i965/fs: Use UD type for offsets in VARYING_PULL_CONSTANT_LOAD
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182
183 nir_foreach_variable(var, &nir->uniforms) {
184 /* UBO's and atomics don't take up space in the uniform file */
185 if (var->interface_type != NULL || var->type->contains_atomic())
186 continue;
187
188 if (type_size_scalar(var->type) > 0)
189 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
190 }
191 }
192
193 static bool
194 emit_system_values_block(nir_block *block, void *void_visitor)
195 {
196 fs_visitor *v = (fs_visitor *)void_visitor;
197 fs_reg *reg;
198
199 nir_foreach_instr(block, instr) {
200 if (instr->type != nir_instr_type_intrinsic)
201 continue;
202
203 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
204 switch (intrin->intrinsic) {
205 case nir_intrinsic_load_vertex_id:
206 unreachable("should be lowered by lower_vertex_id().");
207
208 case nir_intrinsic_load_vertex_id_zero_base:
209 assert(v->stage == MESA_SHADER_VERTEX);
210 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
211 if (reg->file == BAD_FILE)
212 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
213 break;
214
215 case nir_intrinsic_load_base_vertex:
216 assert(v->stage == MESA_SHADER_VERTEX);
217 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
218 if (reg->file == BAD_FILE)
219 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
220 break;
221
222 case nir_intrinsic_load_instance_id:
223 assert(v->stage == MESA_SHADER_VERTEX);
224 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
225 if (reg->file == BAD_FILE)
226 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
227 break;
228
229 case nir_intrinsic_load_base_instance:
230 assert(v->stage == MESA_SHADER_VERTEX);
231 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
232 if (reg->file == BAD_FILE)
233 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
234 break;
235
236 case nir_intrinsic_load_draw_id:
237 assert(v->stage == MESA_SHADER_VERTEX);
238 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
239 if (reg->file == BAD_FILE)
240 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
241 break;
242
243 case nir_intrinsic_load_invocation_id:
244 assert(v->stage == MESA_SHADER_GEOMETRY);
245 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
246 if (reg->file == BAD_FILE) {
247 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
248 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
249 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
250 abld.SHR(iid, g1, brw_imm_ud(27u));
251 *reg = iid;
252 }
253 break;
254
255 case nir_intrinsic_load_sample_pos:
256 assert(v->stage == MESA_SHADER_FRAGMENT);
257 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
258 if (reg->file == BAD_FILE)
259 *reg = *v->emit_samplepos_setup();
260 break;
261
262 case nir_intrinsic_load_sample_id:
263 assert(v->stage == MESA_SHADER_FRAGMENT);
264 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
265 if (reg->file == BAD_FILE)
266 *reg = *v->emit_sampleid_setup();
267 break;
268
269 case nir_intrinsic_load_sample_mask_in:
270 assert(v->stage == MESA_SHADER_FRAGMENT);
271 assert(v->devinfo->gen >= 7);
272 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
273 if (reg->file == BAD_FILE)
274 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
275 BRW_REGISTER_TYPE_D));
276 break;
277
278 case nir_intrinsic_load_local_invocation_id:
279 assert(v->stage == MESA_SHADER_COMPUTE);
280 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
281 if (reg->file == BAD_FILE)
282 *reg = *v->emit_cs_local_invocation_id_setup();
283 break;
284
285 case nir_intrinsic_load_work_group_id:
286 assert(v->stage == MESA_SHADER_COMPUTE);
287 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
288 if (reg->file == BAD_FILE)
289 *reg = *v->emit_cs_work_group_id_setup();
290 break;
291
292 case nir_intrinsic_load_helper_invocation:
293 assert(v->stage == MESA_SHADER_FRAGMENT);
294 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
295 if (reg->file == BAD_FILE) {
296 const fs_builder abld =
297 v->bld.annotate("gl_HelperInvocation", NULL);
298
299 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
300 * pixel mask is in g1.7 of the thread payload.
301 *
302 * We move the per-channel pixel enable bit to the low bit of each
303 * channel by shifting the byte containing the pixel mask by the
304 * vector immediate 0x76543210UV.
305 *
306 * The region of <1,8,0> reads only 1 byte (the pixel masks for
307 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
308 * masks for 2 and 3) in SIMD16.
309 */
310 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
311 abld.SHR(shifted,
312 stride(byte_offset(retype(brw_vec1_grf(1, 0),
313 BRW_REGISTER_TYPE_UB), 28),
314 1, 8, 0),
315 brw_imm_uv(0x76543210));
316
317 /* A set bit in the pixel mask means the channel is enabled, but
318 * that is the opposite of gl_HelperInvocation so we need to invert
319 * the mask.
320 *
321 * The negate source-modifier bit of logical instructions on Gen8+
322 * performs 1's complement negation, so we can use that instead of
323 * a NOT instruction.
324 */
325 fs_reg inverted = negate(shifted);
326 if (v->devinfo->gen < 8) {
327 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
328 abld.NOT(inverted, shifted);
329 }
330
331 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
332 * with 1 and negating.
333 */
334 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
335 abld.AND(anded, inverted, brw_imm_uw(1));
336
337 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
338 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
339 *reg = dst;
340 }
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values()
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
356 nir_system_values[i] = fs_reg();
357 }
358
359 nir_foreach_function(nir, function) {
360 assert(strcmp(function->name, "main") == 0);
361 assert(function->impl);
362 nir_foreach_block(function->impl, emit_system_values_block, this);
363 }
364 }
365
366 void
367 fs_visitor::nir_emit_impl(nir_function_impl *impl)
368 {
369 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
370 for (unsigned i = 0; i < impl->reg_alloc; i++) {
371 nir_locals[i] = fs_reg();
372 }
373
374 foreach_list_typed(nir_register, reg, node, &impl->registers) {
375 unsigned array_elems =
376 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
377 unsigned size = array_elems * reg->num_components;
378 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
379 }
380
381 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
382 impl->ssa_alloc);
383
384 nir_emit_cf_list(&impl->body);
385 }
386
387 void
388 fs_visitor::nir_emit_cf_list(exec_list *list)
389 {
390 exec_list_validate(list);
391 foreach_list_typed(nir_cf_node, node, node, list) {
392 switch (node->type) {
393 case nir_cf_node_if:
394 nir_emit_if(nir_cf_node_as_if(node));
395 break;
396
397 case nir_cf_node_loop:
398 nir_emit_loop(nir_cf_node_as_loop(node));
399 break;
400
401 case nir_cf_node_block:
402 nir_emit_block(nir_cf_node_as_block(node));
403 break;
404
405 default:
406 unreachable("Invalid CFG node block");
407 }
408 }
409 }
410
411 void
412 fs_visitor::nir_emit_if(nir_if *if_stmt)
413 {
414 /* first, put the condition into f0 */
415 fs_inst *inst = bld.MOV(bld.null_reg_d(),
416 retype(get_nir_src(if_stmt->condition),
417 BRW_REGISTER_TYPE_D));
418 inst->conditional_mod = BRW_CONDITIONAL_NZ;
419
420 bld.IF(BRW_PREDICATE_NORMAL);
421
422 nir_emit_cf_list(&if_stmt->then_list);
423
424 /* note: if the else is empty, dead CF elimination will remove it */
425 bld.emit(BRW_OPCODE_ELSE);
426
427 nir_emit_cf_list(&if_stmt->else_list);
428
429 bld.emit(BRW_OPCODE_ENDIF);
430 }
431
432 void
433 fs_visitor::nir_emit_loop(nir_loop *loop)
434 {
435 bld.emit(BRW_OPCODE_DO);
436
437 nir_emit_cf_list(&loop->body);
438
439 bld.emit(BRW_OPCODE_WHILE);
440 }
441
442 void
443 fs_visitor::nir_emit_block(nir_block *block)
444 {
445 nir_foreach_instr(block, instr) {
446 nir_emit_instr(instr);
447 }
448 }
449
450 void
451 fs_visitor::nir_emit_instr(nir_instr *instr)
452 {
453 const fs_builder abld = bld.annotate(NULL, instr);
454
455 switch (instr->type) {
456 case nir_instr_type_alu:
457 nir_emit_alu(abld, nir_instr_as_alu(instr));
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_EVAL:
466 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_GEOMETRY:
469 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_FRAGMENT:
472 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_COMPUTE:
475 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 default:
478 unreachable("unsupported shader stage");
479 }
480 break;
481
482 case nir_instr_type_tex:
483 nir_emit_texture(abld, nir_instr_as_tex(instr));
484 break;
485
486 case nir_instr_type_load_const:
487 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
488 break;
489
490 case nir_instr_type_ssa_undef:
491 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
492 break;
493
494 case nir_instr_type_jump:
495 nir_emit_jump(abld, nir_instr_as_jump(instr));
496 break;
497
498 default:
499 unreachable("unknown instruction type");
500 }
501 }
502
503 /**
504 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
505 * match instr.
506 */
507 bool
508 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
509 const fs_reg &result)
510 {
511 if (!instr->src[0].src.is_ssa ||
512 !instr->src[0].src.ssa->parent_instr)
513 return false;
514
515 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
516 return false;
517
518 nir_alu_instr *src0 =
519 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
520
521 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
522 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
523 return false;
524
525 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
526 assert(element != NULL);
527
528 enum opcode extract_op;
529 if (src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16) {
530 assert(element->u32[0] <= 1);
531 extract_op = SHADER_OPCODE_EXTRACT_WORD;
532 } else {
533 assert(element->u32[0] <= 3);
534 extract_op = SHADER_OPCODE_EXTRACT_BYTE;
535 }
536
537 fs_reg op0 = get_nir_src(src0->src[0].src);
538 op0.type = brw_type_for_nir_type(nir_op_infos[src0->op].input_types[0]);
539 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
540
541 set_saturate(instr->dest.saturate,
542 bld.emit(extract_op, result, op0, brw_imm_ud(element->u32[0])));
543 return true;
544 }
545
546 bool
547 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
548 const fs_reg &result)
549 {
550 if (!instr->src[0].src.is_ssa ||
551 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
552 return false;
553
554 nir_intrinsic_instr *src0 =
555 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
556
557 if (src0->intrinsic != nir_intrinsic_load_front_face)
558 return false;
559
560 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
561 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
562 return false;
563
564 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
565 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
566 return false;
567
568 fs_reg tmp = vgrf(glsl_type::int_type);
569
570 if (devinfo->gen >= 6) {
571 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
572 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
573
574 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
575 *
576 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
577 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
578 *
579 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
580 *
581 * This negation looks like it's safe in practice, because bits 0:4 will
582 * surely be TRIANGLES
583 */
584
585 if (value1->f32[0] == -1.0f) {
586 g0.negate = true;
587 }
588
589 tmp.type = BRW_REGISTER_TYPE_W;
590 tmp.subreg_offset = 2;
591 tmp.stride = 2;
592
593 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
594
595 tmp.type = BRW_REGISTER_TYPE_D;
596 tmp.subreg_offset = 0;
597 tmp.stride = 1;
598 } else {
599 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
600 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
601
602 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
603 *
604 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
605 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
606 *
607 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
608 *
609 * This negation looks like it's safe in practice, because bits 0:4 will
610 * surely be TRIANGLES
611 */
612
613 if (value1->f32[0] == -1.0f) {
614 g1_6.negate = true;
615 }
616
617 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
618 }
619 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
620
621 return true;
622 }
623
624 void
625 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
626 {
627 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
628 fs_inst *inst;
629
630 fs_reg result = get_nir_dest(instr->dest.dest);
631 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
632
633 fs_reg op[4];
634 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
635 op[i] = get_nir_src(instr->src[i].src);
636 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
637 op[i].abs = instr->src[i].abs;
638 op[i].negate = instr->src[i].negate;
639 }
640
641 /* We get a bunch of mov's out of the from_ssa pass and they may still
642 * be vectorized. We'll handle them as a special-case. We'll also
643 * handle vecN here because it's basically the same thing.
644 */
645 switch (instr->op) {
646 case nir_op_imov:
647 case nir_op_fmov:
648 case nir_op_vec2:
649 case nir_op_vec3:
650 case nir_op_vec4: {
651 fs_reg temp = result;
652 bool need_extra_copy = false;
653 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
654 if (!instr->src[i].src.is_ssa &&
655 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
656 need_extra_copy = true;
657 temp = bld.vgrf(result.type, 4);
658 break;
659 }
660 }
661
662 for (unsigned i = 0; i < 4; i++) {
663 if (!(instr->dest.write_mask & (1 << i)))
664 continue;
665
666 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
667 inst = bld.MOV(offset(temp, bld, i),
668 offset(op[0], bld, instr->src[0].swizzle[i]));
669 } else {
670 inst = bld.MOV(offset(temp, bld, i),
671 offset(op[i], bld, instr->src[i].swizzle[0]));
672 }
673 inst->saturate = instr->dest.saturate;
674 }
675
676 /* In this case the source and destination registers were the same,
677 * so we need to insert an extra set of moves in order to deal with
678 * any swizzling.
679 */
680 if (need_extra_copy) {
681 for (unsigned i = 0; i < 4; i++) {
682 if (!(instr->dest.write_mask & (1 << i)))
683 continue;
684
685 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
686 }
687 }
688 return;
689 }
690 default:
691 break;
692 }
693
694 /* At this point, we have dealt with any instruction that operates on
695 * more than a single channel. Therefore, we can just adjust the source
696 * and destination registers for that channel and emit the instruction.
697 */
698 unsigned channel = 0;
699 if (nir_op_infos[instr->op].output_size == 0) {
700 /* Since NIR is doing the scalarizing for us, we should only ever see
701 * vectorized operations with a single channel.
702 */
703 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
704 channel = ffs(instr->dest.write_mask) - 1;
705
706 result = offset(result, bld, channel);
707 }
708
709 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
710 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
711 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
712 }
713
714 switch (instr->op) {
715 case nir_op_i2f:
716 case nir_op_u2f:
717 if (optimize_extract_to_float(instr, result))
718 return;
719
720 inst = bld.MOV(result, op[0]);
721 inst->saturate = instr->dest.saturate;
722 break;
723
724 case nir_op_f2i:
725 case nir_op_f2u:
726 bld.MOV(result, op[0]);
727 break;
728
729 case nir_op_fsign: {
730 /* AND(val, 0x80000000) gives the sign bit.
731 *
732 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
733 * zero.
734 */
735 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
736
737 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
738 op[0].type = BRW_REGISTER_TYPE_UD;
739 result.type = BRW_REGISTER_TYPE_UD;
740 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
741
742 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
743 inst->predicate = BRW_PREDICATE_NORMAL;
744 if (instr->dest.saturate) {
745 inst = bld.MOV(result, result);
746 inst->saturate = true;
747 }
748 break;
749 }
750
751 case nir_op_isign:
752 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
753 * -> non-negative val generates 0x00000000.
754 * Predicated OR sets 1 if val is positive.
755 */
756 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
757 bld.ASR(result, op[0], brw_imm_d(31));
758 inst = bld.OR(result, result, brw_imm_d(1));
759 inst->predicate = BRW_PREDICATE_NORMAL;
760 break;
761
762 case nir_op_frcp:
763 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
764 inst->saturate = instr->dest.saturate;
765 break;
766
767 case nir_op_fexp2:
768 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
769 inst->saturate = instr->dest.saturate;
770 break;
771
772 case nir_op_flog2:
773 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
774 inst->saturate = instr->dest.saturate;
775 break;
776
777 case nir_op_fsin:
778 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
779 inst->saturate = instr->dest.saturate;
780 break;
781
782 case nir_op_fcos:
783 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
784 inst->saturate = instr->dest.saturate;
785 break;
786
787 case nir_op_fddx:
788 if (fs_key->high_quality_derivatives) {
789 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
790 } else {
791 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
792 }
793 inst->saturate = instr->dest.saturate;
794 break;
795 case nir_op_fddx_fine:
796 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
797 inst->saturate = instr->dest.saturate;
798 break;
799 case nir_op_fddx_coarse:
800 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
801 inst->saturate = instr->dest.saturate;
802 break;
803 case nir_op_fddy:
804 if (fs_key->high_quality_derivatives) {
805 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
806 brw_imm_d(fs_key->render_to_fbo));
807 } else {
808 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
809 brw_imm_d(fs_key->render_to_fbo));
810 }
811 inst->saturate = instr->dest.saturate;
812 break;
813 case nir_op_fddy_fine:
814 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
815 brw_imm_d(fs_key->render_to_fbo));
816 inst->saturate = instr->dest.saturate;
817 break;
818 case nir_op_fddy_coarse:
819 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
820 brw_imm_d(fs_key->render_to_fbo));
821 inst->saturate = instr->dest.saturate;
822 break;
823
824 case nir_op_fadd:
825 case nir_op_iadd:
826 inst = bld.ADD(result, op[0], op[1]);
827 inst->saturate = instr->dest.saturate;
828 break;
829
830 case nir_op_fmul:
831 inst = bld.MUL(result, op[0], op[1]);
832 inst->saturate = instr->dest.saturate;
833 break;
834
835 case nir_op_imul:
836 bld.MUL(result, op[0], op[1]);
837 break;
838
839 case nir_op_imul_high:
840 case nir_op_umul_high:
841 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
842 break;
843
844 case nir_op_idiv:
845 case nir_op_udiv:
846 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
847 break;
848
849 case nir_op_uadd_carry:
850 unreachable("Should have been lowered by carry_to_arith().");
851
852 case nir_op_usub_borrow:
853 unreachable("Should have been lowered by borrow_to_arith().");
854
855 case nir_op_umod:
856 case nir_op_irem:
857 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
858 * appears that our hardware just does the right thing for signed
859 * remainder.
860 */
861 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
862 break;
863
864 case nir_op_imod: {
865 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
866 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
867
868 /* Math instructions don't support conditional mod */
869 inst = bld.MOV(bld.null_reg_d(), result);
870 inst->conditional_mod = BRW_CONDITIONAL_NZ;
871
872 /* Now, we need to determine if signs of the sources are different.
873 * When we XOR the sources, the top bit is 0 if they are the same and 1
874 * if they are different. We can then use a conditional modifier to
875 * turn that into a predicate. This leads us to an XOR.l instruction.
876 *
877 * Technically, according to the PRM, you're not allowed to use .l on a
878 * XOR instruction. However, emperical experiments and Curro's reading
879 * of the simulator source both indicate that it's safe.
880 */
881 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
882 inst = bld.XOR(tmp, op[0], op[1]);
883 inst->predicate = BRW_PREDICATE_NORMAL;
884 inst->conditional_mod = BRW_CONDITIONAL_L;
885
886 /* If the result of the initial remainder operation is non-zero and the
887 * two sources have different signs, add in a copy of op[1] to get the
888 * final integer modulus value.
889 */
890 inst = bld.ADD(result, result, op[1]);
891 inst->predicate = BRW_PREDICATE_NORMAL;
892 break;
893 }
894
895 case nir_op_flt:
896 case nir_op_ilt:
897 case nir_op_ult:
898 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
899 break;
900
901 case nir_op_fge:
902 case nir_op_ige:
903 case nir_op_uge:
904 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
905 break;
906
907 case nir_op_feq:
908 case nir_op_ieq:
909 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
910 break;
911
912 case nir_op_fne:
913 case nir_op_ine:
914 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
915 break;
916
917 case nir_op_inot:
918 if (devinfo->gen >= 8) {
919 op[0] = resolve_source_modifiers(op[0]);
920 }
921 bld.NOT(result, op[0]);
922 break;
923 case nir_op_ixor:
924 if (devinfo->gen >= 8) {
925 op[0] = resolve_source_modifiers(op[0]);
926 op[1] = resolve_source_modifiers(op[1]);
927 }
928 bld.XOR(result, op[0], op[1]);
929 break;
930 case nir_op_ior:
931 if (devinfo->gen >= 8) {
932 op[0] = resolve_source_modifiers(op[0]);
933 op[1] = resolve_source_modifiers(op[1]);
934 }
935 bld.OR(result, op[0], op[1]);
936 break;
937 case nir_op_iand:
938 if (devinfo->gen >= 8) {
939 op[0] = resolve_source_modifiers(op[0]);
940 op[1] = resolve_source_modifiers(op[1]);
941 }
942 bld.AND(result, op[0], op[1]);
943 break;
944
945 case nir_op_fdot2:
946 case nir_op_fdot3:
947 case nir_op_fdot4:
948 case nir_op_ball_fequal2:
949 case nir_op_ball_iequal2:
950 case nir_op_ball_fequal3:
951 case nir_op_ball_iequal3:
952 case nir_op_ball_fequal4:
953 case nir_op_ball_iequal4:
954 case nir_op_bany_fnequal2:
955 case nir_op_bany_inequal2:
956 case nir_op_bany_fnequal3:
957 case nir_op_bany_inequal3:
958 case nir_op_bany_fnequal4:
959 case nir_op_bany_inequal4:
960 unreachable("Lowered by nir_lower_alu_reductions");
961
962 case nir_op_fnoise1_1:
963 case nir_op_fnoise1_2:
964 case nir_op_fnoise1_3:
965 case nir_op_fnoise1_4:
966 case nir_op_fnoise2_1:
967 case nir_op_fnoise2_2:
968 case nir_op_fnoise2_3:
969 case nir_op_fnoise2_4:
970 case nir_op_fnoise3_1:
971 case nir_op_fnoise3_2:
972 case nir_op_fnoise3_3:
973 case nir_op_fnoise3_4:
974 case nir_op_fnoise4_1:
975 case nir_op_fnoise4_2:
976 case nir_op_fnoise4_3:
977 case nir_op_fnoise4_4:
978 unreachable("not reached: should be handled by lower_noise");
979
980 case nir_op_ldexp:
981 unreachable("not reached: should be handled by ldexp_to_arith()");
982
983 case nir_op_fsqrt:
984 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
985 inst->saturate = instr->dest.saturate;
986 break;
987
988 case nir_op_frsq:
989 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
990 inst->saturate = instr->dest.saturate;
991 break;
992
993 case nir_op_b2i:
994 case nir_op_b2f:
995 bld.MOV(result, negate(op[0]));
996 break;
997
998 case nir_op_f2b:
999 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1000 break;
1001 case nir_op_i2b:
1002 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1003 break;
1004
1005 case nir_op_ftrunc:
1006 inst = bld.RNDZ(result, op[0]);
1007 inst->saturate = instr->dest.saturate;
1008 break;
1009
1010 case nir_op_fceil: {
1011 op[0].negate = !op[0].negate;
1012 fs_reg temp = vgrf(glsl_type::float_type);
1013 bld.RNDD(temp, op[0]);
1014 temp.negate = true;
1015 inst = bld.MOV(result, temp);
1016 inst->saturate = instr->dest.saturate;
1017 break;
1018 }
1019 case nir_op_ffloor:
1020 inst = bld.RNDD(result, op[0]);
1021 inst->saturate = instr->dest.saturate;
1022 break;
1023 case nir_op_ffract:
1024 inst = bld.FRC(result, op[0]);
1025 inst->saturate = instr->dest.saturate;
1026 break;
1027 case nir_op_fround_even:
1028 inst = bld.RNDE(result, op[0]);
1029 inst->saturate = instr->dest.saturate;
1030 break;
1031
1032 case nir_op_fquantize2f16: {
1033 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1034 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1035 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1036
1037 /* The destination stride must be at least as big as the source stride. */
1038 tmp16.type = BRW_REGISTER_TYPE_W;
1039 tmp16.stride = 2;
1040
1041 /* Check for denormal */
1042 fs_reg abs_src0 = op[0];
1043 abs_src0.abs = true;
1044 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1045 BRW_CONDITIONAL_L);
1046 /* Get the appropriately signed zero */
1047 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1048 retype(op[0], BRW_REGISTER_TYPE_UD),
1049 brw_imm_ud(0x80000000));
1050 /* Do the actual F32 -> F16 -> F32 conversion */
1051 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1052 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1053 /* Select that or zero based on normal status */
1054 inst = bld.SEL(result, zero, tmp32);
1055 inst->predicate = BRW_PREDICATE_NORMAL;
1056 inst->saturate = instr->dest.saturate;
1057 break;
1058 }
1059
1060 case nir_op_fmin:
1061 case nir_op_imin:
1062 case nir_op_umin:
1063 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_fmax:
1068 case nir_op_imax:
1069 case nir_op_umax:
1070 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1071 inst->saturate = instr->dest.saturate;
1072 break;
1073
1074 case nir_op_pack_snorm_2x16:
1075 case nir_op_pack_snorm_4x8:
1076 case nir_op_pack_unorm_2x16:
1077 case nir_op_pack_unorm_4x8:
1078 case nir_op_unpack_snorm_2x16:
1079 case nir_op_unpack_snorm_4x8:
1080 case nir_op_unpack_unorm_2x16:
1081 case nir_op_unpack_unorm_4x8:
1082 case nir_op_unpack_half_2x16:
1083 case nir_op_pack_half_2x16:
1084 unreachable("not reached: should be handled by lower_packing_builtins");
1085
1086 case nir_op_unpack_half_2x16_split_x:
1087 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1088 inst->saturate = instr->dest.saturate;
1089 break;
1090 case nir_op_unpack_half_2x16_split_y:
1091 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1092 inst->saturate = instr->dest.saturate;
1093 break;
1094
1095 case nir_op_fpow:
1096 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1097 inst->saturate = instr->dest.saturate;
1098 break;
1099
1100 case nir_op_bitfield_reverse:
1101 bld.BFREV(result, op[0]);
1102 break;
1103
1104 case nir_op_bit_count:
1105 bld.CBIT(result, op[0]);
1106 break;
1107
1108 case nir_op_ufind_msb:
1109 case nir_op_ifind_msb: {
1110 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1111
1112 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1113 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1114 * subtract the result from 31 to convert the MSB count into an LSB count.
1115 */
1116 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1117
1118 inst = bld.ADD(result, result, brw_imm_d(31));
1119 inst->predicate = BRW_PREDICATE_NORMAL;
1120 inst->src[0].negate = true;
1121 break;
1122 }
1123
1124 case nir_op_find_lsb:
1125 bld.FBL(result, op[0]);
1126 break;
1127
1128 case nir_op_ubitfield_extract:
1129 case nir_op_ibitfield_extract:
1130 unreachable("should have been lowered");
1131 case nir_op_ubfe:
1132 case nir_op_ibfe:
1133 bld.BFE(result, op[2], op[1], op[0]);
1134 break;
1135 case nir_op_bfm:
1136 bld.BFI1(result, op[0], op[1]);
1137 break;
1138 case nir_op_bfi:
1139 bld.BFI2(result, op[0], op[1], op[2]);
1140 break;
1141
1142 case nir_op_bitfield_insert:
1143 unreachable("not reached: should have been lowered");
1144
1145 case nir_op_ishl:
1146 bld.SHL(result, op[0], op[1]);
1147 break;
1148 case nir_op_ishr:
1149 bld.ASR(result, op[0], op[1]);
1150 break;
1151 case nir_op_ushr:
1152 bld.SHR(result, op[0], op[1]);
1153 break;
1154
1155 case nir_op_pack_half_2x16_split:
1156 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1157 break;
1158
1159 case nir_op_ffma:
1160 inst = bld.MAD(result, op[2], op[1], op[0]);
1161 inst->saturate = instr->dest.saturate;
1162 break;
1163
1164 case nir_op_flrp:
1165 inst = bld.LRP(result, op[0], op[1], op[2]);
1166 inst->saturate = instr->dest.saturate;
1167 break;
1168
1169 case nir_op_bcsel:
1170 if (optimize_frontfacing_ternary(instr, result))
1171 return;
1172
1173 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1174 inst = bld.SEL(result, op[1], op[2]);
1175 inst->predicate = BRW_PREDICATE_NORMAL;
1176 break;
1177
1178 case nir_op_extract_u8:
1179 case nir_op_extract_i8: {
1180 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1181 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1182 result, op[0], brw_imm_ud(byte->u32[0]));
1183 break;
1184 }
1185
1186 case nir_op_extract_u16:
1187 case nir_op_extract_i16: {
1188 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1189 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1190 result, op[0], brw_imm_ud(word->u32[0]));
1191 break;
1192 }
1193
1194 default:
1195 unreachable("unhandled instruction");
1196 }
1197
1198 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1199 * to sign extend the low bit to 0/~0
1200 */
1201 if (devinfo->gen <= 5 &&
1202 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1203 fs_reg masked = vgrf(glsl_type::int_type);
1204 bld.AND(masked, result, brw_imm_d(1));
1205 masked.negate = true;
1206 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1207 }
1208 }
1209
1210 void
1211 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1212 nir_load_const_instr *instr)
1213 {
1214 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1215
1216 for (unsigned i = 0; i < instr->def.num_components; i++)
1217 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1218
1219 nir_ssa_values[instr->def.index] = reg;
1220 }
1221
1222 void
1223 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1224 {
1225 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1226 instr->def.num_components);
1227 }
1228
1229 fs_reg
1230 fs_visitor::get_nir_src(nir_src src)
1231 {
1232 fs_reg reg;
1233 if (src.is_ssa) {
1234 reg = nir_ssa_values[src.ssa->index];
1235 } else {
1236 /* We don't handle indirects on locals */
1237 assert(src.reg.indirect == NULL);
1238 reg = offset(nir_locals[src.reg.reg->index], bld,
1239 src.reg.base_offset * src.reg.reg->num_components);
1240 }
1241
1242 /* to avoid floating-point denorm flushing problems, set the type by
1243 * default to D - instructions that need floating point semantics will set
1244 * this to F if they need to
1245 */
1246 return retype(reg, BRW_REGISTER_TYPE_D);
1247 }
1248
1249 fs_reg
1250 fs_visitor::get_nir_dest(nir_dest dest)
1251 {
1252 if (dest.is_ssa) {
1253 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1254 dest.ssa.num_components);
1255 return nir_ssa_values[dest.ssa.index];
1256 } else {
1257 /* We don't handle indirects on locals */
1258 assert(dest.reg.indirect == NULL);
1259 return offset(nir_locals[dest.reg.reg->index], bld,
1260 dest.reg.base_offset * dest.reg.reg->num_components);
1261 }
1262 }
1263
1264 fs_reg
1265 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1266 {
1267 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1268 BRW_REGISTER_TYPE_UD);
1269
1270 for (const nir_deref *tail = &deref->deref; tail->child;
1271 tail = tail->child) {
1272 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1273 assert(tail->child->deref_type == nir_deref_type_array);
1274 const unsigned size = glsl_get_length(tail->type);
1275 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1276 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1277 image = offset(image, bld, base * element_size);
1278
1279 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1280 fs_reg tmp = vgrf(glsl_type::int_type);
1281
1282 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1283 /* IVB hangs when trying to access an invalid surface index with
1284 * the dataport. According to the spec "if the index used to
1285 * select an individual element is negative or greater than or
1286 * equal to the size of the array, the results of the operation
1287 * are undefined but may not lead to termination" -- which is one
1288 * of the possible outcomes of the hang. Clamp the index to
1289 * prevent access outside of the array bounds.
1290 */
1291 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1292 BRW_REGISTER_TYPE_UD),
1293 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1294 } else {
1295 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1296 }
1297
1298 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1299 if (image.reladdr)
1300 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1301 else
1302 image.reladdr = new(mem_ctx) fs_reg(tmp);
1303 }
1304 }
1305
1306 return image;
1307 }
1308
1309 void
1310 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1311 unsigned wr_mask)
1312 {
1313 for (unsigned i = 0; i < 4; i++) {
1314 if (!((wr_mask >> i) & 1))
1315 continue;
1316
1317 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1318 new_inst->dst = offset(new_inst->dst, bld, i);
1319 for (unsigned j = 0; j < new_inst->sources; j++)
1320 if (new_inst->src[j].file == VGRF)
1321 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1322
1323 bld.emit(new_inst);
1324 }
1325 }
1326
1327 /**
1328 * Get the matching channel register datatype for an image intrinsic of the
1329 * specified GLSL image type.
1330 */
1331 static brw_reg_type
1332 get_image_base_type(const glsl_type *type)
1333 {
1334 switch ((glsl_base_type)type->sampled_type) {
1335 case GLSL_TYPE_UINT:
1336 return BRW_REGISTER_TYPE_UD;
1337 case GLSL_TYPE_INT:
1338 return BRW_REGISTER_TYPE_D;
1339 case GLSL_TYPE_FLOAT:
1340 return BRW_REGISTER_TYPE_F;
1341 default:
1342 unreachable("Not reached.");
1343 }
1344 }
1345
1346 /**
1347 * Get the appropriate atomic op for an image atomic intrinsic.
1348 */
1349 static unsigned
1350 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1351 {
1352 switch (op) {
1353 case nir_intrinsic_image_atomic_add:
1354 return BRW_AOP_ADD;
1355 case nir_intrinsic_image_atomic_min:
1356 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1357 BRW_AOP_IMIN : BRW_AOP_UMIN);
1358 case nir_intrinsic_image_atomic_max:
1359 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1360 BRW_AOP_IMAX : BRW_AOP_UMAX);
1361 case nir_intrinsic_image_atomic_and:
1362 return BRW_AOP_AND;
1363 case nir_intrinsic_image_atomic_or:
1364 return BRW_AOP_OR;
1365 case nir_intrinsic_image_atomic_xor:
1366 return BRW_AOP_XOR;
1367 case nir_intrinsic_image_atomic_exchange:
1368 return BRW_AOP_MOV;
1369 case nir_intrinsic_image_atomic_comp_swap:
1370 return BRW_AOP_CMPWR;
1371 default:
1372 unreachable("Not reachable.");
1373 }
1374 }
1375
1376 static fs_inst *
1377 emit_pixel_interpolater_send(const fs_builder &bld,
1378 enum opcode opcode,
1379 const fs_reg &dst,
1380 const fs_reg &src,
1381 const fs_reg &desc,
1382 glsl_interp_qualifier interpolation)
1383 {
1384 fs_inst *inst;
1385 fs_reg payload;
1386 int mlen;
1387
1388 if (src.file == BAD_FILE) {
1389 /* Dummy payload */
1390 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1391 mlen = 1;
1392 } else {
1393 payload = src;
1394 mlen = 2 * bld.dispatch_width() / 8;
1395 }
1396
1397 inst = bld.emit(opcode, dst, payload, desc);
1398 inst->mlen = mlen;
1399 /* 2 floats per slot returned */
1400 inst->regs_written = 2 * bld.dispatch_width() / 8;
1401 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1402
1403 return inst;
1404 }
1405
1406 /**
1407 * Computes 1 << x, given a D/UD register containing some value x.
1408 */
1409 static fs_reg
1410 intexp2(const fs_builder &bld, const fs_reg &x)
1411 {
1412 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1413
1414 fs_reg result = bld.vgrf(x.type, 1);
1415 fs_reg one = bld.vgrf(x.type, 1);
1416
1417 bld.MOV(one, retype(brw_imm_d(1), one.type));
1418 bld.SHL(result, one, x);
1419 return result;
1420 }
1421
1422 void
1423 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1424 {
1425 assert(stage == MESA_SHADER_GEOMETRY);
1426
1427 struct brw_gs_prog_data *gs_prog_data =
1428 (struct brw_gs_prog_data *) prog_data;
1429
1430 /* We can only do EndPrimitive() functionality when the control data
1431 * consists of cut bits. Fortunately, the only time it isn't is when the
1432 * output type is points, in which case EndPrimitive() is a no-op.
1433 */
1434 if (gs_prog_data->control_data_format !=
1435 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1436 return;
1437 }
1438
1439 /* Cut bits use one bit per vertex. */
1440 assert(gs_compile->control_data_bits_per_vertex == 1);
1441
1442 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1443 vertex_count.type = BRW_REGISTER_TYPE_UD;
1444
1445 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1446 * vertex n, 0 otherwise. So all we need to do here is mark bit
1447 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1448 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1449 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1450 *
1451 * Note that if EndPrimitive() is called before emitting any vertices, this
1452 * will cause us to set bit 31 of the control_data_bits register to 1.
1453 * That's fine because:
1454 *
1455 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1456 * output, so the hardware will ignore cut bit 31.
1457 *
1458 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1459 * last vertex, so setting cut bit 31 has no effect (since the primitive
1460 * is automatically ended when the GS terminates).
1461 *
1462 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1463 * control_data_bits register to 0 when the first vertex is emitted.
1464 */
1465
1466 const fs_builder abld = bld.annotate("end primitive");
1467
1468 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1469 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1470 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1471 fs_reg mask = intexp2(abld, prev_count);
1472 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1473 * attention to the lower 5 bits of its second source argument, so on this
1474 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1475 * ((vertex_count - 1) % 32).
1476 */
1477 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1478 }
1479
1480 void
1481 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1482 {
1483 assert(stage == MESA_SHADER_GEOMETRY);
1484 assert(gs_compile->control_data_bits_per_vertex != 0);
1485
1486 struct brw_gs_prog_data *gs_prog_data =
1487 (struct brw_gs_prog_data *) prog_data;
1488
1489 const fs_builder abld = bld.annotate("emit control data bits");
1490 const fs_builder fwa_bld = bld.exec_all();
1491
1492 /* We use a single UD register to accumulate control data bits (32 bits
1493 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1494 * at a time.
1495 *
1496 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1497 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1498 * use the Channel Mask phase to enable/disable which DWord within that
1499 * group to write. (Remember, different SIMD8 channels may have emitted
1500 * different numbers of vertices, so we may need per-slot offsets.)
1501 *
1502 * Channel masking presents an annoying problem: we may have to replicate
1503 * the data up to 4 times:
1504 *
1505 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1506 *
1507 * To avoid penalizing shaders that emit a small number of vertices, we
1508 * can avoid these sometimes: if the size of the control data header is
1509 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1510 * land in the same 128-bit group, so we can skip per-slot offsets.
1511 *
1512 * Similarly, if the control data header is <= 32 bits, there is only one
1513 * DWord, so we can skip channel masks.
1514 */
1515 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1516
1517 fs_reg channel_mask, per_slot_offset;
1518
1519 if (gs_compile->control_data_header_size_bits > 32) {
1520 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1521 channel_mask = vgrf(glsl_type::uint_type);
1522 }
1523
1524 if (gs_compile->control_data_header_size_bits > 128) {
1525 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1526 per_slot_offset = vgrf(glsl_type::uint_type);
1527 }
1528
1529 /* Figure out which DWord we're trying to write to using the formula:
1530 *
1531 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1532 *
1533 * Since bits_per_vertex is a power of two, and is known at compile
1534 * time, this can be optimized to:
1535 *
1536 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1537 */
1538 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1539 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1540 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1541 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1542 unsigned log2_bits_per_vertex =
1543 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1544 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1545
1546 if (per_slot_offset.file != BAD_FILE) {
1547 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1548 * the appropriate OWord within the control data header.
1549 */
1550 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1551 }
1552
1553 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1554 * write to the appropriate DWORD within the OWORD.
1555 */
1556 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1557 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1558 channel_mask = intexp2(fwa_bld, channel);
1559 /* Then the channel masks need to be in bits 23:16. */
1560 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1561 }
1562
1563 /* Store the control data bits in the message payload and send it. */
1564 int mlen = 2;
1565 if (channel_mask.file != BAD_FILE)
1566 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1567 if (per_slot_offset.file != BAD_FILE)
1568 mlen++;
1569
1570 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1571 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1572 int i = 0;
1573 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1574 if (per_slot_offset.file != BAD_FILE)
1575 sources[i++] = per_slot_offset;
1576 if (channel_mask.file != BAD_FILE)
1577 sources[i++] = channel_mask;
1578 while (i < mlen) {
1579 sources[i++] = this->control_data_bits;
1580 }
1581
1582 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1583 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1584 inst->mlen = mlen;
1585 /* We need to increment Global Offset by 256-bits to make room for
1586 * Broadwell's extra "Vertex Count" payload at the beginning of the
1587 * URB entry. Since this is an OWord message, Global Offset is counted
1588 * in 128-bit units, so we must set it to 2.
1589 */
1590 if (gs_prog_data->static_vertex_count == -1)
1591 inst->offset = 2;
1592 }
1593
1594 void
1595 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1596 unsigned stream_id)
1597 {
1598 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1599
1600 /* Note: we are calling this *before* increasing vertex_count, so
1601 * this->vertex_count == vertex_count - 1 in the formula above.
1602 */
1603
1604 /* Stream mode uses 2 bits per vertex */
1605 assert(gs_compile->control_data_bits_per_vertex == 2);
1606
1607 /* Must be a valid stream */
1608 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1609
1610 /* Control data bits are initialized to 0 so we don't have to set any
1611 * bits when sending vertices to stream 0.
1612 */
1613 if (stream_id == 0)
1614 return;
1615
1616 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1617
1618 /* reg::sid = stream_id */
1619 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1620 abld.MOV(sid, brw_imm_ud(stream_id));
1621
1622 /* reg:shift_count = 2 * (vertex_count - 1) */
1623 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1624 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1625
1626 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1627 * attention to the lower 5 bits of its second source argument, so on this
1628 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1629 * stream_id << ((2 * (vertex_count - 1)) % 32).
1630 */
1631 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1632 abld.SHL(mask, sid, shift_count);
1633 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1634 }
1635
1636 void
1637 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1638 unsigned stream_id)
1639 {
1640 assert(stage == MESA_SHADER_GEOMETRY);
1641
1642 struct brw_gs_prog_data *gs_prog_data =
1643 (struct brw_gs_prog_data *) prog_data;
1644
1645 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1646 vertex_count.type = BRW_REGISTER_TYPE_UD;
1647
1648 /* Haswell and later hardware ignores the "Render Stream Select" bits
1649 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1650 * and instead sends all primitives down the pipeline for rasterization.
1651 * If the SOL stage is enabled, "Render Stream Select" is honored and
1652 * primitives bound to non-zero streams are discarded after stream output.
1653 *
1654 * Since the only purpose of primives sent to non-zero streams is to
1655 * be recorded by transform feedback, we can simply discard all geometry
1656 * bound to these streams when transform feedback is disabled.
1657 */
1658 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1659 return;
1660
1661 /* If we're outputting 32 control data bits or less, then we can wait
1662 * until the shader is over to output them all. Otherwise we need to
1663 * output them as we go. Now is the time to do it, since we're about to
1664 * output the vertex_count'th vertex, so it's guaranteed that the
1665 * control data bits associated with the (vertex_count - 1)th vertex are
1666 * correct.
1667 */
1668 if (gs_compile->control_data_header_size_bits > 32) {
1669 const fs_builder abld =
1670 bld.annotate("emit vertex: emit control data bits");
1671
1672 /* Only emit control data bits if we've finished accumulating a batch
1673 * of 32 bits. This is the case when:
1674 *
1675 * (vertex_count * bits_per_vertex) % 32 == 0
1676 *
1677 * (in other words, when the last 5 bits of vertex_count *
1678 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1679 * integer n (which is always the case, since bits_per_vertex is
1680 * always 1 or 2), this is equivalent to requiring that the last 5-n
1681 * bits of vertex_count are 0:
1682 *
1683 * vertex_count & (2^(5-n) - 1) == 0
1684 *
1685 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1686 * equivalent to:
1687 *
1688 * vertex_count & (32 / bits_per_vertex - 1) == 0
1689 *
1690 * TODO: If vertex_count is an immediate, we could do some of this math
1691 * at compile time...
1692 */
1693 fs_inst *inst =
1694 abld.AND(bld.null_reg_d(), vertex_count,
1695 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1696 inst->conditional_mod = BRW_CONDITIONAL_Z;
1697
1698 abld.IF(BRW_PREDICATE_NORMAL);
1699 /* If vertex_count is 0, then no control data bits have been
1700 * accumulated yet, so we can skip emitting them.
1701 */
1702 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1703 BRW_CONDITIONAL_NEQ);
1704 abld.IF(BRW_PREDICATE_NORMAL);
1705 emit_gs_control_data_bits(vertex_count);
1706 abld.emit(BRW_OPCODE_ENDIF);
1707
1708 /* Reset control_data_bits to 0 so we can start accumulating a new
1709 * batch.
1710 *
1711 * Note: in the case where vertex_count == 0, this neutralizes the
1712 * effect of any call to EndPrimitive() that the shader may have
1713 * made before outputting its first vertex.
1714 */
1715 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1716 inst->force_writemask_all = true;
1717 abld.emit(BRW_OPCODE_ENDIF);
1718 }
1719
1720 emit_urb_writes(vertex_count);
1721
1722 /* In stream mode we have to set control data bits for all vertices
1723 * unless we have disabled control data bits completely (which we do
1724 * do for GL_POINTS outputs that don't use streams).
1725 */
1726 if (gs_compile->control_data_header_size_bits > 0 &&
1727 gs_prog_data->control_data_format ==
1728 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1729 set_gs_stream_control_data_bits(vertex_count, stream_id);
1730 }
1731 }
1732
1733 void
1734 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1735 const nir_src &vertex_src,
1736 unsigned base_offset,
1737 const nir_src &offset_src,
1738 unsigned num_components)
1739 {
1740 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1741
1742 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1743 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1744 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1745
1746 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1747 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1748 * gl_PointSize is available as a GS input, however, so it must be that.
1749 */
1750 const bool is_point_size = (base_offset == 0);
1751
1752 if (offset_const != NULL && vertex_const != NULL &&
1753 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
1754 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
1755 vertex_const->u32[0] * push_reg_count;
1756 /* This input was pushed into registers. */
1757 if (is_point_size) {
1758 /* gl_PointSize comes in .w */
1759 assert(imm_offset == 0);
1760 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1761 } else {
1762 for (unsigned i = 0; i < num_components; i++) {
1763 bld.MOV(offset(dst, bld, i),
1764 fs_reg(ATTR, imm_offset + i, dst.type));
1765 }
1766 }
1767 } else {
1768 /* Resort to the pull model. Ensure the VUE handles are provided. */
1769 gs_prog_data->base.include_vue_handles = true;
1770
1771 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1772 fs_reg icp_handle;
1773
1774 if (vertex_const) {
1775 /* The vertex index is constant; just select the proper URB handle. */
1776 icp_handle =
1777 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
1778 BRW_REGISTER_TYPE_UD);
1779 } else {
1780 /* The vertex index is non-constant. We need to use indirect
1781 * addressing to fetch the proper URB handle.
1782 *
1783 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1784 * indicating that channel <n> should read the handle from
1785 * DWord <n>. We convert that to bytes by multiplying by 4.
1786 *
1787 * Next, we convert the vertex index to bytes by multiplying
1788 * by 32 (shifting by 5), and add the two together. This is
1789 * the final indirect byte offset.
1790 */
1791 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1792 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1793 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1794 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1795 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1796
1797 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1798 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1799 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1800 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1801 /* Convert vertex_index to bytes (multiply by 32) */
1802 bld.SHL(vertex_offset_bytes,
1803 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1804 brw_imm_ud(5u));
1805 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1806
1807 /* Use first_icp_handle as the base offset. There is one register
1808 * of URB handles per vertex, so inform the register allocator that
1809 * we might read up to nir->info.gs.vertices_in registers.
1810 */
1811 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1812 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1813 fs_reg(icp_offset_bytes),
1814 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1815 }
1816
1817 fs_inst *inst;
1818 if (offset_const) {
1819 /* Constant indexing - use global offset. */
1820 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1821 inst->offset = base_offset + offset_const->u32[0];
1822 inst->base_mrf = -1;
1823 inst->mlen = 1;
1824 inst->regs_written = num_components;
1825 } else {
1826 /* Indirect indexing - use per-slot offsets as well. */
1827 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1828 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1829 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1830
1831 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1832 inst->offset = base_offset;
1833 inst->base_mrf = -1;
1834 inst->mlen = 2;
1835 inst->regs_written = num_components;
1836 }
1837
1838 if (is_point_size) {
1839 /* Read the whole VUE header (because of alignment) and read .w. */
1840 fs_reg tmp = bld.vgrf(dst.type, 4);
1841 inst->dst = tmp;
1842 inst->regs_written = 4;
1843 bld.MOV(dst, offset(tmp, bld, 3));
1844 }
1845 }
1846 }
1847
1848 fs_reg
1849 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1850 {
1851 nir_src *offset_src = nir_get_io_offset_src(instr);
1852 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1853
1854 if (const_value) {
1855 /* The only constant offset we should find is 0. brw_nir.c's
1856 * add_const_offset_to_base() will fold other constant offsets
1857 * into instr->const_index[0].
1858 */
1859 assert(const_value->u32[0] == 0);
1860 return fs_reg();
1861 }
1862
1863 return get_nir_src(*offset_src);
1864 }
1865
1866 void
1867 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1868 nir_intrinsic_instr *instr)
1869 {
1870 assert(stage == MESA_SHADER_VERTEX);
1871
1872 fs_reg dest;
1873 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1874 dest = get_nir_dest(instr->dest);
1875
1876 switch (instr->intrinsic) {
1877 case nir_intrinsic_load_vertex_id:
1878 unreachable("should be lowered by lower_vertex_id()");
1879
1880 case nir_intrinsic_load_vertex_id_zero_base:
1881 case nir_intrinsic_load_base_vertex:
1882 case nir_intrinsic_load_instance_id:
1883 case nir_intrinsic_load_base_instance:
1884 case nir_intrinsic_load_draw_id: {
1885 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1886 fs_reg val = nir_system_values[sv];
1887 assert(val.file != BAD_FILE);
1888 dest.type = val.type;
1889 bld.MOV(dest, val);
1890 break;
1891 }
1892
1893 default:
1894 nir_emit_intrinsic(bld, instr);
1895 break;
1896 }
1897 }
1898
1899 void
1900 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1901 nir_intrinsic_instr *instr)
1902 {
1903 assert(stage == MESA_SHADER_TESS_EVAL);
1904 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1905
1906 fs_reg dest;
1907 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1908 dest = get_nir_dest(instr->dest);
1909
1910 switch (instr->intrinsic) {
1911 case nir_intrinsic_load_primitive_id:
1912 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1913 break;
1914 case nir_intrinsic_load_tess_coord:
1915 /* gl_TessCoord is part of the payload in g1-3 */
1916 for (unsigned i = 0; i < 3; i++) {
1917 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1918 }
1919 break;
1920
1921 case nir_intrinsic_load_tess_level_outer:
1922 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1923 * appears as a push-model input. So, we can simply use the ATTR file
1924 * rather than issuing URB read messages. The data is stored in the
1925 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1926 * .y, and so on.
1927 */
1928 switch (tes_prog_data->domain) {
1929 case BRW_TESS_DOMAIN_QUAD:
1930 for (unsigned i = 0; i < 4; i++)
1931 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1932 break;
1933 case BRW_TESS_DOMAIN_TRI:
1934 for (unsigned i = 0; i < 3; i++)
1935 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1936 break;
1937 case BRW_TESS_DOMAIN_ISOLINE:
1938 for (unsigned i = 0; i < 2; i++)
1939 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1940 break;
1941 }
1942 break;
1943
1944 case nir_intrinsic_load_tess_level_inner:
1945 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1946 * appears as a push-model input. So, we can simply use the ATTR file
1947 * rather than issuing URB read messages.
1948 */
1949 switch (tes_prog_data->domain) {
1950 case BRW_TESS_DOMAIN_QUAD:
1951 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1952 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1953 break;
1954 case BRW_TESS_DOMAIN_TRI:
1955 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1956 break;
1957 case BRW_TESS_DOMAIN_ISOLINE:
1958 /* ignore - value is undefined */
1959 break;
1960 }
1961 break;
1962
1963 case nir_intrinsic_load_input:
1964 case nir_intrinsic_load_per_vertex_input: {
1965 fs_reg indirect_offset = get_indirect_offset(instr);
1966 unsigned imm_offset = instr->const_index[0];
1967
1968 fs_inst *inst;
1969 if (indirect_offset.file == BAD_FILE) {
1970 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1971 * which is 16 registers (since each holds 2 vec4 slots).
1972 */
1973 const unsigned max_push_slots = 32;
1974 if (imm_offset < max_push_slots) {
1975 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1976 for (int i = 0; i < instr->num_components; i++) {
1977 bld.MOV(offset(dest, bld, i),
1978 component(src, 4 * (imm_offset % 2) + i));
1979 }
1980 tes_prog_data->base.urb_read_length =
1981 MAX2(tes_prog_data->base.urb_read_length,
1982 DIV_ROUND_UP(imm_offset + 1, 2));
1983 } else {
1984 /* Replicate the patch handle to all enabled channels */
1985 const fs_reg srcs[] = {
1986 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1987 };
1988 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1989 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1990
1991 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1992 inst->mlen = 1;
1993 inst->offset = imm_offset;
1994 inst->base_mrf = -1;
1995 inst->regs_written = instr->num_components;
1996 }
1997 } else {
1998 /* Indirect indexing - use per-slot offsets as well. */
1999 const fs_reg srcs[] = {
2000 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2001 indirect_offset
2002 };
2003 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2004 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2005
2006 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
2007 inst->mlen = 2;
2008 inst->offset = imm_offset;
2009 inst->base_mrf = -1;
2010 inst->regs_written = instr->num_components;
2011 }
2012 break;
2013 }
2014 default:
2015 nir_emit_intrinsic(bld, instr);
2016 break;
2017 }
2018 }
2019
2020 void
2021 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2022 nir_intrinsic_instr *instr)
2023 {
2024 assert(stage == MESA_SHADER_GEOMETRY);
2025 fs_reg indirect_offset;
2026
2027 fs_reg dest;
2028 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2029 dest = get_nir_dest(instr->dest);
2030
2031 switch (instr->intrinsic) {
2032 case nir_intrinsic_load_primitive_id:
2033 assert(stage == MESA_SHADER_GEOMETRY);
2034 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2035 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2036 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2037 break;
2038
2039 case nir_intrinsic_load_input:
2040 unreachable("load_input intrinsics are invalid for the GS stage");
2041
2042 case nir_intrinsic_load_per_vertex_input:
2043 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2044 instr->src[1], instr->num_components);
2045 break;
2046
2047 case nir_intrinsic_emit_vertex_with_counter:
2048 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2049 break;
2050
2051 case nir_intrinsic_end_primitive_with_counter:
2052 emit_gs_end_primitive(instr->src[0]);
2053 break;
2054
2055 case nir_intrinsic_set_vertex_count:
2056 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2057 break;
2058
2059 case nir_intrinsic_load_invocation_id: {
2060 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2061 assert(val.file != BAD_FILE);
2062 dest.type = val.type;
2063 bld.MOV(dest, val);
2064 break;
2065 }
2066
2067 default:
2068 nir_emit_intrinsic(bld, instr);
2069 break;
2070 }
2071 }
2072
2073 void
2074 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2075 nir_intrinsic_instr *instr)
2076 {
2077 assert(stage == MESA_SHADER_FRAGMENT);
2078 struct brw_wm_prog_data *wm_prog_data =
2079 (struct brw_wm_prog_data *) prog_data;
2080
2081 fs_reg dest;
2082 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2083 dest = get_nir_dest(instr->dest);
2084
2085 switch (instr->intrinsic) {
2086 case nir_intrinsic_load_front_face:
2087 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2088 *emit_frontfacing_interpolation());
2089 break;
2090
2091 case nir_intrinsic_load_sample_pos: {
2092 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2093 assert(sample_pos.file != BAD_FILE);
2094 dest.type = sample_pos.type;
2095 bld.MOV(dest, sample_pos);
2096 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2097 break;
2098 }
2099
2100 case nir_intrinsic_load_helper_invocation:
2101 case nir_intrinsic_load_sample_mask_in:
2102 case nir_intrinsic_load_sample_id: {
2103 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2104 fs_reg val = nir_system_values[sv];
2105 assert(val.file != BAD_FILE);
2106 dest.type = val.type;
2107 bld.MOV(dest, val);
2108 break;
2109 }
2110
2111 case nir_intrinsic_discard:
2112 case nir_intrinsic_discard_if: {
2113 /* We track our discarded pixels in f0.1. By predicating on it, we can
2114 * update just the flag bits that aren't yet discarded. If there's no
2115 * condition, we emit a CMP of g0 != g0, so all currently executing
2116 * channels will get turned off.
2117 */
2118 fs_inst *cmp;
2119 if (instr->intrinsic == nir_intrinsic_discard_if) {
2120 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2121 brw_imm_d(0), BRW_CONDITIONAL_Z);
2122 } else {
2123 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2124 BRW_REGISTER_TYPE_UW));
2125 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2126 }
2127 cmp->predicate = BRW_PREDICATE_NORMAL;
2128 cmp->flag_subreg = 1;
2129
2130 if (devinfo->gen >= 6) {
2131 emit_discard_jump();
2132 }
2133 break;
2134 }
2135
2136 case nir_intrinsic_interp_var_at_centroid:
2137 case nir_intrinsic_interp_var_at_sample:
2138 case nir_intrinsic_interp_var_at_offset: {
2139 /* Handle ARB_gpu_shader5 interpolation intrinsics
2140 *
2141 * It's worth a quick word of explanation as to why we handle the full
2142 * variable-based interpolation intrinsic rather than a lowered version
2143 * with like we do for other inputs. We have to do that because the way
2144 * we set up inputs doesn't allow us to use the already setup inputs for
2145 * interpolation. At the beginning of the shader, we go through all of
2146 * the input variables and do the initial interpolation and put it in
2147 * the nir_inputs array based on its location as determined in
2148 * nir_lower_io. If the input isn't used, dead code cleans up and
2149 * everything works fine. However, when we get to the ARB_gpu_shader5
2150 * interpolation intrinsics, we need to reinterpolate the input
2151 * differently. If we used an intrinsic that just had an index it would
2152 * only give us the offset into the nir_inputs array. However, this is
2153 * useless because that value is post-interpolation and we need
2154 * pre-interpolation. In order to get the actual location of the bits
2155 * we get from the vertex fetching hardware, we need the variable.
2156 */
2157 wm_prog_data->pulls_bary = true;
2158
2159 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2160 const glsl_interp_qualifier interpolation =
2161 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2162
2163 switch (instr->intrinsic) {
2164 case nir_intrinsic_interp_var_at_centroid:
2165 emit_pixel_interpolater_send(bld,
2166 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2167 dst_xy,
2168 fs_reg(), /* src */
2169 brw_imm_ud(0u),
2170 interpolation);
2171 break;
2172
2173 case nir_intrinsic_interp_var_at_sample: {
2174 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2175
2176 if (const_sample) {
2177 unsigned msg_data = const_sample->i32[0] << 4;
2178
2179 emit_pixel_interpolater_send(bld,
2180 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2181 dst_xy,
2182 fs_reg(), /* src */
2183 brw_imm_ud(msg_data),
2184 interpolation);
2185 } else {
2186 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2187 BRW_REGISTER_TYPE_UD);
2188
2189 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2190 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2191 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2192 bld.exec_all().group(1, 0)
2193 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2194 emit_pixel_interpolater_send(bld,
2195 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2196 dst_xy,
2197 fs_reg(), /* src */
2198 msg_data,
2199 interpolation);
2200 } else {
2201 /* Make a loop that sends a message to the pixel interpolater
2202 * for the sample number in each live channel. If there are
2203 * multiple channels with the same sample number then these
2204 * will be handled simultaneously with a single interation of
2205 * the loop.
2206 */
2207 bld.emit(BRW_OPCODE_DO);
2208
2209 /* Get the next live sample number into sample_id_reg */
2210 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2211
2212 /* Set the flag register so that we can perform the send
2213 * message on all channels that have the same sample number
2214 */
2215 bld.CMP(bld.null_reg_ud(),
2216 sample_src, sample_id,
2217 BRW_CONDITIONAL_EQ);
2218 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2219 bld.exec_all().group(1, 0)
2220 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2221 fs_inst *inst =
2222 emit_pixel_interpolater_send(bld,
2223 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2224 dst_xy,
2225 fs_reg(), /* src */
2226 msg_data,
2227 interpolation);
2228 set_predicate(BRW_PREDICATE_NORMAL, inst);
2229
2230 /* Continue the loop if there are any live channels left */
2231 set_predicate_inv(BRW_PREDICATE_NORMAL,
2232 true, /* inverse */
2233 bld.emit(BRW_OPCODE_WHILE));
2234 }
2235 }
2236
2237 break;
2238 }
2239
2240 case nir_intrinsic_interp_var_at_offset: {
2241 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2242
2243 if (const_offset) {
2244 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
2245 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
2246
2247 emit_pixel_interpolater_send(bld,
2248 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2249 dst_xy,
2250 fs_reg(), /* src */
2251 brw_imm_ud(off_x | (off_y << 4)),
2252 interpolation);
2253 } else {
2254 fs_reg src = vgrf(glsl_type::ivec2_type);
2255 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2256 BRW_REGISTER_TYPE_F);
2257 for (int i = 0; i < 2; i++) {
2258 fs_reg temp = vgrf(glsl_type::float_type);
2259 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2260 fs_reg itemp = vgrf(glsl_type::int_type);
2261 bld.MOV(itemp, temp); /* float to int */
2262
2263 /* Clamp the upper end of the range to +7/16.
2264 * ARB_gpu_shader5 requires that we support a maximum offset
2265 * of +0.5, which isn't representable in a S0.4 value -- if
2266 * we didn't clamp it, we'd end up with -8/16, which is the
2267 * opposite of what the shader author wanted.
2268 *
2269 * This is legal due to ARB_gpu_shader5's quantization
2270 * rules:
2271 *
2272 * "Not all values of <offset> may be supported; x and y
2273 * offsets may be rounded to fixed-point values with the
2274 * number of fraction bits given by the
2275 * implementation-dependent constant
2276 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2277 */
2278 set_condmod(BRW_CONDITIONAL_L,
2279 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2280 }
2281
2282 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2283 emit_pixel_interpolater_send(bld,
2284 opcode,
2285 dst_xy,
2286 src,
2287 brw_imm_ud(0u),
2288 interpolation);
2289 }
2290 break;
2291 }
2292
2293 default:
2294 unreachable("Invalid intrinsic");
2295 }
2296
2297 for (unsigned j = 0; j < instr->num_components; j++) {
2298 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2299 src.type = dest.type;
2300
2301 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2302 dest = offset(dest, bld, 1);
2303 }
2304 break;
2305 }
2306 default:
2307 nir_emit_intrinsic(bld, instr);
2308 break;
2309 }
2310 }
2311
2312 void
2313 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2314 nir_intrinsic_instr *instr)
2315 {
2316 assert(stage == MESA_SHADER_COMPUTE);
2317 struct brw_cs_prog_data *cs_prog_data =
2318 (struct brw_cs_prog_data *) prog_data;
2319
2320 fs_reg dest;
2321 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2322 dest = get_nir_dest(instr->dest);
2323
2324 switch (instr->intrinsic) {
2325 case nir_intrinsic_barrier:
2326 emit_barrier();
2327 cs_prog_data->uses_barrier = true;
2328 break;
2329
2330 case nir_intrinsic_load_local_invocation_id:
2331 case nir_intrinsic_load_work_group_id: {
2332 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2333 fs_reg val = nir_system_values[sv];
2334 assert(val.file != BAD_FILE);
2335 dest.type = val.type;
2336 for (unsigned i = 0; i < 3; i++)
2337 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2338 break;
2339 }
2340
2341 case nir_intrinsic_load_num_work_groups: {
2342 const unsigned surface =
2343 cs_prog_data->binding_table.work_groups_start;
2344
2345 cs_prog_data->uses_num_work_groups = true;
2346
2347 fs_reg surf_index = brw_imm_ud(surface);
2348 brw_mark_surface_used(prog_data, surface);
2349
2350 /* Read the 3 GLuint components of gl_NumWorkGroups */
2351 for (unsigned i = 0; i < 3; i++) {
2352 fs_reg read_result =
2353 emit_untyped_read(bld, surf_index,
2354 brw_imm_ud(i << 2),
2355 1 /* dims */, 1 /* size */,
2356 BRW_PREDICATE_NONE);
2357 read_result.type = dest.type;
2358 bld.MOV(dest, read_result);
2359 dest = offset(dest, bld, 1);
2360 }
2361 break;
2362 }
2363
2364 case nir_intrinsic_shared_atomic_add:
2365 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2366 break;
2367 case nir_intrinsic_shared_atomic_imin:
2368 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2369 break;
2370 case nir_intrinsic_shared_atomic_umin:
2371 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2372 break;
2373 case nir_intrinsic_shared_atomic_imax:
2374 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2375 break;
2376 case nir_intrinsic_shared_atomic_umax:
2377 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2378 break;
2379 case nir_intrinsic_shared_atomic_and:
2380 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2381 break;
2382 case nir_intrinsic_shared_atomic_or:
2383 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2384 break;
2385 case nir_intrinsic_shared_atomic_xor:
2386 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2387 break;
2388 case nir_intrinsic_shared_atomic_exchange:
2389 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2390 break;
2391 case nir_intrinsic_shared_atomic_comp_swap:
2392 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2393 break;
2394
2395 case nir_intrinsic_load_shared: {
2396 assert(devinfo->gen >= 7);
2397
2398 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2399
2400 /* Get the offset to read from */
2401 fs_reg offset_reg;
2402 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2403 if (const_offset) {
2404 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
2405 } else {
2406 offset_reg = vgrf(glsl_type::uint_type);
2407 bld.ADD(offset_reg,
2408 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2409 brw_imm_ud(instr->const_index[0]));
2410 }
2411
2412 /* Read the vector */
2413 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2414 1 /* dims */,
2415 instr->num_components,
2416 BRW_PREDICATE_NONE);
2417 read_result.type = dest.type;
2418 for (int i = 0; i < instr->num_components; i++)
2419 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2420
2421 break;
2422 }
2423
2424 case nir_intrinsic_store_shared: {
2425 assert(devinfo->gen >= 7);
2426
2427 /* Block index */
2428 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2429
2430 /* Value */
2431 fs_reg val_reg = get_nir_src(instr->src[0]);
2432
2433 /* Writemask */
2434 unsigned writemask = instr->const_index[1];
2435
2436 /* Combine groups of consecutive enabled channels in one write
2437 * message. We use ffs to find the first enabled channel and then ffs on
2438 * the bit-inverse, down-shifted writemask to determine the length of
2439 * the block of enabled bits.
2440 */
2441 while (writemask) {
2442 unsigned first_component = ffs(writemask) - 1;
2443 unsigned length = ffs(~(writemask >> first_component)) - 1;
2444 fs_reg offset_reg;
2445
2446 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2447 if (const_offset) {
2448 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
2449 4 * first_component);
2450 } else {
2451 offset_reg = vgrf(glsl_type::uint_type);
2452 bld.ADD(offset_reg,
2453 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2454 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2455 }
2456
2457 emit_untyped_write(bld, surf_index, offset_reg,
2458 offset(val_reg, bld, first_component),
2459 1 /* dims */, length,
2460 BRW_PREDICATE_NONE);
2461
2462 /* Clear the bits in the writemask that we just wrote, then try
2463 * again to see if more channels are left.
2464 */
2465 writemask &= (15 << (first_component + length));
2466 }
2467
2468 break;
2469 }
2470
2471 default:
2472 nir_emit_intrinsic(bld, instr);
2473 break;
2474 }
2475 }
2476
2477 void
2478 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2479 {
2480 fs_reg dest;
2481 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2482 dest = get_nir_dest(instr->dest);
2483
2484 switch (instr->intrinsic) {
2485 case nir_intrinsic_atomic_counter_inc:
2486 case nir_intrinsic_atomic_counter_dec:
2487 case nir_intrinsic_atomic_counter_read: {
2488 /* Get the arguments of the atomic intrinsic. */
2489 const fs_reg offset = get_nir_src(instr->src[0]);
2490 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2491 instr->const_index[0]);
2492 fs_reg tmp;
2493
2494 /* Emit a surface read or atomic op. */
2495 switch (instr->intrinsic) {
2496 case nir_intrinsic_atomic_counter_read:
2497 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2498 break;
2499
2500 case nir_intrinsic_atomic_counter_inc:
2501 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2502 fs_reg(), 1, 1, BRW_AOP_INC);
2503 break;
2504
2505 case nir_intrinsic_atomic_counter_dec:
2506 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2507 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2508 break;
2509
2510 default:
2511 unreachable("Unreachable");
2512 }
2513
2514 /* Assign the result. */
2515 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2516
2517 /* Mark the surface as used. */
2518 brw_mark_surface_used(stage_prog_data, surface);
2519 break;
2520 }
2521
2522 case nir_intrinsic_image_load:
2523 case nir_intrinsic_image_store:
2524 case nir_intrinsic_image_atomic_add:
2525 case nir_intrinsic_image_atomic_min:
2526 case nir_intrinsic_image_atomic_max:
2527 case nir_intrinsic_image_atomic_and:
2528 case nir_intrinsic_image_atomic_or:
2529 case nir_intrinsic_image_atomic_xor:
2530 case nir_intrinsic_image_atomic_exchange:
2531 case nir_intrinsic_image_atomic_comp_swap: {
2532 using namespace image_access;
2533
2534 /* Get the referenced image variable and type. */
2535 const nir_variable *var = instr->variables[0]->var;
2536 const glsl_type *type = var->type->without_array();
2537 const brw_reg_type base_type = get_image_base_type(type);
2538
2539 /* Get some metadata from the image intrinsic. */
2540 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2541 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2542 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2543 const mesa_format format =
2544 (var->data.image.write_only ? MESA_FORMAT_NONE :
2545 _mesa_get_shader_image_format(var->data.image.format));
2546
2547 /* Get the arguments of the image intrinsic. */
2548 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2549 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2550 BRW_REGISTER_TYPE_UD);
2551 const fs_reg src0 = (info->num_srcs >= 3 ?
2552 retype(get_nir_src(instr->src[2]), base_type) :
2553 fs_reg());
2554 const fs_reg src1 = (info->num_srcs >= 4 ?
2555 retype(get_nir_src(instr->src[3]), base_type) :
2556 fs_reg());
2557 fs_reg tmp;
2558
2559 /* Emit an image load, store or atomic op. */
2560 if (instr->intrinsic == nir_intrinsic_image_load)
2561 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2562
2563 else if (instr->intrinsic == nir_intrinsic_image_store)
2564 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2565
2566 else
2567 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2568 surf_dims, arr_dims, info->dest_components,
2569 get_image_atomic_op(instr->intrinsic, type));
2570
2571 /* Assign the result. */
2572 for (unsigned c = 0; c < info->dest_components; ++c)
2573 bld.MOV(offset(retype(dest, base_type), bld, c),
2574 offset(tmp, bld, c));
2575 break;
2576 }
2577
2578 case nir_intrinsic_memory_barrier_atomic_counter:
2579 case nir_intrinsic_memory_barrier_buffer:
2580 case nir_intrinsic_memory_barrier_image:
2581 case nir_intrinsic_memory_barrier: {
2582 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2583 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2584 ->regs_written = 2;
2585 break;
2586 }
2587
2588 case nir_intrinsic_group_memory_barrier:
2589 case nir_intrinsic_memory_barrier_shared:
2590 /* We treat these workgroup-level barriers as no-ops. This should be
2591 * safe at present and as long as:
2592 *
2593 * - Memory access instructions are not subsequently reordered by the
2594 * compiler back-end.
2595 *
2596 * - All threads from a given compute shader workgroup fit within a
2597 * single subslice and therefore talk to the same HDC shared unit
2598 * what supposedly guarantees ordering and coherency between threads
2599 * from the same workgroup. This may change in the future when we
2600 * start splitting workgroups across multiple subslices.
2601 *
2602 * - The context is not in fault-and-stream mode, which could cause
2603 * memory transactions (including to SLM) prior to the barrier to be
2604 * replayed after the barrier if a pagefault occurs. This shouldn't
2605 * be a problem up to and including SKL because fault-and-stream is
2606 * not usable due to hardware issues, but that's likely to change in
2607 * the future.
2608 */
2609 break;
2610
2611 case nir_intrinsic_shader_clock: {
2612 /* We cannot do anything if there is an event, so ignore it for now */
2613 fs_reg shader_clock = get_timestamp(bld);
2614 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2615
2616 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2617 break;
2618 }
2619
2620 case nir_intrinsic_image_size: {
2621 /* Get the referenced image variable and type. */
2622 const nir_variable *var = instr->variables[0]->var;
2623 const glsl_type *type = var->type->without_array();
2624
2625 /* Get the size of the image. */
2626 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2627 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2628
2629 /* For 1DArray image types, the array index is stored in the Z component.
2630 * Fix this by swizzling the Z component to the Y component.
2631 */
2632 const bool is_1d_array_image =
2633 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2634 type->sampler_array;
2635
2636 /* For CubeArray images, we should count the number of cubes instead
2637 * of the number of faces. Fix it by dividing the (Z component) by 6.
2638 */
2639 const bool is_cube_array_image =
2640 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2641 type->sampler_array;
2642
2643 /* Copy all the components. */
2644 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2645 for (unsigned c = 0; c < info->dest_components; ++c) {
2646 if ((int)c >= type->coordinate_components()) {
2647 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2648 brw_imm_d(1));
2649 } else if (c == 1 && is_1d_array_image) {
2650 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2651 offset(size, bld, 2));
2652 } else if (c == 2 && is_cube_array_image) {
2653 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2654 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2655 offset(size, bld, c), brw_imm_d(6));
2656 } else {
2657 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2658 offset(size, bld, c));
2659 }
2660 }
2661
2662 break;
2663 }
2664
2665 case nir_intrinsic_image_samples:
2666 /* The driver does not support multi-sampled images. */
2667 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2668 break;
2669
2670 case nir_intrinsic_load_uniform: {
2671 /* Offsets are in bytes but they should always be multiples of 4 */
2672 assert(instr->const_index[0] % 4 == 0);
2673
2674 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2675
2676 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2677 if (const_offset) {
2678 /* Offsets are in bytes but they should always be multiples of 4 */
2679 assert(const_offset->u32[0] % 4 == 0);
2680 src.reg_offset = const_offset->u32[0] / 4;
2681 } else {
2682 src.reladdr = new(mem_ctx) fs_reg(retype(get_nir_src(instr->src[0]),
2683 BRW_REGISTER_TYPE_UD));
2684 }
2685
2686 for (unsigned j = 0; j < instr->num_components; j++) {
2687 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2688 }
2689 break;
2690 }
2691
2692 case nir_intrinsic_load_ubo: {
2693 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2694 fs_reg surf_index;
2695
2696 if (const_index) {
2697 const unsigned index = stage_prog_data->binding_table.ubo_start +
2698 const_index->u32[0];
2699 surf_index = brw_imm_ud(index);
2700 brw_mark_surface_used(prog_data, index);
2701 } else {
2702 /* The block index is not a constant. Evaluate the index expression
2703 * per-channel and add the base UBO index; we have to select a value
2704 * from any live channel.
2705 */
2706 surf_index = vgrf(glsl_type::uint_type);
2707 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2708 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2709 surf_index = bld.emit_uniformize(surf_index);
2710
2711 /* Assume this may touch any UBO. It would be nice to provide
2712 * a tighter bound, but the array information is already lowered away.
2713 */
2714 brw_mark_surface_used(prog_data,
2715 stage_prog_data->binding_table.ubo_start +
2716 nir->info.num_ubos - 1);
2717 }
2718
2719 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2720 if (const_offset == NULL) {
2721 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2722 BRW_REGISTER_TYPE_UD);
2723
2724 for (int i = 0; i < instr->num_components; i++)
2725 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2726 base_offset, i * 4);
2727 } else {
2728 fs_reg packed_consts = vgrf(glsl_type::float_type);
2729 packed_consts.type = dest.type;
2730
2731 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u32[0] & ~15);
2732 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2733 surf_index, const_offset_reg);
2734
2735 for (unsigned i = 0; i < instr->num_components; i++) {
2736 packed_consts.set_smear(const_offset->u32[0] % 16 / 4 + i);
2737
2738 /* The std140 packing rules don't allow vectors to cross 16-byte
2739 * boundaries, and a reg is 32 bytes.
2740 */
2741 assert(packed_consts.subreg_offset < 32);
2742
2743 bld.MOV(dest, packed_consts);
2744 dest = offset(dest, bld, 1);
2745 }
2746 }
2747 break;
2748 }
2749
2750 case nir_intrinsic_load_ssbo: {
2751 assert(devinfo->gen >= 7);
2752
2753 nir_const_value *const_uniform_block =
2754 nir_src_as_const_value(instr->src[0]);
2755
2756 fs_reg surf_index;
2757 if (const_uniform_block) {
2758 unsigned index = stage_prog_data->binding_table.ssbo_start +
2759 const_uniform_block->u32[0];
2760 surf_index = brw_imm_ud(index);
2761 brw_mark_surface_used(prog_data, index);
2762 } else {
2763 surf_index = vgrf(glsl_type::uint_type);
2764 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2765 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2766
2767 /* Assume this may touch any UBO. It would be nice to provide
2768 * a tighter bound, but the array information is already lowered away.
2769 */
2770 brw_mark_surface_used(prog_data,
2771 stage_prog_data->binding_table.ssbo_start +
2772 nir->info.num_ssbos - 1);
2773 }
2774
2775 fs_reg offset_reg;
2776 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2777 if (const_offset) {
2778 offset_reg = brw_imm_ud(const_offset->u32[0]);
2779 } else {
2780 offset_reg = get_nir_src(instr->src[1]);
2781 }
2782
2783 /* Read the vector */
2784 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2785 1 /* dims */,
2786 instr->num_components,
2787 BRW_PREDICATE_NONE);
2788 read_result.type = dest.type;
2789 for (int i = 0; i < instr->num_components; i++)
2790 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2791
2792 break;
2793 }
2794
2795 case nir_intrinsic_load_input: {
2796 fs_reg src;
2797 if (stage == MESA_SHADER_VERTEX) {
2798 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2799 } else {
2800 src = offset(retype(nir_inputs, dest.type), bld,
2801 instr->const_index[0]);
2802 }
2803
2804 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2805 assert(const_offset && "Indirect input loads not allowed");
2806 src = offset(src, bld, const_offset->u32[0]);
2807
2808 for (unsigned j = 0; j < instr->num_components; j++) {
2809 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2810 }
2811 break;
2812 }
2813
2814 case nir_intrinsic_store_ssbo: {
2815 assert(devinfo->gen >= 7);
2816
2817 /* Block index */
2818 fs_reg surf_index;
2819 nir_const_value *const_uniform_block =
2820 nir_src_as_const_value(instr->src[1]);
2821 if (const_uniform_block) {
2822 unsigned index = stage_prog_data->binding_table.ssbo_start +
2823 const_uniform_block->u32[0];
2824 surf_index = brw_imm_ud(index);
2825 brw_mark_surface_used(prog_data, index);
2826 } else {
2827 surf_index = vgrf(glsl_type::uint_type);
2828 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2829 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2830
2831 brw_mark_surface_used(prog_data,
2832 stage_prog_data->binding_table.ssbo_start +
2833 nir->info.num_ssbos - 1);
2834 }
2835
2836 /* Value */
2837 fs_reg val_reg = get_nir_src(instr->src[0]);
2838
2839 /* Writemask */
2840 unsigned writemask = instr->const_index[0];
2841
2842 /* Combine groups of consecutive enabled channels in one write
2843 * message. We use ffs to find the first enabled channel and then ffs on
2844 * the bit-inverse, down-shifted writemask to determine the length of
2845 * the block of enabled bits.
2846 */
2847 while (writemask) {
2848 unsigned first_component = ffs(writemask) - 1;
2849 unsigned length = ffs(~(writemask >> first_component)) - 1;
2850
2851 fs_reg offset_reg;
2852 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2853 if (const_offset) {
2854 offset_reg = brw_imm_ud(const_offset->u32[0] + 4 * first_component);
2855 } else {
2856 offset_reg = vgrf(glsl_type::uint_type);
2857 bld.ADD(offset_reg,
2858 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2859 brw_imm_ud(4 * first_component));
2860 }
2861
2862 emit_untyped_write(bld, surf_index, offset_reg,
2863 offset(val_reg, bld, first_component),
2864 1 /* dims */, length,
2865 BRW_PREDICATE_NONE);
2866
2867 /* Clear the bits in the writemask that we just wrote, then try
2868 * again to see if more channels are left.
2869 */
2870 writemask &= (15 << (first_component + length));
2871 }
2872 break;
2873 }
2874
2875 case nir_intrinsic_store_output: {
2876 fs_reg src = get_nir_src(instr->src[0]);
2877 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2878 instr->const_index[0]);
2879
2880 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2881 assert(const_offset && "Indirect output stores not allowed");
2882 new_dest = offset(new_dest, bld, const_offset->u32[0]);
2883
2884 for (unsigned j = 0; j < instr->num_components; j++) {
2885 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2886 }
2887 break;
2888 }
2889
2890 case nir_intrinsic_ssbo_atomic_add:
2891 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2892 break;
2893 case nir_intrinsic_ssbo_atomic_imin:
2894 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2895 break;
2896 case nir_intrinsic_ssbo_atomic_umin:
2897 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2898 break;
2899 case nir_intrinsic_ssbo_atomic_imax:
2900 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2901 break;
2902 case nir_intrinsic_ssbo_atomic_umax:
2903 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2904 break;
2905 case nir_intrinsic_ssbo_atomic_and:
2906 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2907 break;
2908 case nir_intrinsic_ssbo_atomic_or:
2909 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2910 break;
2911 case nir_intrinsic_ssbo_atomic_xor:
2912 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2913 break;
2914 case nir_intrinsic_ssbo_atomic_exchange:
2915 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2916 break;
2917 case nir_intrinsic_ssbo_atomic_comp_swap:
2918 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2919 break;
2920
2921 case nir_intrinsic_get_buffer_size: {
2922 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2923 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
2924 int reg_width = dispatch_width / 8;
2925
2926 /* Set LOD = 0 */
2927 fs_reg source = brw_imm_d(0);
2928
2929 int mlen = 1 * reg_width;
2930
2931 /* A resinfo's sampler message is used to get the buffer size.
2932 * The SIMD8's writeback message consists of four registers and
2933 * SIMD16's writeback message consists of 8 destination registers
2934 * (two per each component), although we are only interested on the
2935 * first component, where resinfo returns the buffer size for
2936 * SURFTYPE_BUFFER.
2937 */
2938 int regs_written = 4 * mlen;
2939 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2940 BRW_REGISTER_TYPE_UD);
2941 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2942 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2943 BRW_REGISTER_TYPE_UD);
2944 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2945 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2946 src_payload, brw_imm_ud(index));
2947 inst->header_size = 0;
2948 inst->mlen = mlen;
2949 inst->regs_written = regs_written;
2950 bld.emit(inst);
2951 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2952
2953 brw_mark_surface_used(prog_data, index);
2954 break;
2955 }
2956
2957 default:
2958 unreachable("unknown intrinsic");
2959 }
2960 }
2961
2962 void
2963 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2964 int op, nir_intrinsic_instr *instr)
2965 {
2966 fs_reg dest;
2967 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2968 dest = get_nir_dest(instr->dest);
2969
2970 fs_reg surface;
2971 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2972 if (const_surface) {
2973 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2974 const_surface->u32[0];
2975 surface = brw_imm_ud(surf_index);
2976 brw_mark_surface_used(prog_data, surf_index);
2977 } else {
2978 surface = vgrf(glsl_type::uint_type);
2979 bld.ADD(surface, get_nir_src(instr->src[0]),
2980 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2981
2982 /* Assume this may touch any SSBO. This is the same we do for other
2983 * UBO/SSBO accesses with non-constant surface.
2984 */
2985 brw_mark_surface_used(prog_data,
2986 stage_prog_data->binding_table.ssbo_start +
2987 nir->info.num_ssbos - 1);
2988 }
2989
2990 fs_reg offset = get_nir_src(instr->src[1]);
2991 fs_reg data1 = get_nir_src(instr->src[2]);
2992 fs_reg data2;
2993 if (op == BRW_AOP_CMPWR)
2994 data2 = get_nir_src(instr->src[3]);
2995
2996 /* Emit the actual atomic operation operation */
2997
2998 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
2999 data1, data2,
3000 1 /* dims */, 1 /* rsize */,
3001 op,
3002 BRW_PREDICATE_NONE);
3003 dest.type = atomic_result.type;
3004 bld.MOV(dest, atomic_result);
3005 }
3006
3007 void
3008 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
3009 int op, nir_intrinsic_instr *instr)
3010 {
3011 fs_reg dest;
3012 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3013 dest = get_nir_dest(instr->dest);
3014
3015 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
3016 fs_reg offset = get_nir_src(instr->src[0]);
3017 fs_reg data1 = get_nir_src(instr->src[1]);
3018 fs_reg data2;
3019 if (op == BRW_AOP_CMPWR)
3020 data2 = get_nir_src(instr->src[2]);
3021
3022 /* Emit the actual atomic operation operation */
3023
3024 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3025 data1, data2,
3026 1 /* dims */, 1 /* rsize */,
3027 op,
3028 BRW_PREDICATE_NONE);
3029 dest.type = atomic_result.type;
3030 bld.MOV(dest, atomic_result);
3031 }
3032
3033 void
3034 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3035 {
3036 unsigned texture = instr->texture_index;
3037 unsigned sampler = instr->sampler_index;
3038 fs_reg texture_reg(brw_imm_ud(texture));
3039 fs_reg sampler_reg(brw_imm_ud(sampler));
3040
3041 int gather_component = instr->component;
3042
3043 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
3044 instr->is_array;
3045
3046 int lod_components = 0;
3047
3048 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
3049
3050 /* The hardware requires a LOD for buffer textures */
3051 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3052 lod = brw_imm_d(0);
3053
3054 for (unsigned i = 0; i < instr->num_srcs; i++) {
3055 fs_reg src = get_nir_src(instr->src[i].src);
3056 switch (instr->src[i].src_type) {
3057 case nir_tex_src_bias:
3058 lod = retype(src, BRW_REGISTER_TYPE_F);
3059 break;
3060 case nir_tex_src_comparitor:
3061 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
3062 break;
3063 case nir_tex_src_coord:
3064 switch (instr->op) {
3065 case nir_texop_txf:
3066 case nir_texop_txf_ms:
3067 case nir_texop_samples_identical:
3068 coordinate = retype(src, BRW_REGISTER_TYPE_D);
3069 break;
3070 default:
3071 coordinate = retype(src, BRW_REGISTER_TYPE_F);
3072 break;
3073 }
3074 break;
3075 case nir_tex_src_ddx:
3076 lod = retype(src, BRW_REGISTER_TYPE_F);
3077 lod_components = nir_tex_instr_src_size(instr, i);
3078 break;
3079 case nir_tex_src_ddy:
3080 lod2 = retype(src, BRW_REGISTER_TYPE_F);
3081 break;
3082 case nir_tex_src_lod:
3083 switch (instr->op) {
3084 case nir_texop_txs:
3085 lod = retype(src, BRW_REGISTER_TYPE_UD);
3086 break;
3087 case nir_texop_txf:
3088 lod = retype(src, BRW_REGISTER_TYPE_D);
3089 break;
3090 default:
3091 lod = retype(src, BRW_REGISTER_TYPE_F);
3092 break;
3093 }
3094 break;
3095 case nir_tex_src_ms_index:
3096 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
3097 break;
3098
3099 case nir_tex_src_offset: {
3100 nir_const_value *const_offset =
3101 nir_src_as_const_value(instr->src[i].src);
3102 if (const_offset) {
3103 tex_offset = brw_imm_ud(brw_texture_offset(const_offset->i32, 3));
3104 } else {
3105 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
3106 }
3107 break;
3108 }
3109
3110 case nir_tex_src_projector:
3111 unreachable("should be lowered");
3112
3113 case nir_tex_src_texture_offset: {
3114 /* Figure out the highest possible texture index and mark it as used */
3115 uint32_t max_used = texture + instr->texture_array_size - 1;
3116 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3117 max_used += stage_prog_data->binding_table.gather_texture_start;
3118 } else {
3119 max_used += stage_prog_data->binding_table.texture_start;
3120 }
3121 brw_mark_surface_used(prog_data, max_used);
3122
3123 /* Emit code to evaluate the actual indexing expression */
3124 texture_reg = vgrf(glsl_type::uint_type);
3125 bld.ADD(texture_reg, src, brw_imm_ud(texture));
3126 texture_reg = bld.emit_uniformize(texture_reg);
3127 break;
3128 }
3129
3130 case nir_tex_src_sampler_offset: {
3131 /* Emit code to evaluate the actual indexing expression */
3132 sampler_reg = vgrf(glsl_type::uint_type);
3133 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3134 sampler_reg = bld.emit_uniformize(sampler_reg);
3135 break;
3136 }
3137
3138 default:
3139 unreachable("unknown texture source");
3140 }
3141 }
3142
3143 if (instr->op == nir_texop_txf_ms ||
3144 instr->op == nir_texop_samples_identical) {
3145 if (devinfo->gen >= 7 &&
3146 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
3147 mcs = emit_mcs_fetch(coordinate, instr->coord_components, texture_reg);
3148 } else {
3149 mcs = brw_imm_ud(0u);
3150 }
3151 }
3152
3153 enum glsl_base_type dest_base_type =
3154 brw_glsl_base_type_for_nir_type (instr->dest_type);
3155
3156 const glsl_type *dest_type =
3157 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3158 1);
3159
3160 ir_texture_opcode op;
3161 switch (instr->op) {
3162 case nir_texop_lod: op = ir_lod; break;
3163 case nir_texop_query_levels: op = ir_query_levels; break;
3164 case nir_texop_tex: op = ir_tex; break;
3165 case nir_texop_tg4: op = ir_tg4; break;
3166 case nir_texop_txb: op = ir_txb; break;
3167 case nir_texop_txd: op = ir_txd; break;
3168 case nir_texop_txf: op = ir_txf; break;
3169 case nir_texop_txf_ms: op = ir_txf_ms; break;
3170 case nir_texop_txl: op = ir_txl; break;
3171 case nir_texop_txs: op = ir_txs; break;
3172 case nir_texop_texture_samples: {
3173 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3174 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3175 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3176 texture_reg, texture_reg);
3177 inst->mlen = 1;
3178 inst->header_size = 1;
3179 inst->base_mrf = -1;
3180 return;
3181 }
3182 case nir_texop_samples_identical: op = ir_samples_identical; break;
3183 default:
3184 unreachable("unknown texture opcode");
3185 }
3186
3187 emit_texture(op, dest_type, coordinate, instr->coord_components,
3188 shadow_comparitor, lod, lod2, lod_components, sample_index,
3189 tex_offset, mcs, gather_component, is_cube_array,
3190 texture, texture_reg, sampler, sampler_reg);
3191
3192 fs_reg dest = get_nir_dest(instr->dest);
3193 dest.type = this->result.type;
3194 unsigned num_components = nir_tex_instr_dest_size(instr);
3195 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3196 dest, this->result),
3197 (1 << num_components) - 1);
3198 }
3199
3200 void
3201 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3202 {
3203 switch (instr->type) {
3204 case nir_jump_break:
3205 bld.emit(BRW_OPCODE_BREAK);
3206 break;
3207 case nir_jump_continue:
3208 bld.emit(BRW_OPCODE_CONTINUE);
3209 break;
3210 case nir_jump_return:
3211 default:
3212 unreachable("unknown jump");
3213 }
3214 }