i965/fs: Allocate the param_size array dynamically.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 #define MAX_INSTRUCTION (1 << 30)
34
35 /** @file brw_fs_live_variables.cpp
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF. We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not. It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-component
45 * (reg_offset) level for greater accuracy. Large VGRFs may be accessed
46 * piecemeal over many (possibly non-adjacent) instructions. In this case,
47 * examining a single instruction is insufficient to decide whether a whole
48 * VGRF is ultimately used or defined. Tracking individual components
49 * allows us to easily assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55 void
56 fs_live_variables::setup_one_read(bblock_t *block, fs_inst *inst,
57 int ip, fs_reg reg)
58 {
59 int var = var_from_vgrf[reg.reg] + reg.reg_offset;
60 assert(var < num_vars);
61
62 /* In most cases, a register can be written over safely by the
63 * same instruction that is its last use. For a single
64 * instruction, the sources are dereferenced before writing of the
65 * destination starts (naturally). This gets more complicated for
66 * simd16, because the instruction:
67 *
68 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
69 *
70 * is actually decoded in hardware as:
71 *
72 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
73 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
74 *
75 * Which is safe. However, if we have uniform accesses
76 * happening, we get into trouble:
77 *
78 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
79 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
80 *
81 * Now our destination for the first instruction overwrote the
82 * second instruction's src0, and we get garbage for those 8
83 * pixels. There's a similar issue for the pre-gen6
84 * pixel_x/pixel_y, which are registers of 16-bit values and thus
85 * would get stomped by the first decode as well.
86 */
87 int end_ip = ip;
88 if (v->dispatch_width == 16 && (reg.stride == 0 ||
89 (v->pixel_x.reg == reg.reg ||
90 v->pixel_y.reg == reg.reg))) {
91 end_ip++;
92 }
93
94 start[var] = MIN2(start[var], ip);
95 end[var] = MAX2(end[var], end_ip);
96
97 /* The use[] bitset marks when the block makes use of a variable (VGRF
98 * channel) without having completely defined that variable within the
99 * block.
100 */
101 if (!BITSET_TEST(bd[block->block_num].def, var))
102 BITSET_SET(bd[block->block_num].use, var);
103 }
104
105 void
106 fs_live_variables::setup_one_write(bblock_t *block, fs_inst *inst,
107 int ip, fs_reg reg)
108 {
109 int var = var_from_vgrf[reg.reg] + reg.reg_offset;
110 assert(var < num_vars);
111
112 start[var] = MIN2(start[var], ip);
113 end[var] = MAX2(end[var], ip);
114
115 /* The def[] bitset marks when an initialization in a block completely
116 * screens off previous updates of that variable (VGRF channel).
117 */
118 if (inst->dst.file == GRF && !inst->is_partial_write()) {
119 if (!BITSET_TEST(bd[block->block_num].use, var))
120 BITSET_SET(bd[block->block_num].def, var);
121 }
122 }
123
124 /**
125 * Sets up the use[] and def[] bitsets.
126 *
127 * The basic-block-level live variable analysis needs to know which
128 * variables get used before they're completely defined, and which
129 * variables are completely defined before they're used.
130 *
131 * These are tracked at the per-component level, rather than whole VGRFs.
132 */
133 void
134 fs_live_variables::setup_def_use()
135 {
136 int ip = 0;
137
138 for (int b = 0; b < cfg->num_blocks; b++) {
139 bblock_t *block = cfg->blocks[b];
140
141 assert(ip == block->start_ip);
142 if (b > 0)
143 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
144
145 for (fs_inst *inst = (fs_inst *)block->start;
146 inst != block->end->next;
147 inst = (fs_inst *)inst->next) {
148
149 /* Set use[] for this instruction */
150 for (unsigned int i = 0; i < 3; i++) {
151 fs_reg reg = inst->src[i];
152
153 if (reg.file != GRF)
154 continue;
155
156 for (int j = 0; j < inst->regs_read(v, i); j++) {
157 setup_one_read(block, inst, ip, reg);
158 reg.reg_offset++;
159 }
160 }
161
162 /* Set def[] for this instruction */
163 if (inst->dst.file == GRF) {
164 fs_reg reg = inst->dst;
165 for (int j = 0; j < inst->regs_written; j++) {
166 setup_one_write(block, inst, ip, reg);
167 reg.reg_offset++;
168 }
169 }
170
171 ip++;
172 }
173 }
174 }
175
176 /**
177 * The algorithm incrementally sets bits in liveout and livein,
178 * propagating it through control flow. It will eventually terminate
179 * because it only ever adds bits, and stops when no bits are added in
180 * a pass.
181 */
182 void
183 fs_live_variables::compute_live_variables()
184 {
185 bool cont = true;
186
187 while (cont) {
188 cont = false;
189
190 for (int b = 0; b < cfg->num_blocks; b++) {
191 /* Update livein */
192 for (int i = 0; i < bitset_words; i++) {
193 BITSET_WORD new_livein = (bd[b].use[i] |
194 (bd[b].liveout[i] & ~bd[b].def[i]));
195 if (new_livein & ~bd[b].livein[i]) {
196 bd[b].livein[i] |= new_livein;
197 cont = true;
198 }
199 }
200
201 /* Update liveout */
202 foreach_list(block_node, &cfg->blocks[b]->children) {
203 bblock_link *link = (bblock_link *)block_node;
204 bblock_t *block = link->block;
205
206 for (int i = 0; i < bitset_words; i++) {
207 BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
208 ~bd[b].liveout[i]);
209 if (new_liveout) {
210 bd[b].liveout[i] |= new_liveout;
211 cont = true;
212 }
213 }
214 }
215 }
216 }
217 }
218
219 /**
220 * Extend the start/end ranges for each variable to account for the
221 * new information calculated from control flow.
222 */
223 void
224 fs_live_variables::compute_start_end()
225 {
226 for (int b = 0; b < cfg->num_blocks; b++) {
227 for (int i = 0; i < num_vars; i++) {
228 if (BITSET_TEST(bd[b].livein, i)) {
229 start[i] = MIN2(start[i], cfg->blocks[b]->start_ip);
230 end[i] = MAX2(end[i], cfg->blocks[b]->start_ip);
231 }
232
233 if (BITSET_TEST(bd[b].liveout, i)) {
234 start[i] = MIN2(start[i], cfg->blocks[b]->end_ip);
235 end[i] = MAX2(end[i], cfg->blocks[b]->end_ip);
236 }
237
238 }
239 }
240 }
241
242 int
243 fs_live_variables::var_from_reg(fs_reg *reg)
244 {
245 return var_from_vgrf[reg->reg] + reg->reg_offset;
246 }
247
248 fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg)
249 : v(v), cfg(cfg)
250 {
251 mem_ctx = ralloc_context(NULL);
252
253 num_vgrfs = v->virtual_grf_count;
254 num_vars = 0;
255 var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
256 for (int i = 0; i < num_vgrfs; i++) {
257 var_from_vgrf[i] = num_vars;
258 num_vars += v->virtual_grf_sizes[i];
259 }
260
261 vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
262 for (int i = 0; i < num_vgrfs; i++) {
263 for (int j = 0; j < v->virtual_grf_sizes[i]; j++) {
264 vgrf_from_var[var_from_vgrf[i] + j] = i;
265 }
266 }
267
268 start = ralloc_array(mem_ctx, int, num_vars);
269 end = rzalloc_array(mem_ctx, int, num_vars);
270 for (int i = 0; i < num_vars; i++) {
271 start[i] = MAX_INSTRUCTION;
272 end[i] = -1;
273 }
274
275 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
276
277 bitset_words = BITSET_WORDS(num_vars);
278 for (int i = 0; i < cfg->num_blocks; i++) {
279 bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
280 bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
281 bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
282 bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
283 }
284
285 setup_def_use();
286 compute_live_variables();
287 compute_start_end();
288 }
289
290 fs_live_variables::~fs_live_variables()
291 {
292 ralloc_free(mem_ctx);
293 }
294
295 void
296 fs_visitor::invalidate_live_intervals()
297 {
298 ralloc_free(live_intervals);
299 live_intervals = NULL;
300 }
301
302 /**
303 * Compute the live intervals for each virtual GRF.
304 *
305 * This uses the per-component use/def data, but combines it to produce
306 * information about whole VGRFs.
307 */
308 void
309 fs_visitor::calculate_live_intervals()
310 {
311 if (this->live_intervals)
312 return;
313
314 int num_vgrfs = this->virtual_grf_count;
315 ralloc_free(this->virtual_grf_start);
316 ralloc_free(this->virtual_grf_end);
317 virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
318 virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
319
320 for (int i = 0; i < num_vgrfs; i++) {
321 virtual_grf_start[i] = MAX_INSTRUCTION;
322 virtual_grf_end[i] = -1;
323 }
324
325 cfg_t cfg(&instructions);
326 this->live_intervals = new(mem_ctx) fs_live_variables(this, &cfg);
327
328 /* Merge the per-component live ranges to whole VGRF live ranges. */
329 for (int i = 0; i < live_intervals->num_vars; i++) {
330 int vgrf = live_intervals->vgrf_from_var[i];
331 virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
332 live_intervals->start[i]);
333 virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
334 live_intervals->end[i]);
335 }
336 }
337
338 bool
339 fs_live_variables::vars_interfere(int a, int b)
340 {
341 return !(end[b] <= start[a] ||
342 end[a] <= start[b]);
343 }
344
345 bool
346 fs_visitor::virtual_grf_interferes(int a, int b)
347 {
348 return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
349 virtual_grf_end[b] <= virtual_grf_start[a]);
350 }