i965: Fix PBO cache coherency issue after _mesa_meta_pbo_GetTexSubImage().
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 #define MAX_INSTRUCTION (1 << 30)
34
35 /** @file brw_fs_live_variables.cpp
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF. We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not. It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-component
45 * (reg_offset) level for greater accuracy. Large VGRFs may be accessed
46 * piecemeal over many (possibly non-adjacent) instructions. In this case,
47 * examining a single instruction is insufficient to decide whether a whole
48 * VGRF is ultimately used or defined. Tracking individual components
49 * allows us to easily assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55 void
56 fs_live_variables::setup_one_read(struct block_data *bd, fs_inst *inst,
57 int ip, const fs_reg &reg)
58 {
59 int var = var_from_reg(reg);
60 assert(var < num_vars);
61
62 /* In most cases, a register can be written over safely by the
63 * same instruction that is its last use. For a single
64 * instruction, the sources are dereferenced before writing of the
65 * destination starts (naturally). This gets more complicated for
66 * simd16, because the instruction:
67 *
68 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
69 *
70 * is actually decoded in hardware as:
71 *
72 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
73 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
74 *
75 * Which is safe. However, if we have uniform accesses
76 * happening, we get into trouble:
77 *
78 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
79 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
80 *
81 * Now our destination for the first instruction overwrote the
82 * second instruction's src0, and we get garbage for those 8
83 * pixels. There's a similar issue for the pre-gen6
84 * pixel_x/pixel_y, which are registers of 16-bit values and thus
85 * would get stomped by the first decode as well.
86 */
87 int end_ip = ip;
88 if (inst->exec_size == 16 && (reg.stride == 0 ||
89 reg.type == BRW_REGISTER_TYPE_UW ||
90 reg.type == BRW_REGISTER_TYPE_W ||
91 reg.type == BRW_REGISTER_TYPE_UB ||
92 reg.type == BRW_REGISTER_TYPE_B)) {
93 end_ip++;
94 }
95
96 start[var] = MIN2(start[var], ip);
97 end[var] = MAX2(end[var], end_ip);
98
99 /* The use[] bitset marks when the block makes use of a variable (VGRF
100 * channel) without having completely defined that variable within the
101 * block.
102 */
103 if (!BITSET_TEST(bd->def, var))
104 BITSET_SET(bd->use, var);
105 }
106
107 void
108 fs_live_variables::setup_one_write(struct block_data *bd, fs_inst *inst,
109 int ip, const fs_reg &reg)
110 {
111 int var = var_from_reg(reg);
112 assert(var < num_vars);
113
114 start[var] = MIN2(start[var], ip);
115 end[var] = MAX2(end[var], ip);
116
117 /* The def[] bitset marks when an initialization in a block completely
118 * screens off previous updates of that variable (VGRF channel).
119 */
120 if (inst->dst.file == GRF && !inst->is_partial_write()) {
121 if (!BITSET_TEST(bd->use, var))
122 BITSET_SET(bd->def, var);
123 }
124 }
125
126 /**
127 * Sets up the use[] and def[] bitsets.
128 *
129 * The basic-block-level live variable analysis needs to know which
130 * variables get used before they're completely defined, and which
131 * variables are completely defined before they're used.
132 *
133 * These are tracked at the per-component level, rather than whole VGRFs.
134 */
135 void
136 fs_live_variables::setup_def_use()
137 {
138 int ip = 0;
139
140 foreach_block (block, cfg) {
141 assert(ip == block->start_ip);
142 if (block->num > 0)
143 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
144
145 struct block_data *bd = &block_data[block->num];
146
147 foreach_inst_in_block(fs_inst, inst, block) {
148 /* Set use[] for this instruction */
149 for (unsigned int i = 0; i < inst->sources; i++) {
150 fs_reg reg = inst->src[i];
151
152 if (reg.file != GRF)
153 continue;
154
155 for (int j = 0; j < inst->regs_read(i); j++) {
156 setup_one_read(bd, inst, ip, reg);
157 reg.reg_offset++;
158 }
159 }
160 if (inst->reads_flag()) {
161 /* The vertical combination predicates read f0.0 and f0.1. */
162 if (inst->predicate == BRW_PREDICATE_ALIGN1_ANYV ||
163 inst->predicate == BRW_PREDICATE_ALIGN1_ALLV) {
164 assert(inst->flag_subreg == 0);
165 if (!BITSET_TEST(bd->flag_def, 1)) {
166 BITSET_SET(bd->flag_use, 1);
167 }
168 }
169 if (!BITSET_TEST(bd->flag_def, inst->flag_subreg)) {
170 BITSET_SET(bd->flag_use, inst->flag_subreg);
171 }
172 }
173
174 /* Set def[] for this instruction */
175 if (inst->dst.file == GRF) {
176 fs_reg reg = inst->dst;
177 for (int j = 0; j < inst->regs_written; j++) {
178 setup_one_write(bd, inst, ip, reg);
179 reg.reg_offset++;
180 }
181 }
182 if (inst->writes_flag()) {
183 if (!BITSET_TEST(bd->flag_use, inst->flag_subreg)) {
184 BITSET_SET(bd->flag_def, inst->flag_subreg);
185 }
186 }
187
188 ip++;
189 }
190 }
191 }
192
193 /**
194 * The algorithm incrementally sets bits in liveout and livein,
195 * propagating it through control flow. It will eventually terminate
196 * because it only ever adds bits, and stops when no bits are added in
197 * a pass.
198 */
199 void
200 fs_live_variables::compute_live_variables()
201 {
202 bool cont = true;
203
204 while (cont) {
205 cont = false;
206
207 foreach_block (block, cfg) {
208 struct block_data *bd = &block_data[block->num];
209
210 /* Update livein */
211 for (int i = 0; i < bitset_words; i++) {
212 BITSET_WORD new_livein = (bd->use[i] |
213 (bd->liveout[i] &
214 ~bd->def[i]));
215 if (new_livein & ~bd->livein[i]) {
216 bd->livein[i] |= new_livein;
217 cont = true;
218 }
219 }
220 BITSET_WORD new_livein = (bd->flag_use[0] |
221 (bd->flag_liveout[0] &
222 ~bd->flag_def[0]));
223 if (new_livein & ~bd->flag_livein[0]) {
224 bd->flag_livein[0] |= new_livein;
225 cont = true;
226 }
227
228 /* Update liveout */
229 foreach_list_typed(bblock_link, child_link, link, &block->children) {
230 struct block_data *child_bd = &block_data[child_link->block->num];
231
232 for (int i = 0; i < bitset_words; i++) {
233 BITSET_WORD new_liveout = (child_bd->livein[i] &
234 ~bd->liveout[i]);
235 if (new_liveout) {
236 bd->liveout[i] |= new_liveout;
237 cont = true;
238 }
239 }
240 BITSET_WORD new_liveout = (child_bd->flag_livein[0] &
241 ~bd->flag_liveout[0]);
242 if (new_liveout) {
243 bd->flag_liveout[0] |= new_liveout;
244 cont = true;
245 }
246 }
247 }
248 }
249 }
250
251 /**
252 * Extend the start/end ranges for each variable to account for the
253 * new information calculated from control flow.
254 */
255 void
256 fs_live_variables::compute_start_end()
257 {
258 foreach_block (block, cfg) {
259 struct block_data *bd = &block_data[block->num];
260
261 for (int i = 0; i < num_vars; i++) {
262 if (BITSET_TEST(bd->livein, i)) {
263 start[i] = MIN2(start[i], block->start_ip);
264 end[i] = MAX2(end[i], block->start_ip);
265 }
266
267 if (BITSET_TEST(bd->liveout, i)) {
268 start[i] = MIN2(start[i], block->end_ip);
269 end[i] = MAX2(end[i], block->end_ip);
270 }
271
272 }
273 }
274 }
275
276 fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
277 : v(v), cfg(cfg)
278 {
279 mem_ctx = ralloc_context(NULL);
280
281 num_vgrfs = v->alloc.count;
282 num_vars = 0;
283 var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
284 for (int i = 0; i < num_vgrfs; i++) {
285 var_from_vgrf[i] = num_vars;
286 num_vars += v->alloc.sizes[i];
287 }
288
289 vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
290 for (int i = 0; i < num_vgrfs; i++) {
291 for (unsigned j = 0; j < v->alloc.sizes[i]; j++) {
292 vgrf_from_var[var_from_vgrf[i] + j] = i;
293 }
294 }
295
296 start = ralloc_array(mem_ctx, int, num_vars);
297 end = rzalloc_array(mem_ctx, int, num_vars);
298 for (int i = 0; i < num_vars; i++) {
299 start[i] = MAX_INSTRUCTION;
300 end[i] = -1;
301 }
302
303 block_data= rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
304
305 bitset_words = BITSET_WORDS(num_vars);
306 for (int i = 0; i < cfg->num_blocks; i++) {
307 block_data[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
308 block_data[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
309 block_data[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
310 block_data[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
311
312 block_data[i].flag_def[0] = 0;
313 block_data[i].flag_use[0] = 0;
314 block_data[i].flag_livein[0] = 0;
315 block_data[i].flag_liveout[0] = 0;
316 }
317
318 setup_def_use();
319 compute_live_variables();
320 compute_start_end();
321 }
322
323 fs_live_variables::~fs_live_variables()
324 {
325 ralloc_free(mem_ctx);
326 }
327
328 void
329 fs_visitor::invalidate_live_intervals()
330 {
331 ralloc_free(live_intervals);
332 live_intervals = NULL;
333 }
334
335 /**
336 * Compute the live intervals for each virtual GRF.
337 *
338 * This uses the per-component use/def data, but combines it to produce
339 * information about whole VGRFs.
340 */
341 void
342 fs_visitor::calculate_live_intervals()
343 {
344 if (this->live_intervals)
345 return;
346
347 int num_vgrfs = this->alloc.count;
348 ralloc_free(this->virtual_grf_start);
349 ralloc_free(this->virtual_grf_end);
350 virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
351 virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
352
353 for (int i = 0; i < num_vgrfs; i++) {
354 virtual_grf_start[i] = MAX_INSTRUCTION;
355 virtual_grf_end[i] = -1;
356 }
357
358 this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
359
360 /* Merge the per-component live ranges to whole VGRF live ranges. */
361 for (int i = 0; i < live_intervals->num_vars; i++) {
362 int vgrf = live_intervals->vgrf_from_var[i];
363 virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
364 live_intervals->start[i]);
365 virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
366 live_intervals->end[i]);
367 }
368 }
369
370 bool
371 fs_live_variables::vars_interfere(int a, int b)
372 {
373 return !(end[b] <= start[a] ||
374 end[a] <= start[b]);
375 }
376
377 bool
378 fs_visitor::virtual_grf_interferes(int a, int b)
379 {
380 return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
381 virtual_grf_end[b] <= virtual_grf_start[a]);
382 }