59081eab8770345ee8f6684e3698a321fab6b6f3
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 nir_shader *nir = prog->nir;
37
38 /* emit the arrays used for inputs and outputs - load/store intrinsics will
39 * be converted to reads/writes of these arrays
40 */
41
42 if (nir->num_inputs > 0) {
43 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
44 nir_setup_inputs(nir);
45 }
46
47 if (nir->num_outputs > 0) {
48 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
49 nir_setup_outputs(nir);
50 }
51
52 if (nir->num_uniforms > 0) {
53 nir_setup_uniforms(nir);
54 }
55
56 nir_emit_system_values(nir);
57
58 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
59 foreach_list_typed(nir_register, reg, node, &nir->registers) {
60 unsigned array_elems =
61 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
62 unsigned size = array_elems * reg->num_components;
63 nir_globals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
64 }
65
66 /* get the main function and emit it */
67 nir_foreach_overload(nir, overload) {
68 assert(strcmp(overload->function->name, "main") == 0);
69 assert(overload->impl);
70 nir_emit_impl(overload->impl);
71 }
72 }
73
74 void
75 fs_visitor::nir_setup_inputs(nir_shader *shader)
76 {
77 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
78 enum brw_reg_type type = brw_type_for_base_type(var->type);
79 fs_reg input = offset(nir_inputs, var->data.driver_location);
80
81 fs_reg reg;
82 switch (stage) {
83 case MESA_SHADER_VERTEX: {
84 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
85 * stored in nir_variable::location.
86 *
87 * However, NIR's load_input intrinsics use a different index - an
88 * offset into a single contiguous array containing all inputs.
89 * This index corresponds to the nir_variable::driver_location field.
90 *
91 * So, we need to copy from fs_reg(ATTR, var->location) to
92 * offset(nir_inputs, var->data.driver_location).
93 */
94 unsigned components = var->type->without_array()->components();
95 unsigned array_length = var->type->is_array() ? var->type->length : 1;
96 for (unsigned i = 0; i < array_length; i++) {
97 for (unsigned j = 0; j < components; j++) {
98 bld.MOV(retype(offset(input, components * i + j), type),
99 offset(fs_reg(ATTR, var->data.location + i, type), j));
100 }
101 }
102 break;
103 }
104 case MESA_SHADER_GEOMETRY:
105 case MESA_SHADER_COMPUTE:
106 unreachable("fs_visitor not used for these stages yet.");
107 break;
108 case MESA_SHADER_FRAGMENT:
109 if (var->data.location == VARYING_SLOT_POS) {
110 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
111 var->data.origin_upper_left);
112 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, input, reg), 0xF);
113 } else {
114 emit_general_interpolation(input, var->name, var->type,
115 (glsl_interp_qualifier) var->data.interpolation,
116 var->data.location, var->data.centroid,
117 var->data.sample);
118 }
119 break;
120 }
121 }
122 }
123
124 void
125 fs_visitor::nir_setup_outputs(nir_shader *shader)
126 {
127 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
128
129 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
130 fs_reg reg = offset(nir_outputs, var->data.driver_location);
131
132 int vector_elements =
133 var->type->is_array() ? var->type->fields.array->vector_elements
134 : var->type->vector_elements;
135
136 if (stage == MESA_SHADER_VERTEX) {
137 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
138 int output = var->data.location + i;
139 this->outputs[output] = offset(reg, 4 * i);
140 this->output_components[output] = vector_elements;
141 }
142 } else if (var->data.index > 0) {
143 assert(var->data.location == FRAG_RESULT_DATA0);
144 assert(var->data.index == 1);
145 this->dual_src_output = reg;
146 this->do_dual_src = true;
147 } else if (var->data.location == FRAG_RESULT_COLOR) {
148 /* Writing gl_FragColor outputs to all color regions. */
149 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
150 this->outputs[i] = reg;
151 this->output_components[i] = 4;
152 }
153 } else if (var->data.location == FRAG_RESULT_DEPTH) {
154 this->frag_depth = reg;
155 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
156 this->sample_mask = reg;
157 } else {
158 /* gl_FragData or a user-defined FS output */
159 assert(var->data.location >= FRAG_RESULT_DATA0 &&
160 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
161
162 /* General color output. */
163 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
164 int output = var->data.location - FRAG_RESULT_DATA0 + i;
165 this->outputs[output] = offset(reg, vector_elements * i);
166 this->output_components[output] = vector_elements;
167 }
168 }
169 }
170 }
171
172 void
173 fs_visitor::nir_setup_uniforms(nir_shader *shader)
174 {
175 uniforms = shader->num_uniforms;
176 num_direct_uniforms = shader->num_direct_uniforms;
177
178 /* We split the uniform register file in half. The first half is
179 * entirely direct uniforms. The second half is indirect.
180 */
181 param_size[0] = num_direct_uniforms;
182 if (shader->num_uniforms > num_direct_uniforms)
183 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
184
185 if (dispatch_width != 8)
186 return;
187
188 if (shader_prog) {
189 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
190 /* UBO's and atomics don't take up space in the uniform file */
191 if (var->interface_type != NULL || var->type->contains_atomic())
192 continue;
193
194 if (strncmp(var->name, "gl_", 3) == 0)
195 nir_setup_builtin_uniform(var);
196 else
197 nir_setup_uniform(var);
198 }
199 } else {
200 /* prog_to_nir doesn't create uniform variables; set param up directly. */
201 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
202 for (unsigned int i = 0; i < 4; i++) {
203 stage_prog_data->param[4 * p + i] =
204 &prog->Parameters->ParameterValues[p][i];
205 }
206 }
207 }
208 }
209
210 void
211 fs_visitor::nir_setup_uniform(nir_variable *var)
212 {
213 int namelen = strlen(var->name);
214
215 /* The data for our (non-builtin) uniforms is stored in a series of
216 * gl_uniform_driver_storage structs for each subcomponent that
217 * glGetUniformLocation() could name. We know it's been set up in the
218 * same order we'd walk the type, so walk the list of storage and find
219 * anything with our name, or the prefix of a component that starts with
220 * our name.
221 */
222 unsigned index = var->data.driver_location;
223 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
224 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
225
226 if (storage->builtin)
227 continue;
228
229 if (strncmp(var->name, storage->name, namelen) != 0 ||
230 (storage->name[namelen] != 0 &&
231 storage->name[namelen] != '.' &&
232 storage->name[namelen] != '[')) {
233 continue;
234 }
235
236 unsigned slots = storage->type->component_slots();
237 if (storage->array_elements)
238 slots *= storage->array_elements;
239
240 for (unsigned i = 0; i < slots; i++) {
241 stage_prog_data->param[index++] = &storage->storage[i];
242 }
243 }
244
245 /* Make sure we actually initialized the right amount of stuff here. */
246 assert(var->data.driver_location + var->type->component_slots() == index);
247 }
248
249 void
250 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
251 {
252 const nir_state_slot *const slots = var->state_slots;
253 assert(var->state_slots != NULL);
254
255 unsigned uniform_index = var->data.driver_location;
256 for (unsigned int i = 0; i < var->num_state_slots; i++) {
257 /* This state reference has already been setup by ir_to_mesa, but we'll
258 * get the same index back here.
259 */
260 int index = _mesa_add_state_reference(this->prog->Parameters,
261 (gl_state_index *)slots[i].tokens);
262
263 /* Add each of the unique swizzles of the element as a parameter.
264 * This'll end up matching the expected layout of the
265 * array/matrix/structure we're trying to fill in.
266 */
267 int last_swiz = -1;
268 for (unsigned int j = 0; j < 4; j++) {
269 int swiz = GET_SWZ(slots[i].swizzle, j);
270 if (swiz == last_swiz)
271 break;
272 last_swiz = swiz;
273
274 stage_prog_data->param[uniform_index++] =
275 &prog->Parameters->ParameterValues[index][swiz];
276 }
277 }
278 }
279
280 static bool
281 emit_system_values_block(nir_block *block, void *void_visitor)
282 {
283 fs_visitor *v = (fs_visitor *)void_visitor;
284 fs_reg *reg;
285
286 nir_foreach_instr(block, instr) {
287 if (instr->type != nir_instr_type_intrinsic)
288 continue;
289
290 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
291 switch (intrin->intrinsic) {
292 case nir_intrinsic_load_vertex_id:
293 unreachable("should be lowered by lower_vertex_id().");
294
295 case nir_intrinsic_load_vertex_id_zero_base:
296 assert(v->stage == MESA_SHADER_VERTEX);
297 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
298 if (reg->file == BAD_FILE)
299 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
300 break;
301
302 case nir_intrinsic_load_base_vertex:
303 assert(v->stage == MESA_SHADER_VERTEX);
304 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
305 if (reg->file == BAD_FILE)
306 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
307 break;
308
309 case nir_intrinsic_load_instance_id:
310 assert(v->stage == MESA_SHADER_VERTEX);
311 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
312 if (reg->file == BAD_FILE)
313 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
314 break;
315
316 case nir_intrinsic_load_sample_pos:
317 assert(v->stage == MESA_SHADER_FRAGMENT);
318 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
319 if (reg->file == BAD_FILE)
320 *reg = *v->emit_samplepos_setup();
321 break;
322
323 case nir_intrinsic_load_sample_id:
324 assert(v->stage == MESA_SHADER_FRAGMENT);
325 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
326 if (reg->file == BAD_FILE)
327 *reg = *v->emit_sampleid_setup();
328 break;
329
330 case nir_intrinsic_load_sample_mask_in:
331 assert(v->stage == MESA_SHADER_FRAGMENT);
332 assert(v->devinfo->gen >= 7);
333 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
334 if (reg->file == BAD_FILE)
335 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
336 BRW_REGISTER_TYPE_D));
337 break;
338
339 default:
340 break;
341 }
342 }
343
344 return true;
345 }
346
347 void
348 fs_visitor::nir_emit_system_values(nir_shader *shader)
349 {
350 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
351 nir_foreach_overload(shader, overload) {
352 assert(strcmp(overload->function->name, "main") == 0);
353 assert(overload->impl);
354 nir_foreach_block(overload->impl, emit_system_values_block, this);
355 }
356 }
357
358 void
359 fs_visitor::nir_emit_impl(nir_function_impl *impl)
360 {
361 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
362 foreach_list_typed(nir_register, reg, node, &impl->registers) {
363 unsigned array_elems =
364 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
365 unsigned size = array_elems * reg->num_components;
366 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
367 }
368
369 nir_emit_cf_list(&impl->body);
370 }
371
372 void
373 fs_visitor::nir_emit_cf_list(exec_list *list)
374 {
375 exec_list_validate(list);
376 foreach_list_typed(nir_cf_node, node, node, list) {
377 switch (node->type) {
378 case nir_cf_node_if:
379 nir_emit_if(nir_cf_node_as_if(node));
380 break;
381
382 case nir_cf_node_loop:
383 nir_emit_loop(nir_cf_node_as_loop(node));
384 break;
385
386 case nir_cf_node_block:
387 nir_emit_block(nir_cf_node_as_block(node));
388 break;
389
390 default:
391 unreachable("Invalid CFG node block");
392 }
393 }
394 }
395
396 void
397 fs_visitor::nir_emit_if(nir_if *if_stmt)
398 {
399 /* first, put the condition into f0 */
400 fs_inst *inst = bld.MOV(bld.null_reg_d(),
401 retype(get_nir_src(if_stmt->condition),
402 BRW_REGISTER_TYPE_D));
403 inst->conditional_mod = BRW_CONDITIONAL_NZ;
404
405 bld.IF(BRW_PREDICATE_NORMAL);
406
407 nir_emit_cf_list(&if_stmt->then_list);
408
409 /* note: if the else is empty, dead CF elimination will remove it */
410 bld.emit(BRW_OPCODE_ELSE);
411
412 nir_emit_cf_list(&if_stmt->else_list);
413
414 bld.emit(BRW_OPCODE_ENDIF);
415
416 if (!try_replace_with_sel() && devinfo->gen < 6) {
417 no16("Can't support (non-uniform) control flow on SIMD16\n");
418 }
419 }
420
421 void
422 fs_visitor::nir_emit_loop(nir_loop *loop)
423 {
424 if (devinfo->gen < 6) {
425 no16("Can't support (non-uniform) control flow on SIMD16\n");
426 }
427
428 bld.emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 bld.emit(BRW_OPCODE_WHILE);
433 }
434
435 void
436 fs_visitor::nir_emit_block(nir_block *block)
437 {
438 nir_foreach_instr(block, instr) {
439 nir_emit_instr(instr);
440 }
441 }
442
443 void
444 fs_visitor::nir_emit_instr(nir_instr *instr)
445 {
446 const fs_builder abld = bld.annotate(NULL, instr);
447
448 switch (instr->type) {
449 case nir_instr_type_alu:
450 nir_emit_alu(abld, nir_instr_as_alu(instr));
451 break;
452
453 case nir_instr_type_intrinsic:
454 nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456
457 case nir_instr_type_tex:
458 nir_emit_texture(abld, nir_instr_as_tex(instr));
459 break;
460
461 case nir_instr_type_load_const:
462 /* We can hit these, but we do nothing now and use them as
463 * immediates later.
464 */
465 break;
466
467 case nir_instr_type_jump:
468 nir_emit_jump(abld, nir_instr_as_jump(instr));
469 break;
470
471 default:
472 unreachable("unknown instruction type");
473 }
474 }
475
476 static brw_reg_type
477 brw_type_for_nir_type(nir_alu_type type)
478 {
479 switch (type) {
480 case nir_type_unsigned:
481 return BRW_REGISTER_TYPE_UD;
482 case nir_type_bool:
483 case nir_type_int:
484 return BRW_REGISTER_TYPE_D;
485 case nir_type_float:
486 return BRW_REGISTER_TYPE_F;
487 default:
488 unreachable("unknown type");
489 }
490
491 return BRW_REGISTER_TYPE_F;
492 }
493
494 bool
495 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
496 const fs_reg &result)
497 {
498 if (instr->src[0].src.is_ssa ||
499 !instr->src[0].src.reg.reg ||
500 !instr->src[0].src.reg.reg->parent_instr)
501 return false;
502
503 if (instr->src[0].src.reg.reg->parent_instr->type !=
504 nir_instr_type_intrinsic)
505 return false;
506
507 nir_intrinsic_instr *src0 =
508 nir_instr_as_intrinsic(instr->src[0].src.reg.reg->parent_instr);
509
510 if (src0->intrinsic != nir_intrinsic_load_front_face)
511 return false;
512
513 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
514 if (!value1 || fabsf(value1->f[0]) != 1.0f)
515 return false;
516
517 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
518 if (!value2 || fabsf(value2->f[0]) != 1.0f)
519 return false;
520
521 fs_reg tmp = vgrf(glsl_type::int_type);
522
523 if (devinfo->gen >= 6) {
524 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
525 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
526
527 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
528 *
529 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
530 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
531 *
532 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
533 *
534 * This negation looks like it's safe in practice, because bits 0:4 will
535 * surely be TRIANGLES
536 */
537
538 if (value1->f[0] == -1.0f) {
539 g0.negate = true;
540 }
541
542 tmp.type = BRW_REGISTER_TYPE_W;
543 tmp.subreg_offset = 2;
544 tmp.stride = 2;
545
546 fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
547 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
548
549 tmp.type = BRW_REGISTER_TYPE_D;
550 tmp.subreg_offset = 0;
551 tmp.stride = 1;
552 } else {
553 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
554 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
555
556 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
557 *
558 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
559 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
560 *
561 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
562 *
563 * This negation looks like it's safe in practice, because bits 0:4 will
564 * surely be TRIANGLES
565 */
566
567 if (value1->f[0] == -1.0f) {
568 g1_6.negate = true;
569 }
570
571 bld.OR(tmp, g1_6, fs_reg(0x3f800000));
572 }
573 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
574
575 return true;
576 }
577
578 void
579 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
580 {
581 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
582 fs_inst *inst;
583
584 fs_reg result = get_nir_dest(instr->dest.dest);
585 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
586
587 fs_reg op[4];
588 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
589 op[i] = get_nir_src(instr->src[i].src);
590 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
591 op[i].abs = instr->src[i].abs;
592 op[i].negate = instr->src[i].negate;
593 }
594
595 /* We get a bunch of mov's out of the from_ssa pass and they may still
596 * be vectorized. We'll handle them as a special-case. We'll also
597 * handle vecN here because it's basically the same thing.
598 */
599 switch (instr->op) {
600 case nir_op_imov:
601 case nir_op_fmov:
602 case nir_op_vec2:
603 case nir_op_vec3:
604 case nir_op_vec4: {
605 fs_reg temp = result;
606 bool need_extra_copy = false;
607 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
608 if (!instr->src[i].src.is_ssa &&
609 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
610 need_extra_copy = true;
611 temp = bld.vgrf(result.type, 4);
612 break;
613 }
614 }
615
616 for (unsigned i = 0; i < 4; i++) {
617 if (!(instr->dest.write_mask & (1 << i)))
618 continue;
619
620 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
621 inst = bld.MOV(offset(temp, i),
622 offset(op[0], instr->src[0].swizzle[i]));
623 } else {
624 inst = bld.MOV(offset(temp, i),
625 offset(op[i], instr->src[i].swizzle[0]));
626 }
627 inst->saturate = instr->dest.saturate;
628 }
629
630 /* In this case the source and destination registers were the same,
631 * so we need to insert an extra set of moves in order to deal with
632 * any swizzling.
633 */
634 if (need_extra_copy) {
635 for (unsigned i = 0; i < 4; i++) {
636 if (!(instr->dest.write_mask & (1 << i)))
637 continue;
638
639 bld.MOV(offset(result, i), offset(temp, i));
640 }
641 }
642 return;
643 }
644 default:
645 break;
646 }
647
648 /* At this point, we have dealt with any instruction that operates on
649 * more than a single channel. Therefore, we can just adjust the source
650 * and destination registers for that channel and emit the instruction.
651 */
652 unsigned channel = 0;
653 if (nir_op_infos[instr->op].output_size == 0) {
654 /* Since NIR is doing the scalarizing for us, we should only ever see
655 * vectorized operations with a single channel.
656 */
657 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
658 channel = ffs(instr->dest.write_mask) - 1;
659
660 result = offset(result, channel);
661 }
662
663 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
664 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
665 op[i] = offset(op[i], instr->src[i].swizzle[channel]);
666 }
667
668 switch (instr->op) {
669 case nir_op_i2f:
670 case nir_op_u2f:
671 inst = bld.MOV(result, op[0]);
672 inst->saturate = instr->dest.saturate;
673 break;
674
675 case nir_op_f2i:
676 case nir_op_f2u:
677 bld.MOV(result, op[0]);
678 break;
679
680 case nir_op_fsign: {
681 /* AND(val, 0x80000000) gives the sign bit.
682 *
683 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
684 * zero.
685 */
686 bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
687
688 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
689 op[0].type = BRW_REGISTER_TYPE_UD;
690 result.type = BRW_REGISTER_TYPE_UD;
691 bld.AND(result_int, op[0], fs_reg(0x80000000u));
692
693 inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
694 inst->predicate = BRW_PREDICATE_NORMAL;
695 if (instr->dest.saturate) {
696 inst = bld.MOV(result, result);
697 inst->saturate = true;
698 }
699 break;
700 }
701
702 case nir_op_isign:
703 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
704 * -> non-negative val generates 0x00000000.
705 * Predicated OR sets 1 if val is positive.
706 */
707 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
708 bld.ASR(result, op[0], fs_reg(31));
709 inst = bld.OR(result, result, fs_reg(1));
710 inst->predicate = BRW_PREDICATE_NORMAL;
711 break;
712
713 case nir_op_frcp:
714 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
715 inst->saturate = instr->dest.saturate;
716 break;
717
718 case nir_op_fexp2:
719 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
720 inst->saturate = instr->dest.saturate;
721 break;
722
723 case nir_op_flog2:
724 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
725 inst->saturate = instr->dest.saturate;
726 break;
727
728 case nir_op_fsin:
729 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
730 inst->saturate = instr->dest.saturate;
731 break;
732
733 case nir_op_fcos:
734 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
735 inst->saturate = instr->dest.saturate;
736 break;
737
738 case nir_op_fddx:
739 if (fs_key->high_quality_derivatives) {
740 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
741 } else {
742 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
743 }
744 inst->saturate = instr->dest.saturate;
745 break;
746 case nir_op_fddx_fine:
747 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
748 inst->saturate = instr->dest.saturate;
749 break;
750 case nir_op_fddx_coarse:
751 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
752 inst->saturate = instr->dest.saturate;
753 break;
754 case nir_op_fddy:
755 if (fs_key->high_quality_derivatives) {
756 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
757 fs_reg(fs_key->render_to_fbo));
758 } else {
759 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
760 fs_reg(fs_key->render_to_fbo));
761 }
762 inst->saturate = instr->dest.saturate;
763 break;
764 case nir_op_fddy_fine:
765 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
766 fs_reg(fs_key->render_to_fbo));
767 inst->saturate = instr->dest.saturate;
768 break;
769 case nir_op_fddy_coarse:
770 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
771 fs_reg(fs_key->render_to_fbo));
772 inst->saturate = instr->dest.saturate;
773 break;
774
775 case nir_op_fadd:
776 case nir_op_iadd:
777 inst = bld.ADD(result, op[0], op[1]);
778 inst->saturate = instr->dest.saturate;
779 break;
780
781 case nir_op_fmul:
782 inst = bld.MUL(result, op[0], op[1]);
783 inst->saturate = instr->dest.saturate;
784 break;
785
786 case nir_op_imul:
787 bld.MUL(result, op[0], op[1]);
788 break;
789
790 case nir_op_imul_high:
791 case nir_op_umul_high: {
792 if (devinfo->gen >= 7)
793 no16("SIMD16 explicit accumulator operands unsupported\n");
794
795 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
796
797 fs_inst *mul = bld.MUL(acc, op[0], op[1]);
798 bld.MACH(result, op[0], op[1]);
799
800 /* Until Gen8, integer multiplies read 32-bits from one source, and
801 * 16-bits from the other, and relying on the MACH instruction to
802 * generate the high bits of the result.
803 *
804 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
805 * but in order to do a 64x64-bit multiply we have to simulate the
806 * previous behavior and then use a MACH instruction.
807 *
808 * FINISHME: Don't use source modifiers on src1.
809 */
810 if (devinfo->gen >= 8) {
811 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
812 mul->src[1].type == BRW_REGISTER_TYPE_UD);
813 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
814 mul->src[1].type = BRW_REGISTER_TYPE_W;
815 mul->src[1].stride = 2;
816 } else {
817 mul->src[1].type = BRW_REGISTER_TYPE_UW;
818 mul->src[1].stride = 2;
819 }
820 }
821 break;
822 }
823
824 case nir_op_idiv:
825 case nir_op_udiv:
826 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
827 break;
828
829 case nir_op_uadd_carry: {
830 if (devinfo->gen >= 7)
831 no16("SIMD16 explicit accumulator operands unsupported\n");
832
833 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
834 BRW_REGISTER_TYPE_UD);
835
836 bld.ADDC(bld.null_reg_ud(), op[0], op[1]);
837 bld.MOV(result, fs_reg(acc));
838 break;
839 }
840
841 case nir_op_usub_borrow: {
842 if (devinfo->gen >= 7)
843 no16("SIMD16 explicit accumulator operands unsupported\n");
844
845 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
846 BRW_REGISTER_TYPE_UD);
847
848 bld.SUBB(bld.null_reg_ud(), op[0], op[1]);
849 bld.MOV(result, fs_reg(acc));
850 break;
851 }
852
853 case nir_op_umod:
854 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
855 break;
856
857 case nir_op_flt:
858 case nir_op_ilt:
859 case nir_op_ult:
860 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
861 break;
862
863 case nir_op_fge:
864 case nir_op_ige:
865 case nir_op_uge:
866 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
867 break;
868
869 case nir_op_feq:
870 case nir_op_ieq:
871 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
872 break;
873
874 case nir_op_fne:
875 case nir_op_ine:
876 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
877 break;
878
879 case nir_op_inot:
880 if (devinfo->gen >= 8) {
881 resolve_source_modifiers(&op[0]);
882 }
883 bld.NOT(result, op[0]);
884 break;
885 case nir_op_ixor:
886 if (devinfo->gen >= 8) {
887 resolve_source_modifiers(&op[0]);
888 resolve_source_modifiers(&op[1]);
889 }
890 bld.XOR(result, op[0], op[1]);
891 break;
892 case nir_op_ior:
893 if (devinfo->gen >= 8) {
894 resolve_source_modifiers(&op[0]);
895 resolve_source_modifiers(&op[1]);
896 }
897 bld.OR(result, op[0], op[1]);
898 break;
899 case nir_op_iand:
900 if (devinfo->gen >= 8) {
901 resolve_source_modifiers(&op[0]);
902 resolve_source_modifiers(&op[1]);
903 }
904 bld.AND(result, op[0], op[1]);
905 break;
906
907 case nir_op_fdot2:
908 case nir_op_fdot3:
909 case nir_op_fdot4:
910 case nir_op_bany2:
911 case nir_op_bany3:
912 case nir_op_bany4:
913 case nir_op_ball2:
914 case nir_op_ball3:
915 case nir_op_ball4:
916 case nir_op_ball_fequal2:
917 case nir_op_ball_iequal2:
918 case nir_op_ball_fequal3:
919 case nir_op_ball_iequal3:
920 case nir_op_ball_fequal4:
921 case nir_op_ball_iequal4:
922 case nir_op_bany_fnequal2:
923 case nir_op_bany_inequal2:
924 case nir_op_bany_fnequal3:
925 case nir_op_bany_inequal3:
926 case nir_op_bany_fnequal4:
927 case nir_op_bany_inequal4:
928 unreachable("Lowered by nir_lower_alu_reductions");
929
930 case nir_op_fnoise1_1:
931 case nir_op_fnoise1_2:
932 case nir_op_fnoise1_3:
933 case nir_op_fnoise1_4:
934 case nir_op_fnoise2_1:
935 case nir_op_fnoise2_2:
936 case nir_op_fnoise2_3:
937 case nir_op_fnoise2_4:
938 case nir_op_fnoise3_1:
939 case nir_op_fnoise3_2:
940 case nir_op_fnoise3_3:
941 case nir_op_fnoise3_4:
942 case nir_op_fnoise4_1:
943 case nir_op_fnoise4_2:
944 case nir_op_fnoise4_3:
945 case nir_op_fnoise4_4:
946 unreachable("not reached: should be handled by lower_noise");
947
948 case nir_op_ldexp:
949 unreachable("not reached: should be handled by ldexp_to_arith()");
950
951 case nir_op_fsqrt:
952 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
953 inst->saturate = instr->dest.saturate;
954 break;
955
956 case nir_op_frsq:
957 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
958 inst->saturate = instr->dest.saturate;
959 break;
960
961 case nir_op_b2i:
962 bld.AND(result, op[0], fs_reg(1));
963 break;
964 case nir_op_b2f:
965 bld.AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u));
966 break;
967
968 case nir_op_f2b:
969 bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
970 break;
971 case nir_op_i2b:
972 bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
973 break;
974
975 case nir_op_ftrunc:
976 inst = bld.RNDZ(result, op[0]);
977 inst->saturate = instr->dest.saturate;
978 break;
979
980 case nir_op_fceil: {
981 op[0].negate = !op[0].negate;
982 fs_reg temp = vgrf(glsl_type::float_type);
983 bld.RNDD(temp, op[0]);
984 temp.negate = true;
985 inst = bld.MOV(result, temp);
986 inst->saturate = instr->dest.saturate;
987 break;
988 }
989 case nir_op_ffloor:
990 inst = bld.RNDD(result, op[0]);
991 inst->saturate = instr->dest.saturate;
992 break;
993 case nir_op_ffract:
994 inst = bld.FRC(result, op[0]);
995 inst->saturate = instr->dest.saturate;
996 break;
997 case nir_op_fround_even:
998 inst = bld.RNDE(result, op[0]);
999 inst->saturate = instr->dest.saturate;
1000 break;
1001
1002 case nir_op_fmin:
1003 case nir_op_imin:
1004 case nir_op_umin:
1005 if (devinfo->gen >= 6) {
1006 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1007 inst->conditional_mod = BRW_CONDITIONAL_L;
1008 } else {
1009 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
1010 inst = bld.SEL(result, op[0], op[1]);
1011 inst->predicate = BRW_PREDICATE_NORMAL;
1012 }
1013 inst->saturate = instr->dest.saturate;
1014 break;
1015
1016 case nir_op_fmax:
1017 case nir_op_imax:
1018 case nir_op_umax:
1019 if (devinfo->gen >= 6) {
1020 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1021 inst->conditional_mod = BRW_CONDITIONAL_GE;
1022 } else {
1023 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
1024 inst = bld.SEL(result, op[0], op[1]);
1025 inst->predicate = BRW_PREDICATE_NORMAL;
1026 }
1027 inst->saturate = instr->dest.saturate;
1028 break;
1029
1030 case nir_op_pack_snorm_2x16:
1031 case nir_op_pack_snorm_4x8:
1032 case nir_op_pack_unorm_2x16:
1033 case nir_op_pack_unorm_4x8:
1034 case nir_op_unpack_snorm_2x16:
1035 case nir_op_unpack_snorm_4x8:
1036 case nir_op_unpack_unorm_2x16:
1037 case nir_op_unpack_unorm_4x8:
1038 case nir_op_unpack_half_2x16:
1039 case nir_op_pack_half_2x16:
1040 unreachable("not reached: should be handled by lower_packing_builtins");
1041
1042 case nir_op_unpack_half_2x16_split_x:
1043 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1044 inst->saturate = instr->dest.saturate;
1045 break;
1046 case nir_op_unpack_half_2x16_split_y:
1047 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1048 inst->saturate = instr->dest.saturate;
1049 break;
1050
1051 case nir_op_fpow:
1052 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1053 inst->saturate = instr->dest.saturate;
1054 break;
1055
1056 case nir_op_bitfield_reverse:
1057 bld.BFREV(result, op[0]);
1058 break;
1059
1060 case nir_op_bit_count:
1061 bld.CBIT(result, op[0]);
1062 break;
1063
1064 case nir_op_ufind_msb:
1065 case nir_op_ifind_msb: {
1066 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1067
1068 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1069 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1070 * subtract the result from 31 to convert the MSB count into an LSB count.
1071 */
1072
1073 bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
1074 fs_reg neg_result(result);
1075 neg_result.negate = true;
1076 inst = bld.ADD(result, neg_result, fs_reg(31));
1077 inst->predicate = BRW_PREDICATE_NORMAL;
1078 break;
1079 }
1080
1081 case nir_op_find_lsb:
1082 bld.FBL(result, op[0]);
1083 break;
1084
1085 case nir_op_ubitfield_extract:
1086 case nir_op_ibitfield_extract:
1087 bld.BFE(result, op[2], op[1], op[0]);
1088 break;
1089 case nir_op_bfm:
1090 bld.BFI1(result, op[0], op[1]);
1091 break;
1092 case nir_op_bfi:
1093 bld.BFI2(result, op[0], op[1], op[2]);
1094 break;
1095
1096 case nir_op_bitfield_insert:
1097 unreachable("not reached: should be handled by "
1098 "lower_instructions::bitfield_insert_to_bfm_bfi");
1099
1100 case nir_op_ishl:
1101 bld.SHL(result, op[0], op[1]);
1102 break;
1103 case nir_op_ishr:
1104 bld.ASR(result, op[0], op[1]);
1105 break;
1106 case nir_op_ushr:
1107 bld.SHR(result, op[0], op[1]);
1108 break;
1109
1110 case nir_op_pack_half_2x16_split:
1111 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1112 break;
1113
1114 case nir_op_ffma:
1115 inst = bld.MAD(result, op[2], op[1], op[0]);
1116 inst->saturate = instr->dest.saturate;
1117 break;
1118
1119 case nir_op_flrp:
1120 inst = bld.LRP(result, op[0], op[1], op[2]);
1121 inst->saturate = instr->dest.saturate;
1122 break;
1123
1124 case nir_op_bcsel:
1125 if (optimize_frontfacing_ternary(instr, result))
1126 return;
1127
1128 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
1129 inst = bld.SEL(result, op[1], op[2]);
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132
1133 default:
1134 unreachable("unhandled instruction");
1135 }
1136
1137 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1138 * to sign extend the low bit to 0/~0
1139 */
1140 if (devinfo->gen <= 5 &&
1141 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1142 fs_reg masked = vgrf(glsl_type::int_type);
1143 bld.AND(masked, result, fs_reg(1));
1144 masked.negate = true;
1145 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1146 }
1147 }
1148
1149 static fs_reg
1150 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1151 unsigned base_offset, nir_src *indirect)
1152 {
1153 fs_reg reg;
1154 if (nir_reg->is_global)
1155 reg = v->nir_globals[nir_reg->index];
1156 else
1157 reg = v->nir_locals[nir_reg->index];
1158
1159 reg = offset(reg, base_offset * nir_reg->num_components);
1160 if (indirect) {
1161 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1162
1163 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1164 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1165 fs_reg(multiplier));
1166 }
1167
1168 return reg;
1169 }
1170
1171 fs_reg
1172 fs_visitor::get_nir_src(nir_src src)
1173 {
1174 if (src.is_ssa) {
1175 assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
1176 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
1177 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, src.ssa->num_components);
1178
1179 for (unsigned i = 0; i < src.ssa->num_components; ++i)
1180 bld.MOV(offset(reg, i), fs_reg(load->value.i[i]));
1181
1182 return reg;
1183 } else {
1184 fs_reg reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1185 src.reg.indirect);
1186
1187 /* to avoid floating-point denorm flushing problems, set the type by
1188 * default to D - instructions that need floating point semantics will set
1189 * this to F if they need to
1190 */
1191 return retype(reg, BRW_REGISTER_TYPE_D);
1192 }
1193 }
1194
1195 fs_reg
1196 fs_visitor::get_nir_dest(nir_dest dest)
1197 {
1198 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1199 dest.reg.indirect);
1200 }
1201
1202 void
1203 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1204 unsigned wr_mask)
1205 {
1206 for (unsigned i = 0; i < 4; i++) {
1207 if (!((wr_mask >> i) & 1))
1208 continue;
1209
1210 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1211 new_inst->dst = offset(new_inst->dst, i);
1212 for (unsigned j = 0; j < new_inst->sources; j++)
1213 if (new_inst->src[j].file == GRF)
1214 new_inst->src[j] = offset(new_inst->src[j], i);
1215
1216 bld.emit(new_inst);
1217 }
1218 }
1219
1220 void
1221 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
1222 {
1223 fs_reg dest;
1224 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1225 dest = get_nir_dest(instr->dest);
1226
1227 bool has_indirect = false;
1228
1229 switch (instr->intrinsic) {
1230 case nir_intrinsic_discard:
1231 case nir_intrinsic_discard_if: {
1232 /* We track our discarded pixels in f0.1. By predicating on it, we can
1233 * update just the flag bits that aren't yet discarded. If there's no
1234 * condition, we emit a CMP of g0 != g0, so all currently executing
1235 * channels will get turned off.
1236 */
1237 fs_inst *cmp;
1238 if (instr->intrinsic == nir_intrinsic_discard_if) {
1239 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1240 fs_reg(0), BRW_CONDITIONAL_Z);
1241 } else {
1242 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1243 BRW_REGISTER_TYPE_UW));
1244 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1245 }
1246 cmp->predicate = BRW_PREDICATE_NORMAL;
1247 cmp->flag_subreg = 1;
1248
1249 if (devinfo->gen >= 6) {
1250 emit_discard_jump();
1251 }
1252 break;
1253 }
1254
1255 case nir_intrinsic_atomic_counter_inc:
1256 case nir_intrinsic_atomic_counter_dec:
1257 case nir_intrinsic_atomic_counter_read: {
1258 unsigned surf_index = prog_data->binding_table.abo_start +
1259 (unsigned) instr->const_index[0];
1260 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1261
1262 switch (instr->intrinsic) {
1263 case nir_intrinsic_atomic_counter_inc:
1264 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1265 fs_reg(), fs_reg());
1266 break;
1267 case nir_intrinsic_atomic_counter_dec:
1268 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1269 fs_reg(), fs_reg());
1270 break;
1271 case nir_intrinsic_atomic_counter_read:
1272 emit_untyped_surface_read(surf_index, dest, offset);
1273 break;
1274 default:
1275 unreachable("Unreachable");
1276 }
1277 break;
1278 }
1279
1280 case nir_intrinsic_load_front_face:
1281 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1282 *emit_frontfacing_interpolation());
1283 break;
1284
1285 case nir_intrinsic_load_vertex_id:
1286 unreachable("should be lowered by lower_vertex_id()");
1287
1288 case nir_intrinsic_load_vertex_id_zero_base: {
1289 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1290 assert(vertex_id.file != BAD_FILE);
1291 dest.type = vertex_id.type;
1292 bld.MOV(dest, vertex_id);
1293 break;
1294 }
1295
1296 case nir_intrinsic_load_base_vertex: {
1297 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1298 assert(base_vertex.file != BAD_FILE);
1299 dest.type = base_vertex.type;
1300 bld.MOV(dest, base_vertex);
1301 break;
1302 }
1303
1304 case nir_intrinsic_load_instance_id: {
1305 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1306 assert(instance_id.file != BAD_FILE);
1307 dest.type = instance_id.type;
1308 bld.MOV(dest, instance_id);
1309 break;
1310 }
1311
1312 case nir_intrinsic_load_sample_mask_in: {
1313 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1314 assert(sample_mask_in.file != BAD_FILE);
1315 dest.type = sample_mask_in.type;
1316 bld.MOV(dest, sample_mask_in);
1317 break;
1318 }
1319
1320 case nir_intrinsic_load_sample_pos: {
1321 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1322 assert(sample_pos.file != BAD_FILE);
1323 dest.type = sample_pos.type;
1324 bld.MOV(dest, sample_pos);
1325 bld.MOV(offset(dest, 1), offset(sample_pos, 1));
1326 break;
1327 }
1328
1329 case nir_intrinsic_load_sample_id: {
1330 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1331 assert(sample_id.file != BAD_FILE);
1332 dest.type = sample_id.type;
1333 bld.MOV(dest, sample_id);
1334 break;
1335 }
1336
1337 case nir_intrinsic_load_uniform_indirect:
1338 has_indirect = true;
1339 /* fallthrough */
1340 case nir_intrinsic_load_uniform: {
1341 unsigned index = instr->const_index[0];
1342
1343 fs_reg uniform_reg;
1344 if (index < num_direct_uniforms) {
1345 uniform_reg = fs_reg(UNIFORM, 0);
1346 } else {
1347 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1348 index -= num_direct_uniforms;
1349 }
1350
1351 for (unsigned j = 0; j < instr->num_components; j++) {
1352 fs_reg src = offset(retype(uniform_reg, dest.type), index);
1353 if (has_indirect)
1354 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1355 index++;
1356
1357 bld.MOV(dest, src);
1358 dest = offset(dest, 1);
1359 }
1360 break;
1361 }
1362
1363 case nir_intrinsic_load_ubo_indirect:
1364 has_indirect = true;
1365 /* fallthrough */
1366 case nir_intrinsic_load_ubo: {
1367 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1368 fs_reg surf_index;
1369
1370 if (const_index) {
1371 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1372 const_index->u[0]);
1373 } else {
1374 /* The block index is not a constant. Evaluate the index expression
1375 * per-channel and add the base UBO index; we have to select a value
1376 * from any live channel.
1377 */
1378 surf_index = vgrf(glsl_type::uint_type);
1379 bld.ADD(surf_index, get_nir_src(instr->src[0]),
1380 fs_reg(stage_prog_data->binding_table.ubo_start));
1381 bld.emit_uniformize(surf_index, surf_index);
1382
1383 /* Assume this may touch any UBO. It would be nice to provide
1384 * a tighter bound, but the array information is already lowered away.
1385 */
1386 brw_mark_surface_used(prog_data,
1387 stage_prog_data->binding_table.ubo_start +
1388 shader_prog->NumUniformBlocks - 1);
1389 }
1390
1391 if (has_indirect) {
1392 /* Turn the byte offset into a dword offset. */
1393 fs_reg base_offset = vgrf(glsl_type::int_type);
1394 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
1395 BRW_REGISTER_TYPE_D),
1396 fs_reg(2));
1397
1398 unsigned vec4_offset = instr->const_index[0] / 4;
1399 for (int i = 0; i < instr->num_components; i++)
1400 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, i), surf_index,
1401 base_offset, vec4_offset + i);
1402 } else {
1403 fs_reg packed_consts = vgrf(glsl_type::float_type);
1404 packed_consts.type = dest.type;
1405
1406 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1407 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1408 surf_index, const_offset_reg);
1409
1410 for (unsigned i = 0; i < instr->num_components; i++) {
1411 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1412
1413 /* The std140 packing rules don't allow vectors to cross 16-byte
1414 * boundaries, and a reg is 32 bytes.
1415 */
1416 assert(packed_consts.subreg_offset < 32);
1417
1418 bld.MOV(dest, packed_consts);
1419 dest = offset(dest, 1);
1420 }
1421 }
1422 break;
1423 }
1424
1425 case nir_intrinsic_load_input_indirect:
1426 has_indirect = true;
1427 /* fallthrough */
1428 case nir_intrinsic_load_input: {
1429 unsigned index = 0;
1430 for (unsigned j = 0; j < instr->num_components; j++) {
1431 fs_reg src = offset(retype(nir_inputs, dest.type),
1432 instr->const_index[0] + index);
1433 if (has_indirect)
1434 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1435 index++;
1436
1437 bld.MOV(dest, src);
1438 dest = offset(dest, 1);
1439 }
1440 break;
1441 }
1442
1443 /* Handle ARB_gpu_shader5 interpolation intrinsics
1444 *
1445 * It's worth a quick word of explanation as to why we handle the full
1446 * variable-based interpolation intrinsic rather than a lowered version
1447 * with like we do for other inputs. We have to do that because the way
1448 * we set up inputs doesn't allow us to use the already setup inputs for
1449 * interpolation. At the beginning of the shader, we go through all of
1450 * the input variables and do the initial interpolation and put it in
1451 * the nir_inputs array based on its location as determined in
1452 * nir_lower_io. If the input isn't used, dead code cleans up and
1453 * everything works fine. However, when we get to the ARB_gpu_shader5
1454 * interpolation intrinsics, we need to reinterpolate the input
1455 * differently. If we used an intrinsic that just had an index it would
1456 * only give us the offset into the nir_inputs array. However, this is
1457 * useless because that value is post-interpolation and we need
1458 * pre-interpolation. In order to get the actual location of the bits
1459 * we get from the vertex fetching hardware, we need the variable.
1460 */
1461 case nir_intrinsic_interp_var_at_centroid:
1462 case nir_intrinsic_interp_var_at_sample:
1463 case nir_intrinsic_interp_var_at_offset: {
1464 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
1465 * 8 channels at a time, same as the barycentric coords presented in
1466 * the FS payload. this requires a bit of extra work to support.
1467 */
1468 no16("interpolate_at_* not yet supported in SIMD16 mode.");
1469
1470 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1471
1472 /* For most messages, we need one reg of ignored data; the hardware
1473 * requires mlen==1 even when there is no payload. in the per-slot
1474 * offset case, we'll replace this with the proper source data.
1475 */
1476 fs_reg src = vgrf(glsl_type::float_type);
1477 int mlen = 1; /* one reg unless overriden */
1478 fs_inst *inst;
1479
1480 switch (instr->intrinsic) {
1481 case nir_intrinsic_interp_var_at_centroid:
1482 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
1483 dst_xy, src, fs_reg(0u));
1484 break;
1485
1486 case nir_intrinsic_interp_var_at_sample: {
1487 /* XXX: We should probably handle non-constant sample id's */
1488 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1489 assert(const_sample);
1490 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1491 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1492 fs_reg(msg_data));
1493 break;
1494 }
1495
1496 case nir_intrinsic_interp_var_at_offset: {
1497 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1498
1499 if (const_offset) {
1500 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1501 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1502
1503 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1504 fs_reg(off_x | (off_y << 4)));
1505 } else {
1506 src = vgrf(glsl_type::ivec2_type);
1507 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1508 BRW_REGISTER_TYPE_F);
1509 for (int i = 0; i < 2; i++) {
1510 fs_reg temp = vgrf(glsl_type::float_type);
1511 bld.MUL(temp, offset(offset_src, i), fs_reg(16.0f));
1512 fs_reg itemp = vgrf(glsl_type::int_type);
1513 bld.MOV(itemp, temp); /* float to int */
1514
1515 /* Clamp the upper end of the range to +7/16.
1516 * ARB_gpu_shader5 requires that we support a maximum offset
1517 * of +0.5, which isn't representable in a S0.4 value -- if
1518 * we didn't clamp it, we'd end up with -8/16, which is the
1519 * opposite of what the shader author wanted.
1520 *
1521 * This is legal due to ARB_gpu_shader5's quantization
1522 * rules:
1523 *
1524 * "Not all values of <offset> may be supported; x and y
1525 * offsets may be rounded to fixed-point values with the
1526 * number of fraction bits given by the
1527 * implementation-dependent constant
1528 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1529 */
1530 set_condmod(BRW_CONDITIONAL_L,
1531 bld.SEL(offset(src, i), itemp, fs_reg(7)));
1532 }
1533
1534 mlen = 2;
1535 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1536 fs_reg(0u));
1537 }
1538 break;
1539 }
1540
1541 default:
1542 unreachable("Invalid intrinsic");
1543 }
1544
1545 inst->mlen = mlen;
1546 inst->regs_written = 2; /* 2 floats per slot returned */
1547 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1548 INTERP_QUALIFIER_NOPERSPECTIVE;
1549
1550 for (unsigned j = 0; j < instr->num_components; j++) {
1551 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1552 src.type = dest.type;
1553
1554 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1555 dest = offset(dest, 1);
1556 }
1557 break;
1558 }
1559
1560 case nir_intrinsic_store_output_indirect:
1561 has_indirect = true;
1562 /* fallthrough */
1563 case nir_intrinsic_store_output: {
1564 fs_reg src = get_nir_src(instr->src[0]);
1565 unsigned index = 0;
1566 for (unsigned j = 0; j < instr->num_components; j++) {
1567 fs_reg new_dest = offset(retype(nir_outputs, src.type),
1568 instr->const_index[0] + index);
1569 if (has_indirect)
1570 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1571 index++;
1572 bld.MOV(new_dest, src);
1573 src = offset(src, 1);
1574 }
1575 break;
1576 }
1577
1578 case nir_intrinsic_barrier:
1579 emit_barrier();
1580 break;
1581
1582 default:
1583 unreachable("unknown intrinsic");
1584 }
1585 }
1586
1587 void
1588 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
1589 {
1590 unsigned sampler = instr->sampler_index;
1591 fs_reg sampler_reg(sampler);
1592
1593 /* FINISHME: We're failing to recompile our programs when the sampler is
1594 * updated. This only matters for the texture rectangle scale parameters
1595 * (pre-gen6, or gen6+ with GL_CLAMP).
1596 */
1597 int texunit = prog->SamplerUnits[sampler];
1598
1599 int gather_component = instr->component;
1600
1601 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1602
1603 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1604 instr->is_array;
1605
1606 int lod_components = 0;
1607 int UNUSED offset_components = 0;
1608
1609 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1610
1611 for (unsigned i = 0; i < instr->num_srcs; i++) {
1612 fs_reg src = get_nir_src(instr->src[i].src);
1613 switch (instr->src[i].src_type) {
1614 case nir_tex_src_bias:
1615 lod = retype(src, BRW_REGISTER_TYPE_F);
1616 break;
1617 case nir_tex_src_comparitor:
1618 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1619 break;
1620 case nir_tex_src_coord:
1621 switch (instr->op) {
1622 case nir_texop_txf:
1623 case nir_texop_txf_ms:
1624 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1625 break;
1626 default:
1627 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1628 break;
1629 }
1630 break;
1631 case nir_tex_src_ddx:
1632 lod = retype(src, BRW_REGISTER_TYPE_F);
1633 lod_components = nir_tex_instr_src_size(instr, i);
1634 break;
1635 case nir_tex_src_ddy:
1636 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1637 break;
1638 case nir_tex_src_lod:
1639 switch (instr->op) {
1640 case nir_texop_txs:
1641 lod = retype(src, BRW_REGISTER_TYPE_UD);
1642 break;
1643 case nir_texop_txf:
1644 lod = retype(src, BRW_REGISTER_TYPE_D);
1645 break;
1646 default:
1647 lod = retype(src, BRW_REGISTER_TYPE_F);
1648 break;
1649 }
1650 break;
1651 case nir_tex_src_ms_index:
1652 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1653 break;
1654 case nir_tex_src_offset:
1655 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1656 if (instr->is_array)
1657 offset_components = instr->coord_components - 1;
1658 else
1659 offset_components = instr->coord_components;
1660 break;
1661 case nir_tex_src_projector:
1662 unreachable("should be lowered");
1663
1664 case nir_tex_src_sampler_offset: {
1665 /* Figure out the highest possible sampler index and mark it as used */
1666 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1667 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1668 max_used += stage_prog_data->binding_table.gather_texture_start;
1669 } else {
1670 max_used += stage_prog_data->binding_table.texture_start;
1671 }
1672 brw_mark_surface_used(prog_data, max_used);
1673
1674 /* Emit code to evaluate the actual indexing expression */
1675 sampler_reg = vgrf(glsl_type::uint_type);
1676 bld.ADD(sampler_reg, src, fs_reg(sampler));
1677 bld.emit_uniformize(sampler_reg, sampler_reg);
1678 break;
1679 }
1680
1681 default:
1682 unreachable("unknown texture source");
1683 }
1684 }
1685
1686 if (instr->op == nir_texop_txf_ms) {
1687 if (devinfo->gen >= 7 &&
1688 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1689 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1690 } else {
1691 mcs = fs_reg(0u);
1692 }
1693 }
1694
1695 for (unsigned i = 0; i < 3; i++) {
1696 if (instr->const_offset[i] != 0) {
1697 assert(offset_components == 0);
1698 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1699 break;
1700 }
1701 }
1702
1703 enum glsl_base_type dest_base_type;
1704 switch (instr->dest_type) {
1705 case nir_type_float:
1706 dest_base_type = GLSL_TYPE_FLOAT;
1707 break;
1708 case nir_type_int:
1709 dest_base_type = GLSL_TYPE_INT;
1710 break;
1711 case nir_type_unsigned:
1712 dest_base_type = GLSL_TYPE_UINT;
1713 break;
1714 default:
1715 unreachable("bad type");
1716 }
1717
1718 const glsl_type *dest_type =
1719 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1720 1);
1721
1722 ir_texture_opcode op;
1723 switch (instr->op) {
1724 case nir_texop_lod: op = ir_lod; break;
1725 case nir_texop_query_levels: op = ir_query_levels; break;
1726 case nir_texop_tex: op = ir_tex; break;
1727 case nir_texop_tg4: op = ir_tg4; break;
1728 case nir_texop_txb: op = ir_txb; break;
1729 case nir_texop_txd: op = ir_txd; break;
1730 case nir_texop_txf: op = ir_txf; break;
1731 case nir_texop_txf_ms: op = ir_txf_ms; break;
1732 case nir_texop_txl: op = ir_txl; break;
1733 case nir_texop_txs: op = ir_txs; break;
1734 default:
1735 unreachable("unknown texture opcode");
1736 }
1737
1738 emit_texture(op, dest_type, coordinate, instr->coord_components,
1739 shadow_comparitor, lod, lod2, lod_components, sample_index,
1740 tex_offset, mcs, gather_component,
1741 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1742
1743 fs_reg dest = get_nir_dest(instr->dest);
1744 dest.type = this->result.type;
1745 unsigned num_components = nir_tex_instr_dest_size(instr);
1746 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, dest, this->result),
1747 (1 << num_components) - 1);
1748 }
1749
1750 void
1751 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
1752 {
1753 switch (instr->type) {
1754 case nir_jump_break:
1755 bld.emit(BRW_OPCODE_BREAK);
1756 break;
1757 case nir_jump_continue:
1758 bld.emit(BRW_OPCODE_CONTINUE);
1759 break;
1760 case nir_jump_return:
1761 default:
1762 unreachable("unknown jump");
1763 }
1764 }