40877c93374b17b63c5647667dd3c9df34a15f7c
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_fs_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnik's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] arrays.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 */
49 void
50 fs_live_variables::setup_def_use()
51 {
52 int ip = 0;
53
54 for (int b = 0; b < cfg->num_blocks; b++) {
55 fs_bblock *block = cfg->blocks[b];
56
57 assert(ip == block->start_ip);
58 if (b > 0)
59 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
60
61 for (fs_inst *inst = block->start;
62 inst != block->end->next;
63 inst = (fs_inst *)inst->next) {
64
65 /* Set use[] for this instruction */
66 for (unsigned int i = 0; i < 3; i++) {
67 if (inst->src[i].file == GRF) {
68 int reg = inst->src[i].reg;
69
70 if (!bd[b].def[reg])
71 bd[b].use[reg] = true;
72 }
73 }
74
75 /* Check for unconditional writes to whole registers. These
76 * are the things that screen off preceding definitions of a
77 * variable, and thus qualify for being in def[].
78 */
79 if (inst->dst.file == GRF &&
80 inst->regs_written() == v->virtual_grf_sizes[inst->dst.reg] &&
81 !inst->predicated &&
82 !inst->force_uncompressed &&
83 !inst->force_sechalf) {
84 int reg = inst->dst.reg;
85 if (!bd[b].use[reg])
86 bd[b].def[reg] = true;
87 }
88
89 ip++;
90 }
91 }
92 }
93
94 /**
95 * The algorithm incrementally sets bits in liveout and livein,
96 * propagating it through control flow. It will eventually terminate
97 * because it only ever adds bits, and stops when no bits are added in
98 * a pass.
99 */
100 void
101 fs_live_variables::compute_live_variables()
102 {
103 bool cont = true;
104
105 while (cont) {
106 cont = false;
107
108 for (int b = 0; b < cfg->num_blocks; b++) {
109 /* Update livein */
110 for (int i = 0; i < num_vars; i++) {
111 if (bd[b].use[i] || (bd[b].liveout[i] && !bd[b].def[i])) {
112 if (!bd[b].livein[i]) {
113 bd[b].livein[i] = true;
114 cont = true;
115 }
116 }
117 }
118
119 /* Update liveout */
120 foreach_list(block_node, &cfg->blocks[b]->children) {
121 fs_bblock_link *link = (fs_bblock_link *)block_node;
122 fs_bblock *block = link->block;
123
124 for (int i = 0; i < num_vars; i++) {
125 if (bd[block->block_num].livein[i] && !bd[b].liveout[i]) {
126 bd[b].liveout[i] = true;
127 cont = true;
128 }
129 }
130 }
131 }
132 }
133 }
134
135 fs_live_variables::fs_live_variables(fs_visitor *v, fs_cfg *cfg)
136 : v(v), cfg(cfg)
137 {
138 mem_ctx = ralloc_context(cfg->mem_ctx);
139
140 num_vars = v->virtual_grf_count;
141 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
142 vars = rzalloc_array(mem_ctx, struct var, num_vars);
143
144 for (int i = 0; i < cfg->num_blocks; i++) {
145 bd[i].def = rzalloc_array(mem_ctx, bool, num_vars);
146 bd[i].use = rzalloc_array(mem_ctx, bool, num_vars);
147 bd[i].livein = rzalloc_array(mem_ctx, bool, num_vars);
148 bd[i].liveout = rzalloc_array(mem_ctx, bool, num_vars);
149 }
150
151 setup_def_use();
152 compute_live_variables();
153 }
154
155 fs_live_variables::~fs_live_variables()
156 {
157 ralloc_free(mem_ctx);
158 }
159
160 #define MAX_INSTRUCTION (1 << 30)
161
162 void
163 fs_visitor::calculate_live_intervals()
164 {
165 int num_vars = this->virtual_grf_count;
166
167 if (this->live_intervals_valid)
168 return;
169
170 int *def = ralloc_array(mem_ctx, int, num_vars);
171 int *use = ralloc_array(mem_ctx, int, num_vars);
172 ralloc_free(this->virtual_grf_def);
173 ralloc_free(this->virtual_grf_use);
174 this->virtual_grf_def = def;
175 this->virtual_grf_use = use;
176
177 for (int i = 0; i < num_vars; i++) {
178 def[i] = MAX_INSTRUCTION;
179 use[i] = -1;
180 }
181
182 /* Start by setting up the intervals with no knowledge of control
183 * flow.
184 */
185 int ip = 0;
186 foreach_list(node, &this->instructions) {
187 fs_inst *inst = (fs_inst *)node;
188
189 for (unsigned int i = 0; i < 3; i++) {
190 if (inst->src[i].file == GRF) {
191 int reg = inst->src[i].reg;
192
193 use[reg] = ip;
194 }
195 }
196
197 if (inst->dst.file == GRF) {
198 int reg = inst->dst.reg;
199
200 def[reg] = MIN2(def[reg], ip);
201 }
202
203 ip++;
204 }
205
206 /* Now, extend those intervals using our analysis of control flow. */
207 fs_cfg cfg(this);
208 fs_live_variables livevars(this, &cfg);
209
210 for (int b = 0; b < cfg.num_blocks; b++) {
211 for (int i = 0; i < num_vars; i++) {
212 if (livevars.bd[b].livein[i]) {
213 def[i] = MIN2(def[i], cfg.blocks[b]->start_ip);
214 use[i] = MAX2(use[i], cfg.blocks[b]->start_ip);
215 }
216
217 if (livevars.bd[b].liveout[i]) {
218 def[i] = MIN2(def[i], cfg.blocks[b]->end_ip);
219 use[i] = MAX2(use[i], cfg.blocks[b]->end_ip);
220 }
221 }
222 }
223
224 this->live_intervals_valid = true;
225 }
226
227 bool
228 fs_visitor::virtual_grf_interferes(int a, int b)
229 {
230 int a_def = this->virtual_grf_def[a], a_use = this->virtual_grf_use[a];
231 int b_def = this->virtual_grf_def[b], b_use = this->virtual_grf_use[b];
232
233 /* If there's dead code (def but not use), it would break our test
234 * unless we consider it used.
235 */
236 if ((a_use == -1 && a_def != MAX_INSTRUCTION) ||
237 (b_use == -1 && b_def != MAX_INSTRUCTION)) {
238 return true;
239 }
240
241 int start = MAX2(a_def, b_def);
242 int end = MIN2(a_use, b_use);
243
244 /* If the register is used to store 16 values of less than float
245 * size (only the case for pixel_[xy]), then we can't allocate
246 * another dword-sized thing to that register that would be used in
247 * the same instruction. This is because when the GPU decodes (for
248 * example):
249 *
250 * (declare (in ) vec4 gl_FragCoord@0x97766a0)
251 * add(16) g6<1>F g6<8,8,1>UW 0.5F { align1 compr };
252 *
253 * it's actually processed as:
254 * add(8) g6<1>F g6<8,8,1>UW 0.5F { align1 };
255 * add(8) g7<1>F g6.8<8,8,1>UW 0.5F { align1 sechalf };
256 *
257 * so our second half values in g6 got overwritten in the first
258 * half.
259 */
260 if (c->dispatch_width == 16 && (this->pixel_x.reg == a ||
261 this->pixel_x.reg == b ||
262 this->pixel_y.reg == a ||
263 this->pixel_y.reg == b)) {
264 return start <= end;
265 }
266
267 return start < end;
268 }