i965: Add forgotten bitcast operations in brw_fs_channel_expressions.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_channel_expressions.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
22 */
23
24 /**
25 * \file brw_wm_channel_expressions.cpp
26 *
27 * Breaks vector operations down into operations on each component.
28 *
29 * The 965 fragment shader receives 8 or 16 pixels at a time, so each
30 * channel of a vector is laid out as 1 or 2 8-float registers. Each
31 * ALU operation operates on one of those channel registers. As a
32 * result, there is no value to the 965 fragment shader in tracking
33 * "vector" expressions in the sense of GLSL fragment shaders, when
34 * doing a channel at a time may help in constant folding, algebraic
35 * simplification, and reducing the liveness of channel registers.
36 *
37 * The exception to the desire to break everything down to floats is
38 * texturing. The texture sampler returns a writemasked masked
39 * 4/8-register sequence containing the texture values. We don't want
40 * to dispatch to the sampler separately for each channel we need, so
41 * we do retain the vector types in that case.
42 */
43
44 extern "C" {
45 #include "main/core.h"
46 #include "brw_wm.h"
47 }
48 #include "glsl/ir.h"
49 #include "glsl/ir_expression_flattening.h"
50 #include "glsl/glsl_types.h"
51
52 class ir_channel_expressions_visitor : public ir_hierarchical_visitor {
53 public:
54 ir_channel_expressions_visitor()
55 {
56 this->progress = false;
57 this->mem_ctx = NULL;
58 }
59
60 ir_visitor_status visit_leave(ir_assignment *);
61
62 ir_rvalue *get_element(ir_variable *var, unsigned int element);
63 void assign(ir_assignment *ir, int elem, ir_rvalue *val);
64
65 bool progress;
66 void *mem_ctx;
67 };
68
69 static bool
70 channel_expressions_predicate(ir_instruction *ir)
71 {
72 ir_expression *expr = ir->as_expression();
73 unsigned int i;
74
75 if (!expr)
76 return false;
77
78 for (i = 0; i < expr->get_num_operands(); i++) {
79 if (expr->operands[i]->type->is_vector())
80 return true;
81 }
82
83 return false;
84 }
85
86 bool
87 brw_do_channel_expressions(exec_list *instructions)
88 {
89 ir_channel_expressions_visitor v;
90
91 /* Pull out any matrix expression to a separate assignment to a
92 * temp. This will make our handling of the breakdown to
93 * operations on the matrix's vector components much easier.
94 */
95 do_expression_flattening(instructions, channel_expressions_predicate);
96
97 visit_list_elements(&v, instructions);
98
99 return v.progress;
100 }
101
102 ir_rvalue *
103 ir_channel_expressions_visitor::get_element(ir_variable *var, unsigned int elem)
104 {
105 ir_dereference *deref;
106
107 if (var->type->is_scalar())
108 return new(mem_ctx) ir_dereference_variable(var);
109
110 assert(elem < var->type->components());
111 deref = new(mem_ctx) ir_dereference_variable(var);
112 return new(mem_ctx) ir_swizzle(deref, elem, 0, 0, 0, 1);
113 }
114
115 void
116 ir_channel_expressions_visitor::assign(ir_assignment *ir, int elem, ir_rvalue *val)
117 {
118 ir_dereference *lhs = ir->lhs->clone(mem_ctx, NULL);
119 ir_assignment *assign;
120
121 /* This assign-of-expression should have been generated by the
122 * expression flattening visitor (since we never short circit to
123 * not flatten, even for plain assignments of variables), so the
124 * writemask is always full.
125 */
126 assert(ir->write_mask == (1 << ir->lhs->type->components()) - 1);
127
128 assign = new(mem_ctx) ir_assignment(lhs, val, NULL, (1 << elem));
129 ir->insert_before(assign);
130 }
131
132 ir_visitor_status
133 ir_channel_expressions_visitor::visit_leave(ir_assignment *ir)
134 {
135 ir_expression *expr = ir->rhs->as_expression();
136 bool found_vector = false;
137 unsigned int i, vector_elements = 1;
138 ir_variable *op_var[2];
139
140 if (!expr)
141 return visit_continue;
142
143 if (!this->mem_ctx)
144 this->mem_ctx = ralloc_parent(ir);
145
146 for (i = 0; i < expr->get_num_operands(); i++) {
147 if (expr->operands[i]->type->is_vector()) {
148 found_vector = true;
149 vector_elements = expr->operands[i]->type->vector_elements;
150 break;
151 }
152 }
153 if (!found_vector)
154 return visit_continue;
155
156 /* Store the expression operands in temps so we can use them
157 * multiple times.
158 */
159 for (i = 0; i < expr->get_num_operands(); i++) {
160 ir_assignment *assign;
161 ir_dereference *deref;
162
163 assert(!expr->operands[i]->type->is_matrix());
164
165 op_var[i] = new(mem_ctx) ir_variable(expr->operands[i]->type,
166 "channel_expressions",
167 ir_var_temporary);
168 ir->insert_before(op_var[i]);
169
170 deref = new(mem_ctx) ir_dereference_variable(op_var[i]);
171 assign = new(mem_ctx) ir_assignment(deref,
172 expr->operands[i],
173 NULL);
174 ir->insert_before(assign);
175 }
176
177 const glsl_type *element_type = glsl_type::get_instance(ir->lhs->type->base_type,
178 1, 1);
179
180 /* OK, time to break down this vector operation. */
181 switch (expr->operation) {
182 case ir_unop_bit_not:
183 case ir_unop_logic_not:
184 case ir_unop_neg:
185 case ir_unop_abs:
186 case ir_unop_sign:
187 case ir_unop_rcp:
188 case ir_unop_rsq:
189 case ir_unop_sqrt:
190 case ir_unop_exp:
191 case ir_unop_log:
192 case ir_unop_exp2:
193 case ir_unop_log2:
194 case ir_unop_bitcast_i2f:
195 case ir_unop_bitcast_f2i:
196 case ir_unop_bitcast_f2u:
197 case ir_unop_bitcast_u2f:
198 case ir_unop_i2u:
199 case ir_unop_u2i:
200 case ir_unop_f2i:
201 case ir_unop_i2f:
202 case ir_unop_f2b:
203 case ir_unop_b2f:
204 case ir_unop_i2b:
205 case ir_unop_b2i:
206 case ir_unop_u2f:
207 case ir_unop_trunc:
208 case ir_unop_ceil:
209 case ir_unop_floor:
210 case ir_unop_fract:
211 case ir_unop_round_even:
212 case ir_unop_sin:
213 case ir_unop_cos:
214 case ir_unop_sin_reduced:
215 case ir_unop_cos_reduced:
216 case ir_unop_dFdx:
217 case ir_unop_dFdy:
218 for (i = 0; i < vector_elements; i++) {
219 ir_rvalue *op0 = get_element(op_var[0], i);
220
221 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
222 element_type,
223 op0,
224 NULL));
225 }
226 break;
227
228 case ir_binop_add:
229 case ir_binop_sub:
230 case ir_binop_mul:
231 case ir_binop_div:
232 case ir_binop_mod:
233 case ir_binop_min:
234 case ir_binop_max:
235 case ir_binop_pow:
236 case ir_binop_lshift:
237 case ir_binop_rshift:
238 case ir_binop_bit_and:
239 case ir_binop_bit_xor:
240 case ir_binop_bit_or:
241 case ir_binop_less:
242 case ir_binop_greater:
243 case ir_binop_lequal:
244 case ir_binop_gequal:
245 case ir_binop_equal:
246 case ir_binop_nequal:
247 for (i = 0; i < vector_elements; i++) {
248 ir_rvalue *op0 = get_element(op_var[0], i);
249 ir_rvalue *op1 = get_element(op_var[1], i);
250
251 assign(ir, i, new(mem_ctx) ir_expression(expr->operation,
252 element_type,
253 op0,
254 op1));
255 }
256 break;
257
258 case ir_unop_any: {
259 ir_expression *temp;
260 temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
261 element_type,
262 get_element(op_var[0], 0),
263 get_element(op_var[0], 1));
264
265 for (i = 2; i < vector_elements; i++) {
266 temp = new(mem_ctx) ir_expression(ir_binop_logic_or,
267 element_type,
268 get_element(op_var[0], i),
269 temp);
270 }
271 assign(ir, 0, temp);
272 break;
273 }
274
275 case ir_binop_dot: {
276 ir_expression *last = NULL;
277 for (i = 0; i < vector_elements; i++) {
278 ir_rvalue *op0 = get_element(op_var[0], i);
279 ir_rvalue *op1 = get_element(op_var[1], i);
280 ir_expression *temp;
281
282 temp = new(mem_ctx) ir_expression(ir_binop_mul,
283 element_type,
284 op0,
285 op1);
286 if (last) {
287 last = new(mem_ctx) ir_expression(ir_binop_add,
288 element_type,
289 temp,
290 last);
291 } else {
292 last = temp;
293 }
294 }
295 assign(ir, 0, last);
296 break;
297 }
298
299 case ir_binop_logic_and:
300 case ir_binop_logic_xor:
301 case ir_binop_logic_or:
302 ir->print();
303 printf("\n");
304 assert(!"not reached: expression operates on scalars only");
305 break;
306 case ir_binop_all_equal:
307 case ir_binop_any_nequal: {
308 ir_expression *last = NULL;
309 for (i = 0; i < vector_elements; i++) {
310 ir_rvalue *op0 = get_element(op_var[0], i);
311 ir_rvalue *op1 = get_element(op_var[1], i);
312 ir_expression *temp;
313 ir_expression_operation join;
314
315 if (expr->operation == ir_binop_all_equal)
316 join = ir_binop_logic_and;
317 else
318 join = ir_binop_logic_or;
319
320 temp = new(mem_ctx) ir_expression(expr->operation,
321 element_type,
322 op0,
323 op1);
324 if (last) {
325 last = new(mem_ctx) ir_expression(join,
326 element_type,
327 temp,
328 last);
329 } else {
330 last = temp;
331 }
332 }
333 assign(ir, 0, last);
334 break;
335 }
336 case ir_unop_noise:
337 assert(!"noise should have been broken down to function call");
338 break;
339 case ir_quadop_vector:
340 assert(!"should have been lowered");
341 break;
342 }
343
344 ir->remove();
345 this->progress = true;
346
347 return visit_continue;
348 }