575
2576 return progress;
2577 }
2578
2579 /**
2580 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2581 * flow. We could probably do better here with some form of divergence
2582 * analysis.
2583 */
2584 bool
2585 fs_visitor::eliminate_find_live_channel()
2586 {
2587 bool progress = false;
2588 unsigned depth = 0;
2589
2590 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2591 switch (inst->opcode) {
2592 case BRW_OPCODE_IF:
2593 case BRW_OPCODE_DO:
2594 depth++;
2595 break;
2596
2597 case BRW_OPCODE_ENDIF:
2598 case BRW_OPCODE_WHILE:
2599 depth--;
2600 break;
2601
2602 case FS_OPCODE_DISCARD_JUMP:
2603 /* This can potentially make control flow non-uniform until the end
2604 * of the program.
2605 */
2606 return progress;
2607
2608 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2609 if (depth == 0) {
2610 inst->opcode = BRW_OPCODE_MOV;
2611 inst->src[0] = fs_reg(0);
2612 inst->sources = 1;
2613 inst->force_writemask_all = true;
2614 progress = true;
2615 }
2616 break;
2617
2618 default:
2619 break;
2620 }
2621 }
2622
2623 return progress;
2624 }
2625
2626 /**
2627 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2628 * instructions to FS_OPCODE_REP_FB_WRITE.
2629 */
2630 void
2631 fs_visitor::emit_repclear_shader()
2632 {
2633 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2634 int base_mrf = 1;
2635 int color_mrf = base_mrf + 2;
2636
2637 fs_inst *mov = bld.exec_all().MOV(vec4(brw_message_reg(color_mrf)),
2638 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2639
2640 fs_inst *write;
2641 if (key->nr_color_regions == 1) {
2642 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2643 write->saturate = key->clamp_fragment_color;
2644 write->base_mrf = color_mrf;
2645 write->target = 0;
2646 write->header_size = 0;
2647 write->mlen = 1;
2648 } else {
2649 assume(key->nr_color_regions > 0);
2650 for (int i = 0; i < key->nr_color_regions; ++i) {
2651 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2652 write->saturate = key->clamp_fragment_color;
2653 write->base_mrf = base_mrf;
2654 write->target = i;
2655 write->header_size = 2;
2656 write->mlen = 3;
2657 }
2658 }
2659 write->eot = true;
2660
2661 calculate_cfg();
2662
2663 assign_constant_locations();
2664 assign_curb_setup();
2665
2666 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2667 assert(mov->src[0].file == HW_REG);
2668 mov->src[0] = brw_vec4_grf(mov->src[0].fixed_hw_reg.nr, 0);
2669 }
2670
2671 /**
2672 * Walks through basic blocks, looking for repeated MRF writes and
2673 * removing the later ones.
2674 */
2675 bool
2676 fs_visitor::remove_duplicate_mrf_writes()
2677 {
2678 fs_inst *last_mrf_move[16];
2679 bool progress = false;
2680
2681 /* Need to update the MRF tracking for compressed instructions. */
2682 if (dispatch_width == 16)
2683 return false;
2684
2685 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2686
2687 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2688 if (inst->is_control_flow()) {
2689 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2690 }
2691
2692 if (inst->opcode == BRW_OPCODE_MOV &&
2693 inst->dst.file == MRF) {
2694 fs_inst *prev_inst = last_mrf_move[inst->dst.reg];
2695 if (prev_inst && inst->equals(prev_inst)) {
2696 inst->remove(block);
2697 progress = true;
2698 continue;
2699 }
2700 }
2701
2702 /* Clear out the last-write records for MRFs that were overwritten. */
2703 if (inst->dst.file == MRF) {
2704 last_mrf_move[inst->dst.reg] = NULL;
2705 }
2706
2707 if (inst->mlen > 0 && inst->base_mrf != -1) {
2708 /* Found a SEND instruction, which will include two or fewer
2709 * implied MRF writes. We could do better here.
2710 */
2711 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2712 last_mrf_move[inst->base_mrf + i] = NULL;
2713 }
2714 }
2715
2716 /* Clear out any MRF move records whose sources got overwritten. */
2717 if (inst->dst.file == GRF) {
2718 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2719 if (last_mrf_move[i] &&
2720 last_mrf_move[i]->src[0].reg == inst->dst.reg) {
2721 last_mrf_move[i] = NULL;
2722 }
2723 }
2724 }
2725
2726 if (inst->opcode == BRW_OPCODE_MOV &&
2727 inst->dst.file == MRF &&
2728 inst->src[0].file == GRF &&
2729 !inst->is_partial_write()) {
2730 last_mrf_move[inst->dst.reg] = inst;
2731 }
2732 }
2733
2734 if (progress)
2735 invalidate_live_intervals();
2736
2737 return progress;
2738 }
2739
2740 static void
2741 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2742 {
2743 /* Clear the flag for registers that actually got read (as expected). */
2744 for (int i = 0; i < inst->sources; i++) {
2745 int grf;
2746 if (inst->src[i].file == GRF) {
2747 grf = inst->src[i].reg;
2748 } else if (inst->src[i].file == HW_REG &&
2749 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
2750 grf = inst->src[i].fixed_hw_reg.nr;
2751 } else {
2752 continue;
2753 }
2754
2755 if (grf >= first_grf &&
2756 grf < first_grf + grf_len) {
2757 deps[grf - first_grf] = false;
2758 if (inst->exec_size == 16)
2759 deps[grf - first_grf + 1] = false;
2760 }
2761 }
2762 }
2763
2764 /**
2765 * Implements this workaround for the original 965:
2766 *
2767 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2768 * check for post destination dependencies on this instruction, software
2769 * must ensure that there is no destination hazard for the case of ‘write
2770 * followed by a posted write’ shown in the following example.
2771 *
2772 * 1. mov r3 0
2773 * 2. send r3.xy <rest of send instruction>
2774 * 3. mov r2 r3
2775 *
2776 * Due to no post-destination dependency check on the ‘send’, the above
2777 * code sequence could have two instructions (1 and 2) in flight at the
2778 * same time that both consider ‘r3’ as the target of their final writes.
2779 */
2780 void
2781 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2782 fs_inst *inst)
2783 {
2784 int write_len = inst->regs_written;
2785 int first_write_grf = inst->dst.reg;
2786 bool needs_dep[BRW_MAX_MRF];
2787 assert(write_len < (int)sizeof(needs_dep) - 1);
2788
2789 memset(needs_dep, false, sizeof(needs_dep));
2790 memset(needs_dep, true, write_len);
2791
2792 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2793
2794 /* Walk backwards looking for writes to registers we're writing which
2795 * aren't read since being written. If we hit the start of the program,
2796 * we assume that there are no outstanding dependencies on entry to the
2797 * program.
2798 */
2799 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst, block) {
2800 /* If we hit control flow, assume that there *are* outstanding
2801 * dependencies, and force their cleanup before our instruction.
2802 */
2803 if (block->start() == scan_inst) {
2804 for (int i = 0; i < write_len; i++) {
2805 if (needs_dep[i])
2806 DEP_RESOLVE_MOV(bld.at(block, inst), first_write_grf + i);
2807 }
2808 return;
2809 }
2810
2811 /* We insert our reads as late as possible on the assumption that any
2812 * instruction but a MOV that might have left us an outstanding
2813 * dependency has more latency than a MOV.
2814 */
2815 if (scan_inst->dst.file == GRF) {
2816 for (int i = 0; i < scan_inst->regs_written; i++) {
2817 int reg = scan_inst->dst.reg + i;
2818
2819 if (reg >= first_write_grf &&
2820 reg < first_write_grf + write_len &&
2821 needs_dep[reg - first_write_grf]) {
2822 DEP_RESOLVE_MOV(bld.at(block, inst), reg);
2823 needs_dep[reg - first_write_grf] = false;
2824 if (scan_inst->exec_size == 16)
2825 needs_dep[reg - first_write_grf + 1] = false;
2826 }
2827 }
2828 }
2829
2830 /* Clear the flag for registers that actually got read (as expected). */
2831 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2832
2833 /* Continue the loop only if we haven't resolved all the dependencies */
2834 int i;
2835 for (i = 0; i < write_len; i++) {
2836 if (needs_dep[i])
2837 break;
2838 }
2839 if (i == write_len)
2840 return;
2841 }
2842 }
2843
2844 /**
2845 * Implements this workaround for the original 965:
2846 *
2847 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2848 * used as a destination register until after it has been sourced by an
2849 * instruction with a different destination register.
2850 */
2851 void
2852 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2853 {
2854 int write_len = inst->regs_written;
2855 int first_write_grf = inst->dst.reg;
2856 bool needs_dep[BRW_MAX_MRF];
2857 assert(write_len < (int)sizeof(needs_dep) - 1);
2858
2859 memset(needs_dep, false, sizeof(needs_dep));
2860 memset(needs_dep, true, write_len);
2861 /* Walk forwards looking for writes to registers we're writing which aren't
2862 * read before being written.
2863 */
2864 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst, block) {
2865 /* If we hit control flow, force resolve all remaining dependencies. */
2866 if (block->end() == scan_inst) {
2867 for (int i = 0; i < write_len; i++) {
2868 if (needs_dep[i])
2869 DEP_RESOLVE_MOV(bld.at(block, scan_inst), first_write_grf + i);
2870 }
2871 return;
2872 }
2873
2874 /* Clear the flag for registers that actually got read (as expected). */
2875 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2876
2877 /* We insert our reads as late as possible since they're reading the
2878 * result of a SEND, which has massive latency.
2879 */
2880 if (scan_inst->dst.file == GRF &&
2881 scan_inst->dst.reg >= first_write_grf &&
2882 scan_inst->dst.reg < first_write_grf + write_len &&
2883 needs_dep[scan_inst->dst.reg - first_write_grf]) {
2884 DEP_RESOLVE_MOV(bld.at(block, scan_inst), scan_inst->dst.reg);
2885 needs_dep[scan_inst->dst.reg - first_write_grf] = false;
2886 }
2887
2888 /* Continue the loop only if we haven't resolved all the dependencies */
2889 int i;
2890 for (i = 0; i < write_len; i++) {
2891 if (needs_dep[i])
2892 break;
2893 }
2894 if (i == write_len)
2895 return;
2896 }
2897 }
2898
2899 void
2900 fs_visitor::insert_gen4_send_dependency_workarounds()
2901 {
2902 if (devinfo->gen != 4 || devinfo->is_g4x)
2903 return;
2904
2905 bool progress = false;
2906
2907 /* Note that we're done with register allocation, so GRF fs_regs always
2908 * have a .reg_offset of 0.
2909 */
2910
2911 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2912 if (inst->mlen != 0 && inst->dst.file == GRF) {
2913 insert_gen4_pre_send_dependency_workarounds(block, inst);
2914 insert_gen4_post_send_dependency_workarounds(block, inst);
2915 progress = true;
2916 }
2917 }
2918
2919 if (progress)
2920 invalidate_live_intervals();
2921 }
2922
2923 /**
2924 * Turns the generic expression-style uniform pull constant load instruction
2925 * into a hardware-specific series of instructions for loading a pull
2926 * constant.
2927 *
2928 * The expression style allows the CSE pass before this to optimize out
2929 * repeated loads from the same offset, and gives the pre-register-allocation
2930 * scheduling full flexibility, while the conversion to native instructions
2931 * allows the post-register-allocation scheduler the best information
2932 * possible.
2933 *
2934 * Note that execution masking for setting up pull constant loads is special:
2935 * the channels that need to be written are unrelated to the current execution
2936 * mask, since a later instruction will use one of the result channels as a
2937 * source operand for all 8 or 16 of its channels.
2938 */
2939 void
2940 fs_visitor::lower_uniform_pull_constant_loads()
2941 {
2942 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2943 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
2944 continue;
2945
2946 if (devinfo->gen >= 7) {
2947 /* The offset arg before was a vec4-aligned byte offset. We need to
2948 * turn it into a dword offset.
2949 */
2950 fs_reg const_offset_reg = inst->src[1];
2951 assert(const_offset_reg.file == IMM &&
2952 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
2953 const_offset_reg.fixed_hw_reg.dw1.ud /= 4;
2954 fs_reg payload = fs_reg(GRF, alloc.allocate(1));
2955
2956 /* We have to use a message header on Skylake to get SIMD4x2 mode.
2957 * Reserve space for the register.
2958 */
2959 if (devinfo->gen >= 9) {
2960 payload.reg_offset++;
2961 alloc.sizes[payload.reg] = 2;
2962 }
2963
2964 /* This is actually going to be a MOV, but since only the first dword
2965 * is accessed, we have a special opcode to do just that one. Note
2966 * that this needs to be an operation that will be considered a def
2967 * by live variable analysis, or register allocation will explode.
2968 */
2969 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
2970 8, payload, const_offset_reg);
2971 setup->force_writemask_all = true;
2972
2973 setup->ir = inst->ir;
2974 setup->annotation = inst->annotation;
2975 inst->insert_before(block, setup);
2976
2977 /* Similarly, this will only populate the first 4 channels of the
2978 * result register (since we only use smear values from 0-3), but we
2979 * don't tell the optimizer.
2980 */
2981 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
2982 inst->src[1] = payload;
2983
2984 invalidate_live_intervals();
2985 } else {
2986 /* Before register allocation, we didn't tell the scheduler about the
2987 * MRF we use. We know it's safe to use this MRF because nothing
2988 * else does except for register spill/unspill, which generates and
2989 * uses its MRF within a single IR instruction.
2990 */
2991 inst->base_mrf = 14;
2992 inst->mlen = 1;
2993 }
2994 }
2995 }
2996
2997 bool
2998 fs_visitor::lower_load_payload()
2999 {
3000 bool progress = false;
3001
3002 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3003 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3004 continue;
3005
3006 assert(inst->dst.file == MRF || inst->dst.file == GRF);
3007 assert(inst->saturate == false);
3008
3009 const fs_builder ibld = bld.group(inst->exec_size, inst->force_sechalf)
3010 .exec_all(inst->force_writemask_all)
3011 .at(block, inst);
3012 fs_reg dst = inst->dst;
3013
3014 /* Get rid of COMPR4. We'll add it back in if we need it */
3015 if (dst.file == MRF)
3016 dst.reg = dst.reg & ~BRW_MRF_COMPR4;
3017
3018 dst.width = 8;
3019 for (uint8_t i = 0; i < inst->header_size; i++) {
3020 if (inst->src[i].file != BAD_FILE) {
3021 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3022 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3023 mov_src.width = 8;
3024 ibld.exec_all().MOV(mov_dst, mov_src);
3025 }
3026 dst = offset(dst, 1);
3027 }
3028
3029 dst.width = inst->exec_size;
3030 if (inst->dst.file == MRF && (inst->dst.reg & BRW_MRF_COMPR4) &&
3031 inst->exec_size > 8) {
3032 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3033 * a straightforward copy. Instead, the result of the
3034 * LOAD_PAYLOAD is treated as interleaved and the first four
3035 * non-header sources are unpacked as:
3036 *
3037 * m + 0: r0
3038 * m + 1: g0
3039 * m + 2: b0
3040 * m + 3: a0
3041 * m + 4: r1
3042 * m + 5: g1
3043 * m + 6: b1
3044 * m + 7: a1
3045 *
3046 * This is used for gen <= 5 fb writes.
3047 */
3048 assert(inst->exec_size == 16);
3049 assert(inst->header_size + 4 <= inst->sources);
3050 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3051 if (inst->src[i].file != BAD_FILE) {
3052 if (devinfo->has_compr4) {
3053 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3054 compr4_dst.reg |= BRW_MRF_COMPR4;
3055 ibld.MOV(compr4_dst, inst->src[i]);
3056 } else {
3057 /* Platform doesn't have COMPR4. We have to fake it */
3058 fs_reg mov_dst = retype(dst, inst->src[i].type);
3059 mov_dst.width = 8;
3060 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3061 ibld.half(1).MOV(offset(mov_dst, 4), half(inst->src[i], 1));
3062 }
3063 }
3064
3065 dst.reg++;
3066 }
3067
3068 /* The loop above only ever incremented us through the first set
3069 * of 4 registers. However, thanks to the magic of COMPR4, we
3070 * actually wrote to the first 8 registers, so we need to take
3071 * that into account now.
3072 */
3073 dst.reg += 4;
3074
3075 /* The COMPR4 code took care of the first 4 sources. We'll let
3076 * the regular path handle any remaining sources. Yes, we are
3077 * modifying the instruction but we're about to delete it so
3078 * this really doesn't hurt anything.
3079 */
3080 inst->header_size += 4;
3081 }
3082
3083 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3084 if (inst->src[i].file != BAD_FILE)
3085 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3086 dst = offset(dst, 1);
3087 }
3088
3089 inst->remove(block);
3090 progress = true;
3091 }
3092
3093 if (progress)
3094 invalidate_live_intervals();
3095
3096 return progress;
3097 }
3098
3099 bool
3100 fs_visitor::lower_integer_multiplication()
3101 {
3102 bool progress = false;
3103
3104 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit operation
3105 * directly, but Cherryview cannot.
3106 */
3107 if (devinfo->gen >= 8 && !devinfo->is_cherryview)
3108 return false;
3109
3110 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3111 if (inst->opcode != BRW_OPCODE_MUL ||
3112 inst->dst.is_accumulator() ||
3113 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3114 inst->dst.type != BRW_REGISTER_TYPE_UD))
3115 continue;
3116
3117 const fs_builder ibld = bld.at(block, inst);
3118
3119 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3120 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3121 * src1 are used.
3122 *
3123 * If multiplying by an immediate value that fits in 16-bits, do a
3124 * single MUL instruction with that value in the proper location.
3125 */
3126 if (inst->src[1].file == IMM &&
3127 inst->src[1].fixed_hw_reg.dw1.ud < (1 << 16)) {
3128 if (devinfo->gen < 7) {
3129 fs_reg imm(GRF, alloc.allocate(dispatch_width / 8),
3130 inst->dst.type, dispatch_width);
3131 ibld.MOV(imm, inst->src[1]);
3132 ibld.MUL(inst->dst, imm, inst->src[0]);
3133 } else {
3134 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3135 }
3136 } else {
3137 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3138 * do 32-bit integer multiplication in one instruction, but instead
3139 * must do a sequence (which actually calculates a 64-bit result):
3140 *
3141 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3142 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3143 * mov(8) g2<1>D acc0<8,8,1>D
3144 *
3145 * But on Gen > 6, the ability to use second accumulator register
3146 * (acc1) for non-float data types was removed, preventing a simple
3147 * implementation in SIMD16. A 16-channel result can be calculated by
3148 * executing the three instructions twice in SIMD8, once with quarter
3149 * control of 1Q for the first eight channels and again with 2Q for
3150 * the second eight channels.
3151 *
3152 * Which accumulator register is implicitly accessed (by AccWrEnable
3153 * for instance) is determined by the quarter control. Unfortunately
3154 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3155 * implicit accumulator access by an instruction with 2Q will access
3156 * acc1 regardless of whether the data type is usable in acc1.
3157 *
3158 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3159 * integer data types.
3160 *
3161 * Since we only want the low 32-bits of the result, we can do two
3162 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3163 * adjust the high result and add them (like the mach is doing):
3164 *
3165 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3166 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3167 * shl(8) g9<1>D g8<8,8,1>D 16D
3168 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3169 *
3170 * We avoid the shl instruction by realizing that we only want to add
3171 * the low 16-bits of the "high" result to the high 16-bits of the
3172 * "low" result and using proper regioning on the add:
3173 *
3174 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3175 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3176 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3177 *
3178 * Since it does not use the (single) accumulator register, we can
3179 * schedule multi-component multiplications much better.
3180 */
3181
3182 if (inst->conditional_mod && inst->dst.is_null()) {
3183 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3184 inst->dst.type, dispatch_width);
3185 }
3186 fs_reg low = inst->dst;
3187 fs_reg high(GRF, alloc.allocate(dispatch_width / 8),
3188 inst->dst.type, dispatch_width);
3189
3190 if (devinfo->gen >= 7) {
3191 fs_reg src1_0_w = inst->src[1];
3192 fs_reg src1_1_w = inst->src[1];
3193
3194 if (inst->src[1].file == IMM) {
3195 src1_0_w.fixed_hw_reg.dw1.ud &= 0xffff;
3196 src1_1_w.fixed_hw_reg.dw1.ud >>= 16;
3197 } else {
3198 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3199 if (src1_0_w.stride != 0) {
3200 assert(src1_0_w.stride == 1);
3201 src1_0_w.stride = 2;
3202 }
3203
3204 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3205 if (src1_1_w.stride != 0) {
3206 assert(src1_1_w.stride == 1);
3207 src1_1_w.stride = 2;
3208 }
3209 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3210 }
3211 ibld.MUL(low, inst->src[0], src1_0_w);
3212 ibld.MUL(high, inst->src[0], src1_1_w);
3213 } else {
3214 fs_reg src0_0_w = inst->src[0];
3215 fs_reg src0_1_w = inst->src[0];
3216
3217 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3218 if (src0_0_w.stride != 0) {
3219 assert(src0_0_w.stride == 1);
3220 src0_0_w.stride = 2;
3221 }
3222
3223 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3224 if (src0_1_w.stride != 0) {
3225 assert(src0_1_w.stride == 1);
3226 src0_1_w.stride = 2;
3227 }
3228 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3229
3230 ibld.MUL(low, src0_0_w, inst->src[1]);
3231 ibld.MUL(high, src0_1_w, inst->src[1]);
3232 }
3233
3234 fs_reg dst = inst->dst;
3235 dst.type = BRW_REGISTER_TYPE_UW;
3236 dst.subreg_offset = 2;
3237 dst.stride = 2;
3238
3239 high.type = BRW_REGISTER_TYPE_UW;
3240 high.stride = 2;
3241
3242 low.type = BRW_REGISTER_TYPE_UW;
3243 low.subreg_offset = 2;
3244 low.stride = 2;
3245
3246 ibld.ADD(dst, low, high);
3247
3248 if (inst->conditional_mod) {
3249 fs_reg null(retype(ibld.null_reg_f(), inst->dst.type));
3250 set_condmod(inst->conditional_mod,
3251 ibld.MOV(null, inst->dst));
3252 }
3253 }
3254
3255 inst->remove(block);
3256 progress = true;
3257 }
3258
3259 if (progress)
3260 invalidate_live_intervals();
3261
3262 return progress;
3263 }
3264
3265 void
3266 fs_visitor::dump_instructions()
3267 {
3268 dump_instructions(NULL);
3269 }
3270
3271 void
3272 fs_visitor::dump_instructions(const char *name)
3273 {
3274 FILE *file = stderr;
3275 if (name && geteuid() != 0) {
3276 file = fopen(name, "w");
3277 if (!file)
3278 file = stderr;
3279 }
3280
3281 if (cfg) {
3282 calculate_register_pressure();
3283 int ip = 0, max_pressure = 0;
3284 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
3285 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
3286 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
3287 dump_instruction(inst, file);
3288 ip++;
3289 }
3290 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
3291 } else {
3292 int ip = 0;
3293 foreach_in_list(backend_instruction, inst, &instructions) {
3294 fprintf(file, "%4d: ", ip++);
3295 dump_instruction(inst, file);
3296 }
3297 }
3298
3299 if (file != stderr) {
3300 fclose(file);
3301 }
3302 }
3303
3304 void
3305 fs_visitor::dump_instruction(backend_instruction *be_inst)
3306 {
3307 dump_instruction(be_inst, stderr);
3308 }
3309
3310 void
3311 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
3312 {
3313 fs_inst *inst = (fs_inst *)be_inst;
3314
3315 if (inst->predicate) {
3316 fprintf(file, "(%cf0.%d) ",
3317 inst->predicate_inverse ? '-' : '+',
3318 inst->flag_subreg);
3319 }
3320
3321 fprintf(file, "%s", brw_instruction_name(inst->opcode));
3322 if (inst->saturate)
3323 fprintf(file, ".sat");
3324 if (inst->conditional_mod) {
3325 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
3326 if (!inst->predicate &&
3327 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
3328 inst->opcode != BRW_OPCODE_IF &&
3329 inst->opcode != BRW_OPCODE_WHILE))) {
3330 fprintf(file, ".f0.%d", inst->flag_subreg);
3331 }
3332 }
3333 fprintf(file, "(%d) ", inst->exec_size);
3334
3335 if (inst->mlen) {
3336 fprintf(file, "(mlen: %d) ", inst->mlen);
3337 }
3338
3339 switch (inst->dst.file) {
3340 case GRF:
3341 fprintf(file, "vgrf%d", inst->dst.reg);
3342 if (inst->dst.width != dispatch_width)
3343 fprintf(file, "@%d", inst->dst.width);
3344 if (alloc.sizes[inst->dst.reg] != inst->dst.width / 8 ||
3345 inst->dst.subreg_offset)
3346 fprintf(file, "+%d.%d",
3347 inst->dst.reg_offset, inst->dst.subreg_offset);
3348 break;
3349 case MRF:
3350 fprintf(file, "m%d", inst->dst.reg);
3351 break;
3352 case BAD_FILE:
3353 fprintf(file, "(null)");
3354 break;
3355 case UNIFORM:
3356 fprintf(file, "***u%d***", inst->dst.reg + inst->dst.reg_offset);
3357 break;
3358 case ATTR:
3359 fprintf(file, "***attr%d***", inst->dst.reg + inst->dst.reg_offset);
3360 break;
3361 case HW_REG:
3362 if (inst->dst.fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3363 switch (inst->dst.fixed_hw_reg.nr) {
3364 case BRW_ARF_NULL:
3365 fprintf(file, "null");
3366 break;
3367 case BRW_ARF_ADDRESS:
3368 fprintf(file, "a0.%d", inst->dst.fixed_hw_reg.subnr);
3369 break;
3370 case BRW_ARF_ACCUMULATOR:
3371 fprintf(file, "acc%d", inst->dst.fixed_hw_reg.subnr);
3372 break;
3373 case BRW_ARF_FLAG:
3374 fprintf(file, "f%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3375 inst->dst.fixed_hw_reg.subnr);
3376 break;
3377 default:
3378 fprintf(file, "arf%d.%d", inst->dst.fixed_hw_reg.nr & 0xf,
3379 inst->dst.fixed_hw_reg.subnr);
3380 break;
3381 }
3382 } else {
3383 fprintf(file, "hw_reg%d", inst->dst.fixed_hw_reg.nr);
3384 }
3385 if (inst->dst.fixed_hw_reg.subnr)
3386 fprintf(file, "+%d", inst->dst.fixed_hw_reg.subnr);
3387 break;
3388 default:
3389 fprintf(file, "???");
3390 break;
3391 }
3392 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
3393
3394 for (int i = 0; i < inst->sources; i++) {
3395 if (inst->src[i].negate)
3396 fprintf(file, "-");
3397 if (inst->src[i].abs)
3398 fprintf(file, "|");
3399 switch (inst->src[i].file) {
3400 case GRF:
3401 fprintf(file, "vgrf%d", inst->src[i].reg);
3402 if (inst->src[i].width != dispatch_width)
3403 fprintf(file, "@%d", inst->src[i].width);
3404 if (alloc.sizes[inst->src[i].reg] != inst->src[i].width / 8 ||
3405 inst->src[i].subreg_offset)
3406 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3407 inst->src[i].subreg_offset);
3408 break;
3409 case MRF:
3410 fprintf(file, "***m%d***", inst->src[i].reg);
3411 break;
3412 case ATTR:
3413 fprintf(file, "attr%d", inst->src[i].reg + inst->src[i].reg_offset);
3414 break;
3415 case UNIFORM:
3416 fprintf(file, "u%d", inst->src[i].reg + inst->src[i].reg_offset);
3417 if (inst->src[i].reladdr) {
3418 fprintf(file, "+reladdr");
3419 } else if (inst->src[i].subreg_offset) {
3420 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
3421 inst->src[i].subreg_offset);
3422 }
3423 break;
3424 case BAD_FILE:
3425 fprintf(file, "(null)");
3426 break;
3427 case IMM:
3428 switch (inst->src[i].type) {
3429 case BRW_REGISTER_TYPE_F:
3430 fprintf(file, "%ff", inst->src[i].fixed_hw_reg.dw1.f);
3431 break;
3432 case BRW_REGISTER_TYPE_W:
3433 case BRW_REGISTER_TYPE_D:
3434 fprintf(file, "%dd", inst->src[i].fixed_hw_reg.dw1.d);
3435 break;
3436 case BRW_REGISTER_TYPE_UW:
3437 case BRW_REGISTER_TYPE_UD:
3438 fprintf(file, "%uu", inst->src[i].fixed_hw_reg.dw1.ud);
3439 break;
3440 case BRW_REGISTER_TYPE_VF:
3441 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
3442 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 0) & 0xff),
3443 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 8) & 0xff),
3444 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 16) & 0xff),
3445 brw_vf_to_float((inst->src[i].fixed_hw_reg.dw1.ud >> 24) & 0xff));
3446 break;
3447 default:
3448 fprintf(file, "???");
3449 break;
3450 }
3451 break;
3452 case HW_REG:
3453 if (inst->src[i].fixed_hw_reg.negate)
3454 fprintf(file, "-");
3455 if (inst->src[i].fixed_hw_reg.abs)
3456 fprintf(file, "|");
3457 if (inst->src[i].fixed_hw_reg.file == BRW_ARCHITECTURE_REGISTER_FILE) {
3458 switch (inst->src[i].fixed_hw_reg.nr) {
3459 case BRW_ARF_NULL:
3460 fprintf(file, "null");
3461 break;
3462 case BRW_ARF_ADDRESS:
3463 fprintf(file, "a0.%d", inst->src[i].fixed_hw_reg.subnr);
3464 break;
3465 case BRW_ARF_ACCUMULATOR:
3466 fprintf(file, "acc%d", inst->src[i].fixed_hw_reg.subnr);
3467 break;
3468 case BRW_ARF_FLAG:
3469 fprintf(file, "f%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3470 inst->src[i].fixed_hw_reg.subnr);
3471 break;
3472 default:
3473 fprintf(file, "arf%d.%d", inst->src[i].fixed_hw_reg.nr & 0xf,
3474 inst->src[i].fixed_hw_reg.subnr);
3475 break;
3476 }
3477 } else {
3478 fprintf(file, "hw_reg%d", inst->src[i].fixed_hw_reg.nr);
3479 }
3480 if (inst->src[i].fixed_hw_reg.subnr)
3481 fprintf(file, "+%d", inst->src[i].fixed_hw_reg.subnr);
3482 if (inst->src[i].fixed_hw_reg.abs)
3483 fprintf(file, "|");
3484 break;
3485 default:
3486 fprintf(file, "???");
3487 break;
3488 }
3489 if (inst->src[i].abs)
3490 fprintf(file, "|");
3491
3492 if (inst->src[i].file != IMM) {
3493 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
3494 }
3495
3496 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
3497 fprintf(file, ", ");
3498 }
3499
3500 fprintf(file, " ");
3501
3502 if (dispatch_width == 16 && inst->exec_size == 8) {
3503 if (inst->force_sechalf)
3504 fprintf(file, "2ndhalf ");
3505 else
3506 fprintf(file, "1sthalf ");
3507 }
3508
3509 fprintf(file, "\n");
3510 }
3511
3512 /**
3513 * Possibly returns an instruction that set up @param reg.
3514 *
3515 * Sometimes we want to take the result of some expression/variable
3516 * dereference tree and rewrite the instruction generating the result
3517 * of the tree. When processing the tree, we know that the
3518 * instructions generated are all writing temporaries that are dead
3519 * outside of this tree. So, if we have some instructions that write
3520 * a temporary, we're free to point that temp write somewhere else.
3521 *
3522 * Note that this doesn't guarantee that the instruction generated
3523 * only reg -- it might be the size=4 destination of a texture instruction.
3524 */
3525 fs_inst *
3526 fs_visitor::get_instruction_generating_reg(fs_inst *start,
3527 fs_inst *end,
3528 const fs_reg &reg)
3529 {
3530 if (end == start ||
3531 end->is_partial_write() ||
3532 reg.reladdr ||
3533 !reg.equals(end->dst)) {
3534 return NULL;
3535 } else {
3536 return end;
3537 }
3538 }
3539
3540 void
3541 fs_visitor::setup_payload_gen6()
3542 {
3543 bool uses_depth =
3544 (prog->InputsRead & (1 << VARYING_SLOT_POS)) != 0;
3545 unsigned barycentric_interp_modes =
3546 (stage == MESA_SHADER_FRAGMENT) ?
3547 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
3548
3549 assert(devinfo->gen >= 6);
3550
3551 /* R0-1: masks, pixel X/Y coordinates. */
3552 payload.num_regs = 2;
3553 /* R2: only for 32-pixel dispatch.*/
3554
3555 /* R3-26: barycentric interpolation coordinates. These appear in the
3556 * same order that they appear in the brw_wm_barycentric_interp_mode
3557 * enum. Each set of coordinates occupies 2 registers if dispatch width
3558 * == 8 and 4 registers if dispatch width == 16. Coordinates only
3559 * appear if they were enabled using the "Barycentric Interpolation
3560 * Mode" bits in WM_STATE.
3561 */
3562 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
3563 if (barycentric_interp_modes & (1 << i)) {
3564 payload.barycentric_coord_reg[i] = payload.num_regs;
3565 payload.num_regs += 2;
3566 if (dispatch_width == 16) {
3567 payload.num_regs += 2;
3568 }
3569 }
3570 }
3571
3572 /* R27: interpolated depth if uses source depth */
3573 if (uses_depth) {
3574 payload.source_depth_reg = payload.num_regs;
3575 payload.num_regs++;
3576 if (dispatch_width == 16) {
3577 /* R28: interpolated depth if not SIMD8. */
3578 payload.num_regs++;
3579 }
3580 }
3581 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
3582 if (uses_depth) {
3583 payload.source_w_reg = payload.num_regs;
3584 payload.num_regs++;
3585 if (dispatch_width == 16) {
3586 /* R30: interpolated W if not SIMD8. */
3587 payload.num_regs++;
3588 }
3589 }
3590
3591 if (stage == MESA_SHADER_FRAGMENT) {
3592 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3593 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3594 prog_data->uses_pos_offset = key->compute_pos_offset;
3595 /* R31: MSAA position offsets. */
3596 if (prog_data->uses_pos_offset) {
3597 payload.sample_pos_reg = payload.num_regs;
3598 payload.num_regs++;
3599 }
3600 }
3601
3602 /* R32: MSAA input coverage mask */
3603 if (prog->SystemValuesRead & SYSTEM_BIT_SAMPLE_MASK_IN) {
3604 assert(devinfo->gen >= 7);
3605 payload.sample_mask_in_reg = payload.num_regs;
3606 payload.num_regs++;
3607 if (dispatch_width == 16) {
3608 /* R33: input coverage mask if not SIMD8. */
3609 payload.num_regs++;
3610 }
3611 }
3612
3613 /* R34-: bary for 32-pixel. */
3614 /* R58-59: interp W for 32-pixel. */
3615
3616 if (prog->OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
3617 source_depth_to_render_target = true;
3618 }
3619 }
3620
3621 void
3622 fs_visitor::setup_vs_payload()
3623 {
3624 /* R0: thread header, R1: urb handles */
3625 payload.num_regs = 2;
3626 }
3627
3628 void
3629 fs_visitor::setup_cs_payload()
3630 {
3631 assert(devinfo->gen >= 7);
3632
3633 payload.num_regs = 1;
3634 }
3635
3636 void
3637 fs_visitor::assign_binding_table_offsets()
3638 {
3639 assert(stage == MESA_SHADER_FRAGMENT);
3640 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
3641 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
3642 uint32_t next_binding_table_offset = 0;
3643
3644 /* If there are no color regions, we still perform an FB write to a null
3645 * renderbuffer, which we place at surface index 0.
3646 */
3647 prog_data->binding_table.render_target_start = next_binding_table_offset;
3648 next_binding_table_offset += MAX2(key->nr_color_regions, 1);
3649
3650 assign_common_binding_table_offsets(next_binding_table_offset);
3651 }
3652
3653 void
3654 fs_visitor::calculate_register_pressure()
3655 {
3656 invalidate_live_intervals();
3657 calculate_live_intervals();
3658
3659 unsigned num_instructions = 0;
3660 foreach_block(block, cfg)
3661 num_instructions += block->instructions.length();
3662
3663 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
3664
3665 for (unsigned reg = 0; reg < alloc.count; reg++) {
3666 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
3667 regs_live_at_ip[ip] += alloc.sizes[reg];
3668 }
3669 }
3670
3671 void
3672 fs_visitor::optimize()
3673 {
3674 /* bld is the common builder object pointing at the end of the program we
3675 * used to translate it into i965 IR. For the optimization and lowering
3676 * passes coming next, any code added after the end of the program without
3677 * having explicitly called fs_builder::at() clearly points at a mistake.
3678 * Ideally optimization passes wouldn't be part of the visitor so they
3679 * wouldn't have access to bld at all, but they do, so just in case some
3680 * pass forgets to ask for a location explicitly set it to NULL here to
3681 * make it trip.
3682 */
3683 bld = bld.at(NULL, NULL);
3684
3685 split_virtual_grfs();
3686
3687 move_uniform_array_access_to_pull_constants();
3688 assign_constant_locations();
3689 demote_pull_constants();
3690
3691 #define OPT(pass, args...) ({ \
3692 pass_num++; \
3693 bool this_progress = pass(args); \
3694 \
3695 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
3696 char filename[64]; \
3697 snprintf(filename, 64, "%s%d-%04d-%02d-%02d-" #pass, \
3698 stage_abbrev, dispatch_width, shader_prog ? shader_prog->Name : 0, iteration, pass_num); \
3699 \
3700 backend_shader::dump_instructions(filename); \
3701 } \
3702 \
3703 progress = progress || this_progress; \
3704 this_progress; \
3705 })
3706
3707 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
3708 char filename[64];
3709 snprintf(filename, 64, "%s%d-%04d-00-start",
3710 stage_abbrev, dispatch_width,
3711 shader_prog ? shader_prog->Name : 0);
3712
3713 backend_shader::dump_instructions(filename);
3714 }
3715
3716 bool progress;
3717 int iteration = 0;
3718 int pass_num = 0;
3719 do {
3720 progress = false;
3721 pass_num = 0;
3722 iteration++;
3723
3724 OPT(remove_duplicate_mrf_writes);
3725
3726 OPT(opt_algebraic);
3727 OPT(opt_cse);
3728 OPT(opt_copy_propagate);
3729 OPT(opt_peephole_predicated_break);
3730 OPT(opt_cmod_propagation);
3731 OPT(dead_code_eliminate);
3732 OPT(opt_peephole_sel);
3733 OPT(dead_control_flow_eliminate, this);
3734 OPT(opt_register_renaming);
3735 OPT(opt_redundant_discard_jumps);
3736 OPT(opt_saturate_propagation);
3737 OPT(opt_zero_samples);
3738 OPT(register_coalesce);
3739 OPT(compute_to_mrf);
3740 OPT(eliminate_find_live_channel);
3741
3742 OPT(compact_virtual_grfs);
3743 } while (progress);
3744
3745 pass_num = 0;
3746
3747 OPT(opt_sampler_eot);
3748
3749 if (OPT(lower_load_payload)) {
3750 split_virtual_grfs();
3751 OPT(register_coalesce);
3752 OPT(compute_to_mrf);
3753 OPT(dead_code_eliminate);
3754 }
3755
3756 OPT(opt_combine_constants);
3757 OPT(lower_integer_multiplication);
3758
3759 lower_uniform_pull_constant_loads();
3760 }
3761
3762 /**
3763 * Three source instruction must have a GRF/MRF destination register.
3764 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
3765 */
3766 void
3767 fs_visitor::fixup_3src_null_dest()
3768 {
3769 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3770 if (inst->is_3src() && inst->dst.is_null()) {
3771 inst->dst = fs_reg(GRF, alloc.allocate(dispatch_width / 8),
3772 inst->dst.type);
3773 }
3774 }
3775 }
3776
3777 void
3778 fs_visitor::allocate_registers()
3779 {
3780 bool allocated_without_spills;
3781
3782 static const enum instruction_scheduler_mode pre_modes[] = {
3783 SCHEDULE_PRE,
3784 SCHEDULE_PRE_NON_LIFO,
3785 SCHEDULE_PRE_LIFO,
3786 };
3787
3788 /* Try each scheduling heuristic to see if it can successfully register
3789 * allocate without spilling. They should be ordered by decreasing
3790 * performance but increasing likelihood of allocating.
3791 */
3792 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
3793 schedule_instructions(pre_modes[i]);
3794
3795 if (0) {
3796 assign_regs_trivial();
3797 allocated_without_spills = true;
3798 } else {
3799 allocated_without_spills = assign_regs(false);
3800 }
3801 if (allocated_without_spills)
3802 break;
3803 }
3804
3805 if (!allocated_without_spills) {
3806 /* We assume that any spilling is worse than just dropping back to
3807 * SIMD8. There's probably actually some intermediate point where
3808 * SIMD16 with a couple of spills is still better.
3809 */
3810 if (dispatch_width == 16) {
3811 fail("Failure to register allocate. Reduce number of "
3812 "live scalar values to avoid this.");
3813 } else {
3814 perf_debug("%s shader triggered register spilling. "
3815 "Try reducing the number of live scalar values to "
3816 "improve performance.\n", stage_name);
3817 }
3818
3819 /* Since we're out of heuristics, just go spill registers until we
3820 * get an allocation.
3821 */
3822 while (!assign_regs(true)) {
3823 if (failed)
3824 break;
3825 }
3826 }
3827
3828 /* This must come after all optimization and register allocation, since
3829 * it inserts dead code that happens to have side effects, and it does
3830 * so based on the actual physical registers in use.
3831 */
3832 insert_gen4_send_dependency_workarounds();
3833
3834 if (failed)
3835 return;
3836
3837 if (!allocated_without_spills)
3838 schedule_instructions(SCHEDULE_POST);
3839
3840 if (last_scratch > 0)
3841 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
3842 }
3843
3844 bool
3845 fs_visitor::run_vs()
3846 {
3847 assert(stage == MESA_SHADER_VERTEX);
3848
3849 assign_common_binding_table_offsets(0);
3850 setup_vs_payload();
3851
3852 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3853 emit_shader_time_begin();
3854
3855 emit_nir_code();
3856
3857 if (failed)
3858 return false;
3859
3860 emit_urb_writes();
3861
3862 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3863 emit_shader_time_end();
3864
3865 calculate_cfg();
3866
3867 optimize();
3868
3869 assign_curb_setup();
3870 assign_vs_urb_setup();
3871
3872 fixup_3src_null_dest();
3873 allocate_registers();
3874
3875 return !failed;
3876 }
3877
3878 bool
3879 fs_visitor::run_fs()
3880 {
3881 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
3882 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
3883
3884 assert(stage == MESA_SHADER_FRAGMENT);
3885
3886 sanity_param_count = prog->Parameters->NumParameters;
3887
3888 assign_binding_table_offsets();
3889
3890 if (devinfo->gen >= 6)
3891 setup_payload_gen6();
3892 else
3893 setup_payload_gen4();
3894
3895 if (0) {
3896 emit_dummy_fs();
3897 } else if (brw->use_rep_send && dispatch_width == 16) {
3898 emit_repclear_shader();
3899 } else {
3900 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3901 emit_shader_time_begin();
3902
3903 calculate_urb_setup();
3904 if (prog->InputsRead > 0) {
3905 if (devinfo->gen < 6)
3906 emit_interpolation_setup_gen4();
3907 else
3908 emit_interpolation_setup_gen6();
3909 }
3910
3911 /* We handle discards by keeping track of the still-live pixels in f0.1.
3912 * Initialize it with the dispatched pixels.
3913 */
3914 if (wm_prog_data->uses_kill) {
3915 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
3916 discard_init->flag_subreg = 1;
3917 }
3918
3919 /* Generate FS IR for main(). (the visitor only descends into
3920 * functions called "main").
3921 */
3922 emit_nir_code();
3923
3924 if (failed)
3925 return false;
3926
3927 if (wm_prog_data->uses_kill)
3928 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
3929
3930 if (wm_key->alpha_test_func)
3931 emit_alpha_test();
3932
3933 emit_fb_writes();
3934
3935 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3936 emit_shader_time_end();
3937
3938 calculate_cfg();
3939
3940 optimize();
3941
3942 assign_curb_setup();
3943 assign_urb_setup();
3944
3945 fixup_3src_null_dest();
3946 allocate_registers();
3947
3948 if (failed)
3949 return false;
3950 }
3951
3952 if (dispatch_width == 8)
3953 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
3954 else
3955 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
3956
3957 /* If any state parameters were appended, then ParameterValues could have
3958 * been realloced, in which case the driver uniform storage set up by
3959 * _mesa_associate_uniform_storage() would point to freed memory. Make
3960 * sure that didn't happen.
3961 */
3962 assert(sanity_param_count == prog->Parameters->NumParameters);
3963
3964 return !failed;
3965 }
3966
3967 bool
3968 fs_visitor::run_cs()
3969 {
3970 assert(stage == MESA_SHADER_COMPUTE);
3971 assert(shader);
3972
3973 sanity_param_count = prog->Parameters->NumParameters;
3974
3975 assign_common_binding_table_offsets(0);
3976
3977 setup_cs_payload();
3978
3979 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3980 emit_shader_time_begin();
3981
3982 emit_nir_code();
3983
3984 if (failed)
3985 return false;
3986
3987 emit_cs_terminate();
3988
3989 if (INTEL_DEBUG & DEBUG_SHADER_TIME)
3990 emit_shader_time_end();
3991
3992 calculate_cfg();
3993
3994 optimize();
3995
3996 assign_curb_setup();
3997
3998 fixup_3src_null_dest();
3999 allocate_registers();
4000
4001 if (failed)
4002 return false;
4003
4004 /* If any state parameters were appended, then ParameterValues could have
4005 * been realloced, in which case the driver uniform storage set up by
4006 * _mesa_associate_uniform_storage() would point to freed memory. Make
4007 * sure that didn't happen.
4008 */
4009 assert(sanity_param_count == prog->Parameters->NumParameters);
4010
4011 return !failed;
4012 }
4013
4014 const unsigned *
4015 brw_wm_fs_emit(struct brw_context *brw,
4016 void *mem_ctx,
4017 const struct brw_wm_prog_key *key,
4018 struct brw_wm_prog_data *prog_data,
4019 struct gl_fragment_program *fp,
4020 struct gl_shader_program *prog,
4021 unsigned *final_assembly_size)
4022 {
4023 bool start_busy = false;
4024 double start_time = 0;
4025
4026 if (unlikely(brw->perf_debug)) {
4027 start_busy = (brw->batch.last_bo &&
4028 drm_intel_bo_busy(brw->batch.last_bo));
4029 start_time = get_time();
4030 }
4031
4032 struct brw_shader *shader = NULL;
4033 if (prog)
4034 shader = (brw_shader *) prog->_LinkedShaders[MESA_SHADER_FRAGMENT];
4035
4036 if (unlikely(INTEL_DEBUG & DEBUG_WM))
4037 brw_dump_ir("fragment", prog, &shader->base, &fp->Base);
4038
4039 /* Now the main event: Visit the shader IR and generate our FS IR for it.
4040 */
4041 fs_visitor v(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4042 prog, &fp->Base, 8);
4043 if (!v.run_fs()) {
4044 if (prog) {
4045 prog->LinkStatus = false;
4046 ralloc_strcat(&prog->InfoLog, v.fail_msg);
4047 }
4048
4049 _mesa_problem(NULL, "Failed to compile fragment shader: %s\n",
4050 v.fail_msg);
4051
4052 return NULL;
4053 }
4054
4055 cfg_t *simd16_cfg = NULL;
4056 fs_visitor v2(brw, mem_ctx, MESA_SHADER_FRAGMENT, key, &prog_data->base,
4057 prog, &fp->Base, 16);
4058 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || brw->use_rep_send)) {
4059 if (!v.simd16_unsupported) {
4060 /* Try a SIMD16 compile */
4061 v2.import_uniforms(&v);
4062 if (!v2.run_fs()) {
4063 perf_debug("SIMD16 shader failed to compile, falling back to "
4064 "SIMD8 at a 10-20%% performance cost: %s", v2.fail_msg);
4065 } else {
4066 simd16_cfg = v2.cfg;
4067 }
4068 } else {
4069 perf_debug("SIMD16 shader unsupported, falling back to "
4070 "SIMD8 at a 10-20%% performance cost: %s", v.no16_msg);
4071 }
4072 }
4073
4074 cfg_t *simd8_cfg;
4075 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || brw->no_simd8;
4076 if ((no_simd8 || brw->gen < 5) && simd16_cfg) {
4077 simd8_cfg = NULL;
4078 prog_data->no_8 = true;
4079 } else {
4080 simd8_cfg = v.cfg;
4081 prog_data->no_8 = false;
4082 }
4083
4084 fs_generator g(brw->intelScreen->compiler,
4085 mem_ctx, (void *) key, &prog_data->base,
4086 &fp->Base, v.promoted_constants, v.runtime_check_aads_emit, "FS");
4087
4088 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
4089 char *name;
4090 if (prog)
4091 name = ralloc_asprintf(mem_ctx, "%s fragment shader %d",
4092 prog->Label ? prog->Label : "unnamed",
4093 prog->Name);
4094 else
4095 name = ralloc_asprintf(mem_ctx, "fragment program %d", fp->Base.Id);
4096
4097 g.enable_debug(name);
4098 }
4099
4100 if (simd8_cfg)
4101 g.generate_code(simd8_cfg, 8);
4102 if (simd16_cfg)
4103 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
4104
4105 if (unlikely(brw->perf_debug) && shader) {
4106 if (shader->compiled_once)
4107 brw_wm_debug_recompile(brw, prog, key);
4108 shader->compiled_once = true;
4109
4110 if (start_busy && !drm_intel_bo_busy(brw->batch.last_bo)) {
4111 perf_debug("FS compile took %.03f ms and stalled the GPU\n",
4112 (get_time() - start_time) * 1000);
4113 }
4114 }
4115
4116 return g.get_assembly(final_assembly_size);
4117 }
4118
4119 extern "C" bool
4120 brw_fs_precompile(struct gl_context *ctx,
4121 struct gl_shader_program *shader_prog,
4122 struct gl_program *prog)
4123 {
4124 struct brw_context *brw = brw_context(ctx);
4125 struct brw_wm_prog_key key;
4126
4127 struct gl_fragment_program *fp = (struct gl_fragment_program *) prog;
4128 struct brw_fragment_program *bfp = brw_fragment_program(fp);
4129 bool program_uses_dfdy = fp->UsesDFdy;
4130
4131 memset(&key, 0, sizeof(key));
4132
4133 if (brw->gen < 6) {
4134 if (fp->UsesKill)
4135 key.iz_lookup |= IZ_PS_KILL_ALPHATEST_BIT;
4136
4137 if (fp->Base.OutputsWritten & BITFIELD64_BIT(FRAG_RESULT_DEPTH))
4138 key.iz_lookup |= IZ_PS_COMPUTES_DEPTH_BIT;
4139
4140 /* Just assume depth testing. */
4141 key.iz_lookup |= IZ_DEPTH_TEST_ENABLE_BIT;
4142 key.iz_lookup |= IZ_DEPTH_WRITE_ENABLE_BIT;
4143 }
4144
4145 if (brw->gen < 6 || _mesa_bitcount_64(fp->Base.InputsRead &
4146 BRW_FS_VARYING_INPUT_MASK) > 16)
4147 key.input_slots_valid = fp->Base.InputsRead | VARYING_BIT_POS;
4148
4149 brw_setup_tex_for_precompile(brw, &key.tex, &fp->Base);
4150
4151 if (fp->Base.InputsRead & VARYING_BIT_POS) {
4152 key.drawable_height = ctx->DrawBuffer->Height;
4153 }
4154
4155 key.nr_color_regions = _mesa_bitcount_64(fp->Base.OutputsWritten &
4156 ~(BITFIELD64_BIT(FRAG_RESULT_DEPTH) |
4157 BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK)));
4158
4159 if ((fp->Base.InputsRead & VARYING_BIT_POS) || program_uses_dfdy) {
4160 key.render_to_fbo = _mesa_is_user_fbo(ctx->DrawBuffer) ||
4161 key.nr_color_regions > 1;
4162 }
4163
4164 key.program_string_id = bfp->id;
4165
4166 uint32_t old_prog_offset = brw->wm.base.prog_offset;
4167 struct brw_wm_prog_data *old_prog_data = brw->wm.prog_data;
4168
4169 bool success = brw_codegen_wm_prog(brw, shader_prog, bfp, &key);
4170
4171 brw->wm.base.prog_offset = old_prog_offset;
4172 brw->wm.prog_data = old_prog_data;
4173
4174 return success;
4175 }
4176
4177 void
4178 brw_setup_tex_for_precompile(struct brw_context *brw,
4179 struct brw_sampler_prog_key_data *tex,
4180 struct gl_program *prog)
4181 {
4182 const bool has_shader_channel_select = brw->is_haswell || brw->gen >= 8;
4183 unsigned sampler_count = _mesa_fls(prog->SamplersUsed);
4184 for (unsigned i = 0; i < sampler_count; i++) {
4185 if (!has_shader_channel_select && (prog->ShadowSamplers & (1 << i))) {
4186 /* Assume DEPTH_TEXTURE_MODE is the default: X, X, X, 1 */
4187 tex->swizzles[i] =
4188 MAKE_SWIZZLE4(SWIZZLE_X, SWIZZLE_X, SWIZZLE_X, SWIZZLE_ONE);
4189 } else {
4190 /* Color sampler: assume no swizzling. */
4191 tex->swizzles[i] = SWIZZLE_XYZW;
4192 }
4193 }
4194 }