e265ce0fd8cec47fb9c96ff9e98a6368baeaf9d0
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_copy_propagation.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35 #define ACP_HASH_SIZE 16
36
37 #include "main/bitset.h"
38 #include "brw_fs.h"
39 #include "brw_cfg.h"
40
41 namespace { /* avoid conflict with opt_copy_propagation_elements */
42 struct acp_entry : public exec_node {
43 fs_reg dst;
44 fs_reg src;
45 uint8_t regs_written;
46 enum opcode opcode;
47 bool saturate;
48 };
49
50 struct block_data {
51 /**
52 * Which entries in the fs_copy_prop_dataflow acp table are live at the
53 * start of this block. This is the useful output of the analysis, since
54 * it lets us plug those into the local copy propagation on the second
55 * pass.
56 */
57 BITSET_WORD *livein;
58
59 /**
60 * Which entries in the fs_copy_prop_dataflow acp table are live at the end
61 * of this block. This is done in initial setup from the per-block acps
62 * returned by the first local copy prop pass.
63 */
64 BITSET_WORD *liveout;
65
66 /**
67 * Which entries in the fs_copy_prop_dataflow acp table are generated by
68 * instructions in this block which reach the end of the block without
69 * being killed.
70 */
71 BITSET_WORD *copy;
72
73 /**
74 * Which entries in the fs_copy_prop_dataflow acp table are killed over the
75 * course of this block.
76 */
77 BITSET_WORD *kill;
78 };
79
80 class fs_copy_prop_dataflow
81 {
82 public:
83 fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
84 exec_list *out_acp[ACP_HASH_SIZE]);
85
86 void setup_initial_values();
87 void run();
88
89 void dump_block_data() const;
90
91 void *mem_ctx;
92 cfg_t *cfg;
93
94 acp_entry **acp;
95 int num_acp;
96 int bitset_words;
97
98 struct block_data *bd;
99 };
100 } /* anonymous namespace */
101
102 fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
103 exec_list *out_acp[ACP_HASH_SIZE])
104 : mem_ctx(mem_ctx), cfg(cfg)
105 {
106 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
107
108 num_acp = 0;
109 foreach_block (block, cfg) {
110 for (int i = 0; i < ACP_HASH_SIZE; i++) {
111 num_acp += out_acp[block->num][i].length();
112 }
113 }
114
115 acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
116
117 bitset_words = BITSET_WORDS(num_acp);
118
119 int next_acp = 0;
120 foreach_block (block, cfg) {
121 bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
122 bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
123 bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
124 bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
125
126 for (int i = 0; i < ACP_HASH_SIZE; i++) {
127 foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
128 acp[next_acp] = entry;
129
130 /* opt_copy_propagate_local populates out_acp with copies created
131 * in a block which are still live at the end of the block. This
132 * is exactly what we want in the COPY set.
133 */
134 BITSET_SET(bd[block->num].copy, next_acp);
135
136 next_acp++;
137 }
138 }
139 }
140
141 assert(next_acp == num_acp);
142
143 setup_initial_values();
144 run();
145 }
146
147 /**
148 * Set up initial values for each of the data flow sets, prior to running
149 * the fixed-point algorithm.
150 */
151 void
152 fs_copy_prop_dataflow::setup_initial_values()
153 {
154 /* Initialize the COPY and KILL sets. */
155 foreach_block (block, cfg) {
156 foreach_inst_in_block(fs_inst, inst, block) {
157 if (inst->dst.file != GRF)
158 continue;
159
160 /* Mark ACP entries which are killed by this instruction. */
161 for (int i = 0; i < num_acp; i++) {
162 if (inst->overwrites_reg(acp[i]->dst) ||
163 inst->overwrites_reg(acp[i]->src)) {
164 BITSET_SET(bd[block->num].kill, i);
165 }
166 }
167 }
168 }
169
170 /* Populate the initial values for the livein and liveout sets. For the
171 * block at the start of the program, livein = 0 and liveout = copy.
172 * For the others, set liveout to 0 (the empty set) and livein to ~0
173 * (the universal set).
174 */
175 foreach_block (block, cfg) {
176 if (block->parents.is_empty()) {
177 for (int i = 0; i < bitset_words; i++) {
178 bd[block->num].livein[i] = 0u;
179 bd[block->num].liveout[i] = bd[block->num].copy[i];
180 }
181 } else {
182 for (int i = 0; i < bitset_words; i++) {
183 bd[block->num].liveout[i] = 0u;
184 bd[block->num].livein[i] = ~0u;
185 }
186 }
187 }
188 }
189
190 /**
191 * Walk the set of instructions in the block, marking which entries in the acp
192 * are killed by the block.
193 */
194 void
195 fs_copy_prop_dataflow::run()
196 {
197 bool progress;
198
199 do {
200 progress = false;
201
202 /* Update liveout for all blocks. */
203 foreach_block (block, cfg) {
204 if (block->parents.is_empty())
205 continue;
206
207 for (int i = 0; i < bitset_words; i++) {
208 const BITSET_WORD old_liveout = bd[block->num].liveout[i];
209
210 bd[block->num].liveout[i] =
211 bd[block->num].copy[i] | (bd[block->num].livein[i] &
212 ~bd[block->num].kill[i]);
213
214 if (old_liveout != bd[block->num].liveout[i])
215 progress = true;
216 }
217 }
218
219 /* Update livein for all blocks. If a copy is live out of all parent
220 * blocks, it's live coming in to this block.
221 */
222 foreach_block (block, cfg) {
223 if (block->parents.is_empty())
224 continue;
225
226 for (int i = 0; i < bitset_words; i++) {
227 const BITSET_WORD old_livein = bd[block->num].livein[i];
228
229 bd[block->num].livein[i] = ~0u;
230 foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
231 bblock_t *parent = parent_link->block;
232 bd[block->num].livein[i] &= bd[parent->num].liveout[i];
233 }
234
235 if (old_livein != bd[block->num].livein[i])
236 progress = true;
237 }
238 }
239 } while (progress);
240 }
241
242 void
243 fs_copy_prop_dataflow::dump_block_data() const
244 {
245 foreach_block (block, cfg) {
246 fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
247 block->start_ip, block->end_ip);
248 foreach_list_typed(bblock_link, link, link, &block->parents) {
249 bblock_t *parent = link->block;
250 fprintf(stderr, "%d ", parent->num);
251 }
252 fprintf(stderr, "):\n");
253 fprintf(stderr, " livein = 0x");
254 for (int i = 0; i < bitset_words; i++)
255 fprintf(stderr, "%08x", bd[block->num].livein[i]);
256 fprintf(stderr, ", liveout = 0x");
257 for (int i = 0; i < bitset_words; i++)
258 fprintf(stderr, "%08x", bd[block->num].liveout[i]);
259 fprintf(stderr, ",\n copy = 0x");
260 for (int i = 0; i < bitset_words; i++)
261 fprintf(stderr, "%08x", bd[block->num].copy[i]);
262 fprintf(stderr, ", kill = 0x");
263 for (int i = 0; i < bitset_words; i++)
264 fprintf(stderr, "%08x", bd[block->num].kill[i]);
265 fprintf(stderr, "\n");
266 }
267 }
268
269 static bool
270 is_logic_op(enum opcode opcode)
271 {
272 return (opcode == BRW_OPCODE_AND ||
273 opcode == BRW_OPCODE_OR ||
274 opcode == BRW_OPCODE_XOR ||
275 opcode == BRW_OPCODE_NOT);
276 }
277
278 bool
279 fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
280 {
281 if (inst->src[arg].file != GRF)
282 return false;
283
284 if (entry->src.file == IMM)
285 return false;
286 assert(entry->src.file == GRF || entry->src.file == UNIFORM);
287
288 if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
289 inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
290 return false;
291
292 assert(entry->dst.file == GRF);
293 if (inst->src[arg].reg != entry->dst.reg)
294 return false;
295
296 /* Bail if inst is reading a range that isn't contained in the range
297 * that entry is writing.
298 */
299 if (inst->src[arg].reg_offset < entry->dst.reg_offset ||
300 (inst->src[arg].reg_offset * 32 + inst->src[arg].subreg_offset +
301 inst->regs_read(arg) * inst->src[arg].stride * 32) >
302 (entry->dst.reg_offset + entry->regs_written) * 32)
303 return false;
304
305 /* we can't generally copy-propagate UD negations because we
306 * can end up accessing the resulting values as signed integers
307 * instead. See also resolve_ud_negate() and comment in
308 * fs_generator::generate_code.
309 */
310 if (inst->src[arg].type == BRW_REGISTER_TYPE_UD &&
311 entry->src.negate)
312 return false;
313
314 bool has_source_modifiers = entry->src.abs || entry->src.negate;
315
316 if ((has_source_modifiers || entry->src.file == UNIFORM ||
317 !entry->src.is_contiguous()) &&
318 !inst->can_do_source_mods(brw))
319 return false;
320
321 if (has_source_modifiers &&
322 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
323 return false;
324
325 /* Bail if the result of composing both strides would exceed the
326 * hardware limit.
327 */
328 if (entry->src.stride * inst->src[arg].stride > 4)
329 return false;
330
331 /* Bail if the result of composing both strides cannot be expressed
332 * as another stride. This avoids, for example, trying to transform
333 * this:
334 *
335 * MOV (8) rX<1>UD rY<0;1,0>UD
336 * FOO (8) ... rX<8;8,1>UW
337 *
338 * into this:
339 *
340 * FOO (8) ... rY<0;1,0>UW
341 *
342 * Which would have different semantics.
343 */
344 if (entry->src.stride != 1 &&
345 (inst->src[arg].stride *
346 type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
347 return false;
348
349 if (has_source_modifiers && entry->dst.type != inst->src[arg].type)
350 return false;
351
352 if (brw->gen >= 8 && (entry->src.negate || entry->src.abs) &&
353 is_logic_op(inst->opcode)) {
354 return false;
355 }
356
357 if (entry->saturate) {
358 switch(inst->opcode) {
359 case BRW_OPCODE_SEL:
360 if (inst->src[1].file != IMM ||
361 inst->src[1].fixed_hw_reg.dw1.f < 0.0 ||
362 inst->src[1].fixed_hw_reg.dw1.f > 1.0) {
363 return false;
364 }
365 break;
366 default:
367 return false;
368 }
369 }
370
371 inst->src[arg].file = entry->src.file;
372 inst->src[arg].reg = entry->src.reg;
373 inst->src[arg].stride *= entry->src.stride;
374 inst->saturate = inst->saturate || entry->saturate;
375
376 switch (entry->src.file) {
377 case UNIFORM:
378 assert(entry->src.width == 1);
379 case BAD_FILE:
380 case HW_REG:
381 inst->src[arg].width = entry->src.width;
382 inst->src[arg].reg_offset = entry->src.reg_offset;
383 inst->src[arg].subreg_offset = entry->src.subreg_offset;
384 break;
385 case GRF:
386 {
387 assert(entry->src.width % inst->src[arg].width == 0);
388 /* In this case, we'll just leave the width alone. The source
389 * register could have different widths depending on how it is
390 * being used. For instance, if only half of the register was
391 * used then we want to preserve that and continue to only use
392 * half.
393 *
394 * Also, we have to deal with mapping parts of vgrfs to other
395 * parts of vgrfs so we have to do some reg_offset magic.
396 */
397
398 /* Compute the offset of inst->src[arg] relative to inst->dst */
399 assert(entry->dst.subreg_offset == 0);
400 int rel_offset = inst->src[arg].reg_offset - entry->dst.reg_offset;
401 int rel_suboffset = inst->src[arg].subreg_offset;
402
403 /* Compute the final register offset (in bytes) */
404 int offset = entry->src.reg_offset * 32 + entry->src.subreg_offset;
405 offset += rel_offset * 32 + rel_suboffset;
406 inst->src[arg].reg_offset = offset / 32;
407 inst->src[arg].subreg_offset = offset % 32;
408 }
409 break;
410 default:
411 unreachable("Invalid register file");
412 break;
413 }
414
415 if (!inst->src[arg].abs) {
416 inst->src[arg].abs = entry->src.abs;
417 inst->src[arg].negate ^= entry->src.negate;
418 }
419
420 return true;
421 }
422
423
424 bool
425 fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
426 {
427 bool progress = false;
428
429 if (entry->src.file != IMM)
430 return false;
431 if (entry->saturate)
432 return false;
433
434 for (int i = inst->sources - 1; i >= 0; i--) {
435 if (inst->src[i].file != GRF)
436 continue;
437
438 assert(entry->dst.file == GRF);
439 if (inst->src[i].reg != entry->dst.reg)
440 continue;
441
442 /* Bail if inst is reading a range that isn't contained in the range
443 * that entry is writing.
444 */
445 if (inst->src[i].reg_offset < entry->dst.reg_offset ||
446 (inst->src[i].reg_offset * 32 + inst->src[i].subreg_offset +
447 inst->regs_read(i) * inst->src[i].stride * 32) >
448 (entry->dst.reg_offset + entry->regs_written) * 32)
449 continue;
450
451 fs_reg val = entry->src;
452 val.effective_width = inst->src[i].effective_width;
453 val.type = inst->src[i].type;
454
455 if (inst->src[i].abs) {
456 if ((brw->gen >= 8 && is_logic_op(inst->opcode)) ||
457 !brw_abs_immediate(val.type, &val.fixed_hw_reg)) {
458 continue;
459 }
460 }
461
462 if (inst->src[i].negate) {
463 if ((brw->gen >= 8 && is_logic_op(inst->opcode)) ||
464 !brw_negate_immediate(val.type, &val.fixed_hw_reg)) {
465 continue;
466 }
467 }
468
469 switch (inst->opcode) {
470 case BRW_OPCODE_MOV:
471 case SHADER_OPCODE_LOAD_PAYLOAD:
472 inst->src[i] = val;
473 progress = true;
474 break;
475
476 case SHADER_OPCODE_POW:
477 case SHADER_OPCODE_INT_QUOTIENT:
478 case SHADER_OPCODE_INT_REMAINDER:
479 if (brw->gen < 8)
480 break;
481 /* fallthrough */
482 case BRW_OPCODE_BFI1:
483 case BRW_OPCODE_ASR:
484 case BRW_OPCODE_SHL:
485 case BRW_OPCODE_SHR:
486 case BRW_OPCODE_SUBB:
487 if (i == 1) {
488 inst->src[i] = val;
489 progress = true;
490 }
491 break;
492
493 case BRW_OPCODE_MACH:
494 case BRW_OPCODE_MUL:
495 case BRW_OPCODE_ADD:
496 case BRW_OPCODE_OR:
497 case BRW_OPCODE_AND:
498 case BRW_OPCODE_XOR:
499 case BRW_OPCODE_ADDC:
500 if (i == 1) {
501 inst->src[i] = val;
502 progress = true;
503 } else if (i == 0 && inst->src[1].file != IMM) {
504 /* Fit this constant in by commuting the operands.
505 * Exception: we can't do this for 32-bit integer MUL/MACH
506 * because it's asymmetric.
507 */
508 if ((inst->opcode == BRW_OPCODE_MUL ||
509 inst->opcode == BRW_OPCODE_MACH) &&
510 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
511 inst->src[1].type == BRW_REGISTER_TYPE_UD))
512 break;
513 inst->src[0] = inst->src[1];
514 inst->src[1] = val;
515 progress = true;
516 }
517 break;
518
519 case BRW_OPCODE_CMP:
520 case BRW_OPCODE_IF:
521 if (i == 1) {
522 inst->src[i] = val;
523 progress = true;
524 } else if (i == 0 && inst->src[1].file != IMM) {
525 enum brw_conditional_mod new_cmod;
526
527 new_cmod = brw_swap_cmod(inst->conditional_mod);
528 if (new_cmod != BRW_CONDITIONAL_NONE) {
529 /* Fit this constant in by swapping the operands and
530 * flipping the test
531 */
532 inst->src[0] = inst->src[1];
533 inst->src[1] = val;
534 inst->conditional_mod = new_cmod;
535 progress = true;
536 }
537 }
538 break;
539
540 case BRW_OPCODE_SEL:
541 if (i == 1) {
542 inst->src[i] = val;
543 progress = true;
544 } else if (i == 0 && inst->src[1].file != IMM) {
545 inst->src[0] = inst->src[1];
546 inst->src[1] = val;
547
548 /* If this was predicated, flipping operands means
549 * we also need to flip the predicate.
550 */
551 if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
552 inst->predicate_inverse =
553 !inst->predicate_inverse;
554 }
555 progress = true;
556 }
557 break;
558
559 case SHADER_OPCODE_RCP:
560 /* The hardware doesn't do math on immediate values
561 * (because why are you doing that, seriously?), but
562 * the correct answer is to just constant fold it
563 * anyway.
564 */
565 assert(i == 0);
566 if (inst->src[0].fixed_hw_reg.dw1.f != 0.0f) {
567 inst->opcode = BRW_OPCODE_MOV;
568 inst->src[0] = val;
569 inst->src[0].fixed_hw_reg.dw1.f = 1.0f / inst->src[0].fixed_hw_reg.dw1.f;
570 progress = true;
571 }
572 break;
573
574 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
575 inst->src[i] = val;
576 progress = true;
577 break;
578
579 case BRW_OPCODE_MAD:
580 case BRW_OPCODE_LRP:
581 inst->src[i] = val;
582 progress = true;
583 break;
584
585 default:
586 break;
587 }
588 }
589
590 return progress;
591 }
592
593 static bool
594 can_propagate_from(fs_inst *inst)
595 {
596 return (inst->opcode == BRW_OPCODE_MOV &&
597 inst->dst.file == GRF &&
598 ((inst->src[0].file == GRF &&
599 (inst->src[0].reg != inst->dst.reg ||
600 inst->src[0].reg_offset != inst->dst.reg_offset)) ||
601 inst->src[0].file == UNIFORM ||
602 inst->src[0].file == IMM) &&
603 inst->src[0].type == inst->dst.type &&
604 !inst->is_partial_write());
605 }
606
607 /* Walks a basic block and does copy propagation on it using the acp
608 * list.
609 */
610 bool
611 fs_visitor::opt_copy_propagate_local(void *copy_prop_ctx, bblock_t *block,
612 exec_list *acp)
613 {
614 bool progress = false;
615
616 foreach_inst_in_block(fs_inst, inst, block) {
617 /* Try propagating into this instruction. */
618 for (int i = 0; i < inst->sources; i++) {
619 if (inst->src[i].file != GRF)
620 continue;
621
622 foreach_in_list(acp_entry, entry, &acp[inst->src[i].reg % ACP_HASH_SIZE]) {
623 if (try_constant_propagate(inst, entry))
624 progress = true;
625
626 if (try_copy_propagate(inst, i, entry))
627 progress = true;
628 }
629 }
630
631 /* kill the destination from the ACP */
632 if (inst->dst.file == GRF) {
633 foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.reg % ACP_HASH_SIZE]) {
634 if (inst->overwrites_reg(entry->dst)) {
635 entry->remove();
636 }
637 }
638
639 /* Oops, we only have the chaining hash based on the destination, not
640 * the source, so walk across the entire table.
641 */
642 for (int i = 0; i < ACP_HASH_SIZE; i++) {
643 foreach_in_list_safe(acp_entry, entry, &acp[i]) {
644 if (inst->overwrites_reg(entry->src))
645 entry->remove();
646 }
647 }
648 }
649
650 /* If this instruction's source could potentially be folded into the
651 * operand of another instruction, add it to the ACP.
652 */
653 if (can_propagate_from(inst)) {
654 acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
655 entry->dst = inst->dst;
656 entry->src = inst->src[0];
657 entry->regs_written = inst->regs_written;
658 entry->opcode = inst->opcode;
659 entry->saturate = inst->saturate;
660 acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
661 } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
662 inst->dst.file == GRF) {
663 int offset = 0;
664 for (int i = 0; i < inst->sources; i++) {
665 int regs_written = ((inst->src[i].effective_width *
666 type_sz(inst->src[i].type)) + 31) / 32;
667 if (inst->src[i].file == GRF) {
668 acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
669 entry->dst = inst->dst;
670 entry->dst.reg_offset = offset;
671 entry->dst.width = inst->src[i].effective_width;
672 entry->src = inst->src[i];
673 entry->regs_written = regs_written;
674 entry->opcode = inst->opcode;
675 if (!entry->dst.equals(inst->src[i])) {
676 acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
677 } else {
678 ralloc_free(entry);
679 }
680 }
681 offset += regs_written;
682 }
683 }
684 }
685
686 return progress;
687 }
688
689 bool
690 fs_visitor::opt_copy_propagate()
691 {
692 bool progress = false;
693 void *copy_prop_ctx = ralloc_context(NULL);
694 exec_list *out_acp[cfg->num_blocks];
695
696 for (int i = 0; i < cfg->num_blocks; i++)
697 out_acp[i] = new exec_list [ACP_HASH_SIZE];
698
699 /* First, walk through each block doing local copy propagation and getting
700 * the set of copies available at the end of the block.
701 */
702 foreach_block (block, cfg) {
703 progress = opt_copy_propagate_local(copy_prop_ctx, block,
704 out_acp[block->num]) || progress;
705 }
706
707 /* Do dataflow analysis for those available copies. */
708 fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp);
709
710 /* Next, re-run local copy propagation, this time with the set of copies
711 * provided by the dataflow analysis available at the start of a block.
712 */
713 foreach_block (block, cfg) {
714 exec_list in_acp[ACP_HASH_SIZE];
715
716 for (int i = 0; i < dataflow.num_acp; i++) {
717 if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
718 struct acp_entry *entry = dataflow.acp[i];
719 in_acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
720 }
721 }
722
723 progress = opt_copy_propagate_local(copy_prop_ctx, block, in_acp) || progress;
724 }
725
726 for (int i = 0; i < cfg->num_blocks; i++)
727 delete [] out_acp[i];
728 ralloc_free(copy_prop_ctx);
729
730 if (progress)
731 invalidate_live_intervals();
732
733 return progress;
734 }