i965: Fix copy propagation type changes.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_copy_propagation.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 /** @file brw_fs_copy_propagation.cpp
25 *
26 * Support for global copy propagation in two passes: A local pass that does
27 * intra-block copy (and constant) propagation, and a global pass that uses
28 * dataflow analysis on the copies available at the end of each block to re-do
29 * local copy propagation with more copies available.
30 *
31 * See Muchnick's Advanced Compiler Design and Implementation, section
32 * 12.5 (p356).
33 */
34
35 #define ACP_HASH_SIZE 16
36
37 #include "util/bitset.h"
38 #include "brw_fs.h"
39 #include "brw_cfg.h"
40
41 namespace { /* avoid conflict with opt_copy_propagation_elements */
42 struct acp_entry : public exec_node {
43 fs_reg dst;
44 fs_reg src;
45 uint8_t regs_written;
46 enum opcode opcode;
47 bool saturate;
48 };
49
50 struct block_data {
51 /**
52 * Which entries in the fs_copy_prop_dataflow acp table are live at the
53 * start of this block. This is the useful output of the analysis, since
54 * it lets us plug those into the local copy propagation on the second
55 * pass.
56 */
57 BITSET_WORD *livein;
58
59 /**
60 * Which entries in the fs_copy_prop_dataflow acp table are live at the end
61 * of this block. This is done in initial setup from the per-block acps
62 * returned by the first local copy prop pass.
63 */
64 BITSET_WORD *liveout;
65
66 /**
67 * Which entries in the fs_copy_prop_dataflow acp table are generated by
68 * instructions in this block which reach the end of the block without
69 * being killed.
70 */
71 BITSET_WORD *copy;
72
73 /**
74 * Which entries in the fs_copy_prop_dataflow acp table are killed over the
75 * course of this block.
76 */
77 BITSET_WORD *kill;
78 };
79
80 class fs_copy_prop_dataflow
81 {
82 public:
83 fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
84 exec_list *out_acp[ACP_HASH_SIZE]);
85
86 void setup_initial_values();
87 void run();
88
89 void dump_block_data() const;
90
91 void *mem_ctx;
92 cfg_t *cfg;
93
94 acp_entry **acp;
95 int num_acp;
96 int bitset_words;
97
98 struct block_data *bd;
99 };
100 } /* anonymous namespace */
101
102 fs_copy_prop_dataflow::fs_copy_prop_dataflow(void *mem_ctx, cfg_t *cfg,
103 exec_list *out_acp[ACP_HASH_SIZE])
104 : mem_ctx(mem_ctx), cfg(cfg)
105 {
106 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
107
108 num_acp = 0;
109 foreach_block (block, cfg) {
110 for (int i = 0; i < ACP_HASH_SIZE; i++) {
111 num_acp += out_acp[block->num][i].length();
112 }
113 }
114
115 acp = rzalloc_array(mem_ctx, struct acp_entry *, num_acp);
116
117 bitset_words = BITSET_WORDS(num_acp);
118
119 int next_acp = 0;
120 foreach_block (block, cfg) {
121 bd[block->num].livein = rzalloc_array(bd, BITSET_WORD, bitset_words);
122 bd[block->num].liveout = rzalloc_array(bd, BITSET_WORD, bitset_words);
123 bd[block->num].copy = rzalloc_array(bd, BITSET_WORD, bitset_words);
124 bd[block->num].kill = rzalloc_array(bd, BITSET_WORD, bitset_words);
125
126 for (int i = 0; i < ACP_HASH_SIZE; i++) {
127 foreach_in_list(acp_entry, entry, &out_acp[block->num][i]) {
128 acp[next_acp] = entry;
129
130 /* opt_copy_propagate_local populates out_acp with copies created
131 * in a block which are still live at the end of the block. This
132 * is exactly what we want in the COPY set.
133 */
134 BITSET_SET(bd[block->num].copy, next_acp);
135
136 next_acp++;
137 }
138 }
139 }
140
141 assert(next_acp == num_acp);
142
143 setup_initial_values();
144 run();
145 }
146
147 /**
148 * Set up initial values for each of the data flow sets, prior to running
149 * the fixed-point algorithm.
150 */
151 void
152 fs_copy_prop_dataflow::setup_initial_values()
153 {
154 /* Initialize the COPY and KILL sets. */
155 foreach_block (block, cfg) {
156 foreach_inst_in_block(fs_inst, inst, block) {
157 if (inst->dst.file != GRF)
158 continue;
159
160 /* Mark ACP entries which are killed by this instruction. */
161 for (int i = 0; i < num_acp; i++) {
162 if (inst->overwrites_reg(acp[i]->dst) ||
163 inst->overwrites_reg(acp[i]->src)) {
164 BITSET_SET(bd[block->num].kill, i);
165 }
166 }
167 }
168 }
169
170 /* Populate the initial values for the livein and liveout sets. For the
171 * block at the start of the program, livein = 0 and liveout = copy.
172 * For the others, set liveout to 0 (the empty set) and livein to ~0
173 * (the universal set).
174 */
175 foreach_block (block, cfg) {
176 if (block->parents.is_empty()) {
177 for (int i = 0; i < bitset_words; i++) {
178 bd[block->num].livein[i] = 0u;
179 bd[block->num].liveout[i] = bd[block->num].copy[i];
180 }
181 } else {
182 for (int i = 0; i < bitset_words; i++) {
183 bd[block->num].liveout[i] = 0u;
184 bd[block->num].livein[i] = ~0u;
185 }
186 }
187 }
188 }
189
190 /**
191 * Walk the set of instructions in the block, marking which entries in the acp
192 * are killed by the block.
193 */
194 void
195 fs_copy_prop_dataflow::run()
196 {
197 bool progress;
198
199 do {
200 progress = false;
201
202 /* Update liveout for all blocks. */
203 foreach_block (block, cfg) {
204 if (block->parents.is_empty())
205 continue;
206
207 for (int i = 0; i < bitset_words; i++) {
208 const BITSET_WORD old_liveout = bd[block->num].liveout[i];
209
210 bd[block->num].liveout[i] =
211 bd[block->num].copy[i] | (bd[block->num].livein[i] &
212 ~bd[block->num].kill[i]);
213
214 if (old_liveout != bd[block->num].liveout[i])
215 progress = true;
216 }
217 }
218
219 /* Update livein for all blocks. If a copy is live out of all parent
220 * blocks, it's live coming in to this block.
221 */
222 foreach_block (block, cfg) {
223 if (block->parents.is_empty())
224 continue;
225
226 for (int i = 0; i < bitset_words; i++) {
227 const BITSET_WORD old_livein = bd[block->num].livein[i];
228
229 bd[block->num].livein[i] = ~0u;
230 foreach_list_typed(bblock_link, parent_link, link, &block->parents) {
231 bblock_t *parent = parent_link->block;
232 bd[block->num].livein[i] &= bd[parent->num].liveout[i];
233 }
234
235 if (old_livein != bd[block->num].livein[i])
236 progress = true;
237 }
238 }
239 } while (progress);
240 }
241
242 void
243 fs_copy_prop_dataflow::dump_block_data() const
244 {
245 foreach_block (block, cfg) {
246 fprintf(stderr, "Block %d [%d, %d] (parents ", block->num,
247 block->start_ip, block->end_ip);
248 foreach_list_typed(bblock_link, link, link, &block->parents) {
249 bblock_t *parent = link->block;
250 fprintf(stderr, "%d ", parent->num);
251 }
252 fprintf(stderr, "):\n");
253 fprintf(stderr, " livein = 0x");
254 for (int i = 0; i < bitset_words; i++)
255 fprintf(stderr, "%08x", bd[block->num].livein[i]);
256 fprintf(stderr, ", liveout = 0x");
257 for (int i = 0; i < bitset_words; i++)
258 fprintf(stderr, "%08x", bd[block->num].liveout[i]);
259 fprintf(stderr, ",\n copy = 0x");
260 for (int i = 0; i < bitset_words; i++)
261 fprintf(stderr, "%08x", bd[block->num].copy[i]);
262 fprintf(stderr, ", kill = 0x");
263 for (int i = 0; i < bitset_words; i++)
264 fprintf(stderr, "%08x", bd[block->num].kill[i]);
265 fprintf(stderr, "\n");
266 }
267 }
268
269 static bool
270 is_logic_op(enum opcode opcode)
271 {
272 return (opcode == BRW_OPCODE_AND ||
273 opcode == BRW_OPCODE_OR ||
274 opcode == BRW_OPCODE_XOR ||
275 opcode == BRW_OPCODE_NOT);
276 }
277
278 static bool
279 can_change_source_types(fs_inst *inst)
280 {
281 return !inst->src[0].abs && !inst->src[0].negate &&
282 inst->dst.type == inst->src[0].type &&
283 (inst->opcode == BRW_OPCODE_MOV ||
284 (inst->opcode == BRW_OPCODE_SEL &&
285 inst->predicate != BRW_PREDICATE_NONE &&
286 !inst->src[1].abs && !inst->src[1].negate));
287 }
288
289 bool
290 fs_visitor::try_copy_propagate(fs_inst *inst, int arg, acp_entry *entry)
291 {
292 if (inst->src[arg].file != GRF)
293 return false;
294
295 if (entry->src.file == IMM)
296 return false;
297 assert(entry->src.file == GRF || entry->src.file == UNIFORM ||
298 entry->src.file == ATTR);
299
300 if (entry->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
301 inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD)
302 return false;
303
304 assert(entry->dst.file == GRF);
305 if (inst->src[arg].reg != entry->dst.reg)
306 return false;
307
308 /* Bail if inst is reading a range that isn't contained in the range
309 * that entry is writing.
310 */
311 if (inst->src[arg].reg_offset < entry->dst.reg_offset ||
312 (inst->src[arg].reg_offset * 32 + inst->src[arg].subreg_offset +
313 inst->regs_read(arg) * inst->src[arg].stride * 32) >
314 (entry->dst.reg_offset + entry->regs_written) * 32)
315 return false;
316
317 /* we can't generally copy-propagate UD negations because we
318 * can end up accessing the resulting values as signed integers
319 * instead. See also resolve_ud_negate() and comment in
320 * fs_generator::generate_code.
321 */
322 if (entry->src.type == BRW_REGISTER_TYPE_UD &&
323 entry->src.negate)
324 return false;
325
326 bool has_source_modifiers = entry->src.abs || entry->src.negate;
327
328 if ((has_source_modifiers || entry->src.file == UNIFORM ||
329 !entry->src.is_contiguous()) &&
330 !inst->can_do_source_mods(devinfo))
331 return false;
332
333 if (has_source_modifiers &&
334 inst->opcode == SHADER_OPCODE_GEN4_SCRATCH_WRITE)
335 return false;
336
337 /* Bail if the result of composing both strides would exceed the
338 * hardware limit.
339 */
340 if (entry->src.stride * inst->src[arg].stride > 4)
341 return false;
342
343 /* Bail if the instruction type is larger than the execution type of the
344 * copy, what implies that each channel is reading multiple channels of the
345 * destination of the copy, and simply replacing the sources would give a
346 * program with different semantics.
347 */
348 if (type_sz(entry->dst.type) < type_sz(inst->src[arg].type))
349 return false;
350
351 /* Bail if the result of composing both strides cannot be expressed
352 * as another stride. This avoids, for example, trying to transform
353 * this:
354 *
355 * MOV (8) rX<1>UD rY<0;1,0>UD
356 * FOO (8) ... rX<8;8,1>UW
357 *
358 * into this:
359 *
360 * FOO (8) ... rY<0;1,0>UW
361 *
362 * Which would have different semantics.
363 */
364 if (entry->src.stride != 1 &&
365 (inst->src[arg].stride *
366 type_sz(inst->src[arg].type)) % type_sz(entry->src.type) != 0)
367 return false;
368
369 if (has_source_modifiers &&
370 entry->dst.type != inst->src[arg].type &&
371 !can_change_source_types(inst))
372 return false;
373
374 if (devinfo->gen >= 8 && (entry->src.negate || entry->src.abs) &&
375 is_logic_op(inst->opcode)) {
376 return false;
377 }
378
379 if (entry->saturate) {
380 switch(inst->opcode) {
381 case BRW_OPCODE_SEL:
382 if (inst->src[1].file != IMM ||
383 inst->src[1].fixed_hw_reg.dw1.f < 0.0 ||
384 inst->src[1].fixed_hw_reg.dw1.f > 1.0) {
385 return false;
386 }
387 break;
388 default:
389 return false;
390 }
391 }
392
393 inst->src[arg].file = entry->src.file;
394 inst->src[arg].reg = entry->src.reg;
395 inst->src[arg].stride *= entry->src.stride;
396 inst->saturate = inst->saturate || entry->saturate;
397
398 switch (entry->src.file) {
399 case UNIFORM:
400 case BAD_FILE:
401 case HW_REG:
402 inst->src[arg].reg_offset = entry->src.reg_offset;
403 inst->src[arg].subreg_offset = entry->src.subreg_offset;
404 break;
405 case ATTR:
406 case GRF:
407 {
408 /* In this case, we'll just leave the width alone. The source
409 * register could have different widths depending on how it is
410 * being used. For instance, if only half of the register was
411 * used then we want to preserve that and continue to only use
412 * half.
413 *
414 * Also, we have to deal with mapping parts of vgrfs to other
415 * parts of vgrfs so we have to do some reg_offset magic.
416 */
417
418 /* Compute the offset of inst->src[arg] relative to inst->dst */
419 assert(entry->dst.subreg_offset == 0);
420 int rel_offset = inst->src[arg].reg_offset - entry->dst.reg_offset;
421 int rel_suboffset = inst->src[arg].subreg_offset;
422
423 /* Compute the final register offset (in bytes) */
424 int offset = entry->src.reg_offset * 32 + entry->src.subreg_offset;
425 offset += rel_offset * 32 + rel_suboffset;
426 inst->src[arg].reg_offset = offset / 32;
427 inst->src[arg].subreg_offset = offset % 32;
428 }
429 break;
430 default:
431 unreachable("Invalid register file");
432 break;
433 }
434
435 if (has_source_modifiers) {
436 if (entry->dst.type != inst->src[arg].type) {
437 /* We are propagating source modifiers from a MOV with a different
438 * type. If we got here, then we can just change the source and
439 * destination types of the instruction and keep going.
440 */
441 assert(can_change_source_types(inst));
442 for (int i = 0; i < inst->sources; i++) {
443 inst->src[i].type = entry->dst.type;
444 }
445 inst->dst.type = entry->dst.type;
446 }
447
448 if (!inst->src[arg].abs) {
449 inst->src[arg].abs = entry->src.abs;
450 inst->src[arg].negate ^= entry->src.negate;
451 }
452 }
453
454 return true;
455 }
456
457
458 bool
459 fs_visitor::try_constant_propagate(fs_inst *inst, acp_entry *entry)
460 {
461 bool progress = false;
462
463 if (entry->src.file != IMM)
464 return false;
465 if (entry->saturate)
466 return false;
467
468 for (int i = inst->sources - 1; i >= 0; i--) {
469 if (inst->src[i].file != GRF)
470 continue;
471
472 assert(entry->dst.file == GRF);
473 if (inst->src[i].reg != entry->dst.reg)
474 continue;
475
476 /* Bail if inst is reading a range that isn't contained in the range
477 * that entry is writing.
478 */
479 if (inst->src[i].reg_offset < entry->dst.reg_offset ||
480 (inst->src[i].reg_offset * 32 + inst->src[i].subreg_offset +
481 inst->regs_read(i) * inst->src[i].stride * 32) >
482 (entry->dst.reg_offset + entry->regs_written) * 32)
483 continue;
484
485 fs_reg val = entry->src;
486 val.type = inst->src[i].type;
487
488 if (inst->src[i].abs) {
489 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
490 !brw_abs_immediate(val.type, &val.fixed_hw_reg)) {
491 continue;
492 }
493 }
494
495 if (inst->src[i].negate) {
496 if ((devinfo->gen >= 8 && is_logic_op(inst->opcode)) ||
497 !brw_negate_immediate(val.type, &val.fixed_hw_reg)) {
498 continue;
499 }
500 }
501
502 switch (inst->opcode) {
503 case BRW_OPCODE_MOV:
504 case SHADER_OPCODE_LOAD_PAYLOAD:
505 inst->src[i] = val;
506 progress = true;
507 break;
508
509 case SHADER_OPCODE_INT_QUOTIENT:
510 case SHADER_OPCODE_INT_REMAINDER:
511 /* FINISHME: Promote non-float constants and remove this. */
512 if (devinfo->gen < 8)
513 break;
514 /* fallthrough */
515 case SHADER_OPCODE_POW:
516 /* Allow constant propagation into src1 (except on Gen 6), and let
517 * constant combining promote the constant on Gen < 8.
518 *
519 * While Gen 6 MATH can take a scalar source, its source and
520 * destination offsets must be equal and we cannot ensure that.
521 */
522 if (devinfo->gen == 6)
523 break;
524 /* fallthrough */
525 case BRW_OPCODE_BFI1:
526 case BRW_OPCODE_ASR:
527 case BRW_OPCODE_SHL:
528 case BRW_OPCODE_SHR:
529 case BRW_OPCODE_SUBB:
530 if (i == 1) {
531 inst->src[i] = val;
532 progress = true;
533 }
534 break;
535
536 case BRW_OPCODE_MACH:
537 case BRW_OPCODE_MUL:
538 case SHADER_OPCODE_MULH:
539 case BRW_OPCODE_ADD:
540 case BRW_OPCODE_OR:
541 case BRW_OPCODE_AND:
542 case BRW_OPCODE_XOR:
543 case BRW_OPCODE_ADDC:
544 if (i == 1) {
545 inst->src[i] = val;
546 progress = true;
547 } else if (i == 0 && inst->src[1].file != IMM) {
548 /* Fit this constant in by commuting the operands.
549 * Exception: we can't do this for 32-bit integer MUL/MACH
550 * because it's asymmetric.
551 *
552 * The BSpec says for Broadwell that
553 *
554 * "When multiplying DW x DW, the dst cannot be accumulator."
555 *
556 * Integer MUL with a non-accumulator destination will be lowered
557 * by lower_integer_multiplication(), so don't restrict it.
558 */
559 if (((inst->opcode == BRW_OPCODE_MUL &&
560 inst->dst.is_accumulator()) ||
561 inst->opcode == BRW_OPCODE_MACH) &&
562 (inst->src[1].type == BRW_REGISTER_TYPE_D ||
563 inst->src[1].type == BRW_REGISTER_TYPE_UD))
564 break;
565 inst->src[0] = inst->src[1];
566 inst->src[1] = val;
567 progress = true;
568 }
569 break;
570
571 case BRW_OPCODE_CMP:
572 case BRW_OPCODE_IF:
573 if (i == 1) {
574 inst->src[i] = val;
575 progress = true;
576 } else if (i == 0 && inst->src[1].file != IMM) {
577 enum brw_conditional_mod new_cmod;
578
579 new_cmod = brw_swap_cmod(inst->conditional_mod);
580 if (new_cmod != BRW_CONDITIONAL_NONE) {
581 /* Fit this constant in by swapping the operands and
582 * flipping the test
583 */
584 inst->src[0] = inst->src[1];
585 inst->src[1] = val;
586 inst->conditional_mod = new_cmod;
587 progress = true;
588 }
589 }
590 break;
591
592 case BRW_OPCODE_SEL:
593 if (i == 1) {
594 inst->src[i] = val;
595 progress = true;
596 } else if (i == 0 && inst->src[1].file != IMM) {
597 inst->src[0] = inst->src[1];
598 inst->src[1] = val;
599
600 /* If this was predicated, flipping operands means
601 * we also need to flip the predicate.
602 */
603 if (inst->conditional_mod == BRW_CONDITIONAL_NONE) {
604 inst->predicate_inverse =
605 !inst->predicate_inverse;
606 }
607 progress = true;
608 }
609 break;
610
611 case SHADER_OPCODE_RCP:
612 /* The hardware doesn't do math on immediate values
613 * (because why are you doing that, seriously?), but
614 * the correct answer is to just constant fold it
615 * anyway.
616 */
617 assert(i == 0);
618 if (inst->src[0].fixed_hw_reg.dw1.f != 0.0f) {
619 inst->opcode = BRW_OPCODE_MOV;
620 inst->src[0] = val;
621 inst->src[0].fixed_hw_reg.dw1.f = 1.0f / inst->src[0].fixed_hw_reg.dw1.f;
622 progress = true;
623 }
624 break;
625
626 case FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD:
627 case SHADER_OPCODE_BROADCAST:
628 inst->src[i] = val;
629 progress = true;
630 break;
631
632 case BRW_OPCODE_MAD:
633 case BRW_OPCODE_LRP:
634 inst->src[i] = val;
635 progress = true;
636 break;
637
638 default:
639 break;
640 }
641 }
642
643 return progress;
644 }
645
646 static bool
647 can_propagate_from(fs_inst *inst)
648 {
649 return (inst->opcode == BRW_OPCODE_MOV &&
650 inst->dst.file == GRF &&
651 ((inst->src[0].file == GRF &&
652 (inst->src[0].reg != inst->dst.reg ||
653 inst->src[0].reg_offset != inst->dst.reg_offset)) ||
654 inst->src[0].file == ATTR ||
655 inst->src[0].file == UNIFORM ||
656 inst->src[0].file == IMM) &&
657 inst->src[0].type == inst->dst.type &&
658 !inst->is_partial_write());
659 }
660
661 /* Walks a basic block and does copy propagation on it using the acp
662 * list.
663 */
664 bool
665 fs_visitor::opt_copy_propagate_local(void *copy_prop_ctx, bblock_t *block,
666 exec_list *acp)
667 {
668 bool progress = false;
669
670 foreach_inst_in_block(fs_inst, inst, block) {
671 /* Try propagating into this instruction. */
672 for (int i = 0; i < inst->sources; i++) {
673 if (inst->src[i].file != GRF)
674 continue;
675
676 foreach_in_list(acp_entry, entry, &acp[inst->src[i].reg % ACP_HASH_SIZE]) {
677 if (try_constant_propagate(inst, entry))
678 progress = true;
679
680 if (try_copy_propagate(inst, i, entry))
681 progress = true;
682 }
683 }
684
685 /* kill the destination from the ACP */
686 if (inst->dst.file == GRF) {
687 foreach_in_list_safe(acp_entry, entry, &acp[inst->dst.reg % ACP_HASH_SIZE]) {
688 if (inst->overwrites_reg(entry->dst)) {
689 entry->remove();
690 }
691 }
692
693 /* Oops, we only have the chaining hash based on the destination, not
694 * the source, so walk across the entire table.
695 */
696 for (int i = 0; i < ACP_HASH_SIZE; i++) {
697 foreach_in_list_safe(acp_entry, entry, &acp[i]) {
698 if (inst->overwrites_reg(entry->src))
699 entry->remove();
700 }
701 }
702 }
703
704 /* If this instruction's source could potentially be folded into the
705 * operand of another instruction, add it to the ACP.
706 */
707 if (can_propagate_from(inst)) {
708 acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
709 entry->dst = inst->dst;
710 entry->src = inst->src[0];
711 entry->regs_written = inst->regs_written;
712 entry->opcode = inst->opcode;
713 entry->saturate = inst->saturate;
714 acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
715 } else if (inst->opcode == SHADER_OPCODE_LOAD_PAYLOAD &&
716 inst->dst.file == GRF) {
717 int offset = 0;
718 for (int i = 0; i < inst->sources; i++) {
719 int effective_width = i < inst->header_size ? 8 : inst->exec_size;
720 int regs_written = effective_width / 8;
721 if (inst->src[i].file == GRF) {
722 acp_entry *entry = ralloc(copy_prop_ctx, acp_entry);
723 entry->dst = inst->dst;
724 entry->dst.reg_offset = offset;
725 entry->src = inst->src[i];
726 entry->regs_written = regs_written;
727 entry->opcode = inst->opcode;
728 if (!entry->dst.equals(inst->src[i])) {
729 acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
730 } else {
731 ralloc_free(entry);
732 }
733 }
734 offset += regs_written;
735 }
736 }
737 }
738
739 return progress;
740 }
741
742 bool
743 fs_visitor::opt_copy_propagate()
744 {
745 bool progress = false;
746 void *copy_prop_ctx = ralloc_context(NULL);
747 exec_list *out_acp[cfg->num_blocks];
748
749 for (int i = 0; i < cfg->num_blocks; i++)
750 out_acp[i] = new exec_list [ACP_HASH_SIZE];
751
752 /* First, walk through each block doing local copy propagation and getting
753 * the set of copies available at the end of the block.
754 */
755 foreach_block (block, cfg) {
756 progress = opt_copy_propagate_local(copy_prop_ctx, block,
757 out_acp[block->num]) || progress;
758 }
759
760 /* Do dataflow analysis for those available copies. */
761 fs_copy_prop_dataflow dataflow(copy_prop_ctx, cfg, out_acp);
762
763 /* Next, re-run local copy propagation, this time with the set of copies
764 * provided by the dataflow analysis available at the start of a block.
765 */
766 foreach_block (block, cfg) {
767 exec_list in_acp[ACP_HASH_SIZE];
768
769 for (int i = 0; i < dataflow.num_acp; i++) {
770 if (BITSET_TEST(dataflow.bd[block->num].livein, i)) {
771 struct acp_entry *entry = dataflow.acp[i];
772 in_acp[entry->dst.reg % ACP_HASH_SIZE].push_tail(entry);
773 }
774 }
775
776 progress = opt_copy_propagate_local(copy_prop_ctx, block, in_acp) || progress;
777 }
778
779 for (int i = 0; i < cfg->num_blocks; i++)
780 delete [] out_acp[i];
781 ralloc_free(copy_prop_ctx);
782
783 if (progress)
784 invalidate_live_intervals();
785
786 return progress;
787 }