3189ff461b1469407510f6cc595accb355edf489
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_inputs();
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 /* get the main function and emit it */
45 nir_foreach_function(function, nir) {
46 assert(strcmp(function->name, "main") == 0);
47 assert(function->impl);
48 nir_emit_impl(function->impl);
49 }
50 }
51
52 void
53 fs_visitor::nir_setup_inputs()
54 {
55 if (stage != MESA_SHADER_FRAGMENT)
56 return;
57
58 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
59
60 nir_foreach_variable(var, &nir->inputs) {
61 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
62
63 fs_reg reg;
64 if (var->data.location == VARYING_SLOT_POS) {
65 reg = *emit_fragcoord_interpolation();
66 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
67 input, reg), 0xF);
68 } else if (var->data.location == VARYING_SLOT_LAYER) {
69 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
70 reg.type = BRW_REGISTER_TYPE_D;
71 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
72 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
73 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
74 reg.type = BRW_REGISTER_TYPE_D;
75 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
76 } else {
77 int location = var->data.location;
78 emit_general_interpolation(&input, var->name, var->type,
79 (glsl_interp_qualifier) var->data.interpolation,
80 &location, var->data.centroid,
81 var->data.sample);
82 }
83 }
84 }
85
86 void
87 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
88 const glsl_type *type,
89 unsigned *location)
90 {
91 if (type->is_array() || type->is_matrix()) {
92 const struct glsl_type *elem_type = glsl_get_array_element(type);
93 const unsigned length = glsl_get_length(type);
94
95 for (unsigned i = 0; i < length; i++) {
96 nir_setup_single_output_varying(reg, elem_type, location);
97 }
98 } else if (type->is_record()) {
99 for (unsigned i = 0; i < type->length; i++) {
100 const struct glsl_type *field_type = type->fields.structure[i].type;
101 nir_setup_single_output_varying(reg, field_type, location);
102 }
103 } else {
104 assert(type->is_scalar() || type->is_vector());
105 unsigned num_elements = type->vector_elements;
106 if (type->is_double())
107 num_elements *= 2;
108 for (unsigned count = 0; count < num_elements; count += 4) {
109 this->outputs[*location] = *reg;
110 this->output_components[*location] = MIN2(4, num_elements - count);
111 *reg = offset(*reg, bld, 4);
112 (*location)++;
113 }
114 }
115 }
116
117 void
118 fs_visitor::nir_setup_outputs()
119 {
120 if (stage == MESA_SHADER_TESS_CTRL)
121 return;
122
123 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
124
125 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
126
127 nir_foreach_variable(var, &nir->outputs) {
128 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
129
130 switch (stage) {
131 case MESA_SHADER_VERTEX:
132 case MESA_SHADER_TESS_EVAL:
133 case MESA_SHADER_GEOMETRY: {
134 unsigned location = var->data.location;
135 nir_setup_single_output_varying(&reg, var->type, &location);
136 break;
137 }
138 case MESA_SHADER_FRAGMENT:
139 if (key->force_dual_color_blend &&
140 var->data.location == FRAG_RESULT_DATA1) {
141 this->dual_src_output = reg;
142 this->do_dual_src = true;
143 } else if (var->data.index > 0) {
144 assert(var->data.location == FRAG_RESULT_DATA0);
145 assert(var->data.index == 1);
146 this->dual_src_output = reg;
147 this->do_dual_src = true;
148 } else if (var->data.location == FRAG_RESULT_COLOR) {
149 /* Writing gl_FragColor outputs to all color regions. */
150 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
151 this->outputs[i] = reg;
152 this->output_components[i] = 4;
153 }
154 } else if (var->data.location == FRAG_RESULT_DEPTH) {
155 this->frag_depth = reg;
156 } else if (var->data.location == FRAG_RESULT_STENCIL) {
157 this->frag_stencil = reg;
158 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
159 this->sample_mask = reg;
160 } else {
161 int vector_elements = var->type->without_array()->vector_elements;
162
163 /* gl_FragData or a user-defined FS output */
164 assert(var->data.location >= FRAG_RESULT_DATA0 &&
165 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
166
167 /* General color output. */
168 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
169 int output = var->data.location - FRAG_RESULT_DATA0 + i;
170 this->outputs[output] = offset(reg, bld, vector_elements * i);
171 this->output_components[output] = vector_elements;
172 }
173 }
174 break;
175 default:
176 unreachable("unhandled shader stage");
177 }
178 }
179 }
180
181 void
182 fs_visitor::nir_setup_uniforms()
183 {
184 if (dispatch_width != 8)
185 return;
186
187 uniforms = nir->num_uniforms / 4;
188 }
189
190 static bool
191 emit_system_values_block(nir_block *block, fs_visitor *v)
192 {
193 fs_reg *reg;
194
195 nir_foreach_instr(instr, block) {
196 if (instr->type != nir_instr_type_intrinsic)
197 continue;
198
199 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
200 switch (intrin->intrinsic) {
201 case nir_intrinsic_load_vertex_id:
202 unreachable("should be lowered by lower_vertex_id().");
203
204 case nir_intrinsic_load_vertex_id_zero_base:
205 assert(v->stage == MESA_SHADER_VERTEX);
206 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
207 if (reg->file == BAD_FILE)
208 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
209 break;
210
211 case nir_intrinsic_load_base_vertex:
212 assert(v->stage == MESA_SHADER_VERTEX);
213 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
214 if (reg->file == BAD_FILE)
215 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
216 break;
217
218 case nir_intrinsic_load_instance_id:
219 assert(v->stage == MESA_SHADER_VERTEX);
220 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
221 if (reg->file == BAD_FILE)
222 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
223 break;
224
225 case nir_intrinsic_load_base_instance:
226 assert(v->stage == MESA_SHADER_VERTEX);
227 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
228 if (reg->file == BAD_FILE)
229 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
230 break;
231
232 case nir_intrinsic_load_draw_id:
233 assert(v->stage == MESA_SHADER_VERTEX);
234 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
235 if (reg->file == BAD_FILE)
236 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
237 break;
238
239 case nir_intrinsic_load_invocation_id:
240 if (v->stage == MESA_SHADER_TESS_CTRL)
241 break;
242 assert(v->stage == MESA_SHADER_GEOMETRY);
243 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
244 if (reg->file == BAD_FILE) {
245 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
246 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
247 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
248 abld.SHR(iid, g1, brw_imm_ud(27u));
249 *reg = iid;
250 }
251 break;
252
253 case nir_intrinsic_load_sample_pos:
254 assert(v->stage == MESA_SHADER_FRAGMENT);
255 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
256 if (reg->file == BAD_FILE)
257 *reg = *v->emit_samplepos_setup();
258 break;
259
260 case nir_intrinsic_load_sample_id:
261 assert(v->stage == MESA_SHADER_FRAGMENT);
262 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
263 if (reg->file == BAD_FILE)
264 *reg = *v->emit_sampleid_setup();
265 break;
266
267 case nir_intrinsic_load_sample_mask_in:
268 assert(v->stage == MESA_SHADER_FRAGMENT);
269 assert(v->devinfo->gen >= 7);
270 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
271 if (reg->file == BAD_FILE)
272 *reg = *v->emit_samplemaskin_setup();
273 break;
274
275 case nir_intrinsic_load_local_invocation_id:
276 assert(v->stage == MESA_SHADER_COMPUTE);
277 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
278 if (reg->file == BAD_FILE)
279 *reg = *v->emit_cs_local_invocation_id_setup();
280 break;
281
282 case nir_intrinsic_load_work_group_id:
283 assert(v->stage == MESA_SHADER_COMPUTE);
284 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
285 if (reg->file == BAD_FILE)
286 *reg = *v->emit_cs_work_group_id_setup();
287 break;
288
289 case nir_intrinsic_load_helper_invocation:
290 assert(v->stage == MESA_SHADER_FRAGMENT);
291 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
292 if (reg->file == BAD_FILE) {
293 const fs_builder abld =
294 v->bld.annotate("gl_HelperInvocation", NULL);
295
296 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
297 * pixel mask is in g1.7 of the thread payload.
298 *
299 * We move the per-channel pixel enable bit to the low bit of each
300 * channel by shifting the byte containing the pixel mask by the
301 * vector immediate 0x76543210UV.
302 *
303 * The region of <1,8,0> reads only 1 byte (the pixel masks for
304 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
305 * masks for 2 and 3) in SIMD16.
306 */
307 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
308 abld.SHR(shifted,
309 stride(byte_offset(retype(brw_vec1_grf(1, 0),
310 BRW_REGISTER_TYPE_UB), 28),
311 1, 8, 0),
312 brw_imm_uv(0x76543210));
313
314 /* A set bit in the pixel mask means the channel is enabled, but
315 * that is the opposite of gl_HelperInvocation so we need to invert
316 * the mask.
317 *
318 * The negate source-modifier bit of logical instructions on Gen8+
319 * performs 1's complement negation, so we can use that instead of
320 * a NOT instruction.
321 */
322 fs_reg inverted = negate(shifted);
323 if (v->devinfo->gen < 8) {
324 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
325 abld.NOT(inverted, shifted);
326 }
327
328 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
329 * with 1 and negating.
330 */
331 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
332 abld.AND(anded, inverted, brw_imm_uw(1));
333
334 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
335 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
336 *reg = dst;
337 }
338 break;
339
340 default:
341 break;
342 }
343 }
344
345 return true;
346 }
347
348 void
349 fs_visitor::nir_emit_system_values()
350 {
351 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
352 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
353 nir_system_values[i] = fs_reg();
354 }
355
356 nir_foreach_function(function, nir) {
357 assert(strcmp(function->name, "main") == 0);
358 assert(function->impl);
359 nir_foreach_block(block, function->impl) {
360 emit_system_values_block(block, this);
361 }
362 }
363 }
364
365 void
366 fs_visitor::nir_emit_impl(nir_function_impl *impl)
367 {
368 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
369 for (unsigned i = 0; i < impl->reg_alloc; i++) {
370 nir_locals[i] = fs_reg();
371 }
372
373 foreach_list_typed(nir_register, reg, node, &impl->registers) {
374 unsigned array_elems =
375 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
376 unsigned size = array_elems * reg->num_components;
377 const brw_reg_type reg_type =
378 reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
379 nir_locals[reg->index] = bld.vgrf(reg_type, size);
380 }
381
382 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
383 impl->ssa_alloc);
384
385 nir_emit_cf_list(&impl->body);
386 }
387
388 void
389 fs_visitor::nir_emit_cf_list(exec_list *list)
390 {
391 exec_list_validate(list);
392 foreach_list_typed(nir_cf_node, node, node, list) {
393 switch (node->type) {
394 case nir_cf_node_if:
395 nir_emit_if(nir_cf_node_as_if(node));
396 break;
397
398 case nir_cf_node_loop:
399 nir_emit_loop(nir_cf_node_as_loop(node));
400 break;
401
402 case nir_cf_node_block:
403 nir_emit_block(nir_cf_node_as_block(node));
404 break;
405
406 default:
407 unreachable("Invalid CFG node block");
408 }
409 }
410 }
411
412 void
413 fs_visitor::nir_emit_if(nir_if *if_stmt)
414 {
415 /* first, put the condition into f0 */
416 fs_inst *inst = bld.MOV(bld.null_reg_d(),
417 retype(get_nir_src(if_stmt->condition),
418 BRW_REGISTER_TYPE_D));
419 inst->conditional_mod = BRW_CONDITIONAL_NZ;
420
421 bld.IF(BRW_PREDICATE_NORMAL);
422
423 nir_emit_cf_list(&if_stmt->then_list);
424
425 /* note: if the else is empty, dead CF elimination will remove it */
426 bld.emit(BRW_OPCODE_ELSE);
427
428 nir_emit_cf_list(&if_stmt->else_list);
429
430 bld.emit(BRW_OPCODE_ENDIF);
431 }
432
433 void
434 fs_visitor::nir_emit_loop(nir_loop *loop)
435 {
436 bld.emit(BRW_OPCODE_DO);
437
438 nir_emit_cf_list(&loop->body);
439
440 bld.emit(BRW_OPCODE_WHILE);
441 }
442
443 void
444 fs_visitor::nir_emit_block(nir_block *block)
445 {
446 nir_foreach_instr(instr, block) {
447 nir_emit_instr(instr);
448 }
449 }
450
451 void
452 fs_visitor::nir_emit_instr(nir_instr *instr)
453 {
454 const fs_builder abld = bld.annotate(NULL, instr);
455
456 switch (instr->type) {
457 case nir_instr_type_alu:
458 nir_emit_alu(abld, nir_instr_as_alu(instr));
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
496 break;
497
498 case nir_instr_type_jump:
499 nir_emit_jump(abld, nir_instr_as_jump(instr));
500 break;
501
502 default:
503 unreachable("unknown instruction type");
504 }
505 }
506
507 /**
508 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
509 * match instr.
510 */
511 bool
512 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
513 const fs_reg &result)
514 {
515 if (!instr->src[0].src.is_ssa ||
516 !instr->src[0].src.ssa->parent_instr)
517 return false;
518
519 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
520 return false;
521
522 nir_alu_instr *src0 =
523 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
524
525 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
526 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
527 return false;
528
529 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
530 assert(element != NULL);
531
532 enum opcode extract_op;
533 if (src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16) {
534 assert(element->u32[0] <= 1);
535 extract_op = SHADER_OPCODE_EXTRACT_WORD;
536 } else {
537 assert(element->u32[0] <= 3);
538 extract_op = SHADER_OPCODE_EXTRACT_BYTE;
539 }
540
541 fs_reg op0 = get_nir_src(src0->src[0].src);
542 op0.type = brw_type_for_nir_type(
543 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
544 nir_src_bit_size(src0->src[0].src)));
545 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
546
547 set_saturate(instr->dest.saturate,
548 bld.emit(extract_op, result, op0, brw_imm_ud(element->u32[0])));
549 return true;
550 }
551
552 bool
553 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
554 const fs_reg &result)
555 {
556 if (!instr->src[0].src.is_ssa ||
557 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
558 return false;
559
560 nir_intrinsic_instr *src0 =
561 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
562
563 if (src0->intrinsic != nir_intrinsic_load_front_face)
564 return false;
565
566 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
567 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
568 return false;
569
570 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
571 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
572 return false;
573
574 fs_reg tmp = vgrf(glsl_type::int_type);
575
576 if (devinfo->gen >= 6) {
577 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
578 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
579
580 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
581 *
582 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
583 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
584 *
585 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
586 *
587 * This negation looks like it's safe in practice, because bits 0:4 will
588 * surely be TRIANGLES
589 */
590
591 if (value1->f32[0] == -1.0f) {
592 g0.negate = true;
593 }
594
595 tmp.type = BRW_REGISTER_TYPE_W;
596 tmp.subreg_offset = 2;
597 tmp.stride = 2;
598
599 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
600
601 tmp.type = BRW_REGISTER_TYPE_D;
602 tmp.subreg_offset = 0;
603 tmp.stride = 1;
604 } else {
605 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
606 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
607
608 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
609 *
610 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
611 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
612 *
613 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
614 *
615 * This negation looks like it's safe in practice, because bits 0:4 will
616 * surely be TRIANGLES
617 */
618
619 if (value1->f32[0] == -1.0f) {
620 g1_6.negate = true;
621 }
622
623 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
624 }
625 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
626
627 return true;
628 }
629
630 void
631 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
632 {
633 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
634 fs_inst *inst;
635
636 fs_reg result = get_nir_dest(instr->dest.dest);
637 result.type = brw_type_for_nir_type(
638 (nir_alu_type)(nir_op_infos[instr->op].output_type |
639 nir_dest_bit_size(instr->dest.dest)));
640
641 fs_reg op[4];
642 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
643 op[i] = get_nir_src(instr->src[i].src);
644 op[i].type = brw_type_for_nir_type(
645 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
646 nir_src_bit_size(instr->src[i].src)));
647 op[i].abs = instr->src[i].abs;
648 op[i].negate = instr->src[i].negate;
649 }
650
651 /* We get a bunch of mov's out of the from_ssa pass and they may still
652 * be vectorized. We'll handle them as a special-case. We'll also
653 * handle vecN here because it's basically the same thing.
654 */
655 switch (instr->op) {
656 case nir_op_imov:
657 case nir_op_fmov:
658 case nir_op_vec2:
659 case nir_op_vec3:
660 case nir_op_vec4: {
661 fs_reg temp = result;
662 bool need_extra_copy = false;
663 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
664 if (!instr->src[i].src.is_ssa &&
665 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
666 need_extra_copy = true;
667 temp = bld.vgrf(result.type, 4);
668 break;
669 }
670 }
671
672 for (unsigned i = 0; i < 4; i++) {
673 if (!(instr->dest.write_mask & (1 << i)))
674 continue;
675
676 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
677 inst = bld.MOV(offset(temp, bld, i),
678 offset(op[0], bld, instr->src[0].swizzle[i]));
679 } else {
680 inst = bld.MOV(offset(temp, bld, i),
681 offset(op[i], bld, instr->src[i].swizzle[0]));
682 }
683 inst->saturate = instr->dest.saturate;
684 }
685
686 /* In this case the source and destination registers were the same,
687 * so we need to insert an extra set of moves in order to deal with
688 * any swizzling.
689 */
690 if (need_extra_copy) {
691 for (unsigned i = 0; i < 4; i++) {
692 if (!(instr->dest.write_mask & (1 << i)))
693 continue;
694
695 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
696 }
697 }
698 return;
699 }
700 default:
701 break;
702 }
703
704 /* At this point, we have dealt with any instruction that operates on
705 * more than a single channel. Therefore, we can just adjust the source
706 * and destination registers for that channel and emit the instruction.
707 */
708 unsigned channel = 0;
709 if (nir_op_infos[instr->op].output_size == 0) {
710 /* Since NIR is doing the scalarizing for us, we should only ever see
711 * vectorized operations with a single channel.
712 */
713 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
714 channel = ffs(instr->dest.write_mask) - 1;
715
716 result = offset(result, bld, channel);
717 }
718
719 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
720 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
721 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
722 }
723
724 switch (instr->op) {
725 case nir_op_i2f:
726 case nir_op_u2f:
727 if (optimize_extract_to_float(instr, result))
728 return;
729
730 case nir_op_f2d:
731 case nir_op_i2d:
732 case nir_op_u2d:
733 case nir_op_d2f:
734 case nir_op_d2i:
735 case nir_op_d2u:
736 inst = bld.MOV(result, op[0]);
737 inst->saturate = instr->dest.saturate;
738 break;
739
740 case nir_op_f2i:
741 case nir_op_f2u:
742 bld.MOV(result, op[0]);
743 break;
744
745 case nir_op_fsign: {
746 if (type_sz(op[0].type) < 8) {
747 /* AND(val, 0x80000000) gives the sign bit.
748 *
749 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
750 * zero.
751 */
752 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
753
754 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
755 op[0].type = BRW_REGISTER_TYPE_UD;
756 result.type = BRW_REGISTER_TYPE_UD;
757 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
758
759 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
760 inst->predicate = BRW_PREDICATE_NORMAL;
761 if (instr->dest.saturate) {
762 inst = bld.MOV(result, result);
763 inst->saturate = true;
764 }
765 } else {
766 /* For doubles we do the same but we need to consider:
767 *
768 * - 2-src instructions can't operate with 64-bit immediates
769 * - The sign is encoded in the high 32-bit of each DF
770 * - CMP with DF requires special handling in SIMD16
771 * - We need to produce a DF result.
772 */
773
774 /* 2-src instructions can't have 64-bit immediates, so put 0.0 in
775 * a register and compare with that.
776 */
777 fs_reg tmp = vgrf(glsl_type::double_type);
778 bld.MOV(tmp, brw_imm_df(0.0));
779
780 /* A direct DF CMP using the flag register (null dst) won't work in
781 * SIMD16 because the CMP will be split in two by lower_simd_width,
782 * resulting in two CMP instructions with the same dst (NULL),
783 * leading to dead code elimination of the first one. In SIMD8,
784 * however, there is no need to split the CMP and we can save some
785 * work.
786 */
787 fs_reg dst_tmp = vgrf(glsl_type::double_type);
788 bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ);
789
790 /* In SIMD16 we want to avoid using a NULL dst register with DF CMP,
791 * so we store the result of the comparison in a vgrf instead and
792 * then we generate a UD comparison from that that won't have to
793 * be split by lower_simd_width. This is what NIR does to handle
794 * double comparisons in the general case.
795 */
796 if (bld.dispatch_width() == 16 ) {
797 fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD);
798 bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0));
799 bld.CMP(bld.null_reg_ud(),
800 dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
801 }
802
803 /* Get the high 32-bit of each double component where the sign is */
804 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
805 bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
806
807 /* Get the sign bit */
808 bld.AND(result_int, result_int, brw_imm_ud(0x80000000u));
809
810 /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */
811 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
812 inst->predicate = BRW_PREDICATE_NORMAL;
813
814 /* Convert from 32-bit float to 64-bit double */
815 result.type = BRW_REGISTER_TYPE_DF;
816 inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F));
817
818 if (instr->dest.saturate) {
819 inst = bld.MOV(result, result);
820 inst->saturate = true;
821 }
822 }
823 break;
824 }
825
826 case nir_op_isign:
827 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
828 * -> non-negative val generates 0x00000000.
829 * Predicated OR sets 1 if val is positive.
830 */
831 assert(nir_dest_bit_size(instr->dest.dest) < 64);
832 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
833 bld.ASR(result, op[0], brw_imm_d(31));
834 inst = bld.OR(result, result, brw_imm_d(1));
835 inst->predicate = BRW_PREDICATE_NORMAL;
836 break;
837
838 case nir_op_frcp:
839 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
840 inst->saturate = instr->dest.saturate;
841 break;
842
843 case nir_op_fexp2:
844 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
845 inst->saturate = instr->dest.saturate;
846 break;
847
848 case nir_op_flog2:
849 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
850 inst->saturate = instr->dest.saturate;
851 break;
852
853 case nir_op_fsin:
854 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
855 inst->saturate = instr->dest.saturate;
856 break;
857
858 case nir_op_fcos:
859 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
860 inst->saturate = instr->dest.saturate;
861 break;
862
863 case nir_op_fddx:
864 if (fs_key->high_quality_derivatives) {
865 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
866 } else {
867 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
868 }
869 inst->saturate = instr->dest.saturate;
870 break;
871 case nir_op_fddx_fine:
872 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
873 inst->saturate = instr->dest.saturate;
874 break;
875 case nir_op_fddx_coarse:
876 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
877 inst->saturate = instr->dest.saturate;
878 break;
879 case nir_op_fddy:
880 if (fs_key->high_quality_derivatives) {
881 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
882 } else {
883 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
884 }
885 inst->saturate = instr->dest.saturate;
886 break;
887 case nir_op_fddy_fine:
888 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
889 inst->saturate = instr->dest.saturate;
890 break;
891 case nir_op_fddy_coarse:
892 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
893 inst->saturate = instr->dest.saturate;
894 break;
895
896 case nir_op_iadd:
897 assert(nir_dest_bit_size(instr->dest.dest) < 64);
898 case nir_op_fadd:
899 inst = bld.ADD(result, op[0], op[1]);
900 inst->saturate = instr->dest.saturate;
901 break;
902
903 case nir_op_fmul:
904 inst = bld.MUL(result, op[0], op[1]);
905 inst->saturate = instr->dest.saturate;
906 break;
907
908 case nir_op_imul:
909 assert(nir_dest_bit_size(instr->dest.dest) < 64);
910 bld.MUL(result, op[0], op[1]);
911 break;
912
913 case nir_op_imul_high:
914 case nir_op_umul_high:
915 assert(nir_dest_bit_size(instr->dest.dest) < 64);
916 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
917 break;
918
919 case nir_op_idiv:
920 case nir_op_udiv:
921 assert(nir_dest_bit_size(instr->dest.dest) < 64);
922 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
923 break;
924
925 case nir_op_uadd_carry:
926 unreachable("Should have been lowered by carry_to_arith().");
927
928 case nir_op_usub_borrow:
929 unreachable("Should have been lowered by borrow_to_arith().");
930
931 case nir_op_umod:
932 case nir_op_irem:
933 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
934 * appears that our hardware just does the right thing for signed
935 * remainder.
936 */
937 assert(nir_dest_bit_size(instr->dest.dest) < 64);
938 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
939 break;
940
941 case nir_op_imod: {
942 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
943 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
944
945 /* Math instructions don't support conditional mod */
946 inst = bld.MOV(bld.null_reg_d(), result);
947 inst->conditional_mod = BRW_CONDITIONAL_NZ;
948
949 /* Now, we need to determine if signs of the sources are different.
950 * When we XOR the sources, the top bit is 0 if they are the same and 1
951 * if they are different. We can then use a conditional modifier to
952 * turn that into a predicate. This leads us to an XOR.l instruction.
953 *
954 * Technically, according to the PRM, you're not allowed to use .l on a
955 * XOR instruction. However, emperical experiments and Curro's reading
956 * of the simulator source both indicate that it's safe.
957 */
958 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
959 inst = bld.XOR(tmp, op[0], op[1]);
960 inst->predicate = BRW_PREDICATE_NORMAL;
961 inst->conditional_mod = BRW_CONDITIONAL_L;
962
963 /* If the result of the initial remainder operation is non-zero and the
964 * two sources have different signs, add in a copy of op[1] to get the
965 * final integer modulus value.
966 */
967 inst = bld.ADD(result, result, op[1]);
968 inst->predicate = BRW_PREDICATE_NORMAL;
969 break;
970 }
971
972 case nir_op_flt:
973 case nir_op_fge:
974 case nir_op_feq:
975 case nir_op_fne: {
976 fs_reg dest = result;
977 if (nir_src_bit_size(instr->src[0].src) > 32) {
978 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
979 }
980 brw_conditional_mod cond;
981 switch (instr->op) {
982 case nir_op_flt:
983 cond = BRW_CONDITIONAL_L;
984 break;
985 case nir_op_fge:
986 cond = BRW_CONDITIONAL_GE;
987 break;
988 case nir_op_feq:
989 cond = BRW_CONDITIONAL_Z;
990 break;
991 case nir_op_fne:
992 cond = BRW_CONDITIONAL_NZ;
993 break;
994 default:
995 unreachable("bad opcode");
996 }
997 bld.CMP(dest, op[0], op[1], cond);
998 if (nir_src_bit_size(instr->src[0].src) > 32) {
999 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
1000 }
1001 break;
1002 }
1003
1004 case nir_op_ilt:
1005 case nir_op_ult:
1006 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1007 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
1008 break;
1009
1010 case nir_op_ige:
1011 case nir_op_uge:
1012 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1013 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
1014 break;
1015
1016 case nir_op_ieq:
1017 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1018 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
1019 break;
1020
1021 case nir_op_ine:
1022 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1023 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
1024 break;
1025
1026 case nir_op_inot:
1027 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1028 if (devinfo->gen >= 8) {
1029 op[0] = resolve_source_modifiers(op[0]);
1030 }
1031 bld.NOT(result, op[0]);
1032 break;
1033 case nir_op_ixor:
1034 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1035 if (devinfo->gen >= 8) {
1036 op[0] = resolve_source_modifiers(op[0]);
1037 op[1] = resolve_source_modifiers(op[1]);
1038 }
1039 bld.XOR(result, op[0], op[1]);
1040 break;
1041 case nir_op_ior:
1042 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1043 if (devinfo->gen >= 8) {
1044 op[0] = resolve_source_modifiers(op[0]);
1045 op[1] = resolve_source_modifiers(op[1]);
1046 }
1047 bld.OR(result, op[0], op[1]);
1048 break;
1049 case nir_op_iand:
1050 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1051 if (devinfo->gen >= 8) {
1052 op[0] = resolve_source_modifiers(op[0]);
1053 op[1] = resolve_source_modifiers(op[1]);
1054 }
1055 bld.AND(result, op[0], op[1]);
1056 break;
1057
1058 case nir_op_fdot2:
1059 case nir_op_fdot3:
1060 case nir_op_fdot4:
1061 case nir_op_ball_fequal2:
1062 case nir_op_ball_iequal2:
1063 case nir_op_ball_fequal3:
1064 case nir_op_ball_iequal3:
1065 case nir_op_ball_fequal4:
1066 case nir_op_ball_iequal4:
1067 case nir_op_bany_fnequal2:
1068 case nir_op_bany_inequal2:
1069 case nir_op_bany_fnequal3:
1070 case nir_op_bany_inequal3:
1071 case nir_op_bany_fnequal4:
1072 case nir_op_bany_inequal4:
1073 unreachable("Lowered by nir_lower_alu_reductions");
1074
1075 case nir_op_fnoise1_1:
1076 case nir_op_fnoise1_2:
1077 case nir_op_fnoise1_3:
1078 case nir_op_fnoise1_4:
1079 case nir_op_fnoise2_1:
1080 case nir_op_fnoise2_2:
1081 case nir_op_fnoise2_3:
1082 case nir_op_fnoise2_4:
1083 case nir_op_fnoise3_1:
1084 case nir_op_fnoise3_2:
1085 case nir_op_fnoise3_3:
1086 case nir_op_fnoise3_4:
1087 case nir_op_fnoise4_1:
1088 case nir_op_fnoise4_2:
1089 case nir_op_fnoise4_3:
1090 case nir_op_fnoise4_4:
1091 unreachable("not reached: should be handled by lower_noise");
1092
1093 case nir_op_ldexp:
1094 unreachable("not reached: should be handled by ldexp_to_arith()");
1095
1096 case nir_op_fsqrt:
1097 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1098 inst->saturate = instr->dest.saturate;
1099 break;
1100
1101 case nir_op_frsq:
1102 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1103 inst->saturate = instr->dest.saturate;
1104 break;
1105
1106 case nir_op_b2i:
1107 case nir_op_b2f:
1108 bld.MOV(result, negate(op[0]));
1109 break;
1110
1111 case nir_op_f2b:
1112 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1113 break;
1114 case nir_op_d2b: {
1115 /* two-argument instructions can't take 64-bit immediates */
1116 fs_reg zero = vgrf(glsl_type::double_type);
1117 bld.MOV(zero, brw_imm_df(0.0));
1118 /* A SIMD16 execution needs to be split in two instructions, so use
1119 * a vgrf instead of the flag register as dst so instruction splitting
1120 * works
1121 */
1122 fs_reg tmp = vgrf(glsl_type::double_type);
1123 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1124 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1125 break;
1126 }
1127 case nir_op_i2b:
1128 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1129 break;
1130
1131 case nir_op_ftrunc:
1132 inst = bld.RNDZ(result, op[0]);
1133 inst->saturate = instr->dest.saturate;
1134 break;
1135
1136 case nir_op_fceil: {
1137 op[0].negate = !op[0].negate;
1138 fs_reg temp = vgrf(glsl_type::float_type);
1139 bld.RNDD(temp, op[0]);
1140 temp.negate = true;
1141 inst = bld.MOV(result, temp);
1142 inst->saturate = instr->dest.saturate;
1143 break;
1144 }
1145 case nir_op_ffloor:
1146 inst = bld.RNDD(result, op[0]);
1147 inst->saturate = instr->dest.saturate;
1148 break;
1149 case nir_op_ffract:
1150 inst = bld.FRC(result, op[0]);
1151 inst->saturate = instr->dest.saturate;
1152 break;
1153 case nir_op_fround_even:
1154 inst = bld.RNDE(result, op[0]);
1155 inst->saturate = instr->dest.saturate;
1156 break;
1157
1158 case nir_op_fquantize2f16: {
1159 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1160 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1161 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1162
1163 /* The destination stride must be at least as big as the source stride. */
1164 tmp16.type = BRW_REGISTER_TYPE_W;
1165 tmp16.stride = 2;
1166
1167 /* Check for denormal */
1168 fs_reg abs_src0 = op[0];
1169 abs_src0.abs = true;
1170 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1171 BRW_CONDITIONAL_L);
1172 /* Get the appropriately signed zero */
1173 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1174 retype(op[0], BRW_REGISTER_TYPE_UD),
1175 brw_imm_ud(0x80000000));
1176 /* Do the actual F32 -> F16 -> F32 conversion */
1177 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1178 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1179 /* Select that or zero based on normal status */
1180 inst = bld.SEL(result, zero, tmp32);
1181 inst->predicate = BRW_PREDICATE_NORMAL;
1182 inst->saturate = instr->dest.saturate;
1183 break;
1184 }
1185
1186 case nir_op_imin:
1187 case nir_op_umin:
1188 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1189 case nir_op_fmin:
1190 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1191 inst->saturate = instr->dest.saturate;
1192 break;
1193
1194 case nir_op_imax:
1195 case nir_op_umax:
1196 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1197 case nir_op_fmax:
1198 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1199 inst->saturate = instr->dest.saturate;
1200 break;
1201
1202 case nir_op_pack_snorm_2x16:
1203 case nir_op_pack_snorm_4x8:
1204 case nir_op_pack_unorm_2x16:
1205 case nir_op_pack_unorm_4x8:
1206 case nir_op_unpack_snorm_2x16:
1207 case nir_op_unpack_snorm_4x8:
1208 case nir_op_unpack_unorm_2x16:
1209 case nir_op_unpack_unorm_4x8:
1210 case nir_op_unpack_half_2x16:
1211 case nir_op_pack_half_2x16:
1212 unreachable("not reached: should be handled by lower_packing_builtins");
1213
1214 case nir_op_unpack_half_2x16_split_x:
1215 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218 case nir_op_unpack_half_2x16_split_y:
1219 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1220 inst->saturate = instr->dest.saturate;
1221 break;
1222
1223 case nir_op_pack_double_2x32_split:
1224 /* Optimize the common case where we are re-packing a double with
1225 * the result of a previous double unpack. In this case we can take the
1226 * 32-bit value to use in the re-pack from the original double and bypass
1227 * the unpack operation.
1228 */
1229 for (int i = 0; i < 2; i++) {
1230 if (instr->src[i].src.is_ssa)
1231 continue;
1232
1233 const nir_instr *parent_instr = instr->src[i].src.ssa->parent_instr;
1234 if (parent_instr->type == nir_instr_type_alu)
1235 continue;
1236
1237 const nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr);
1238 if (alu_parent->op == nir_op_unpack_double_2x32_split_x ||
1239 alu_parent->op == nir_op_unpack_double_2x32_split_y)
1240 continue;
1241
1242 if (!alu_parent->src[0].src.is_ssa)
1243 continue;
1244
1245 op[i] = get_nir_src(alu_parent->src[0].src);
1246 op[i] = offset(retype(op[i], BRW_REGISTER_TYPE_DF), bld,
1247 alu_parent->src[0].swizzle[channel]);
1248 if (alu_parent->op == nir_op_unpack_double_2x32_split_y)
1249 op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 1);
1250 else
1251 op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 0);
1252 }
1253 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1254 break;
1255
1256 case nir_op_unpack_double_2x32_split_x:
1257 case nir_op_unpack_double_2x32_split_y: {
1258 /* Optimize the common case where we are unpacking from a double we have
1259 * previously packed. In this case we can just bypass the pack operation
1260 * and source directly from its arguments.
1261 */
1262 unsigned index = (instr->op == nir_op_unpack_double_2x32_split_x) ? 0 : 1;
1263 if (instr->src[0].src.is_ssa) {
1264 nir_instr *parent_instr = instr->src[0].src.ssa->parent_instr;
1265 if (parent_instr->type == nir_instr_type_alu) {
1266 nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr);
1267 if (alu_parent->op == nir_op_pack_double_2x32_split &&
1268 alu_parent->src[index].src.is_ssa) {
1269 op[0] = retype(get_nir_src(alu_parent->src[index].src),
1270 BRW_REGISTER_TYPE_UD);
1271 op[0] =
1272 offset(op[0], bld, alu_parent->src[index].swizzle[channel]);
1273 bld.MOV(result, op[0]);
1274 break;
1275 }
1276 }
1277 }
1278
1279 if (instr->op == nir_op_unpack_double_2x32_split_x)
1280 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1281 else
1282 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1283 break;
1284 }
1285
1286 case nir_op_fpow:
1287 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1288 inst->saturate = instr->dest.saturate;
1289 break;
1290
1291 case nir_op_bitfield_reverse:
1292 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1293 bld.BFREV(result, op[0]);
1294 break;
1295
1296 case nir_op_bit_count:
1297 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1298 bld.CBIT(result, op[0]);
1299 break;
1300
1301 case nir_op_ufind_msb:
1302 case nir_op_ifind_msb: {
1303 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1304 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1305
1306 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1307 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1308 * subtract the result from 31 to convert the MSB count into an LSB count.
1309 */
1310 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1311
1312 inst = bld.ADD(result, result, brw_imm_d(31));
1313 inst->predicate = BRW_PREDICATE_NORMAL;
1314 inst->src[0].negate = true;
1315 break;
1316 }
1317
1318 case nir_op_find_lsb:
1319 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1320 bld.FBL(result, op[0]);
1321 break;
1322
1323 case nir_op_ubitfield_extract:
1324 case nir_op_ibitfield_extract:
1325 unreachable("should have been lowered");
1326 case nir_op_ubfe:
1327 case nir_op_ibfe:
1328 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1329 bld.BFE(result, op[2], op[1], op[0]);
1330 break;
1331 case nir_op_bfm:
1332 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1333 bld.BFI1(result, op[0], op[1]);
1334 break;
1335 case nir_op_bfi:
1336 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1337 bld.BFI2(result, op[0], op[1], op[2]);
1338 break;
1339
1340 case nir_op_bitfield_insert:
1341 unreachable("not reached: should have been lowered");
1342
1343 case nir_op_ishl:
1344 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1345 bld.SHL(result, op[0], op[1]);
1346 break;
1347 case nir_op_ishr:
1348 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1349 bld.ASR(result, op[0], op[1]);
1350 break;
1351 case nir_op_ushr:
1352 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1353 bld.SHR(result, op[0], op[1]);
1354 break;
1355
1356 case nir_op_pack_half_2x16_split:
1357 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1358 break;
1359
1360 case nir_op_ffma:
1361 inst = bld.MAD(result, op[2], op[1], op[0]);
1362 inst->saturate = instr->dest.saturate;
1363 break;
1364
1365 case nir_op_flrp:
1366 inst = bld.LRP(result, op[0], op[1], op[2]);
1367 inst->saturate = instr->dest.saturate;
1368 break;
1369
1370 case nir_op_bcsel:
1371 if (optimize_frontfacing_ternary(instr, result))
1372 return;
1373
1374 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1375 inst = bld.SEL(result, op[1], op[2]);
1376 inst->predicate = BRW_PREDICATE_NORMAL;
1377 break;
1378
1379 case nir_op_extract_u8:
1380 case nir_op_extract_i8: {
1381 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1382 assert(byte != NULL);
1383 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1384 result, op[0], brw_imm_ud(byte->u32[0]));
1385 break;
1386 }
1387
1388 case nir_op_extract_u16:
1389 case nir_op_extract_i16: {
1390 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1391 assert(word != NULL);
1392 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1393 result, op[0], brw_imm_ud(word->u32[0]));
1394 break;
1395 }
1396
1397 default:
1398 unreachable("unhandled instruction");
1399 }
1400
1401 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1402 * to sign extend the low bit to 0/~0
1403 */
1404 if (devinfo->gen <= 5 &&
1405 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1406 fs_reg masked = vgrf(glsl_type::int_type);
1407 bld.AND(masked, result, brw_imm_d(1));
1408 masked.negate = true;
1409 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1410 }
1411 }
1412
1413 void
1414 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1415 nir_load_const_instr *instr)
1416 {
1417 const brw_reg_type reg_type =
1418 instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1419 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1420
1421 switch (instr->def.bit_size) {
1422 case 32:
1423 for (unsigned i = 0; i < instr->def.num_components; i++)
1424 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1425 break;
1426
1427 case 64:
1428 for (unsigned i = 0; i < instr->def.num_components; i++)
1429 bld.MOV(offset(reg, bld, i), brw_imm_df(instr->value.f64[i]));
1430 break;
1431
1432 default:
1433 unreachable("Invalid bit size");
1434 }
1435
1436 nir_ssa_values[instr->def.index] = reg;
1437 }
1438
1439 void
1440 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1441 {
1442 const brw_reg_type reg_type =
1443 instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1444 nir_ssa_values[instr->def.index] =
1445 bld.vgrf(reg_type, instr->def.num_components);
1446 }
1447
1448 fs_reg
1449 fs_visitor::get_nir_src(const nir_src &src)
1450 {
1451 fs_reg reg;
1452 if (src.is_ssa) {
1453 reg = nir_ssa_values[src.ssa->index];
1454 } else {
1455 /* We don't handle indirects on locals */
1456 assert(src.reg.indirect == NULL);
1457 reg = offset(nir_locals[src.reg.reg->index], bld,
1458 src.reg.base_offset * src.reg.reg->num_components);
1459 }
1460
1461 /* to avoid floating-point denorm flushing problems, set the type by
1462 * default to D - instructions that need floating point semantics will set
1463 * this to F if they need to
1464 */
1465 return retype(reg, BRW_REGISTER_TYPE_D);
1466 }
1467
1468 /**
1469 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1470 */
1471 fs_reg
1472 fs_visitor::get_nir_src_imm(const nir_src &src)
1473 {
1474 nir_const_value *val = nir_src_as_const_value(src);
1475 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1476 }
1477
1478 fs_reg
1479 fs_visitor::get_nir_dest(const nir_dest &dest)
1480 {
1481 if (dest.is_ssa) {
1482 const brw_reg_type reg_type =
1483 dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
1484 nir_ssa_values[dest.ssa.index] =
1485 bld.vgrf(reg_type, dest.ssa.num_components);
1486 return nir_ssa_values[dest.ssa.index];
1487 } else {
1488 /* We don't handle indirects on locals */
1489 assert(dest.reg.indirect == NULL);
1490 return offset(nir_locals[dest.reg.reg->index], bld,
1491 dest.reg.base_offset * dest.reg.reg->num_components);
1492 }
1493 }
1494
1495 fs_reg
1496 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1497 {
1498 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1499 BRW_REGISTER_TYPE_UD);
1500 fs_reg indirect;
1501 unsigned indirect_max = 0;
1502
1503 for (const nir_deref *tail = &deref->deref; tail->child;
1504 tail = tail->child) {
1505 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1506 assert(tail->child->deref_type == nir_deref_type_array);
1507 const unsigned size = glsl_get_length(tail->type);
1508 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1509 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1510 image = offset(image, bld, base * element_size);
1511
1512 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1513 fs_reg tmp = vgrf(glsl_type::uint_type);
1514
1515 /* Accessing an invalid surface index with the dataport can result
1516 * in a hang. According to the spec "if the index used to
1517 * select an individual element is negative or greater than or
1518 * equal to the size of the array, the results of the operation
1519 * are undefined but may not lead to termination" -- which is one
1520 * of the possible outcomes of the hang. Clamp the index to
1521 * prevent access outside of the array bounds.
1522 */
1523 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1524 BRW_REGISTER_TYPE_UD),
1525 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1526
1527 indirect_max += element_size * (tail->type->length - 1);
1528
1529 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1530 if (indirect.file == BAD_FILE) {
1531 indirect = tmp;
1532 } else {
1533 bld.ADD(indirect, indirect, tmp);
1534 }
1535 }
1536 }
1537
1538 if (indirect.file == BAD_FILE) {
1539 return image;
1540 } else {
1541 /* Emit a pile of MOVs to load the uniform into a temporary. The
1542 * dead-code elimination pass will get rid of what we don't use.
1543 */
1544 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1545 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1546 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1547 offset(tmp, bld, j), offset(image, bld, j),
1548 indirect, brw_imm_ud((indirect_max + 1) * 4));
1549 }
1550 return tmp;
1551 }
1552 }
1553
1554 void
1555 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1556 unsigned wr_mask)
1557 {
1558 for (unsigned i = 0; i < 4; i++) {
1559 if (!((wr_mask >> i) & 1))
1560 continue;
1561
1562 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1563 new_inst->dst = offset(new_inst->dst, bld, i);
1564 for (unsigned j = 0; j < new_inst->sources; j++)
1565 if (new_inst->src[j].file == VGRF)
1566 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1567
1568 bld.emit(new_inst);
1569 }
1570 }
1571
1572 /**
1573 * Get the matching channel register datatype for an image intrinsic of the
1574 * specified GLSL image type.
1575 */
1576 static brw_reg_type
1577 get_image_base_type(const glsl_type *type)
1578 {
1579 switch ((glsl_base_type)type->sampled_type) {
1580 case GLSL_TYPE_UINT:
1581 return BRW_REGISTER_TYPE_UD;
1582 case GLSL_TYPE_INT:
1583 return BRW_REGISTER_TYPE_D;
1584 case GLSL_TYPE_FLOAT:
1585 return BRW_REGISTER_TYPE_F;
1586 default:
1587 unreachable("Not reached.");
1588 }
1589 }
1590
1591 /**
1592 * Get the appropriate atomic op for an image atomic intrinsic.
1593 */
1594 static unsigned
1595 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1596 {
1597 switch (op) {
1598 case nir_intrinsic_image_atomic_add:
1599 return BRW_AOP_ADD;
1600 case nir_intrinsic_image_atomic_min:
1601 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1602 BRW_AOP_IMIN : BRW_AOP_UMIN);
1603 case nir_intrinsic_image_atomic_max:
1604 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1605 BRW_AOP_IMAX : BRW_AOP_UMAX);
1606 case nir_intrinsic_image_atomic_and:
1607 return BRW_AOP_AND;
1608 case nir_intrinsic_image_atomic_or:
1609 return BRW_AOP_OR;
1610 case nir_intrinsic_image_atomic_xor:
1611 return BRW_AOP_XOR;
1612 case nir_intrinsic_image_atomic_exchange:
1613 return BRW_AOP_MOV;
1614 case nir_intrinsic_image_atomic_comp_swap:
1615 return BRW_AOP_CMPWR;
1616 default:
1617 unreachable("Not reachable.");
1618 }
1619 }
1620
1621 static fs_inst *
1622 emit_pixel_interpolater_send(const fs_builder &bld,
1623 enum opcode opcode,
1624 const fs_reg &dst,
1625 const fs_reg &src,
1626 const fs_reg &desc,
1627 glsl_interp_qualifier interpolation)
1628 {
1629 fs_inst *inst;
1630 fs_reg payload;
1631 int mlen;
1632
1633 if (src.file == BAD_FILE) {
1634 /* Dummy payload */
1635 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1636 mlen = 1;
1637 } else {
1638 payload = src;
1639 mlen = 2 * bld.dispatch_width() / 8;
1640 }
1641
1642 inst = bld.emit(opcode, dst, payload, desc);
1643 inst->mlen = mlen;
1644 /* 2 floats per slot returned */
1645 inst->regs_written = 2 * bld.dispatch_width() / 8;
1646 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1647
1648 return inst;
1649 }
1650
1651 /**
1652 * Computes 1 << x, given a D/UD register containing some value x.
1653 */
1654 static fs_reg
1655 intexp2(const fs_builder &bld, const fs_reg &x)
1656 {
1657 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1658
1659 fs_reg result = bld.vgrf(x.type, 1);
1660 fs_reg one = bld.vgrf(x.type, 1);
1661
1662 bld.MOV(one, retype(brw_imm_d(1), one.type));
1663 bld.SHL(result, one, x);
1664 return result;
1665 }
1666
1667 void
1668 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1669 {
1670 assert(stage == MESA_SHADER_GEOMETRY);
1671
1672 struct brw_gs_prog_data *gs_prog_data =
1673 (struct brw_gs_prog_data *) prog_data;
1674
1675 /* We can only do EndPrimitive() functionality when the control data
1676 * consists of cut bits. Fortunately, the only time it isn't is when the
1677 * output type is points, in which case EndPrimitive() is a no-op.
1678 */
1679 if (gs_prog_data->control_data_format !=
1680 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1681 return;
1682 }
1683
1684 /* Cut bits use one bit per vertex. */
1685 assert(gs_compile->control_data_bits_per_vertex == 1);
1686
1687 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1688 vertex_count.type = BRW_REGISTER_TYPE_UD;
1689
1690 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1691 * vertex n, 0 otherwise. So all we need to do here is mark bit
1692 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1693 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1694 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1695 *
1696 * Note that if EndPrimitive() is called before emitting any vertices, this
1697 * will cause us to set bit 31 of the control_data_bits register to 1.
1698 * That's fine because:
1699 *
1700 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1701 * output, so the hardware will ignore cut bit 31.
1702 *
1703 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1704 * last vertex, so setting cut bit 31 has no effect (since the primitive
1705 * is automatically ended when the GS terminates).
1706 *
1707 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1708 * control_data_bits register to 0 when the first vertex is emitted.
1709 */
1710
1711 const fs_builder abld = bld.annotate("end primitive");
1712
1713 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1714 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1715 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1716 fs_reg mask = intexp2(abld, prev_count);
1717 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1718 * attention to the lower 5 bits of its second source argument, so on this
1719 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1720 * ((vertex_count - 1) % 32).
1721 */
1722 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1723 }
1724
1725 void
1726 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1727 {
1728 assert(stage == MESA_SHADER_GEOMETRY);
1729 assert(gs_compile->control_data_bits_per_vertex != 0);
1730
1731 struct brw_gs_prog_data *gs_prog_data =
1732 (struct brw_gs_prog_data *) prog_data;
1733
1734 const fs_builder abld = bld.annotate("emit control data bits");
1735 const fs_builder fwa_bld = bld.exec_all();
1736
1737 /* We use a single UD register to accumulate control data bits (32 bits
1738 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1739 * at a time.
1740 *
1741 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1742 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1743 * use the Channel Mask phase to enable/disable which DWord within that
1744 * group to write. (Remember, different SIMD8 channels may have emitted
1745 * different numbers of vertices, so we may need per-slot offsets.)
1746 *
1747 * Channel masking presents an annoying problem: we may have to replicate
1748 * the data up to 4 times:
1749 *
1750 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1751 *
1752 * To avoid penalizing shaders that emit a small number of vertices, we
1753 * can avoid these sometimes: if the size of the control data header is
1754 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1755 * land in the same 128-bit group, so we can skip per-slot offsets.
1756 *
1757 * Similarly, if the control data header is <= 32 bits, there is only one
1758 * DWord, so we can skip channel masks.
1759 */
1760 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1761
1762 fs_reg channel_mask, per_slot_offset;
1763
1764 if (gs_compile->control_data_header_size_bits > 32) {
1765 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1766 channel_mask = vgrf(glsl_type::uint_type);
1767 }
1768
1769 if (gs_compile->control_data_header_size_bits > 128) {
1770 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1771 per_slot_offset = vgrf(glsl_type::uint_type);
1772 }
1773
1774 /* Figure out which DWord we're trying to write to using the formula:
1775 *
1776 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1777 *
1778 * Since bits_per_vertex is a power of two, and is known at compile
1779 * time, this can be optimized to:
1780 *
1781 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1782 */
1783 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1784 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1785 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1786 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1787 unsigned log2_bits_per_vertex =
1788 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1789 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1790
1791 if (per_slot_offset.file != BAD_FILE) {
1792 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1793 * the appropriate OWord within the control data header.
1794 */
1795 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1796 }
1797
1798 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1799 * write to the appropriate DWORD within the OWORD.
1800 */
1801 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1802 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1803 channel_mask = intexp2(fwa_bld, channel);
1804 /* Then the channel masks need to be in bits 23:16. */
1805 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1806 }
1807
1808 /* Store the control data bits in the message payload and send it. */
1809 int mlen = 2;
1810 if (channel_mask.file != BAD_FILE)
1811 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1812 if (per_slot_offset.file != BAD_FILE)
1813 mlen++;
1814
1815 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1816 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1817 int i = 0;
1818 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1819 if (per_slot_offset.file != BAD_FILE)
1820 sources[i++] = per_slot_offset;
1821 if (channel_mask.file != BAD_FILE)
1822 sources[i++] = channel_mask;
1823 while (i < mlen) {
1824 sources[i++] = this->control_data_bits;
1825 }
1826
1827 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1828 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1829 inst->mlen = mlen;
1830 /* We need to increment Global Offset by 256-bits to make room for
1831 * Broadwell's extra "Vertex Count" payload at the beginning of the
1832 * URB entry. Since this is an OWord message, Global Offset is counted
1833 * in 128-bit units, so we must set it to 2.
1834 */
1835 if (gs_prog_data->static_vertex_count == -1)
1836 inst->offset = 2;
1837 }
1838
1839 void
1840 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1841 unsigned stream_id)
1842 {
1843 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1844
1845 /* Note: we are calling this *before* increasing vertex_count, so
1846 * this->vertex_count == vertex_count - 1 in the formula above.
1847 */
1848
1849 /* Stream mode uses 2 bits per vertex */
1850 assert(gs_compile->control_data_bits_per_vertex == 2);
1851
1852 /* Must be a valid stream */
1853 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1854
1855 /* Control data bits are initialized to 0 so we don't have to set any
1856 * bits when sending vertices to stream 0.
1857 */
1858 if (stream_id == 0)
1859 return;
1860
1861 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1862
1863 /* reg::sid = stream_id */
1864 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1865 abld.MOV(sid, brw_imm_ud(stream_id));
1866
1867 /* reg:shift_count = 2 * (vertex_count - 1) */
1868 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1869 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1870
1871 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1872 * attention to the lower 5 bits of its second source argument, so on this
1873 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1874 * stream_id << ((2 * (vertex_count - 1)) % 32).
1875 */
1876 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1877 abld.SHL(mask, sid, shift_count);
1878 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1879 }
1880
1881 void
1882 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1883 unsigned stream_id)
1884 {
1885 assert(stage == MESA_SHADER_GEOMETRY);
1886
1887 struct brw_gs_prog_data *gs_prog_data =
1888 (struct brw_gs_prog_data *) prog_data;
1889
1890 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1891 vertex_count.type = BRW_REGISTER_TYPE_UD;
1892
1893 /* Haswell and later hardware ignores the "Render Stream Select" bits
1894 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1895 * and instead sends all primitives down the pipeline for rasterization.
1896 * If the SOL stage is enabled, "Render Stream Select" is honored and
1897 * primitives bound to non-zero streams are discarded after stream output.
1898 *
1899 * Since the only purpose of primives sent to non-zero streams is to
1900 * be recorded by transform feedback, we can simply discard all geometry
1901 * bound to these streams when transform feedback is disabled.
1902 */
1903 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1904 return;
1905
1906 /* If we're outputting 32 control data bits or less, then we can wait
1907 * until the shader is over to output them all. Otherwise we need to
1908 * output them as we go. Now is the time to do it, since we're about to
1909 * output the vertex_count'th vertex, so it's guaranteed that the
1910 * control data bits associated with the (vertex_count - 1)th vertex are
1911 * correct.
1912 */
1913 if (gs_compile->control_data_header_size_bits > 32) {
1914 const fs_builder abld =
1915 bld.annotate("emit vertex: emit control data bits");
1916
1917 /* Only emit control data bits if we've finished accumulating a batch
1918 * of 32 bits. This is the case when:
1919 *
1920 * (vertex_count * bits_per_vertex) % 32 == 0
1921 *
1922 * (in other words, when the last 5 bits of vertex_count *
1923 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1924 * integer n (which is always the case, since bits_per_vertex is
1925 * always 1 or 2), this is equivalent to requiring that the last 5-n
1926 * bits of vertex_count are 0:
1927 *
1928 * vertex_count & (2^(5-n) - 1) == 0
1929 *
1930 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1931 * equivalent to:
1932 *
1933 * vertex_count & (32 / bits_per_vertex - 1) == 0
1934 *
1935 * TODO: If vertex_count is an immediate, we could do some of this math
1936 * at compile time...
1937 */
1938 fs_inst *inst =
1939 abld.AND(bld.null_reg_d(), vertex_count,
1940 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1941 inst->conditional_mod = BRW_CONDITIONAL_Z;
1942
1943 abld.IF(BRW_PREDICATE_NORMAL);
1944 /* If vertex_count is 0, then no control data bits have been
1945 * accumulated yet, so we can skip emitting them.
1946 */
1947 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1948 BRW_CONDITIONAL_NEQ);
1949 abld.IF(BRW_PREDICATE_NORMAL);
1950 emit_gs_control_data_bits(vertex_count);
1951 abld.emit(BRW_OPCODE_ENDIF);
1952
1953 /* Reset control_data_bits to 0 so we can start accumulating a new
1954 * batch.
1955 *
1956 * Note: in the case where vertex_count == 0, this neutralizes the
1957 * effect of any call to EndPrimitive() that the shader may have
1958 * made before outputting its first vertex.
1959 */
1960 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1961 inst->force_writemask_all = true;
1962 abld.emit(BRW_OPCODE_ENDIF);
1963 }
1964
1965 emit_urb_writes(vertex_count);
1966
1967 /* In stream mode we have to set control data bits for all vertices
1968 * unless we have disabled control data bits completely (which we do
1969 * do for GL_POINTS outputs that don't use streams).
1970 */
1971 if (gs_compile->control_data_header_size_bits > 0 &&
1972 gs_prog_data->control_data_format ==
1973 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1974 set_gs_stream_control_data_bits(vertex_count, stream_id);
1975 }
1976 }
1977
1978 void
1979 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1980 const nir_src &vertex_src,
1981 unsigned base_offset,
1982 const nir_src &offset_src,
1983 unsigned num_components)
1984 {
1985 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1986
1987 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1988 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1989 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1990
1991 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1992 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1993 * gl_PointSize is available as a GS input, however, so it must be that.
1994 */
1995 const bool is_point_size = (base_offset == 0);
1996
1997 /* TODO: figure out push input layout for invocations == 1 */
1998 if (gs_prog_data->invocations == 1 &&
1999 offset_const != NULL && vertex_const != NULL &&
2000 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2001 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2002 vertex_const->u32[0] * push_reg_count;
2003 /* This input was pushed into registers. */
2004 if (is_point_size) {
2005 /* gl_PointSize comes in .w */
2006 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
2007 } else {
2008 for (unsigned i = 0; i < num_components; i++) {
2009 bld.MOV(offset(dst, bld, i),
2010 fs_reg(ATTR, imm_offset + i, dst.type));
2011 }
2012 }
2013 return;
2014 }
2015
2016 /* Resort to the pull model. Ensure the VUE handles are provided. */
2017 gs_prog_data->base.include_vue_handles = true;
2018
2019 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2020 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2021
2022 if (gs_prog_data->invocations == 1) {
2023 if (vertex_const) {
2024 /* The vertex index is constant; just select the proper URB handle. */
2025 icp_handle =
2026 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2027 BRW_REGISTER_TYPE_UD);
2028 } else {
2029 /* The vertex index is non-constant. We need to use indirect
2030 * addressing to fetch the proper URB handle.
2031 *
2032 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2033 * indicating that channel <n> should read the handle from
2034 * DWord <n>. We convert that to bytes by multiplying by 4.
2035 *
2036 * Next, we convert the vertex index to bytes by multiplying
2037 * by 32 (shifting by 5), and add the two together. This is
2038 * the final indirect byte offset.
2039 */
2040 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
2041 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2042 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2043 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2044
2045 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2046 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2047 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2048 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2049 /* Convert vertex_index to bytes (multiply by 32) */
2050 bld.SHL(vertex_offset_bytes,
2051 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2052 brw_imm_ud(5u));
2053 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2054
2055 /* Use first_icp_handle as the base offset. There is one register
2056 * of URB handles per vertex, so inform the register allocator that
2057 * we might read up to nir->info.gs.vertices_in registers.
2058 */
2059 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2060 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
2061 fs_reg(icp_offset_bytes),
2062 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2063 }
2064 } else {
2065 assert(gs_prog_data->invocations > 1);
2066
2067 if (vertex_const) {
2068 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2069 bld.MOV(icp_handle,
2070 retype(brw_vec1_grf(first_icp_handle +
2071 vertex_const->i32[0] / 8,
2072 vertex_const->i32[0] % 8),
2073 BRW_REGISTER_TYPE_UD));
2074 } else {
2075 /* The vertex index is non-constant. We need to use indirect
2076 * addressing to fetch the proper URB handle.
2077 *
2078 */
2079 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2080
2081 /* Convert vertex_index to bytes (multiply by 4) */
2082 bld.SHL(icp_offset_bytes,
2083 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2084 brw_imm_ud(2u));
2085
2086 /* Use first_icp_handle as the base offset. There is one DWord
2087 * of URB handles per vertex, so inform the register allocator that
2088 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2089 */
2090 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2091 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
2092 fs_reg(icp_offset_bytes),
2093 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2094 REG_SIZE));
2095 }
2096 }
2097
2098 fs_inst *inst;
2099 if (offset_const) {
2100 /* Constant indexing - use global offset. */
2101 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2102 inst->offset = base_offset + offset_const->u32[0];
2103 inst->base_mrf = -1;
2104 inst->mlen = 1;
2105 inst->regs_written = num_components;
2106 } else {
2107 /* Indirect indexing - use per-slot offsets as well. */
2108 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
2109 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2110 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2111
2112 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2113 inst->offset = base_offset;
2114 inst->base_mrf = -1;
2115 inst->mlen = 2;
2116 inst->regs_written = num_components;
2117 }
2118
2119 if (is_point_size) {
2120 /* Read the whole VUE header (because of alignment) and read .w. */
2121 fs_reg tmp = bld.vgrf(dst.type, 4);
2122 inst->dst = tmp;
2123 inst->regs_written = 4;
2124 bld.MOV(dst, offset(tmp, bld, 3));
2125 }
2126 }
2127
2128 fs_reg
2129 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2130 {
2131 nir_src *offset_src = nir_get_io_offset_src(instr);
2132 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2133
2134 if (const_value) {
2135 /* The only constant offset we should find is 0. brw_nir.c's
2136 * add_const_offset_to_base() will fold other constant offsets
2137 * into instr->const_index[0].
2138 */
2139 assert(const_value->u32[0] == 0);
2140 return fs_reg();
2141 }
2142
2143 return get_nir_src(*offset_src);
2144 }
2145
2146 static void
2147 do_untyped_vector_read(const fs_builder &bld,
2148 const fs_reg dest,
2149 const fs_reg surf_index,
2150 const fs_reg offset_reg,
2151 unsigned num_components)
2152 {
2153 if (type_sz(dest.type) == 4) {
2154 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2155 1 /* dims */,
2156 num_components,
2157 BRW_PREDICATE_NONE);
2158 read_result.type = dest.type;
2159 for (unsigned i = 0; i < num_components; i++)
2160 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2161 } else if (type_sz(dest.type) == 8) {
2162 /* Reading a dvec, so we need to:
2163 *
2164 * 1. Multiply num_components by 2, to account for the fact that we
2165 * need to read 64-bit components.
2166 * 2. Shuffle the result of the load to form valid 64-bit elements
2167 * 3. Emit a second load (for components z/w) if needed.
2168 */
2169 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2170 bld.MOV(read_offset, offset_reg);
2171
2172 int iters = num_components <= 2 ? 1 : 2;
2173
2174 /* Load the dvec, the first iteration loads components x/y, the second
2175 * iteration, if needed, loads components z/w
2176 */
2177 for (int it = 0; it < iters; it++) {
2178 /* Compute number of components to read in this iteration */
2179 int iter_components = MIN2(2, num_components);
2180 num_components -= iter_components;
2181
2182 /* Read. Since this message reads 32-bit components, we need to
2183 * read twice as many components.
2184 */
2185 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2186 1 /* dims */,
2187 iter_components * 2,
2188 BRW_PREDICATE_NONE);
2189
2190 /* Shuffle the 32-bit load result into valid 64-bit data */
2191 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2192 shuffle_32bit_load_result_to_64bit_data(
2193 bld, packed_result, read_result, iter_components);
2194
2195 /* Move each component to its destination */
2196 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2197 for (int c = 0; c < iter_components; c++) {
2198 bld.MOV(offset(dest, bld, it * 2 + c),
2199 offset(packed_result, bld, c));
2200 }
2201
2202 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2203 }
2204 } else {
2205 unreachable("Unsupported type");
2206 }
2207 }
2208
2209 void
2210 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2211 nir_intrinsic_instr *instr)
2212 {
2213 assert(stage == MESA_SHADER_VERTEX);
2214
2215 fs_reg dest;
2216 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2217 dest = get_nir_dest(instr->dest);
2218
2219 switch (instr->intrinsic) {
2220 case nir_intrinsic_load_vertex_id:
2221 unreachable("should be lowered by lower_vertex_id()");
2222
2223 case nir_intrinsic_load_vertex_id_zero_base:
2224 case nir_intrinsic_load_base_vertex:
2225 case nir_intrinsic_load_instance_id:
2226 case nir_intrinsic_load_base_instance:
2227 case nir_intrinsic_load_draw_id: {
2228 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2229 fs_reg val = nir_system_values[sv];
2230 assert(val.file != BAD_FILE);
2231 dest.type = val.type;
2232 bld.MOV(dest, val);
2233 break;
2234 }
2235
2236 default:
2237 nir_emit_intrinsic(bld, instr);
2238 break;
2239 }
2240 }
2241
2242 void
2243 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2244 nir_intrinsic_instr *instr)
2245 {
2246 assert(stage == MESA_SHADER_TESS_CTRL);
2247 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2248 struct brw_tcs_prog_data *tcs_prog_data =
2249 (struct brw_tcs_prog_data *) prog_data;
2250
2251 fs_reg dst;
2252 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2253 dst = get_nir_dest(instr->dest);
2254
2255 switch (instr->intrinsic) {
2256 case nir_intrinsic_load_primitive_id:
2257 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2258 break;
2259 case nir_intrinsic_load_invocation_id:
2260 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2261 break;
2262 case nir_intrinsic_load_patch_vertices_in:
2263 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2264 brw_imm_d(tcs_key->input_vertices));
2265 break;
2266
2267 case nir_intrinsic_barrier: {
2268 if (tcs_prog_data->instances == 1)
2269 break;
2270
2271 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2272 fs_reg m0_2 = byte_offset(m0, 2 * sizeof(uint32_t));
2273
2274 const fs_builder fwa_bld = bld.exec_all();
2275
2276 /* Zero the message header */
2277 fwa_bld.MOV(m0, brw_imm_ud(0u));
2278
2279 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2280 fwa_bld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2281 brw_imm_ud(INTEL_MASK(16, 13)));
2282
2283 /* Shift it up to bits 27:24. */
2284 fwa_bld.SHL(m0_2, m0_2, brw_imm_ud(11));
2285
2286 /* Set the Barrier Count and the enable bit */
2287 fwa_bld.OR(m0_2, m0_2,
2288 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2289
2290 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2291 break;
2292 }
2293
2294 case nir_intrinsic_load_input:
2295 unreachable("nir_lower_io should never give us these.");
2296 break;
2297
2298 case nir_intrinsic_load_per_vertex_input: {
2299 fs_reg indirect_offset = get_indirect_offset(instr);
2300 unsigned imm_offset = instr->const_index[0];
2301
2302 const nir_src &vertex_src = instr->src[0];
2303 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2304
2305 fs_inst *inst;
2306
2307 fs_reg icp_handle;
2308
2309 if (vertex_const) {
2310 /* Emit a MOV to resolve <0,1,0> regioning. */
2311 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2312 bld.MOV(icp_handle,
2313 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2314 vertex_const->i32[0] & 7),
2315 BRW_REGISTER_TYPE_UD));
2316 } else if (tcs_prog_data->instances == 1 &&
2317 vertex_src.is_ssa &&
2318 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2319 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2320 /* For the common case of only 1 instance, an array index of
2321 * gl_InvocationID means reading g1. Skip all the indirect work.
2322 */
2323 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2324 } else {
2325 /* The vertex index is non-constant. We need to use indirect
2326 * addressing to fetch the proper URB handle.
2327 */
2328 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2329
2330 /* Each ICP handle is a single DWord (4 bytes) */
2331 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2332 bld.SHL(vertex_offset_bytes,
2333 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2334 brw_imm_ud(2u));
2335
2336 /* Start at g1. We might read up to 4 registers. */
2337 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2338 fs_reg(brw_vec8_grf(1, 0)), vertex_offset_bytes,
2339 brw_imm_ud(4 * REG_SIZE));
2340 }
2341
2342 /* We can only read two double components with each URB read, so
2343 * we send two read messages in that case, each one loading up to
2344 * two double components.
2345 */
2346 unsigned num_iterations = 1;
2347 unsigned num_components = instr->num_components;
2348 fs_reg orig_dst = dst;
2349 if (type_sz(dst.type) == 8) {
2350 if (instr->num_components > 2) {
2351 num_iterations = 2;
2352 num_components = 2;
2353 }
2354
2355 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2356 dst = tmp;
2357 }
2358
2359 for (unsigned iter = 0; iter < num_iterations; iter++) {
2360 if (indirect_offset.file == BAD_FILE) {
2361 /* Constant indexing - use global offset. */
2362 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2363 inst->offset = imm_offset;
2364 inst->mlen = 1;
2365 inst->base_mrf = -1;
2366 } else {
2367 /* Indirect indexing - use per-slot offsets as well. */
2368 const fs_reg srcs[] = { icp_handle, indirect_offset };
2369 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2370 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2371
2372 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2373 inst->offset = imm_offset;
2374 inst->base_mrf = -1;
2375 inst->mlen = 2;
2376 }
2377 inst->regs_written = num_components * type_sz(dst.type) / 4;
2378
2379 /* If we are reading 64-bit data using 32-bit read messages we need
2380 * build proper 64-bit data elements by shuffling the low and high
2381 * 32-bit components around like we do for other things like UBOs
2382 * or SSBOs.
2383 */
2384 if (type_sz(dst.type) == 8) {
2385 shuffle_32bit_load_result_to_64bit_data(
2386 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2387
2388 for (unsigned c = 0; c < num_components; c++) {
2389 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2390 offset(dst, bld, c));
2391 }
2392 }
2393
2394 /* Copy the temporary to the destination to deal with writemasking.
2395 *
2396 * Also attempt to deal with gl_PointSize being in the .w component.
2397 */
2398 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2399 assert(type_sz(dst.type) < 8);
2400 inst->dst = bld.vgrf(dst.type, 4);
2401 inst->regs_written = 4;
2402 bld.MOV(dst, offset(inst->dst, bld, 3));
2403 }
2404
2405 /* If we are loading double data and we need a second read message
2406 * adjust the write offset
2407 */
2408 if (num_iterations > 1) {
2409 num_components = instr->num_components - 2;
2410 if (indirect_offset.file == BAD_FILE) {
2411 imm_offset++;
2412 } else {
2413 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2414 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2415 indirect_offset = new_indirect;
2416 }
2417 }
2418 }
2419 break;
2420 }
2421
2422 case nir_intrinsic_load_output:
2423 case nir_intrinsic_load_per_vertex_output: {
2424 fs_reg indirect_offset = get_indirect_offset(instr);
2425 unsigned imm_offset = instr->const_index[0];
2426
2427 fs_inst *inst;
2428 if (indirect_offset.file == BAD_FILE) {
2429 /* Replicate the patch handle to all enabled channels */
2430 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2431 bld.MOV(patch_handle,
2432 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2433
2434 if (imm_offset == 0) {
2435 /* This is a read of gl_TessLevelInner[], which lives in the
2436 * Patch URB header. The layout depends on the domain.
2437 */
2438 dst.type = BRW_REGISTER_TYPE_F;
2439 switch (tcs_key->tes_primitive_mode) {
2440 case GL_QUADS: {
2441 /* DWords 3-2 (reversed) */
2442 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
2443
2444 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle);
2445 inst->offset = 0;
2446 inst->mlen = 1;
2447 inst->base_mrf = -1;
2448 inst->regs_written = 4;
2449
2450 /* dst.xy = tmp.wz */
2451 bld.MOV(dst, offset(tmp, bld, 3));
2452 bld.MOV(offset(dst, bld, 1), offset(tmp, bld, 2));
2453 break;
2454 }
2455 case GL_TRIANGLES:
2456 /* DWord 4; hardcode offset = 1 and regs_written = 1 */
2457 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle);
2458 inst->offset = 1;
2459 inst->mlen = 1;
2460 inst->base_mrf = -1;
2461 inst->regs_written = 1;
2462 break;
2463 case GL_ISOLINES:
2464 /* All channels are undefined. */
2465 break;
2466 default:
2467 unreachable("Bogus tessellation domain");
2468 }
2469 } else if (imm_offset == 1) {
2470 /* This is a read of gl_TessLevelOuter[], which lives in the
2471 * Patch URB header. The layout depends on the domain.
2472 */
2473 dst.type = BRW_REGISTER_TYPE_F;
2474
2475 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
2476 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle);
2477 inst->offset = 1;
2478 inst->mlen = 1;
2479 inst->base_mrf = -1;
2480 inst->regs_written = 4;
2481
2482 /* Reswizzle: WZYX */
2483 fs_reg srcs[4] = {
2484 offset(tmp, bld, 3),
2485 offset(tmp, bld, 2),
2486 offset(tmp, bld, 1),
2487 offset(tmp, bld, 0),
2488 };
2489
2490 unsigned num_components;
2491 switch (tcs_key->tes_primitive_mode) {
2492 case GL_QUADS:
2493 num_components = 4;
2494 break;
2495 case GL_TRIANGLES:
2496 num_components = 3;
2497 break;
2498 case GL_ISOLINES:
2499 /* Isolines are not reversed; swizzle .zw -> .xy */
2500 srcs[0] = offset(tmp, bld, 2);
2501 srcs[1] = offset(tmp, bld, 3);
2502 num_components = 2;
2503 break;
2504 default:
2505 unreachable("Bogus tessellation domain");
2506 }
2507 bld.LOAD_PAYLOAD(dst, srcs, num_components, 0);
2508 } else {
2509 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle);
2510 inst->offset = imm_offset;
2511 inst->mlen = 1;
2512 inst->base_mrf = -1;
2513 inst->regs_written = instr->num_components;
2514 }
2515 } else {
2516 /* Indirect indexing - use per-slot offsets as well. */
2517 const fs_reg srcs[] = {
2518 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2519 indirect_offset
2520 };
2521 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2522 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2523
2524 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2525 inst->offset = imm_offset;
2526 inst->mlen = 2;
2527 inst->base_mrf = -1;
2528 inst->regs_written = instr->num_components;
2529 }
2530 break;
2531 }
2532
2533 case nir_intrinsic_store_output:
2534 case nir_intrinsic_store_per_vertex_output: {
2535 fs_reg value = get_nir_src(instr->src[0]);
2536 bool is_64bit = (instr->src[0].is_ssa ?
2537 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2538 fs_reg indirect_offset = get_indirect_offset(instr);
2539 unsigned imm_offset = instr->const_index[0];
2540 unsigned swiz = BRW_SWIZZLE_XYZW;
2541 unsigned mask = instr->const_index[1];
2542 unsigned header_regs = 0;
2543 fs_reg srcs[7];
2544 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2545
2546 if (indirect_offset.file != BAD_FILE) {
2547 srcs[header_regs++] = indirect_offset;
2548 } else if (!is_passthrough_shader) {
2549 if (imm_offset == 0) {
2550 value.type = BRW_REGISTER_TYPE_F;
2551
2552 mask &= (1 << tesslevel_inner_components(tcs_key->tes_primitive_mode)) - 1;
2553
2554 /* This is a write to gl_TessLevelInner[], which lives in the
2555 * Patch URB header. The layout depends on the domain.
2556 */
2557 switch (tcs_key->tes_primitive_mode) {
2558 case GL_QUADS:
2559 /* gl_TessLevelInner[].xy lives at DWords 3-2 (reversed).
2560 * We use an XXYX swizzle to reverse put .xy in the .wz
2561 * channels, and use a .zw writemask.
2562 */
2563 mask = writemask_for_backwards_vector(mask);
2564 swiz = BRW_SWIZZLE4(0, 0, 1, 0);
2565 break;
2566 case GL_TRIANGLES:
2567 /* gl_TessLevelInner[].x lives at DWord 4, so we set the
2568 * writemask to X and bump the URB offset by 1.
2569 */
2570 imm_offset = 1;
2571 break;
2572 case GL_ISOLINES:
2573 /* Skip; gl_TessLevelInner[] doesn't exist for isolines. */
2574 return;
2575 default:
2576 unreachable("Bogus tessellation domain");
2577 }
2578 } else if (imm_offset == 1) {
2579 /* This is a write to gl_TessLevelOuter[] which lives in the
2580 * Patch URB Header at DWords 4-7. However, it's reversed, so
2581 * instead of .xyzw we have .wzyx.
2582 */
2583 value.type = BRW_REGISTER_TYPE_F;
2584
2585 mask &= (1 << tesslevel_outer_components(tcs_key->tes_primitive_mode)) - 1;
2586
2587 if (tcs_key->tes_primitive_mode == GL_ISOLINES) {
2588 /* Isolines .xy should be stored in .zw, in order. */
2589 swiz = BRW_SWIZZLE4(0, 0, 0, 1);
2590 mask <<= 2;
2591 } else {
2592 /* Other domains are reversed; store .wzyx instead of .xyzw */
2593 swiz = BRW_SWIZZLE_WZYX;
2594 mask = writemask_for_backwards_vector(mask);
2595 }
2596 }
2597 }
2598
2599 if (mask == 0)
2600 break;
2601
2602 unsigned num_components = _mesa_fls(mask);
2603 enum opcode opcode;
2604
2605 /* We can only pack two 64-bit components in a single message, so send
2606 * 2 messages if we have more components
2607 */
2608 unsigned num_iterations = 1;
2609 unsigned iter_components = num_components;
2610 if (is_64bit && instr->num_components > 2) {
2611 num_iterations = 2;
2612 iter_components = 2;
2613 }
2614
2615 /* 64-bit data needs to me shuffled before we can write it to the URB.
2616 * We will use this temporary to shuffle the components in each
2617 * iteration.
2618 */
2619 fs_reg tmp =
2620 fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type);
2621
2622 for (unsigned iter = 0; iter < num_iterations; iter++) {
2623 if (!is_64bit && mask != WRITEMASK_XYZW) {
2624 srcs[header_regs++] = brw_imm_ud(mask << 16);
2625 opcode = indirect_offset.file != BAD_FILE ?
2626 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2627 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2628 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2629 /* Expand the 64-bit mask to 32-bit channels. We only handle
2630 * two channels in each iteration, so we only care about X/Y.
2631 */
2632 unsigned mask32 = 0;
2633 if (mask & WRITEMASK_X)
2634 mask32 |= WRITEMASK_XY;
2635 if (mask & WRITEMASK_Y)
2636 mask32 |= WRITEMASK_ZW;
2637
2638 /* If the mask does not include any of the channels X or Y there
2639 * is nothing to do in this iteration. Move on to the next couple
2640 * of 64-bit channels.
2641 */
2642 if (!mask32) {
2643 mask >>= 2;
2644 imm_offset++;
2645 continue;
2646 }
2647
2648 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2649 opcode = indirect_offset.file != BAD_FILE ?
2650 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2651 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2652 } else {
2653 opcode = indirect_offset.file != BAD_FILE ?
2654 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2655 SHADER_OPCODE_URB_WRITE_SIMD8;
2656 }
2657
2658 for (unsigned i = 0; i < iter_components; i++) {
2659 if (!(mask & (1 << i)))
2660 continue;
2661
2662 if (!is_64bit) {
2663 srcs[header_regs + i] = offset(value, bld, BRW_GET_SWZ(swiz, i));
2664 } else {
2665 /* We need to shuffle the 64-bit data to match the layout
2666 * expected by our 32-bit URB write messages. We use a temporary
2667 * for that.
2668 */
2669 unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i);
2670 shuffle_64bit_data_for_32bit_write(bld,
2671 retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F),
2672 retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF),
2673 1);
2674
2675 /* Now copy the data to the destination */
2676 fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type);
2677 unsigned idx = 2 * i;
2678 bld.MOV(dest, offset(tmp, bld, idx));
2679 bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1));
2680 srcs[header_regs + idx] = dest;
2681 srcs[header_regs + idx + 1] = offset(dest, bld, 1);
2682 }
2683 }
2684
2685 unsigned mlen =
2686 header_regs + (is_64bit ? 2 * iter_components : iter_components);
2687 fs_reg payload =
2688 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2689 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2690
2691 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2692 inst->offset = imm_offset;
2693 inst->mlen = mlen;
2694 inst->base_mrf = -1;
2695
2696 /* If this is a 64-bit attribute, select the next two 64-bit channels
2697 * to be handled in the next iteration.
2698 */
2699 if (is_64bit) {
2700 mask >>= 2;
2701 imm_offset++;
2702 }
2703 }
2704 break;
2705 }
2706
2707 default:
2708 nir_emit_intrinsic(bld, instr);
2709 break;
2710 }
2711 }
2712
2713 void
2714 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2715 nir_intrinsic_instr *instr)
2716 {
2717 assert(stage == MESA_SHADER_TESS_EVAL);
2718 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
2719
2720 fs_reg dest;
2721 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2722 dest = get_nir_dest(instr->dest);
2723
2724 switch (instr->intrinsic) {
2725 case nir_intrinsic_load_primitive_id:
2726 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2727 break;
2728 case nir_intrinsic_load_tess_coord:
2729 /* gl_TessCoord is part of the payload in g1-3 */
2730 for (unsigned i = 0; i < 3; i++) {
2731 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2732 }
2733 break;
2734
2735 case nir_intrinsic_load_tess_level_outer:
2736 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
2737 * appears as a push-model input. So, we can simply use the ATTR file
2738 * rather than issuing URB read messages. The data is stored in the
2739 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
2740 * .y, and so on.
2741 */
2742 switch (tes_prog_data->domain) {
2743 case BRW_TESS_DOMAIN_QUAD:
2744 for (unsigned i = 0; i < 4; i++)
2745 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2746 break;
2747 case BRW_TESS_DOMAIN_TRI:
2748 for (unsigned i = 0; i < 3; i++)
2749 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2750 break;
2751 case BRW_TESS_DOMAIN_ISOLINE:
2752 for (unsigned i = 0; i < 2; i++)
2753 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2754 break;
2755 }
2756 break;
2757
2758 case nir_intrinsic_load_tess_level_inner:
2759 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
2760 * appears as a push-model input. So, we can simply use the ATTR file
2761 * rather than issuing URB read messages.
2762 */
2763 switch (tes_prog_data->domain) {
2764 case BRW_TESS_DOMAIN_QUAD:
2765 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
2766 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
2767 break;
2768 case BRW_TESS_DOMAIN_TRI:
2769 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
2770 break;
2771 case BRW_TESS_DOMAIN_ISOLINE:
2772 /* ignore - value is undefined */
2773 break;
2774 }
2775 break;
2776
2777 case nir_intrinsic_load_input:
2778 case nir_intrinsic_load_per_vertex_input: {
2779 fs_reg indirect_offset = get_indirect_offset(instr);
2780 unsigned imm_offset = instr->const_index[0];
2781
2782 fs_inst *inst;
2783 if (indirect_offset.file == BAD_FILE) {
2784 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2785 * which is 16 registers (since each holds 2 vec4 slots).
2786 */
2787 const unsigned max_push_slots = 32;
2788 if (imm_offset < max_push_slots) {
2789 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2790 for (int i = 0; i < instr->num_components; i++) {
2791 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) + i;
2792 bld.MOV(offset(dest, bld, i), component(src, comp));
2793 }
2794 tes_prog_data->base.urb_read_length =
2795 MAX2(tes_prog_data->base.urb_read_length,
2796 DIV_ROUND_UP(imm_offset + 1, 2));
2797 } else {
2798 /* Replicate the patch handle to all enabled channels */
2799 const fs_reg srcs[] = {
2800 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2801 };
2802 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2803 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2804
2805 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
2806 inst->mlen = 1;
2807 inst->offset = imm_offset;
2808 inst->base_mrf = -1;
2809 inst->regs_written = instr->num_components;
2810 }
2811 } else {
2812 /* Indirect indexing - use per-slot offsets as well. */
2813 const fs_reg srcs[] = {
2814 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2815 indirect_offset
2816 };
2817 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2818 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2819
2820 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
2821 inst->mlen = 2;
2822 inst->offset = imm_offset;
2823 inst->base_mrf = -1;
2824 inst->regs_written = instr->num_components;
2825 }
2826 break;
2827 }
2828 default:
2829 nir_emit_intrinsic(bld, instr);
2830 break;
2831 }
2832 }
2833
2834 void
2835 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2836 nir_intrinsic_instr *instr)
2837 {
2838 assert(stage == MESA_SHADER_GEOMETRY);
2839 fs_reg indirect_offset;
2840
2841 fs_reg dest;
2842 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2843 dest = get_nir_dest(instr->dest);
2844
2845 switch (instr->intrinsic) {
2846 case nir_intrinsic_load_primitive_id:
2847 assert(stage == MESA_SHADER_GEOMETRY);
2848 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2849 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2850 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2851 break;
2852
2853 case nir_intrinsic_load_input:
2854 unreachable("load_input intrinsics are invalid for the GS stage");
2855
2856 case nir_intrinsic_load_per_vertex_input:
2857 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2858 instr->src[1], instr->num_components);
2859 break;
2860
2861 case nir_intrinsic_emit_vertex_with_counter:
2862 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2863 break;
2864
2865 case nir_intrinsic_end_primitive_with_counter:
2866 emit_gs_end_primitive(instr->src[0]);
2867 break;
2868
2869 case nir_intrinsic_set_vertex_count:
2870 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2871 break;
2872
2873 case nir_intrinsic_load_invocation_id: {
2874 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2875 assert(val.file != BAD_FILE);
2876 dest.type = val.type;
2877 bld.MOV(dest, val);
2878 break;
2879 }
2880
2881 default:
2882 nir_emit_intrinsic(bld, instr);
2883 break;
2884 }
2885 }
2886
2887 void
2888 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2889 nir_intrinsic_instr *instr)
2890 {
2891 assert(stage == MESA_SHADER_FRAGMENT);
2892 struct brw_wm_prog_data *wm_prog_data =
2893 (struct brw_wm_prog_data *) prog_data;
2894 const struct brw_wm_prog_key *wm_key = (const struct brw_wm_prog_key *) key;
2895
2896 fs_reg dest;
2897 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2898 dest = get_nir_dest(instr->dest);
2899
2900 switch (instr->intrinsic) {
2901 case nir_intrinsic_load_front_face:
2902 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2903 *emit_frontfacing_interpolation());
2904 break;
2905
2906 case nir_intrinsic_load_sample_pos: {
2907 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2908 assert(sample_pos.file != BAD_FILE);
2909 dest.type = sample_pos.type;
2910 bld.MOV(dest, sample_pos);
2911 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2912 break;
2913 }
2914
2915 case nir_intrinsic_load_helper_invocation:
2916 case nir_intrinsic_load_sample_mask_in:
2917 case nir_intrinsic_load_sample_id: {
2918 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2919 fs_reg val = nir_system_values[sv];
2920 assert(val.file != BAD_FILE);
2921 dest.type = val.type;
2922 bld.MOV(dest, val);
2923 break;
2924 }
2925
2926 case nir_intrinsic_discard:
2927 case nir_intrinsic_discard_if: {
2928 /* We track our discarded pixels in f0.1. By predicating on it, we can
2929 * update just the flag bits that aren't yet discarded. If there's no
2930 * condition, we emit a CMP of g0 != g0, so all currently executing
2931 * channels will get turned off.
2932 */
2933 fs_inst *cmp;
2934 if (instr->intrinsic == nir_intrinsic_discard_if) {
2935 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2936 brw_imm_d(0), BRW_CONDITIONAL_Z);
2937 } else {
2938 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2939 BRW_REGISTER_TYPE_UW));
2940 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2941 }
2942 cmp->predicate = BRW_PREDICATE_NORMAL;
2943 cmp->flag_subreg = 1;
2944
2945 if (devinfo->gen >= 6) {
2946 emit_discard_jump();
2947 }
2948 break;
2949 }
2950
2951 case nir_intrinsic_interp_var_at_centroid:
2952 case nir_intrinsic_interp_var_at_sample:
2953 case nir_intrinsic_interp_var_at_offset: {
2954 /* Handle ARB_gpu_shader5 interpolation intrinsics
2955 *
2956 * It's worth a quick word of explanation as to why we handle the full
2957 * variable-based interpolation intrinsic rather than a lowered version
2958 * with like we do for other inputs. We have to do that because the way
2959 * we set up inputs doesn't allow us to use the already setup inputs for
2960 * interpolation. At the beginning of the shader, we go through all of
2961 * the input variables and do the initial interpolation and put it in
2962 * the nir_inputs array based on its location as determined in
2963 * nir_lower_io. If the input isn't used, dead code cleans up and
2964 * everything works fine. However, when we get to the ARB_gpu_shader5
2965 * interpolation intrinsics, we need to reinterpolate the input
2966 * differently. If we used an intrinsic that just had an index it would
2967 * only give us the offset into the nir_inputs array. However, this is
2968 * useless because that value is post-interpolation and we need
2969 * pre-interpolation. In order to get the actual location of the bits
2970 * we get from the vertex fetching hardware, we need the variable.
2971 */
2972 wm_prog_data->pulls_bary = true;
2973
2974 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2975 const glsl_interp_qualifier interpolation =
2976 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2977
2978 switch (instr->intrinsic) {
2979 case nir_intrinsic_interp_var_at_centroid:
2980 emit_pixel_interpolater_send(bld,
2981 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2982 dst_xy,
2983 fs_reg(), /* src */
2984 brw_imm_ud(0u),
2985 interpolation);
2986 break;
2987
2988 case nir_intrinsic_interp_var_at_sample: {
2989 if (!wm_key->multisample_fbo) {
2990 /* From the ARB_gpu_shader5 specification:
2991 * "If multisample buffers are not available, the input varying
2992 * will be evaluated at the center of the pixel."
2993 */
2994 emit_pixel_interpolater_send(bld,
2995 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2996 dst_xy,
2997 fs_reg(), /* src */
2998 brw_imm_ud(0u),
2999 interpolation);
3000 break;
3001 }
3002
3003 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3004
3005 if (const_sample) {
3006 unsigned msg_data = const_sample->i32[0] << 4;
3007
3008 emit_pixel_interpolater_send(bld,
3009 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3010 dst_xy,
3011 fs_reg(), /* src */
3012 brw_imm_ud(msg_data),
3013 interpolation);
3014 } else {
3015 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3016 BRW_REGISTER_TYPE_UD);
3017
3018 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3019 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3020 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3021 bld.exec_all().group(1, 0)
3022 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3023 emit_pixel_interpolater_send(bld,
3024 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3025 dst_xy,
3026 fs_reg(), /* src */
3027 msg_data,
3028 interpolation);
3029 } else {
3030 /* Make a loop that sends a message to the pixel interpolater
3031 * for the sample number in each live channel. If there are
3032 * multiple channels with the same sample number then these
3033 * will be handled simultaneously with a single interation of
3034 * the loop.
3035 */
3036 bld.emit(BRW_OPCODE_DO);
3037
3038 /* Get the next live sample number into sample_id_reg */
3039 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3040
3041 /* Set the flag register so that we can perform the send
3042 * message on all channels that have the same sample number
3043 */
3044 bld.CMP(bld.null_reg_ud(),
3045 sample_src, sample_id,
3046 BRW_CONDITIONAL_EQ);
3047 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3048 bld.exec_all().group(1, 0)
3049 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3050 fs_inst *inst =
3051 emit_pixel_interpolater_send(bld,
3052 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3053 dst_xy,
3054 fs_reg(), /* src */
3055 msg_data,
3056 interpolation);
3057 set_predicate(BRW_PREDICATE_NORMAL, inst);
3058
3059 /* Continue the loop if there are any live channels left */
3060 set_predicate_inv(BRW_PREDICATE_NORMAL,
3061 true, /* inverse */
3062 bld.emit(BRW_OPCODE_WHILE));
3063 }
3064 }
3065
3066 break;
3067 }
3068
3069 case nir_intrinsic_interp_var_at_offset: {
3070 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3071
3072 if (const_offset) {
3073 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3074 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3075
3076 emit_pixel_interpolater_send(bld,
3077 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3078 dst_xy,
3079 fs_reg(), /* src */
3080 brw_imm_ud(off_x | (off_y << 4)),
3081 interpolation);
3082 } else {
3083 fs_reg src = vgrf(glsl_type::ivec2_type);
3084 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3085 BRW_REGISTER_TYPE_F);
3086 for (int i = 0; i < 2; i++) {
3087 fs_reg temp = vgrf(glsl_type::float_type);
3088 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3089 fs_reg itemp = vgrf(glsl_type::int_type);
3090 /* float to int */
3091 bld.MOV(itemp, temp);
3092
3093 /* Clamp the upper end of the range to +7/16.
3094 * ARB_gpu_shader5 requires that we support a maximum offset
3095 * of +0.5, which isn't representable in a S0.4 value -- if
3096 * we didn't clamp it, we'd end up with -8/16, which is the
3097 * opposite of what the shader author wanted.
3098 *
3099 * This is legal due to ARB_gpu_shader5's quantization
3100 * rules:
3101 *
3102 * "Not all values of <offset> may be supported; x and y
3103 * offsets may be rounded to fixed-point values with the
3104 * number of fraction bits given by the
3105 * implementation-dependent constant
3106 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3107 */
3108 set_condmod(BRW_CONDITIONAL_L,
3109 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3110 }
3111
3112 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3113 emit_pixel_interpolater_send(bld,
3114 opcode,
3115 dst_xy,
3116 src,
3117 brw_imm_ud(0u),
3118 interpolation);
3119 }
3120 break;
3121 }
3122
3123 default:
3124 unreachable("Invalid intrinsic");
3125 }
3126
3127 for (unsigned j = 0; j < instr->num_components; j++) {
3128 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
3129 src.type = dest.type;
3130
3131 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
3132 dest = offset(dest, bld, 1);
3133 }
3134 break;
3135 }
3136 default:
3137 nir_emit_intrinsic(bld, instr);
3138 break;
3139 }
3140 }
3141
3142 void
3143 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3144 nir_intrinsic_instr *instr)
3145 {
3146 assert(stage == MESA_SHADER_COMPUTE);
3147 struct brw_cs_prog_data *cs_prog_data =
3148 (struct brw_cs_prog_data *) prog_data;
3149
3150 fs_reg dest;
3151 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3152 dest = get_nir_dest(instr->dest);
3153
3154 switch (instr->intrinsic) {
3155 case nir_intrinsic_barrier:
3156 emit_barrier();
3157 cs_prog_data->uses_barrier = true;
3158 break;
3159
3160 case nir_intrinsic_load_local_invocation_id:
3161 case nir_intrinsic_load_work_group_id: {
3162 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3163 fs_reg val = nir_system_values[sv];
3164 assert(val.file != BAD_FILE);
3165 dest.type = val.type;
3166 for (unsigned i = 0; i < 3; i++)
3167 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3168 break;
3169 }
3170
3171 case nir_intrinsic_load_num_work_groups: {
3172 const unsigned surface =
3173 cs_prog_data->binding_table.work_groups_start;
3174
3175 cs_prog_data->uses_num_work_groups = true;
3176
3177 fs_reg surf_index = brw_imm_ud(surface);
3178 brw_mark_surface_used(prog_data, surface);
3179
3180 /* Read the 3 GLuint components of gl_NumWorkGroups */
3181 for (unsigned i = 0; i < 3; i++) {
3182 fs_reg read_result =
3183 emit_untyped_read(bld, surf_index,
3184 brw_imm_ud(i << 2),
3185 1 /* dims */, 1 /* size */,
3186 BRW_PREDICATE_NONE);
3187 read_result.type = dest.type;
3188 bld.MOV(dest, read_result);
3189 dest = offset(dest, bld, 1);
3190 }
3191 break;
3192 }
3193
3194 case nir_intrinsic_shared_atomic_add:
3195 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3196 break;
3197 case nir_intrinsic_shared_atomic_imin:
3198 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3199 break;
3200 case nir_intrinsic_shared_atomic_umin:
3201 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3202 break;
3203 case nir_intrinsic_shared_atomic_imax:
3204 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3205 break;
3206 case nir_intrinsic_shared_atomic_umax:
3207 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3208 break;
3209 case nir_intrinsic_shared_atomic_and:
3210 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3211 break;
3212 case nir_intrinsic_shared_atomic_or:
3213 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3214 break;
3215 case nir_intrinsic_shared_atomic_xor:
3216 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3217 break;
3218 case nir_intrinsic_shared_atomic_exchange:
3219 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3220 break;
3221 case nir_intrinsic_shared_atomic_comp_swap:
3222 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3223 break;
3224
3225 case nir_intrinsic_load_shared: {
3226 assert(devinfo->gen >= 7);
3227
3228 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3229
3230 /* Get the offset to read from */
3231 fs_reg offset_reg;
3232 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3233 if (const_offset) {
3234 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3235 } else {
3236 offset_reg = vgrf(glsl_type::uint_type);
3237 bld.ADD(offset_reg,
3238 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3239 brw_imm_ud(instr->const_index[0]));
3240 }
3241
3242 /* Read the vector */
3243 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3244 instr->num_components);
3245 break;
3246 }
3247
3248 case nir_intrinsic_store_shared: {
3249 assert(devinfo->gen >= 7);
3250
3251 /* Block index */
3252 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3253
3254 /* Value */
3255 fs_reg val_reg = get_nir_src(instr->src[0]);
3256
3257 /* Writemask */
3258 unsigned writemask = instr->const_index[1];
3259
3260 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3261 * since the untyped writes below operate in units of 32-bits, which
3262 * means that we need to write twice as many components each time.
3263 * Also, we have to suffle 64-bit data to be in the appropriate layout
3264 * expected by our 32-bit write messages.
3265 */
3266 unsigned type_size = 4;
3267 unsigned bit_size = instr->src[0].is_ssa ?
3268 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3269 if (bit_size == 64) {
3270 type_size = 8;
3271 fs_reg tmp =
3272 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3273 shuffle_64bit_data_for_32bit_write(
3274 bld,
3275 retype(tmp, BRW_REGISTER_TYPE_F),
3276 retype(val_reg, BRW_REGISTER_TYPE_DF),
3277 instr->num_components);
3278 val_reg = tmp;
3279 }
3280
3281 unsigned type_slots = type_size / 4;
3282
3283 /* Combine groups of consecutive enabled channels in one write
3284 * message. We use ffs to find the first enabled channel and then ffs on
3285 * the bit-inverse, down-shifted writemask to determine the length of
3286 * the block of enabled bits.
3287 */
3288 while (writemask) {
3289 unsigned first_component = ffs(writemask) - 1;
3290 unsigned length = ffs(~(writemask >> first_component)) - 1;
3291
3292 /* We can't write more than 2 64-bit components at once. Limit the
3293 * length of the write to what we can do and let the next iteration
3294 * handle the rest
3295 */
3296 if (type_size > 4)
3297 length = MIN2(2, length);
3298
3299 fs_reg offset_reg;
3300 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3301 if (const_offset) {
3302 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3303 type_size * first_component);
3304 } else {
3305 offset_reg = vgrf(glsl_type::uint_type);
3306 bld.ADD(offset_reg,
3307 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3308 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3309 }
3310
3311 emit_untyped_write(bld, surf_index, offset_reg,
3312 offset(val_reg, bld, first_component * type_slots),
3313 1 /* dims */, length * type_slots,
3314 BRW_PREDICATE_NONE);
3315
3316 /* Clear the bits in the writemask that we just wrote, then try
3317 * again to see if more channels are left.
3318 */
3319 writemask &= (15 << (first_component + length));
3320 }
3321
3322 break;
3323 }
3324
3325 default:
3326 nir_emit_intrinsic(bld, instr);
3327 break;
3328 }
3329 }
3330
3331 void
3332 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3333 {
3334 fs_reg dest;
3335 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3336 dest = get_nir_dest(instr->dest);
3337
3338 switch (instr->intrinsic) {
3339 case nir_intrinsic_atomic_counter_inc:
3340 case nir_intrinsic_atomic_counter_dec:
3341 case nir_intrinsic_atomic_counter_read: {
3342 /* Get the arguments of the atomic intrinsic. */
3343 const fs_reg offset = get_nir_src(instr->src[0]);
3344 const unsigned surface = (stage_prog_data->binding_table.abo_start +
3345 instr->const_index[0]);
3346 fs_reg tmp;
3347
3348 /* Emit a surface read or atomic op. */
3349 switch (instr->intrinsic) {
3350 case nir_intrinsic_atomic_counter_read:
3351 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
3352 break;
3353
3354 case nir_intrinsic_atomic_counter_inc:
3355 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
3356 fs_reg(), 1, 1, BRW_AOP_INC);
3357 break;
3358
3359 case nir_intrinsic_atomic_counter_dec:
3360 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
3361 fs_reg(), 1, 1, BRW_AOP_PREDEC);
3362 break;
3363
3364 default:
3365 unreachable("Unreachable");
3366 }
3367
3368 /* Assign the result. */
3369 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
3370
3371 /* Mark the surface as used. */
3372 brw_mark_surface_used(stage_prog_data, surface);
3373 break;
3374 }
3375
3376 case nir_intrinsic_image_load:
3377 case nir_intrinsic_image_store:
3378 case nir_intrinsic_image_atomic_add:
3379 case nir_intrinsic_image_atomic_min:
3380 case nir_intrinsic_image_atomic_max:
3381 case nir_intrinsic_image_atomic_and:
3382 case nir_intrinsic_image_atomic_or:
3383 case nir_intrinsic_image_atomic_xor:
3384 case nir_intrinsic_image_atomic_exchange:
3385 case nir_intrinsic_image_atomic_comp_swap: {
3386 using namespace image_access;
3387
3388 /* Get the referenced image variable and type. */
3389 const nir_variable *var = instr->variables[0]->var;
3390 const glsl_type *type = var->type->without_array();
3391 const brw_reg_type base_type = get_image_base_type(type);
3392
3393 /* Get some metadata from the image intrinsic. */
3394 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3395 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3396 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3397 const unsigned format = var->data.image.format;
3398
3399 /* Get the arguments of the image intrinsic. */
3400 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3401 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3402 BRW_REGISTER_TYPE_UD);
3403 const fs_reg src0 = (info->num_srcs >= 3 ?
3404 retype(get_nir_src(instr->src[2]), base_type) :
3405 fs_reg());
3406 const fs_reg src1 = (info->num_srcs >= 4 ?
3407 retype(get_nir_src(instr->src[3]), base_type) :
3408 fs_reg());
3409 fs_reg tmp;
3410
3411 /* Emit an image load, store or atomic op. */
3412 if (instr->intrinsic == nir_intrinsic_image_load)
3413 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3414
3415 else if (instr->intrinsic == nir_intrinsic_image_store)
3416 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3417 var->data.image.write_only ? GL_NONE : format);
3418
3419 else
3420 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3421 surf_dims, arr_dims, info->dest_components,
3422 get_image_atomic_op(instr->intrinsic, type));
3423
3424 /* Assign the result. */
3425 for (unsigned c = 0; c < info->dest_components; ++c)
3426 bld.MOV(offset(retype(dest, base_type), bld, c),
3427 offset(tmp, bld, c));
3428 break;
3429 }
3430
3431 case nir_intrinsic_memory_barrier_atomic_counter:
3432 case nir_intrinsic_memory_barrier_buffer:
3433 case nir_intrinsic_memory_barrier_image:
3434 case nir_intrinsic_memory_barrier: {
3435 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
3436 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3437 ->regs_written = 2;
3438 break;
3439 }
3440
3441 case nir_intrinsic_group_memory_barrier:
3442 case nir_intrinsic_memory_barrier_shared:
3443 /* We treat these workgroup-level barriers as no-ops. This should be
3444 * safe at present and as long as:
3445 *
3446 * - Memory access instructions are not subsequently reordered by the
3447 * compiler back-end.
3448 *
3449 * - All threads from a given compute shader workgroup fit within a
3450 * single subslice and therefore talk to the same HDC shared unit
3451 * what supposedly guarantees ordering and coherency between threads
3452 * from the same workgroup. This may change in the future when we
3453 * start splitting workgroups across multiple subslices.
3454 *
3455 * - The context is not in fault-and-stream mode, which could cause
3456 * memory transactions (including to SLM) prior to the barrier to be
3457 * replayed after the barrier if a pagefault occurs. This shouldn't
3458 * be a problem up to and including SKL because fault-and-stream is
3459 * not usable due to hardware issues, but that's likely to change in
3460 * the future.
3461 */
3462 break;
3463
3464 case nir_intrinsic_shader_clock: {
3465 /* We cannot do anything if there is an event, so ignore it for now */
3466 fs_reg shader_clock = get_timestamp(bld);
3467 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
3468
3469 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3470 break;
3471 }
3472
3473 case nir_intrinsic_image_size: {
3474 /* Get the referenced image variable and type. */
3475 const nir_variable *var = instr->variables[0]->var;
3476 const glsl_type *type = var->type->without_array();
3477
3478 /* Get the size of the image. */
3479 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3480 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3481
3482 /* For 1DArray image types, the array index is stored in the Z component.
3483 * Fix this by swizzling the Z component to the Y component.
3484 */
3485 const bool is_1d_array_image =
3486 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3487 type->sampler_array;
3488
3489 /* For CubeArray images, we should count the number of cubes instead
3490 * of the number of faces. Fix it by dividing the (Z component) by 6.
3491 */
3492 const bool is_cube_array_image =
3493 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3494 type->sampler_array;
3495
3496 /* Copy all the components. */
3497 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3498 for (unsigned c = 0; c < info->dest_components; ++c) {
3499 if ((int)c >= type->coordinate_components()) {
3500 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3501 brw_imm_d(1));
3502 } else if (c == 1 && is_1d_array_image) {
3503 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3504 offset(size, bld, 2));
3505 } else if (c == 2 && is_cube_array_image) {
3506 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3507 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3508 offset(size, bld, c), brw_imm_d(6));
3509 } else {
3510 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3511 offset(size, bld, c));
3512 }
3513 }
3514
3515 break;
3516 }
3517
3518 case nir_intrinsic_image_samples:
3519 /* The driver does not support multi-sampled images. */
3520 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3521 break;
3522
3523 case nir_intrinsic_load_uniform: {
3524 /* Offsets are in bytes but they should always be multiples of 4 */
3525 assert(instr->const_index[0] % 4 == 0);
3526
3527 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3528
3529 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3530 if (const_offset) {
3531 /* Offsets are in bytes but they should always be multiples of 4 */
3532 assert(const_offset->u32[0] % 4 == 0);
3533 src.reg_offset = const_offset->u32[0] / 4;
3534
3535 for (unsigned j = 0; j < instr->num_components; j++) {
3536 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3537 }
3538 } else {
3539 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3540 BRW_REGISTER_TYPE_UD);
3541
3542 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3543 * go past the end of the uniform. In order to keep the n'th
3544 * component from running past, we subtract off the size of all but
3545 * one component of the vector.
3546 */
3547 assert(instr->const_index[1] >=
3548 instr->num_components * (int) type_sz(dest.type));
3549 unsigned read_size = instr->const_index[1] -
3550 (instr->num_components - 1) * type_sz(dest.type);
3551
3552 for (unsigned j = 0; j < instr->num_components; j++) {
3553 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3554 offset(dest, bld, j), offset(src, bld, j),
3555 indirect, brw_imm_ud(read_size));
3556 }
3557 }
3558 break;
3559 }
3560
3561 case nir_intrinsic_load_ubo: {
3562 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3563 fs_reg surf_index;
3564
3565 if (const_index) {
3566 const unsigned index = stage_prog_data->binding_table.ubo_start +
3567 const_index->u32[0];
3568 surf_index = brw_imm_ud(index);
3569 brw_mark_surface_used(prog_data, index);
3570 } else {
3571 /* The block index is not a constant. Evaluate the index expression
3572 * per-channel and add the base UBO index; we have to select a value
3573 * from any live channel.
3574 */
3575 surf_index = vgrf(glsl_type::uint_type);
3576 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3577 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3578 surf_index = bld.emit_uniformize(surf_index);
3579
3580 /* Assume this may touch any UBO. It would be nice to provide
3581 * a tighter bound, but the array information is already lowered away.
3582 */
3583 brw_mark_surface_used(prog_data,
3584 stage_prog_data->binding_table.ubo_start +
3585 nir->info.num_ubos - 1);
3586 }
3587
3588 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3589 if (const_offset == NULL) {
3590 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3591 BRW_REGISTER_TYPE_UD);
3592
3593 for (int i = 0; i < instr->num_components; i++)
3594 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3595 base_offset, i * type_sz(dest.type));
3596 } else {
3597 /* Even if we are loading doubles, a pull constant load will load
3598 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3599 * need to load a full dvec4 we will have to emit 2 loads. This is
3600 * similar to demote_pull_constants(), except that in that case we
3601 * see individual accesses to each component of the vector and then
3602 * we let CSE deal with duplicate loads. Here we see a vector access
3603 * and we have to split it if necessary.
3604 */
3605 const unsigned type_size = type_sz(dest.type);
3606 const fs_reg packed_consts = bld.vgrf(BRW_REGISTER_TYPE_F);
3607 for (unsigned c = 0; c < instr->num_components;) {
3608 const unsigned base = const_offset->u32[0] + c * type_size;
3609
3610 /* Number of usable components in the next 16B-aligned load */
3611 const unsigned count = MIN2(instr->num_components - c,
3612 (16 - base % 16) / type_size);
3613
3614 bld.exec_all()
3615 .emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3616 packed_consts, surf_index, brw_imm_ud(base & ~15));
3617
3618 const fs_reg consts =
3619 retype(byte_offset(packed_consts, base & 15), dest.type);
3620
3621 for (unsigned d = 0; d < count; d++)
3622 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3623
3624 c += count;
3625 }
3626 }
3627 break;
3628 }
3629
3630 case nir_intrinsic_load_ssbo: {
3631 assert(devinfo->gen >= 7);
3632
3633 nir_const_value *const_uniform_block =
3634 nir_src_as_const_value(instr->src[0]);
3635
3636 fs_reg surf_index;
3637 if (const_uniform_block) {
3638 unsigned index = stage_prog_data->binding_table.ssbo_start +
3639 const_uniform_block->u32[0];
3640 surf_index = brw_imm_ud(index);
3641 brw_mark_surface_used(prog_data, index);
3642 } else {
3643 surf_index = vgrf(glsl_type::uint_type);
3644 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3645 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3646
3647 /* Assume this may touch any UBO. It would be nice to provide
3648 * a tighter bound, but the array information is already lowered away.
3649 */
3650 brw_mark_surface_used(prog_data,
3651 stage_prog_data->binding_table.ssbo_start +
3652 nir->info.num_ssbos - 1);
3653 }
3654
3655 fs_reg offset_reg;
3656 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3657 if (const_offset) {
3658 offset_reg = brw_imm_ud(const_offset->u32[0]);
3659 } else {
3660 offset_reg = get_nir_src(instr->src[1]);
3661 }
3662
3663 /* Read the vector */
3664 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3665 instr->num_components);
3666
3667 break;
3668 }
3669
3670 case nir_intrinsic_load_input: {
3671 fs_reg src;
3672 if (stage == MESA_SHADER_VERTEX) {
3673 src = fs_reg(ATTR, instr->const_index[0], dest.type);
3674 } else {
3675 src = offset(retype(nir_inputs, dest.type), bld,
3676 instr->const_index[0]);
3677 }
3678
3679 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3680 assert(const_offset && "Indirect input loads not allowed");
3681 src = offset(src, bld, const_offset->u32[0]);
3682
3683 for (unsigned j = 0; j < instr->num_components; j++) {
3684 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3685 }
3686
3687 if (type_sz(src.type) == 8) {
3688 shuffle_32bit_load_result_to_64bit_data(bld,
3689 dest,
3690 retype(dest, BRW_REGISTER_TYPE_F),
3691 instr->num_components);
3692 }
3693
3694 break;
3695 }
3696
3697 case nir_intrinsic_store_ssbo: {
3698 assert(devinfo->gen >= 7);
3699
3700 /* Block index */
3701 fs_reg surf_index;
3702 nir_const_value *const_uniform_block =
3703 nir_src_as_const_value(instr->src[1]);
3704 if (const_uniform_block) {
3705 unsigned index = stage_prog_data->binding_table.ssbo_start +
3706 const_uniform_block->u32[0];
3707 surf_index = brw_imm_ud(index);
3708 brw_mark_surface_used(prog_data, index);
3709 } else {
3710 surf_index = vgrf(glsl_type::uint_type);
3711 bld.ADD(surf_index, get_nir_src(instr->src[1]),
3712 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3713
3714 brw_mark_surface_used(prog_data,
3715 stage_prog_data->binding_table.ssbo_start +
3716 nir->info.num_ssbos - 1);
3717 }
3718
3719 /* Value */
3720 fs_reg val_reg = get_nir_src(instr->src[0]);
3721
3722 /* Writemask */
3723 unsigned writemask = instr->const_index[0];
3724
3725 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3726 * since the untyped writes below operate in units of 32-bits, which
3727 * means that we need to write twice as many components each time.
3728 * Also, we have to suffle 64-bit data to be in the appropriate layout
3729 * expected by our 32-bit write messages.
3730 */
3731 unsigned type_size = 4;
3732 unsigned bit_size = instr->src[0].is_ssa ?
3733 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3734 if (bit_size == 64) {
3735 type_size = 8;
3736 fs_reg tmp =
3737 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3738 shuffle_64bit_data_for_32bit_write(bld,
3739 retype(tmp, BRW_REGISTER_TYPE_F),
3740 retype(val_reg, BRW_REGISTER_TYPE_DF),
3741 instr->num_components);
3742 val_reg = tmp;
3743 }
3744
3745 unsigned type_slots = type_size / 4;
3746
3747 /* Combine groups of consecutive enabled channels in one write
3748 * message. We use ffs to find the first enabled channel and then ffs on
3749 * the bit-inverse, down-shifted writemask to determine the length of
3750 * the block of enabled bits.
3751 */
3752 while (writemask) {
3753 unsigned first_component = ffs(writemask) - 1;
3754 unsigned length = ffs(~(writemask >> first_component)) - 1;
3755
3756 /* We can't write more than 2 64-bit components at once. Limit the
3757 * length of the write to what we can do and let the next iteration
3758 * handle the rest
3759 */
3760 if (type_size > 4)
3761 length = MIN2(2, length);
3762
3763 fs_reg offset_reg;
3764 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
3765 if (const_offset) {
3766 offset_reg = brw_imm_ud(const_offset->u32[0] +
3767 type_size * first_component);
3768 } else {
3769 offset_reg = vgrf(glsl_type::uint_type);
3770 bld.ADD(offset_reg,
3771 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
3772 brw_imm_ud(type_size * first_component));
3773 }
3774
3775
3776 emit_untyped_write(bld, surf_index, offset_reg,
3777 offset(val_reg, bld, first_component * type_slots),
3778 1 /* dims */, length * type_slots,
3779 BRW_PREDICATE_NONE);
3780
3781 /* Clear the bits in the writemask that we just wrote, then try
3782 * again to see if more channels are left.
3783 */
3784 writemask &= (15 << (first_component + length));
3785 }
3786 break;
3787 }
3788
3789 case nir_intrinsic_store_output: {
3790 fs_reg src = get_nir_src(instr->src[0]);
3791 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
3792 instr->const_index[0]);
3793
3794 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3795 assert(const_offset && "Indirect output stores not allowed");
3796 new_dest = offset(new_dest, bld, const_offset->u32[0]);
3797
3798 unsigned num_components = instr->num_components;
3799 unsigned bit_size = instr->src[0].is_ssa ?
3800 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3801 if (bit_size == 64) {
3802 fs_reg tmp =
3803 fs_reg(VGRF, alloc.allocate(2 * num_components),
3804 BRW_REGISTER_TYPE_F);
3805 shuffle_64bit_data_for_32bit_write(
3806 bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components);
3807 src = retype(tmp, src.type);
3808 num_components *= 2;
3809 }
3810
3811 for (unsigned j = 0; j < num_components; j++) {
3812 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
3813 }
3814 break;
3815 }
3816
3817 case nir_intrinsic_ssbo_atomic_add:
3818 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
3819 break;
3820 case nir_intrinsic_ssbo_atomic_imin:
3821 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
3822 break;
3823 case nir_intrinsic_ssbo_atomic_umin:
3824 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
3825 break;
3826 case nir_intrinsic_ssbo_atomic_imax:
3827 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
3828 break;
3829 case nir_intrinsic_ssbo_atomic_umax:
3830 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
3831 break;
3832 case nir_intrinsic_ssbo_atomic_and:
3833 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
3834 break;
3835 case nir_intrinsic_ssbo_atomic_or:
3836 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
3837 break;
3838 case nir_intrinsic_ssbo_atomic_xor:
3839 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
3840 break;
3841 case nir_intrinsic_ssbo_atomic_exchange:
3842 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
3843 break;
3844 case nir_intrinsic_ssbo_atomic_comp_swap:
3845 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
3846 break;
3847
3848 case nir_intrinsic_get_buffer_size: {
3849 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
3850 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
3851 int reg_width = dispatch_width / 8;
3852
3853 /* Set LOD = 0 */
3854 fs_reg source = brw_imm_d(0);
3855
3856 int mlen = 1 * reg_width;
3857
3858 /* A resinfo's sampler message is used to get the buffer size.
3859 * The SIMD8's writeback message consists of four registers and
3860 * SIMD16's writeback message consists of 8 destination registers
3861 * (two per each component), although we are only interested on the
3862 * first component, where resinfo returns the buffer size for
3863 * SURFTYPE_BUFFER.
3864 */
3865 int regs_written = 4 * mlen;
3866 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
3867 BRW_REGISTER_TYPE_UD);
3868 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
3869 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
3870 BRW_REGISTER_TYPE_UD);
3871 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
3872 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
3873 src_payload, brw_imm_ud(index));
3874 inst->header_size = 0;
3875 inst->mlen = mlen;
3876 inst->regs_written = regs_written;
3877 bld.emit(inst);
3878 bld.MOV(retype(dest, buffer_size.type), buffer_size);
3879
3880 brw_mark_surface_used(prog_data, index);
3881 break;
3882 }
3883
3884 default:
3885 unreachable("unknown intrinsic");
3886 }
3887 }
3888
3889 void
3890 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
3891 int op, nir_intrinsic_instr *instr)
3892 {
3893 fs_reg dest;
3894 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3895 dest = get_nir_dest(instr->dest);
3896
3897 fs_reg surface;
3898 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
3899 if (const_surface) {
3900 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
3901 const_surface->u32[0];
3902 surface = brw_imm_ud(surf_index);
3903 brw_mark_surface_used(prog_data, surf_index);
3904 } else {
3905 surface = vgrf(glsl_type::uint_type);
3906 bld.ADD(surface, get_nir_src(instr->src[0]),
3907 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3908
3909 /* Assume this may touch any SSBO. This is the same we do for other
3910 * UBO/SSBO accesses with non-constant surface.
3911 */
3912 brw_mark_surface_used(prog_data,
3913 stage_prog_data->binding_table.ssbo_start +
3914 nir->info.num_ssbos - 1);
3915 }
3916
3917 fs_reg offset = get_nir_src(instr->src[1]);
3918 fs_reg data1 = get_nir_src(instr->src[2]);
3919 fs_reg data2;
3920 if (op == BRW_AOP_CMPWR)
3921 data2 = get_nir_src(instr->src[3]);
3922
3923 /* Emit the actual atomic operation operation */
3924
3925 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3926 data1, data2,
3927 1 /* dims */, 1 /* rsize */,
3928 op,
3929 BRW_PREDICATE_NONE);
3930 dest.type = atomic_result.type;
3931 bld.MOV(dest, atomic_result);
3932 }
3933
3934 void
3935 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
3936 int op, nir_intrinsic_instr *instr)
3937 {
3938 fs_reg dest;
3939 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3940 dest = get_nir_dest(instr->dest);
3941
3942 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
3943 fs_reg offset = get_nir_src(instr->src[0]);
3944 fs_reg data1 = get_nir_src(instr->src[1]);
3945 fs_reg data2;
3946 if (op == BRW_AOP_CMPWR)
3947 data2 = get_nir_src(instr->src[2]);
3948
3949 /* Emit the actual atomic operation operation */
3950
3951 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3952 data1, data2,
3953 1 /* dims */, 1 /* rsize */,
3954 op,
3955 BRW_PREDICATE_NONE);
3956 dest.type = atomic_result.type;
3957 bld.MOV(dest, atomic_result);
3958 }
3959
3960 void
3961 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3962 {
3963 unsigned texture = instr->texture_index;
3964 unsigned sampler = instr->sampler_index;
3965
3966 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3967
3968 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
3969 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
3970
3971 int lod_components = 0;
3972
3973 /* The hardware requires a LOD for buffer textures */
3974 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3975 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
3976
3977 for (unsigned i = 0; i < instr->num_srcs; i++) {
3978 fs_reg src = get_nir_src(instr->src[i].src);
3979 switch (instr->src[i].src_type) {
3980 case nir_tex_src_bias:
3981 srcs[TEX_LOGICAL_SRC_LOD] =
3982 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
3983 break;
3984 case nir_tex_src_comparitor:
3985 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
3986 break;
3987 case nir_tex_src_coord:
3988 switch (instr->op) {
3989 case nir_texop_txf:
3990 case nir_texop_txf_ms:
3991 case nir_texop_txf_ms_mcs:
3992 case nir_texop_samples_identical:
3993 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
3994 break;
3995 default:
3996 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
3997 break;
3998 }
3999 break;
4000 case nir_tex_src_ddx:
4001 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
4002 lod_components = nir_tex_instr_src_size(instr, i);
4003 break;
4004 case nir_tex_src_ddy:
4005 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4006 break;
4007 case nir_tex_src_lod:
4008 switch (instr->op) {
4009 case nir_texop_txs:
4010 srcs[TEX_LOGICAL_SRC_LOD] =
4011 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4012 break;
4013 case nir_texop_txf:
4014 srcs[TEX_LOGICAL_SRC_LOD] =
4015 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4016 break;
4017 default:
4018 srcs[TEX_LOGICAL_SRC_LOD] =
4019 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4020 break;
4021 }
4022 break;
4023 case nir_tex_src_ms_index:
4024 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4025 break;
4026
4027 case nir_tex_src_offset: {
4028 nir_const_value *const_offset =
4029 nir_src_as_const_value(instr->src[i].src);
4030 if (const_offset) {
4031 unsigned header_bits = brw_texture_offset(const_offset->i32, 3);
4032 if (header_bits != 0)
4033 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = brw_imm_ud(header_bits);
4034 } else {
4035 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] =
4036 retype(src, BRW_REGISTER_TYPE_D);
4037 }
4038 break;
4039 }
4040
4041 case nir_tex_src_projector:
4042 unreachable("should be lowered");
4043
4044 case nir_tex_src_texture_offset: {
4045 /* Figure out the highest possible texture index and mark it as used */
4046 uint32_t max_used = texture + instr->texture_array_size - 1;
4047 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4048 max_used += stage_prog_data->binding_table.gather_texture_start;
4049 } else {
4050 max_used += stage_prog_data->binding_table.texture_start;
4051 }
4052 brw_mark_surface_used(prog_data, max_used);
4053
4054 /* Emit code to evaluate the actual indexing expression */
4055 fs_reg tmp = vgrf(glsl_type::uint_type);
4056 bld.ADD(tmp, src, brw_imm_ud(texture));
4057 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4058 break;
4059 }
4060
4061 case nir_tex_src_sampler_offset: {
4062 /* Emit code to evaluate the actual indexing expression */
4063 fs_reg tmp = vgrf(glsl_type::uint_type);
4064 bld.ADD(tmp, src, brw_imm_ud(sampler));
4065 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4066 break;
4067 }
4068
4069 case nir_tex_src_ms_mcs:
4070 assert(instr->op == nir_texop_txf_ms);
4071 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4072 break;
4073
4074 case nir_tex_src_plane: {
4075 nir_const_value *const_plane =
4076 nir_src_as_const_value(instr->src[i].src);
4077 const uint32_t plane = const_plane->u32[0];
4078 const uint32_t texture_index =
4079 instr->texture_index +
4080 stage_prog_data->binding_table.plane_start[plane] -
4081 stage_prog_data->binding_table.texture_start;
4082
4083 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4084 break;
4085 }
4086
4087 default:
4088 unreachable("unknown texture source");
4089 }
4090 }
4091
4092 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4093 (instr->op == nir_texop_txf_ms ||
4094 instr->op == nir_texop_samples_identical)) {
4095 if (devinfo->gen >= 7 &&
4096 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4097 srcs[TEX_LOGICAL_SRC_MCS] =
4098 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4099 instr->coord_components,
4100 srcs[TEX_LOGICAL_SRC_SURFACE]);
4101 } else {
4102 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4103 }
4104 }
4105
4106 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4107 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4108
4109 if (instr->op == nir_texop_query_levels) {
4110 /* textureQueryLevels() is implemented in terms of TXS so we need to
4111 * pass a valid LOD argument.
4112 */
4113 assert(srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE);
4114 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u);
4115 }
4116
4117 enum opcode opcode;
4118 switch (instr->op) {
4119 case nir_texop_tex:
4120 opcode = SHADER_OPCODE_TEX_LOGICAL;
4121 break;
4122 case nir_texop_txb:
4123 opcode = FS_OPCODE_TXB_LOGICAL;
4124 break;
4125 case nir_texop_txl:
4126 opcode = SHADER_OPCODE_TXL_LOGICAL;
4127 break;
4128 case nir_texop_txd:
4129 opcode = SHADER_OPCODE_TXD_LOGICAL;
4130 break;
4131 case nir_texop_txf:
4132 opcode = SHADER_OPCODE_TXF_LOGICAL;
4133 break;
4134 case nir_texop_txf_ms:
4135 if ((key_tex->msaa_16 & (1 << sampler)))
4136 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4137 else
4138 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4139 break;
4140 case nir_texop_txf_ms_mcs:
4141 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4142 break;
4143 case nir_texop_query_levels:
4144 case nir_texop_txs:
4145 opcode = SHADER_OPCODE_TXS_LOGICAL;
4146 break;
4147 case nir_texop_lod:
4148 opcode = SHADER_OPCODE_LOD_LOGICAL;
4149 break;
4150 case nir_texop_tg4:
4151 if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != BAD_FILE &&
4152 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != IMM)
4153 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4154 else
4155 opcode = SHADER_OPCODE_TG4_LOGICAL;
4156 break;
4157 case nir_texop_texture_samples: {
4158 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4159
4160 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D, 4);
4161 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, tmp,
4162 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
4163 srcs[TEX_LOGICAL_SRC_SURFACE],
4164 srcs[TEX_LOGICAL_SRC_SURFACE]);
4165 inst->mlen = 1;
4166 inst->header_size = 1;
4167 inst->base_mrf = -1;
4168 inst->regs_written = 4 * (dispatch_width / 8);
4169
4170 /* Pick off the one component we care about */
4171 bld.MOV(dst, tmp);
4172 return;
4173 }
4174 case nir_texop_samples_identical: {
4175 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4176
4177 /* If mcs is an immediate value, it means there is no MCS. In that case
4178 * just return false.
4179 */
4180 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4181 bld.MOV(dst, brw_imm_ud(0u));
4182 } else if ((key_tex->msaa_16 & (1 << sampler))) {
4183 fs_reg tmp = vgrf(glsl_type::uint_type);
4184 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4185 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4186 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4187 } else {
4188 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4189 BRW_CONDITIONAL_EQ);
4190 }
4191 return;
4192 }
4193 default:
4194 unreachable("unknown texture opcode");
4195 }
4196
4197 fs_reg dst = bld.vgrf(brw_type_for_nir_type(instr->dest_type), 4);
4198 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4199
4200 const unsigned dest_size = nir_tex_instr_dest_size(instr);
4201 if (devinfo->gen >= 9 &&
4202 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4203 unsigned write_mask = instr->dest.is_ssa ?
4204 nir_ssa_def_components_read(&instr->dest.ssa):
4205 (1 << dest_size) - 1;
4206 assert(write_mask != 0); /* dead code should have been eliminated */
4207 inst->regs_written = _mesa_fls(write_mask) * dispatch_width / 8;
4208 } else {
4209 inst->regs_written = 4 * dispatch_width / 8;
4210 }
4211
4212 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4213 inst->shadow_compare = true;
4214
4215 if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file == IMM)
4216 inst->offset = srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].ud;
4217
4218 if (instr->op == nir_texop_tg4) {
4219 if (instr->component == 1 &&
4220 key_tex->gather_channel_quirk_mask & (1 << texture)) {
4221 /* gather4 sampler is broken for green channel on RG32F --
4222 * we must ask for blue instead.
4223 */
4224 inst->offset |= 2 << 16;
4225 } else {
4226 inst->offset |= instr->component << 16;
4227 }
4228
4229 if (devinfo->gen == 6)
4230 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4231 }
4232
4233 fs_reg nir_dest[4];
4234 for (unsigned i = 0; i < dest_size; i++)
4235 nir_dest[i] = offset(dst, bld, i);
4236
4237 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
4238 instr->is_array;
4239
4240 if (instr->op == nir_texop_query_levels) {
4241 /* # levels is in .w */
4242 nir_dest[0] = offset(dst, bld, 3);
4243 } else if (instr->op == nir_texop_txs && dest_size >= 3 &&
4244 (devinfo->gen < 7 || is_cube_array)) {
4245 fs_reg depth = offset(dst, bld, 2);
4246 fs_reg fixed_depth = vgrf(glsl_type::int_type);
4247
4248 if (is_cube_array) {
4249 /* fixup #layers for cube map arrays */
4250 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
4251 } else if (devinfo->gen < 7) {
4252 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4253 bld.emit_minmax(fixed_depth, depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4254 }
4255
4256 nir_dest[2] = fixed_depth;
4257 }
4258
4259 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4260 }
4261
4262 void
4263 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4264 {
4265 switch (instr->type) {
4266 case nir_jump_break:
4267 bld.emit(BRW_OPCODE_BREAK);
4268 break;
4269 case nir_jump_continue:
4270 bld.emit(BRW_OPCODE_CONTINUE);
4271 break;
4272 case nir_jump_return:
4273 default:
4274 unreachable("unknown jump");
4275 }
4276 }
4277
4278 /**
4279 * This helper takes the result of a load operation that reads 32-bit elements
4280 * in this format:
4281 *
4282 * x x x x x x x x
4283 * y y y y y y y y
4284 * z z z z z z z z
4285 * w w w w w w w w
4286 *
4287 * and shuffles the data to get this:
4288 *
4289 * x y x y x y x y
4290 * x y x y x y x y
4291 * z w z w z w z w
4292 * z w z w z w z w
4293 *
4294 * Which is exactly what we want if the load is reading 64-bit components
4295 * like doubles, where x represents the low 32-bit of the x double component
4296 * and y represents the high 32-bit of the x double component (likewise with
4297 * z and w for double component y). The parameter @components represents
4298 * the number of 64-bit components present in @src. This would typically be
4299 * 2 at most, since we can only fit 2 double elements in the result of a
4300 * vec4 load.
4301 *
4302 * Notice that @dst and @src can be the same register.
4303 */
4304 void
4305 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4306 const fs_reg &dst,
4307 const fs_reg &src,
4308 uint32_t components)
4309 {
4310 assert(type_sz(src.type) == 4);
4311 assert(type_sz(dst.type) == 8);
4312
4313 /* A temporary that we will use to shuffle the 32-bit data of each
4314 * component in the vector into valid 64-bit data. We can't write directly
4315 * to dst because dst can be (and would usually be) the same as src
4316 * and in that case the first MOV in the loop below would overwrite the
4317 * data read in the second MOV.
4318 */
4319 fs_reg tmp = bld.vgrf(dst.type);
4320
4321 for (unsigned i = 0; i < components; i++) {
4322 const fs_reg component_i = offset(src, bld, 2 * i);
4323
4324 bld.MOV(subscript(tmp, src.type, 0), component_i);
4325 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4326
4327 bld.MOV(offset(dst, bld, i), tmp);
4328 }
4329 }
4330
4331 /**
4332 * This helper does the inverse operation of
4333 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4334 *
4335 * We need to do this when we are going to use untyped write messsages that
4336 * operate with 32-bit components in order to arrange our 64-bit data to be
4337 * in the expected layout.
4338 *
4339 * Notice that callers of this function, unlike in the case of the inverse
4340 * operation, would typically need to call this with dst and src being
4341 * different registers, since they would otherwise corrupt the original
4342 * 64-bit data they are about to write. Because of this the function checks
4343 * that the src and dst regions involved in the operation do not overlap.
4344 */
4345 void
4346 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4347 const fs_reg &dst,
4348 const fs_reg &src,
4349 uint32_t components)
4350 {
4351 assert(type_sz(src.type) == 8);
4352 assert(type_sz(dst.type) == 4);
4353
4354 assert(!src.in_range(dst, 2 * components * bld.dispatch_width() / 8));
4355
4356 for (unsigned i = 0; i < components; i++) {
4357 const fs_reg component_i = offset(src, bld, i);
4358 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4359 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4360 }
4361 }