i965: Remove never used RSR and RSL opcodes.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_live_variables.cpp
1 /*
2 * Copyright © 2012 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_cfg.h"
29 #include "brw_fs_live_variables.h"
30
31 using namespace brw;
32
33 /** @file brw_fs_live_variables.cpp
34 *
35 * Support for computing at the basic block level which variables
36 * (virtual GRFs in our case) are live at entry and exit.
37 *
38 * See Muchnik's Advanced Compiler Design and Implementation, section
39 * 14.1 (p444).
40 */
41
42 /**
43 * Sets up the use[] and def[] bitsets.
44 *
45 * The basic-block-level live variable analysis needs to know which
46 * variables get used before they're completely defined, and which
47 * variables are completely defined before they're used.
48 */
49 void
50 fs_live_variables::setup_def_use()
51 {
52 int ip = 0;
53
54 for (int b = 0; b < cfg->num_blocks; b++) {
55 bblock_t *block = cfg->blocks[b];
56
57 assert(ip == block->start_ip);
58 if (b > 0)
59 assert(cfg->blocks[b - 1]->end_ip == ip - 1);
60
61 for (fs_inst *inst = (fs_inst *)block->start;
62 inst != block->end->next;
63 inst = (fs_inst *)inst->next) {
64
65 /* Set use[] for this instruction */
66 for (unsigned int i = 0; i < 3; i++) {
67 if (inst->src[i].file == GRF) {
68 int reg = inst->src[i].reg;
69
70 if (!BITSET_TEST(bd[b].def, reg))
71 BITSET_SET(bd[b].use, reg);
72 }
73 }
74
75 /* Check for unconditional writes to whole registers. These
76 * are the things that screen off preceding definitions of a
77 * variable, and thus qualify for being in def[].
78 */
79 if (inst->dst.file == GRF &&
80 inst->regs_written == v->virtual_grf_sizes[inst->dst.reg] &&
81 !inst->is_partial_write()) {
82 int reg = inst->dst.reg;
83 if (!BITSET_TEST(bd[b].use, reg))
84 BITSET_SET(bd[b].def, reg);
85 }
86
87 ip++;
88 }
89 }
90 }
91
92 /**
93 * The algorithm incrementally sets bits in liveout and livein,
94 * propagating it through control flow. It will eventually terminate
95 * because it only ever adds bits, and stops when no bits are added in
96 * a pass.
97 */
98 void
99 fs_live_variables::compute_live_variables()
100 {
101 bool cont = true;
102
103 while (cont) {
104 cont = false;
105
106 for (int b = 0; b < cfg->num_blocks; b++) {
107 /* Update livein */
108 for (int i = 0; i < bitset_words; i++) {
109 BITSET_WORD new_livein = (bd[b].use[i] |
110 (bd[b].liveout[i] & ~bd[b].def[i]));
111 if (new_livein & ~bd[b].livein[i]) {
112 bd[b].livein[i] |= new_livein;
113 cont = true;
114 }
115 }
116
117 /* Update liveout */
118 foreach_list(block_node, &cfg->blocks[b]->children) {
119 bblock_link *link = (bblock_link *)block_node;
120 bblock_t *block = link->block;
121
122 for (int i = 0; i < bitset_words; i++) {
123 BITSET_WORD new_liveout = (bd[block->block_num].livein[i] &
124 ~bd[b].liveout[i]);
125 if (new_liveout) {
126 bd[b].liveout[i] |= new_liveout;
127 cont = true;
128 }
129 }
130 }
131 }
132 }
133 }
134
135 fs_live_variables::fs_live_variables(fs_visitor *v, cfg_t *cfg)
136 : v(v), cfg(cfg)
137 {
138 mem_ctx = ralloc_context(cfg->mem_ctx);
139
140 num_vars = v->virtual_grf_count;
141 bd = rzalloc_array(mem_ctx, struct block_data, cfg->num_blocks);
142
143 bitset_words = BITSET_WORDS(v->virtual_grf_count);
144 for (int i = 0; i < cfg->num_blocks; i++) {
145 bd[i].def = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
146 bd[i].use = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
147 bd[i].livein = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
148 bd[i].liveout = rzalloc_array(mem_ctx, BITSET_WORD, bitset_words);
149 }
150
151 setup_def_use();
152 compute_live_variables();
153 }
154
155 fs_live_variables::~fs_live_variables()
156 {
157 ralloc_free(mem_ctx);
158 }
159
160 #define MAX_INSTRUCTION (1 << 30)
161
162 void
163 fs_visitor::calculate_live_intervals()
164 {
165 int num_vars = this->virtual_grf_count;
166
167 if (this->live_intervals_valid)
168 return;
169
170 int *start = ralloc_array(mem_ctx, int, num_vars);
171 int *end = ralloc_array(mem_ctx, int, num_vars);
172 ralloc_free(this->virtual_grf_start);
173 ralloc_free(this->virtual_grf_end);
174 this->virtual_grf_start = start;
175 this->virtual_grf_end = end;
176
177 for (int i = 0; i < num_vars; i++) {
178 start[i] = MAX_INSTRUCTION;
179 end[i] = -1;
180 }
181
182 /* Start by setting up the intervals with no knowledge of control
183 * flow.
184 */
185 int ip = 0;
186 foreach_list(node, &this->instructions) {
187 fs_inst *inst = (fs_inst *)node;
188
189 for (unsigned int i = 0; i < 3; i++) {
190 if (inst->src[i].file == GRF) {
191 int reg = inst->src[i].reg;
192 int end_ip = ip;
193
194 /* In most cases, a register can be written over safely by the
195 * same instruction that is its last use. For a single
196 * instruction, the sources are dereferenced before writing of the
197 * destination starts (naturally). This gets more complicated for
198 * simd16, because the instruction:
199 *
200 * mov(16) g4<1>F g4<8,8,1>F g6<8,8,1>F
201 *
202 * is actually decoded in hardware as:
203 *
204 * mov(8) g4<1>F g4<8,8,1>F g6<8,8,1>F
205 * mov(8) g5<1>F g5<8,8,1>F g7<8,8,1>F
206 *
207 * Which is safe. However, if we have uniform accesses
208 * happening, we get into trouble:
209 *
210 * mov(8) g4<1>F g4<0,1,0>F g6<8,8,1>F
211 * mov(8) g5<1>F g4<0,1,0>F g7<8,8,1>F
212 *
213 * Now our destination for the first instruction overwrote the
214 * second instruction's src0, and we get garbage for those 8
215 * pixels. There's a similar issue for the pre-gen6
216 * pixel_x/pixel_y, which are registers of 16-bit values and thus
217 * would get stomped by the first decode as well.
218 */
219 if (dispatch_width == 16 && (inst->src[i].smear >= 0 ||
220 (this->pixel_x.reg == reg ||
221 this->pixel_y.reg == reg))) {
222 end_ip++;
223 }
224
225 start[reg] = MIN2(start[reg], ip);
226 end[reg] = MAX2(end[reg], end_ip);
227 }
228 }
229
230 if (inst->dst.file == GRF) {
231 int reg = inst->dst.reg;
232
233 start[reg] = MIN2(start[reg], ip);
234 end[reg] = MAX2(end[reg], ip);
235 }
236
237 ip++;
238 }
239
240 /* Now, extend those intervals using our analysis of control flow. */
241 cfg_t cfg(this);
242 fs_live_variables livevars(this, &cfg);
243
244 for (int b = 0; b < cfg.num_blocks; b++) {
245 for (int i = 0; i < num_vars; i++) {
246 if (BITSET_TEST(livevars.bd[b].livein, i)) {
247 start[i] = MIN2(start[i], cfg.blocks[b]->start_ip);
248 end[i] = MAX2(end[i], cfg.blocks[b]->start_ip);
249 }
250
251 if (BITSET_TEST(livevars.bd[b].liveout, i)) {
252 start[i] = MIN2(start[i], cfg.blocks[b]->end_ip);
253 end[i] = MAX2(end[i], cfg.blocks[b]->end_ip);
254 }
255 }
256 }
257
258 this->live_intervals_valid = true;
259 }
260
261 bool
262 fs_visitor::virtual_grf_interferes(int a, int b)
263 {
264 return !(virtual_grf_end[a] <= virtual_grf_start[b] ||
265 virtual_grf_end[b] <= virtual_grf_start[a]);
266 }