i965: Define the setup_vector_uniform_values() backend_visitor interface.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 nir_shader *nir = prog->nir;
37
38 /* emit the arrays used for inputs and outputs - load/store intrinsics will
39 * be converted to reads/writes of these arrays
40 */
41
42 if (nir->num_inputs > 0) {
43 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
44 nir_setup_inputs(nir);
45 }
46
47 if (nir->num_outputs > 0) {
48 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
49 nir_setup_outputs(nir);
50 }
51
52 if (nir->num_uniforms > 0) {
53 nir_setup_uniforms(nir);
54 }
55
56 nir_emit_system_values(nir);
57
58 /* get the main function and emit it */
59 nir_foreach_overload(nir, overload) {
60 assert(strcmp(overload->function->name, "main") == 0);
61 assert(overload->impl);
62 nir_emit_impl(overload->impl);
63 }
64 }
65
66 void
67 fs_visitor::nir_setup_inputs(nir_shader *shader)
68 {
69 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
70 enum brw_reg_type type = brw_type_for_base_type(var->type);
71 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
72
73 fs_reg reg;
74 switch (stage) {
75 case MESA_SHADER_VERTEX: {
76 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
77 * stored in nir_variable::location.
78 *
79 * However, NIR's load_input intrinsics use a different index - an
80 * offset into a single contiguous array containing all inputs.
81 * This index corresponds to the nir_variable::driver_location field.
82 *
83 * So, we need to copy from fs_reg(ATTR, var->location) to
84 * offset(nir_inputs, var->data.driver_location).
85 */
86 const glsl_type *const t = var->type->without_array();
87 const unsigned components = t->components();
88 const unsigned cols = t->matrix_columns;
89 const unsigned elts = t->vector_elements;
90 unsigned array_length = var->type->is_array() ? var->type->length : 1;
91 for (unsigned i = 0; i < array_length; i++) {
92 for (unsigned j = 0; j < cols; j++) {
93 for (unsigned k = 0; k < elts; k++) {
94 bld.MOV(offset(retype(input, type), bld,
95 components * i + elts * j + k),
96 offset(fs_reg(ATTR, var->data.location + i, type),
97 bld, 4 * j + k));
98 }
99 }
100 }
101 break;
102 }
103 case MESA_SHADER_GEOMETRY:
104 case MESA_SHADER_COMPUTE:
105 case MESA_SHADER_TESS_CTRL:
106 case MESA_SHADER_TESS_EVAL:
107 unreachable("fs_visitor not used for these stages yet.");
108 break;
109 case MESA_SHADER_FRAGMENT:
110 if (var->data.location == VARYING_SLOT_POS) {
111 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
112 var->data.origin_upper_left);
113 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
114 input, reg), 0xF);
115 } else {
116 emit_general_interpolation(input, var->name, var->type,
117 (glsl_interp_qualifier) var->data.interpolation,
118 var->data.location, var->data.centroid,
119 var->data.sample);
120 }
121 break;
122 }
123 }
124 }
125
126 void
127 fs_visitor::nir_setup_outputs(nir_shader *shader)
128 {
129 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
130
131 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
132 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
133
134 int vector_elements =
135 var->type->is_array() ? var->type->fields.array->vector_elements
136 : var->type->vector_elements;
137
138 switch (stage) {
139 case MESA_SHADER_VERTEX:
140 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
141 int output = var->data.location + i;
142 this->outputs[output] = offset(reg, bld, 4 * i);
143 this->output_components[output] = vector_elements;
144 }
145 break;
146 case MESA_SHADER_FRAGMENT:
147 if (var->data.index > 0) {
148 assert(var->data.location == FRAG_RESULT_DATA0);
149 assert(var->data.index == 1);
150 this->dual_src_output = reg;
151 this->do_dual_src = true;
152 } else if (var->data.location == FRAG_RESULT_COLOR) {
153 /* Writing gl_FragColor outputs to all color regions. */
154 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
155 this->outputs[i] = reg;
156 this->output_components[i] = 4;
157 }
158 } else if (var->data.location == FRAG_RESULT_DEPTH) {
159 this->frag_depth = reg;
160 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
161 this->sample_mask = reg;
162 } else {
163 /* gl_FragData or a user-defined FS output */
164 assert(var->data.location >= FRAG_RESULT_DATA0 &&
165 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
166
167 /* General color output. */
168 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
169 int output = var->data.location - FRAG_RESULT_DATA0 + i;
170 this->outputs[output] = offset(reg, bld, vector_elements * i);
171 this->output_components[output] = vector_elements;
172 }
173 }
174 break;
175 default:
176 unreachable("unhandled shader stage");
177 }
178 }
179 }
180
181 void
182 fs_visitor::nir_setup_uniforms(nir_shader *shader)
183 {
184 uniforms = shader->num_uniforms;
185 num_direct_uniforms = shader->num_direct_uniforms;
186
187 /* We split the uniform register file in half. The first half is
188 * entirely direct uniforms. The second half is indirect.
189 */
190 param_size[0] = num_direct_uniforms;
191 if (shader->num_uniforms > num_direct_uniforms)
192 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
193
194 if (dispatch_width != 8)
195 return;
196
197 if (shader_prog) {
198 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
199 /* UBO's and atomics don't take up space in the uniform file */
200 if (var->interface_type != NULL || var->type->contains_atomic())
201 continue;
202
203 if (strncmp(var->name, "gl_", 3) == 0)
204 nir_setup_builtin_uniform(var);
205 else
206 nir_setup_uniform(var);
207 }
208 } else {
209 /* prog_to_nir doesn't create uniform variables; set param up directly. */
210 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
211 for (unsigned int i = 0; i < 4; i++) {
212 stage_prog_data->param[4 * p + i] =
213 &prog->Parameters->ParameterValues[p][i];
214 }
215 }
216 }
217 }
218
219 void
220 fs_visitor::nir_setup_uniform(nir_variable *var)
221 {
222 int namelen = strlen(var->name);
223
224 /* The data for our (non-builtin) uniforms is stored in a series of
225 * gl_uniform_driver_storage structs for each subcomponent that
226 * glGetUniformLocation() could name. We know it's been set up in the
227 * same order we'd walk the type, so walk the list of storage and find
228 * anything with our name, or the prefix of a component that starts with
229 * our name.
230 */
231 unsigned index = var->data.driver_location;
232 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
233 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
234
235 if (storage->builtin)
236 continue;
237
238 if (strncmp(var->name, storage->name, namelen) != 0 ||
239 (storage->name[namelen] != 0 &&
240 storage->name[namelen] != '.' &&
241 storage->name[namelen] != '[')) {
242 continue;
243 }
244
245 unsigned slots = storage->type->component_slots();
246 if (storage->array_elements)
247 slots *= storage->array_elements;
248
249 for (unsigned i = 0; i < slots; i++) {
250 stage_prog_data->param[index++] = &storage->storage[i];
251 }
252 }
253
254 /* Make sure we actually initialized the right amount of stuff here. */
255 assert(var->data.driver_location + var->type->component_slots() == index);
256 }
257
258 void
259 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
260 {
261 const nir_state_slot *const slots = var->state_slots;
262 assert(var->state_slots != NULL);
263
264 unsigned uniform_index = var->data.driver_location;
265 for (unsigned int i = 0; i < var->num_state_slots; i++) {
266 /* This state reference has already been setup by ir_to_mesa, but we'll
267 * get the same index back here.
268 */
269 int index = _mesa_add_state_reference(this->prog->Parameters,
270 (gl_state_index *)slots[i].tokens);
271
272 /* Add each of the unique swizzles of the element as a parameter.
273 * This'll end up matching the expected layout of the
274 * array/matrix/structure we're trying to fill in.
275 */
276 int last_swiz = -1;
277 for (unsigned int j = 0; j < 4; j++) {
278 int swiz = GET_SWZ(slots[i].swizzle, j);
279 if (swiz == last_swiz)
280 break;
281 last_swiz = swiz;
282
283 stage_prog_data->param[uniform_index++] =
284 &prog->Parameters->ParameterValues[index][swiz];
285 }
286 }
287 }
288
289 static bool
290 emit_system_values_block(nir_block *block, void *void_visitor)
291 {
292 fs_visitor *v = (fs_visitor *)void_visitor;
293 fs_reg *reg;
294
295 nir_foreach_instr(block, instr) {
296 if (instr->type != nir_instr_type_intrinsic)
297 continue;
298
299 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
300 switch (intrin->intrinsic) {
301 case nir_intrinsic_load_vertex_id:
302 unreachable("should be lowered by lower_vertex_id().");
303
304 case nir_intrinsic_load_vertex_id_zero_base:
305 assert(v->stage == MESA_SHADER_VERTEX);
306 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
307 if (reg->file == BAD_FILE)
308 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
309 break;
310
311 case nir_intrinsic_load_base_vertex:
312 assert(v->stage == MESA_SHADER_VERTEX);
313 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
314 if (reg->file == BAD_FILE)
315 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
316 break;
317
318 case nir_intrinsic_load_instance_id:
319 assert(v->stage == MESA_SHADER_VERTEX);
320 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
321 if (reg->file == BAD_FILE)
322 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
323 break;
324
325 case nir_intrinsic_load_sample_pos:
326 assert(v->stage == MESA_SHADER_FRAGMENT);
327 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
328 if (reg->file == BAD_FILE)
329 *reg = *v->emit_samplepos_setup();
330 break;
331
332 case nir_intrinsic_load_sample_id:
333 assert(v->stage == MESA_SHADER_FRAGMENT);
334 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
335 if (reg->file == BAD_FILE)
336 *reg = *v->emit_sampleid_setup();
337 break;
338
339 case nir_intrinsic_load_sample_mask_in:
340 assert(v->stage == MESA_SHADER_FRAGMENT);
341 assert(v->devinfo->gen >= 7);
342 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
343 if (reg->file == BAD_FILE)
344 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
345 BRW_REGISTER_TYPE_D));
346 break;
347
348 default:
349 break;
350 }
351 }
352
353 return true;
354 }
355
356 void
357 fs_visitor::nir_emit_system_values(nir_shader *shader)
358 {
359 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
360 nir_foreach_overload(shader, overload) {
361 assert(strcmp(overload->function->name, "main") == 0);
362 assert(overload->impl);
363 nir_foreach_block(overload->impl, emit_system_values_block, this);
364 }
365 }
366
367 void
368 fs_visitor::nir_emit_impl(nir_function_impl *impl)
369 {
370 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
371 foreach_list_typed(nir_register, reg, node, &impl->registers) {
372 unsigned array_elems =
373 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
374 unsigned size = array_elems * reg->num_components;
375 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
376 }
377
378 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
379 impl->ssa_alloc);
380
381 nir_emit_cf_list(&impl->body);
382 }
383
384 void
385 fs_visitor::nir_emit_cf_list(exec_list *list)
386 {
387 exec_list_validate(list);
388 foreach_list_typed(nir_cf_node, node, node, list) {
389 switch (node->type) {
390 case nir_cf_node_if:
391 nir_emit_if(nir_cf_node_as_if(node));
392 break;
393
394 case nir_cf_node_loop:
395 nir_emit_loop(nir_cf_node_as_loop(node));
396 break;
397
398 case nir_cf_node_block:
399 nir_emit_block(nir_cf_node_as_block(node));
400 break;
401
402 default:
403 unreachable("Invalid CFG node block");
404 }
405 }
406 }
407
408 void
409 fs_visitor::nir_emit_if(nir_if *if_stmt)
410 {
411 /* first, put the condition into f0 */
412 fs_inst *inst = bld.MOV(bld.null_reg_d(),
413 retype(get_nir_src(if_stmt->condition),
414 BRW_REGISTER_TYPE_D));
415 inst->conditional_mod = BRW_CONDITIONAL_NZ;
416
417 bld.IF(BRW_PREDICATE_NORMAL);
418
419 nir_emit_cf_list(&if_stmt->then_list);
420
421 /* note: if the else is empty, dead CF elimination will remove it */
422 bld.emit(BRW_OPCODE_ELSE);
423
424 nir_emit_cf_list(&if_stmt->else_list);
425
426 bld.emit(BRW_OPCODE_ENDIF);
427
428 try_replace_with_sel();
429 }
430
431 void
432 fs_visitor::nir_emit_loop(nir_loop *loop)
433 {
434 bld.emit(BRW_OPCODE_DO);
435
436 nir_emit_cf_list(&loop->body);
437
438 bld.emit(BRW_OPCODE_WHILE);
439 }
440
441 void
442 fs_visitor::nir_emit_block(nir_block *block)
443 {
444 nir_foreach_instr(block, instr) {
445 nir_emit_instr(instr);
446 }
447 }
448
449 void
450 fs_visitor::nir_emit_instr(nir_instr *instr)
451 {
452 const fs_builder abld = bld.annotate(NULL, instr);
453
454 switch (instr->type) {
455 case nir_instr_type_alu:
456 nir_emit_alu(abld, nir_instr_as_alu(instr));
457 break;
458
459 case nir_instr_type_intrinsic:
460 nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462
463 case nir_instr_type_tex:
464 nir_emit_texture(abld, nir_instr_as_tex(instr));
465 break;
466
467 case nir_instr_type_load_const:
468 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
469 break;
470
471 case nir_instr_type_ssa_undef:
472 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
473 break;
474
475 case nir_instr_type_jump:
476 nir_emit_jump(abld, nir_instr_as_jump(instr));
477 break;
478
479 default:
480 unreachable("unknown instruction type");
481 }
482 }
483
484 static brw_reg_type
485 brw_type_for_nir_type(nir_alu_type type)
486 {
487 switch (type) {
488 case nir_type_unsigned:
489 return BRW_REGISTER_TYPE_UD;
490 case nir_type_bool:
491 case nir_type_int:
492 return BRW_REGISTER_TYPE_D;
493 case nir_type_float:
494 return BRW_REGISTER_TYPE_F;
495 default:
496 unreachable("unknown type");
497 }
498
499 return BRW_REGISTER_TYPE_F;
500 }
501
502 bool
503 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
504 const fs_reg &result)
505 {
506 if (!instr->src[0].src.is_ssa ||
507 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
508 return false;
509
510 nir_intrinsic_instr *src0 =
511 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
512
513 if (src0->intrinsic != nir_intrinsic_load_front_face)
514 return false;
515
516 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
517 if (!value1 || fabsf(value1->f[0]) != 1.0f)
518 return false;
519
520 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
521 if (!value2 || fabsf(value2->f[0]) != 1.0f)
522 return false;
523
524 fs_reg tmp = vgrf(glsl_type::int_type);
525
526 if (devinfo->gen >= 6) {
527 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
528 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
529
530 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
531 *
532 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
533 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
534 *
535 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
536 *
537 * This negation looks like it's safe in practice, because bits 0:4 will
538 * surely be TRIANGLES
539 */
540
541 if (value1->f[0] == -1.0f) {
542 g0.negate = true;
543 }
544
545 tmp.type = BRW_REGISTER_TYPE_W;
546 tmp.subreg_offset = 2;
547 tmp.stride = 2;
548
549 fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
550 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
551
552 tmp.type = BRW_REGISTER_TYPE_D;
553 tmp.subreg_offset = 0;
554 tmp.stride = 1;
555 } else {
556 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
557 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
558
559 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
560 *
561 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
562 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
563 *
564 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
565 *
566 * This negation looks like it's safe in practice, because bits 0:4 will
567 * surely be TRIANGLES
568 */
569
570 if (value1->f[0] == -1.0f) {
571 g1_6.negate = true;
572 }
573
574 bld.OR(tmp, g1_6, fs_reg(0x3f800000));
575 }
576 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
577
578 return true;
579 }
580
581 void
582 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
583 {
584 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
585 fs_inst *inst;
586
587 fs_reg result = get_nir_dest(instr->dest.dest);
588 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
589
590 fs_reg op[4];
591 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
592 op[i] = get_nir_src(instr->src[i].src);
593 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
594 op[i].abs = instr->src[i].abs;
595 op[i].negate = instr->src[i].negate;
596 }
597
598 /* We get a bunch of mov's out of the from_ssa pass and they may still
599 * be vectorized. We'll handle them as a special-case. We'll also
600 * handle vecN here because it's basically the same thing.
601 */
602 switch (instr->op) {
603 case nir_op_imov:
604 case nir_op_fmov:
605 case nir_op_vec2:
606 case nir_op_vec3:
607 case nir_op_vec4: {
608 fs_reg temp = result;
609 bool need_extra_copy = false;
610 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
611 if (!instr->src[i].src.is_ssa &&
612 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
613 need_extra_copy = true;
614 temp = bld.vgrf(result.type, 4);
615 break;
616 }
617 }
618
619 for (unsigned i = 0; i < 4; i++) {
620 if (!(instr->dest.write_mask & (1 << i)))
621 continue;
622
623 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
624 inst = bld.MOV(offset(temp, bld, i),
625 offset(op[0], bld, instr->src[0].swizzle[i]));
626 } else {
627 inst = bld.MOV(offset(temp, bld, i),
628 offset(op[i], bld, instr->src[i].swizzle[0]));
629 }
630 inst->saturate = instr->dest.saturate;
631 }
632
633 /* In this case the source and destination registers were the same,
634 * so we need to insert an extra set of moves in order to deal with
635 * any swizzling.
636 */
637 if (need_extra_copy) {
638 for (unsigned i = 0; i < 4; i++) {
639 if (!(instr->dest.write_mask & (1 << i)))
640 continue;
641
642 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
643 }
644 }
645 return;
646 }
647 default:
648 break;
649 }
650
651 /* At this point, we have dealt with any instruction that operates on
652 * more than a single channel. Therefore, we can just adjust the source
653 * and destination registers for that channel and emit the instruction.
654 */
655 unsigned channel = 0;
656 if (nir_op_infos[instr->op].output_size == 0) {
657 /* Since NIR is doing the scalarizing for us, we should only ever see
658 * vectorized operations with a single channel.
659 */
660 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
661 channel = ffs(instr->dest.write_mask) - 1;
662
663 result = offset(result, bld, channel);
664 }
665
666 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
667 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
668 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
669 }
670
671 switch (instr->op) {
672 case nir_op_i2f:
673 case nir_op_u2f:
674 inst = bld.MOV(result, op[0]);
675 inst->saturate = instr->dest.saturate;
676 break;
677
678 case nir_op_f2i:
679 case nir_op_f2u:
680 bld.MOV(result, op[0]);
681 break;
682
683 case nir_op_fsign: {
684 /* AND(val, 0x80000000) gives the sign bit.
685 *
686 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
687 * zero.
688 */
689 bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
690
691 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
692 op[0].type = BRW_REGISTER_TYPE_UD;
693 result.type = BRW_REGISTER_TYPE_UD;
694 bld.AND(result_int, op[0], fs_reg(0x80000000u));
695
696 inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
697 inst->predicate = BRW_PREDICATE_NORMAL;
698 if (instr->dest.saturate) {
699 inst = bld.MOV(result, result);
700 inst->saturate = true;
701 }
702 break;
703 }
704
705 case nir_op_isign:
706 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
707 * -> non-negative val generates 0x00000000.
708 * Predicated OR sets 1 if val is positive.
709 */
710 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
711 bld.ASR(result, op[0], fs_reg(31));
712 inst = bld.OR(result, result, fs_reg(1));
713 inst->predicate = BRW_PREDICATE_NORMAL;
714 break;
715
716 case nir_op_frcp:
717 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
718 inst->saturate = instr->dest.saturate;
719 break;
720
721 case nir_op_fexp2:
722 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
723 inst->saturate = instr->dest.saturate;
724 break;
725
726 case nir_op_flog2:
727 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
728 inst->saturate = instr->dest.saturate;
729 break;
730
731 case nir_op_fsin:
732 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_fcos:
737 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_fddx:
742 if (fs_key->high_quality_derivatives) {
743 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
744 } else {
745 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
746 }
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddx_fine:
750 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
751 inst->saturate = instr->dest.saturate;
752 break;
753 case nir_op_fddx_coarse:
754 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
755 inst->saturate = instr->dest.saturate;
756 break;
757 case nir_op_fddy:
758 if (fs_key->high_quality_derivatives) {
759 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
760 fs_reg(fs_key->render_to_fbo));
761 } else {
762 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
763 fs_reg(fs_key->render_to_fbo));
764 }
765 inst->saturate = instr->dest.saturate;
766 break;
767 case nir_op_fddy_fine:
768 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
769 fs_reg(fs_key->render_to_fbo));
770 inst->saturate = instr->dest.saturate;
771 break;
772 case nir_op_fddy_coarse:
773 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
774 fs_reg(fs_key->render_to_fbo));
775 inst->saturate = instr->dest.saturate;
776 break;
777
778 case nir_op_fadd:
779 case nir_op_iadd:
780 inst = bld.ADD(result, op[0], op[1]);
781 inst->saturate = instr->dest.saturate;
782 break;
783
784 case nir_op_fmul:
785 inst = bld.MUL(result, op[0], op[1]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_imul:
790 bld.MUL(result, op[0], op[1]);
791 break;
792
793 case nir_op_imul_high:
794 case nir_op_umul_high: {
795 if (devinfo->gen >= 7)
796 no16("SIMD16 explicit accumulator operands unsupported\n");
797
798 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
799
800 fs_inst *mul = bld.MUL(acc, op[0], op[1]);
801 bld.MACH(result, op[0], op[1]);
802
803 /* Until Gen8, integer multiplies read 32-bits from one source, and
804 * 16-bits from the other, and relying on the MACH instruction to
805 * generate the high bits of the result.
806 *
807 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
808 * but in order to do a 64x64-bit multiply we have to simulate the
809 * previous behavior and then use a MACH instruction.
810 *
811 * FINISHME: Don't use source modifiers on src1.
812 */
813 if (devinfo->gen >= 8) {
814 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
815 mul->src[1].type == BRW_REGISTER_TYPE_UD);
816 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
817 mul->src[1].type = BRW_REGISTER_TYPE_W;
818 mul->src[1].stride = 2;
819 } else {
820 mul->src[1].type = BRW_REGISTER_TYPE_UW;
821 mul->src[1].stride = 2;
822 }
823 }
824 break;
825 }
826
827 case nir_op_idiv:
828 case nir_op_udiv:
829 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
830 break;
831
832 case nir_op_uadd_carry:
833 unreachable("Should have been lowered by carry_to_arith().");
834
835 case nir_op_usub_borrow:
836 unreachable("Should have been lowered by borrow_to_arith().");
837
838 case nir_op_umod:
839 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
840 break;
841
842 case nir_op_flt:
843 case nir_op_ilt:
844 case nir_op_ult:
845 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
846 break;
847
848 case nir_op_fge:
849 case nir_op_ige:
850 case nir_op_uge:
851 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
852 break;
853
854 case nir_op_feq:
855 case nir_op_ieq:
856 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
857 break;
858
859 case nir_op_fne:
860 case nir_op_ine:
861 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
862 break;
863
864 case nir_op_inot:
865 if (devinfo->gen >= 8) {
866 resolve_source_modifiers(&op[0]);
867 }
868 bld.NOT(result, op[0]);
869 break;
870 case nir_op_ixor:
871 if (devinfo->gen >= 8) {
872 resolve_source_modifiers(&op[0]);
873 resolve_source_modifiers(&op[1]);
874 }
875 bld.XOR(result, op[0], op[1]);
876 break;
877 case nir_op_ior:
878 if (devinfo->gen >= 8) {
879 resolve_source_modifiers(&op[0]);
880 resolve_source_modifiers(&op[1]);
881 }
882 bld.OR(result, op[0], op[1]);
883 break;
884 case nir_op_iand:
885 if (devinfo->gen >= 8) {
886 resolve_source_modifiers(&op[0]);
887 resolve_source_modifiers(&op[1]);
888 }
889 bld.AND(result, op[0], op[1]);
890 break;
891
892 case nir_op_fdot2:
893 case nir_op_fdot3:
894 case nir_op_fdot4:
895 case nir_op_bany2:
896 case nir_op_bany3:
897 case nir_op_bany4:
898 case nir_op_ball2:
899 case nir_op_ball3:
900 case nir_op_ball4:
901 case nir_op_ball_fequal2:
902 case nir_op_ball_iequal2:
903 case nir_op_ball_fequal3:
904 case nir_op_ball_iequal3:
905 case nir_op_ball_fequal4:
906 case nir_op_ball_iequal4:
907 case nir_op_bany_fnequal2:
908 case nir_op_bany_inequal2:
909 case nir_op_bany_fnequal3:
910 case nir_op_bany_inequal3:
911 case nir_op_bany_fnequal4:
912 case nir_op_bany_inequal4:
913 unreachable("Lowered by nir_lower_alu_reductions");
914
915 case nir_op_fnoise1_1:
916 case nir_op_fnoise1_2:
917 case nir_op_fnoise1_3:
918 case nir_op_fnoise1_4:
919 case nir_op_fnoise2_1:
920 case nir_op_fnoise2_2:
921 case nir_op_fnoise2_3:
922 case nir_op_fnoise2_4:
923 case nir_op_fnoise3_1:
924 case nir_op_fnoise3_2:
925 case nir_op_fnoise3_3:
926 case nir_op_fnoise3_4:
927 case nir_op_fnoise4_1:
928 case nir_op_fnoise4_2:
929 case nir_op_fnoise4_3:
930 case nir_op_fnoise4_4:
931 unreachable("not reached: should be handled by lower_noise");
932
933 case nir_op_ldexp:
934 unreachable("not reached: should be handled by ldexp_to_arith()");
935
936 case nir_op_fsqrt:
937 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_frsq:
942 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945
946 case nir_op_b2i:
947 case nir_op_b2f:
948 bld.MOV(result, negate(op[0]));
949 break;
950
951 case nir_op_f2b:
952 bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
953 break;
954 case nir_op_i2b:
955 bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
956 break;
957
958 case nir_op_ftrunc:
959 inst = bld.RNDZ(result, op[0]);
960 inst->saturate = instr->dest.saturate;
961 break;
962
963 case nir_op_fceil: {
964 op[0].negate = !op[0].negate;
965 fs_reg temp = vgrf(glsl_type::float_type);
966 bld.RNDD(temp, op[0]);
967 temp.negate = true;
968 inst = bld.MOV(result, temp);
969 inst->saturate = instr->dest.saturate;
970 break;
971 }
972 case nir_op_ffloor:
973 inst = bld.RNDD(result, op[0]);
974 inst->saturate = instr->dest.saturate;
975 break;
976 case nir_op_ffract:
977 inst = bld.FRC(result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980 case nir_op_fround_even:
981 inst = bld.RNDE(result, op[0]);
982 inst->saturate = instr->dest.saturate;
983 break;
984
985 case nir_op_fmin:
986 case nir_op_imin:
987 case nir_op_umin:
988 if (devinfo->gen >= 6) {
989 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
990 inst->conditional_mod = BRW_CONDITIONAL_L;
991 } else {
992 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
993 inst = bld.SEL(result, op[0], op[1]);
994 inst->predicate = BRW_PREDICATE_NORMAL;
995 }
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fmax:
1000 case nir_op_imax:
1001 case nir_op_umax:
1002 if (devinfo->gen >= 6) {
1003 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1004 inst->conditional_mod = BRW_CONDITIONAL_GE;
1005 } else {
1006 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
1007 inst = bld.SEL(result, op[0], op[1]);
1008 inst->predicate = BRW_PREDICATE_NORMAL;
1009 }
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_pack_snorm_2x16:
1014 case nir_op_pack_snorm_4x8:
1015 case nir_op_pack_unorm_2x16:
1016 case nir_op_pack_unorm_4x8:
1017 case nir_op_unpack_snorm_2x16:
1018 case nir_op_unpack_snorm_4x8:
1019 case nir_op_unpack_unorm_2x16:
1020 case nir_op_unpack_unorm_4x8:
1021 case nir_op_unpack_half_2x16:
1022 case nir_op_pack_half_2x16:
1023 unreachable("not reached: should be handled by lower_packing_builtins");
1024
1025 case nir_op_unpack_half_2x16_split_x:
1026 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1027 inst->saturate = instr->dest.saturate;
1028 break;
1029 case nir_op_unpack_half_2x16_split_y:
1030 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033
1034 case nir_op_fpow:
1035 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1036 inst->saturate = instr->dest.saturate;
1037 break;
1038
1039 case nir_op_bitfield_reverse:
1040 bld.BFREV(result, op[0]);
1041 break;
1042
1043 case nir_op_bit_count:
1044 bld.CBIT(result, op[0]);
1045 break;
1046
1047 case nir_op_ufind_msb:
1048 case nir_op_ifind_msb: {
1049 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1050
1051 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1052 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1053 * subtract the result from 31 to convert the MSB count into an LSB count.
1054 */
1055
1056 bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
1057 fs_reg neg_result(result);
1058 neg_result.negate = true;
1059 inst = bld.ADD(result, neg_result, fs_reg(31));
1060 inst->predicate = BRW_PREDICATE_NORMAL;
1061 break;
1062 }
1063
1064 case nir_op_find_lsb:
1065 bld.FBL(result, op[0]);
1066 break;
1067
1068 case nir_op_ubitfield_extract:
1069 case nir_op_ibitfield_extract:
1070 bld.BFE(result, op[2], op[1], op[0]);
1071 break;
1072 case nir_op_bfm:
1073 bld.BFI1(result, op[0], op[1]);
1074 break;
1075 case nir_op_bfi:
1076 bld.BFI2(result, op[0], op[1], op[2]);
1077 break;
1078
1079 case nir_op_bitfield_insert:
1080 unreachable("not reached: should be handled by "
1081 "lower_instructions::bitfield_insert_to_bfm_bfi");
1082
1083 case nir_op_ishl:
1084 bld.SHL(result, op[0], op[1]);
1085 break;
1086 case nir_op_ishr:
1087 bld.ASR(result, op[0], op[1]);
1088 break;
1089 case nir_op_ushr:
1090 bld.SHR(result, op[0], op[1]);
1091 break;
1092
1093 case nir_op_pack_half_2x16_split:
1094 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1095 break;
1096
1097 case nir_op_ffma:
1098 inst = bld.MAD(result, op[2], op[1], op[0]);
1099 inst->saturate = instr->dest.saturate;
1100 break;
1101
1102 case nir_op_flrp:
1103 inst = bld.LRP(result, op[0], op[1], op[2]);
1104 inst->saturate = instr->dest.saturate;
1105 break;
1106
1107 case nir_op_bcsel:
1108 if (optimize_frontfacing_ternary(instr, result))
1109 return;
1110
1111 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
1112 inst = bld.SEL(result, op[1], op[2]);
1113 inst->predicate = BRW_PREDICATE_NORMAL;
1114 break;
1115
1116 default:
1117 unreachable("unhandled instruction");
1118 }
1119
1120 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1121 * to sign extend the low bit to 0/~0
1122 */
1123 if (devinfo->gen <= 5 &&
1124 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1125 fs_reg masked = vgrf(glsl_type::int_type);
1126 bld.AND(masked, result, fs_reg(1));
1127 masked.negate = true;
1128 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1129 }
1130 }
1131
1132 void
1133 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1134 nir_load_const_instr *instr)
1135 {
1136 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1137
1138 for (unsigned i = 0; i < instr->def.num_components; i++)
1139 bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
1140
1141 nir_ssa_values[instr->def.index] = reg;
1142 }
1143
1144 void
1145 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1146 {
1147 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1148 instr->def.num_components);
1149 }
1150
1151 static fs_reg
1152 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1153 unsigned base_offset, nir_src *indirect)
1154 {
1155 fs_reg reg;
1156
1157 assert(!nir_reg->is_global);
1158
1159 reg = v->nir_locals[nir_reg->index];
1160
1161 reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
1162 if (indirect) {
1163 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1164
1165 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1166 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1167 fs_reg(multiplier));
1168 }
1169
1170 return reg;
1171 }
1172
1173 fs_reg
1174 fs_visitor::get_nir_src(nir_src src)
1175 {
1176 fs_reg reg;
1177 if (src.is_ssa) {
1178 reg = nir_ssa_values[src.ssa->index];
1179 } else {
1180 reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1181 src.reg.indirect);
1182 }
1183
1184 /* to avoid floating-point denorm flushing problems, set the type by
1185 * default to D - instructions that need floating point semantics will set
1186 * this to F if they need to
1187 */
1188 return retype(reg, BRW_REGISTER_TYPE_D);
1189 }
1190
1191 fs_reg
1192 fs_visitor::get_nir_dest(nir_dest dest)
1193 {
1194 if (dest.is_ssa) {
1195 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1196 dest.ssa.num_components);
1197 return nir_ssa_values[dest.ssa.index];
1198 }
1199
1200 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1201 dest.reg.indirect);
1202 }
1203
1204 void
1205 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1206 unsigned wr_mask)
1207 {
1208 for (unsigned i = 0; i < 4; i++) {
1209 if (!((wr_mask >> i) & 1))
1210 continue;
1211
1212 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1213 new_inst->dst = offset(new_inst->dst, bld, i);
1214 for (unsigned j = 0; j < new_inst->sources; j++)
1215 if (new_inst->src[j].file == GRF)
1216 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1217
1218 bld.emit(new_inst);
1219 }
1220 }
1221
1222 void
1223 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
1224 {
1225 fs_reg dest;
1226 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1227 dest = get_nir_dest(instr->dest);
1228
1229 bool has_indirect = false;
1230
1231 switch (instr->intrinsic) {
1232 case nir_intrinsic_discard:
1233 case nir_intrinsic_discard_if: {
1234 /* We track our discarded pixels in f0.1. By predicating on it, we can
1235 * update just the flag bits that aren't yet discarded. If there's no
1236 * condition, we emit a CMP of g0 != g0, so all currently executing
1237 * channels will get turned off.
1238 */
1239 fs_inst *cmp;
1240 if (instr->intrinsic == nir_intrinsic_discard_if) {
1241 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1242 fs_reg(0), BRW_CONDITIONAL_Z);
1243 } else {
1244 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1245 BRW_REGISTER_TYPE_UW));
1246 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1247 }
1248 cmp->predicate = BRW_PREDICATE_NORMAL;
1249 cmp->flag_subreg = 1;
1250
1251 if (devinfo->gen >= 6) {
1252 emit_discard_jump();
1253 }
1254 break;
1255 }
1256
1257 case nir_intrinsic_atomic_counter_inc:
1258 case nir_intrinsic_atomic_counter_dec:
1259 case nir_intrinsic_atomic_counter_read: {
1260 unsigned surf_index = prog_data->binding_table.abo_start +
1261 (unsigned) instr->const_index[0];
1262 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1263
1264 switch (instr->intrinsic) {
1265 case nir_intrinsic_atomic_counter_inc:
1266 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1267 fs_reg(), fs_reg());
1268 break;
1269 case nir_intrinsic_atomic_counter_dec:
1270 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1271 fs_reg(), fs_reg());
1272 break;
1273 case nir_intrinsic_atomic_counter_read:
1274 emit_untyped_surface_read(surf_index, dest, offset);
1275 break;
1276 default:
1277 unreachable("Unreachable");
1278 }
1279 break;
1280 }
1281
1282 case nir_intrinsic_load_front_face:
1283 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1284 *emit_frontfacing_interpolation());
1285 break;
1286
1287 case nir_intrinsic_load_vertex_id:
1288 unreachable("should be lowered by lower_vertex_id()");
1289
1290 case nir_intrinsic_load_vertex_id_zero_base: {
1291 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1292 assert(vertex_id.file != BAD_FILE);
1293 dest.type = vertex_id.type;
1294 bld.MOV(dest, vertex_id);
1295 break;
1296 }
1297
1298 case nir_intrinsic_load_base_vertex: {
1299 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1300 assert(base_vertex.file != BAD_FILE);
1301 dest.type = base_vertex.type;
1302 bld.MOV(dest, base_vertex);
1303 break;
1304 }
1305
1306 case nir_intrinsic_load_instance_id: {
1307 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1308 assert(instance_id.file != BAD_FILE);
1309 dest.type = instance_id.type;
1310 bld.MOV(dest, instance_id);
1311 break;
1312 }
1313
1314 case nir_intrinsic_load_sample_mask_in: {
1315 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1316 assert(sample_mask_in.file != BAD_FILE);
1317 dest.type = sample_mask_in.type;
1318 bld.MOV(dest, sample_mask_in);
1319 break;
1320 }
1321
1322 case nir_intrinsic_load_sample_pos: {
1323 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1324 assert(sample_pos.file != BAD_FILE);
1325 dest.type = sample_pos.type;
1326 bld.MOV(dest, sample_pos);
1327 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1328 break;
1329 }
1330
1331 case nir_intrinsic_load_sample_id: {
1332 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1333 assert(sample_id.file != BAD_FILE);
1334 dest.type = sample_id.type;
1335 bld.MOV(dest, sample_id);
1336 break;
1337 }
1338
1339 case nir_intrinsic_load_uniform_indirect:
1340 has_indirect = true;
1341 /* fallthrough */
1342 case nir_intrinsic_load_uniform: {
1343 unsigned index = instr->const_index[0];
1344
1345 fs_reg uniform_reg;
1346 if (index < num_direct_uniforms) {
1347 uniform_reg = fs_reg(UNIFORM, 0);
1348 } else {
1349 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1350 index -= num_direct_uniforms;
1351 }
1352
1353 for (unsigned j = 0; j < instr->num_components; j++) {
1354 fs_reg src = offset(retype(uniform_reg, dest.type), bld, index);
1355 if (has_indirect)
1356 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1357 index++;
1358
1359 bld.MOV(dest, src);
1360 dest = offset(dest, bld, 1);
1361 }
1362 break;
1363 }
1364
1365 case nir_intrinsic_load_ubo_indirect:
1366 has_indirect = true;
1367 /* fallthrough */
1368 case nir_intrinsic_load_ubo: {
1369 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1370 fs_reg surf_index;
1371
1372 if (const_index) {
1373 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1374 const_index->u[0]);
1375 } else {
1376 /* The block index is not a constant. Evaluate the index expression
1377 * per-channel and add the base UBO index; we have to select a value
1378 * from any live channel.
1379 */
1380 surf_index = vgrf(glsl_type::uint_type);
1381 bld.ADD(surf_index, get_nir_src(instr->src[0]),
1382 fs_reg(stage_prog_data->binding_table.ubo_start));
1383 surf_index = bld.emit_uniformize(surf_index);
1384
1385 /* Assume this may touch any UBO. It would be nice to provide
1386 * a tighter bound, but the array information is already lowered away.
1387 */
1388 brw_mark_surface_used(prog_data,
1389 stage_prog_data->binding_table.ubo_start +
1390 shader_prog->NumUniformBlocks - 1);
1391 }
1392
1393 if (has_indirect) {
1394 /* Turn the byte offset into a dword offset. */
1395 fs_reg base_offset = vgrf(glsl_type::int_type);
1396 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
1397 BRW_REGISTER_TYPE_D),
1398 fs_reg(2));
1399
1400 unsigned vec4_offset = instr->const_index[0] / 4;
1401 for (int i = 0; i < instr->num_components; i++)
1402 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
1403 base_offset, vec4_offset + i);
1404 } else {
1405 fs_reg packed_consts = vgrf(glsl_type::float_type);
1406 packed_consts.type = dest.type;
1407
1408 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1409 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1410 surf_index, const_offset_reg);
1411
1412 for (unsigned i = 0; i < instr->num_components; i++) {
1413 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1414
1415 /* The std140 packing rules don't allow vectors to cross 16-byte
1416 * boundaries, and a reg is 32 bytes.
1417 */
1418 assert(packed_consts.subreg_offset < 32);
1419
1420 bld.MOV(dest, packed_consts);
1421 dest = offset(dest, bld, 1);
1422 }
1423 }
1424 break;
1425 }
1426
1427 case nir_intrinsic_load_input_indirect:
1428 has_indirect = true;
1429 /* fallthrough */
1430 case nir_intrinsic_load_input: {
1431 unsigned index = 0;
1432 for (unsigned j = 0; j < instr->num_components; j++) {
1433 fs_reg src = offset(retype(nir_inputs, dest.type), bld,
1434 instr->const_index[0] + index);
1435 if (has_indirect)
1436 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1437 index++;
1438
1439 bld.MOV(dest, src);
1440 dest = offset(dest, bld, 1);
1441 }
1442 break;
1443 }
1444
1445 /* Handle ARB_gpu_shader5 interpolation intrinsics
1446 *
1447 * It's worth a quick word of explanation as to why we handle the full
1448 * variable-based interpolation intrinsic rather than a lowered version
1449 * with like we do for other inputs. We have to do that because the way
1450 * we set up inputs doesn't allow us to use the already setup inputs for
1451 * interpolation. At the beginning of the shader, we go through all of
1452 * the input variables and do the initial interpolation and put it in
1453 * the nir_inputs array based on its location as determined in
1454 * nir_lower_io. If the input isn't used, dead code cleans up and
1455 * everything works fine. However, when we get to the ARB_gpu_shader5
1456 * interpolation intrinsics, we need to reinterpolate the input
1457 * differently. If we used an intrinsic that just had an index it would
1458 * only give us the offset into the nir_inputs array. However, this is
1459 * useless because that value is post-interpolation and we need
1460 * pre-interpolation. In order to get the actual location of the bits
1461 * we get from the vertex fetching hardware, we need the variable.
1462 */
1463 case nir_intrinsic_interp_var_at_centroid:
1464 case nir_intrinsic_interp_var_at_sample:
1465 case nir_intrinsic_interp_var_at_offset: {
1466 assert(stage == MESA_SHADER_FRAGMENT);
1467
1468 ((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
1469
1470 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1471
1472 /* For most messages, we need one reg of ignored data; the hardware
1473 * requires mlen==1 even when there is no payload. in the per-slot
1474 * offset case, we'll replace this with the proper source data.
1475 */
1476 fs_reg src = vgrf(glsl_type::float_type);
1477 int mlen = 1; /* one reg unless overriden */
1478 fs_inst *inst;
1479
1480 switch (instr->intrinsic) {
1481 case nir_intrinsic_interp_var_at_centroid:
1482 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
1483 dst_xy, src, fs_reg(0u));
1484 break;
1485
1486 case nir_intrinsic_interp_var_at_sample: {
1487 /* XXX: We should probably handle non-constant sample id's */
1488 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1489 assert(const_sample);
1490 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1491 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1492 fs_reg(msg_data));
1493 break;
1494 }
1495
1496 case nir_intrinsic_interp_var_at_offset: {
1497 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1498
1499 if (const_offset) {
1500 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1501 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1502
1503 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1504 fs_reg(off_x | (off_y << 4)));
1505 } else {
1506 src = vgrf(glsl_type::ivec2_type);
1507 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1508 BRW_REGISTER_TYPE_F);
1509 for (int i = 0; i < 2; i++) {
1510 fs_reg temp = vgrf(glsl_type::float_type);
1511 bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
1512 fs_reg itemp = vgrf(glsl_type::int_type);
1513 bld.MOV(itemp, temp); /* float to int */
1514
1515 /* Clamp the upper end of the range to +7/16.
1516 * ARB_gpu_shader5 requires that we support a maximum offset
1517 * of +0.5, which isn't representable in a S0.4 value -- if
1518 * we didn't clamp it, we'd end up with -8/16, which is the
1519 * opposite of what the shader author wanted.
1520 *
1521 * This is legal due to ARB_gpu_shader5's quantization
1522 * rules:
1523 *
1524 * "Not all values of <offset> may be supported; x and y
1525 * offsets may be rounded to fixed-point values with the
1526 * number of fraction bits given by the
1527 * implementation-dependent constant
1528 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1529 */
1530 set_condmod(BRW_CONDITIONAL_L,
1531 bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
1532 }
1533
1534 mlen = 2 * dispatch_width / 8;
1535 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1536 fs_reg(0u));
1537 }
1538 break;
1539 }
1540
1541 default:
1542 unreachable("Invalid intrinsic");
1543 }
1544
1545 inst->mlen = mlen;
1546 /* 2 floats per slot returned */
1547 inst->regs_written = 2 * dispatch_width / 8;
1548 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1549 INTERP_QUALIFIER_NOPERSPECTIVE;
1550
1551 for (unsigned j = 0; j < instr->num_components; j++) {
1552 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1553 src.type = dest.type;
1554
1555 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1556 dest = offset(dest, bld, 1);
1557 }
1558 break;
1559 }
1560
1561 case nir_intrinsic_store_output_indirect:
1562 has_indirect = true;
1563 /* fallthrough */
1564 case nir_intrinsic_store_output: {
1565 fs_reg src = get_nir_src(instr->src[0]);
1566 unsigned index = 0;
1567 for (unsigned j = 0; j < instr->num_components; j++) {
1568 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
1569 instr->const_index[0] + index);
1570 if (has_indirect)
1571 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1572 index++;
1573 bld.MOV(new_dest, src);
1574 src = offset(src, bld, 1);
1575 }
1576 break;
1577 }
1578
1579 case nir_intrinsic_barrier:
1580 emit_barrier();
1581 break;
1582
1583 default:
1584 unreachable("unknown intrinsic");
1585 }
1586 }
1587
1588 void
1589 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
1590 {
1591 unsigned sampler = instr->sampler_index;
1592 fs_reg sampler_reg(sampler);
1593
1594 /* FINISHME: We're failing to recompile our programs when the sampler is
1595 * updated. This only matters for the texture rectangle scale parameters
1596 * (pre-gen6, or gen6+ with GL_CLAMP).
1597 */
1598 int texunit = prog->SamplerUnits[sampler];
1599
1600 int gather_component = instr->component;
1601
1602 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1603
1604 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1605 instr->is_array;
1606
1607 int lod_components = 0;
1608 int UNUSED offset_components = 0;
1609
1610 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1611
1612 for (unsigned i = 0; i < instr->num_srcs; i++) {
1613 fs_reg src = get_nir_src(instr->src[i].src);
1614 switch (instr->src[i].src_type) {
1615 case nir_tex_src_bias:
1616 lod = retype(src, BRW_REGISTER_TYPE_F);
1617 break;
1618 case nir_tex_src_comparitor:
1619 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1620 break;
1621 case nir_tex_src_coord:
1622 switch (instr->op) {
1623 case nir_texop_txf:
1624 case nir_texop_txf_ms:
1625 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1626 break;
1627 default:
1628 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1629 break;
1630 }
1631 break;
1632 case nir_tex_src_ddx:
1633 lod = retype(src, BRW_REGISTER_TYPE_F);
1634 lod_components = nir_tex_instr_src_size(instr, i);
1635 break;
1636 case nir_tex_src_ddy:
1637 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1638 break;
1639 case nir_tex_src_lod:
1640 switch (instr->op) {
1641 case nir_texop_txs:
1642 lod = retype(src, BRW_REGISTER_TYPE_UD);
1643 break;
1644 case nir_texop_txf:
1645 lod = retype(src, BRW_REGISTER_TYPE_D);
1646 break;
1647 default:
1648 lod = retype(src, BRW_REGISTER_TYPE_F);
1649 break;
1650 }
1651 break;
1652 case nir_tex_src_ms_index:
1653 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1654 break;
1655 case nir_tex_src_offset:
1656 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1657 if (instr->is_array)
1658 offset_components = instr->coord_components - 1;
1659 else
1660 offset_components = instr->coord_components;
1661 break;
1662 case nir_tex_src_projector:
1663 unreachable("should be lowered");
1664
1665 case nir_tex_src_sampler_offset: {
1666 /* Figure out the highest possible sampler index and mark it as used */
1667 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1668 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1669 max_used += stage_prog_data->binding_table.gather_texture_start;
1670 } else {
1671 max_used += stage_prog_data->binding_table.texture_start;
1672 }
1673 brw_mark_surface_used(prog_data, max_used);
1674
1675 /* Emit code to evaluate the actual indexing expression */
1676 sampler_reg = vgrf(glsl_type::uint_type);
1677 bld.ADD(sampler_reg, src, fs_reg(sampler));
1678 sampler_reg = bld.emit_uniformize(sampler_reg);
1679 break;
1680 }
1681
1682 default:
1683 unreachable("unknown texture source");
1684 }
1685 }
1686
1687 if (instr->op == nir_texop_txf_ms) {
1688 if (devinfo->gen >= 7 &&
1689 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1690 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1691 } else {
1692 mcs = fs_reg(0u);
1693 }
1694 }
1695
1696 for (unsigned i = 0; i < 3; i++) {
1697 if (instr->const_offset[i] != 0) {
1698 assert(offset_components == 0);
1699 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1700 break;
1701 }
1702 }
1703
1704 enum glsl_base_type dest_base_type;
1705 switch (instr->dest_type) {
1706 case nir_type_float:
1707 dest_base_type = GLSL_TYPE_FLOAT;
1708 break;
1709 case nir_type_int:
1710 dest_base_type = GLSL_TYPE_INT;
1711 break;
1712 case nir_type_unsigned:
1713 dest_base_type = GLSL_TYPE_UINT;
1714 break;
1715 default:
1716 unreachable("bad type");
1717 }
1718
1719 const glsl_type *dest_type =
1720 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1721 1);
1722
1723 ir_texture_opcode op;
1724 switch (instr->op) {
1725 case nir_texop_lod: op = ir_lod; break;
1726 case nir_texop_query_levels: op = ir_query_levels; break;
1727 case nir_texop_tex: op = ir_tex; break;
1728 case nir_texop_tg4: op = ir_tg4; break;
1729 case nir_texop_txb: op = ir_txb; break;
1730 case nir_texop_txd: op = ir_txd; break;
1731 case nir_texop_txf: op = ir_txf; break;
1732 case nir_texop_txf_ms: op = ir_txf_ms; break;
1733 case nir_texop_txl: op = ir_txl; break;
1734 case nir_texop_txs: op = ir_txs; break;
1735 default:
1736 unreachable("unknown texture opcode");
1737 }
1738
1739 emit_texture(op, dest_type, coordinate, instr->coord_components,
1740 shadow_comparitor, lod, lod2, lod_components, sample_index,
1741 tex_offset, mcs, gather_component,
1742 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1743
1744 fs_reg dest = get_nir_dest(instr->dest);
1745 dest.type = this->result.type;
1746 unsigned num_components = nir_tex_instr_dest_size(instr);
1747 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
1748 dest, this->result),
1749 (1 << num_components) - 1);
1750 }
1751
1752 void
1753 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
1754 {
1755 switch (instr->type) {
1756 case nir_jump_break:
1757 bld.emit(BRW_OPCODE_BREAK);
1758 break;
1759 case nir_jump_continue:
1760 bld.emit(BRW_OPCODE_CONTINUE);
1761 break;
1762 case nir_jump_return:
1763 default:
1764 unreachable("unknown jump");
1765 }
1766 }