i965: Make convert_attr_sources_to_hw_regs handle stride == 0.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs.cpp
25 *
26 * This file drives the GLSL IR -> LIR translation, contains the
27 * optimizations on the LIR, and drives the generation of native code
28 * from the LIR.
29 */
30
31 #include <sys/types.h>
32
33 #include "util/hash_table.h"
34 #include "main/macros.h"
35 #include "main/shaderobj.h"
36 #include "main/fbobject.h"
37 #include "program/prog_parameter.h"
38 #include "program/prog_print.h"
39 #include "util/register_allocate.h"
40 #include "program/hash_table.h"
41 #include "brw_context.h"
42 #include "brw_eu.h"
43 #include "brw_wm.h"
44 #include "brw_fs.h"
45 #include "brw_cs.h"
46 #include "brw_vec4_gs_visitor.h"
47 #include "brw_cfg.h"
48 #include "brw_dead_control_flow.h"
49 #include "main/uniforms.h"
50 #include "brw_fs_live_variables.h"
51 #include "glsl/nir/glsl_types.h"
52 #include "program/sampler.h"
53
54 using namespace brw;
55
56 void
57 fs_inst::init(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
58 const fs_reg *src, unsigned sources)
59 {
60 memset(this, 0, sizeof(*this));
61
62 this->src = new fs_reg[MAX2(sources, 3)];
63 for (unsigned i = 0; i < sources; i++)
64 this->src[i] = src[i];
65
66 this->opcode = opcode;
67 this->dst = dst;
68 this->sources = sources;
69 this->exec_size = exec_size;
70
71 assert(dst.file != IMM && dst.file != UNIFORM);
72
73 assert(this->exec_size != 0);
74
75 this->conditional_mod = BRW_CONDITIONAL_NONE;
76
77 /* This will be the case for almost all instructions. */
78 switch (dst.file) {
79 case VGRF:
80 case ARF:
81 case FIXED_GRF:
82 case MRF:
83 case ATTR:
84 this->regs_written = DIV_ROUND_UP(dst.component_size(exec_size),
85 REG_SIZE);
86 break;
87 case BAD_FILE:
88 this->regs_written = 0;
89 break;
90 case IMM:
91 case UNIFORM:
92 unreachable("Invalid destination register file");
93 }
94
95 this->writes_accumulator = false;
96 }
97
98 fs_inst::fs_inst()
99 {
100 init(BRW_OPCODE_NOP, 8, dst, NULL, 0);
101 }
102
103 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size)
104 {
105 init(opcode, exec_size, reg_undef, NULL, 0);
106 }
107
108 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst)
109 {
110 init(opcode, exec_size, dst, NULL, 0);
111 }
112
113 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
114 const fs_reg &src0)
115 {
116 const fs_reg src[1] = { src0 };
117 init(opcode, exec_size, dst, src, 1);
118 }
119
120 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
121 const fs_reg &src0, const fs_reg &src1)
122 {
123 const fs_reg src[2] = { src0, src1 };
124 init(opcode, exec_size, dst, src, 2);
125 }
126
127 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_size, const fs_reg &dst,
128 const fs_reg &src0, const fs_reg &src1, const fs_reg &src2)
129 {
130 const fs_reg src[3] = { src0, src1, src2 };
131 init(opcode, exec_size, dst, src, 3);
132 }
133
134 fs_inst::fs_inst(enum opcode opcode, uint8_t exec_width, const fs_reg &dst,
135 const fs_reg src[], unsigned sources)
136 {
137 init(opcode, exec_width, dst, src, sources);
138 }
139
140 fs_inst::fs_inst(const fs_inst &that)
141 {
142 memcpy(this, &that, sizeof(that));
143
144 this->src = new fs_reg[MAX2(that.sources, 3)];
145
146 for (unsigned i = 0; i < that.sources; i++)
147 this->src[i] = that.src[i];
148 }
149
150 fs_inst::~fs_inst()
151 {
152 delete[] this->src;
153 }
154
155 void
156 fs_inst::resize_sources(uint8_t num_sources)
157 {
158 if (this->sources != num_sources) {
159 fs_reg *src = new fs_reg[MAX2(num_sources, 3)];
160
161 for (unsigned i = 0; i < MIN2(this->sources, num_sources); ++i)
162 src[i] = this->src[i];
163
164 delete[] this->src;
165 this->src = src;
166 this->sources = num_sources;
167 }
168 }
169
170 void
171 fs_visitor::VARYING_PULL_CONSTANT_LOAD(const fs_builder &bld,
172 const fs_reg &dst,
173 const fs_reg &surf_index,
174 const fs_reg &varying_offset,
175 uint32_t const_offset)
176 {
177 /* We have our constant surface use a pitch of 4 bytes, so our index can
178 * be any component of a vector, and then we load 4 contiguous
179 * components starting from that.
180 *
181 * We break down the const_offset to a portion added to the variable
182 * offset and a portion done using reg_offset, which means that if you
183 * have GLSL using something like "uniform vec4 a[20]; gl_FragColor =
184 * a[i]", we'll temporarily generate 4 vec4 loads from offset i * 4, and
185 * CSE can later notice that those loads are all the same and eliminate
186 * the redundant ones.
187 */
188 fs_reg vec4_offset = vgrf(glsl_type::int_type);
189 bld.ADD(vec4_offset, varying_offset, fs_reg(const_offset & ~3));
190
191 int scale = 1;
192 if (devinfo->gen == 4 && bld.dispatch_width() == 8) {
193 /* Pre-gen5, we can either use a SIMD8 message that requires (header,
194 * u, v, r) as parameters, or we can just use the SIMD16 message
195 * consisting of (header, u). We choose the second, at the cost of a
196 * longer return length.
197 */
198 scale = 2;
199 }
200
201 enum opcode op;
202 if (devinfo->gen >= 7)
203 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7;
204 else
205 op = FS_OPCODE_VARYING_PULL_CONSTANT_LOAD;
206
207 int regs_written = 4 * (bld.dispatch_width() / 8) * scale;
208 fs_reg vec4_result = fs_reg(VGRF, alloc.allocate(regs_written), dst.type);
209 fs_inst *inst = bld.emit(op, vec4_result, surf_index, vec4_offset);
210 inst->regs_written = regs_written;
211
212 if (devinfo->gen < 7) {
213 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen);
214 inst->header_size = 1;
215 if (devinfo->gen == 4)
216 inst->mlen = 3;
217 else
218 inst->mlen = 1 + bld.dispatch_width() / 8;
219 }
220
221 bld.MOV(dst, offset(vec4_result, bld, (const_offset & 3) * scale));
222 }
223
224 /**
225 * A helper for MOV generation for fixing up broken hardware SEND dependency
226 * handling.
227 */
228 void
229 fs_visitor::DEP_RESOLVE_MOV(const fs_builder &bld, int grf)
230 {
231 /* The caller always wants uncompressed to emit the minimal extra
232 * dependencies, and to avoid having to deal with aligning its regs to 2.
233 */
234 const fs_builder ubld = bld.annotate("send dependency resolve")
235 .half(0);
236
237 ubld.MOV(ubld.null_reg_f(), fs_reg(VGRF, grf, BRW_REGISTER_TYPE_F));
238 }
239
240 bool
241 fs_inst::equals(fs_inst *inst) const
242 {
243 return (opcode == inst->opcode &&
244 dst.equals(inst->dst) &&
245 src[0].equals(inst->src[0]) &&
246 src[1].equals(inst->src[1]) &&
247 src[2].equals(inst->src[2]) &&
248 saturate == inst->saturate &&
249 predicate == inst->predicate &&
250 conditional_mod == inst->conditional_mod &&
251 mlen == inst->mlen &&
252 base_mrf == inst->base_mrf &&
253 target == inst->target &&
254 eot == inst->eot &&
255 header_size == inst->header_size &&
256 shadow_compare == inst->shadow_compare &&
257 exec_size == inst->exec_size &&
258 offset == inst->offset);
259 }
260
261 bool
262 fs_inst::overwrites_reg(const fs_reg &reg) const
263 {
264 return reg.in_range(dst, regs_written);
265 }
266
267 bool
268 fs_inst::is_send_from_grf() const
269 {
270 switch (opcode) {
271 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD_GEN7:
272 case SHADER_OPCODE_SHADER_TIME_ADD:
273 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
274 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
275 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
276 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
277 case SHADER_OPCODE_UNTYPED_ATOMIC:
278 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
279 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
280 case SHADER_OPCODE_TYPED_ATOMIC:
281 case SHADER_OPCODE_TYPED_SURFACE_READ:
282 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
283 case SHADER_OPCODE_URB_WRITE_SIMD8:
284 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
285 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
286 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
287 case SHADER_OPCODE_URB_READ_SIMD8:
288 return true;
289 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
290 return src[1].file == VGRF;
291 case FS_OPCODE_FB_WRITE:
292 return src[0].file == VGRF;
293 default:
294 if (is_tex())
295 return src[0].file == VGRF;
296
297 return false;
298 }
299 }
300
301 bool
302 fs_inst::is_copy_payload(const brw::simple_allocator &grf_alloc) const
303 {
304 if (this->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
305 return false;
306
307 fs_reg reg = this->src[0];
308 if (reg.file != VGRF || reg.reg_offset != 0 || reg.stride == 0)
309 return false;
310
311 if (grf_alloc.sizes[reg.nr] != this->regs_written)
312 return false;
313
314 for (int i = 0; i < this->sources; i++) {
315 reg.type = this->src[i].type;
316 if (!this->src[i].equals(reg))
317 return false;
318
319 if (i < this->header_size) {
320 reg.reg_offset += 1;
321 } else {
322 reg.reg_offset += this->exec_size / 8;
323 }
324 }
325
326 return true;
327 }
328
329 bool
330 fs_inst::can_do_source_mods(const struct brw_device_info *devinfo)
331 {
332 if (devinfo->gen == 6 && is_math())
333 return false;
334
335 if (is_send_from_grf())
336 return false;
337
338 if (!backend_instruction::can_do_source_mods())
339 return false;
340
341 return true;
342 }
343
344 bool
345 fs_inst::can_change_types() const
346 {
347 return dst.type == src[0].type &&
348 !src[0].abs && !src[0].negate && !saturate &&
349 (opcode == BRW_OPCODE_MOV ||
350 (opcode == BRW_OPCODE_SEL &&
351 dst.type == src[1].type &&
352 predicate != BRW_PREDICATE_NONE &&
353 !src[1].abs && !src[1].negate));
354 }
355
356 bool
357 fs_inst::has_side_effects() const
358 {
359 return this->eot || backend_instruction::has_side_effects();
360 }
361
362 void
363 fs_reg::init()
364 {
365 memset(this, 0, sizeof(*this));
366 stride = 1;
367 }
368
369 /** Generic unset register constructor. */
370 fs_reg::fs_reg()
371 {
372 init();
373 this->file = BAD_FILE;
374 }
375
376 /** Immediate value constructor. */
377 fs_reg::fs_reg(float f)
378 {
379 init();
380 this->file = IMM;
381 this->type = BRW_REGISTER_TYPE_F;
382 this->stride = 0;
383 this->f = f;
384 }
385
386 /** Immediate value constructor. */
387 fs_reg::fs_reg(int32_t i)
388 {
389 init();
390 this->file = IMM;
391 this->type = BRW_REGISTER_TYPE_D;
392 this->stride = 0;
393 this->d = i;
394 }
395
396 /** Immediate value constructor. */
397 fs_reg::fs_reg(uint32_t u)
398 {
399 init();
400 this->file = IMM;
401 this->type = BRW_REGISTER_TYPE_UD;
402 this->stride = 0;
403 this->ud = u;
404 }
405
406 /** Vector float immediate value constructor. */
407 fs_reg::fs_reg(uint8_t vf[4])
408 {
409 init();
410 this->file = IMM;
411 this->type = BRW_REGISTER_TYPE_VF;
412 memcpy(&this->ud, vf, sizeof(unsigned));
413 }
414
415 /** Vector float immediate value constructor. */
416 fs_reg::fs_reg(uint8_t vf0, uint8_t vf1, uint8_t vf2, uint8_t vf3)
417 {
418 init();
419 this->file = IMM;
420 this->type = BRW_REGISTER_TYPE_VF;
421 this->ud = (vf0 << 0) | (vf1 << 8) | (vf2 << 16) | (vf3 << 24);
422 }
423
424 fs_reg::fs_reg(struct brw_reg reg) :
425 backend_reg(reg)
426 {
427 this->reg_offset = 0;
428 this->subreg_offset = 0;
429 this->reladdr = NULL;
430 this->stride = 1;
431 if (this->file == IMM &&
432 (this->type != BRW_REGISTER_TYPE_V &&
433 this->type != BRW_REGISTER_TYPE_UV &&
434 this->type != BRW_REGISTER_TYPE_VF)) {
435 this->stride = 0;
436 }
437 }
438
439 bool
440 fs_reg::equals(const fs_reg &r) const
441 {
442 return (memcmp((brw_reg *)this, (brw_reg *)&r, sizeof(brw_reg)) == 0 &&
443 reg_offset == r.reg_offset &&
444 subreg_offset == r.subreg_offset &&
445 !reladdr && !r.reladdr &&
446 stride == r.stride);
447 }
448
449 fs_reg &
450 fs_reg::set_smear(unsigned subreg)
451 {
452 assert(file != ARF && file != FIXED_GRF && file != IMM);
453 subreg_offset = subreg * type_sz(type);
454 stride = 0;
455 return *this;
456 }
457
458 bool
459 fs_reg::is_contiguous() const
460 {
461 return stride == 1;
462 }
463
464 unsigned
465 fs_reg::component_size(unsigned width) const
466 {
467 const unsigned stride = ((file != ARF && file != FIXED_GRF) ? this->stride :
468 hstride == 0 ? 0 :
469 1 << (hstride - 1));
470 return MAX2(width * stride, 1) * type_sz(type);
471 }
472
473 extern "C" int
474 type_size_scalar(const struct glsl_type *type)
475 {
476 unsigned int size, i;
477
478 switch (type->base_type) {
479 case GLSL_TYPE_UINT:
480 case GLSL_TYPE_INT:
481 case GLSL_TYPE_FLOAT:
482 case GLSL_TYPE_BOOL:
483 return type->components();
484 case GLSL_TYPE_ARRAY:
485 return type_size_scalar(type->fields.array) * type->length;
486 case GLSL_TYPE_STRUCT:
487 size = 0;
488 for (i = 0; i < type->length; i++) {
489 size += type_size_scalar(type->fields.structure[i].type);
490 }
491 return size;
492 case GLSL_TYPE_SAMPLER:
493 /* Samplers take up no register space, since they're baked in at
494 * link time.
495 */
496 return 0;
497 case GLSL_TYPE_ATOMIC_UINT:
498 return 0;
499 case GLSL_TYPE_SUBROUTINE:
500 return 1;
501 case GLSL_TYPE_IMAGE:
502 return BRW_IMAGE_PARAM_SIZE;
503 case GLSL_TYPE_VOID:
504 case GLSL_TYPE_ERROR:
505 case GLSL_TYPE_INTERFACE:
506 case GLSL_TYPE_DOUBLE:
507 unreachable("not reached");
508 }
509
510 return 0;
511 }
512
513 /**
514 * Returns the number of scalar components needed to store type, assuming
515 * that vectors are padded out to vec4.
516 *
517 * This has the packing rules of type_size_vec4(), but counts components
518 * similar to type_size_scalar().
519 */
520 extern "C" int
521 type_size_vec4_times_4(const struct glsl_type *type)
522 {
523 return 4 * type_size_vec4(type);
524 }
525
526 /**
527 * Create a MOV to read the timestamp register.
528 *
529 * The caller is responsible for emitting the MOV. The return value is
530 * the destination of the MOV, with extra parameters set.
531 */
532 fs_reg
533 fs_visitor::get_timestamp(const fs_builder &bld)
534 {
535 assert(devinfo->gen >= 7);
536
537 fs_reg ts = fs_reg(retype(brw_vec4_reg(BRW_ARCHITECTURE_REGISTER_FILE,
538 BRW_ARF_TIMESTAMP,
539 0),
540 BRW_REGISTER_TYPE_UD));
541
542 fs_reg dst = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
543
544 /* We want to read the 3 fields we care about even if it's not enabled in
545 * the dispatch.
546 */
547 bld.group(4, 0).exec_all().MOV(dst, ts);
548
549 return dst;
550 }
551
552 void
553 fs_visitor::emit_shader_time_begin()
554 {
555 shader_start_time = get_timestamp(bld.annotate("shader time start"));
556
557 /* We want only the low 32 bits of the timestamp. Since it's running
558 * at the GPU clock rate of ~1.2ghz, it will roll over every ~3 seconds,
559 * which is plenty of time for our purposes. It is identical across the
560 * EUs, but since it's tracking GPU core speed it will increment at a
561 * varying rate as render P-states change.
562 */
563 shader_start_time.set_smear(0);
564 }
565
566 void
567 fs_visitor::emit_shader_time_end()
568 {
569 /* Insert our code just before the final SEND with EOT. */
570 exec_node *end = this->instructions.get_tail();
571 assert(end && ((fs_inst *) end)->eot);
572 const fs_builder ibld = bld.annotate("shader time end")
573 .exec_all().at(NULL, end);
574
575 fs_reg shader_end_time = get_timestamp(ibld);
576
577 /* We only use the low 32 bits of the timestamp - see
578 * emit_shader_time_begin()).
579 *
580 * We could also check if render P-states have changed (or anything
581 * else that might disrupt timing) by setting smear to 2 and checking if
582 * that field is != 0.
583 */
584 shader_end_time.set_smear(0);
585
586 /* Check that there weren't any timestamp reset events (assuming these
587 * were the only two timestamp reads that happened).
588 */
589 fs_reg reset = shader_end_time;
590 reset.set_smear(2);
591 set_condmod(BRW_CONDITIONAL_Z,
592 ibld.AND(ibld.null_reg_ud(), reset, fs_reg(1u)));
593 ibld.IF(BRW_PREDICATE_NORMAL);
594
595 fs_reg start = shader_start_time;
596 start.negate = true;
597 fs_reg diff = fs_reg(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_UD);
598 diff.set_smear(0);
599
600 const fs_builder cbld = ibld.group(1, 0);
601 cbld.group(1, 0).ADD(diff, start, shader_end_time);
602
603 /* If there were no instructions between the two timestamp gets, the diff
604 * is 2 cycles. Remove that overhead, so I can forget about that when
605 * trying to determine the time taken for single instructions.
606 */
607 cbld.ADD(diff, diff, fs_reg(-2u));
608 SHADER_TIME_ADD(cbld, 0, diff);
609 SHADER_TIME_ADD(cbld, 1, fs_reg(1u));
610 ibld.emit(BRW_OPCODE_ELSE);
611 SHADER_TIME_ADD(cbld, 2, fs_reg(1u));
612 ibld.emit(BRW_OPCODE_ENDIF);
613 }
614
615 void
616 fs_visitor::SHADER_TIME_ADD(const fs_builder &bld,
617 int shader_time_subindex,
618 fs_reg value)
619 {
620 int index = shader_time_index * 3 + shader_time_subindex;
621 fs_reg offset = fs_reg(index * SHADER_TIME_STRIDE);
622
623 fs_reg payload;
624 if (dispatch_width == 8)
625 payload = vgrf(glsl_type::uvec2_type);
626 else
627 payload = vgrf(glsl_type::uint_type);
628
629 bld.emit(SHADER_OPCODE_SHADER_TIME_ADD, fs_reg(), payload, offset, value);
630 }
631
632 void
633 fs_visitor::vfail(const char *format, va_list va)
634 {
635 char *msg;
636
637 if (failed)
638 return;
639
640 failed = true;
641
642 msg = ralloc_vasprintf(mem_ctx, format, va);
643 msg = ralloc_asprintf(mem_ctx, "%s compile failed: %s\n", stage_abbrev, msg);
644
645 this->fail_msg = msg;
646
647 if (debug_enabled) {
648 fprintf(stderr, "%s", msg);
649 }
650 }
651
652 void
653 fs_visitor::fail(const char *format, ...)
654 {
655 va_list va;
656
657 va_start(va, format);
658 vfail(format, va);
659 va_end(va);
660 }
661
662 /**
663 * Mark this program as impossible to compile in SIMD16 mode.
664 *
665 * During the SIMD8 compile (which happens first), we can detect and flag
666 * things that are unsupported in SIMD16 mode, so the compiler can skip
667 * the SIMD16 compile altogether.
668 *
669 * During a SIMD16 compile (if one happens anyway), this just calls fail().
670 */
671 void
672 fs_visitor::no16(const char *msg)
673 {
674 if (dispatch_width == 16) {
675 fail("%s", msg);
676 } else {
677 simd16_unsupported = true;
678
679 compiler->shader_perf_log(log_data,
680 "SIMD16 shader failed to compile: %s", msg);
681 }
682 }
683
684 /**
685 * Returns true if the instruction has a flag that means it won't
686 * update an entire destination register.
687 *
688 * For example, dead code elimination and live variable analysis want to know
689 * when a write to a variable screens off any preceding values that were in
690 * it.
691 */
692 bool
693 fs_inst::is_partial_write() const
694 {
695 return ((this->predicate && this->opcode != BRW_OPCODE_SEL) ||
696 (this->exec_size * type_sz(this->dst.type)) < 32 ||
697 !this->dst.is_contiguous());
698 }
699
700 unsigned
701 fs_inst::components_read(unsigned i) const
702 {
703 switch (opcode) {
704 case FS_OPCODE_LINTERP:
705 if (i == 0)
706 return 2;
707 else
708 return 1;
709
710 case FS_OPCODE_PIXEL_X:
711 case FS_OPCODE_PIXEL_Y:
712 assert(i == 0);
713 return 2;
714
715 case FS_OPCODE_FB_WRITE_LOGICAL:
716 assert(src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
717 /* First/second FB write color. */
718 if (i < 2)
719 return src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
720 else
721 return 1;
722
723 case SHADER_OPCODE_TEX_LOGICAL:
724 case SHADER_OPCODE_TXD_LOGICAL:
725 case SHADER_OPCODE_TXF_LOGICAL:
726 case SHADER_OPCODE_TXL_LOGICAL:
727 case SHADER_OPCODE_TXS_LOGICAL:
728 case FS_OPCODE_TXB_LOGICAL:
729 case SHADER_OPCODE_TXF_CMS_LOGICAL:
730 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
731 case SHADER_OPCODE_TXF_UMS_LOGICAL:
732 case SHADER_OPCODE_TXF_MCS_LOGICAL:
733 case SHADER_OPCODE_LOD_LOGICAL:
734 case SHADER_OPCODE_TG4_LOGICAL:
735 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
736 assert(src[8].file == IMM && src[9].file == IMM);
737 /* Texture coordinates. */
738 if (i == 0)
739 return src[8].ud;
740 /* Texture derivatives. */
741 else if ((i == 2 || i == 3) && opcode == SHADER_OPCODE_TXD_LOGICAL)
742 return src[9].ud;
743 /* Texture offset. */
744 else if (i == 7)
745 return 2;
746 /* MCS */
747 else if (i == 5 && opcode == SHADER_OPCODE_TXF_CMS_W_LOGICAL)
748 return 2;
749 else
750 return 1;
751
752 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
753 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
754 assert(src[3].file == IMM);
755 /* Surface coordinates. */
756 if (i == 0)
757 return src[3].ud;
758 /* Surface operation source (ignored for reads). */
759 else if (i == 1)
760 return 0;
761 else
762 return 1;
763
764 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
765 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
766 assert(src[3].file == IMM &&
767 src[4].file == IMM);
768 /* Surface coordinates. */
769 if (i == 0)
770 return src[3].ud;
771 /* Surface operation source. */
772 else if (i == 1)
773 return src[4].ud;
774 else
775 return 1;
776
777 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
778 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL: {
779 assert(src[3].file == IMM &&
780 src[4].file == IMM);
781 const unsigned op = src[4].ud;
782 /* Surface coordinates. */
783 if (i == 0)
784 return src[3].ud;
785 /* Surface operation source. */
786 else if (i == 1 && op == BRW_AOP_CMPWR)
787 return 2;
788 else if (i == 1 && (op == BRW_AOP_INC || op == BRW_AOP_DEC ||
789 op == BRW_AOP_PREDEC))
790 return 0;
791 else
792 return 1;
793 }
794
795 default:
796 return 1;
797 }
798 }
799
800 int
801 fs_inst::regs_read(int arg) const
802 {
803 switch (opcode) {
804 case FS_OPCODE_FB_WRITE:
805 case SHADER_OPCODE_URB_WRITE_SIMD8:
806 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
807 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
808 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
809 case SHADER_OPCODE_URB_READ_SIMD8:
810 case SHADER_OPCODE_UNTYPED_ATOMIC:
811 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
812 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
813 case SHADER_OPCODE_TYPED_ATOMIC:
814 case SHADER_OPCODE_TYPED_SURFACE_READ:
815 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
816 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
817 if (arg == 0)
818 return mlen;
819 break;
820
821 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7:
822 /* The payload is actually stored in src1 */
823 if (arg == 1)
824 return mlen;
825 break;
826
827 case FS_OPCODE_LINTERP:
828 if (arg == 1)
829 return 1;
830 break;
831
832 case SHADER_OPCODE_LOAD_PAYLOAD:
833 if (arg < this->header_size)
834 return 1;
835 break;
836
837 case CS_OPCODE_CS_TERMINATE:
838 case SHADER_OPCODE_BARRIER:
839 return 1;
840
841 default:
842 if (is_tex() && arg == 0 && src[0].file == VGRF)
843 return mlen;
844 break;
845 }
846
847 switch (src[arg].file) {
848 case BAD_FILE:
849 return 0;
850 case UNIFORM:
851 case IMM:
852 return 1;
853 case ARF:
854 case FIXED_GRF:
855 case VGRF:
856 case ATTR:
857 return DIV_ROUND_UP(components_read(arg) *
858 src[arg].component_size(exec_size),
859 REG_SIZE);
860 case MRF:
861 unreachable("MRF registers are not allowed as sources");
862 }
863 return 0;
864 }
865
866 bool
867 fs_inst::reads_flag() const
868 {
869 return predicate;
870 }
871
872 bool
873 fs_inst::writes_flag() const
874 {
875 return (conditional_mod && (opcode != BRW_OPCODE_SEL &&
876 opcode != BRW_OPCODE_IF &&
877 opcode != BRW_OPCODE_WHILE)) ||
878 opcode == FS_OPCODE_MOV_DISPATCH_TO_FLAGS;
879 }
880
881 /**
882 * Returns how many MRFs an FS opcode will write over.
883 *
884 * Note that this is not the 0 or 1 implied writes in an actual gen
885 * instruction -- the FS opcodes often generate MOVs in addition.
886 */
887 int
888 fs_visitor::implied_mrf_writes(fs_inst *inst)
889 {
890 if (inst->mlen == 0)
891 return 0;
892
893 if (inst->base_mrf == -1)
894 return 0;
895
896 switch (inst->opcode) {
897 case SHADER_OPCODE_RCP:
898 case SHADER_OPCODE_RSQ:
899 case SHADER_OPCODE_SQRT:
900 case SHADER_OPCODE_EXP2:
901 case SHADER_OPCODE_LOG2:
902 case SHADER_OPCODE_SIN:
903 case SHADER_OPCODE_COS:
904 return 1 * dispatch_width / 8;
905 case SHADER_OPCODE_POW:
906 case SHADER_OPCODE_INT_QUOTIENT:
907 case SHADER_OPCODE_INT_REMAINDER:
908 return 2 * dispatch_width / 8;
909 case SHADER_OPCODE_TEX:
910 case FS_OPCODE_TXB:
911 case SHADER_OPCODE_TXD:
912 case SHADER_OPCODE_TXF:
913 case SHADER_OPCODE_TXF_CMS:
914 case SHADER_OPCODE_TXF_CMS_W:
915 case SHADER_OPCODE_TXF_MCS:
916 case SHADER_OPCODE_TG4:
917 case SHADER_OPCODE_TG4_OFFSET:
918 case SHADER_OPCODE_TXL:
919 case SHADER_OPCODE_TXS:
920 case SHADER_OPCODE_LOD:
921 case SHADER_OPCODE_SAMPLEINFO:
922 return 1;
923 case FS_OPCODE_FB_WRITE:
924 return 2;
925 case FS_OPCODE_GET_BUFFER_SIZE:
926 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
927 case SHADER_OPCODE_GEN4_SCRATCH_READ:
928 return 1;
929 case FS_OPCODE_VARYING_PULL_CONSTANT_LOAD:
930 return inst->mlen;
931 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
932 return inst->mlen;
933 case SHADER_OPCODE_UNTYPED_ATOMIC:
934 case SHADER_OPCODE_UNTYPED_SURFACE_READ:
935 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE:
936 case SHADER_OPCODE_TYPED_ATOMIC:
937 case SHADER_OPCODE_TYPED_SURFACE_READ:
938 case SHADER_OPCODE_TYPED_SURFACE_WRITE:
939 case SHADER_OPCODE_URB_WRITE_SIMD8:
940 case SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT:
941 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED:
942 case SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT:
943 case FS_OPCODE_INTERPOLATE_AT_CENTROID:
944 case FS_OPCODE_INTERPOLATE_AT_SAMPLE:
945 case FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET:
946 case FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET:
947 return 0;
948 default:
949 unreachable("not reached");
950 }
951 }
952
953 fs_reg
954 fs_visitor::vgrf(const glsl_type *const type)
955 {
956 int reg_width = dispatch_width / 8;
957 return fs_reg(VGRF, alloc.allocate(type_size_scalar(type) * reg_width),
958 brw_type_for_base_type(type));
959 }
960
961 fs_reg::fs_reg(enum brw_reg_file file, int nr)
962 {
963 init();
964 this->file = file;
965 this->nr = nr;
966 this->type = BRW_REGISTER_TYPE_F;
967 this->stride = (file == UNIFORM ? 0 : 1);
968 }
969
970 fs_reg::fs_reg(enum brw_reg_file file, int nr, enum brw_reg_type type)
971 {
972 init();
973 this->file = file;
974 this->nr = nr;
975 this->type = type;
976 this->stride = (file == UNIFORM ? 0 : 1);
977 }
978
979 /* For SIMD16, we need to follow from the uniform setup of SIMD8 dispatch.
980 * This brings in those uniform definitions
981 */
982 void
983 fs_visitor::import_uniforms(fs_visitor *v)
984 {
985 this->push_constant_loc = v->push_constant_loc;
986 this->pull_constant_loc = v->pull_constant_loc;
987 this->uniforms = v->uniforms;
988 this->param_size = v->param_size;
989 }
990
991 fs_reg *
992 fs_visitor::emit_fragcoord_interpolation(bool pixel_center_integer,
993 bool origin_upper_left)
994 {
995 assert(stage == MESA_SHADER_FRAGMENT);
996 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
997 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec4_type));
998 fs_reg wpos = *reg;
999 bool flip = !origin_upper_left ^ key->render_to_fbo;
1000
1001 /* gl_FragCoord.x */
1002 if (pixel_center_integer) {
1003 bld.MOV(wpos, this->pixel_x);
1004 } else {
1005 bld.ADD(wpos, this->pixel_x, fs_reg(0.5f));
1006 }
1007 wpos = offset(wpos, bld, 1);
1008
1009 /* gl_FragCoord.y */
1010 if (!flip && pixel_center_integer) {
1011 bld.MOV(wpos, this->pixel_y);
1012 } else {
1013 fs_reg pixel_y = this->pixel_y;
1014 float offset = (pixel_center_integer ? 0.0f : 0.5f);
1015
1016 if (flip) {
1017 pixel_y.negate = true;
1018 offset += key->drawable_height - 1.0f;
1019 }
1020
1021 bld.ADD(wpos, pixel_y, fs_reg(offset));
1022 }
1023 wpos = offset(wpos, bld, 1);
1024
1025 /* gl_FragCoord.z */
1026 if (devinfo->gen >= 6) {
1027 bld.MOV(wpos, fs_reg(brw_vec8_grf(payload.source_depth_reg, 0)));
1028 } else {
1029 bld.emit(FS_OPCODE_LINTERP, wpos,
1030 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC],
1031 interp_reg(VARYING_SLOT_POS, 2));
1032 }
1033 wpos = offset(wpos, bld, 1);
1034
1035 /* gl_FragCoord.w: Already set up in emit_interpolation */
1036 bld.MOV(wpos, this->wpos_w);
1037
1038 return reg;
1039 }
1040
1041 fs_inst *
1042 fs_visitor::emit_linterp(const fs_reg &attr, const fs_reg &interp,
1043 glsl_interp_qualifier interpolation_mode,
1044 bool is_centroid, bool is_sample)
1045 {
1046 brw_wm_barycentric_interp_mode barycoord_mode;
1047 if (devinfo->gen >= 6) {
1048 if (is_centroid) {
1049 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1050 barycoord_mode = BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
1051 else
1052 barycoord_mode = BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
1053 } else if (is_sample) {
1054 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1055 barycoord_mode = BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
1056 else
1057 barycoord_mode = BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
1058 } else {
1059 if (interpolation_mode == INTERP_QUALIFIER_SMOOTH)
1060 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1061 else
1062 barycoord_mode = BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
1063 }
1064 } else {
1065 /* On Ironlake and below, there is only one interpolation mode.
1066 * Centroid interpolation doesn't mean anything on this hardware --
1067 * there is no multisampling.
1068 */
1069 barycoord_mode = BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
1070 }
1071 return bld.emit(FS_OPCODE_LINTERP, attr,
1072 this->delta_xy[barycoord_mode], interp);
1073 }
1074
1075 void
1076 fs_visitor::emit_general_interpolation(fs_reg attr, const char *name,
1077 const glsl_type *type,
1078 glsl_interp_qualifier interpolation_mode,
1079 int location, bool mod_centroid,
1080 bool mod_sample)
1081 {
1082 attr.type = brw_type_for_base_type(type->get_scalar_type());
1083
1084 assert(stage == MESA_SHADER_FRAGMENT);
1085 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1086 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1087
1088 unsigned int array_elements;
1089
1090 if (type->is_array()) {
1091 array_elements = type->arrays_of_arrays_size();
1092 if (array_elements == 0) {
1093 fail("dereferenced array '%s' has length 0\n", name);
1094 }
1095 type = type->without_array();
1096 } else {
1097 array_elements = 1;
1098 }
1099
1100 if (interpolation_mode == INTERP_QUALIFIER_NONE) {
1101 bool is_gl_Color =
1102 location == VARYING_SLOT_COL0 || location == VARYING_SLOT_COL1;
1103 if (key->flat_shade && is_gl_Color) {
1104 interpolation_mode = INTERP_QUALIFIER_FLAT;
1105 } else {
1106 interpolation_mode = INTERP_QUALIFIER_SMOOTH;
1107 }
1108 }
1109
1110 for (unsigned int i = 0; i < array_elements; i++) {
1111 for (unsigned int j = 0; j < type->matrix_columns; j++) {
1112 if (prog_data->urb_setup[location] == -1) {
1113 /* If there's no incoming setup data for this slot, don't
1114 * emit interpolation for it.
1115 */
1116 attr = offset(attr, bld, type->vector_elements);
1117 location++;
1118 continue;
1119 }
1120
1121 if (interpolation_mode == INTERP_QUALIFIER_FLAT) {
1122 /* Constant interpolation (flat shading) case. The SF has
1123 * handed us defined values in only the constant offset
1124 * field of the setup reg.
1125 */
1126 for (unsigned int k = 0; k < type->vector_elements; k++) {
1127 struct brw_reg interp = interp_reg(location, k);
1128 interp = suboffset(interp, 3);
1129 interp.type = attr.type;
1130 bld.emit(FS_OPCODE_CINTERP, attr, fs_reg(interp));
1131 attr = offset(attr, bld, 1);
1132 }
1133 } else {
1134 /* Smooth/noperspective interpolation case. */
1135 for (unsigned int k = 0; k < type->vector_elements; k++) {
1136 struct brw_reg interp = interp_reg(location, k);
1137 if (devinfo->needs_unlit_centroid_workaround && mod_centroid) {
1138 /* Get the pixel/sample mask into f0 so that we know
1139 * which pixels are lit. Then, for each channel that is
1140 * unlit, replace the centroid data with non-centroid
1141 * data.
1142 */
1143 bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
1144
1145 fs_inst *inst;
1146 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1147 false, false);
1148 inst->predicate = BRW_PREDICATE_NORMAL;
1149 inst->predicate_inverse = true;
1150 if (devinfo->has_pln)
1151 inst->no_dd_clear = true;
1152
1153 inst = emit_linterp(attr, fs_reg(interp), interpolation_mode,
1154 mod_centroid && !key->persample_shading,
1155 mod_sample || key->persample_shading);
1156 inst->predicate = BRW_PREDICATE_NORMAL;
1157 inst->predicate_inverse = false;
1158 if (devinfo->has_pln)
1159 inst->no_dd_check = true;
1160
1161 } else {
1162 emit_linterp(attr, fs_reg(interp), interpolation_mode,
1163 mod_centroid && !key->persample_shading,
1164 mod_sample || key->persample_shading);
1165 }
1166 if (devinfo->gen < 6 && interpolation_mode == INTERP_QUALIFIER_SMOOTH) {
1167 bld.MUL(attr, attr, this->pixel_w);
1168 }
1169 attr = offset(attr, bld, 1);
1170 }
1171
1172 }
1173 location++;
1174 }
1175 }
1176 }
1177
1178 fs_reg *
1179 fs_visitor::emit_frontfacing_interpolation()
1180 {
1181 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::bool_type));
1182
1183 if (devinfo->gen >= 6) {
1184 /* Bit 15 of g0.0 is 0 if the polygon is front facing. We want to create
1185 * a boolean result from this (~0/true or 0/false).
1186 *
1187 * We can use the fact that bit 15 is the MSB of g0.0:W to accomplish
1188 * this task in only one instruction:
1189 * - a negation source modifier will flip the bit; and
1190 * - a W -> D type conversion will sign extend the bit into the high
1191 * word of the destination.
1192 *
1193 * An ASR 15 fills the low word of the destination.
1194 */
1195 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
1196 g0.negate = true;
1197
1198 bld.ASR(*reg, g0, fs_reg(15));
1199 } else {
1200 /* Bit 31 of g1.6 is 0 if the polygon is front facing. We want to create
1201 * a boolean result from this (1/true or 0/false).
1202 *
1203 * Like in the above case, since the bit is the MSB of g1.6:UD we can use
1204 * the negation source modifier to flip it. Unfortunately the SHR
1205 * instruction only operates on UD (or D with an abs source modifier)
1206 * sources without negation.
1207 *
1208 * Instead, use ASR (which will give ~0/true or 0/false).
1209 */
1210 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
1211 g1_6.negate = true;
1212
1213 bld.ASR(*reg, g1_6, fs_reg(31));
1214 }
1215
1216 return reg;
1217 }
1218
1219 void
1220 fs_visitor::compute_sample_position(fs_reg dst, fs_reg int_sample_pos)
1221 {
1222 assert(stage == MESA_SHADER_FRAGMENT);
1223 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1224 assert(dst.type == BRW_REGISTER_TYPE_F);
1225
1226 if (key->compute_pos_offset) {
1227 /* Convert int_sample_pos to floating point */
1228 bld.MOV(dst, int_sample_pos);
1229 /* Scale to the range [0, 1] */
1230 bld.MUL(dst, dst, fs_reg(1 / 16.0f));
1231 }
1232 else {
1233 /* From ARB_sample_shading specification:
1234 * "When rendering to a non-multisample buffer, or if multisample
1235 * rasterization is disabled, gl_SamplePosition will always be
1236 * (0.5, 0.5).
1237 */
1238 bld.MOV(dst, fs_reg(0.5f));
1239 }
1240 }
1241
1242 fs_reg *
1243 fs_visitor::emit_samplepos_setup()
1244 {
1245 assert(devinfo->gen >= 6);
1246
1247 const fs_builder abld = bld.annotate("compute sample position");
1248 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::vec2_type));
1249 fs_reg pos = *reg;
1250 fs_reg int_sample_x = vgrf(glsl_type::int_type);
1251 fs_reg int_sample_y = vgrf(glsl_type::int_type);
1252
1253 /* WM will be run in MSDISPMODE_PERSAMPLE. So, only one of SIMD8 or SIMD16
1254 * mode will be enabled.
1255 *
1256 * From the Ivy Bridge PRM, volume 2 part 1, page 344:
1257 * R31.1:0 Position Offset X/Y for Slot[3:0]
1258 * R31.3:2 Position Offset X/Y for Slot[7:4]
1259 * .....
1260 *
1261 * The X, Y sample positions come in as bytes in thread payload. So, read
1262 * the positions using vstride=16, width=8, hstride=2.
1263 */
1264 struct brw_reg sample_pos_reg =
1265 stride(retype(brw_vec1_grf(payload.sample_pos_reg, 0),
1266 BRW_REGISTER_TYPE_B), 16, 8, 2);
1267
1268 if (dispatch_width == 8) {
1269 abld.MOV(int_sample_x, fs_reg(sample_pos_reg));
1270 } else {
1271 abld.half(0).MOV(half(int_sample_x, 0), fs_reg(sample_pos_reg));
1272 abld.half(1).MOV(half(int_sample_x, 1),
1273 fs_reg(suboffset(sample_pos_reg, 16)));
1274 }
1275 /* Compute gl_SamplePosition.x */
1276 compute_sample_position(pos, int_sample_x);
1277 pos = offset(pos, abld, 1);
1278 if (dispatch_width == 8) {
1279 abld.MOV(int_sample_y, fs_reg(suboffset(sample_pos_reg, 1)));
1280 } else {
1281 abld.half(0).MOV(half(int_sample_y, 0),
1282 fs_reg(suboffset(sample_pos_reg, 1)));
1283 abld.half(1).MOV(half(int_sample_y, 1),
1284 fs_reg(suboffset(sample_pos_reg, 17)));
1285 }
1286 /* Compute gl_SamplePosition.y */
1287 compute_sample_position(pos, int_sample_y);
1288 return reg;
1289 }
1290
1291 fs_reg *
1292 fs_visitor::emit_sampleid_setup()
1293 {
1294 assert(stage == MESA_SHADER_FRAGMENT);
1295 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1296 assert(devinfo->gen >= 6);
1297
1298 const fs_builder abld = bld.annotate("compute sample id");
1299 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::int_type));
1300
1301 if (key->compute_sample_id) {
1302 fs_reg t1(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_D);
1303 t1.set_smear(0);
1304 fs_reg t2(VGRF, alloc.allocate(1), BRW_REGISTER_TYPE_W);
1305
1306 /* The PS will be run in MSDISPMODE_PERSAMPLE. For example with
1307 * 8x multisampling, subspan 0 will represent sample N (where N
1308 * is 0, 2, 4 or 6), subspan 1 will represent sample 1, 3, 5 or
1309 * 7. We can find the value of N by looking at R0.0 bits 7:6
1310 * ("Starting Sample Pair Index (SSPI)") and multiplying by two
1311 * (since samples are always delivered in pairs). That is, we
1312 * compute 2*((R0.0 & 0xc0) >> 6) == (R0.0 & 0xc0) >> 5. Then
1313 * we need to add N to the sequence (0, 0, 0, 0, 1, 1, 1, 1) in
1314 * case of SIMD8 and sequence (0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2,
1315 * 2, 3, 3, 3, 3) in case of SIMD16. We compute this sequence by
1316 * populating a temporary variable with the sequence (0, 1, 2, 3),
1317 * and then reading from it using vstride=1, width=4, hstride=0.
1318 * These computations hold good for 4x multisampling as well.
1319 *
1320 * For 2x MSAA and SIMD16, we want to use the sequence (0, 1, 0, 1):
1321 * the first four slots are sample 0 of subspan 0; the next four
1322 * are sample 1 of subspan 0; the third group is sample 0 of
1323 * subspan 1, and finally sample 1 of subspan 1.
1324 */
1325
1326 /* SKL+ has an extra bit for the Starting Sample Pair Index to
1327 * accomodate 16x MSAA.
1328 */
1329 unsigned sspi_mask = devinfo->gen >= 9 ? 0x1c0 : 0xc0;
1330
1331 abld.exec_all().group(1, 0)
1332 .AND(t1, fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_D)),
1333 fs_reg(sspi_mask));
1334 abld.exec_all().group(1, 0).SHR(t1, t1, fs_reg(5));
1335
1336 /* This works for both SIMD8 and SIMD16 */
1337 abld.exec_all().group(4, 0)
1338 .MOV(t2, brw_imm_v(key->persample_2x ? 0x1010 : 0x3210));
1339
1340 /* This special instruction takes care of setting vstride=1,
1341 * width=4, hstride=0 of t2 during an ADD instruction.
1342 */
1343 abld.emit(FS_OPCODE_SET_SAMPLE_ID, *reg, t1, t2);
1344 } else {
1345 /* As per GL_ARB_sample_shading specification:
1346 * "When rendering to a non-multisample buffer, or if multisample
1347 * rasterization is disabled, gl_SampleID will always be zero."
1348 */
1349 abld.MOV(*reg, fs_reg(0));
1350 }
1351
1352 return reg;
1353 }
1354
1355 fs_reg
1356 fs_visitor::resolve_source_modifiers(const fs_reg &src)
1357 {
1358 if (!src.abs && !src.negate)
1359 return src;
1360
1361 fs_reg temp = bld.vgrf(src.type);
1362 bld.MOV(temp, src);
1363
1364 return temp;
1365 }
1366
1367 void
1368 fs_visitor::emit_discard_jump()
1369 {
1370 assert(((brw_wm_prog_data*) this->prog_data)->uses_kill);
1371
1372 /* For performance, after a discard, jump to the end of the
1373 * shader if all relevant channels have been discarded.
1374 */
1375 fs_inst *discard_jump = bld.emit(FS_OPCODE_DISCARD_JUMP);
1376 discard_jump->flag_subreg = 1;
1377
1378 discard_jump->predicate = (dispatch_width == 8)
1379 ? BRW_PREDICATE_ALIGN1_ANY8H
1380 : BRW_PREDICATE_ALIGN1_ANY16H;
1381 discard_jump->predicate_inverse = true;
1382 }
1383
1384 void
1385 fs_visitor::emit_gs_thread_end()
1386 {
1387 assert(stage == MESA_SHADER_GEOMETRY);
1388
1389 struct brw_gs_prog_data *gs_prog_data =
1390 (struct brw_gs_prog_data *) prog_data;
1391
1392 if (gs_compile->control_data_header_size_bits > 0) {
1393 emit_gs_control_data_bits(this->final_gs_vertex_count);
1394 }
1395
1396 const fs_builder abld = bld.annotate("thread end");
1397 fs_inst *inst;
1398
1399 if (gs_prog_data->static_vertex_count != -1) {
1400 foreach_in_list_reverse(fs_inst, prev, &this->instructions) {
1401 if (prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8 ||
1402 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED ||
1403 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT ||
1404 prev->opcode == SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT) {
1405 prev->eot = true;
1406
1407 /* Delete now dead instructions. */
1408 foreach_in_list_reverse_safe(exec_node, dead, &this->instructions) {
1409 if (dead == prev)
1410 break;
1411 dead->remove();
1412 }
1413 return;
1414 } else if (prev->is_control_flow() || prev->has_side_effects()) {
1415 break;
1416 }
1417 }
1418 fs_reg hdr = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1419 abld.MOV(hdr, fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD)));
1420 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, hdr);
1421 inst->mlen = 1;
1422 } else {
1423 fs_reg payload = abld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1424 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, 2);
1425 sources[0] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1426 sources[1] = this->final_gs_vertex_count;
1427 abld.LOAD_PAYLOAD(payload, sources, 2, 2);
1428 inst = abld.emit(SHADER_OPCODE_URB_WRITE_SIMD8, reg_undef, payload);
1429 inst->mlen = 2;
1430 }
1431 inst->eot = true;
1432 inst->offset = 0;
1433 }
1434
1435 void
1436 fs_visitor::assign_curb_setup()
1437 {
1438 if (dispatch_width == 8) {
1439 prog_data->dispatch_grf_start_reg = payload.num_regs;
1440 } else {
1441 if (stage == MESA_SHADER_FRAGMENT) {
1442 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1443 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1444 } else if (stage == MESA_SHADER_COMPUTE) {
1445 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
1446 prog_data->dispatch_grf_start_reg_16 = payload.num_regs;
1447 } else {
1448 unreachable("Unsupported shader type!");
1449 }
1450 }
1451
1452 prog_data->curb_read_length = ALIGN(stage_prog_data->nr_params, 8) / 8;
1453
1454 /* Map the offsets in the UNIFORM file to fixed HW regs. */
1455 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1456 for (unsigned int i = 0; i < inst->sources; i++) {
1457 if (inst->src[i].file == UNIFORM) {
1458 int uniform_nr = inst->src[i].nr + inst->src[i].reg_offset;
1459 int constant_nr;
1460 if (uniform_nr >= 0 && uniform_nr < (int) uniforms) {
1461 constant_nr = push_constant_loc[uniform_nr];
1462 } else {
1463 /* Section 5.11 of the OpenGL 4.1 spec says:
1464 * "Out-of-bounds reads return undefined values, which include
1465 * values from other variables of the active program or zero."
1466 * Just return the first push constant.
1467 */
1468 constant_nr = 0;
1469 }
1470
1471 struct brw_reg brw_reg = brw_vec1_grf(payload.num_regs +
1472 constant_nr / 8,
1473 constant_nr % 8);
1474 brw_reg.abs = inst->src[i].abs;
1475 brw_reg.negate = inst->src[i].negate;
1476
1477 assert(inst->src[i].stride == 0);
1478 inst->src[i] = byte_offset(
1479 retype(brw_reg, inst->src[i].type),
1480 inst->src[i].subreg_offset);
1481 }
1482 }
1483 }
1484
1485 /* This may be updated in assign_urb_setup or assign_vs_urb_setup. */
1486 this->first_non_payload_grf = payload.num_regs + prog_data->curb_read_length;
1487 }
1488
1489 void
1490 fs_visitor::calculate_urb_setup()
1491 {
1492 assert(stage == MESA_SHADER_FRAGMENT);
1493 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1494 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1495
1496 memset(prog_data->urb_setup, -1,
1497 sizeof(prog_data->urb_setup[0]) * VARYING_SLOT_MAX);
1498
1499 int urb_next = 0;
1500 /* Figure out where each of the incoming setup attributes lands. */
1501 if (devinfo->gen >= 6) {
1502 if (_mesa_bitcount_64(nir->info.inputs_read &
1503 BRW_FS_VARYING_INPUT_MASK) <= 16) {
1504 /* The SF/SBE pipeline stage can do arbitrary rearrangement of the
1505 * first 16 varying inputs, so we can put them wherever we want.
1506 * Just put them in order.
1507 *
1508 * This is useful because it means that (a) inputs not used by the
1509 * fragment shader won't take up valuable register space, and (b) we
1510 * won't have to recompile the fragment shader if it gets paired with
1511 * a different vertex (or geometry) shader.
1512 */
1513 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1514 if (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1515 BITFIELD64_BIT(i)) {
1516 prog_data->urb_setup[i] = urb_next++;
1517 }
1518 }
1519 } else {
1520 bool include_vue_header =
1521 nir->info.inputs_read & (VARYING_BIT_LAYER | VARYING_BIT_VIEWPORT);
1522
1523 /* We have enough input varyings that the SF/SBE pipeline stage can't
1524 * arbitrarily rearrange them to suit our whim; we have to put them
1525 * in an order that matches the output of the previous pipeline stage
1526 * (geometry or vertex shader).
1527 */
1528 struct brw_vue_map prev_stage_vue_map;
1529 brw_compute_vue_map(devinfo, &prev_stage_vue_map,
1530 key->input_slots_valid,
1531 nir->info.separate_shader);
1532 int first_slot =
1533 include_vue_header ? 0 : 2 * BRW_SF_URB_ENTRY_READ_OFFSET;
1534
1535 assert(prev_stage_vue_map.num_slots <= first_slot + 32);
1536 for (int slot = first_slot; slot < prev_stage_vue_map.num_slots;
1537 slot++) {
1538 int varying = prev_stage_vue_map.slot_to_varying[slot];
1539 if (varying != BRW_VARYING_SLOT_PAD &&
1540 (nir->info.inputs_read & BRW_FS_VARYING_INPUT_MASK &
1541 BITFIELD64_BIT(varying))) {
1542 prog_data->urb_setup[varying] = slot - first_slot;
1543 }
1544 }
1545 urb_next = prev_stage_vue_map.num_slots - first_slot;
1546 }
1547 } else {
1548 /* FINISHME: The sf doesn't map VS->FS inputs for us very well. */
1549 for (unsigned int i = 0; i < VARYING_SLOT_MAX; i++) {
1550 /* Point size is packed into the header, not as a general attribute */
1551 if (i == VARYING_SLOT_PSIZ)
1552 continue;
1553
1554 if (key->input_slots_valid & BITFIELD64_BIT(i)) {
1555 /* The back color slot is skipped when the front color is
1556 * also written to. In addition, some slots can be
1557 * written in the vertex shader and not read in the
1558 * fragment shader. So the register number must always be
1559 * incremented, mapped or not.
1560 */
1561 if (_mesa_varying_slot_in_fs((gl_varying_slot) i))
1562 prog_data->urb_setup[i] = urb_next;
1563 urb_next++;
1564 }
1565 }
1566
1567 /*
1568 * It's a FS only attribute, and we did interpolation for this attribute
1569 * in SF thread. So, count it here, too.
1570 *
1571 * See compile_sf_prog() for more info.
1572 */
1573 if (nir->info.inputs_read & BITFIELD64_BIT(VARYING_SLOT_PNTC))
1574 prog_data->urb_setup[VARYING_SLOT_PNTC] = urb_next++;
1575 }
1576
1577 prog_data->num_varying_inputs = urb_next;
1578 }
1579
1580 void
1581 fs_visitor::assign_urb_setup()
1582 {
1583 assert(stage == MESA_SHADER_FRAGMENT);
1584 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
1585
1586 int urb_start = payload.num_regs + prog_data->base.curb_read_length;
1587
1588 /* Offset all the urb_setup[] index by the actual position of the
1589 * setup regs, now that the location of the constants has been chosen.
1590 */
1591 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1592 if (inst->opcode == FS_OPCODE_LINTERP) {
1593 assert(inst->src[1].file == FIXED_GRF);
1594 inst->src[1].nr += urb_start;
1595 }
1596
1597 if (inst->opcode == FS_OPCODE_CINTERP) {
1598 assert(inst->src[0].file == FIXED_GRF);
1599 inst->src[0].nr += urb_start;
1600 }
1601 }
1602
1603 /* Each attribute is 4 setup channels, each of which is half a reg. */
1604 this->first_non_payload_grf += prog_data->num_varying_inputs * 2;
1605 }
1606
1607 void
1608 fs_visitor::convert_attr_sources_to_hw_regs(fs_inst *inst)
1609 {
1610 for (int i = 0; i < inst->sources; i++) {
1611 if (inst->src[i].file == ATTR) {
1612 int grf = payload.num_regs +
1613 prog_data->curb_read_length +
1614 inst->src[i].nr +
1615 inst->src[i].reg_offset;
1616
1617 unsigned width = inst->src[i].stride == 0 ? 1 : inst->exec_size;
1618 struct brw_reg reg =
1619 stride(byte_offset(retype(brw_vec8_grf(grf, 0), inst->src[i].type),
1620 inst->src[i].subreg_offset),
1621 inst->exec_size * inst->src[i].stride,
1622 width, inst->src[i].stride);
1623 reg.abs = inst->src[i].abs;
1624 reg.negate = inst->src[i].negate;
1625
1626 inst->src[i] = reg;
1627 }
1628 }
1629 }
1630
1631 void
1632 fs_visitor::assign_vs_urb_setup()
1633 {
1634 brw_vs_prog_data *vs_prog_data = (brw_vs_prog_data *) prog_data;
1635
1636 assert(stage == MESA_SHADER_VERTEX);
1637 int count = _mesa_bitcount_64(vs_prog_data->inputs_read);
1638 if (vs_prog_data->uses_vertexid || vs_prog_data->uses_instanceid)
1639 count++;
1640
1641 /* Each attribute is 4 regs. */
1642 this->first_non_payload_grf += 4 * vs_prog_data->nr_attributes;
1643
1644 assert(vs_prog_data->base.urb_read_length <= 15);
1645
1646 /* Rewrite all ATTR file references to the hw grf that they land in. */
1647 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1648 convert_attr_sources_to_hw_regs(inst);
1649 }
1650 }
1651
1652 void
1653 fs_visitor::assign_gs_urb_setup()
1654 {
1655 assert(stage == MESA_SHADER_GEOMETRY);
1656
1657 brw_vue_prog_data *vue_prog_data = (brw_vue_prog_data *) prog_data;
1658
1659 first_non_payload_grf +=
1660 8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in;
1661
1662 const unsigned first_icp_handle = payload.num_regs -
1663 (vue_prog_data->include_vue_handles ? nir->info.gs.vertices_in : 0);
1664
1665 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1666 /* Lower URB_READ_SIMD8 opcodes into real messages. */
1667 if (inst->opcode == SHADER_OPCODE_URB_READ_SIMD8) {
1668 assert(inst->src[0].file == IMM);
1669 inst->src[0] = retype(brw_vec8_grf(first_icp_handle +
1670 inst->src[0].ud,
1671 0), BRW_REGISTER_TYPE_UD);
1672 /* for now, assume constant - we can do per-slot offsets later */
1673 assert(inst->src[1].file == IMM);
1674 inst->offset = inst->src[1].ud;
1675 inst->src[1] = fs_reg();
1676 inst->mlen = 1;
1677 inst->base_mrf = -1;
1678 }
1679
1680 /* Rewrite all ATTR file references to GRFs. */
1681 convert_attr_sources_to_hw_regs(inst);
1682 }
1683 }
1684
1685
1686 /**
1687 * Split large virtual GRFs into separate components if we can.
1688 *
1689 * This is mostly duplicated with what brw_fs_vector_splitting does,
1690 * but that's really conservative because it's afraid of doing
1691 * splitting that doesn't result in real progress after the rest of
1692 * the optimization phases, which would cause infinite looping in
1693 * optimization. We can do it once here, safely. This also has the
1694 * opportunity to split interpolated values, or maybe even uniforms,
1695 * which we don't have at the IR level.
1696 *
1697 * We want to split, because virtual GRFs are what we register
1698 * allocate and spill (due to contiguousness requirements for some
1699 * instructions), and they're what we naturally generate in the
1700 * codegen process, but most virtual GRFs don't actually need to be
1701 * contiguous sets of GRFs. If we split, we'll end up with reduced
1702 * live intervals and better dead code elimination and coalescing.
1703 */
1704 void
1705 fs_visitor::split_virtual_grfs()
1706 {
1707 int num_vars = this->alloc.count;
1708
1709 /* Count the total number of registers */
1710 int reg_count = 0;
1711 int vgrf_to_reg[num_vars];
1712 for (int i = 0; i < num_vars; i++) {
1713 vgrf_to_reg[i] = reg_count;
1714 reg_count += alloc.sizes[i];
1715 }
1716
1717 /* An array of "split points". For each register slot, this indicates
1718 * if this slot can be separated from the previous slot. Every time an
1719 * instruction uses multiple elements of a register (as a source or
1720 * destination), we mark the used slots as inseparable. Then we go
1721 * through and split the registers into the smallest pieces we can.
1722 */
1723 bool split_points[reg_count];
1724 memset(split_points, 0, sizeof(split_points));
1725
1726 /* Mark all used registers as fully splittable */
1727 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1728 if (inst->dst.file == VGRF) {
1729 int reg = vgrf_to_reg[inst->dst.nr];
1730 for (unsigned j = 1; j < this->alloc.sizes[inst->dst.nr]; j++)
1731 split_points[reg + j] = true;
1732 }
1733
1734 for (int i = 0; i < inst->sources; i++) {
1735 if (inst->src[i].file == VGRF) {
1736 int reg = vgrf_to_reg[inst->src[i].nr];
1737 for (unsigned j = 1; j < this->alloc.sizes[inst->src[i].nr]; j++)
1738 split_points[reg + j] = true;
1739 }
1740 }
1741 }
1742
1743 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1744 if (inst->dst.file == VGRF) {
1745 int reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1746 for (int j = 1; j < inst->regs_written; j++)
1747 split_points[reg + j] = false;
1748 }
1749 for (int i = 0; i < inst->sources; i++) {
1750 if (inst->src[i].file == VGRF) {
1751 int reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1752 for (int j = 1; j < inst->regs_read(i); j++)
1753 split_points[reg + j] = false;
1754 }
1755 }
1756 }
1757
1758 int new_virtual_grf[reg_count];
1759 int new_reg_offset[reg_count];
1760
1761 int reg = 0;
1762 for (int i = 0; i < num_vars; i++) {
1763 /* The first one should always be 0 as a quick sanity check. */
1764 assert(split_points[reg] == false);
1765
1766 /* j = 0 case */
1767 new_reg_offset[reg] = 0;
1768 reg++;
1769 int offset = 1;
1770
1771 /* j > 0 case */
1772 for (unsigned j = 1; j < alloc.sizes[i]; j++) {
1773 /* If this is a split point, reset the offset to 0 and allocate a
1774 * new virtual GRF for the previous offset many registers
1775 */
1776 if (split_points[reg]) {
1777 assert(offset <= MAX_VGRF_SIZE);
1778 int grf = alloc.allocate(offset);
1779 for (int k = reg - offset; k < reg; k++)
1780 new_virtual_grf[k] = grf;
1781 offset = 0;
1782 }
1783 new_reg_offset[reg] = offset;
1784 offset++;
1785 reg++;
1786 }
1787
1788 /* The last one gets the original register number */
1789 assert(offset <= MAX_VGRF_SIZE);
1790 alloc.sizes[i] = offset;
1791 for (int k = reg - offset; k < reg; k++)
1792 new_virtual_grf[k] = i;
1793 }
1794 assert(reg == reg_count);
1795
1796 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1797 if (inst->dst.file == VGRF) {
1798 reg = vgrf_to_reg[inst->dst.nr] + inst->dst.reg_offset;
1799 inst->dst.nr = new_virtual_grf[reg];
1800 inst->dst.reg_offset = new_reg_offset[reg];
1801 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1802 }
1803 for (int i = 0; i < inst->sources; i++) {
1804 if (inst->src[i].file == VGRF) {
1805 reg = vgrf_to_reg[inst->src[i].nr] + inst->src[i].reg_offset;
1806 inst->src[i].nr = new_virtual_grf[reg];
1807 inst->src[i].reg_offset = new_reg_offset[reg];
1808 assert((unsigned)new_reg_offset[reg] < alloc.sizes[new_virtual_grf[reg]]);
1809 }
1810 }
1811 }
1812 invalidate_live_intervals();
1813 }
1814
1815 /**
1816 * Remove unused virtual GRFs and compact the virtual_grf_* arrays.
1817 *
1818 * During code generation, we create tons of temporary variables, many of
1819 * which get immediately killed and are never used again. Yet, in later
1820 * optimization and analysis passes, such as compute_live_intervals, we need
1821 * to loop over all the virtual GRFs. Compacting them can save a lot of
1822 * overhead.
1823 */
1824 bool
1825 fs_visitor::compact_virtual_grfs()
1826 {
1827 bool progress = false;
1828 int remap_table[this->alloc.count];
1829 memset(remap_table, -1, sizeof(remap_table));
1830
1831 /* Mark which virtual GRFs are used. */
1832 foreach_block_and_inst(block, const fs_inst, inst, cfg) {
1833 if (inst->dst.file == VGRF)
1834 remap_table[inst->dst.nr] = 0;
1835
1836 for (int i = 0; i < inst->sources; i++) {
1837 if (inst->src[i].file == VGRF)
1838 remap_table[inst->src[i].nr] = 0;
1839 }
1840 }
1841
1842 /* Compact the GRF arrays. */
1843 int new_index = 0;
1844 for (unsigned i = 0; i < this->alloc.count; i++) {
1845 if (remap_table[i] == -1) {
1846 /* We just found an unused register. This means that we are
1847 * actually going to compact something.
1848 */
1849 progress = true;
1850 } else {
1851 remap_table[i] = new_index;
1852 alloc.sizes[new_index] = alloc.sizes[i];
1853 invalidate_live_intervals();
1854 ++new_index;
1855 }
1856 }
1857
1858 this->alloc.count = new_index;
1859
1860 /* Patch all the instructions to use the newly renumbered registers */
1861 foreach_block_and_inst(block, fs_inst, inst, cfg) {
1862 if (inst->dst.file == VGRF)
1863 inst->dst.nr = remap_table[inst->dst.nr];
1864
1865 for (int i = 0; i < inst->sources; i++) {
1866 if (inst->src[i].file == VGRF)
1867 inst->src[i].nr = remap_table[inst->src[i].nr];
1868 }
1869 }
1870
1871 /* Patch all the references to delta_xy, since they're used in register
1872 * allocation. If they're unused, switch them to BAD_FILE so we don't
1873 * think some random VGRF is delta_xy.
1874 */
1875 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
1876 if (delta_xy[i].file == VGRF) {
1877 if (remap_table[delta_xy[i].nr] != -1) {
1878 delta_xy[i].nr = remap_table[delta_xy[i].nr];
1879 } else {
1880 delta_xy[i].file = BAD_FILE;
1881 }
1882 }
1883 }
1884
1885 return progress;
1886 }
1887
1888 /**
1889 * Assign UNIFORM file registers to either push constants or pull constants.
1890 *
1891 * We allow a fragment shader to have more than the specified minimum
1892 * maximum number of fragment shader uniform components (64). If
1893 * there are too many of these, they'd fill up all of register space.
1894 * So, this will push some of them out to the pull constant buffer and
1895 * update the program to load them. We also use pull constants for all
1896 * indirect constant loads because we don't support indirect accesses in
1897 * registers yet.
1898 */
1899 void
1900 fs_visitor::assign_constant_locations()
1901 {
1902 /* Only the first compile (SIMD8 mode) gets to decide on locations. */
1903 if (dispatch_width != 8)
1904 return;
1905
1906 unsigned int num_pull_constants = 0;
1907
1908 pull_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1909 memset(pull_constant_loc, -1, sizeof(pull_constant_loc[0]) * uniforms);
1910
1911 bool is_live[uniforms];
1912 memset(is_live, 0, sizeof(is_live));
1913
1914 /* First, we walk through the instructions and do two things:
1915 *
1916 * 1) Figure out which uniforms are live.
1917 *
1918 * 2) Find all indirect access of uniform arrays and flag them as needing
1919 * to go into the pull constant buffer.
1920 *
1921 * Note that we don't move constant-indexed accesses to arrays. No
1922 * testing has been done of the performance impact of this choice.
1923 */
1924 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
1925 for (int i = 0 ; i < inst->sources; i++) {
1926 if (inst->src[i].file != UNIFORM)
1927 continue;
1928
1929 if (inst->src[i].reladdr) {
1930 int uniform = inst->src[i].nr;
1931
1932 /* If this array isn't already present in the pull constant buffer,
1933 * add it.
1934 */
1935 if (pull_constant_loc[uniform] == -1) {
1936 assert(param_size[uniform]);
1937 for (int j = 0; j < param_size[uniform]; j++)
1938 pull_constant_loc[uniform + j] = num_pull_constants++;
1939 }
1940 } else {
1941 /* Mark the the one accessed uniform as live */
1942 int constant_nr = inst->src[i].nr + inst->src[i].reg_offset;
1943 if (constant_nr >= 0 && constant_nr < (int) uniforms)
1944 is_live[constant_nr] = true;
1945 }
1946 }
1947 }
1948
1949 /* Only allow 16 registers (128 uniform components) as push constants.
1950 *
1951 * Just demote the end of the list. We could probably do better
1952 * here, demoting things that are rarely used in the program first.
1953 *
1954 * If changing this value, note the limitation about total_regs in
1955 * brw_curbe.c.
1956 */
1957 unsigned int max_push_components = 16 * 8;
1958 unsigned int num_push_constants = 0;
1959
1960 push_constant_loc = ralloc_array(mem_ctx, int, uniforms);
1961
1962 for (unsigned int i = 0; i < uniforms; i++) {
1963 if (!is_live[i] || pull_constant_loc[i] != -1) {
1964 /* This UNIFORM register is either dead, or has already been demoted
1965 * to a pull const. Mark it as no longer living in the param[] array.
1966 */
1967 push_constant_loc[i] = -1;
1968 continue;
1969 }
1970
1971 if (num_push_constants < max_push_components) {
1972 /* Retain as a push constant. Record the location in the params[]
1973 * array.
1974 */
1975 push_constant_loc[i] = num_push_constants++;
1976 } else {
1977 /* Demote to a pull constant. */
1978 push_constant_loc[i] = -1;
1979 pull_constant_loc[i] = num_pull_constants++;
1980 }
1981 }
1982
1983 stage_prog_data->nr_params = num_push_constants;
1984 stage_prog_data->nr_pull_params = num_pull_constants;
1985
1986 /* Up until now, the param[] array has been indexed by reg + reg_offset
1987 * of UNIFORM registers. Move pull constants into pull_param[] and
1988 * condense param[] to only contain the uniforms we chose to push.
1989 *
1990 * NOTE: Because we are condensing the params[] array, we know that
1991 * push_constant_loc[i] <= i and we can do it in one smooth loop without
1992 * having to make a copy.
1993 */
1994 for (unsigned int i = 0; i < uniforms; i++) {
1995 const gl_constant_value *value = stage_prog_data->param[i];
1996
1997 if (pull_constant_loc[i] != -1) {
1998 stage_prog_data->pull_param[pull_constant_loc[i]] = value;
1999 } else if (push_constant_loc[i] != -1) {
2000 stage_prog_data->param[push_constant_loc[i]] = value;
2001 }
2002 }
2003 }
2004
2005 /**
2006 * Replace UNIFORM register file access with either UNIFORM_PULL_CONSTANT_LOAD
2007 * or VARYING_PULL_CONSTANT_LOAD instructions which load values into VGRFs.
2008 */
2009 void
2010 fs_visitor::demote_pull_constants()
2011 {
2012 foreach_block_and_inst (block, fs_inst, inst, cfg) {
2013 for (int i = 0; i < inst->sources; i++) {
2014 if (inst->src[i].file != UNIFORM)
2015 continue;
2016
2017 int pull_index;
2018 unsigned location = inst->src[i].nr + inst->src[i].reg_offset;
2019 if (location >= uniforms) /* Out of bounds access */
2020 pull_index = -1;
2021 else
2022 pull_index = pull_constant_loc[location];
2023
2024 if (pull_index == -1)
2025 continue;
2026
2027 /* Set up the annotation tracking for new generated instructions. */
2028 const fs_builder ibld(this, block, inst);
2029 const unsigned index = stage_prog_data->binding_table.pull_constants_start;
2030 fs_reg dst = vgrf(glsl_type::float_type);
2031
2032 assert(inst->src[i].stride == 0);
2033
2034 /* Generate a pull load into dst. */
2035 if (inst->src[i].reladdr) {
2036 VARYING_PULL_CONSTANT_LOAD(ibld, dst,
2037 fs_reg(index),
2038 *inst->src[i].reladdr,
2039 pull_index);
2040 inst->src[i].reladdr = NULL;
2041 inst->src[i].stride = 1;
2042 } else {
2043 const fs_builder ubld = ibld.exec_all().group(8, 0);
2044 fs_reg offset = fs_reg((unsigned)(pull_index * 4) & ~15);
2045 ubld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
2046 dst, fs_reg(index), offset);
2047 inst->src[i].set_smear(pull_index & 3);
2048 }
2049 brw_mark_surface_used(prog_data, index);
2050
2051 /* Rewrite the instruction to use the temporary VGRF. */
2052 inst->src[i].file = VGRF;
2053 inst->src[i].nr = dst.nr;
2054 inst->src[i].reg_offset = 0;
2055 }
2056 }
2057 invalidate_live_intervals();
2058 }
2059
2060 bool
2061 fs_visitor::opt_algebraic()
2062 {
2063 bool progress = false;
2064
2065 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2066 switch (inst->opcode) {
2067 case BRW_OPCODE_MOV:
2068 if (inst->src[0].file != IMM)
2069 break;
2070
2071 if (inst->saturate) {
2072 if (inst->dst.type != inst->src[0].type)
2073 assert(!"unimplemented: saturate mixed types");
2074
2075 if (brw_saturate_immediate(inst->dst.type, &inst->src[0])) {
2076 inst->saturate = false;
2077 progress = true;
2078 }
2079 }
2080 break;
2081
2082 case BRW_OPCODE_MUL:
2083 if (inst->src[1].file != IMM)
2084 continue;
2085
2086 /* a * 1.0 = a */
2087 if (inst->src[1].is_one()) {
2088 inst->opcode = BRW_OPCODE_MOV;
2089 inst->src[1] = reg_undef;
2090 progress = true;
2091 break;
2092 }
2093
2094 /* a * -1.0 = -a */
2095 if (inst->src[1].is_negative_one()) {
2096 inst->opcode = BRW_OPCODE_MOV;
2097 inst->src[0].negate = !inst->src[0].negate;
2098 inst->src[1] = reg_undef;
2099 progress = true;
2100 break;
2101 }
2102
2103 /* a * 0.0 = 0.0 */
2104 if (inst->src[1].is_zero()) {
2105 inst->opcode = BRW_OPCODE_MOV;
2106 inst->src[0] = inst->src[1];
2107 inst->src[1] = reg_undef;
2108 progress = true;
2109 break;
2110 }
2111
2112 if (inst->src[0].file == IMM) {
2113 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2114 inst->opcode = BRW_OPCODE_MOV;
2115 inst->src[0].f *= inst->src[1].f;
2116 inst->src[1] = reg_undef;
2117 progress = true;
2118 break;
2119 }
2120 break;
2121 case BRW_OPCODE_ADD:
2122 if (inst->src[1].file != IMM)
2123 continue;
2124
2125 /* a + 0.0 = a */
2126 if (inst->src[1].is_zero()) {
2127 inst->opcode = BRW_OPCODE_MOV;
2128 inst->src[1] = reg_undef;
2129 progress = true;
2130 break;
2131 }
2132
2133 if (inst->src[0].file == IMM) {
2134 assert(inst->src[0].type == BRW_REGISTER_TYPE_F);
2135 inst->opcode = BRW_OPCODE_MOV;
2136 inst->src[0].f += inst->src[1].f;
2137 inst->src[1] = reg_undef;
2138 progress = true;
2139 break;
2140 }
2141 break;
2142 case BRW_OPCODE_OR:
2143 if (inst->src[0].equals(inst->src[1])) {
2144 inst->opcode = BRW_OPCODE_MOV;
2145 inst->src[1] = reg_undef;
2146 progress = true;
2147 break;
2148 }
2149 break;
2150 case BRW_OPCODE_LRP:
2151 if (inst->src[1].equals(inst->src[2])) {
2152 inst->opcode = BRW_OPCODE_MOV;
2153 inst->src[0] = inst->src[1];
2154 inst->src[1] = reg_undef;
2155 inst->src[2] = reg_undef;
2156 progress = true;
2157 break;
2158 }
2159 break;
2160 case BRW_OPCODE_CMP:
2161 if (inst->conditional_mod == BRW_CONDITIONAL_GE &&
2162 inst->src[0].abs &&
2163 inst->src[0].negate &&
2164 inst->src[1].is_zero()) {
2165 inst->src[0].abs = false;
2166 inst->src[0].negate = false;
2167 inst->conditional_mod = BRW_CONDITIONAL_Z;
2168 progress = true;
2169 break;
2170 }
2171 break;
2172 case BRW_OPCODE_SEL:
2173 if (inst->src[0].equals(inst->src[1])) {
2174 inst->opcode = BRW_OPCODE_MOV;
2175 inst->src[1] = reg_undef;
2176 inst->predicate = BRW_PREDICATE_NONE;
2177 inst->predicate_inverse = false;
2178 progress = true;
2179 } else if (inst->saturate && inst->src[1].file == IMM) {
2180 switch (inst->conditional_mod) {
2181 case BRW_CONDITIONAL_LE:
2182 case BRW_CONDITIONAL_L:
2183 switch (inst->src[1].type) {
2184 case BRW_REGISTER_TYPE_F:
2185 if (inst->src[1].f >= 1.0f) {
2186 inst->opcode = BRW_OPCODE_MOV;
2187 inst->src[1] = reg_undef;
2188 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2189 progress = true;
2190 }
2191 break;
2192 default:
2193 break;
2194 }
2195 break;
2196 case BRW_CONDITIONAL_GE:
2197 case BRW_CONDITIONAL_G:
2198 switch (inst->src[1].type) {
2199 case BRW_REGISTER_TYPE_F:
2200 if (inst->src[1].f <= 0.0f) {
2201 inst->opcode = BRW_OPCODE_MOV;
2202 inst->src[1] = reg_undef;
2203 inst->conditional_mod = BRW_CONDITIONAL_NONE;
2204 progress = true;
2205 }
2206 break;
2207 default:
2208 break;
2209 }
2210 default:
2211 break;
2212 }
2213 }
2214 break;
2215 case BRW_OPCODE_MAD:
2216 if (inst->src[1].is_zero() || inst->src[2].is_zero()) {
2217 inst->opcode = BRW_OPCODE_MOV;
2218 inst->src[1] = reg_undef;
2219 inst->src[2] = reg_undef;
2220 progress = true;
2221 } else if (inst->src[0].is_zero()) {
2222 inst->opcode = BRW_OPCODE_MUL;
2223 inst->src[0] = inst->src[2];
2224 inst->src[2] = reg_undef;
2225 progress = true;
2226 } else if (inst->src[1].is_one()) {
2227 inst->opcode = BRW_OPCODE_ADD;
2228 inst->src[1] = inst->src[2];
2229 inst->src[2] = reg_undef;
2230 progress = true;
2231 } else if (inst->src[2].is_one()) {
2232 inst->opcode = BRW_OPCODE_ADD;
2233 inst->src[2] = reg_undef;
2234 progress = true;
2235 } else if (inst->src[1].file == IMM && inst->src[2].file == IMM) {
2236 inst->opcode = BRW_OPCODE_ADD;
2237 inst->src[1].f *= inst->src[2].f;
2238 inst->src[2] = reg_undef;
2239 progress = true;
2240 }
2241 break;
2242 case SHADER_OPCODE_RCP: {
2243 fs_inst *prev = (fs_inst *)inst->prev;
2244 if (prev->opcode == SHADER_OPCODE_SQRT) {
2245 if (inst->src[0].equals(prev->dst)) {
2246 inst->opcode = SHADER_OPCODE_RSQ;
2247 inst->src[0] = prev->src[0];
2248 progress = true;
2249 }
2250 }
2251 break;
2252 }
2253 case SHADER_OPCODE_BROADCAST:
2254 if (is_uniform(inst->src[0])) {
2255 inst->opcode = BRW_OPCODE_MOV;
2256 inst->sources = 1;
2257 inst->force_writemask_all = true;
2258 progress = true;
2259 } else if (inst->src[1].file == IMM) {
2260 inst->opcode = BRW_OPCODE_MOV;
2261 inst->src[0] = component(inst->src[0],
2262 inst->src[1].ud);
2263 inst->sources = 1;
2264 inst->force_writemask_all = true;
2265 progress = true;
2266 }
2267 break;
2268
2269 default:
2270 break;
2271 }
2272
2273 /* Swap if src[0] is immediate. */
2274 if (progress && inst->is_commutative()) {
2275 if (inst->src[0].file == IMM) {
2276 fs_reg tmp = inst->src[1];
2277 inst->src[1] = inst->src[0];
2278 inst->src[0] = tmp;
2279 }
2280 }
2281 }
2282 return progress;
2283 }
2284
2285 /**
2286 * Optimize sample messages that have constant zero values for the trailing
2287 * texture coordinates. We can just reduce the message length for these
2288 * instructions instead of reserving a register for it. Trailing parameters
2289 * that aren't sent default to zero anyway. This will cause the dead code
2290 * eliminator to remove the MOV instruction that would otherwise be emitted to
2291 * set up the zero value.
2292 */
2293 bool
2294 fs_visitor::opt_zero_samples()
2295 {
2296 /* Gen4 infers the texturing opcode based on the message length so we can't
2297 * change it.
2298 */
2299 if (devinfo->gen < 5)
2300 return false;
2301
2302 bool progress = false;
2303
2304 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2305 if (!inst->is_tex())
2306 continue;
2307
2308 fs_inst *load_payload = (fs_inst *) inst->prev;
2309
2310 if (load_payload->is_head_sentinel() ||
2311 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2312 continue;
2313
2314 /* We don't want to remove the message header or the first parameter.
2315 * Removing the first parameter is not allowed, see the Haswell PRM
2316 * volume 7, page 149:
2317 *
2318 * "Parameter 0 is required except for the sampleinfo message, which
2319 * has no parameter 0"
2320 */
2321 while (inst->mlen > inst->header_size + inst->exec_size / 8 &&
2322 load_payload->src[(inst->mlen - inst->header_size) /
2323 (inst->exec_size / 8) +
2324 inst->header_size - 1].is_zero()) {
2325 inst->mlen -= inst->exec_size / 8;
2326 progress = true;
2327 }
2328 }
2329
2330 if (progress)
2331 invalidate_live_intervals();
2332
2333 return progress;
2334 }
2335
2336 /**
2337 * Optimize sample messages which are followed by the final RT write.
2338 *
2339 * CHV, and GEN9+ can mark a texturing SEND instruction with EOT to have its
2340 * results sent directly to the framebuffer, bypassing the EU. Recognize the
2341 * final texturing results copied to the framebuffer write payload and modify
2342 * them to write to the framebuffer directly.
2343 */
2344 bool
2345 fs_visitor::opt_sampler_eot()
2346 {
2347 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2348
2349 if (stage != MESA_SHADER_FRAGMENT)
2350 return false;
2351
2352 if (devinfo->gen < 9 && !devinfo->is_cherryview)
2353 return false;
2354
2355 /* FINISHME: It should be possible to implement this optimization when there
2356 * are multiple drawbuffers.
2357 */
2358 if (key->nr_color_regions != 1)
2359 return false;
2360
2361 /* Look for a texturing instruction immediately before the final FB_WRITE. */
2362 bblock_t *block = cfg->blocks[cfg->num_blocks - 1];
2363 fs_inst *fb_write = (fs_inst *)block->end();
2364 assert(fb_write->eot);
2365 assert(fb_write->opcode == FS_OPCODE_FB_WRITE);
2366
2367 fs_inst *tex_inst = (fs_inst *) fb_write->prev;
2368
2369 /* There wasn't one; nothing to do. */
2370 if (unlikely(tex_inst->is_head_sentinel()) || !tex_inst->is_tex())
2371 return false;
2372
2373 /* 3D Sampler » Messages » Message Format
2374 *
2375 * “Response Length of zero is allowed on all SIMD8* and SIMD16* sampler
2376 * messages except sample+killpix, resinfo, sampleinfo, LOD, and gather4*”
2377 */
2378 if (tex_inst->opcode == SHADER_OPCODE_TXS ||
2379 tex_inst->opcode == SHADER_OPCODE_SAMPLEINFO ||
2380 tex_inst->opcode == SHADER_OPCODE_LOD ||
2381 tex_inst->opcode == SHADER_OPCODE_TG4 ||
2382 tex_inst->opcode == SHADER_OPCODE_TG4_OFFSET)
2383 return false;
2384
2385 /* If there's no header present, we need to munge the LOAD_PAYLOAD as well.
2386 * It's very likely to be the previous instruction.
2387 */
2388 fs_inst *load_payload = (fs_inst *) tex_inst->prev;
2389 if (load_payload->is_head_sentinel() ||
2390 load_payload->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
2391 return false;
2392
2393 assert(!tex_inst->eot); /* We can't get here twice */
2394 assert((tex_inst->offset & (0xff << 24)) == 0);
2395
2396 const fs_builder ibld(this, block, tex_inst);
2397
2398 tex_inst->offset |= fb_write->target << 24;
2399 tex_inst->eot = true;
2400 tex_inst->dst = ibld.null_reg_ud();
2401 fb_write->remove(cfg->blocks[cfg->num_blocks - 1]);
2402
2403 /* If a header is present, marking the eot is sufficient. Otherwise, we need
2404 * to create a new LOAD_PAYLOAD command with the same sources and a space
2405 * saved for the header. Using a new destination register not only makes sure
2406 * we have enough space, but it will make sure the dead code eliminator kills
2407 * the instruction that this will replace.
2408 */
2409 if (tex_inst->header_size != 0)
2410 return true;
2411
2412 fs_reg send_header = ibld.vgrf(BRW_REGISTER_TYPE_F,
2413 load_payload->sources + 1);
2414 fs_reg *new_sources =
2415 ralloc_array(mem_ctx, fs_reg, load_payload->sources + 1);
2416
2417 new_sources[0] = fs_reg();
2418 for (int i = 0; i < load_payload->sources; i++)
2419 new_sources[i+1] = load_payload->src[i];
2420
2421 /* The LOAD_PAYLOAD helper seems like the obvious choice here. However, it
2422 * requires a lot of information about the sources to appropriately figure
2423 * out the number of registers needed to be used. Given this stage in our
2424 * optimization, we may not have the appropriate GRFs required by
2425 * LOAD_PAYLOAD at this point (copy propagation). Therefore, we need to
2426 * manually emit the instruction.
2427 */
2428 fs_inst *new_load_payload = new(mem_ctx) fs_inst(SHADER_OPCODE_LOAD_PAYLOAD,
2429 load_payload->exec_size,
2430 send_header,
2431 new_sources,
2432 load_payload->sources + 1);
2433
2434 new_load_payload->regs_written = load_payload->regs_written + 1;
2435 new_load_payload->header_size = 1;
2436 tex_inst->mlen++;
2437 tex_inst->header_size = 1;
2438 tex_inst->insert_before(cfg->blocks[cfg->num_blocks - 1], new_load_payload);
2439 tex_inst->src[0] = send_header;
2440
2441 return true;
2442 }
2443
2444 bool
2445 fs_visitor::opt_register_renaming()
2446 {
2447 bool progress = false;
2448 int depth = 0;
2449
2450 int remap[alloc.count];
2451 memset(remap, -1, sizeof(int) * alloc.count);
2452
2453 foreach_block_and_inst(block, fs_inst, inst, cfg) {
2454 if (inst->opcode == BRW_OPCODE_IF || inst->opcode == BRW_OPCODE_DO) {
2455 depth++;
2456 } else if (inst->opcode == BRW_OPCODE_ENDIF ||
2457 inst->opcode == BRW_OPCODE_WHILE) {
2458 depth--;
2459 }
2460
2461 /* Rewrite instruction sources. */
2462 for (int i = 0; i < inst->sources; i++) {
2463 if (inst->src[i].file == VGRF &&
2464 remap[inst->src[i].nr] != -1 &&
2465 remap[inst->src[i].nr] != inst->src[i].nr) {
2466 inst->src[i].nr = remap[inst->src[i].nr];
2467 progress = true;
2468 }
2469 }
2470
2471 const int dst = inst->dst.nr;
2472
2473 if (depth == 0 &&
2474 inst->dst.file == VGRF &&
2475 alloc.sizes[inst->dst.nr] == inst->exec_size / 8 &&
2476 !inst->is_partial_write()) {
2477 if (remap[dst] == -1) {
2478 remap[dst] = dst;
2479 } else {
2480 remap[dst] = alloc.allocate(inst->exec_size / 8);
2481 inst->dst.nr = remap[dst];
2482 progress = true;
2483 }
2484 } else if (inst->dst.file == VGRF &&
2485 remap[dst] != -1 &&
2486 remap[dst] != dst) {
2487 inst->dst.nr = remap[dst];
2488 progress = true;
2489 }
2490 }
2491
2492 if (progress) {
2493 invalidate_live_intervals();
2494
2495 for (unsigned i = 0; i < ARRAY_SIZE(delta_xy); i++) {
2496 if (delta_xy[i].file == VGRF && remap[delta_xy[i].nr] != -1) {
2497 delta_xy[i].nr = remap[delta_xy[i].nr];
2498 }
2499 }
2500 }
2501
2502 return progress;
2503 }
2504
2505 /**
2506 * Remove redundant or useless discard jumps.
2507 *
2508 * For example, we can eliminate jumps in the following sequence:
2509 *
2510 * discard-jump (redundant with the next jump)
2511 * discard-jump (useless; jumps to the next instruction)
2512 * placeholder-halt
2513 */
2514 bool
2515 fs_visitor::opt_redundant_discard_jumps()
2516 {
2517 bool progress = false;
2518
2519 bblock_t *last_bblock = cfg->blocks[cfg->num_blocks - 1];
2520
2521 fs_inst *placeholder_halt = NULL;
2522 foreach_inst_in_block_reverse(fs_inst, inst, last_bblock) {
2523 if (inst->opcode == FS_OPCODE_PLACEHOLDER_HALT) {
2524 placeholder_halt = inst;
2525 break;
2526 }
2527 }
2528
2529 if (!placeholder_halt)
2530 return false;
2531
2532 /* Delete any HALTs immediately before the placeholder halt. */
2533 for (fs_inst *prev = (fs_inst *) placeholder_halt->prev;
2534 !prev->is_head_sentinel() && prev->opcode == FS_OPCODE_DISCARD_JUMP;
2535 prev = (fs_inst *) placeholder_halt->prev) {
2536 prev->remove(last_bblock);
2537 progress = true;
2538 }
2539
2540 if (progress)
2541 invalidate_live_intervals();
2542
2543 return progress;
2544 }
2545
2546 bool
2547 fs_visitor::compute_to_mrf()
2548 {
2549 bool progress = false;
2550 int next_ip = 0;
2551
2552 /* No MRFs on Gen >= 7. */
2553 if (devinfo->gen >= 7)
2554 return false;
2555
2556 calculate_live_intervals();
2557
2558 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2559 int ip = next_ip;
2560 next_ip++;
2561
2562 if (inst->opcode != BRW_OPCODE_MOV ||
2563 inst->is_partial_write() ||
2564 inst->dst.file != MRF || inst->src[0].file != VGRF ||
2565 inst->dst.type != inst->src[0].type ||
2566 inst->src[0].abs || inst->src[0].negate ||
2567 !inst->src[0].is_contiguous() ||
2568 inst->src[0].subreg_offset)
2569 continue;
2570
2571 /* Work out which hardware MRF registers are written by this
2572 * instruction.
2573 */
2574 int mrf_low = inst->dst.nr & ~BRW_MRF_COMPR4;
2575 int mrf_high;
2576 if (inst->dst.nr & BRW_MRF_COMPR4) {
2577 mrf_high = mrf_low + 4;
2578 } else if (inst->exec_size == 16) {
2579 mrf_high = mrf_low + 1;
2580 } else {
2581 mrf_high = mrf_low;
2582 }
2583
2584 /* Can't compute-to-MRF this GRF if someone else was going to
2585 * read it later.
2586 */
2587 if (this->virtual_grf_end[inst->src[0].nr] > ip)
2588 continue;
2589
2590 /* Found a move of a GRF to a MRF. Let's see if we can go
2591 * rewrite the thing that made this GRF to write into the MRF.
2592 */
2593 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2594 if (scan_inst->dst.file == VGRF &&
2595 scan_inst->dst.nr == inst->src[0].nr) {
2596 /* Found the last thing to write our reg we want to turn
2597 * into a compute-to-MRF.
2598 */
2599
2600 /* If this one instruction didn't populate all the
2601 * channels, bail. We might be able to rewrite everything
2602 * that writes that reg, but it would require smarter
2603 * tracking to delay the rewriting until complete success.
2604 */
2605 if (scan_inst->is_partial_write())
2606 break;
2607
2608 /* Things returning more than one register would need us to
2609 * understand coalescing out more than one MOV at a time.
2610 */
2611 if (scan_inst->regs_written > scan_inst->exec_size / 8)
2612 break;
2613
2614 /* SEND instructions can't have MRF as a destination. */
2615 if (scan_inst->mlen)
2616 break;
2617
2618 if (devinfo->gen == 6) {
2619 /* gen6 math instructions must have the destination be
2620 * GRF, so no compute-to-MRF for them.
2621 */
2622 if (scan_inst->is_math()) {
2623 break;
2624 }
2625 }
2626
2627 if (scan_inst->dst.reg_offset == inst->src[0].reg_offset) {
2628 /* Found the creator of our MRF's source value. */
2629 scan_inst->dst.file = MRF;
2630 scan_inst->dst.nr = inst->dst.nr;
2631 scan_inst->saturate |= inst->saturate;
2632 inst->remove(block);
2633 progress = true;
2634 }
2635 break;
2636 }
2637
2638 /* We don't handle control flow here. Most computation of
2639 * values that end up in MRFs are shortly before the MRF
2640 * write anyway.
2641 */
2642 if (block->start() == scan_inst)
2643 break;
2644
2645 /* You can't read from an MRF, so if someone else reads our
2646 * MRF's source GRF that we wanted to rewrite, that stops us.
2647 */
2648 bool interfered = false;
2649 for (int i = 0; i < scan_inst->sources; i++) {
2650 if (scan_inst->src[i].file == VGRF &&
2651 scan_inst->src[i].nr == inst->src[0].nr &&
2652 scan_inst->src[i].reg_offset == inst->src[0].reg_offset) {
2653 interfered = true;
2654 }
2655 }
2656 if (interfered)
2657 break;
2658
2659 if (scan_inst->dst.file == MRF) {
2660 /* If somebody else writes our MRF here, we can't
2661 * compute-to-MRF before that.
2662 */
2663 int scan_mrf_low = scan_inst->dst.nr & ~BRW_MRF_COMPR4;
2664 int scan_mrf_high;
2665
2666 if (scan_inst->dst.nr & BRW_MRF_COMPR4) {
2667 scan_mrf_high = scan_mrf_low + 4;
2668 } else if (scan_inst->exec_size == 16) {
2669 scan_mrf_high = scan_mrf_low + 1;
2670 } else {
2671 scan_mrf_high = scan_mrf_low;
2672 }
2673
2674 if (mrf_low == scan_mrf_low ||
2675 mrf_low == scan_mrf_high ||
2676 mrf_high == scan_mrf_low ||
2677 mrf_high == scan_mrf_high) {
2678 break;
2679 }
2680 }
2681
2682 if (scan_inst->mlen > 0 && scan_inst->base_mrf != -1) {
2683 /* Found a SEND instruction, which means that there are
2684 * live values in MRFs from base_mrf to base_mrf +
2685 * scan_inst->mlen - 1. Don't go pushing our MRF write up
2686 * above it.
2687 */
2688 if (mrf_low >= scan_inst->base_mrf &&
2689 mrf_low < scan_inst->base_mrf + scan_inst->mlen) {
2690 break;
2691 }
2692 if (mrf_high >= scan_inst->base_mrf &&
2693 mrf_high < scan_inst->base_mrf + scan_inst->mlen) {
2694 break;
2695 }
2696 }
2697 }
2698 }
2699
2700 if (progress)
2701 invalidate_live_intervals();
2702
2703 return progress;
2704 }
2705
2706 /**
2707 * Eliminate FIND_LIVE_CHANNEL instructions occurring outside any control
2708 * flow. We could probably do better here with some form of divergence
2709 * analysis.
2710 */
2711 bool
2712 fs_visitor::eliminate_find_live_channel()
2713 {
2714 bool progress = false;
2715 unsigned depth = 0;
2716
2717 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
2718 switch (inst->opcode) {
2719 case BRW_OPCODE_IF:
2720 case BRW_OPCODE_DO:
2721 depth++;
2722 break;
2723
2724 case BRW_OPCODE_ENDIF:
2725 case BRW_OPCODE_WHILE:
2726 depth--;
2727 break;
2728
2729 case FS_OPCODE_DISCARD_JUMP:
2730 /* This can potentially make control flow non-uniform until the end
2731 * of the program.
2732 */
2733 return progress;
2734
2735 case SHADER_OPCODE_FIND_LIVE_CHANNEL:
2736 if (depth == 0) {
2737 inst->opcode = BRW_OPCODE_MOV;
2738 inst->src[0] = fs_reg(0u);
2739 inst->sources = 1;
2740 inst->force_writemask_all = true;
2741 progress = true;
2742 }
2743 break;
2744
2745 default:
2746 break;
2747 }
2748 }
2749
2750 return progress;
2751 }
2752
2753 /**
2754 * Once we've generated code, try to convert normal FS_OPCODE_FB_WRITE
2755 * instructions to FS_OPCODE_REP_FB_WRITE.
2756 */
2757 void
2758 fs_visitor::emit_repclear_shader()
2759 {
2760 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
2761 int base_mrf = 1;
2762 int color_mrf = base_mrf + 2;
2763
2764 fs_inst *mov = bld.exec_all().group(4, 0)
2765 .MOV(brw_message_reg(color_mrf),
2766 fs_reg(UNIFORM, 0, BRW_REGISTER_TYPE_F));
2767
2768 fs_inst *write;
2769 if (key->nr_color_regions == 1) {
2770 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2771 write->saturate = key->clamp_fragment_color;
2772 write->base_mrf = color_mrf;
2773 write->target = 0;
2774 write->header_size = 0;
2775 write->mlen = 1;
2776 } else {
2777 assume(key->nr_color_regions > 0);
2778 for (int i = 0; i < key->nr_color_regions; ++i) {
2779 write = bld.emit(FS_OPCODE_REP_FB_WRITE);
2780 write->saturate = key->clamp_fragment_color;
2781 write->base_mrf = base_mrf;
2782 write->target = i;
2783 write->header_size = 2;
2784 write->mlen = 3;
2785 }
2786 }
2787 write->eot = true;
2788
2789 calculate_cfg();
2790
2791 assign_constant_locations();
2792 assign_curb_setup();
2793
2794 /* Now that we have the uniform assigned, go ahead and force it to a vec4. */
2795 assert(mov->src[0].file == FIXED_GRF);
2796 mov->src[0] = brw_vec4_grf(mov->src[0].nr, 0);
2797 }
2798
2799 /**
2800 * Walks through basic blocks, looking for repeated MRF writes and
2801 * removing the later ones.
2802 */
2803 bool
2804 fs_visitor::remove_duplicate_mrf_writes()
2805 {
2806 fs_inst *last_mrf_move[BRW_MAX_MRF(devinfo->gen)];
2807 bool progress = false;
2808
2809 /* Need to update the MRF tracking for compressed instructions. */
2810 if (dispatch_width == 16)
2811 return false;
2812
2813 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2814
2815 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
2816 if (inst->is_control_flow()) {
2817 memset(last_mrf_move, 0, sizeof(last_mrf_move));
2818 }
2819
2820 if (inst->opcode == BRW_OPCODE_MOV &&
2821 inst->dst.file == MRF) {
2822 fs_inst *prev_inst = last_mrf_move[inst->dst.nr];
2823 if (prev_inst && inst->equals(prev_inst)) {
2824 inst->remove(block);
2825 progress = true;
2826 continue;
2827 }
2828 }
2829
2830 /* Clear out the last-write records for MRFs that were overwritten. */
2831 if (inst->dst.file == MRF) {
2832 last_mrf_move[inst->dst.nr] = NULL;
2833 }
2834
2835 if (inst->mlen > 0 && inst->base_mrf != -1) {
2836 /* Found a SEND instruction, which will include two or fewer
2837 * implied MRF writes. We could do better here.
2838 */
2839 for (int i = 0; i < implied_mrf_writes(inst); i++) {
2840 last_mrf_move[inst->base_mrf + i] = NULL;
2841 }
2842 }
2843
2844 /* Clear out any MRF move records whose sources got overwritten. */
2845 if (inst->dst.file == VGRF) {
2846 for (unsigned int i = 0; i < ARRAY_SIZE(last_mrf_move); i++) {
2847 if (last_mrf_move[i] &&
2848 last_mrf_move[i]->src[0].nr == inst->dst.nr) {
2849 last_mrf_move[i] = NULL;
2850 }
2851 }
2852 }
2853
2854 if (inst->opcode == BRW_OPCODE_MOV &&
2855 inst->dst.file == MRF &&
2856 inst->src[0].file == VGRF &&
2857 !inst->is_partial_write()) {
2858 last_mrf_move[inst->dst.nr] = inst;
2859 }
2860 }
2861
2862 if (progress)
2863 invalidate_live_intervals();
2864
2865 return progress;
2866 }
2867
2868 static void
2869 clear_deps_for_inst_src(fs_inst *inst, bool *deps, int first_grf, int grf_len)
2870 {
2871 /* Clear the flag for registers that actually got read (as expected). */
2872 for (int i = 0; i < inst->sources; i++) {
2873 int grf;
2874 if (inst->src[i].file == VGRF || inst->src[i].file == FIXED_GRF) {
2875 grf = inst->src[i].nr;
2876 } else {
2877 continue;
2878 }
2879
2880 if (grf >= first_grf &&
2881 grf < first_grf + grf_len) {
2882 deps[grf - first_grf] = false;
2883 if (inst->exec_size == 16)
2884 deps[grf - first_grf + 1] = false;
2885 }
2886 }
2887 }
2888
2889 /**
2890 * Implements this workaround for the original 965:
2891 *
2892 * "[DevBW, DevCL] Implementation Restrictions: As the hardware does not
2893 * check for post destination dependencies on this instruction, software
2894 * must ensure that there is no destination hazard for the case of ‘write
2895 * followed by a posted write’ shown in the following example.
2896 *
2897 * 1. mov r3 0
2898 * 2. send r3.xy <rest of send instruction>
2899 * 3. mov r2 r3
2900 *
2901 * Due to no post-destination dependency check on the ‘send’, the above
2902 * code sequence could have two instructions (1 and 2) in flight at the
2903 * same time that both consider ‘r3’ as the target of their final writes.
2904 */
2905 void
2906 fs_visitor::insert_gen4_pre_send_dependency_workarounds(bblock_t *block,
2907 fs_inst *inst)
2908 {
2909 int write_len = inst->regs_written;
2910 int first_write_grf = inst->dst.nr;
2911 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2912 assert(write_len < (int)sizeof(needs_dep) - 1);
2913
2914 memset(needs_dep, false, sizeof(needs_dep));
2915 memset(needs_dep, true, write_len);
2916
2917 clear_deps_for_inst_src(inst, needs_dep, first_write_grf, write_len);
2918
2919 /* Walk backwards looking for writes to registers we're writing which
2920 * aren't read since being written. If we hit the start of the program,
2921 * we assume that there are no outstanding dependencies on entry to the
2922 * program.
2923 */
2924 foreach_inst_in_block_reverse_starting_from(fs_inst, scan_inst, inst) {
2925 /* If we hit control flow, assume that there *are* outstanding
2926 * dependencies, and force their cleanup before our instruction.
2927 */
2928 if (block->start() == scan_inst) {
2929 for (int i = 0; i < write_len; i++) {
2930 if (needs_dep[i])
2931 DEP_RESOLVE_MOV(fs_builder(this, block, inst),
2932 first_write_grf + i);
2933 }
2934 return;
2935 }
2936
2937 /* We insert our reads as late as possible on the assumption that any
2938 * instruction but a MOV that might have left us an outstanding
2939 * dependency has more latency than a MOV.
2940 */
2941 if (scan_inst->dst.file == VGRF) {
2942 for (int i = 0; i < scan_inst->regs_written; i++) {
2943 int reg = scan_inst->dst.nr + i;
2944
2945 if (reg >= first_write_grf &&
2946 reg < first_write_grf + write_len &&
2947 needs_dep[reg - first_write_grf]) {
2948 DEP_RESOLVE_MOV(fs_builder(this, block, inst), reg);
2949 needs_dep[reg - first_write_grf] = false;
2950 if (scan_inst->exec_size == 16)
2951 needs_dep[reg - first_write_grf + 1] = false;
2952 }
2953 }
2954 }
2955
2956 /* Clear the flag for registers that actually got read (as expected). */
2957 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
2958
2959 /* Continue the loop only if we haven't resolved all the dependencies */
2960 int i;
2961 for (i = 0; i < write_len; i++) {
2962 if (needs_dep[i])
2963 break;
2964 }
2965 if (i == write_len)
2966 return;
2967 }
2968 }
2969
2970 /**
2971 * Implements this workaround for the original 965:
2972 *
2973 * "[DevBW, DevCL] Errata: A destination register from a send can not be
2974 * used as a destination register until after it has been sourced by an
2975 * instruction with a different destination register.
2976 */
2977 void
2978 fs_visitor::insert_gen4_post_send_dependency_workarounds(bblock_t *block, fs_inst *inst)
2979 {
2980 int write_len = inst->regs_written;
2981 int first_write_grf = inst->dst.nr;
2982 bool needs_dep[BRW_MAX_MRF(devinfo->gen)];
2983 assert(write_len < (int)sizeof(needs_dep) - 1);
2984
2985 memset(needs_dep, false, sizeof(needs_dep));
2986 memset(needs_dep, true, write_len);
2987 /* Walk forwards looking for writes to registers we're writing which aren't
2988 * read before being written.
2989 */
2990 foreach_inst_in_block_starting_from(fs_inst, scan_inst, inst) {
2991 /* If we hit control flow, force resolve all remaining dependencies. */
2992 if (block->end() == scan_inst) {
2993 for (int i = 0; i < write_len; i++) {
2994 if (needs_dep[i])
2995 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
2996 first_write_grf + i);
2997 }
2998 return;
2999 }
3000
3001 /* Clear the flag for registers that actually got read (as expected). */
3002 clear_deps_for_inst_src(scan_inst, needs_dep, first_write_grf, write_len);
3003
3004 /* We insert our reads as late as possible since they're reading the
3005 * result of a SEND, which has massive latency.
3006 */
3007 if (scan_inst->dst.file == VGRF &&
3008 scan_inst->dst.nr >= first_write_grf &&
3009 scan_inst->dst.nr < first_write_grf + write_len &&
3010 needs_dep[scan_inst->dst.nr - first_write_grf]) {
3011 DEP_RESOLVE_MOV(fs_builder(this, block, scan_inst),
3012 scan_inst->dst.nr);
3013 needs_dep[scan_inst->dst.nr - first_write_grf] = false;
3014 }
3015
3016 /* Continue the loop only if we haven't resolved all the dependencies */
3017 int i;
3018 for (i = 0; i < write_len; i++) {
3019 if (needs_dep[i])
3020 break;
3021 }
3022 if (i == write_len)
3023 return;
3024 }
3025 }
3026
3027 void
3028 fs_visitor::insert_gen4_send_dependency_workarounds()
3029 {
3030 if (devinfo->gen != 4 || devinfo->is_g4x)
3031 return;
3032
3033 bool progress = false;
3034
3035 /* Note that we're done with register allocation, so GRF fs_regs always
3036 * have a .reg_offset of 0.
3037 */
3038
3039 foreach_block_and_inst(block, fs_inst, inst, cfg) {
3040 if (inst->mlen != 0 && inst->dst.file == VGRF) {
3041 insert_gen4_pre_send_dependency_workarounds(block, inst);
3042 insert_gen4_post_send_dependency_workarounds(block, inst);
3043 progress = true;
3044 }
3045 }
3046
3047 if (progress)
3048 invalidate_live_intervals();
3049 }
3050
3051 /**
3052 * Turns the generic expression-style uniform pull constant load instruction
3053 * into a hardware-specific series of instructions for loading a pull
3054 * constant.
3055 *
3056 * The expression style allows the CSE pass before this to optimize out
3057 * repeated loads from the same offset, and gives the pre-register-allocation
3058 * scheduling full flexibility, while the conversion to native instructions
3059 * allows the post-register-allocation scheduler the best information
3060 * possible.
3061 *
3062 * Note that execution masking for setting up pull constant loads is special:
3063 * the channels that need to be written are unrelated to the current execution
3064 * mask, since a later instruction will use one of the result channels as a
3065 * source operand for all 8 or 16 of its channels.
3066 */
3067 void
3068 fs_visitor::lower_uniform_pull_constant_loads()
3069 {
3070 foreach_block_and_inst (block, fs_inst, inst, cfg) {
3071 if (inst->opcode != FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD)
3072 continue;
3073
3074 if (devinfo->gen >= 7) {
3075 /* The offset arg before was a vec4-aligned byte offset. We need to
3076 * turn it into a dword offset.
3077 */
3078 fs_reg const_offset_reg = inst->src[1];
3079 assert(const_offset_reg.file == IMM &&
3080 const_offset_reg.type == BRW_REGISTER_TYPE_UD);
3081 const_offset_reg.ud /= 4;
3082
3083 fs_reg payload, offset;
3084 if (devinfo->gen >= 9) {
3085 /* We have to use a message header on Skylake to get SIMD4x2
3086 * mode. Reserve space for the register.
3087 */
3088 offset = payload = fs_reg(VGRF, alloc.allocate(2));
3089 offset.reg_offset++;
3090 inst->mlen = 2;
3091 } else {
3092 offset = payload = fs_reg(VGRF, alloc.allocate(1));
3093 inst->mlen = 1;
3094 }
3095
3096 /* This is actually going to be a MOV, but since only the first dword
3097 * is accessed, we have a special opcode to do just that one. Note
3098 * that this needs to be an operation that will be considered a def
3099 * by live variable analysis, or register allocation will explode.
3100 */
3101 fs_inst *setup = new(mem_ctx) fs_inst(FS_OPCODE_SET_SIMD4X2_OFFSET,
3102 8, offset, const_offset_reg);
3103 setup->force_writemask_all = true;
3104
3105 setup->ir = inst->ir;
3106 setup->annotation = inst->annotation;
3107 inst->insert_before(block, setup);
3108
3109 /* Similarly, this will only populate the first 4 channels of the
3110 * result register (since we only use smear values from 0-3), but we
3111 * don't tell the optimizer.
3112 */
3113 inst->opcode = FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD_GEN7;
3114 inst->src[1] = payload;
3115 inst->base_mrf = -1;
3116
3117 invalidate_live_intervals();
3118 } else {
3119 /* Before register allocation, we didn't tell the scheduler about the
3120 * MRF we use. We know it's safe to use this MRF because nothing
3121 * else does except for register spill/unspill, which generates and
3122 * uses its MRF within a single IR instruction.
3123 */
3124 inst->base_mrf = FIRST_PULL_LOAD_MRF(devinfo->gen) + 1;
3125 inst->mlen = 1;
3126 }
3127 }
3128 }
3129
3130 bool
3131 fs_visitor::lower_load_payload()
3132 {
3133 bool progress = false;
3134
3135 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
3136 if (inst->opcode != SHADER_OPCODE_LOAD_PAYLOAD)
3137 continue;
3138
3139 assert(inst->dst.file == MRF || inst->dst.file == VGRF);
3140 assert(inst->saturate == false);
3141 fs_reg dst = inst->dst;
3142
3143 /* Get rid of COMPR4. We'll add it back in if we need it */
3144 if (dst.file == MRF)
3145 dst.nr = dst.nr & ~BRW_MRF_COMPR4;
3146
3147 const fs_builder ibld(this, block, inst);
3148 const fs_builder hbld = ibld.exec_all().group(8, 0);
3149
3150 for (uint8_t i = 0; i < inst->header_size; i++) {
3151 if (inst->src[i].file != BAD_FILE) {
3152 fs_reg mov_dst = retype(dst, BRW_REGISTER_TYPE_UD);
3153 fs_reg mov_src = retype(inst->src[i], BRW_REGISTER_TYPE_UD);
3154 hbld.MOV(mov_dst, mov_src);
3155 }
3156 dst = offset(dst, hbld, 1);
3157 }
3158
3159 if (inst->dst.file == MRF && (inst->dst.nr & BRW_MRF_COMPR4) &&
3160 inst->exec_size > 8) {
3161 /* In this case, the payload portion of the LOAD_PAYLOAD isn't
3162 * a straightforward copy. Instead, the result of the
3163 * LOAD_PAYLOAD is treated as interleaved and the first four
3164 * non-header sources are unpacked as:
3165 *
3166 * m + 0: r0
3167 * m + 1: g0
3168 * m + 2: b0
3169 * m + 3: a0
3170 * m + 4: r1
3171 * m + 5: g1
3172 * m + 6: b1
3173 * m + 7: a1
3174 *
3175 * This is used for gen <= 5 fb writes.
3176 */
3177 assert(inst->exec_size == 16);
3178 assert(inst->header_size + 4 <= inst->sources);
3179 for (uint8_t i = inst->header_size; i < inst->header_size + 4; i++) {
3180 if (inst->src[i].file != BAD_FILE) {
3181 if (devinfo->has_compr4) {
3182 fs_reg compr4_dst = retype(dst, inst->src[i].type);
3183 compr4_dst.nr |= BRW_MRF_COMPR4;
3184 ibld.MOV(compr4_dst, inst->src[i]);
3185 } else {
3186 /* Platform doesn't have COMPR4. We have to fake it */
3187 fs_reg mov_dst = retype(dst, inst->src[i].type);
3188 ibld.half(0).MOV(mov_dst, half(inst->src[i], 0));
3189 mov_dst.nr += 4;
3190 ibld.half(1).MOV(mov_dst, half(inst->src[i], 1));
3191 }
3192 }
3193
3194 dst.nr++;
3195 }
3196
3197 /* The loop above only ever incremented us through the first set
3198 * of 4 registers. However, thanks to the magic of COMPR4, we
3199 * actually wrote to the first 8 registers, so we need to take
3200 * that into account now.
3201 */
3202 dst.nr += 4;
3203
3204 /* The COMPR4 code took care of the first 4 sources. We'll let
3205 * the regular path handle any remaining sources. Yes, we are
3206 * modifying the instruction but we're about to delete it so
3207 * this really doesn't hurt anything.
3208 */
3209 inst->header_size += 4;
3210 }
3211
3212 for (uint8_t i = inst->header_size; i < inst->sources; i++) {
3213 if (inst->src[i].file != BAD_FILE)
3214 ibld.MOV(retype(dst, inst->src[i].type), inst->src[i]);
3215 dst = offset(dst, ibld, 1);
3216 }
3217
3218 inst->remove(block);
3219 progress = true;
3220 }
3221
3222 if (progress)
3223 invalidate_live_intervals();
3224
3225 return progress;
3226 }
3227
3228 bool
3229 fs_visitor::lower_integer_multiplication()
3230 {
3231 bool progress = false;
3232
3233 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
3234 const fs_builder ibld(this, block, inst);
3235
3236 if (inst->opcode == BRW_OPCODE_MUL) {
3237 if (inst->dst.is_accumulator() ||
3238 (inst->dst.type != BRW_REGISTER_TYPE_D &&
3239 inst->dst.type != BRW_REGISTER_TYPE_UD))
3240 continue;
3241
3242 /* Gen8's MUL instruction can do a 32-bit x 32-bit -> 32-bit
3243 * operation directly, but CHV/BXT cannot.
3244 */
3245 if (devinfo->gen >= 8 &&
3246 !devinfo->is_cherryview && !devinfo->is_broxton)
3247 continue;
3248
3249 if (inst->src[1].file == IMM &&
3250 inst->src[1].ud < (1 << 16)) {
3251 /* The MUL instruction isn't commutative. On Gen <= 6, only the low
3252 * 16-bits of src0 are read, and on Gen >= 7 only the low 16-bits of
3253 * src1 are used.
3254 *
3255 * If multiplying by an immediate value that fits in 16-bits, do a
3256 * single MUL instruction with that value in the proper location.
3257 */
3258 if (devinfo->gen < 7) {
3259 fs_reg imm(VGRF, alloc.allocate(dispatch_width / 8),
3260 inst->dst.type);
3261 ibld.MOV(imm, inst->src[1]);
3262 ibld.MUL(inst->dst, imm, inst->src[0]);
3263 } else {
3264 ibld.MUL(inst->dst, inst->src[0], inst->src[1]);
3265 }
3266 } else {
3267 /* Gen < 8 (and some Gen8+ low-power parts like Cherryview) cannot
3268 * do 32-bit integer multiplication in one instruction, but instead
3269 * must do a sequence (which actually calculates a 64-bit result):
3270 *
3271 * mul(8) acc0<1>D g3<8,8,1>D g4<8,8,1>D
3272 * mach(8) null g3<8,8,1>D g4<8,8,1>D
3273 * mov(8) g2<1>D acc0<8,8,1>D
3274 *
3275 * But on Gen > 6, the ability to use second accumulator register
3276 * (acc1) for non-float data types was removed, preventing a simple
3277 * implementation in SIMD16. A 16-channel result can be calculated by
3278 * executing the three instructions twice in SIMD8, once with quarter
3279 * control of 1Q for the first eight channels and again with 2Q for
3280 * the second eight channels.
3281 *
3282 * Which accumulator register is implicitly accessed (by AccWrEnable
3283 * for instance) is determined by the quarter control. Unfortunately
3284 * Ivybridge (and presumably Baytrail) has a hardware bug in which an
3285 * implicit accumulator access by an instruction with 2Q will access
3286 * acc1 regardless of whether the data type is usable in acc1.
3287 *
3288 * Specifically, the 2Q mach(8) writes acc1 which does not exist for
3289 * integer data types.
3290 *
3291 * Since we only want the low 32-bits of the result, we can do two
3292 * 32-bit x 16-bit multiplies (like the mul and mach are doing), and
3293 * adjust the high result and add them (like the mach is doing):
3294 *
3295 * mul(8) g7<1>D g3<8,8,1>D g4.0<8,8,1>UW
3296 * mul(8) g8<1>D g3<8,8,1>D g4.1<8,8,1>UW
3297 * shl(8) g9<1>D g8<8,8,1>D 16D
3298 * add(8) g2<1>D g7<8,8,1>D g8<8,8,1>D
3299 *
3300 * We avoid the shl instruction by realizing that we only want to add
3301 * the low 16-bits of the "high" result to the high 16-bits of the
3302 * "low" result and using proper regioning on the add:
3303 *
3304 * mul(8) g7<1>D g3<8,8,1>D g4.0<16,8,2>UW
3305 * mul(8) g8<1>D g3<8,8,1>D g4.1<16,8,2>UW
3306 * add(8) g7.1<2>UW g7.1<16,8,2>UW g8<16,8,2>UW
3307 *
3308 * Since it does not use the (single) accumulator register, we can
3309 * schedule multi-component multiplications much better.
3310 */
3311
3312 fs_reg orig_dst = inst->dst;
3313 if (orig_dst.is_null() || orig_dst.file == MRF) {
3314 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
3315 inst->dst.type);
3316 }
3317 fs_reg low = inst->dst;
3318 fs_reg high(VGRF, alloc.allocate(dispatch_width / 8),
3319 inst->dst.type);
3320
3321 if (devinfo->gen >= 7) {
3322 fs_reg src1_0_w = inst->src[1];
3323 fs_reg src1_1_w = inst->src[1];
3324
3325 if (inst->src[1].file == IMM) {
3326 src1_0_w.ud &= 0xffff;
3327 src1_1_w.ud >>= 16;
3328 } else {
3329 src1_0_w.type = BRW_REGISTER_TYPE_UW;
3330 if (src1_0_w.stride != 0) {
3331 assert(src1_0_w.stride == 1);
3332 src1_0_w.stride = 2;
3333 }
3334
3335 src1_1_w.type = BRW_REGISTER_TYPE_UW;
3336 if (src1_1_w.stride != 0) {
3337 assert(src1_1_w.stride == 1);
3338 src1_1_w.stride = 2;
3339 }
3340 src1_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3341 }
3342 ibld.MUL(low, inst->src[0], src1_0_w);
3343 ibld.MUL(high, inst->src[0], src1_1_w);
3344 } else {
3345 fs_reg src0_0_w = inst->src[0];
3346 fs_reg src0_1_w = inst->src[0];
3347
3348 src0_0_w.type = BRW_REGISTER_TYPE_UW;
3349 if (src0_0_w.stride != 0) {
3350 assert(src0_0_w.stride == 1);
3351 src0_0_w.stride = 2;
3352 }
3353
3354 src0_1_w.type = BRW_REGISTER_TYPE_UW;
3355 if (src0_1_w.stride != 0) {
3356 assert(src0_1_w.stride == 1);
3357 src0_1_w.stride = 2;
3358 }
3359 src0_1_w.subreg_offset += type_sz(BRW_REGISTER_TYPE_UW);
3360
3361 ibld.MUL(low, src0_0_w, inst->src[1]);
3362 ibld.MUL(high, src0_1_w, inst->src[1]);
3363 }
3364
3365 fs_reg dst = inst->dst;
3366 dst.type = BRW_REGISTER_TYPE_UW;
3367 dst.subreg_offset = 2;
3368 dst.stride = 2;
3369
3370 high.type = BRW_REGISTER_TYPE_UW;
3371 high.stride = 2;
3372
3373 low.type = BRW_REGISTER_TYPE_UW;
3374 low.subreg_offset = 2;
3375 low.stride = 2;
3376
3377 ibld.ADD(dst, low, high);
3378
3379 if (inst->conditional_mod || orig_dst.file == MRF) {
3380 set_condmod(inst->conditional_mod,
3381 ibld.MOV(orig_dst, inst->dst));
3382 }
3383 }
3384
3385 } else if (inst->opcode == SHADER_OPCODE_MULH) {
3386 /* Should have been lowered to 8-wide. */
3387 assert(inst->exec_size <= 8);
3388 const fs_reg acc = retype(brw_acc_reg(inst->exec_size),
3389 inst->dst.type);
3390 fs_inst *mul = ibld.MUL(acc, inst->src[0], inst->src[1]);
3391 fs_inst *mach = ibld.MACH(inst->dst, inst->src[0], inst->src[1]);
3392
3393 if (devinfo->gen >= 8) {
3394 /* Until Gen8, integer multiplies read 32-bits from one source,
3395 * and 16-bits from the other, and relying on the MACH instruction
3396 * to generate the high bits of the result.
3397 *
3398 * On Gen8, the multiply instruction does a full 32x32-bit
3399 * multiply, but in order to do a 64-bit multiply we can simulate
3400 * the previous behavior and then use a MACH instruction.
3401 *
3402 * FINISHME: Don't use source modifiers on src1.
3403 */
3404 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
3405 mul->src[1].type == BRW_REGISTER_TYPE_UD);
3406 mul->src[1].type = (type_is_signed(mul->src[1].type) ?
3407 BRW_REGISTER_TYPE_W : BRW_REGISTER_TYPE_UW);
3408 mul->src[1].stride *= 2;
3409
3410 } else if (devinfo->gen == 7 && !devinfo->is_haswell &&
3411 inst->force_sechalf) {
3412 /* Among other things the quarter control bits influence which
3413 * accumulator register is used by the hardware for instructions
3414 * that access the accumulator implicitly (e.g. MACH). A
3415 * second-half instruction would normally map to acc1, which
3416 * doesn't exist on Gen7 and up (the hardware does emulate it for
3417 * floating-point instructions *only* by taking advantage of the
3418 * extra precision of acc0 not normally used for floating point
3419 * arithmetic).
3420 *
3421 * HSW and up are careful enough not to try to access an
3422 * accumulator register that doesn't exist, but on earlier Gen7
3423 * hardware we need to make sure that the quarter control bits are
3424 * zero to avoid non-deterministic behaviour and emit an extra MOV
3425 * to get the result masked correctly according to the current
3426 * channel enables.
3427 */
3428 mach->force_sechalf = false;
3429 mach->force_writemask_all = true;
3430 mach->dst = ibld.vgrf(inst->dst.type);
3431 ibld.MOV(inst->dst, mach->dst);
3432 }
3433 } else {
3434 continue;
3435 }
3436
3437 inst->remove(block);
3438 progress = true;
3439 }
3440
3441 if (progress)
3442 invalidate_live_intervals();
3443
3444 return progress;
3445 }
3446
3447 static void
3448 setup_color_payload(const fs_builder &bld, const brw_wm_prog_key *key,
3449 fs_reg *dst, fs_reg color, unsigned components)
3450 {
3451 if (key->clamp_fragment_color) {
3452 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
3453 assert(color.type == BRW_REGISTER_TYPE_F);
3454
3455 for (unsigned i = 0; i < components; i++)
3456 set_saturate(true,
3457 bld.MOV(offset(tmp, bld, i), offset(color, bld, i)));
3458
3459 color = tmp;
3460 }
3461
3462 for (unsigned i = 0; i < components; i++)
3463 dst[i] = offset(color, bld, i);
3464 }
3465
3466 static void
3467 lower_fb_write_logical_send(const fs_builder &bld, fs_inst *inst,
3468 const brw_wm_prog_data *prog_data,
3469 const brw_wm_prog_key *key,
3470 const fs_visitor::thread_payload &payload)
3471 {
3472 assert(inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].file == IMM);
3473 const brw_device_info *devinfo = bld.shader->devinfo;
3474 const fs_reg &color0 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR0];
3475 const fs_reg &color1 = inst->src[FB_WRITE_LOGICAL_SRC_COLOR1];
3476 const fs_reg &src0_alpha = inst->src[FB_WRITE_LOGICAL_SRC_SRC0_ALPHA];
3477 const fs_reg &src_depth = inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH];
3478 const fs_reg &dst_depth = inst->src[FB_WRITE_LOGICAL_SRC_DST_DEPTH];
3479 const fs_reg &src_stencil = inst->src[FB_WRITE_LOGICAL_SRC_SRC_STENCIL];
3480 fs_reg sample_mask = inst->src[FB_WRITE_LOGICAL_SRC_OMASK];
3481 const unsigned components =
3482 inst->src[FB_WRITE_LOGICAL_SRC_COMPONENTS].ud;
3483
3484 /* We can potentially have a message length of up to 15, so we have to set
3485 * base_mrf to either 0 or 1 in order to fit in m0..m15.
3486 */
3487 fs_reg sources[15];
3488 int header_size = 2, payload_header_size;
3489 unsigned length = 0;
3490
3491 /* From the Sandy Bridge PRM, volume 4, page 198:
3492 *
3493 * "Dispatched Pixel Enables. One bit per pixel indicating
3494 * which pixels were originally enabled when the thread was
3495 * dispatched. This field is only required for the end-of-
3496 * thread message and on all dual-source messages."
3497 */
3498 if (devinfo->gen >= 6 &&
3499 (devinfo->is_haswell || devinfo->gen >= 8 || !prog_data->uses_kill) &&
3500 color1.file == BAD_FILE &&
3501 key->nr_color_regions == 1) {
3502 header_size = 0;
3503 }
3504
3505 if (header_size != 0) {
3506 assert(header_size == 2);
3507 /* Allocate 2 registers for a header */
3508 length += 2;
3509 }
3510
3511 if (payload.aa_dest_stencil_reg) {
3512 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1));
3513 bld.group(8, 0).exec_all().annotate("FB write stencil/AA alpha")
3514 .MOV(sources[length],
3515 fs_reg(brw_vec8_grf(payload.aa_dest_stencil_reg, 0)));
3516 length++;
3517 }
3518
3519 if (prog_data->uses_omask) {
3520 sources[length] = fs_reg(VGRF, bld.shader->alloc.allocate(1),
3521 BRW_REGISTER_TYPE_UD);
3522
3523 /* Hand over gl_SampleMask. Only the lower 16 bits of each channel are
3524 * relevant. Since it's unsigned single words one vgrf is always
3525 * 16-wide, but only the lower or higher 8 channels will be used by the
3526 * hardware when doing a SIMD8 write depending on whether we have
3527 * selected the subspans for the first or second half respectively.
3528 */
3529 assert(sample_mask.file != BAD_FILE && type_sz(sample_mask.type) == 4);
3530 sample_mask.type = BRW_REGISTER_TYPE_UW;
3531 sample_mask.stride *= 2;
3532
3533 bld.exec_all().annotate("FB write oMask")
3534 .MOV(half(retype(sources[length], BRW_REGISTER_TYPE_UW),
3535 inst->force_sechalf),
3536 sample_mask);
3537 length++;
3538 }
3539
3540 payload_header_size = length;
3541
3542 if (src0_alpha.file != BAD_FILE) {
3543 /* FIXME: This is being passed at the wrong location in the payload and
3544 * doesn't work when gl_SampleMask and MRTs are used simultaneously.
3545 * It's supposed to be immediately before oMask but there seems to be no
3546 * reasonable way to pass them in the correct order because LOAD_PAYLOAD
3547 * requires header sources to form a contiguous segment at the beginning
3548 * of the message and src0_alpha has per-channel semantics.
3549 */
3550 setup_color_payload(bld, key, &sources[length], src0_alpha, 1);
3551 length++;
3552 }
3553
3554 setup_color_payload(bld, key, &sources[length], color0, components);
3555 length += 4;
3556
3557 if (color1.file != BAD_FILE) {
3558 setup_color_payload(bld, key, &sources[length], color1, components);
3559 length += 4;
3560 }
3561
3562 if (src_depth.file != BAD_FILE) {
3563 sources[length] = src_depth;
3564 length++;
3565 }
3566
3567 if (dst_depth.file != BAD_FILE) {
3568 sources[length] = dst_depth;
3569 length++;
3570 }
3571
3572 if (src_stencil.file != BAD_FILE) {
3573 assert(devinfo->gen >= 9);
3574 assert(bld.dispatch_width() != 16);
3575
3576 sources[length] = bld.vgrf(BRW_REGISTER_TYPE_UD);
3577 bld.exec_all().annotate("FB write OS")
3578 .emit(FS_OPCODE_PACK_STENCIL_REF, sources[length],
3579 retype(src_stencil, BRW_REGISTER_TYPE_UB));
3580 length++;
3581 }
3582
3583 fs_inst *load;
3584 if (devinfo->gen >= 7) {
3585 /* Send from the GRF */
3586 fs_reg payload = fs_reg(VGRF, -1, BRW_REGISTER_TYPE_F);
3587 load = bld.LOAD_PAYLOAD(payload, sources, length, payload_header_size);
3588 payload.nr = bld.shader->alloc.allocate(load->regs_written);
3589 load->dst = payload;
3590
3591 inst->src[0] = payload;
3592 inst->resize_sources(1);
3593 inst->base_mrf = -1;
3594 } else {
3595 /* Send from the MRF */
3596 load = bld.LOAD_PAYLOAD(fs_reg(MRF, 1, BRW_REGISTER_TYPE_F),
3597 sources, length, payload_header_size);
3598
3599 /* On pre-SNB, we have to interlace the color values. LOAD_PAYLOAD
3600 * will do this for us if we just give it a COMPR4 destination.
3601 */
3602 if (devinfo->gen < 6 && bld.dispatch_width() == 16)
3603 load->dst.nr |= BRW_MRF_COMPR4;
3604
3605 inst->resize_sources(0);
3606 inst->base_mrf = 1;
3607 }
3608
3609 inst->opcode = FS_OPCODE_FB_WRITE;
3610 inst->mlen = load->regs_written;
3611 inst->header_size = header_size;
3612 }
3613
3614 static void
3615 lower_sampler_logical_send_gen4(const fs_builder &bld, fs_inst *inst, opcode op,
3616 const fs_reg &coordinate,
3617 const fs_reg &shadow_c,
3618 const fs_reg &lod, const fs_reg &lod2,
3619 const fs_reg &sampler,
3620 unsigned coord_components,
3621 unsigned grad_components)
3622 {
3623 const bool has_lod = (op == SHADER_OPCODE_TXL || op == FS_OPCODE_TXB ||
3624 op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS);
3625 fs_reg msg_begin(MRF, 1, BRW_REGISTER_TYPE_F);
3626 fs_reg msg_end = msg_begin;
3627
3628 /* g0 header. */
3629 msg_end = offset(msg_end, bld.group(8, 0), 1);
3630
3631 for (unsigned i = 0; i < coord_components; i++)
3632 bld.MOV(retype(offset(msg_end, bld, i), coordinate.type),
3633 offset(coordinate, bld, i));
3634
3635 msg_end = offset(msg_end, bld, coord_components);
3636
3637 /* Messages other than SAMPLE and RESINFO in SIMD16 and TXD in SIMD8
3638 * require all three components to be present and zero if they are unused.
3639 */
3640 if (coord_components > 0 &&
3641 (has_lod || shadow_c.file != BAD_FILE ||
3642 (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8))) {
3643 for (unsigned i = coord_components; i < 3; i++)
3644 bld.MOV(offset(msg_end, bld, i), fs_reg(0.0f));
3645
3646 msg_end = offset(msg_end, bld, 3 - coord_components);
3647 }
3648
3649 if (op == SHADER_OPCODE_TXD) {
3650 /* TXD unsupported in SIMD16 mode. */
3651 assert(bld.dispatch_width() == 8);
3652
3653 /* the slots for u and v are always present, but r is optional */
3654 if (coord_components < 2)
3655 msg_end = offset(msg_end, bld, 2 - coord_components);
3656
3657 /* P = u, v, r
3658 * dPdx = dudx, dvdx, drdx
3659 * dPdy = dudy, dvdy, drdy
3660 *
3661 * 1-arg: Does not exist.
3662 *
3663 * 2-arg: dudx dvdx dudy dvdy
3664 * dPdx.x dPdx.y dPdy.x dPdy.y
3665 * m4 m5 m6 m7
3666 *
3667 * 3-arg: dudx dvdx drdx dudy dvdy drdy
3668 * dPdx.x dPdx.y dPdx.z dPdy.x dPdy.y dPdy.z
3669 * m5 m6 m7 m8 m9 m10
3670 */
3671 for (unsigned i = 0; i < grad_components; i++)
3672 bld.MOV(offset(msg_end, bld, i), offset(lod, bld, i));
3673
3674 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3675
3676 for (unsigned i = 0; i < grad_components; i++)
3677 bld.MOV(offset(msg_end, bld, i), offset(lod2, bld, i));
3678
3679 msg_end = offset(msg_end, bld, MAX2(grad_components, 2));
3680 }
3681
3682 if (has_lod) {
3683 /* Bias/LOD with shadow comparitor is unsupported in SIMD16 -- *Without*
3684 * shadow comparitor (including RESINFO) it's unsupported in SIMD8 mode.
3685 */
3686 assert(shadow_c.file != BAD_FILE ? bld.dispatch_width() == 8 :
3687 bld.dispatch_width() == 16);
3688
3689 const brw_reg_type type =
3690 (op == SHADER_OPCODE_TXF || op == SHADER_OPCODE_TXS ?
3691 BRW_REGISTER_TYPE_UD : BRW_REGISTER_TYPE_F);
3692 bld.MOV(retype(msg_end, type), lod);
3693 msg_end = offset(msg_end, bld, 1);
3694 }
3695
3696 if (shadow_c.file != BAD_FILE) {
3697 if (op == SHADER_OPCODE_TEX && bld.dispatch_width() == 8) {
3698 /* There's no plain shadow compare message, so we use shadow
3699 * compare with a bias of 0.0.
3700 */
3701 bld.MOV(msg_end, fs_reg(0.0f));
3702 msg_end = offset(msg_end, bld, 1);
3703 }
3704
3705 bld.MOV(msg_end, shadow_c);
3706 msg_end = offset(msg_end, bld, 1);
3707 }
3708
3709 inst->opcode = op;
3710 inst->src[0] = reg_undef;
3711 inst->src[1] = sampler;
3712 inst->resize_sources(2);
3713 inst->base_mrf = msg_begin.nr;
3714 inst->mlen = msg_end.nr - msg_begin.nr;
3715 inst->header_size = 1;
3716 }
3717
3718 static void
3719 lower_sampler_logical_send_gen5(const fs_builder &bld, fs_inst *inst, opcode op,
3720 fs_reg coordinate,
3721 const fs_reg &shadow_c,
3722 fs_reg lod, fs_reg lod2,
3723 const fs_reg &sample_index,
3724 const fs_reg &sampler,
3725 const fs_reg &offset_value,
3726 unsigned coord_components,
3727 unsigned grad_components)
3728 {
3729 fs_reg message(MRF, 2, BRW_REGISTER_TYPE_F);
3730 fs_reg msg_coords = message;
3731 unsigned header_size = 0;
3732
3733 if (offset_value.file != BAD_FILE) {
3734 /* The offsets set up by the visitor are in the m1 header, so we can't
3735 * go headerless.
3736 */
3737 header_size = 1;
3738 message.nr--;
3739 }
3740
3741 for (unsigned i = 0; i < coord_components; i++) {
3742 bld.MOV(retype(offset(msg_coords, bld, i), coordinate.type), coordinate);
3743 coordinate = offset(coordinate, bld, 1);
3744 }
3745 fs_reg msg_end = offset(msg_coords, bld, coord_components);
3746 fs_reg msg_lod = offset(msg_coords, bld, 4);
3747
3748 if (shadow_c.file != BAD_FILE) {
3749 fs_reg msg_shadow = msg_lod;
3750 bld.MOV(msg_shadow, shadow_c);
3751 msg_lod = offset(msg_shadow, bld, 1);
3752 msg_end = msg_lod;
3753 }
3754
3755 switch (op) {
3756 case SHADER_OPCODE_TXL:
3757 case FS_OPCODE_TXB:
3758 bld.MOV(msg_lod, lod);
3759 msg_end = offset(msg_lod, bld, 1);
3760 break;
3761 case SHADER_OPCODE_TXD:
3762 /**
3763 * P = u, v, r
3764 * dPdx = dudx, dvdx, drdx
3765 * dPdy = dudy, dvdy, drdy
3766 *
3767 * Load up these values:
3768 * - dudx dudy dvdx dvdy drdx drdy
3769 * - dPdx.x dPdy.x dPdx.y dPdy.y dPdx.z dPdy.z
3770 */
3771 msg_end = msg_lod;
3772 for (unsigned i = 0; i < grad_components; i++) {
3773 bld.MOV(msg_end, lod);
3774 lod = offset(lod, bld, 1);
3775 msg_end = offset(msg_end, bld, 1);
3776
3777 bld.MOV(msg_end, lod2);
3778 lod2 = offset(lod2, bld, 1);
3779 msg_end = offset(msg_end, bld, 1);
3780 }
3781 break;
3782 case SHADER_OPCODE_TXS:
3783 msg_lod = retype(msg_end, BRW_REGISTER_TYPE_UD);
3784 bld.MOV(msg_lod, lod);
3785 msg_end = offset(msg_lod, bld, 1);
3786 break;
3787 case SHADER_OPCODE_TXF:
3788 msg_lod = offset(msg_coords, bld, 3);
3789 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), lod);
3790 msg_end = offset(msg_lod, bld, 1);
3791 break;
3792 case SHADER_OPCODE_TXF_CMS:
3793 msg_lod = offset(msg_coords, bld, 3);
3794 /* lod */
3795 bld.MOV(retype(msg_lod, BRW_REGISTER_TYPE_UD), fs_reg(0u));
3796 /* sample index */
3797 bld.MOV(retype(offset(msg_lod, bld, 1), BRW_REGISTER_TYPE_UD), sample_index);
3798 msg_end = offset(msg_lod, bld, 2);
3799 break;
3800 default:
3801 break;
3802 }
3803
3804 inst->opcode = op;
3805 inst->src[0] = reg_undef;
3806 inst->src[1] = sampler;
3807 inst->resize_sources(2);
3808 inst->base_mrf = message.nr;
3809 inst->mlen = msg_end.nr - message.nr;
3810 inst->header_size = header_size;
3811
3812 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
3813 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
3814 }
3815
3816 static bool
3817 is_high_sampler(const struct brw_device_info *devinfo, const fs_reg &sampler)
3818 {
3819 if (devinfo->gen < 8 && !devinfo->is_haswell)
3820 return false;
3821
3822 return sampler.file != IMM || sampler.ud >= 16;
3823 }
3824
3825 static void
3826 lower_sampler_logical_send_gen7(const fs_builder &bld, fs_inst *inst, opcode op,
3827 fs_reg coordinate,
3828 const fs_reg &shadow_c,
3829 fs_reg lod, fs_reg lod2,
3830 const fs_reg &sample_index,
3831 const fs_reg &mcs, const fs_reg &sampler,
3832 fs_reg offset_value,
3833 unsigned coord_components,
3834 unsigned grad_components)
3835 {
3836 const brw_device_info *devinfo = bld.shader->devinfo;
3837 int reg_width = bld.dispatch_width() / 8;
3838 unsigned header_size = 0, length = 0;
3839 fs_reg sources[MAX_SAMPLER_MESSAGE_SIZE];
3840 for (unsigned i = 0; i < ARRAY_SIZE(sources); i++)
3841 sources[i] = bld.vgrf(BRW_REGISTER_TYPE_F);
3842
3843 if (op == SHADER_OPCODE_TG4 || op == SHADER_OPCODE_TG4_OFFSET ||
3844 offset_value.file != BAD_FILE ||
3845 is_high_sampler(devinfo, sampler)) {
3846 /* For general texture offsets (no txf workaround), we need a header to
3847 * put them in. Note that we're only reserving space for it in the
3848 * message payload as it will be initialized implicitly by the
3849 * generator.
3850 *
3851 * TG4 needs to place its channel select in the header, for interaction
3852 * with ARB_texture_swizzle. The sampler index is only 4-bits, so for
3853 * larger sampler numbers we need to offset the Sampler State Pointer in
3854 * the header.
3855 */
3856 header_size = 1;
3857 sources[0] = fs_reg();
3858 length++;
3859 }
3860
3861 if (shadow_c.file != BAD_FILE) {
3862 bld.MOV(sources[length], shadow_c);
3863 length++;
3864 }
3865
3866 bool coordinate_done = false;
3867
3868 /* The sampler can only meaningfully compute LOD for fragment shader
3869 * messages. For all other stages, we change the opcode to TXL and
3870 * hardcode the LOD to 0.
3871 */
3872 if (bld.shader->stage != MESA_SHADER_FRAGMENT &&
3873 op == SHADER_OPCODE_TEX) {
3874 op = SHADER_OPCODE_TXL;
3875 lod = fs_reg(0.0f);
3876 }
3877
3878 /* Set up the LOD info */
3879 switch (op) {
3880 case FS_OPCODE_TXB:
3881 case SHADER_OPCODE_TXL:
3882 bld.MOV(sources[length], lod);
3883 length++;
3884 break;
3885 case SHADER_OPCODE_TXD:
3886 /* TXD should have been lowered in SIMD16 mode. */
3887 assert(bld.dispatch_width() == 8);
3888
3889 /* Load dPdx and the coordinate together:
3890 * [hdr], [ref], x, dPdx.x, dPdy.x, y, dPdx.y, dPdy.y, z, dPdx.z, dPdy.z
3891 */
3892 for (unsigned i = 0; i < coord_components; i++) {
3893 bld.MOV(sources[length], coordinate);
3894 coordinate = offset(coordinate, bld, 1);
3895 length++;
3896
3897 /* For cube map array, the coordinate is (u,v,r,ai) but there are
3898 * only derivatives for (u, v, r).
3899 */
3900 if (i < grad_components) {
3901 bld.MOV(sources[length], lod);
3902 lod = offset(lod, bld, 1);
3903 length++;
3904
3905 bld.MOV(sources[length], lod2);
3906 lod2 = offset(lod2, bld, 1);
3907 length++;
3908 }
3909 }
3910
3911 coordinate_done = true;
3912 break;
3913 case SHADER_OPCODE_TXS:
3914 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), lod);
3915 length++;
3916 break;
3917 case SHADER_OPCODE_TXF:
3918 /* Unfortunately, the parameters for LD are intermixed: u, lod, v, r.
3919 * On Gen9 they are u, v, lod, r
3920 */
3921 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3922 coordinate = offset(coordinate, bld, 1);
3923 length++;
3924
3925 if (devinfo->gen >= 9) {
3926 if (coord_components >= 2) {
3927 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3928 coordinate = offset(coordinate, bld, 1);
3929 }
3930 length++;
3931 }
3932
3933 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), lod);
3934 length++;
3935
3936 for (unsigned i = devinfo->gen >= 9 ? 2 : 1; i < coord_components; i++) {
3937 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3938 coordinate = offset(coordinate, bld, 1);
3939 length++;
3940 }
3941
3942 coordinate_done = true;
3943 break;
3944 case SHADER_OPCODE_TXF_CMS:
3945 case SHADER_OPCODE_TXF_CMS_W:
3946 case SHADER_OPCODE_TXF_UMS:
3947 case SHADER_OPCODE_TXF_MCS:
3948 if (op == SHADER_OPCODE_TXF_UMS ||
3949 op == SHADER_OPCODE_TXF_CMS ||
3950 op == SHADER_OPCODE_TXF_CMS_W) {
3951 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), sample_index);
3952 length++;
3953 }
3954
3955 if (op == SHADER_OPCODE_TXF_CMS || op == SHADER_OPCODE_TXF_CMS_W) {
3956 /* Data from the multisample control surface. */
3957 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD), mcs);
3958 length++;
3959
3960 /* On Gen9+ we'll use ld2dms_w instead which has two registers for
3961 * the MCS data.
3962 */
3963 if (op == SHADER_OPCODE_TXF_CMS_W) {
3964 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_UD),
3965 mcs.file == IMM ?
3966 mcs :
3967 offset(mcs, bld, 1));
3968 length++;
3969 }
3970 }
3971
3972 /* There is no offsetting for this message; just copy in the integer
3973 * texture coordinates.
3974 */
3975 for (unsigned i = 0; i < coord_components; i++) {
3976 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), coordinate);
3977 coordinate = offset(coordinate, bld, 1);
3978 length++;
3979 }
3980
3981 coordinate_done = true;
3982 break;
3983 case SHADER_OPCODE_TG4_OFFSET:
3984 /* gather4_po_c should have been lowered in SIMD16 mode. */
3985 assert(bld.dispatch_width() == 8 || shadow_c.file == BAD_FILE);
3986
3987 /* More crazy intermixing */
3988 for (unsigned i = 0; i < 2; i++) { /* u, v */
3989 bld.MOV(sources[length], coordinate);
3990 coordinate = offset(coordinate, bld, 1);
3991 length++;
3992 }
3993
3994 for (unsigned i = 0; i < 2; i++) { /* offu, offv */
3995 bld.MOV(retype(sources[length], BRW_REGISTER_TYPE_D), offset_value);
3996 offset_value = offset(offset_value, bld, 1);
3997 length++;
3998 }
3999
4000 if (coord_components == 3) { /* r if present */
4001 bld.MOV(sources[length], coordinate);
4002 coordinate = offset(coordinate, bld, 1);
4003 length++;
4004 }
4005
4006 coordinate_done = true;
4007 break;
4008 default:
4009 break;
4010 }
4011
4012 /* Set up the coordinate (except for cases where it was done above) */
4013 if (!coordinate_done) {
4014 for (unsigned i = 0; i < coord_components; i++) {
4015 bld.MOV(sources[length], coordinate);
4016 coordinate = offset(coordinate, bld, 1);
4017 length++;
4018 }
4019 }
4020
4021 int mlen;
4022 if (reg_width == 2)
4023 mlen = length * reg_width - header_size;
4024 else
4025 mlen = length * reg_width;
4026
4027 const fs_reg src_payload = fs_reg(VGRF, bld.shader->alloc.allocate(mlen),
4028 BRW_REGISTER_TYPE_F);
4029 bld.LOAD_PAYLOAD(src_payload, sources, length, header_size);
4030
4031 /* Generate the SEND. */
4032 inst->opcode = op;
4033 inst->src[0] = src_payload;
4034 inst->src[1] = sampler;
4035 inst->resize_sources(2);
4036 inst->base_mrf = -1;
4037 inst->mlen = mlen;
4038 inst->header_size = header_size;
4039
4040 /* Message length > MAX_SAMPLER_MESSAGE_SIZE disallowed by hardware. */
4041 assert(inst->mlen <= MAX_SAMPLER_MESSAGE_SIZE);
4042 }
4043
4044 static void
4045 lower_sampler_logical_send(const fs_builder &bld, fs_inst *inst, opcode op)
4046 {
4047 const brw_device_info *devinfo = bld.shader->devinfo;
4048 const fs_reg &coordinate = inst->src[0];
4049 const fs_reg &shadow_c = inst->src[1];
4050 const fs_reg &lod = inst->src[2];
4051 const fs_reg &lod2 = inst->src[3];
4052 const fs_reg &sample_index = inst->src[4];
4053 const fs_reg &mcs = inst->src[5];
4054 const fs_reg &sampler = inst->src[6];
4055 const fs_reg &offset_value = inst->src[7];
4056 assert(inst->src[8].file == IMM && inst->src[9].file == IMM);
4057 const unsigned coord_components = inst->src[8].ud;
4058 const unsigned grad_components = inst->src[9].ud;
4059
4060 if (devinfo->gen >= 7) {
4061 lower_sampler_logical_send_gen7(bld, inst, op, coordinate,
4062 shadow_c, lod, lod2, sample_index,
4063 mcs, sampler, offset_value,
4064 coord_components, grad_components);
4065 } else if (devinfo->gen >= 5) {
4066 lower_sampler_logical_send_gen5(bld, inst, op, coordinate,
4067 shadow_c, lod, lod2, sample_index,
4068 sampler, offset_value,
4069 coord_components, grad_components);
4070 } else {
4071 lower_sampler_logical_send_gen4(bld, inst, op, coordinate,
4072 shadow_c, lod, lod2, sampler,
4073 coord_components, grad_components);
4074 }
4075 }
4076
4077 /**
4078 * Initialize the header present in some typed and untyped surface
4079 * messages.
4080 */
4081 static fs_reg
4082 emit_surface_header(const fs_builder &bld, const fs_reg &sample_mask)
4083 {
4084 fs_builder ubld = bld.exec_all().group(8, 0);
4085 const fs_reg dst = ubld.vgrf(BRW_REGISTER_TYPE_UD);
4086 ubld.MOV(dst, fs_reg(0));
4087 ubld.MOV(component(dst, 7), sample_mask);
4088 return dst;
4089 }
4090
4091 static void
4092 lower_surface_logical_send(const fs_builder &bld, fs_inst *inst, opcode op,
4093 const fs_reg &sample_mask)
4094 {
4095 /* Get the logical send arguments. */
4096 const fs_reg &addr = inst->src[0];
4097 const fs_reg &src = inst->src[1];
4098 const fs_reg &surface = inst->src[2];
4099 const UNUSED fs_reg &dims = inst->src[3];
4100 const fs_reg &arg = inst->src[4];
4101
4102 /* Calculate the total number of components of the payload. */
4103 const unsigned addr_sz = inst->components_read(0);
4104 const unsigned src_sz = inst->components_read(1);
4105 const unsigned header_sz = (sample_mask.file == BAD_FILE ? 0 : 1);
4106 const unsigned sz = header_sz + addr_sz + src_sz;
4107
4108 /* Allocate space for the payload. */
4109 fs_reg *const components = new fs_reg[sz];
4110 const fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, sz);
4111 unsigned n = 0;
4112
4113 /* Construct the payload. */
4114 if (header_sz)
4115 components[n++] = emit_surface_header(bld, sample_mask);
4116
4117 for (unsigned i = 0; i < addr_sz; i++)
4118 components[n++] = offset(addr, bld, i);
4119
4120 for (unsigned i = 0; i < src_sz; i++)
4121 components[n++] = offset(src, bld, i);
4122
4123 bld.LOAD_PAYLOAD(payload, components, sz, header_sz);
4124
4125 /* Update the original instruction. */
4126 inst->opcode = op;
4127 inst->mlen = header_sz + (addr_sz + src_sz) * inst->exec_size / 8;
4128 inst->header_size = header_sz;
4129
4130 inst->src[0] = payload;
4131 inst->src[1] = surface;
4132 inst->src[2] = arg;
4133 inst->resize_sources(3);
4134
4135 delete[] components;
4136 }
4137
4138 bool
4139 fs_visitor::lower_logical_sends()
4140 {
4141 bool progress = false;
4142
4143 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4144 const fs_builder ibld(this, block, inst);
4145
4146 switch (inst->opcode) {
4147 case FS_OPCODE_FB_WRITE_LOGICAL:
4148 assert(stage == MESA_SHADER_FRAGMENT);
4149 lower_fb_write_logical_send(ibld, inst,
4150 (const brw_wm_prog_data *)prog_data,
4151 (const brw_wm_prog_key *)key,
4152 payload);
4153 break;
4154
4155 case SHADER_OPCODE_TEX_LOGICAL:
4156 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TEX);
4157 break;
4158
4159 case SHADER_OPCODE_TXD_LOGICAL:
4160 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXD);
4161 break;
4162
4163 case SHADER_OPCODE_TXF_LOGICAL:
4164 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF);
4165 break;
4166
4167 case SHADER_OPCODE_TXL_LOGICAL:
4168 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXL);
4169 break;
4170
4171 case SHADER_OPCODE_TXS_LOGICAL:
4172 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXS);
4173 break;
4174
4175 case FS_OPCODE_TXB_LOGICAL:
4176 lower_sampler_logical_send(ibld, inst, FS_OPCODE_TXB);
4177 break;
4178
4179 case SHADER_OPCODE_TXF_CMS_LOGICAL:
4180 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS);
4181 break;
4182
4183 case SHADER_OPCODE_TXF_CMS_W_LOGICAL:
4184 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_CMS_W);
4185 break;
4186
4187 case SHADER_OPCODE_TXF_UMS_LOGICAL:
4188 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_UMS);
4189 break;
4190
4191 case SHADER_OPCODE_TXF_MCS_LOGICAL:
4192 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TXF_MCS);
4193 break;
4194
4195 case SHADER_OPCODE_LOD_LOGICAL:
4196 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_LOD);
4197 break;
4198
4199 case SHADER_OPCODE_TG4_LOGICAL:
4200 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4);
4201 break;
4202
4203 case SHADER_OPCODE_TG4_OFFSET_LOGICAL:
4204 lower_sampler_logical_send(ibld, inst, SHADER_OPCODE_TG4_OFFSET);
4205 break;
4206
4207 case SHADER_OPCODE_UNTYPED_SURFACE_READ_LOGICAL:
4208 lower_surface_logical_send(ibld, inst,
4209 SHADER_OPCODE_UNTYPED_SURFACE_READ,
4210 fs_reg());
4211 break;
4212
4213 case SHADER_OPCODE_UNTYPED_SURFACE_WRITE_LOGICAL:
4214 lower_surface_logical_send(ibld, inst,
4215 SHADER_OPCODE_UNTYPED_SURFACE_WRITE,
4216 ibld.sample_mask_reg());
4217 break;
4218
4219 case SHADER_OPCODE_UNTYPED_ATOMIC_LOGICAL:
4220 lower_surface_logical_send(ibld, inst,
4221 SHADER_OPCODE_UNTYPED_ATOMIC,
4222 ibld.sample_mask_reg());
4223 break;
4224
4225 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4226 lower_surface_logical_send(ibld, inst,
4227 SHADER_OPCODE_TYPED_SURFACE_READ,
4228 fs_reg(0xffff));
4229 break;
4230
4231 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4232 lower_surface_logical_send(ibld, inst,
4233 SHADER_OPCODE_TYPED_SURFACE_WRITE,
4234 ibld.sample_mask_reg());
4235 break;
4236
4237 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4238 lower_surface_logical_send(ibld, inst,
4239 SHADER_OPCODE_TYPED_ATOMIC,
4240 ibld.sample_mask_reg());
4241 break;
4242
4243 default:
4244 continue;
4245 }
4246
4247 progress = true;
4248 }
4249
4250 if (progress)
4251 invalidate_live_intervals();
4252
4253 return progress;
4254 }
4255
4256 /**
4257 * Get the closest native SIMD width supported by the hardware for instruction
4258 * \p inst. The instruction will be left untouched by
4259 * fs_visitor::lower_simd_width() if the returned value is equal to the
4260 * original execution size.
4261 */
4262 static unsigned
4263 get_lowered_simd_width(const struct brw_device_info *devinfo,
4264 const fs_inst *inst)
4265 {
4266 switch (inst->opcode) {
4267 case BRW_OPCODE_MOV:
4268 case BRW_OPCODE_SEL:
4269 case BRW_OPCODE_NOT:
4270 case BRW_OPCODE_AND:
4271 case BRW_OPCODE_OR:
4272 case BRW_OPCODE_XOR:
4273 case BRW_OPCODE_SHR:
4274 case BRW_OPCODE_SHL:
4275 case BRW_OPCODE_ASR:
4276 case BRW_OPCODE_CMP:
4277 case BRW_OPCODE_CMPN:
4278 case BRW_OPCODE_CSEL:
4279 case BRW_OPCODE_F32TO16:
4280 case BRW_OPCODE_F16TO32:
4281 case BRW_OPCODE_BFREV:
4282 case BRW_OPCODE_BFE:
4283 case BRW_OPCODE_BFI1:
4284 case BRW_OPCODE_BFI2:
4285 case BRW_OPCODE_ADD:
4286 case BRW_OPCODE_MUL:
4287 case BRW_OPCODE_AVG:
4288 case BRW_OPCODE_FRC:
4289 case BRW_OPCODE_RNDU:
4290 case BRW_OPCODE_RNDD:
4291 case BRW_OPCODE_RNDE:
4292 case BRW_OPCODE_RNDZ:
4293 case BRW_OPCODE_LZD:
4294 case BRW_OPCODE_FBH:
4295 case BRW_OPCODE_FBL:
4296 case BRW_OPCODE_CBIT:
4297 case BRW_OPCODE_SAD2:
4298 case BRW_OPCODE_MAD:
4299 case BRW_OPCODE_LRP:
4300 case SHADER_OPCODE_RCP:
4301 case SHADER_OPCODE_RSQ:
4302 case SHADER_OPCODE_SQRT:
4303 case SHADER_OPCODE_EXP2:
4304 case SHADER_OPCODE_LOG2:
4305 case SHADER_OPCODE_POW:
4306 case SHADER_OPCODE_INT_QUOTIENT:
4307 case SHADER_OPCODE_INT_REMAINDER:
4308 case SHADER_OPCODE_SIN:
4309 case SHADER_OPCODE_COS: {
4310 /* According to the PRMs:
4311 * "A. In Direct Addressing mode, a source cannot span more than 2
4312 * adjacent GRF registers.
4313 * B. A destination cannot span more than 2 adjacent GRF registers."
4314 *
4315 * Look for the source or destination with the largest register region
4316 * which is the one that is going to limit the overal execution size of
4317 * the instruction due to this rule.
4318 */
4319 unsigned reg_count = inst->regs_written;
4320
4321 for (unsigned i = 0; i < inst->sources; i++)
4322 reg_count = MAX2(reg_count, (unsigned)inst->regs_read(i));
4323
4324 /* Calculate the maximum execution size of the instruction based on the
4325 * factor by which it goes over the hardware limit of 2 GRFs.
4326 */
4327 return inst->exec_size / DIV_ROUND_UP(reg_count, 2);
4328 }
4329 case SHADER_OPCODE_MULH:
4330 /* MULH is lowered to the MUL/MACH sequence using the accumulator, which
4331 * is 8-wide on Gen7+.
4332 */
4333 return (devinfo->gen >= 7 ? 8 : inst->exec_size);
4334
4335 case FS_OPCODE_FB_WRITE_LOGICAL:
4336 /* Gen6 doesn't support SIMD16 depth writes but we cannot handle them
4337 * here.
4338 */
4339 assert(devinfo->gen != 6 ||
4340 inst->src[FB_WRITE_LOGICAL_SRC_SRC_DEPTH].file == BAD_FILE ||
4341 inst->exec_size == 8);
4342 /* Dual-source FB writes are unsupported in SIMD16 mode. */
4343 return (inst->src[FB_WRITE_LOGICAL_SRC_COLOR1].file != BAD_FILE ?
4344 8 : inst->exec_size);
4345
4346 case SHADER_OPCODE_TXD_LOGICAL:
4347 /* TXD is unsupported in SIMD16 mode. */
4348 return 8;
4349
4350 case SHADER_OPCODE_TG4_OFFSET_LOGICAL: {
4351 /* gather4_po_c is unsupported in SIMD16 mode. */
4352 const fs_reg &shadow_c = inst->src[1];
4353 return (shadow_c.file != BAD_FILE ? 8 : inst->exec_size);
4354 }
4355 case SHADER_OPCODE_TXL_LOGICAL:
4356 case FS_OPCODE_TXB_LOGICAL: {
4357 /* Gen4 doesn't have SIMD8 non-shadow-compare bias/LOD instructions, and
4358 * Gen4-6 can't support TXL and TXB with shadow comparison in SIMD16
4359 * mode because the message exceeds the maximum length of 11.
4360 */
4361 const fs_reg &shadow_c = inst->src[1];
4362 if (devinfo->gen == 4 && shadow_c.file == BAD_FILE)
4363 return 16;
4364 else if (devinfo->gen < 7 && shadow_c.file != BAD_FILE)
4365 return 8;
4366 else
4367 return inst->exec_size;
4368 }
4369 case SHADER_OPCODE_TXF_LOGICAL:
4370 case SHADER_OPCODE_TXS_LOGICAL:
4371 /* Gen4 doesn't have SIMD8 variants for the RESINFO and LD-with-LOD
4372 * messages. Use SIMD16 instead.
4373 */
4374 if (devinfo->gen == 4)
4375 return 16;
4376 else
4377 return inst->exec_size;
4378
4379 case SHADER_OPCODE_TXF_CMS_W_LOGICAL: {
4380 /* This opcode can take up to 6 arguments which means that in some
4381 * circumstances it can end up with a message that is too long in SIMD16
4382 * mode.
4383 */
4384 const unsigned coord_components = inst->src[8].ud;
4385 /* First three arguments are the sample index and the two arguments for
4386 * the MCS data.
4387 */
4388 if ((coord_components + 3) * 2 > MAX_SAMPLER_MESSAGE_SIZE)
4389 return 8;
4390 else
4391 return inst->exec_size;
4392 }
4393
4394 case SHADER_OPCODE_TYPED_ATOMIC_LOGICAL:
4395 case SHADER_OPCODE_TYPED_SURFACE_READ_LOGICAL:
4396 case SHADER_OPCODE_TYPED_SURFACE_WRITE_LOGICAL:
4397 return 8;
4398
4399 default:
4400 return inst->exec_size;
4401 }
4402 }
4403
4404 /**
4405 * The \p rows array of registers represents a \p num_rows by \p num_columns
4406 * matrix in row-major order, write it in column-major order into the register
4407 * passed as destination. \p stride gives the separation between matrix
4408 * elements in the input in fs_builder::dispatch_width() units.
4409 */
4410 static void
4411 emit_transpose(const fs_builder &bld,
4412 const fs_reg &dst, const fs_reg *rows,
4413 unsigned num_rows, unsigned num_columns, unsigned stride)
4414 {
4415 fs_reg *const components = new fs_reg[num_rows * num_columns];
4416
4417 for (unsigned i = 0; i < num_columns; ++i) {
4418 for (unsigned j = 0; j < num_rows; ++j)
4419 components[num_rows * i + j] = offset(rows[j], bld, stride * i);
4420 }
4421
4422 bld.LOAD_PAYLOAD(dst, components, num_rows * num_columns, 0);
4423
4424 delete[] components;
4425 }
4426
4427 bool
4428 fs_visitor::lower_simd_width()
4429 {
4430 bool progress = false;
4431
4432 foreach_block_and_inst_safe(block, fs_inst, inst, cfg) {
4433 const unsigned lower_width = get_lowered_simd_width(devinfo, inst);
4434
4435 if (lower_width != inst->exec_size) {
4436 /* Builder matching the original instruction. We may also need to
4437 * emit an instruction of width larger than the original, set the
4438 * execution size of the builder to the highest of both for now so
4439 * we're sure that both cases can be handled.
4440 */
4441 const fs_builder ibld = bld.at(block, inst)
4442 .exec_all(inst->force_writemask_all)
4443 .group(MAX2(inst->exec_size, lower_width),
4444 inst->force_sechalf);
4445
4446 /* Split the copies in chunks of the execution width of either the
4447 * original or the lowered instruction, whichever is lower.
4448 */
4449 const unsigned copy_width = MIN2(lower_width, inst->exec_size);
4450 const unsigned n = inst->exec_size / copy_width;
4451 const unsigned dst_size = inst->regs_written * REG_SIZE /
4452 inst->dst.component_size(inst->exec_size);
4453 fs_reg dsts[4];
4454
4455 assert(n > 0 && n <= ARRAY_SIZE(dsts) &&
4456 !inst->writes_accumulator && !inst->mlen);
4457
4458 for (unsigned i = 0; i < n; i++) {
4459 /* Emit a copy of the original instruction with the lowered width.
4460 * If the EOT flag was set throw it away except for the last
4461 * instruction to avoid killing the thread prematurely.
4462 */
4463 fs_inst split_inst = *inst;
4464 split_inst.exec_size = lower_width;
4465 split_inst.eot = inst->eot && i == n - 1;
4466
4467 /* Select the correct channel enables for the i-th group, then
4468 * transform the sources and destination and emit the lowered
4469 * instruction.
4470 */
4471 const fs_builder lbld = ibld.group(lower_width, i);
4472
4473 for (unsigned j = 0; j < inst->sources; j++) {
4474 if (inst->src[j].file != BAD_FILE &&
4475 !is_uniform(inst->src[j])) {
4476 /* Get the i-th copy_width-wide chunk of the source. */
4477 const fs_reg src = horiz_offset(inst->src[j], copy_width * i);
4478 const unsigned src_size = inst->components_read(j);
4479
4480 /* Use a trivial transposition to copy one every n
4481 * copy_width-wide components of the register into a
4482 * temporary passed as source to the lowered instruction.
4483 */
4484 split_inst.src[j] = lbld.vgrf(inst->src[j].type, src_size);
4485 emit_transpose(lbld.group(copy_width, 0),
4486 split_inst.src[j], &src, 1, src_size, n);
4487 }
4488 }
4489
4490 if (inst->regs_written) {
4491 /* Allocate enough space to hold the result of the lowered
4492 * instruction and fix up the number of registers written.
4493 */
4494 split_inst.dst = dsts[i] =
4495 lbld.vgrf(inst->dst.type, dst_size);
4496 split_inst.regs_written =
4497 DIV_ROUND_UP(inst->regs_written * lower_width,
4498 inst->exec_size);
4499 }
4500
4501 lbld.emit(split_inst);
4502 }
4503
4504 if (inst->regs_written) {
4505 /* Distance between useful channels in the temporaries, skipping
4506 * garbage if the lowered instruction is wider than the original.
4507 */
4508 const unsigned m = lower_width / copy_width;
4509
4510 /* Interleave the components of the result from the lowered
4511 * instructions. We need to set exec_all() when copying more than
4512 * one half per component, because LOAD_PAYLOAD (in terms of which
4513 * emit_transpose is implemented) can only use the same channel
4514 * enable signals for all of its non-header sources.
4515 */
4516 emit_transpose(ibld.exec_all(inst->exec_size > copy_width)
4517 .group(copy_width, 0),
4518 inst->dst, dsts, n, dst_size, m);
4519 }
4520
4521 inst->remove(block);
4522 progress = true;
4523 }
4524 }
4525
4526 if (progress)
4527 invalidate_live_intervals();
4528
4529 return progress;
4530 }
4531
4532 void
4533 fs_visitor::dump_instructions()
4534 {
4535 dump_instructions(NULL);
4536 }
4537
4538 void
4539 fs_visitor::dump_instructions(const char *name)
4540 {
4541 FILE *file = stderr;
4542 if (name && geteuid() != 0) {
4543 file = fopen(name, "w");
4544 if (!file)
4545 file = stderr;
4546 }
4547
4548 if (cfg) {
4549 calculate_register_pressure();
4550 int ip = 0, max_pressure = 0;
4551 foreach_block_and_inst(block, backend_instruction, inst, cfg) {
4552 max_pressure = MAX2(max_pressure, regs_live_at_ip[ip]);
4553 fprintf(file, "{%3d} %4d: ", regs_live_at_ip[ip], ip);
4554 dump_instruction(inst, file);
4555 ip++;
4556 }
4557 fprintf(file, "Maximum %3d registers live at once.\n", max_pressure);
4558 } else {
4559 int ip = 0;
4560 foreach_in_list(backend_instruction, inst, &instructions) {
4561 fprintf(file, "%4d: ", ip++);
4562 dump_instruction(inst, file);
4563 }
4564 }
4565
4566 if (file != stderr) {
4567 fclose(file);
4568 }
4569 }
4570
4571 void
4572 fs_visitor::dump_instruction(backend_instruction *be_inst)
4573 {
4574 dump_instruction(be_inst, stderr);
4575 }
4576
4577 void
4578 fs_visitor::dump_instruction(backend_instruction *be_inst, FILE *file)
4579 {
4580 fs_inst *inst = (fs_inst *)be_inst;
4581
4582 if (inst->predicate) {
4583 fprintf(file, "(%cf0.%d) ",
4584 inst->predicate_inverse ? '-' : '+',
4585 inst->flag_subreg);
4586 }
4587
4588 fprintf(file, "%s", brw_instruction_name(inst->opcode));
4589 if (inst->saturate)
4590 fprintf(file, ".sat");
4591 if (inst->conditional_mod) {
4592 fprintf(file, "%s", conditional_modifier[inst->conditional_mod]);
4593 if (!inst->predicate &&
4594 (devinfo->gen < 5 || (inst->opcode != BRW_OPCODE_SEL &&
4595 inst->opcode != BRW_OPCODE_IF &&
4596 inst->opcode != BRW_OPCODE_WHILE))) {
4597 fprintf(file, ".f0.%d", inst->flag_subreg);
4598 }
4599 }
4600 fprintf(file, "(%d) ", inst->exec_size);
4601
4602 if (inst->mlen) {
4603 fprintf(file, "(mlen: %d) ", inst->mlen);
4604 }
4605
4606 switch (inst->dst.file) {
4607 case VGRF:
4608 fprintf(file, "vgrf%d", inst->dst.nr);
4609 if (alloc.sizes[inst->dst.nr] != inst->regs_written ||
4610 inst->dst.subreg_offset)
4611 fprintf(file, "+%d.%d",
4612 inst->dst.reg_offset, inst->dst.subreg_offset);
4613 break;
4614 case FIXED_GRF:
4615 fprintf(file, "g%d", inst->dst.nr);
4616 break;
4617 case MRF:
4618 fprintf(file, "m%d", inst->dst.nr);
4619 break;
4620 case BAD_FILE:
4621 fprintf(file, "(null)");
4622 break;
4623 case UNIFORM:
4624 fprintf(file, "***u%d***", inst->dst.nr + inst->dst.reg_offset);
4625 break;
4626 case ATTR:
4627 fprintf(file, "***attr%d***", inst->dst.nr + inst->dst.reg_offset);
4628 break;
4629 case ARF:
4630 switch (inst->dst.nr) {
4631 case BRW_ARF_NULL:
4632 fprintf(file, "null");
4633 break;
4634 case BRW_ARF_ADDRESS:
4635 fprintf(file, "a0.%d", inst->dst.subnr);
4636 break;
4637 case BRW_ARF_ACCUMULATOR:
4638 fprintf(file, "acc%d", inst->dst.subnr);
4639 break;
4640 case BRW_ARF_FLAG:
4641 fprintf(file, "f%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4642 break;
4643 default:
4644 fprintf(file, "arf%d.%d", inst->dst.nr & 0xf, inst->dst.subnr);
4645 break;
4646 }
4647 if (inst->dst.subnr)
4648 fprintf(file, "+%d", inst->dst.subnr);
4649 break;
4650 case IMM:
4651 unreachable("not reached");
4652 }
4653 fprintf(file, ":%s, ", brw_reg_type_letters(inst->dst.type));
4654
4655 for (int i = 0; i < inst->sources; i++) {
4656 if (inst->src[i].negate)
4657 fprintf(file, "-");
4658 if (inst->src[i].abs)
4659 fprintf(file, "|");
4660 switch (inst->src[i].file) {
4661 case VGRF:
4662 fprintf(file, "vgrf%d", inst->src[i].nr);
4663 if (alloc.sizes[inst->src[i].nr] != (unsigned)inst->regs_read(i) ||
4664 inst->src[i].subreg_offset)
4665 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4666 inst->src[i].subreg_offset);
4667 break;
4668 case FIXED_GRF:
4669 fprintf(file, "g%d", inst->src[i].nr);
4670 break;
4671 case MRF:
4672 fprintf(file, "***m%d***", inst->src[i].nr);
4673 break;
4674 case ATTR:
4675 fprintf(file, "attr%d+%d", inst->src[i].nr, inst->src[i].reg_offset);
4676 break;
4677 case UNIFORM:
4678 fprintf(file, "u%d", inst->src[i].nr + inst->src[i].reg_offset);
4679 if (inst->src[i].reladdr) {
4680 fprintf(file, "+reladdr");
4681 } else if (inst->src[i].subreg_offset) {
4682 fprintf(file, "+%d.%d", inst->src[i].reg_offset,
4683 inst->src[i].subreg_offset);
4684 }
4685 break;
4686 case BAD_FILE:
4687 fprintf(file, "(null)");
4688 break;
4689 case IMM:
4690 switch (inst->src[i].type) {
4691 case BRW_REGISTER_TYPE_F:
4692 fprintf(file, "%ff", inst->src[i].f);
4693 break;
4694 case BRW_REGISTER_TYPE_W:
4695 case BRW_REGISTER_TYPE_D:
4696 fprintf(file, "%dd", inst->src[i].d);
4697 break;
4698 case BRW_REGISTER_TYPE_UW:
4699 case BRW_REGISTER_TYPE_UD:
4700 fprintf(file, "%uu", inst->src[i].ud);
4701 break;
4702 case BRW_REGISTER_TYPE_VF:
4703 fprintf(file, "[%-gF, %-gF, %-gF, %-gF]",
4704 brw_vf_to_float((inst->src[i].ud >> 0) & 0xff),
4705 brw_vf_to_float((inst->src[i].ud >> 8) & 0xff),
4706 brw_vf_to_float((inst->src[i].ud >> 16) & 0xff),
4707 brw_vf_to_float((inst->src[i].ud >> 24) & 0xff));
4708 break;
4709 default:
4710 fprintf(file, "???");
4711 break;
4712 }
4713 break;
4714 case ARF:
4715 switch (inst->src[i].nr) {
4716 case BRW_ARF_NULL:
4717 fprintf(file, "null");
4718 break;
4719 case BRW_ARF_ADDRESS:
4720 fprintf(file, "a0.%d", inst->src[i].subnr);
4721 break;
4722 case BRW_ARF_ACCUMULATOR:
4723 fprintf(file, "acc%d", inst->src[i].subnr);
4724 break;
4725 case BRW_ARF_FLAG:
4726 fprintf(file, "f%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4727 break;
4728 default:
4729 fprintf(file, "arf%d.%d", inst->src[i].nr & 0xf, inst->src[i].subnr);
4730 break;
4731 }
4732 if (inst->src[i].subnr)
4733 fprintf(file, "+%d", inst->src[i].subnr);
4734 break;
4735 }
4736 if (inst->src[i].abs)
4737 fprintf(file, "|");
4738
4739 if (inst->src[i].file != IMM) {
4740 fprintf(file, ":%s", brw_reg_type_letters(inst->src[i].type));
4741 }
4742
4743 if (i < inst->sources - 1 && inst->src[i + 1].file != BAD_FILE)
4744 fprintf(file, ", ");
4745 }
4746
4747 fprintf(file, " ");
4748
4749 if (inst->force_writemask_all)
4750 fprintf(file, "NoMask ");
4751
4752 if (dispatch_width == 16 && inst->exec_size == 8) {
4753 if (inst->force_sechalf)
4754 fprintf(file, "2ndhalf ");
4755 else
4756 fprintf(file, "1sthalf ");
4757 }
4758
4759 fprintf(file, "\n");
4760 }
4761
4762 /**
4763 * Possibly returns an instruction that set up @param reg.
4764 *
4765 * Sometimes we want to take the result of some expression/variable
4766 * dereference tree and rewrite the instruction generating the result
4767 * of the tree. When processing the tree, we know that the
4768 * instructions generated are all writing temporaries that are dead
4769 * outside of this tree. So, if we have some instructions that write
4770 * a temporary, we're free to point that temp write somewhere else.
4771 *
4772 * Note that this doesn't guarantee that the instruction generated
4773 * only reg -- it might be the size=4 destination of a texture instruction.
4774 */
4775 fs_inst *
4776 fs_visitor::get_instruction_generating_reg(fs_inst *start,
4777 fs_inst *end,
4778 const fs_reg &reg)
4779 {
4780 if (end == start ||
4781 end->is_partial_write() ||
4782 reg.reladdr ||
4783 !reg.equals(end->dst)) {
4784 return NULL;
4785 } else {
4786 return end;
4787 }
4788 }
4789
4790 void
4791 fs_visitor::setup_payload_gen6()
4792 {
4793 bool uses_depth =
4794 (nir->info.inputs_read & (1 << VARYING_SLOT_POS)) != 0;
4795 unsigned barycentric_interp_modes =
4796 (stage == MESA_SHADER_FRAGMENT) ?
4797 ((brw_wm_prog_data*) this->prog_data)->barycentric_interp_modes : 0;
4798
4799 assert(devinfo->gen >= 6);
4800
4801 /* R0-1: masks, pixel X/Y coordinates. */
4802 payload.num_regs = 2;
4803 /* R2: only for 32-pixel dispatch.*/
4804
4805 /* R3-26: barycentric interpolation coordinates. These appear in the
4806 * same order that they appear in the brw_wm_barycentric_interp_mode
4807 * enum. Each set of coordinates occupies 2 registers if dispatch width
4808 * == 8 and 4 registers if dispatch width == 16. Coordinates only
4809 * appear if they were enabled using the "Barycentric Interpolation
4810 * Mode" bits in WM_STATE.
4811 */
4812 for (int i = 0; i < BRW_WM_BARYCENTRIC_INTERP_MODE_COUNT; ++i) {
4813 if (barycentric_interp_modes & (1 << i)) {
4814 payload.barycentric_coord_reg[i] = payload.num_regs;
4815 payload.num_regs += 2;
4816 if (dispatch_width == 16) {
4817 payload.num_regs += 2;
4818 }
4819 }
4820 }
4821
4822 /* R27: interpolated depth if uses source depth */
4823 if (uses_depth) {
4824 payload.source_depth_reg = payload.num_regs;
4825 payload.num_regs++;
4826 if (dispatch_width == 16) {
4827 /* R28: interpolated depth if not SIMD8. */
4828 payload.num_regs++;
4829 }
4830 }
4831 /* R29: interpolated W set if GEN6_WM_USES_SOURCE_W. */
4832 if (uses_depth) {
4833 payload.source_w_reg = payload.num_regs;
4834 payload.num_regs++;
4835 if (dispatch_width == 16) {
4836 /* R30: interpolated W if not SIMD8. */
4837 payload.num_regs++;
4838 }
4839 }
4840
4841 if (stage == MESA_SHADER_FRAGMENT) {
4842 brw_wm_prog_data *prog_data = (brw_wm_prog_data*) this->prog_data;
4843 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
4844 prog_data->uses_pos_offset = key->compute_pos_offset;
4845 /* R31: MSAA position offsets. */
4846 if (prog_data->uses_pos_offset) {
4847 payload.sample_pos_reg = payload.num_regs;
4848 payload.num_regs++;
4849 }
4850 }
4851
4852 /* R32: MSAA input coverage mask */
4853 if (nir->info.system_values_read & SYSTEM_BIT_SAMPLE_MASK_IN) {
4854 assert(devinfo->gen >= 7);
4855 payload.sample_mask_in_reg = payload.num_regs;
4856 payload.num_regs++;
4857 if (dispatch_width == 16) {
4858 /* R33: input coverage mask if not SIMD8. */
4859 payload.num_regs++;
4860 }
4861 }
4862
4863 /* R34-: bary for 32-pixel. */
4864 /* R58-59: interp W for 32-pixel. */
4865
4866 if (nir->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
4867 source_depth_to_render_target = true;
4868 }
4869 }
4870
4871 void
4872 fs_visitor::setup_vs_payload()
4873 {
4874 /* R0: thread header, R1: urb handles */
4875 payload.num_regs = 2;
4876 }
4877
4878 /**
4879 * We are building the local ID push constant data using the simplest possible
4880 * method. We simply push the local IDs directly as they should appear in the
4881 * registers for the uvec3 gl_LocalInvocationID variable.
4882 *
4883 * Therefore, for SIMD8, we use 3 full registers, and for SIMD16 we use 6
4884 * registers worth of push constant space.
4885 *
4886 * Note: Any updates to brw_cs_prog_local_id_payload_dwords,
4887 * fill_local_id_payload or fs_visitor::emit_cs_local_invocation_id_setup need
4888 * to coordinated.
4889 *
4890 * FINISHME: There are a few easy optimizations to consider.
4891 *
4892 * 1. If gl_WorkGroupSize x, y or z is 1, we can just use zero, and there is
4893 * no need for using push constant space for that dimension.
4894 *
4895 * 2. Since GL_MAX_COMPUTE_WORK_GROUP_SIZE is currently 1024 or less, we can
4896 * easily use 16-bit words rather than 32-bit dwords in the push constant
4897 * data.
4898 *
4899 * 3. If gl_WorkGroupSize x, y or z is small, then we can use bytes for
4900 * conveying the data, and thereby reduce push constant usage.
4901 *
4902 */
4903 void
4904 fs_visitor::setup_gs_payload()
4905 {
4906 assert(stage == MESA_SHADER_GEOMETRY);
4907
4908 struct brw_gs_prog_data *gs_prog_data =
4909 (struct brw_gs_prog_data *) prog_data;
4910 struct brw_vue_prog_data *vue_prog_data =
4911 (struct brw_vue_prog_data *) prog_data;
4912
4913 /* R0: thread header, R1: output URB handles */
4914 payload.num_regs = 2;
4915
4916 if (gs_prog_data->include_primitive_id) {
4917 /* R2: Primitive ID 0..7 */
4918 payload.num_regs++;
4919 }
4920
4921 /* Use a maximum of 32 registers for push-model inputs. */
4922 const unsigned max_push_components = 32;
4923
4924 /* If pushing our inputs would take too many registers, reduce the URB read
4925 * length (which is in HWords, or 8 registers), and resort to pulling.
4926 *
4927 * Note that the GS reads <URB Read Length> HWords for every vertex - so we
4928 * have to multiply by VerticesIn to obtain the total storage requirement.
4929 */
4930 if (8 * vue_prog_data->urb_read_length * nir->info.gs.vertices_in >
4931 max_push_components) {
4932 gs_prog_data->base.include_vue_handles = true;
4933
4934 /* R3..RN: ICP Handles for each incoming vertex (when using pull model) */
4935 payload.num_regs += nir->info.gs.vertices_in;
4936
4937 vue_prog_data->urb_read_length =
4938 ROUND_DOWN_TO(max_push_components / nir->info.gs.vertices_in, 8) / 8;
4939 }
4940 }
4941
4942 void
4943 fs_visitor::setup_cs_payload()
4944 {
4945 assert(devinfo->gen >= 7);
4946 brw_cs_prog_data *prog_data = (brw_cs_prog_data*) this->prog_data;
4947
4948 payload.num_regs = 1;
4949
4950 if (nir->info.system_values_read & SYSTEM_BIT_LOCAL_INVOCATION_ID) {
4951 prog_data->local_invocation_id_regs = dispatch_width * 3 / 8;
4952 payload.local_invocation_id_reg = payload.num_regs;
4953 payload.num_regs += prog_data->local_invocation_id_regs;
4954 }
4955 }
4956
4957 void
4958 fs_visitor::calculate_register_pressure()
4959 {
4960 invalidate_live_intervals();
4961 calculate_live_intervals();
4962
4963 unsigned num_instructions = 0;
4964 foreach_block(block, cfg)
4965 num_instructions += block->instructions.length();
4966
4967 regs_live_at_ip = rzalloc_array(mem_ctx, int, num_instructions);
4968
4969 for (unsigned reg = 0; reg < alloc.count; reg++) {
4970 for (int ip = virtual_grf_start[reg]; ip <= virtual_grf_end[reg]; ip++)
4971 regs_live_at_ip[ip] += alloc.sizes[reg];
4972 }
4973 }
4974
4975 void
4976 fs_visitor::optimize()
4977 {
4978 /* Start by validating the shader we currently have. */
4979 validate();
4980
4981 /* bld is the common builder object pointing at the end of the program we
4982 * used to translate it into i965 IR. For the optimization and lowering
4983 * passes coming next, any code added after the end of the program without
4984 * having explicitly called fs_builder::at() clearly points at a mistake.
4985 * Ideally optimization passes wouldn't be part of the visitor so they
4986 * wouldn't have access to bld at all, but they do, so just in case some
4987 * pass forgets to ask for a location explicitly set it to NULL here to
4988 * make it trip. The dispatch width is initialized to a bogus value to
4989 * make sure that optimizations set the execution controls explicitly to
4990 * match the code they are manipulating instead of relying on the defaults.
4991 */
4992 bld = fs_builder(this, 64);
4993
4994 assign_constant_locations();
4995 demote_pull_constants();
4996
4997 validate();
4998
4999 split_virtual_grfs();
5000 validate();
5001
5002 #define OPT(pass, args...) ({ \
5003 pass_num++; \
5004 bool this_progress = pass(args); \
5005 \
5006 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER) && this_progress) { \
5007 char filename[64]; \
5008 snprintf(filename, 64, "%s%d-%s-%02d-%02d-" #pass, \
5009 stage_abbrev, dispatch_width, nir->info.name, iteration, pass_num); \
5010 \
5011 backend_shader::dump_instructions(filename); \
5012 } \
5013 \
5014 validate(); \
5015 \
5016 progress = progress || this_progress; \
5017 this_progress; \
5018 })
5019
5020 if (unlikely(INTEL_DEBUG & DEBUG_OPTIMIZER)) {
5021 char filename[64];
5022 snprintf(filename, 64, "%s%d-%s-00-start",
5023 stage_abbrev, dispatch_width, nir->info.name);
5024
5025 backend_shader::dump_instructions(filename);
5026 }
5027
5028 bool progress = false;
5029 int iteration = 0;
5030 int pass_num = 0;
5031
5032 OPT(lower_simd_width);
5033 OPT(lower_logical_sends);
5034
5035 do {
5036 progress = false;
5037 pass_num = 0;
5038 iteration++;
5039
5040 OPT(remove_duplicate_mrf_writes);
5041
5042 OPT(opt_algebraic);
5043 OPT(opt_cse);
5044 OPT(opt_copy_propagate);
5045 OPT(opt_predicated_break, this);
5046 OPT(opt_cmod_propagation);
5047 OPT(dead_code_eliminate);
5048 OPT(opt_peephole_sel);
5049 OPT(dead_control_flow_eliminate, this);
5050 OPT(opt_register_renaming);
5051 OPT(opt_redundant_discard_jumps);
5052 OPT(opt_saturate_propagation);
5053 OPT(opt_zero_samples);
5054 OPT(register_coalesce);
5055 OPT(compute_to_mrf);
5056 OPT(eliminate_find_live_channel);
5057
5058 OPT(compact_virtual_grfs);
5059 } while (progress);
5060
5061 pass_num = 0;
5062
5063 OPT(opt_sampler_eot);
5064
5065 if (OPT(lower_load_payload)) {
5066 split_virtual_grfs();
5067 OPT(register_coalesce);
5068 OPT(compute_to_mrf);
5069 OPT(dead_code_eliminate);
5070 }
5071
5072 OPT(opt_combine_constants);
5073 OPT(lower_integer_multiplication);
5074
5075 lower_uniform_pull_constant_loads();
5076
5077 validate();
5078 }
5079
5080 /**
5081 * Three source instruction must have a GRF/MRF destination register.
5082 * ARF NULL is not allowed. Fix that up by allocating a temporary GRF.
5083 */
5084 void
5085 fs_visitor::fixup_3src_null_dest()
5086 {
5087 foreach_block_and_inst_safe (block, fs_inst, inst, cfg) {
5088 if (inst->is_3src() && inst->dst.is_null()) {
5089 inst->dst = fs_reg(VGRF, alloc.allocate(dispatch_width / 8),
5090 inst->dst.type);
5091 }
5092 }
5093 }
5094
5095 void
5096 fs_visitor::allocate_registers()
5097 {
5098 bool allocated_without_spills;
5099
5100 static const enum instruction_scheduler_mode pre_modes[] = {
5101 SCHEDULE_PRE,
5102 SCHEDULE_PRE_NON_LIFO,
5103 SCHEDULE_PRE_LIFO,
5104 };
5105
5106 /* Try each scheduling heuristic to see if it can successfully register
5107 * allocate without spilling. They should be ordered by decreasing
5108 * performance but increasing likelihood of allocating.
5109 */
5110 for (unsigned i = 0; i < ARRAY_SIZE(pre_modes); i++) {
5111 schedule_instructions(pre_modes[i]);
5112
5113 if (0) {
5114 assign_regs_trivial();
5115 allocated_without_spills = true;
5116 } else {
5117 allocated_without_spills = assign_regs(false);
5118 }
5119 if (allocated_without_spills)
5120 break;
5121 }
5122
5123 if (!allocated_without_spills) {
5124 /* We assume that any spilling is worse than just dropping back to
5125 * SIMD8. There's probably actually some intermediate point where
5126 * SIMD16 with a couple of spills is still better.
5127 */
5128 if (dispatch_width == 16) {
5129 fail("Failure to register allocate. Reduce number of "
5130 "live scalar values to avoid this.");
5131 } else {
5132 compiler->shader_perf_log(log_data,
5133 "%s shader triggered register spilling. "
5134 "Try reducing the number of live scalar "
5135 "values to improve performance.\n",
5136 stage_name);
5137 }
5138
5139 /* Since we're out of heuristics, just go spill registers until we
5140 * get an allocation.
5141 */
5142 while (!assign_regs(true)) {
5143 if (failed)
5144 break;
5145 }
5146 }
5147
5148 /* This must come after all optimization and register allocation, since
5149 * it inserts dead code that happens to have side effects, and it does
5150 * so based on the actual physical registers in use.
5151 */
5152 insert_gen4_send_dependency_workarounds();
5153
5154 if (failed)
5155 return;
5156
5157 schedule_instructions(SCHEDULE_POST);
5158
5159 if (last_scratch > 0)
5160 prog_data->total_scratch = brw_get_scratch_size(last_scratch);
5161 }
5162
5163 bool
5164 fs_visitor::run_vs(gl_clip_plane *clip_planes)
5165 {
5166 assert(stage == MESA_SHADER_VERTEX);
5167
5168 setup_vs_payload();
5169
5170 if (shader_time_index >= 0)
5171 emit_shader_time_begin();
5172
5173 emit_nir_code();
5174
5175 if (failed)
5176 return false;
5177
5178 compute_clip_distance(clip_planes);
5179
5180 emit_urb_writes();
5181
5182 if (shader_time_index >= 0)
5183 emit_shader_time_end();
5184
5185 calculate_cfg();
5186
5187 optimize();
5188
5189 assign_curb_setup();
5190 assign_vs_urb_setup();
5191
5192 fixup_3src_null_dest();
5193 allocate_registers();
5194
5195 return !failed;
5196 }
5197
5198 bool
5199 fs_visitor::run_gs()
5200 {
5201 assert(stage == MESA_SHADER_GEOMETRY);
5202
5203 setup_gs_payload();
5204
5205 this->final_gs_vertex_count = vgrf(glsl_type::uint_type);
5206
5207 if (gs_compile->control_data_header_size_bits > 0) {
5208 /* Create a VGRF to store accumulated control data bits. */
5209 this->control_data_bits = vgrf(glsl_type::uint_type);
5210
5211 /* If we're outputting more than 32 control data bits, then EmitVertex()
5212 * will set control_data_bits to 0 after emitting the first vertex.
5213 * Otherwise, we need to initialize it to 0 here.
5214 */
5215 if (gs_compile->control_data_header_size_bits <= 32) {
5216 const fs_builder abld = bld.annotate("initialize control data bits");
5217 abld.MOV(this->control_data_bits, fs_reg(0u));
5218 }
5219 }
5220
5221 if (shader_time_index >= 0)
5222 emit_shader_time_begin();
5223
5224 emit_nir_code();
5225
5226 emit_gs_thread_end();
5227
5228 if (shader_time_index >= 0)
5229 emit_shader_time_end();
5230
5231 if (failed)
5232 return false;
5233
5234 calculate_cfg();
5235
5236 optimize();
5237
5238 assign_curb_setup();
5239 assign_gs_urb_setup();
5240
5241 fixup_3src_null_dest();
5242 allocate_registers();
5243
5244 return !failed;
5245 }
5246
5247 bool
5248 fs_visitor::run_fs(bool do_rep_send)
5249 {
5250 brw_wm_prog_data *wm_prog_data = (brw_wm_prog_data *) this->prog_data;
5251 brw_wm_prog_key *wm_key = (brw_wm_prog_key *) this->key;
5252
5253 assert(stage == MESA_SHADER_FRAGMENT);
5254
5255 if (devinfo->gen >= 6)
5256 setup_payload_gen6();
5257 else
5258 setup_payload_gen4();
5259
5260 if (0) {
5261 emit_dummy_fs();
5262 } else if (do_rep_send) {
5263 assert(dispatch_width == 16);
5264 emit_repclear_shader();
5265 } else {
5266 if (shader_time_index >= 0)
5267 emit_shader_time_begin();
5268
5269 calculate_urb_setup();
5270 if (nir->info.inputs_read > 0) {
5271 if (devinfo->gen < 6)
5272 emit_interpolation_setup_gen4();
5273 else
5274 emit_interpolation_setup_gen6();
5275 }
5276
5277 /* We handle discards by keeping track of the still-live pixels in f0.1.
5278 * Initialize it with the dispatched pixels.
5279 */
5280 if (wm_prog_data->uses_kill) {
5281 fs_inst *discard_init = bld.emit(FS_OPCODE_MOV_DISPATCH_TO_FLAGS);
5282 discard_init->flag_subreg = 1;
5283 }
5284
5285 /* Generate FS IR for main(). (the visitor only descends into
5286 * functions called "main").
5287 */
5288 emit_nir_code();
5289
5290 if (failed)
5291 return false;
5292
5293 if (wm_prog_data->uses_kill)
5294 bld.emit(FS_OPCODE_PLACEHOLDER_HALT);
5295
5296 if (wm_key->alpha_test_func)
5297 emit_alpha_test();
5298
5299 emit_fb_writes();
5300
5301 if (shader_time_index >= 0)
5302 emit_shader_time_end();
5303
5304 calculate_cfg();
5305
5306 optimize();
5307
5308 assign_curb_setup();
5309 assign_urb_setup();
5310
5311 fixup_3src_null_dest();
5312 allocate_registers();
5313
5314 if (failed)
5315 return false;
5316 }
5317
5318 if (dispatch_width == 8)
5319 wm_prog_data->reg_blocks = brw_register_blocks(grf_used);
5320 else
5321 wm_prog_data->reg_blocks_16 = brw_register_blocks(grf_used);
5322
5323 return !failed;
5324 }
5325
5326 bool
5327 fs_visitor::run_cs()
5328 {
5329 assert(stage == MESA_SHADER_COMPUTE);
5330
5331 setup_cs_payload();
5332
5333 if (shader_time_index >= 0)
5334 emit_shader_time_begin();
5335
5336 emit_nir_code();
5337
5338 if (failed)
5339 return false;
5340
5341 emit_cs_terminate();
5342
5343 if (shader_time_index >= 0)
5344 emit_shader_time_end();
5345
5346 calculate_cfg();
5347
5348 optimize();
5349
5350 assign_curb_setup();
5351
5352 fixup_3src_null_dest();
5353 allocate_registers();
5354
5355 if (failed)
5356 return false;
5357
5358 return !failed;
5359 }
5360
5361 /**
5362 * Return a bitfield where bit n is set if barycentric interpolation mode n
5363 * (see enum brw_wm_barycentric_interp_mode) is needed by the fragment shader.
5364 */
5365 static unsigned
5366 brw_compute_barycentric_interp_modes(const struct brw_device_info *devinfo,
5367 bool shade_model_flat,
5368 bool persample_shading,
5369 const nir_shader *shader)
5370 {
5371 unsigned barycentric_interp_modes = 0;
5372
5373 nir_foreach_variable(var, &shader->inputs) {
5374 enum glsl_interp_qualifier interp_qualifier =
5375 (enum glsl_interp_qualifier)var->data.interpolation;
5376 bool is_centroid = var->data.centroid && !persample_shading;
5377 bool is_sample = var->data.sample || persample_shading;
5378 bool is_gl_Color = (var->data.location == VARYING_SLOT_COL0) ||
5379 (var->data.location == VARYING_SLOT_COL1);
5380
5381 /* Ignore WPOS and FACE, because they don't require interpolation. */
5382 if (var->data.location == VARYING_SLOT_POS ||
5383 var->data.location == VARYING_SLOT_FACE)
5384 continue;
5385
5386 /* Determine the set (or sets) of barycentric coordinates needed to
5387 * interpolate this variable. Note that when
5388 * brw->needs_unlit_centroid_workaround is set, centroid interpolation
5389 * uses PIXEL interpolation for unlit pixels and CENTROID interpolation
5390 * for lit pixels, so we need both sets of barycentric coordinates.
5391 */
5392 if (interp_qualifier == INTERP_QUALIFIER_NOPERSPECTIVE) {
5393 if (is_centroid) {
5394 barycentric_interp_modes |=
5395 1 << BRW_WM_NONPERSPECTIVE_CENTROID_BARYCENTRIC;
5396 } else if (is_sample) {
5397 barycentric_interp_modes |=
5398 1 << BRW_WM_NONPERSPECTIVE_SAMPLE_BARYCENTRIC;
5399 }
5400 if ((!is_centroid && !is_sample) ||
5401 devinfo->needs_unlit_centroid_workaround) {
5402 barycentric_interp_modes |=
5403 1 << BRW_WM_NONPERSPECTIVE_PIXEL_BARYCENTRIC;
5404 }
5405 } else if (interp_qualifier == INTERP_QUALIFIER_SMOOTH ||
5406 (!(shade_model_flat && is_gl_Color) &&
5407 interp_qualifier == INTERP_QUALIFIER_NONE)) {
5408 if (is_centroid) {
5409 barycentric_interp_modes |=
5410 1 << BRW_WM_PERSPECTIVE_CENTROID_BARYCENTRIC;
5411 } else if (is_sample) {
5412 barycentric_interp_modes |=
5413 1 << BRW_WM_PERSPECTIVE_SAMPLE_BARYCENTRIC;
5414 }
5415 if ((!is_centroid && !is_sample) ||
5416 devinfo->needs_unlit_centroid_workaround) {
5417 barycentric_interp_modes |=
5418 1 << BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC;
5419 }
5420 }
5421 }
5422
5423 return barycentric_interp_modes;
5424 }
5425
5426 static uint8_t
5427 computed_depth_mode(const nir_shader *shader)
5428 {
5429 if (shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_DEPTH)) {
5430 switch (shader->info.fs.depth_layout) {
5431 case FRAG_DEPTH_LAYOUT_NONE:
5432 case FRAG_DEPTH_LAYOUT_ANY:
5433 return BRW_PSCDEPTH_ON;
5434 case FRAG_DEPTH_LAYOUT_GREATER:
5435 return BRW_PSCDEPTH_ON_GE;
5436 case FRAG_DEPTH_LAYOUT_LESS:
5437 return BRW_PSCDEPTH_ON_LE;
5438 case FRAG_DEPTH_LAYOUT_UNCHANGED:
5439 return BRW_PSCDEPTH_OFF;
5440 }
5441 }
5442 return BRW_PSCDEPTH_OFF;
5443 }
5444
5445 const unsigned *
5446 brw_compile_fs(const struct brw_compiler *compiler, void *log_data,
5447 void *mem_ctx,
5448 const struct brw_wm_prog_key *key,
5449 struct brw_wm_prog_data *prog_data,
5450 const nir_shader *shader,
5451 struct gl_program *prog,
5452 int shader_time_index8, int shader_time_index16,
5453 bool use_rep_send,
5454 unsigned *final_assembly_size,
5455 char **error_str)
5456 {
5457 /* key->alpha_test_func means simulating alpha testing via discards,
5458 * so the shader definitely kills pixels.
5459 */
5460 prog_data->uses_kill = shader->info.fs.uses_discard || key->alpha_test_func;
5461 prog_data->uses_omask =
5462 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_SAMPLE_MASK);
5463 prog_data->computed_depth_mode = computed_depth_mode(shader);
5464 prog_data->computed_stencil =
5465 shader->info.outputs_written & BITFIELD64_BIT(FRAG_RESULT_STENCIL);
5466
5467 prog_data->early_fragment_tests = shader->info.fs.early_fragment_tests;
5468
5469 prog_data->barycentric_interp_modes =
5470 brw_compute_barycentric_interp_modes(compiler->devinfo,
5471 key->flat_shade,
5472 key->persample_shading,
5473 shader);
5474
5475 fs_visitor v(compiler, log_data, mem_ctx, key,
5476 &prog_data->base, prog, shader, 8,
5477 shader_time_index8);
5478 if (!v.run_fs(false /* do_rep_send */)) {
5479 if (error_str)
5480 *error_str = ralloc_strdup(mem_ctx, v.fail_msg);
5481
5482 return NULL;
5483 }
5484
5485 cfg_t *simd16_cfg = NULL;
5486 fs_visitor v2(compiler, log_data, mem_ctx, key,
5487 &prog_data->base, prog, shader, 16,
5488 shader_time_index16);
5489 if (likely(!(INTEL_DEBUG & DEBUG_NO16) || use_rep_send)) {
5490 if (!v.simd16_unsupported) {
5491 /* Try a SIMD16 compile */
5492 v2.import_uniforms(&v);
5493 if (!v2.run_fs(use_rep_send)) {
5494 compiler->shader_perf_log(log_data,
5495 "SIMD16 shader failed to compile: %s",
5496 v2.fail_msg);
5497 } else {
5498 simd16_cfg = v2.cfg;
5499 }
5500 }
5501 }
5502
5503 cfg_t *simd8_cfg;
5504 int no_simd8 = (INTEL_DEBUG & DEBUG_NO8) || use_rep_send;
5505 if ((no_simd8 || compiler->devinfo->gen < 5) && simd16_cfg) {
5506 simd8_cfg = NULL;
5507 prog_data->no_8 = true;
5508 } else {
5509 simd8_cfg = v.cfg;
5510 prog_data->no_8 = false;
5511 }
5512
5513 fs_generator g(compiler, log_data, mem_ctx, (void *) key, &prog_data->base,
5514 v.promoted_constants, v.runtime_check_aads_emit, "FS");
5515
5516 if (unlikely(INTEL_DEBUG & DEBUG_WM)) {
5517 g.enable_debug(ralloc_asprintf(mem_ctx, "%s fragment shader %s",
5518 shader->info.label ? shader->info.label :
5519 "unnamed",
5520 shader->info.name));
5521 }
5522
5523 if (simd8_cfg)
5524 g.generate_code(simd8_cfg, 8);
5525 if (simd16_cfg)
5526 prog_data->prog_offset_16 = g.generate_code(simd16_cfg, 16);
5527
5528 return g.get_assembly(final_assembly_size);
5529 }
5530
5531 void
5532 brw_cs_fill_local_id_payload(const struct brw_cs_prog_data *prog_data,
5533 void *buffer, uint32_t threads, uint32_t stride)
5534 {
5535 if (prog_data->local_invocation_id_regs == 0)
5536 return;
5537
5538 /* 'stride' should be an integer number of registers, that is, a multiple
5539 * of 32 bytes.
5540 */
5541 assert(stride % 32 == 0);
5542
5543 unsigned x = 0, y = 0, z = 0;
5544 for (unsigned t = 0; t < threads; t++) {
5545 uint32_t *param = (uint32_t *) buffer + stride * t / 4;
5546
5547 for (unsigned i = 0; i < prog_data->simd_size; i++) {
5548 param[0 * prog_data->simd_size + i] = x;
5549 param[1 * prog_data->simd_size + i] = y;
5550 param[2 * prog_data->simd_size + i] = z;
5551
5552 x++;
5553 if (x == prog_data->local_size[0]) {
5554 x = 0;
5555 y++;
5556 if (y == prog_data->local_size[1]) {
5557 y = 0;
5558 z++;
5559 if (z == prog_data->local_size[2])
5560 z = 0;
5561 }
5562 }
5563 }
5564 }
5565 }
5566
5567 fs_reg *
5568 fs_visitor::emit_cs_local_invocation_id_setup()
5569 {
5570 assert(stage == MESA_SHADER_COMPUTE);
5571
5572 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5573
5574 struct brw_reg src =
5575 brw_vec8_grf(payload.local_invocation_id_reg, 0);
5576 src = retype(src, BRW_REGISTER_TYPE_UD);
5577 bld.MOV(*reg, src);
5578 src.nr += dispatch_width / 8;
5579 bld.MOV(offset(*reg, bld, 1), src);
5580 src.nr += dispatch_width / 8;
5581 bld.MOV(offset(*reg, bld, 2), src);
5582
5583 return reg;
5584 }
5585
5586 fs_reg *
5587 fs_visitor::emit_cs_work_group_id_setup()
5588 {
5589 assert(stage == MESA_SHADER_COMPUTE);
5590
5591 fs_reg *reg = new(this->mem_ctx) fs_reg(vgrf(glsl_type::uvec3_type));
5592
5593 struct brw_reg r0_1(retype(brw_vec1_grf(0, 1), BRW_REGISTER_TYPE_UD));
5594 struct brw_reg r0_6(retype(brw_vec1_grf(0, 6), BRW_REGISTER_TYPE_UD));
5595 struct brw_reg r0_7(retype(brw_vec1_grf(0, 7), BRW_REGISTER_TYPE_UD));
5596
5597 bld.MOV(*reg, r0_1);
5598 bld.MOV(offset(*reg, bld, 1), r0_6);
5599 bld.MOV(offset(*reg, bld, 2), r0_7);
5600
5601 return reg;
5602 }
5603
5604 const unsigned *
5605 brw_compile_cs(const struct brw_compiler *compiler, void *log_data,
5606 void *mem_ctx,
5607 const struct brw_cs_prog_key *key,
5608 struct brw_cs_prog_data *prog_data,
5609 const nir_shader *shader,
5610 int shader_time_index,
5611 unsigned *final_assembly_size,
5612 char **error_str)
5613 {
5614 prog_data->local_size[0] = shader->info.cs.local_size[0];
5615 prog_data->local_size[1] = shader->info.cs.local_size[1];
5616 prog_data->local_size[2] = shader->info.cs.local_size[2];
5617 unsigned local_workgroup_size =
5618 shader->info.cs.local_size[0] * shader->info.cs.local_size[1] *
5619 shader->info.cs.local_size[2];
5620
5621 unsigned max_cs_threads = compiler->devinfo->max_cs_threads;
5622
5623 cfg_t *cfg = NULL;
5624 const char *fail_msg = NULL;
5625
5626 /* Now the main event: Visit the shader IR and generate our CS IR for it.
5627 */
5628 fs_visitor v8(compiler, log_data, mem_ctx, key, &prog_data->base,
5629 NULL, /* Never used in core profile */
5630 shader, 8, shader_time_index);
5631 if (!v8.run_cs()) {
5632 fail_msg = v8.fail_msg;
5633 } else if (local_workgroup_size <= 8 * max_cs_threads) {
5634 cfg = v8.cfg;
5635 prog_data->simd_size = 8;
5636 }
5637
5638 fs_visitor v16(compiler, log_data, mem_ctx, key, &prog_data->base,
5639 NULL, /* Never used in core profile */
5640 shader, 16, shader_time_index);
5641 if (likely(!(INTEL_DEBUG & DEBUG_NO16)) &&
5642 !fail_msg && !v8.simd16_unsupported &&
5643 local_workgroup_size <= 16 * max_cs_threads) {
5644 /* Try a SIMD16 compile */
5645 v16.import_uniforms(&v8);
5646 if (!v16.run_cs()) {
5647 compiler->shader_perf_log(log_data,
5648 "SIMD16 shader failed to compile: %s",
5649 v16.fail_msg);
5650 if (!cfg) {
5651 fail_msg =
5652 "Couldn't generate SIMD16 program and not "
5653 "enough threads for SIMD8";
5654 }
5655 } else {
5656 cfg = v16.cfg;
5657 prog_data->simd_size = 16;
5658 }
5659 }
5660
5661 if (unlikely(cfg == NULL)) {
5662 assert(fail_msg);
5663 if (error_str)
5664 *error_str = ralloc_strdup(mem_ctx, fail_msg);
5665
5666 return NULL;
5667 }
5668
5669 fs_generator g(compiler, log_data, mem_ctx, (void*) key, &prog_data->base,
5670 v8.promoted_constants, v8.runtime_check_aads_emit, "CS");
5671 if (INTEL_DEBUG & DEBUG_CS) {
5672 char *name = ralloc_asprintf(mem_ctx, "%s compute shader %s",
5673 shader->info.label ? shader->info.label :
5674 "unnamed",
5675 shader->info.name);
5676 g.enable_debug(name);
5677 }
5678
5679 g.generate_code(cfg, prog_data->simd_size);
5680
5681 return g.get_assembly(final_assembly_size);
5682 }