ea3c0d125cd9dced82af46192bc85b73ab17ccf2
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 #define MAX_INSTRUCTION (1 << 30)
34
35 /** @file brw_fs_live_variables.cpp
36 *
37 * Support for calculating liveness information about virtual GRFs.
38 *
39 * This produces a live interval for each whole virtual GRF. We could
40 * choose to expose per-component live intervals for VGRFs of size > 1,
41 * but we currently do not. It is easier for the consumers of this
42 * information to work with whole VGRFs.
43 *
44 * However, we internally track use/def information at the per-component
45 * (reg_offset) level for greater accuracy. Large VGRFs may be accessed
46 * piecemeal over many (possibly non-adjacent) instructions. In this case,
47 * examining a single instruction is insufficient to decide whether a whole
48 * VGRF is ultimately used or defined. Tracking individual components
49 * allows us to easily assemble this information.
50 *
51 * See Muchnick's Advanced Compiler Design and Implementation, section
52 * 14.1 (p444).
53 */
54
55 void
56 fs_live_variables::setup_one_read(bblock_t *block, fs_inst *inst,
57 int ip, fs_reg reg)
58 {
59 int var = var_from_reg(&reg);
60 assert(var < num_vars);
61
62 /* In most cases, a register can be written over safely by the
63 * same instruction that is its last use. For a single
64 * instruction, the sources are dereferenced before writing of the
65 * destination starts (naturally). This gets more complicated for
66 * simd16, because the instruction:
67 *
68 * add(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
69 *
70 * is actually decoded in hardware as:
71 *
72 * add(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
73 * add(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
74 *
75 * Which is safe. However, if we have uniform accesses
76 * happening, we get into trouble:
77 *
78 * add(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
79 * add(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
80 *
81 * Now our destination for the first instruction overwrote the
82 * second instruction's src0, and we get garbage for those 8
83 * pixels. There's a similar issue for the pre-gen6
84 * pixel_x/pixel_y, which are registers of 16-bit values and thus
85 * would get stomped by the first decode as well.
86 */
87 int end_ip = ip;
88 if (inst->exec_size == 16 && (reg.stride == 0 ||
89 reg.type == BRW_REGISTER_TYPE_UW ||
90 reg.type == BRW_REGISTER_TYPE_W ||
91 reg.type == BRW_REGISTER_TYPE_UB ||
92 reg.type == BRW_REGISTER_TYPE_B)) {
93 end_ip++;
94 }
95
96 start[var] = MIN2(start[var], ip);
97 end[var] = MAX2(end[var], end_ip);
98
99 /* The use[] bitset marks when the block makes use of a variable (VGRF
100 * channel) without having completely defined that variable within the
101 * block.
102 */
103 if (!BITSET_TEST(bd[block->num].def, var))
104 BITSET_SET(bd[block->num].use, var);
105 }
106
107 void
108 fs_live_variables::setup_one_write(bblock_t *block, fs_inst *inst,
109 int ip, fs_reg reg)
110 {
111 int var = var_from_reg(&reg);
112 assert(var < num_vars);
113
114 start[var] = MIN2(start[var], ip);
115 end[var] = MAX2(end[var], ip);
116
117 /* The def[] bitset marks when an initialization in a block completely
118 * screens off previous updates of that variable (VGRF channel).
119 */
120 if (inst->dst.file == GRF && !inst->is_partial_write()) {
121 if (!BITSET_TEST(bd[block->num].use, var))
122 BITSET_SET(bd[block->num].def, var);
123 }
124 }
125
126 /**
127 * Sets up the use[] and def[] bitsets.
128 *
129 * The basic-block-level live variable analysis needs to know which
130 * variables get used before they're completely defined, and which
131 * variables are completely defined before they're used.
132 *
133 * These are tracked at the per-component level, rather than whole VGRFs.
134 */
135 void
136 fs_live_variables::setup_def_use()
137 {
138 int ip = 0;
139
140 foreach_block (block, cfg) {
141 assert(ip == block->start_ip);
142 if (block->num > 0)
143 assert(cfg->blocks[block->num - 1]->end_ip == ip - 1);
144
145 foreach_inst_in_block(fs_inst, inst, block) {
146 /* Set use[] for this instruction */
147 for (unsigned int i = 0; i < inst->sources; i++) {
148 fs_reg reg = inst->src[i];
149
150 if (reg.file != GRF)
151 continue;
152
153 for (int j = 0; j < inst->regs_read(v, i); j++) {
154 setup_one_read(block, inst, ip, reg);
155 reg.reg_offset++;
156 }
157 }
158
159 /* Set def[] for this instruction */
160 if (inst->dst.file == GRF) {
161 fs_reg reg = inst->dst;
162 for (int j = 0; j < inst->regs_written; j++) {
163 setup_one_write(block, inst, ip, reg);
164 reg.reg_offset++;
165 }
166 }
167
168 ip++;
169 }
170 }
171 }
172
173 /**
174 * The algorithm incrementally sets bits in liveout and livein,
175 * propagating it through control flow. It will eventually terminate
176 * because it only ever adds bits, and stops when no bits are added in
177 * a pass.
178 */
179 void
180 fs_live_variables::compute_live_variables()
181 {
182 bool cont = true;
183
184 while (cont) {
185 cont = false;
186
187 foreach_block (block, cfg) {
188 /* Update livein */
189 for (int i = 0; i < bitset_words; i++) {
190 BITSET_WORD new_livein = (bd[block->num].use[i] |
191 (bd[block->num].liveout[i] &
192 ~bd[block->num].def[i]));
193 if (new_livein & ~bd[block->num].livein[i]) {
194 bd[block->num].livein[i] |= new_livein;
195 cont = true;
196 }
197 }
198
199 /* Update liveout */
200 foreach_list_typed(bblock_link, child_link, link, &block->children) {
201 bblock_t *child = child_link->block;
202
203 for (int i = 0; i < bitset_words; i++) {
204 BITSET_WORD new_liveout = (bd[child->num].livein[i] &
205 ~bd[block->num].liveout[i]);
206 if (new_liveout) {
207 bd[block->num].liveout[i] |= new_liveout;
208 cont = true;
209 }
210 }
211 }
212 }
213 }
214 }
215
216 /**
217 * Extend the start/end ranges for each variable to account for the
218 * new information calculated from control flow.
219 */
220 void
221 fs_live_variables::compute_start_end()
222 {
223 foreach_block (block, cfg) {
224 for (int i = 0; i < num_vars; i++) {
225 if (BITSET_TEST(bd[block->num].livein, i)) {
226 start[i] = MIN2(start[i], block->start_ip);
227 end[i] = MAX2(end[i], block->start_ip);
228 }
229
230 if (BITSET_TEST(bd[block->num].liveout, i)) {
231 start[i] = MIN2(start[i], block->end_ip);
232 end[i] = MAX2(end[i], block->end_ip);
233 }
234
235 }
236 }
237 }
238
239 int
240 fs_live_variables::var_from_reg(fs_reg *reg)
241 {
242 return var_from_vgrf[reg->reg] + reg->reg_offset;
243 }
244
245 fs_live_variables::fs_live_variables(fs_visitor *v, const cfg_t *cfg)
246 : v(v), cfg(cfg)
247 {
248 mem_ctx = ralloc_context(NULL);
249
250 num_vgrfs = v->virtual_grf_count;
251 num_vars = 0;
252 var_from_vgrf = rzalloc_array(mem_ctx, int, num_vgrfs);
253 for (int i = 0; i < num_vgrfs; i++) {
254 var_from_vgrf[i] = num_vars;
255 num_vars += v->virtual_grf_sizes[i];
256 }
257
258 vgrf_from_var = rzalloc_array(mem_ctx, int, num_vars);
259 for (int i = 0; i < num_vgrfs; i++) {
260 for (int j = 0; j < v->virtual_grf_sizes[i]; j++) {
261 vgrf_from_var[var_from_vgrf[i] + j] = i;
262 }
263 }
264
265 start = ralloc_array(mem_ctx, int, num_vars);
266 end = rzalloc_array(mem_ctx, int, num_vars);
267 for (int i = 0; i < num_vars; i++) {
268 start[i] = MAX_INSTRUCTION;
269 end[i] = -1;
270 }
271
272 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
273
274 bitset_words = BITSET_WORDS(num_vars);
275 for (int i = 0; i < cfg->num_blocks; i++) {
276 bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
277 bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
278 bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
279 bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
280 }
281
282 setup_def_use();
283 compute_live_variables();
284 compute_start_end();
285 }
286
287 fs_live_variables::~fs_live_variables()
288 {
289 ralloc_free(mem_ctx);
290 }
291
292 void
293 fs_visitor::invalidate_live_intervals()
294 {
295 ralloc_free(live_intervals);
296 live_intervals = NULL;
297 }
298
299 /**
300 * Compute the live intervals for each virtual GRF.
301 *
302 * This uses the per-component use/def data, but combines it to produce
303 * information about whole VGRFs.
304 */
305 void
306 fs_visitor::calculate_live_intervals()
307 {
308 if (this->live_intervals)
309 return;
310
311 int num_vgrfs = this->virtual_grf_count;
312 ralloc_free(this->virtual_grf_start);
313 ralloc_free(this->virtual_grf_end);
314 virtual_grf_start = ralloc_array(mem_ctx, int, num_vgrfs);
315 virtual_grf_end = ralloc_array(mem_ctx, int, num_vgrfs);
316
317 for (int i = 0; i < num_vgrfs; i++) {
318 virtual_grf_start[i] = MAX_INSTRUCTION;
319 virtual_grf_end[i] = -1;
320 }
321
322 this->live_intervals = new(mem_ctx) fs_live_variables(this, cfg);
323
324 /* Merge the per-component live ranges to whole VGRF live ranges. */
325 for (int i = 0; i < live_intervals->num_vars; i++) {
326 int vgrf = live_intervals->vgrf_from_var[i];
327 virtual_grf_start[vgrf] = MIN2(virtual_grf_start[vgrf],
328 live_intervals->start[i]);
329 virtual_grf_end[vgrf] = MAX2(virtual_grf_end[vgrf],
330 live_intervals->end[i]);
331 }
332 }
333
334 bool
335 fs_live_variables::vars_interfere(int a, int b)
336 {
337 return !(end[b] <= start[a] ||
338 end[a] <= start[b]);
339 }
340
341 bool
342 fs_visitor::virtual_grf_interferes(int a, int b)
343 {
344 return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
345 virtual_grf_end[b] <= virtual_grf_start[a]);
346 }