ca60aa235fe059161d1b399816afd43cfb865893
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_fs_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnik's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] bitsets.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 */
49 void
50 fs_live_variables::setup_def_use()
51 {
52 int ip = 0;
53
54 for (int b = 0; b < cfg->num_blocks; b++) {
55 bblock_t *block = cfg->blocks[b];
56
57 assert(ip == block->start_ip);
58 if (b > 0)
59 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
60
61 for (fs_inst *inst = (fs_inst *)block->start;
62 inst != block->end->next;
63 inst = (fs_inst *)inst->next) {
64
65 /* Set use[] for this instruction */
66 for (unsigned int i = 0; i < 3; i++) {
67 if (inst->src[i].file == GRF) {
68 int reg = inst->src[i].reg;
69
70 if (!BITSET_TEST(bd[b].def, reg))
71 BITSET_SET(bd[b].use, reg);
72 }
73 }
74
75 /* Check for unconditional writes to whole registers. These
76 * are the things that screen off preceding definitions of a
77 * variable, and thus qualify for being in def[].
78 */
79 if (inst->dst.file == GRF &&
80 inst->regs_written == v->virtual_grf_sizes[inst->dst.reg] &&
81 !inst->predicate &&
82 !inst->force_uncompressed &&
83 !inst->force_sechalf) {
84 int reg = inst->dst.reg;
85 if (!BITSET_TEST(bd[b].use, reg))
86 BITSET_SET(bd[b].def, reg);
87 }
88
89 ip++;
90 }
91 }
92 }
93
94 /**
95 * The algorithm incrementally sets bits in liveout and livein,
96 * propagating it through control flow. It will eventually terminate
97 * because it only ever adds bits, and stops when no bits are added in
98 * a pass.
99 */
100 void
101 fs_live_variables::compute_live_variables()
102 {
103 bool cont = true;
104
105 while (cont) {
106 cont = false;
107
108 for (int b = 0; b < cfg->num_blocks; b++) {
109 /* Update livein */
110 for (int i = 0; i < bitset_words; i++) {
111 BITSET_WORD new_livein = (bd[b].use[i] |
112 (bd[b].liveout[i] & ~bd[b].def[i]));
113 if (new_livein & ~bd[b].livein[i]) {
114 bd[b].livein[i] |= new_livein;
115 cont = true;
116 }
117 }
118
119 /* Update liveout */
120 foreach_list(block_node, &cfg->blocks[b]->children) {
121 bblock_link *link = (bblock_link *)block_node;
122 bblock_t *block = link->block;
123
124 for (int i = 0; i < bitset_words; i++) {
125 BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
126 ~bd[b].liveout[i]);
127 if (new_liveout) {
128 bd[b].liveout[i] |= new_liveout;
129 cont = true;
130 }
131 }
132 }
133 }
134 }
135 }
136
137 fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg)
138 : v(v), cfg(cfg)
139 {
140 mem_ctx = ralloc_context(cfg->mem_ctx);
141
142 num_vars = v->virtual_grf_count;
143 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
144
145 bitset_words = BITSET_WORDS(v->virtual_grf_count);
146 for (int i = 0; i < cfg->num_blocks; i++) {
147 bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
148 bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
149 bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
150 bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
151 }
152
153 setup_def_use();
154 compute_live_variables();
155 }
156
157 fs_live_variables::~fs_live_variables()
158 {
159 ralloc_free(mem_ctx);
160 }
161
162 #define MAX_INSTRUCTION (1 << 30)
163
164 void
165 fs_visitor::calculate_live_intervals()
166 {
167 int num_vars = this->virtual_grf_count;
168
169 if (this->live_intervals_valid)
170 return;
171
172 int *def = ralloc_array(mem_ctx, int, num_vars);
173 int *use = ralloc_array(mem_ctx, int, num_vars);
174 ralloc_free(this->virtual_grf_def);
175 ralloc_free(this->virtual_grf_use);
176 this->virtual_grf_def = def;
177 this->virtual_grf_use = use;
178
179 for (int i = 0; i < num_vars; i++) {
180 def[i] = MAX_INSTRUCTION;
181 use[i] = -1;
182 }
183
184 /* Start by setting up the intervals with no knowledge of control
185 * flow.
186 */
187 int ip = 0;
188 foreach_list(node, &this->instructions) {
189 fs_inst *inst = (fs_inst *)node;
190
191 for (unsigned int i = 0; i < 3; i++) {
192 if (inst->src[i].file == GRF) {
193 int reg = inst->src[i].reg;
194
195 use[reg] = ip;
196
197 /* In most cases, a register can be written over safely by the
198 * same instruction that is its last use. For a single
199 * instruction, the sources are dereferenced before writing of the
200 * destination starts (naturally). This gets more complicated for
201 * simd16, because the instruction:
202 *
203 * mov(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
204 *
205 * is actually decoded in hardware as:
206 *
207 * mov(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
208 * mov(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
209 *
210 * Which is safe. However, if we have uniform accesses
211 * happening, we get into trouble:
212 *
213 * mov(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
214 * mov(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
215 *
216 * Now our destination for the first instruction overwrote the
217 * second instruction's src0, and we get garbage for those 8
218 * pixels. There's a similar issue for the pre-gen6
219 * pixel_x/pixel_y, which are registers of 16-bit values and thus
220 * would get stomped by the first decode as well.
221 */
222 if (dispatch_width == 16 && (inst->src[i].smear ||
223 (this->pixel_x.reg == reg ||
224 this->pixel_y.reg == reg))) {
225 use[reg]++;
226 }
227 }
228 }
229
230 if (inst->dst.file == GRF) {
231 int reg = inst->dst.reg;
232
233 def[reg] = MIN2(def[reg], ip);
234 }
235
236 ip++;
237 }
238
239 /* Now, extend those intervals using our analysis of control flow. */
240 cfg_t cfg(this);
241 fs_live_variables livevars(this, &cfg);
242
243 for (int b = 0; b < cfg.num_blocks; b++) {
244 for (int i = 0; i < num_vars; i++) {
245 if (BITSET_TEST(livevars.bd[b].livein, i)) {
246 def[i] = MIN2(def[i], cfg.blocks[b]->start_ip);
247 use[i] = MAX2(use[i], cfg.blocks[b]->start_ip);
248 }
249
250 if (BITSET_TEST(livevars.bd[b].liveout, i)) {
251 def[i] = MIN2(def[i], cfg.blocks[b]->end_ip);
252 use[i] = MAX2(use[i], cfg.blocks[b]->end_ip);
253 }
254 }
255 }
256
257 this->live_intervals_valid = true;
258
259 /* Note in the non-control-flow code above, that we only take def[] as the
260 * first store, and use[] as the last use. We use this in dead code
261 * elimination, to determine when a store never gets used. However, we
262 * also use these arrays to answer the virtual_grf_interferes() question
263 * (live interval analysis), which is used for register coalescing and
264 * register allocation.
265 *
266 * So, there's a conflict over what the array should mean: if use[]
267 * considers a def after the last use, then the dead code elimination pass
268 * never does anything (and it's an important pass!). But if we don't
269 * include dead code, then virtual_grf_interferes() lies and we'll do
270 * horrible things like coalesce the register that is dead-code-written
271 * into another register that was live across the dead write (causing the
272 * use of the second register to take the dead write's source value instead
273 * of the coalesced MOV's source value).
274 *
275 * To resolve the conflict, immediately after calculating live intervals,
276 * detect dead code, nuke it, and if we changed anything, calculate again
277 * before returning to the caller. Now we happen to produce def[] and
278 * use[] arrays that will work for virtual_grf_interferes().
279 */
280 if (dead_code_eliminate())
281 calculate_live_intervals();
282 }
283
284 bool
285 fs_visitor::virtual_grf_interferes(int a, int b)
286 {
287 int a_def = this->virtual_grf_def[a], a_use = this->virtual_grf_use[a];
288 int b_def = this->virtual_grf_def[b], b_use = this->virtual_grf_use[b];
289
290 /* If there's dead code (def but not use), it would break our test
291 * unless we consider it used.
292 */
293 if ((a_use == -1 && a_def != MAX_INSTRUCTION) ||
294 (b_use == -1 && b_def != MAX_INSTRUCTION)) {
295 return true;
296 }
297
298 int start = MAX2(a_def, b_def);
299 int end = MIN2(a_use, b_use);
300
301 return start < end;
302 }