Merge remote-tracking branch 'origin/master' into vulkan
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182 }
183
184 static bool
185 emit_system_values_block(nir_block *block, void *void_visitor)
186 {
187 fs_visitor *v = (fs_visitor *)void_visitor;
188 fs_reg *reg;
189
190 nir_foreach_instr(block, instr) {
191 if (instr->type != nir_instr_type_intrinsic)
192 continue;
193
194 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
195 switch (intrin->intrinsic) {
196 case nir_intrinsic_load_vertex_id:
197 unreachable("should be lowered by lower_vertex_id().");
198
199 case nir_intrinsic_load_vertex_id_zero_base:
200 assert(v->stage == MESA_SHADER_VERTEX);
201 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
202 if (reg->file == BAD_FILE)
203 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
204 break;
205
206 case nir_intrinsic_load_base_vertex:
207 assert(v->stage == MESA_SHADER_VERTEX);
208 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
209 if (reg->file == BAD_FILE)
210 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
211 break;
212
213 case nir_intrinsic_load_instance_id:
214 assert(v->stage == MESA_SHADER_VERTEX);
215 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
216 if (reg->file == BAD_FILE)
217 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
218 break;
219
220 case nir_intrinsic_load_base_instance:
221 assert(v->stage == MESA_SHADER_VERTEX);
222 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
223 if (reg->file == BAD_FILE)
224 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
225 break;
226
227 case nir_intrinsic_load_draw_id:
228 assert(v->stage == MESA_SHADER_VERTEX);
229 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
230 if (reg->file == BAD_FILE)
231 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
232 break;
233
234 case nir_intrinsic_load_invocation_id:
235 assert(v->stage == MESA_SHADER_GEOMETRY);
236 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
237 if (reg->file == BAD_FILE) {
238 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
239 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
240 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
241 abld.SHR(iid, g1, brw_imm_ud(27u));
242 *reg = iid;
243 }
244 break;
245
246 case nir_intrinsic_load_sample_pos:
247 assert(v->stage == MESA_SHADER_FRAGMENT);
248 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
249 if (reg->file == BAD_FILE)
250 *reg = *v->emit_samplepos_setup();
251 break;
252
253 case nir_intrinsic_load_sample_id:
254 assert(v->stage == MESA_SHADER_FRAGMENT);
255 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
256 if (reg->file == BAD_FILE)
257 *reg = *v->emit_sampleid_setup();
258 break;
259
260 case nir_intrinsic_load_sample_mask_in:
261 assert(v->stage == MESA_SHADER_FRAGMENT);
262 assert(v->devinfo->gen >= 7);
263 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
264 if (reg->file == BAD_FILE)
265 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
266 BRW_REGISTER_TYPE_D));
267 break;
268
269 case nir_intrinsic_load_local_invocation_id:
270 assert(v->stage == MESA_SHADER_COMPUTE);
271 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
272 if (reg->file == BAD_FILE)
273 *reg = *v->emit_cs_local_invocation_id_setup();
274 break;
275
276 case nir_intrinsic_load_work_group_id:
277 assert(v->stage == MESA_SHADER_COMPUTE);
278 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
279 if (reg->file == BAD_FILE)
280 *reg = *v->emit_cs_work_group_id_setup();
281 break;
282
283 case nir_intrinsic_load_helper_invocation:
284 assert(v->stage == MESA_SHADER_FRAGMENT);
285 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
286 if (reg->file == BAD_FILE) {
287 const fs_builder abld =
288 v->bld.annotate("gl_HelperInvocation", NULL);
289
290 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
291 * pixel mask is in g1.7 of the thread payload.
292 *
293 * We move the per-channel pixel enable bit to the low bit of each
294 * channel by shifting the byte containing the pixel mask by the
295 * vector immediate 0x76543210UV.
296 *
297 * The region of <1,8,0> reads only 1 byte (the pixel masks for
298 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
299 * masks for 2 and 3) in SIMD16.
300 */
301 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
302 abld.SHR(shifted,
303 stride(byte_offset(retype(brw_vec1_grf(1, 0),
304 BRW_REGISTER_TYPE_UB), 28),
305 1, 8, 0),
306 brw_imm_uv(0x76543210));
307
308 /* A set bit in the pixel mask means the channel is enabled, but
309 * that is the opposite of gl_HelperInvocation so we need to invert
310 * the mask.
311 *
312 * The negate source-modifier bit of logical instructions on Gen8+
313 * performs 1's complement negation, so we can use that instead of
314 * a NOT instruction.
315 */
316 fs_reg inverted = negate(shifted);
317 if (v->devinfo->gen < 8) {
318 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
319 abld.NOT(inverted, shifted);
320 }
321
322 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
323 * with 1 and negating.
324 */
325 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
326 abld.AND(anded, inverted, brw_imm_uw(1));
327
328 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
329 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
330 *reg = dst;
331 }
332 break;
333
334 default:
335 break;
336 }
337 }
338
339 return true;
340 }
341
342 void
343 fs_visitor::nir_emit_system_values()
344 {
345 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
346 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
347 nir_system_values[i] = fs_reg();
348 }
349
350 nir_foreach_function(nir, function) {
351 assert(strcmp(function->name, "main") == 0);
352 assert(function->impl);
353 nir_foreach_block(function->impl, emit_system_values_block, this);
354 }
355 }
356
357 void
358 fs_visitor::nir_emit_impl(nir_function_impl *impl)
359 {
360 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
361 for (unsigned i = 0; i < impl->reg_alloc; i++) {
362 nir_locals[i] = fs_reg();
363 }
364
365 foreach_list_typed(nir_register, reg, node, &impl->registers) {
366 unsigned array_elems =
367 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
368 unsigned size = array_elems * reg->num_components;
369 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
370 }
371
372 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
373 impl->ssa_alloc);
374
375 nir_emit_cf_list(&impl->body);
376 }
377
378 void
379 fs_visitor::nir_emit_cf_list(exec_list *list)
380 {
381 exec_list_validate(list);
382 foreach_list_typed(nir_cf_node, node, node, list) {
383 switch (node->type) {
384 case nir_cf_node_if:
385 nir_emit_if(nir_cf_node_as_if(node));
386 break;
387
388 case nir_cf_node_loop:
389 nir_emit_loop(nir_cf_node_as_loop(node));
390 break;
391
392 case nir_cf_node_block:
393 nir_emit_block(nir_cf_node_as_block(node));
394 break;
395
396 default:
397 unreachable("Invalid CFG node block");
398 }
399 }
400 }
401
402 void
403 fs_visitor::nir_emit_if(nir_if *if_stmt)
404 {
405 /* first, put the condition into f0 */
406 fs_inst *inst = bld.MOV(bld.null_reg_d(),
407 retype(get_nir_src(if_stmt->condition),
408 BRW_REGISTER_TYPE_D));
409 inst->conditional_mod = BRW_CONDITIONAL_NZ;
410
411 bld.IF(BRW_PREDICATE_NORMAL);
412
413 nir_emit_cf_list(&if_stmt->then_list);
414
415 /* note: if the else is empty, dead CF elimination will remove it */
416 bld.emit(BRW_OPCODE_ELSE);
417
418 nir_emit_cf_list(&if_stmt->else_list);
419
420 bld.emit(BRW_OPCODE_ENDIF);
421 }
422
423 void
424 fs_visitor::nir_emit_loop(nir_loop *loop)
425 {
426 bld.emit(BRW_OPCODE_DO);
427
428 nir_emit_cf_list(&loop->body);
429
430 bld.emit(BRW_OPCODE_WHILE);
431 }
432
433 void
434 fs_visitor::nir_emit_block(nir_block *block)
435 {
436 nir_foreach_instr(block, instr) {
437 nir_emit_instr(instr);
438 }
439 }
440
441 void
442 fs_visitor::nir_emit_instr(nir_instr *instr)
443 {
444 const fs_builder abld = bld.annotate(NULL, instr);
445
446 switch (instr->type) {
447 case nir_instr_type_alu:
448 nir_emit_alu(abld, nir_instr_as_alu(instr));
449 break;
450
451 case nir_instr_type_intrinsic:
452 switch (stage) {
453 case MESA_SHADER_VERTEX:
454 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
455 break;
456 case MESA_SHADER_TESS_EVAL:
457 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
458 break;
459 case MESA_SHADER_GEOMETRY:
460 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
461 break;
462 case MESA_SHADER_FRAGMENT:
463 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_COMPUTE:
466 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 default:
469 unreachable("unsupported shader stage");
470 }
471 break;
472
473 case nir_instr_type_tex:
474 nir_emit_texture(abld, nir_instr_as_tex(instr));
475 break;
476
477 case nir_instr_type_load_const:
478 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
479 break;
480
481 case nir_instr_type_ssa_undef:
482 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
483 break;
484
485 case nir_instr_type_jump:
486 nir_emit_jump(abld, nir_instr_as_jump(instr));
487 break;
488
489 default:
490 unreachable("unknown instruction type");
491 }
492 }
493
494 bool
495 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
496 const fs_reg &result)
497 {
498 if (!instr->src[0].src.is_ssa ||
499 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
500 return false;
501
502 nir_intrinsic_instr *src0 =
503 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
504
505 if (src0->intrinsic != nir_intrinsic_load_front_face)
506 return false;
507
508 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
509 if (!value1 || fabsf(value1->f[0]) != 1.0f)
510 return false;
511
512 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
513 if (!value2 || fabsf(value2->f[0]) != 1.0f)
514 return false;
515
516 fs_reg tmp = vgrf(glsl_type::int_type);
517
518 if (devinfo->gen >= 6) {
519 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
520 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
521
522 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
523 *
524 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
525 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
526 *
527 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
528 *
529 * This negation looks like it's safe in practice, because bits 0:4 will
530 * surely be TRIANGLES
531 */
532
533 if (value1->f[0] == -1.0f) {
534 g0.negate = true;
535 }
536
537 tmp.type = BRW_REGISTER_TYPE_W;
538 tmp.subreg_offset = 2;
539 tmp.stride = 2;
540
541 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
542
543 tmp.type = BRW_REGISTER_TYPE_D;
544 tmp.subreg_offset = 0;
545 tmp.stride = 1;
546 } else {
547 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
548 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
549
550 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
551 *
552 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
553 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
554 *
555 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
556 *
557 * This negation looks like it's safe in practice, because bits 0:4 will
558 * surely be TRIANGLES
559 */
560
561 if (value1->f[0] == -1.0f) {
562 g1_6.negate = true;
563 }
564
565 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
566 }
567 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
568
569 return true;
570 }
571
572 void
573 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
574 {
575 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
576 fs_inst *inst;
577
578 fs_reg result = get_nir_dest(instr->dest.dest);
579 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
580
581 fs_reg op[4];
582 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
583 op[i] = get_nir_src(instr->src[i].src);
584 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
585 op[i].abs = instr->src[i].abs;
586 op[i].negate = instr->src[i].negate;
587 }
588
589 /* We get a bunch of mov's out of the from_ssa pass and they may still
590 * be vectorized. We'll handle them as a special-case. We'll also
591 * handle vecN here because it's basically the same thing.
592 */
593 switch (instr->op) {
594 case nir_op_imov:
595 case nir_op_fmov:
596 case nir_op_vec2:
597 case nir_op_vec3:
598 case nir_op_vec4: {
599 fs_reg temp = result;
600 bool need_extra_copy = false;
601 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
602 if (!instr->src[i].src.is_ssa &&
603 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
604 need_extra_copy = true;
605 temp = bld.vgrf(result.type, 4);
606 break;
607 }
608 }
609
610 for (unsigned i = 0; i < 4; i++) {
611 if (!(instr->dest.write_mask & (1 << i)))
612 continue;
613
614 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
615 inst = bld.MOV(offset(temp, bld, i),
616 offset(op[0], bld, instr->src[0].swizzle[i]));
617 } else {
618 inst = bld.MOV(offset(temp, bld, i),
619 offset(op[i], bld, instr->src[i].swizzle[0]));
620 }
621 inst->saturate = instr->dest.saturate;
622 }
623
624 /* In this case the source and destination registers were the same,
625 * so we need to insert an extra set of moves in order to deal with
626 * any swizzling.
627 */
628 if (need_extra_copy) {
629 for (unsigned i = 0; i < 4; i++) {
630 if (!(instr->dest.write_mask & (1 << i)))
631 continue;
632
633 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
634 }
635 }
636 return;
637 }
638 default:
639 break;
640 }
641
642 /* At this point, we have dealt with any instruction that operates on
643 * more than a single channel. Therefore, we can just adjust the source
644 * and destination registers for that channel and emit the instruction.
645 */
646 unsigned channel = 0;
647 if (nir_op_infos[instr->op].output_size == 0) {
648 /* Since NIR is doing the scalarizing for us, we should only ever see
649 * vectorized operations with a single channel.
650 */
651 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
652 channel = ffs(instr->dest.write_mask) - 1;
653
654 result = offset(result, bld, channel);
655 }
656
657 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
658 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
659 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
660 }
661
662 switch (instr->op) {
663 case nir_op_i2f:
664 case nir_op_u2f:
665 inst = bld.MOV(result, op[0]);
666 inst->saturate = instr->dest.saturate;
667 break;
668
669 case nir_op_f2i:
670 case nir_op_f2u:
671 bld.MOV(result, op[0]);
672 break;
673
674 case nir_op_fsign: {
675 /* AND(val, 0x80000000) gives the sign bit.
676 *
677 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
678 * zero.
679 */
680 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
681
682 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
683 op[0].type = BRW_REGISTER_TYPE_UD;
684 result.type = BRW_REGISTER_TYPE_UD;
685 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
686
687 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
688 inst->predicate = BRW_PREDICATE_NORMAL;
689 if (instr->dest.saturate) {
690 inst = bld.MOV(result, result);
691 inst->saturate = true;
692 }
693 break;
694 }
695
696 case nir_op_isign:
697 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
698 * -> non-negative val generates 0x00000000.
699 * Predicated OR sets 1 if val is positive.
700 */
701 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
702 bld.ASR(result, op[0], brw_imm_d(31));
703 inst = bld.OR(result, result, brw_imm_d(1));
704 inst->predicate = BRW_PREDICATE_NORMAL;
705 break;
706
707 case nir_op_frcp:
708 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
709 inst->saturate = instr->dest.saturate;
710 break;
711
712 case nir_op_fexp2:
713 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
714 inst->saturate = instr->dest.saturate;
715 break;
716
717 case nir_op_flog2:
718 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
719 inst->saturate = instr->dest.saturate;
720 break;
721
722 case nir_op_fsin: {
723 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F);
724 inst = bld.emit(SHADER_OPCODE_SIN, tmp, op[0]);
725 if (instr->dest.saturate) {
726 inst->dst = result;
727 inst->saturate = true;
728 } else {
729 bld.MUL(result, tmp, brw_imm_f(0.99997));
730 }
731 break;
732 }
733
734 case nir_op_fcos: {
735 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F);
736 inst = bld.emit(SHADER_OPCODE_COS, tmp, op[0]);
737 if (instr->dest.saturate) {
738 inst->dst = result;
739 inst->saturate = true;
740 } else {
741 bld.MUL(result, tmp, brw_imm_f(0.99997));
742 }
743 break;
744 }
745
746 case nir_op_fddx:
747 if (fs_key->high_quality_derivatives) {
748 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
749 } else {
750 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
751 }
752 inst->saturate = instr->dest.saturate;
753 break;
754 case nir_op_fddx_fine:
755 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
756 inst->saturate = instr->dest.saturate;
757 break;
758 case nir_op_fddx_coarse:
759 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
760 inst->saturate = instr->dest.saturate;
761 break;
762 case nir_op_fddy:
763 if (fs_key->high_quality_derivatives) {
764 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
765 brw_imm_d(fs_key->render_to_fbo));
766 } else {
767 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
768 brw_imm_d(fs_key->render_to_fbo));
769 }
770 inst->saturate = instr->dest.saturate;
771 break;
772 case nir_op_fddy_fine:
773 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
774 brw_imm_d(fs_key->render_to_fbo));
775 inst->saturate = instr->dest.saturate;
776 break;
777 case nir_op_fddy_coarse:
778 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
779 brw_imm_d(fs_key->render_to_fbo));
780 inst->saturate = instr->dest.saturate;
781 break;
782
783 case nir_op_fadd:
784 case nir_op_iadd:
785 inst = bld.ADD(result, op[0], op[1]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_fmul:
790 inst = bld.MUL(result, op[0], op[1]);
791 inst->saturate = instr->dest.saturate;
792 break;
793
794 case nir_op_imul:
795 bld.MUL(result, op[0], op[1]);
796 break;
797
798 case nir_op_imul_high:
799 case nir_op_umul_high:
800 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
801 break;
802
803 case nir_op_idiv:
804 case nir_op_udiv:
805 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
806 break;
807
808 case nir_op_uadd_carry:
809 unreachable("Should have been lowered by carry_to_arith().");
810
811 case nir_op_usub_borrow:
812 unreachable("Should have been lowered by borrow_to_arith().");
813
814 case nir_op_umod:
815 case nir_op_irem:
816 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
817 * appears that our hardware just does the right thing for signed
818 * remainder.
819 */
820 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
821 break;
822
823 case nir_op_imod: {
824 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
825 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
826
827 /* Math instructions don't support conditional mod */
828 inst = bld.MOV(bld.null_reg_d(), result);
829 inst->conditional_mod = BRW_CONDITIONAL_NZ;
830
831 /* Now, we need to determine if signs of the sources are different.
832 * When we XOR the sources, the top bit is 0 if they are the same and 1
833 * if they are different. We can then use a conditional modifier to
834 * turn that into a predicate. This leads us to an XOR.l instruction.
835 */
836 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
837 inst = bld.XOR(tmp, op[0], op[1]);
838 inst->predicate = BRW_PREDICATE_NORMAL;
839 inst->conditional_mod = BRW_CONDITIONAL_L;
840
841 /* If the result of the initial remainder operation is non-zero and the
842 * two sources have different signs, add in a copy of op[1] to get the
843 * final integer modulus value.
844 */
845 inst = bld.ADD(result, result, op[1]);
846 inst->predicate = BRW_PREDICATE_NORMAL;
847 break;
848 }
849
850 case nir_op_flt:
851 case nir_op_ilt:
852 case nir_op_ult:
853 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
854 break;
855
856 case nir_op_fge:
857 case nir_op_ige:
858 case nir_op_uge:
859 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
860 break;
861
862 case nir_op_feq:
863 case nir_op_ieq:
864 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
865 break;
866
867 case nir_op_fne:
868 case nir_op_ine:
869 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
870 break;
871
872 case nir_op_inot:
873 if (devinfo->gen >= 8) {
874 op[0] = resolve_source_modifiers(op[0]);
875 }
876 bld.NOT(result, op[0]);
877 break;
878 case nir_op_ixor:
879 if (devinfo->gen >= 8) {
880 op[0] = resolve_source_modifiers(op[0]);
881 op[1] = resolve_source_modifiers(op[1]);
882 }
883 bld.XOR(result, op[0], op[1]);
884 break;
885 case nir_op_ior:
886 if (devinfo->gen >= 8) {
887 op[0] = resolve_source_modifiers(op[0]);
888 op[1] = resolve_source_modifiers(op[1]);
889 }
890 bld.OR(result, op[0], op[1]);
891 break;
892 case nir_op_iand:
893 if (devinfo->gen >= 8) {
894 op[0] = resolve_source_modifiers(op[0]);
895 op[1] = resolve_source_modifiers(op[1]);
896 }
897 bld.AND(result, op[0], op[1]);
898 break;
899
900 case nir_op_fdot2:
901 case nir_op_fdot3:
902 case nir_op_fdot4:
903 case nir_op_ball_fequal2:
904 case nir_op_ball_iequal2:
905 case nir_op_ball_fequal3:
906 case nir_op_ball_iequal3:
907 case nir_op_ball_fequal4:
908 case nir_op_ball_iequal4:
909 case nir_op_bany_fnequal2:
910 case nir_op_bany_inequal2:
911 case nir_op_bany_fnequal3:
912 case nir_op_bany_inequal3:
913 case nir_op_bany_fnequal4:
914 case nir_op_bany_inequal4:
915 unreachable("Lowered by nir_lower_alu_reductions");
916
917 case nir_op_fnoise1_1:
918 case nir_op_fnoise1_2:
919 case nir_op_fnoise1_3:
920 case nir_op_fnoise1_4:
921 case nir_op_fnoise2_1:
922 case nir_op_fnoise2_2:
923 case nir_op_fnoise2_3:
924 case nir_op_fnoise2_4:
925 case nir_op_fnoise3_1:
926 case nir_op_fnoise3_2:
927 case nir_op_fnoise3_3:
928 case nir_op_fnoise3_4:
929 case nir_op_fnoise4_1:
930 case nir_op_fnoise4_2:
931 case nir_op_fnoise4_3:
932 case nir_op_fnoise4_4:
933 unreachable("not reached: should be handled by lower_noise");
934
935 case nir_op_ldexp:
936 unreachable("not reached: should be handled by ldexp_to_arith()");
937
938 case nir_op_fsqrt:
939 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
940 inst->saturate = instr->dest.saturate;
941 break;
942
943 case nir_op_frsq:
944 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
945 inst->saturate = instr->dest.saturate;
946 break;
947
948 case nir_op_b2i:
949 case nir_op_b2f:
950 bld.MOV(result, negate(op[0]));
951 break;
952
953 case nir_op_f2b:
954 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
955 break;
956 case nir_op_i2b:
957 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
958 break;
959
960 case nir_op_ftrunc:
961 inst = bld.RNDZ(result, op[0]);
962 inst->saturate = instr->dest.saturate;
963 break;
964
965 case nir_op_fceil: {
966 op[0].negate = !op[0].negate;
967 fs_reg temp = vgrf(glsl_type::float_type);
968 bld.RNDD(temp, op[0]);
969 temp.negate = true;
970 inst = bld.MOV(result, temp);
971 inst->saturate = instr->dest.saturate;
972 break;
973 }
974 case nir_op_ffloor:
975 inst = bld.RNDD(result, op[0]);
976 inst->saturate = instr->dest.saturate;
977 break;
978 case nir_op_ffract:
979 inst = bld.FRC(result, op[0]);
980 inst->saturate = instr->dest.saturate;
981 break;
982 case nir_op_fround_even:
983 inst = bld.RNDE(result, op[0]);
984 inst->saturate = instr->dest.saturate;
985 break;
986
987 case nir_op_fquantize2f16: {
988 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
989 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
990 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
991
992 /* The destination stride must be at least as big as the source stride. */
993 tmp16.type = BRW_REGISTER_TYPE_W;
994 tmp16.stride = 2;
995
996 /* Check for denormal */
997 fs_reg abs_src0 = op[0];
998 abs_src0.abs = true;
999 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1000 BRW_CONDITIONAL_L);
1001 /* Get the appropriately signed zero */
1002 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1003 retype(op[0], BRW_REGISTER_TYPE_UD),
1004 brw_imm_ud(0x80000000));
1005 /* Do the actual F32 -> F16 -> F32 conversion */
1006 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1007 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1008 /* Select that or zero based on normal status */
1009 inst = bld.SEL(result, zero, tmp32);
1010 inst->predicate = BRW_PREDICATE_NORMAL;
1011 inst->saturate = instr->dest.saturate;
1012 break;
1013 }
1014
1015 case nir_op_fmin:
1016 case nir_op_imin:
1017 case nir_op_umin:
1018 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1019 inst->saturate = instr->dest.saturate;
1020 break;
1021
1022 case nir_op_fmax:
1023 case nir_op_imax:
1024 case nir_op_umax:
1025 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028
1029 case nir_op_pack_snorm_2x16:
1030 case nir_op_pack_snorm_4x8:
1031 case nir_op_pack_unorm_2x16:
1032 case nir_op_pack_unorm_4x8:
1033 case nir_op_unpack_snorm_2x16:
1034 case nir_op_unpack_snorm_4x8:
1035 case nir_op_unpack_unorm_2x16:
1036 case nir_op_unpack_unorm_4x8:
1037 case nir_op_unpack_half_2x16:
1038 case nir_op_pack_half_2x16:
1039 unreachable("not reached: should be handled by lower_packing_builtins");
1040
1041 case nir_op_unpack_half_2x16_split_x:
1042 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1043 inst->saturate = instr->dest.saturate;
1044 break;
1045 case nir_op_unpack_half_2x16_split_y:
1046 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1047 inst->saturate = instr->dest.saturate;
1048 break;
1049
1050 case nir_op_fpow:
1051 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1052 inst->saturate = instr->dest.saturate;
1053 break;
1054
1055 case nir_op_bitfield_reverse:
1056 bld.BFREV(result, op[0]);
1057 break;
1058
1059 case nir_op_bit_count:
1060 bld.CBIT(result, op[0]);
1061 break;
1062
1063 case nir_op_ufind_msb:
1064 case nir_op_ifind_msb: {
1065 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1066
1067 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1068 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1069 * subtract the result from 31 to convert the MSB count into an LSB count.
1070 */
1071 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1072
1073 inst = bld.ADD(result, result, brw_imm_d(31));
1074 inst->predicate = BRW_PREDICATE_NORMAL;
1075 inst->src[0].negate = true;
1076 break;
1077 }
1078
1079 case nir_op_find_lsb:
1080 bld.FBL(result, op[0]);
1081 break;
1082
1083 case nir_op_ubitfield_extract:
1084 case nir_op_ibitfield_extract:
1085 unreachable("should have been lowered");
1086 case nir_op_ubfe:
1087 case nir_op_ibfe:
1088 bld.BFE(result, op[2], op[1], op[0]);
1089 break;
1090 case nir_op_bfm:
1091 bld.BFI1(result, op[0], op[1]);
1092 break;
1093 case nir_op_bfi:
1094 bld.BFI2(result, op[0], op[1], op[2]);
1095 break;
1096
1097 case nir_op_bitfield_insert:
1098 unreachable("not reached: should have been lowered");
1099
1100 case nir_op_ishl:
1101 bld.SHL(result, op[0], op[1]);
1102 break;
1103 case nir_op_ishr:
1104 bld.ASR(result, op[0], op[1]);
1105 break;
1106 case nir_op_ushr:
1107 bld.SHR(result, op[0], op[1]);
1108 break;
1109
1110 case nir_op_pack_half_2x16_split:
1111 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1112 break;
1113
1114 case nir_op_ffma:
1115 inst = bld.MAD(result, op[2], op[1], op[0]);
1116 inst->saturate = instr->dest.saturate;
1117 break;
1118
1119 case nir_op_flrp:
1120 inst = bld.LRP(result, op[0], op[1], op[2]);
1121 inst->saturate = instr->dest.saturate;
1122 break;
1123
1124 case nir_op_bcsel:
1125 if (optimize_frontfacing_ternary(instr, result))
1126 return;
1127
1128 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1129 inst = bld.SEL(result, op[1], op[2]);
1130 inst->predicate = BRW_PREDICATE_NORMAL;
1131 break;
1132
1133 case nir_op_extract_u8:
1134 case nir_op_extract_i8: {
1135 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1136 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1137 result, op[0], brw_imm_ud(byte->u[0]));
1138 break;
1139 }
1140
1141 case nir_op_extract_u16:
1142 case nir_op_extract_i16: {
1143 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1144 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1145 result, op[0], brw_imm_ud(word->u[0]));
1146 break;
1147 }
1148
1149 default:
1150 unreachable("unhandled instruction");
1151 }
1152
1153 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1154 * to sign extend the low bit to 0/~0
1155 */
1156 if (devinfo->gen <= 5 &&
1157 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1158 fs_reg masked = vgrf(glsl_type::int_type);
1159 bld.AND(masked, result, brw_imm_d(1));
1160 masked.negate = true;
1161 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1162 }
1163 }
1164
1165 void
1166 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1167 nir_load_const_instr *instr)
1168 {
1169 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1170
1171 for (unsigned i = 0; i < instr->def.num_components; i++)
1172 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1173
1174 nir_ssa_values[instr->def.index] = reg;
1175 }
1176
1177 void
1178 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1179 {
1180 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1181 instr->def.num_components);
1182 }
1183
1184 fs_reg
1185 fs_visitor::get_nir_src(nir_src src)
1186 {
1187 fs_reg reg;
1188 if (src.is_ssa) {
1189 reg = nir_ssa_values[src.ssa->index];
1190 } else {
1191 /* We don't handle indirects on locals */
1192 assert(src.reg.indirect == NULL);
1193 reg = offset(nir_locals[src.reg.reg->index], bld,
1194 src.reg.base_offset * src.reg.reg->num_components);
1195 }
1196
1197 /* to avoid floating-point denorm flushing problems, set the type by
1198 * default to D - instructions that need floating point semantics will set
1199 * this to F if they need to
1200 */
1201 return retype(reg, BRW_REGISTER_TYPE_D);
1202 }
1203
1204 fs_reg
1205 fs_visitor::get_nir_dest(nir_dest dest)
1206 {
1207 if (dest.is_ssa) {
1208 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1209 dest.ssa.num_components);
1210 return nir_ssa_values[dest.ssa.index];
1211 } else {
1212 /* We don't handle indirects on locals */
1213 assert(dest.reg.indirect == NULL);
1214 return offset(nir_locals[dest.reg.reg->index], bld,
1215 dest.reg.base_offset * dest.reg.reg->num_components);
1216 }
1217 }
1218
1219 fs_reg
1220 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1221 {
1222 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1223 BRW_REGISTER_TYPE_UD);
1224 fs_reg indirect;
1225 unsigned indirect_max = 0;
1226
1227 for (const nir_deref *tail = &deref->deref; tail->child;
1228 tail = tail->child) {
1229 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1230 assert(tail->child->deref_type == nir_deref_type_array);
1231 const unsigned size = glsl_get_length(tail->type);
1232 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1233 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1234 image = offset(image, bld, base * element_size);
1235
1236 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1237 fs_reg tmp = vgrf(glsl_type::uint_type);
1238
1239 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1240 /* IVB hangs when trying to access an invalid surface index with
1241 * the dataport. According to the spec "if the index used to
1242 * select an individual element is negative or greater than or
1243 * equal to the size of the array, the results of the operation
1244 * are undefined but may not lead to termination" -- which is one
1245 * of the possible outcomes of the hang. Clamp the index to
1246 * prevent access outside of the array bounds.
1247 */
1248 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1249 BRW_REGISTER_TYPE_UD),
1250 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1251 } else {
1252 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1253 }
1254
1255 indirect_max += element_size * (tail->type->length - 1);
1256
1257 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1258 if (indirect.file == BAD_FILE) {
1259 indirect = tmp;
1260 } else {
1261 bld.ADD(indirect, indirect, tmp);
1262 }
1263 }
1264 }
1265
1266 if (indirect.file == BAD_FILE) {
1267 return image;
1268 } else {
1269 /* Emit a pile of MOVs to load the uniform into a temporary. The
1270 * dead-code elimination pass will get rid of what we don't use.
1271 */
1272 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1273 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1274 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1275 offset(tmp, bld, j), offset(image, bld, j),
1276 indirect, brw_imm_ud((indirect_max + 1) * 4));
1277 }
1278 return tmp;
1279 }
1280 }
1281
1282 void
1283 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1284 unsigned wr_mask)
1285 {
1286 for (unsigned i = 0; i < 4; i++) {
1287 if (!((wr_mask >> i) & 1))
1288 continue;
1289
1290 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1291 new_inst->dst = offset(new_inst->dst, bld, i);
1292 for (unsigned j = 0; j < new_inst->sources; j++)
1293 if (new_inst->src[j].file == VGRF)
1294 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1295
1296 bld.emit(new_inst);
1297 }
1298 }
1299
1300 /**
1301 * Get the matching channel register datatype for an image intrinsic of the
1302 * specified GLSL image type.
1303 */
1304 static brw_reg_type
1305 get_image_base_type(const glsl_type *type)
1306 {
1307 switch ((glsl_base_type)type->sampled_type) {
1308 case GLSL_TYPE_UINT:
1309 return BRW_REGISTER_TYPE_UD;
1310 case GLSL_TYPE_INT:
1311 return BRW_REGISTER_TYPE_D;
1312 case GLSL_TYPE_FLOAT:
1313 return BRW_REGISTER_TYPE_F;
1314 default:
1315 unreachable("Not reached.");
1316 }
1317 }
1318
1319 /**
1320 * Get the appropriate atomic op for an image atomic intrinsic.
1321 */
1322 static unsigned
1323 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1324 {
1325 switch (op) {
1326 case nir_intrinsic_image_atomic_add:
1327 return BRW_AOP_ADD;
1328 case nir_intrinsic_image_atomic_min:
1329 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1330 BRW_AOP_IMIN : BRW_AOP_UMIN);
1331 case nir_intrinsic_image_atomic_max:
1332 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1333 BRW_AOP_IMAX : BRW_AOP_UMAX);
1334 case nir_intrinsic_image_atomic_and:
1335 return BRW_AOP_AND;
1336 case nir_intrinsic_image_atomic_or:
1337 return BRW_AOP_OR;
1338 case nir_intrinsic_image_atomic_xor:
1339 return BRW_AOP_XOR;
1340 case nir_intrinsic_image_atomic_exchange:
1341 return BRW_AOP_MOV;
1342 case nir_intrinsic_image_atomic_comp_swap:
1343 return BRW_AOP_CMPWR;
1344 default:
1345 unreachable("Not reachable.");
1346 }
1347 }
1348
1349 static fs_inst *
1350 emit_pixel_interpolater_send(const fs_builder &bld,
1351 enum opcode opcode,
1352 const fs_reg &dst,
1353 const fs_reg &src,
1354 const fs_reg &desc,
1355 glsl_interp_qualifier interpolation)
1356 {
1357 fs_inst *inst;
1358 fs_reg payload;
1359 int mlen;
1360
1361 if (src.file == BAD_FILE) {
1362 /* Dummy payload */
1363 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1364 mlen = 1;
1365 } else {
1366 payload = src;
1367 mlen = 2 * bld.dispatch_width() / 8;
1368 }
1369
1370 inst = bld.emit(opcode, dst, payload, desc);
1371 inst->mlen = mlen;
1372 /* 2 floats per slot returned */
1373 inst->regs_written = 2 * bld.dispatch_width() / 8;
1374 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1375
1376 return inst;
1377 }
1378
1379 /**
1380 * Computes 1 << x, given a D/UD register containing some value x.
1381 */
1382 static fs_reg
1383 intexp2(const fs_builder &bld, const fs_reg &x)
1384 {
1385 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1386
1387 fs_reg result = bld.vgrf(x.type, 1);
1388 fs_reg one = bld.vgrf(x.type, 1);
1389
1390 bld.MOV(one, retype(brw_imm_d(1), one.type));
1391 bld.SHL(result, one, x);
1392 return result;
1393 }
1394
1395 void
1396 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1397 {
1398 assert(stage == MESA_SHADER_GEOMETRY);
1399
1400 struct brw_gs_prog_data *gs_prog_data =
1401 (struct brw_gs_prog_data *) prog_data;
1402
1403 /* We can only do EndPrimitive() functionality when the control data
1404 * consists of cut bits. Fortunately, the only time it isn't is when the
1405 * output type is points, in which case EndPrimitive() is a no-op.
1406 */
1407 if (gs_prog_data->control_data_format !=
1408 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1409 return;
1410 }
1411
1412 /* Cut bits use one bit per vertex. */
1413 assert(gs_compile->control_data_bits_per_vertex == 1);
1414
1415 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1416 vertex_count.type = BRW_REGISTER_TYPE_UD;
1417
1418 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1419 * vertex n, 0 otherwise. So all we need to do here is mark bit
1420 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1421 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1422 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1423 *
1424 * Note that if EndPrimitive() is called before emitting any vertices, this
1425 * will cause us to set bit 31 of the control_data_bits register to 1.
1426 * That's fine because:
1427 *
1428 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1429 * output, so the hardware will ignore cut bit 31.
1430 *
1431 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1432 * last vertex, so setting cut bit 31 has no effect (since the primitive
1433 * is automatically ended when the GS terminates).
1434 *
1435 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1436 * control_data_bits register to 0 when the first vertex is emitted.
1437 */
1438
1439 const fs_builder abld = bld.annotate("end primitive");
1440
1441 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1442 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1443 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1444 fs_reg mask = intexp2(abld, prev_count);
1445 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1446 * attention to the lower 5 bits of its second source argument, so on this
1447 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1448 * ((vertex_count - 1) % 32).
1449 */
1450 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1451 }
1452
1453 void
1454 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1455 {
1456 assert(stage == MESA_SHADER_GEOMETRY);
1457 assert(gs_compile->control_data_bits_per_vertex != 0);
1458
1459 struct brw_gs_prog_data *gs_prog_data =
1460 (struct brw_gs_prog_data *) prog_data;
1461
1462 const fs_builder abld = bld.annotate("emit control data bits");
1463 const fs_builder fwa_bld = bld.exec_all();
1464
1465 /* We use a single UD register to accumulate control data bits (32 bits
1466 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1467 * at a time.
1468 *
1469 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1470 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1471 * use the Channel Mask phase to enable/disable which DWord within that
1472 * group to write. (Remember, different SIMD8 channels may have emitted
1473 * different numbers of vertices, so we may need per-slot offsets.)
1474 *
1475 * Channel masking presents an annoying problem: we may have to replicate
1476 * the data up to 4 times:
1477 *
1478 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1479 *
1480 * To avoid penalizing shaders that emit a small number of vertices, we
1481 * can avoid these sometimes: if the size of the control data header is
1482 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1483 * land in the same 128-bit group, so we can skip per-slot offsets.
1484 *
1485 * Similarly, if the control data header is <= 32 bits, there is only one
1486 * DWord, so we can skip channel masks.
1487 */
1488 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1489
1490 fs_reg channel_mask, per_slot_offset;
1491
1492 if (gs_compile->control_data_header_size_bits > 32) {
1493 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1494 channel_mask = vgrf(glsl_type::uint_type);
1495 }
1496
1497 if (gs_compile->control_data_header_size_bits > 128) {
1498 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1499 per_slot_offset = vgrf(glsl_type::uint_type);
1500 }
1501
1502 /* Figure out which DWord we're trying to write to using the formula:
1503 *
1504 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1505 *
1506 * Since bits_per_vertex is a power of two, and is known at compile
1507 * time, this can be optimized to:
1508 *
1509 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1510 */
1511 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1512 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1513 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1514 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1515 unsigned log2_bits_per_vertex =
1516 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1517 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1518
1519 if (per_slot_offset.file != BAD_FILE) {
1520 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1521 * the appropriate OWord within the control data header.
1522 */
1523 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1524 }
1525
1526 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1527 * write to the appropriate DWORD within the OWORD.
1528 */
1529 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1530 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1531 channel_mask = intexp2(fwa_bld, channel);
1532 /* Then the channel masks need to be in bits 23:16. */
1533 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1534 }
1535
1536 /* Store the control data bits in the message payload and send it. */
1537 int mlen = 2;
1538 if (channel_mask.file != BAD_FILE)
1539 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1540 if (per_slot_offset.file != BAD_FILE)
1541 mlen++;
1542
1543 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1544 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1545 int i = 0;
1546 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1547 if (per_slot_offset.file != BAD_FILE)
1548 sources[i++] = per_slot_offset;
1549 if (channel_mask.file != BAD_FILE)
1550 sources[i++] = channel_mask;
1551 while (i < mlen) {
1552 sources[i++] = this->control_data_bits;
1553 }
1554
1555 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1556 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1557 inst->mlen = mlen;
1558 /* We need to increment Global Offset by 256-bits to make room for
1559 * Broadwell's extra "Vertex Count" payload at the beginning of the
1560 * URB entry. Since this is an OWord message, Global Offset is counted
1561 * in 128-bit units, so we must set it to 2.
1562 */
1563 if (gs_prog_data->static_vertex_count == -1)
1564 inst->offset = 2;
1565 }
1566
1567 void
1568 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1569 unsigned stream_id)
1570 {
1571 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1572
1573 /* Note: we are calling this *before* increasing vertex_count, so
1574 * this->vertex_count == vertex_count - 1 in the formula above.
1575 */
1576
1577 /* Stream mode uses 2 bits per vertex */
1578 assert(gs_compile->control_data_bits_per_vertex == 2);
1579
1580 /* Must be a valid stream */
1581 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1582
1583 /* Control data bits are initialized to 0 so we don't have to set any
1584 * bits when sending vertices to stream 0.
1585 */
1586 if (stream_id == 0)
1587 return;
1588
1589 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1590
1591 /* reg::sid = stream_id */
1592 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1593 abld.MOV(sid, brw_imm_ud(stream_id));
1594
1595 /* reg:shift_count = 2 * (vertex_count - 1) */
1596 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1597 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1598
1599 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1600 * attention to the lower 5 bits of its second source argument, so on this
1601 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1602 * stream_id << ((2 * (vertex_count - 1)) % 32).
1603 */
1604 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1605 abld.SHL(mask, sid, shift_count);
1606 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1607 }
1608
1609 void
1610 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1611 unsigned stream_id)
1612 {
1613 assert(stage == MESA_SHADER_GEOMETRY);
1614
1615 struct brw_gs_prog_data *gs_prog_data =
1616 (struct brw_gs_prog_data *) prog_data;
1617
1618 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1619 vertex_count.type = BRW_REGISTER_TYPE_UD;
1620
1621 /* Haswell and later hardware ignores the "Render Stream Select" bits
1622 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1623 * and instead sends all primitives down the pipeline for rasterization.
1624 * If the SOL stage is enabled, "Render Stream Select" is honored and
1625 * primitives bound to non-zero streams are discarded after stream output.
1626 *
1627 * Since the only purpose of primives sent to non-zero streams is to
1628 * be recorded by transform feedback, we can simply discard all geometry
1629 * bound to these streams when transform feedback is disabled.
1630 */
1631 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1632 return;
1633
1634 /* If we're outputting 32 control data bits or less, then we can wait
1635 * until the shader is over to output them all. Otherwise we need to
1636 * output them as we go. Now is the time to do it, since we're about to
1637 * output the vertex_count'th vertex, so it's guaranteed that the
1638 * control data bits associated with the (vertex_count - 1)th vertex are
1639 * correct.
1640 */
1641 if (gs_compile->control_data_header_size_bits > 32) {
1642 const fs_builder abld =
1643 bld.annotate("emit vertex: emit control data bits");
1644
1645 /* Only emit control data bits if we've finished accumulating a batch
1646 * of 32 bits. This is the case when:
1647 *
1648 * (vertex_count * bits_per_vertex) % 32 == 0
1649 *
1650 * (in other words, when the last 5 bits of vertex_count *
1651 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1652 * integer n (which is always the case, since bits_per_vertex is
1653 * always 1 or 2), this is equivalent to requiring that the last 5-n
1654 * bits of vertex_count are 0:
1655 *
1656 * vertex_count & (2^(5-n) - 1) == 0
1657 *
1658 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1659 * equivalent to:
1660 *
1661 * vertex_count & (32 / bits_per_vertex - 1) == 0
1662 *
1663 * TODO: If vertex_count is an immediate, we could do some of this math
1664 * at compile time...
1665 */
1666 fs_inst *inst =
1667 abld.AND(bld.null_reg_d(), vertex_count,
1668 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1669 inst->conditional_mod = BRW_CONDITIONAL_Z;
1670
1671 abld.IF(BRW_PREDICATE_NORMAL);
1672 /* If vertex_count is 0, then no control data bits have been
1673 * accumulated yet, so we can skip emitting them.
1674 */
1675 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1676 BRW_CONDITIONAL_NEQ);
1677 abld.IF(BRW_PREDICATE_NORMAL);
1678 emit_gs_control_data_bits(vertex_count);
1679 abld.emit(BRW_OPCODE_ENDIF);
1680
1681 /* Reset control_data_bits to 0 so we can start accumulating a new
1682 * batch.
1683 *
1684 * Note: in the case where vertex_count == 0, this neutralizes the
1685 * effect of any call to EndPrimitive() that the shader may have
1686 * made before outputting its first vertex.
1687 */
1688 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1689 inst->force_writemask_all = true;
1690 abld.emit(BRW_OPCODE_ENDIF);
1691 }
1692
1693 emit_urb_writes(vertex_count);
1694
1695 /* In stream mode we have to set control data bits for all vertices
1696 * unless we have disabled control data bits completely (which we do
1697 * do for GL_POINTS outputs that don't use streams).
1698 */
1699 if (gs_compile->control_data_header_size_bits > 0 &&
1700 gs_prog_data->control_data_format ==
1701 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1702 set_gs_stream_control_data_bits(vertex_count, stream_id);
1703 }
1704 }
1705
1706 void
1707 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1708 const nir_src &vertex_src,
1709 unsigned base_offset,
1710 const nir_src &offset_src,
1711 unsigned num_components)
1712 {
1713 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1714
1715 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1716 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1717 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1718
1719 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1720 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1721 * gl_PointSize is available as a GS input, however, so it must be that.
1722 */
1723 const bool is_point_size = (base_offset == 0);
1724
1725 if (offset_const != NULL && vertex_const != NULL &&
1726 4 * (base_offset + offset_const->u[0]) < push_reg_count) {
1727 int imm_offset = (base_offset + offset_const->u[0]) * 4 +
1728 vertex_const->u[0] * push_reg_count;
1729 /* This input was pushed into registers. */
1730 if (is_point_size) {
1731 /* gl_PointSize comes in .w */
1732 assert(imm_offset == 0);
1733 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1734 } else {
1735 for (unsigned i = 0; i < num_components; i++) {
1736 bld.MOV(offset(dst, bld, i),
1737 fs_reg(ATTR, imm_offset + i, dst.type));
1738 }
1739 }
1740 } else {
1741 /* Resort to the pull model. Ensure the VUE handles are provided. */
1742 gs_prog_data->base.include_vue_handles = true;
1743
1744 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1745 fs_reg icp_handle;
1746
1747 if (vertex_const) {
1748 /* The vertex index is constant; just select the proper URB handle. */
1749 icp_handle =
1750 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1751 BRW_REGISTER_TYPE_UD);
1752 } else {
1753 /* The vertex index is non-constant. We need to use indirect
1754 * addressing to fetch the proper URB handle.
1755 *
1756 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1757 * indicating that channel <n> should read the handle from
1758 * DWord <n>. We convert that to bytes by multiplying by 4.
1759 *
1760 * Next, we convert the vertex index to bytes by multiplying
1761 * by 32 (shifting by 5), and add the two together. This is
1762 * the final indirect byte offset.
1763 */
1764 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1765 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1766 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1767 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1768 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1769
1770 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1771 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1772 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1773 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1774 /* Convert vertex_index to bytes (multiply by 32) */
1775 bld.SHL(vertex_offset_bytes,
1776 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1777 brw_imm_ud(5u));
1778 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1779
1780 /* Use first_icp_handle as the base offset. There is one register
1781 * of URB handles per vertex, so inform the register allocator that
1782 * we might read up to nir->info.gs.vertices_in registers.
1783 */
1784 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1785 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1786 fs_reg(icp_offset_bytes),
1787 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1788 }
1789
1790 fs_inst *inst;
1791 if (offset_const) {
1792 /* Constant indexing - use global offset. */
1793 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1794 inst->offset = base_offset + offset_const->u[0];
1795 inst->base_mrf = -1;
1796 inst->mlen = 1;
1797 inst->regs_written = num_components;
1798 } else {
1799 /* Indirect indexing - use per-slot offsets as well. */
1800 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1801 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1802 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1803
1804 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1805 inst->offset = base_offset;
1806 inst->base_mrf = -1;
1807 inst->mlen = 2;
1808 inst->regs_written = num_components;
1809 }
1810
1811 if (is_point_size) {
1812 /* Read the whole VUE header (because of alignment) and read .w. */
1813 fs_reg tmp = bld.vgrf(dst.type, 4);
1814 inst->dst = tmp;
1815 inst->regs_written = 4;
1816 bld.MOV(dst, offset(tmp, bld, 3));
1817 }
1818 }
1819 }
1820
1821 fs_reg
1822 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1823 {
1824 nir_src *offset_src = nir_get_io_offset_src(instr);
1825 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1826
1827 if (const_value) {
1828 /* The only constant offset we should find is 0. brw_nir.c's
1829 * add_const_offset_to_base() will fold other constant offsets
1830 * into instr->const_index[0].
1831 */
1832 assert(const_value->u[0] == 0);
1833 return fs_reg();
1834 }
1835
1836 return get_nir_src(*offset_src);
1837 }
1838
1839 void
1840 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1841 nir_intrinsic_instr *instr)
1842 {
1843 assert(stage == MESA_SHADER_VERTEX);
1844
1845 fs_reg dest;
1846 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1847 dest = get_nir_dest(instr->dest);
1848
1849 switch (instr->intrinsic) {
1850 case nir_intrinsic_load_vertex_id:
1851 unreachable("should be lowered by lower_vertex_id()");
1852
1853 case nir_intrinsic_load_vertex_id_zero_base:
1854 case nir_intrinsic_load_base_vertex:
1855 case nir_intrinsic_load_instance_id:
1856 case nir_intrinsic_load_base_instance:
1857 case nir_intrinsic_load_draw_id: {
1858 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1859 fs_reg val = nir_system_values[sv];
1860 assert(val.file != BAD_FILE);
1861 dest.type = val.type;
1862 bld.MOV(dest, val);
1863 break;
1864 }
1865
1866 default:
1867 nir_emit_intrinsic(bld, instr);
1868 break;
1869 }
1870 }
1871
1872 void
1873 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1874 nir_intrinsic_instr *instr)
1875 {
1876 assert(stage == MESA_SHADER_TESS_EVAL);
1877 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1878
1879 fs_reg dest;
1880 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1881 dest = get_nir_dest(instr->dest);
1882
1883 switch (instr->intrinsic) {
1884 case nir_intrinsic_load_primitive_id:
1885 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1886 break;
1887 case nir_intrinsic_load_tess_coord:
1888 /* gl_TessCoord is part of the payload in g1-3 */
1889 for (unsigned i = 0; i < 3; i++) {
1890 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1891 }
1892 break;
1893
1894 case nir_intrinsic_load_tess_level_outer:
1895 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1896 * appears as a push-model input. So, we can simply use the ATTR file
1897 * rather than issuing URB read messages. The data is stored in the
1898 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1899 * .y, and so on.
1900 */
1901 switch (tes_prog_data->domain) {
1902 case BRW_TESS_DOMAIN_QUAD:
1903 for (unsigned i = 0; i < 4; i++)
1904 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1905 break;
1906 case BRW_TESS_DOMAIN_TRI:
1907 for (unsigned i = 0; i < 3; i++)
1908 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1909 break;
1910 case BRW_TESS_DOMAIN_ISOLINE:
1911 for (unsigned i = 0; i < 2; i++)
1912 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1913 break;
1914 }
1915 break;
1916
1917 case nir_intrinsic_load_tess_level_inner:
1918 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1919 * appears as a push-model input. So, we can simply use the ATTR file
1920 * rather than issuing URB read messages.
1921 */
1922 switch (tes_prog_data->domain) {
1923 case BRW_TESS_DOMAIN_QUAD:
1924 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1925 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1926 break;
1927 case BRW_TESS_DOMAIN_TRI:
1928 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1929 break;
1930 case BRW_TESS_DOMAIN_ISOLINE:
1931 /* ignore - value is undefined */
1932 break;
1933 }
1934 break;
1935
1936 case nir_intrinsic_load_input:
1937 case nir_intrinsic_load_per_vertex_input: {
1938 fs_reg indirect_offset = get_indirect_offset(instr);
1939 unsigned imm_offset = instr->const_index[0];
1940
1941 fs_inst *inst;
1942 if (indirect_offset.file == BAD_FILE) {
1943 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1944 * which is 16 registers (since each holds 2 vec4 slots).
1945 */
1946 const unsigned max_push_slots = 32;
1947 if (imm_offset < max_push_slots) {
1948 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1949 for (int i = 0; i < instr->num_components; i++) {
1950 bld.MOV(offset(dest, bld, i),
1951 component(src, 4 * (imm_offset % 2) + i));
1952 }
1953 tes_prog_data->base.urb_read_length =
1954 MAX2(tes_prog_data->base.urb_read_length,
1955 DIV_ROUND_UP(imm_offset + 1, 2));
1956 } else {
1957 /* Replicate the patch handle to all enabled channels */
1958 const fs_reg srcs[] = {
1959 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1960 };
1961 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1962 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1963
1964 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1965 inst->mlen = 1;
1966 inst->offset = imm_offset;
1967 inst->base_mrf = -1;
1968 inst->regs_written = instr->num_components;
1969 }
1970 } else {
1971 /* Indirect indexing - use per-slot offsets as well. */
1972 const fs_reg srcs[] = {
1973 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1974 indirect_offset
1975 };
1976 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1977 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1978
1979 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1980 inst->mlen = 2;
1981 inst->offset = imm_offset;
1982 inst->base_mrf = -1;
1983 inst->regs_written = instr->num_components;
1984 }
1985 break;
1986 }
1987 default:
1988 nir_emit_intrinsic(bld, instr);
1989 break;
1990 }
1991 }
1992
1993 void
1994 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1995 nir_intrinsic_instr *instr)
1996 {
1997 assert(stage == MESA_SHADER_GEOMETRY);
1998 fs_reg indirect_offset;
1999
2000 fs_reg dest;
2001 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2002 dest = get_nir_dest(instr->dest);
2003
2004 switch (instr->intrinsic) {
2005 case nir_intrinsic_load_primitive_id:
2006 assert(stage == MESA_SHADER_GEOMETRY);
2007 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2008 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2009 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2010 break;
2011
2012 case nir_intrinsic_load_input:
2013 unreachable("load_input intrinsics are invalid for the GS stage");
2014
2015 case nir_intrinsic_load_per_vertex_input:
2016 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2017 instr->src[1], instr->num_components);
2018 break;
2019
2020 case nir_intrinsic_emit_vertex_with_counter:
2021 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2022 break;
2023
2024 case nir_intrinsic_end_primitive_with_counter:
2025 emit_gs_end_primitive(instr->src[0]);
2026 break;
2027
2028 case nir_intrinsic_set_vertex_count:
2029 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2030 break;
2031
2032 case nir_intrinsic_load_invocation_id: {
2033 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2034 assert(val.file != BAD_FILE);
2035 dest.type = val.type;
2036 bld.MOV(dest, val);
2037 break;
2038 }
2039
2040 default:
2041 nir_emit_intrinsic(bld, instr);
2042 break;
2043 }
2044 }
2045
2046 void
2047 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2048 nir_intrinsic_instr *instr)
2049 {
2050 assert(stage == MESA_SHADER_FRAGMENT);
2051 struct brw_wm_prog_data *wm_prog_data =
2052 (struct brw_wm_prog_data *) prog_data;
2053
2054 fs_reg dest;
2055 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2056 dest = get_nir_dest(instr->dest);
2057
2058 switch (instr->intrinsic) {
2059 case nir_intrinsic_load_front_face:
2060 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2061 *emit_frontfacing_interpolation());
2062 break;
2063
2064 case nir_intrinsic_load_sample_pos: {
2065 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2066 assert(sample_pos.file != BAD_FILE);
2067 dest.type = sample_pos.type;
2068 bld.MOV(dest, sample_pos);
2069 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2070 break;
2071 }
2072
2073 case nir_intrinsic_load_helper_invocation:
2074 case nir_intrinsic_load_sample_mask_in:
2075 case nir_intrinsic_load_sample_id: {
2076 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2077 fs_reg val = nir_system_values[sv];
2078 assert(val.file != BAD_FILE);
2079 dest.type = val.type;
2080 bld.MOV(dest, val);
2081 break;
2082 }
2083
2084 case nir_intrinsic_discard:
2085 case nir_intrinsic_discard_if: {
2086 /* We track our discarded pixels in f0.1. By predicating on it, we can
2087 * update just the flag bits that aren't yet discarded. If there's no
2088 * condition, we emit a CMP of g0 != g0, so all currently executing
2089 * channels will get turned off.
2090 */
2091 fs_inst *cmp;
2092 if (instr->intrinsic == nir_intrinsic_discard_if) {
2093 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2094 brw_imm_d(0), BRW_CONDITIONAL_Z);
2095 } else {
2096 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2097 BRW_REGISTER_TYPE_UW));
2098 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2099 }
2100 cmp->predicate = BRW_PREDICATE_NORMAL;
2101 cmp->flag_subreg = 1;
2102
2103 if (devinfo->gen >= 6) {
2104 emit_discard_jump();
2105 }
2106 break;
2107 }
2108
2109 case nir_intrinsic_interp_var_at_centroid:
2110 case nir_intrinsic_interp_var_at_sample:
2111 case nir_intrinsic_interp_var_at_offset: {
2112 /* Handle ARB_gpu_shader5 interpolation intrinsics
2113 *
2114 * It's worth a quick word of explanation as to why we handle the full
2115 * variable-based interpolation intrinsic rather than a lowered version
2116 * with like we do for other inputs. We have to do that because the way
2117 * we set up inputs doesn't allow us to use the already setup inputs for
2118 * interpolation. At the beginning of the shader, we go through all of
2119 * the input variables and do the initial interpolation and put it in
2120 * the nir_inputs array based on its location as determined in
2121 * nir_lower_io. If the input isn't used, dead code cleans up and
2122 * everything works fine. However, when we get to the ARB_gpu_shader5
2123 * interpolation intrinsics, we need to reinterpolate the input
2124 * differently. If we used an intrinsic that just had an index it would
2125 * only give us the offset into the nir_inputs array. However, this is
2126 * useless because that value is post-interpolation and we need
2127 * pre-interpolation. In order to get the actual location of the bits
2128 * we get from the vertex fetching hardware, we need the variable.
2129 */
2130 wm_prog_data->pulls_bary = true;
2131
2132 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2133 const glsl_interp_qualifier interpolation =
2134 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2135
2136 switch (instr->intrinsic) {
2137 case nir_intrinsic_interp_var_at_centroid:
2138 emit_pixel_interpolater_send(bld,
2139 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2140 dst_xy,
2141 fs_reg(), /* src */
2142 brw_imm_ud(0u),
2143 interpolation);
2144 break;
2145
2146 case nir_intrinsic_interp_var_at_sample: {
2147 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2148
2149 if (const_sample) {
2150 unsigned msg_data = const_sample->i[0] << 4;
2151
2152 emit_pixel_interpolater_send(bld,
2153 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2154 dst_xy,
2155 fs_reg(), /* src */
2156 brw_imm_ud(msg_data),
2157 interpolation);
2158 } else {
2159 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2160 BRW_REGISTER_TYPE_UD);
2161
2162 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2163 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2164 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2165 bld.exec_all().group(1, 0)
2166 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2167 emit_pixel_interpolater_send(bld,
2168 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2169 dst_xy,
2170 fs_reg(), /* src */
2171 msg_data,
2172 interpolation);
2173 } else {
2174 /* Make a loop that sends a message to the pixel interpolater
2175 * for the sample number in each live channel. If there are
2176 * multiple channels with the same sample number then these
2177 * will be handled simultaneously with a single interation of
2178 * the loop.
2179 */
2180 bld.emit(BRW_OPCODE_DO);
2181
2182 /* Get the next live sample number into sample_id_reg */
2183 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2184
2185 /* Set the flag register so that we can perform the send
2186 * message on all channels that have the same sample number
2187 */
2188 bld.CMP(bld.null_reg_ud(),
2189 sample_src, sample_id,
2190 BRW_CONDITIONAL_EQ);
2191 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2192 bld.exec_all().group(1, 0)
2193 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2194 fs_inst *inst =
2195 emit_pixel_interpolater_send(bld,
2196 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2197 dst_xy,
2198 fs_reg(), /* src */
2199 msg_data,
2200 interpolation);
2201 set_predicate(BRW_PREDICATE_NORMAL, inst);
2202
2203 /* Continue the loop if there are any live channels left */
2204 set_predicate_inv(BRW_PREDICATE_NORMAL,
2205 true, /* inverse */
2206 bld.emit(BRW_OPCODE_WHILE));
2207 }
2208 }
2209
2210 break;
2211 }
2212
2213 case nir_intrinsic_interp_var_at_offset: {
2214 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2215
2216 if (const_offset) {
2217 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
2218 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
2219
2220 emit_pixel_interpolater_send(bld,
2221 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2222 dst_xy,
2223 fs_reg(), /* src */
2224 brw_imm_ud(off_x | (off_y << 4)),
2225 interpolation);
2226 } else {
2227 fs_reg src = vgrf(glsl_type::ivec2_type);
2228 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2229 BRW_REGISTER_TYPE_F);
2230 for (int i = 0; i < 2; i++) {
2231 fs_reg temp = vgrf(glsl_type::float_type);
2232 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2233 fs_reg itemp = vgrf(glsl_type::int_type);
2234 bld.MOV(itemp, temp); /* float to int */
2235
2236 /* Clamp the upper end of the range to +7/16.
2237 * ARB_gpu_shader5 requires that we support a maximum offset
2238 * of +0.5, which isn't representable in a S0.4 value -- if
2239 * we didn't clamp it, we'd end up with -8/16, which is the
2240 * opposite of what the shader author wanted.
2241 *
2242 * This is legal due to ARB_gpu_shader5's quantization
2243 * rules:
2244 *
2245 * "Not all values of <offset> may be supported; x and y
2246 * offsets may be rounded to fixed-point values with the
2247 * number of fraction bits given by the
2248 * implementation-dependent constant
2249 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2250 */
2251 set_condmod(BRW_CONDITIONAL_L,
2252 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2253 }
2254
2255 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2256 emit_pixel_interpolater_send(bld,
2257 opcode,
2258 dst_xy,
2259 src,
2260 brw_imm_ud(0u),
2261 interpolation);
2262 }
2263 break;
2264 }
2265
2266 default:
2267 unreachable("Invalid intrinsic");
2268 }
2269
2270 for (unsigned j = 0; j < instr->num_components; j++) {
2271 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2272 src.type = dest.type;
2273
2274 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2275 dest = offset(dest, bld, 1);
2276 }
2277 break;
2278 }
2279 default:
2280 nir_emit_intrinsic(bld, instr);
2281 break;
2282 }
2283 }
2284
2285 void
2286 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2287 nir_intrinsic_instr *instr)
2288 {
2289 assert(stage == MESA_SHADER_COMPUTE);
2290 struct brw_cs_prog_data *cs_prog_data =
2291 (struct brw_cs_prog_data *) prog_data;
2292
2293 fs_reg dest;
2294 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2295 dest = get_nir_dest(instr->dest);
2296
2297 switch (instr->intrinsic) {
2298 case nir_intrinsic_barrier:
2299 emit_barrier();
2300 cs_prog_data->uses_barrier = true;
2301 break;
2302
2303 case nir_intrinsic_load_local_invocation_id:
2304 case nir_intrinsic_load_work_group_id: {
2305 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2306 fs_reg val = nir_system_values[sv];
2307 assert(val.file != BAD_FILE);
2308 dest.type = val.type;
2309 for (unsigned i = 0; i < 3; i++)
2310 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2311 break;
2312 }
2313
2314 case nir_intrinsic_load_num_work_groups: {
2315 const unsigned surface =
2316 cs_prog_data->binding_table.work_groups_start;
2317
2318 cs_prog_data->uses_num_work_groups = true;
2319
2320 fs_reg surf_index = brw_imm_ud(surface);
2321 brw_mark_surface_used(prog_data, surface);
2322
2323 /* Read the 3 GLuint components of gl_NumWorkGroups */
2324 for (unsigned i = 0; i < 3; i++) {
2325 fs_reg read_result =
2326 emit_untyped_read(bld, surf_index,
2327 brw_imm_ud(i << 2),
2328 1 /* dims */, 1 /* size */,
2329 BRW_PREDICATE_NONE);
2330 read_result.type = dest.type;
2331 bld.MOV(dest, read_result);
2332 dest = offset(dest, bld, 1);
2333 }
2334 break;
2335 }
2336
2337 case nir_intrinsic_shared_atomic_add:
2338 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2339 break;
2340 case nir_intrinsic_shared_atomic_imin:
2341 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2342 break;
2343 case nir_intrinsic_shared_atomic_umin:
2344 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2345 break;
2346 case nir_intrinsic_shared_atomic_imax:
2347 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2348 break;
2349 case nir_intrinsic_shared_atomic_umax:
2350 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2351 break;
2352 case nir_intrinsic_shared_atomic_and:
2353 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2354 break;
2355 case nir_intrinsic_shared_atomic_or:
2356 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2357 break;
2358 case nir_intrinsic_shared_atomic_xor:
2359 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2360 break;
2361 case nir_intrinsic_shared_atomic_exchange:
2362 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2363 break;
2364 case nir_intrinsic_shared_atomic_comp_swap:
2365 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2366 break;
2367
2368 case nir_intrinsic_load_shared: {
2369 assert(devinfo->gen >= 7);
2370
2371 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2372
2373 /* Get the offset to read from */
2374 fs_reg offset_reg;
2375 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2376 if (const_offset) {
2377 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0]);
2378 } else {
2379 offset_reg = vgrf(glsl_type::uint_type);
2380 bld.ADD(offset_reg,
2381 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2382 brw_imm_ud(instr->const_index[0]));
2383 }
2384
2385 /* Read the vector */
2386 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2387 1 /* dims */,
2388 instr->num_components,
2389 BRW_PREDICATE_NONE);
2390 read_result.type = dest.type;
2391 for (int i = 0; i < instr->num_components; i++)
2392 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2393
2394 break;
2395 }
2396
2397 case nir_intrinsic_store_shared: {
2398 assert(devinfo->gen >= 7);
2399
2400 /* Block index */
2401 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2402
2403 /* Value */
2404 fs_reg val_reg = get_nir_src(instr->src[0]);
2405
2406 /* Writemask */
2407 unsigned writemask = instr->const_index[1];
2408
2409 /* Combine groups of consecutive enabled channels in one write
2410 * message. We use ffs to find the first enabled channel and then ffs on
2411 * the bit-inverse, down-shifted writemask to determine the length of
2412 * the block of enabled bits.
2413 */
2414 while (writemask) {
2415 unsigned first_component = ffs(writemask) - 1;
2416 unsigned length = ffs(~(writemask >> first_component)) - 1;
2417 fs_reg offset_reg;
2418
2419 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2420 if (const_offset) {
2421 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0] +
2422 4 * first_component);
2423 } else {
2424 offset_reg = vgrf(glsl_type::uint_type);
2425 bld.ADD(offset_reg,
2426 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2427 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2428 }
2429
2430 emit_untyped_write(bld, surf_index, offset_reg,
2431 offset(val_reg, bld, first_component),
2432 1 /* dims */, length,
2433 BRW_PREDICATE_NONE);
2434
2435 /* Clear the bits in the writemask that we just wrote, then try
2436 * again to see if more channels are left.
2437 */
2438 writemask &= (15 << (first_component + length));
2439 }
2440
2441 break;
2442 }
2443
2444 default:
2445 nir_emit_intrinsic(bld, instr);
2446 break;
2447 }
2448 }
2449
2450 void
2451 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2452 {
2453 fs_reg dest;
2454 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2455 dest = get_nir_dest(instr->dest);
2456
2457 switch (instr->intrinsic) {
2458 case nir_intrinsic_atomic_counter_inc:
2459 case nir_intrinsic_atomic_counter_dec:
2460 case nir_intrinsic_atomic_counter_read: {
2461 using namespace surface_access;
2462
2463 /* Get the arguments of the atomic intrinsic. */
2464 const fs_reg offset = get_nir_src(instr->src[0]);
2465 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2466 instr->const_index[0]);
2467 fs_reg tmp;
2468
2469 /* Emit a surface read or atomic op. */
2470 switch (instr->intrinsic) {
2471 case nir_intrinsic_atomic_counter_read:
2472 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2473 break;
2474
2475 case nir_intrinsic_atomic_counter_inc:
2476 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2477 fs_reg(), 1, 1, BRW_AOP_INC);
2478 break;
2479
2480 case nir_intrinsic_atomic_counter_dec:
2481 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2482 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2483 break;
2484
2485 default:
2486 unreachable("Unreachable");
2487 }
2488
2489 /* Assign the result. */
2490 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2491
2492 /* Mark the surface as used. */
2493 brw_mark_surface_used(stage_prog_data, surface);
2494 break;
2495 }
2496
2497 case nir_intrinsic_image_load:
2498 case nir_intrinsic_image_store:
2499 case nir_intrinsic_image_atomic_add:
2500 case nir_intrinsic_image_atomic_min:
2501 case nir_intrinsic_image_atomic_max:
2502 case nir_intrinsic_image_atomic_and:
2503 case nir_intrinsic_image_atomic_or:
2504 case nir_intrinsic_image_atomic_xor:
2505 case nir_intrinsic_image_atomic_exchange:
2506 case nir_intrinsic_image_atomic_comp_swap: {
2507 using namespace image_access;
2508
2509 /* Get the referenced image variable and type. */
2510 const nir_variable *var = instr->variables[0]->var;
2511 const glsl_type *type = var->type->without_array();
2512 const brw_reg_type base_type = get_image_base_type(type);
2513
2514 /* Get some metadata from the image intrinsic. */
2515 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2516 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2517 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2518 const mesa_format format =
2519 (var->data.image.write_only ? MESA_FORMAT_NONE :
2520 _mesa_get_shader_image_format(var->data.image.format));
2521
2522 /* Get the arguments of the image intrinsic. */
2523 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2524 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2525 BRW_REGISTER_TYPE_UD);
2526 const fs_reg src0 = (info->num_srcs >= 3 ?
2527 retype(get_nir_src(instr->src[2]), base_type) :
2528 fs_reg());
2529 const fs_reg src1 = (info->num_srcs >= 4 ?
2530 retype(get_nir_src(instr->src[3]), base_type) :
2531 fs_reg());
2532 fs_reg tmp;
2533
2534 /* Emit an image load, store or atomic op. */
2535 if (instr->intrinsic == nir_intrinsic_image_load)
2536 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2537
2538 else if (instr->intrinsic == nir_intrinsic_image_store)
2539 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2540
2541 else
2542 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2543 surf_dims, arr_dims, info->dest_components,
2544 get_image_atomic_op(instr->intrinsic, type));
2545
2546 /* Assign the result. */
2547 for (unsigned c = 0; c < info->dest_components; ++c)
2548 bld.MOV(offset(retype(dest, base_type), bld, c),
2549 offset(tmp, bld, c));
2550 break;
2551 }
2552
2553 case nir_intrinsic_memory_barrier_atomic_counter:
2554 case nir_intrinsic_memory_barrier_buffer:
2555 case nir_intrinsic_memory_barrier_image:
2556 case nir_intrinsic_memory_barrier: {
2557 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2558 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2559 ->regs_written = 2;
2560 break;
2561 }
2562
2563 case nir_intrinsic_group_memory_barrier:
2564 case nir_intrinsic_memory_barrier_shared:
2565 /* We treat these workgroup-level barriers as no-ops. This should be
2566 * safe at present and as long as:
2567 *
2568 * - Memory access instructions are not subsequently reordered by the
2569 * compiler back-end.
2570 *
2571 * - All threads from a given compute shader workgroup fit within a
2572 * single subslice and therefore talk to the same HDC shared unit
2573 * what supposedly guarantees ordering and coherency between threads
2574 * from the same workgroup. This may change in the future when we
2575 * start splitting workgroups across multiple subslices.
2576 *
2577 * - The context is not in fault-and-stream mode, which could cause
2578 * memory transactions (including to SLM) prior to the barrier to be
2579 * replayed after the barrier if a pagefault occurs. This shouldn't
2580 * be a problem up to and including SKL because fault-and-stream is
2581 * not usable due to hardware issues, but that's likely to change in
2582 * the future.
2583 */
2584 break;
2585
2586 case nir_intrinsic_shader_clock: {
2587 /* We cannot do anything if there is an event, so ignore it for now */
2588 fs_reg shader_clock = get_timestamp(bld);
2589 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2590
2591 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2592 break;
2593 }
2594
2595 case nir_intrinsic_image_size: {
2596 /* Get the referenced image variable and type. */
2597 const nir_variable *var = instr->variables[0]->var;
2598 const glsl_type *type = var->type->without_array();
2599
2600 /* Get the size of the image. */
2601 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2602 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2603
2604 /* For 1DArray image types, the array index is stored in the Z component.
2605 * Fix this by swizzling the Z component to the Y component.
2606 */
2607 const bool is_1d_array_image =
2608 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2609 type->sampler_array;
2610
2611 /* For CubeArray images, we should count the number of cubes instead
2612 * of the number of faces. Fix it by dividing the (Z component) by 6.
2613 */
2614 const bool is_cube_array_image =
2615 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2616 type->sampler_array;
2617
2618 /* Copy all the components. */
2619 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2620 for (unsigned c = 0; c < info->dest_components; ++c) {
2621 if ((int)c >= type->coordinate_components()) {
2622 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2623 brw_imm_d(1));
2624 } else if (c == 1 && is_1d_array_image) {
2625 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2626 offset(size, bld, 2));
2627 } else if (c == 2 && is_cube_array_image) {
2628 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2629 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2630 offset(size, bld, c), brw_imm_d(6));
2631 } else {
2632 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2633 offset(size, bld, c));
2634 }
2635 }
2636
2637 break;
2638 }
2639
2640 case nir_intrinsic_image_samples:
2641 /* The driver does not support multi-sampled images. */
2642 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2643 break;
2644
2645 case nir_intrinsic_load_uniform: {
2646 /* Offsets are in bytes but they should always be multiples of 4 */
2647 assert(instr->const_index[0] % 4 == 0);
2648
2649 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2650
2651 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2652 if (const_offset) {
2653 /* Offsets are in bytes but they should always be multiples of 4 */
2654 assert(const_offset->u[0] % 4 == 0);
2655 src.reg_offset = const_offset->u[0] / 4;
2656
2657 for (unsigned j = 0; j < instr->num_components; j++) {
2658 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2659 }
2660 } else {
2661 fs_reg indirect = retype(get_nir_src(instr->src[0]),
2662 BRW_REGISTER_TYPE_UD);
2663
2664 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
2665 * go past the end of the uniform. In order to keep the n'th
2666 * component from running past, we subtract off the size of all but
2667 * one component of the vector.
2668 */
2669 assert(instr->const_index[1] >= instr->num_components * 4);
2670 unsigned read_size = instr->const_index[1] -
2671 (instr->num_components - 1) * 4;
2672
2673 for (unsigned j = 0; j < instr->num_components; j++) {
2674 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
2675 offset(dest, bld, j), offset(src, bld, j),
2676 indirect, brw_imm_ud(read_size));
2677 }
2678 }
2679 break;
2680 }
2681
2682 case nir_intrinsic_load_ubo: {
2683 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2684 fs_reg surf_index;
2685
2686 if (const_index) {
2687 const unsigned index = stage_prog_data->binding_table.ubo_start +
2688 const_index->u[0];
2689 surf_index = brw_imm_ud(index);
2690 brw_mark_surface_used(prog_data, index);
2691 } else {
2692 /* The block index is not a constant. Evaluate the index expression
2693 * per-channel and add the base UBO index; we have to select a value
2694 * from any live channel.
2695 */
2696 surf_index = vgrf(glsl_type::uint_type);
2697 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2698 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2699 surf_index = bld.emit_uniformize(surf_index);
2700
2701 /* Assume this may touch any UBO. It would be nice to provide
2702 * a tighter bound, but the array information is already lowered away.
2703 */
2704 brw_mark_surface_used(prog_data,
2705 stage_prog_data->binding_table.ubo_start +
2706 nir->info.num_ubos - 1);
2707 }
2708
2709 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2710 if (const_offset == NULL) {
2711 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2712 BRW_REGISTER_TYPE_D);
2713
2714 for (int i = 0; i < instr->num_components; i++)
2715 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2716 base_offset, i * 4);
2717 } else {
2718 fs_reg packed_consts = vgrf(glsl_type::float_type);
2719 packed_consts.type = dest.type;
2720
2721 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u[0] & ~15);
2722 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2723 surf_index, const_offset_reg);
2724
2725 for (unsigned i = 0; i < instr->num_components; i++) {
2726 packed_consts.set_smear(const_offset->u[0] % 16 / 4 + i);
2727
2728 /* The std140 packing rules don't allow vectors to cross 16-byte
2729 * boundaries, and a reg is 32 bytes.
2730 */
2731 assert(packed_consts.subreg_offset < 32);
2732
2733 bld.MOV(dest, packed_consts);
2734 dest = offset(dest, bld, 1);
2735 }
2736 }
2737 break;
2738 }
2739
2740 case nir_intrinsic_load_ssbo: {
2741 assert(devinfo->gen >= 7);
2742
2743 nir_const_value *const_uniform_block =
2744 nir_src_as_const_value(instr->src[0]);
2745
2746 fs_reg surf_index;
2747 if (const_uniform_block) {
2748 unsigned index = stage_prog_data->binding_table.ssbo_start +
2749 const_uniform_block->u[0];
2750 surf_index = brw_imm_ud(index);
2751 brw_mark_surface_used(prog_data, index);
2752 } else {
2753 surf_index = vgrf(glsl_type::uint_type);
2754 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2755 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2756
2757 /* Assume this may touch any UBO. It would be nice to provide
2758 * a tighter bound, but the array information is already lowered away.
2759 */
2760 brw_mark_surface_used(prog_data,
2761 stage_prog_data->binding_table.ssbo_start +
2762 nir->info.num_ssbos - 1);
2763 }
2764
2765 fs_reg offset_reg;
2766 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2767 if (const_offset) {
2768 offset_reg = brw_imm_ud(const_offset->u[0]);
2769 } else {
2770 offset_reg = get_nir_src(instr->src[1]);
2771 }
2772
2773 /* Read the vector */
2774 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2775 1 /* dims */,
2776 instr->num_components,
2777 BRW_PREDICATE_NONE);
2778 read_result.type = dest.type;
2779 for (int i = 0; i < instr->num_components; i++)
2780 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2781
2782 break;
2783 }
2784
2785 case nir_intrinsic_load_input: {
2786 fs_reg src;
2787 if (stage == MESA_SHADER_VERTEX) {
2788 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2789 } else {
2790 src = offset(retype(nir_inputs, dest.type), bld,
2791 instr->const_index[0]);
2792 }
2793
2794 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2795 assert(const_offset && "Indirect input loads not allowed");
2796 src = offset(src, bld, const_offset->u[0]);
2797
2798 for (unsigned j = 0; j < instr->num_components; j++) {
2799 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2800 }
2801 break;
2802 }
2803
2804 case nir_intrinsic_store_ssbo: {
2805 assert(devinfo->gen >= 7);
2806
2807 /* Block index */
2808 fs_reg surf_index;
2809 nir_const_value *const_uniform_block =
2810 nir_src_as_const_value(instr->src[1]);
2811 if (const_uniform_block) {
2812 unsigned index = stage_prog_data->binding_table.ssbo_start +
2813 const_uniform_block->u[0];
2814 surf_index = brw_imm_ud(index);
2815 brw_mark_surface_used(prog_data, index);
2816 } else {
2817 surf_index = vgrf(glsl_type::uint_type);
2818 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2819 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2820
2821 brw_mark_surface_used(prog_data,
2822 stage_prog_data->binding_table.ssbo_start +
2823 nir->info.num_ssbos - 1);
2824 }
2825
2826 /* Value */
2827 fs_reg val_reg = get_nir_src(instr->src[0]);
2828
2829 /* Writemask */
2830 unsigned writemask = instr->const_index[0];
2831
2832 /* Combine groups of consecutive enabled channels in one write
2833 * message. We use ffs to find the first enabled channel and then ffs on
2834 * the bit-inverse, down-shifted writemask to determine the length of
2835 * the block of enabled bits.
2836 */
2837 while (writemask) {
2838 unsigned first_component = ffs(writemask) - 1;
2839 unsigned length = ffs(~(writemask >> first_component)) - 1;
2840
2841 fs_reg offset_reg;
2842 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2843 if (const_offset) {
2844 offset_reg = brw_imm_ud(const_offset->u[0] + 4 * first_component);
2845 } else {
2846 offset_reg = vgrf(glsl_type::uint_type);
2847 bld.ADD(offset_reg,
2848 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2849 brw_imm_ud(4 * first_component));
2850 }
2851
2852 emit_untyped_write(bld, surf_index, offset_reg,
2853 offset(val_reg, bld, first_component),
2854 1 /* dims */, length,
2855 BRW_PREDICATE_NONE);
2856
2857 /* Clear the bits in the writemask that we just wrote, then try
2858 * again to see if more channels are left.
2859 */
2860 writemask &= (15 << (first_component + length));
2861 }
2862 break;
2863 }
2864
2865 case nir_intrinsic_store_output: {
2866 fs_reg src = get_nir_src(instr->src[0]);
2867 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2868 instr->const_index[0]);
2869
2870 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2871 assert(const_offset && "Indirect output stores not allowed");
2872 new_dest = offset(new_dest, bld, const_offset->u[0]);
2873
2874 for (unsigned j = 0; j < instr->num_components; j++) {
2875 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2876 }
2877 break;
2878 }
2879
2880 case nir_intrinsic_ssbo_atomic_add:
2881 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2882 break;
2883 case nir_intrinsic_ssbo_atomic_imin:
2884 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2885 break;
2886 case nir_intrinsic_ssbo_atomic_umin:
2887 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2888 break;
2889 case nir_intrinsic_ssbo_atomic_imax:
2890 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2891 break;
2892 case nir_intrinsic_ssbo_atomic_umax:
2893 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2894 break;
2895 case nir_intrinsic_ssbo_atomic_and:
2896 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2897 break;
2898 case nir_intrinsic_ssbo_atomic_or:
2899 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2900 break;
2901 case nir_intrinsic_ssbo_atomic_xor:
2902 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2903 break;
2904 case nir_intrinsic_ssbo_atomic_exchange:
2905 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2906 break;
2907 case nir_intrinsic_ssbo_atomic_comp_swap:
2908 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2909 break;
2910
2911 case nir_intrinsic_get_buffer_size: {
2912 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2913 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2914 int reg_width = dispatch_width / 8;
2915
2916 /* Set LOD = 0 */
2917 fs_reg source = brw_imm_d(0);
2918
2919 int mlen = 1 * reg_width;
2920
2921 /* A resinfo's sampler message is used to get the buffer size.
2922 * The SIMD8's writeback message consists of four registers and
2923 * SIMD16's writeback message consists of 8 destination registers
2924 * (two per each component), although we are only interested on the
2925 * first component, where resinfo returns the buffer size for
2926 * SURFTYPE_BUFFER.
2927 */
2928 int regs_written = 4 * mlen;
2929 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2930 BRW_REGISTER_TYPE_UD);
2931 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2932 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2933 BRW_REGISTER_TYPE_UD);
2934 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2935 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2936 src_payload, brw_imm_ud(index));
2937 inst->header_size = 0;
2938 inst->mlen = mlen;
2939 inst->regs_written = regs_written;
2940 bld.emit(inst);
2941 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2942
2943 brw_mark_surface_used(prog_data, index);
2944 break;
2945 }
2946
2947 default:
2948 unreachable("unknown intrinsic");
2949 }
2950 }
2951
2952 void
2953 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2954 int op, nir_intrinsic_instr *instr)
2955 {
2956 fs_reg dest;
2957 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2958 dest = get_nir_dest(instr->dest);
2959
2960 fs_reg surface;
2961 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2962 if (const_surface) {
2963 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2964 const_surface->u[0];
2965 surface = brw_imm_ud(surf_index);
2966 brw_mark_surface_used(prog_data, surf_index);
2967 } else {
2968 surface = vgrf(glsl_type::uint_type);
2969 bld.ADD(surface, get_nir_src(instr->src[0]),
2970 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2971
2972 /* Assume this may touch any SSBO. This is the same we do for other
2973 * UBO/SSBO accesses with non-constant surface.
2974 */
2975 brw_mark_surface_used(prog_data,
2976 stage_prog_data->binding_table.ssbo_start +
2977 nir->info.num_ssbos - 1);
2978 }
2979
2980 fs_reg offset = get_nir_src(instr->src[1]);
2981 fs_reg data1 = get_nir_src(instr->src[2]);
2982 fs_reg data2;
2983 if (op == BRW_AOP_CMPWR)
2984 data2 = get_nir_src(instr->src[3]);
2985
2986 /* Emit the actual atomic operation operation */
2987
2988 fs_reg atomic_result =
2989 surface_access::emit_untyped_atomic(bld, surface, offset,
2990 data1, data2,
2991 1 /* dims */, 1 /* rsize */,
2992 op,
2993 BRW_PREDICATE_NONE);
2994 dest.type = atomic_result.type;
2995 bld.MOV(dest, atomic_result);
2996 }
2997
2998 void
2999 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
3000 int op, nir_intrinsic_instr *instr)
3001 {
3002 fs_reg dest;
3003 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3004 dest = get_nir_dest(instr->dest);
3005
3006 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
3007 fs_reg offset = get_nir_src(instr->src[0]);
3008 fs_reg data1 = get_nir_src(instr->src[1]);
3009 fs_reg data2;
3010 if (op == BRW_AOP_CMPWR)
3011 data2 = get_nir_src(instr->src[2]);
3012
3013 /* Emit the actual atomic operation operation */
3014
3015 fs_reg atomic_result =
3016 surface_access::emit_untyped_atomic(bld, surface, offset,
3017 data1, data2,
3018 1 /* dims */, 1 /* rsize */,
3019 op,
3020 BRW_PREDICATE_NONE);
3021 dest.type = atomic_result.type;
3022 bld.MOV(dest, atomic_result);
3023 }
3024
3025 void
3026 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3027 {
3028 unsigned texture = instr->texture_index;
3029 unsigned sampler = instr->sampler_index;
3030 fs_reg texture_reg(brw_imm_ud(texture));
3031 fs_reg sampler_reg(brw_imm_ud(sampler));
3032
3033 int gather_component = instr->component;
3034
3035 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
3036 instr->is_array;
3037
3038 int lod_components = 0;
3039
3040 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
3041
3042 /* Our hardware requires a LOD for buffer textures */
3043 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3044 lod = brw_imm_d(0);
3045
3046 for (unsigned i = 0; i < instr->num_srcs; i++) {
3047 fs_reg src = get_nir_src(instr->src[i].src);
3048 switch (instr->src[i].src_type) {
3049 case nir_tex_src_bias:
3050 lod = retype(src, BRW_REGISTER_TYPE_F);
3051 break;
3052 case nir_tex_src_comparitor:
3053 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
3054 break;
3055 case nir_tex_src_coord:
3056 switch (instr->op) {
3057 case nir_texop_txf:
3058 case nir_texop_txf_ms:
3059 case nir_texop_samples_identical:
3060 coordinate = retype(src, BRW_REGISTER_TYPE_D);
3061 break;
3062 default:
3063 coordinate = retype(src, BRW_REGISTER_TYPE_F);
3064 break;
3065 }
3066 break;
3067 case nir_tex_src_ddx:
3068 lod = retype(src, BRW_REGISTER_TYPE_F);
3069 lod_components = nir_tex_instr_src_size(instr, i);
3070 break;
3071 case nir_tex_src_ddy:
3072 lod2 = retype(src, BRW_REGISTER_TYPE_F);
3073 break;
3074 case nir_tex_src_lod:
3075 switch (instr->op) {
3076 case nir_texop_txs:
3077 lod = retype(src, BRW_REGISTER_TYPE_UD);
3078 break;
3079 case nir_texop_txf:
3080 lod = retype(src, BRW_REGISTER_TYPE_D);
3081 break;
3082 default:
3083 lod = retype(src, BRW_REGISTER_TYPE_F);
3084 break;
3085 }
3086 break;
3087 case nir_tex_src_ms_index:
3088 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
3089 break;
3090
3091 case nir_tex_src_offset: {
3092 nir_const_value *const_offset =
3093 nir_src_as_const_value(instr->src[i].src);
3094 if (const_offset) {
3095 tex_offset = brw_imm_ud(brw_texture_offset(const_offset->i, 3));
3096 } else {
3097 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
3098 }
3099 break;
3100 }
3101
3102 case nir_tex_src_projector:
3103 unreachable("should be lowered");
3104
3105 case nir_tex_src_texture_offset: {
3106 /* Figure out the highest possible texture index and mark it as used */
3107 uint32_t max_used = texture + instr->texture_array_size - 1;
3108 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3109 max_used += stage_prog_data->binding_table.gather_texture_start;
3110 } else {
3111 max_used += stage_prog_data->binding_table.texture_start;
3112 }
3113 brw_mark_surface_used(prog_data, max_used);
3114
3115 /* Emit code to evaluate the actual indexing expression */
3116 texture_reg = vgrf(glsl_type::uint_type);
3117 bld.ADD(texture_reg, src, brw_imm_ud(texture));
3118 texture_reg = bld.emit_uniformize(texture_reg);
3119 break;
3120 }
3121
3122 case nir_tex_src_sampler_offset: {
3123 /* Emit code to evaluate the actual indexing expression */
3124 sampler_reg = vgrf(glsl_type::uint_type);
3125 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3126 sampler_reg = bld.emit_uniformize(sampler_reg);
3127 break;
3128 }
3129
3130 default:
3131 unreachable("unknown texture source");
3132 }
3133 }
3134
3135 if (instr->op == nir_texop_txf_ms ||
3136 instr->op == nir_texop_samples_identical) {
3137 if (devinfo->gen >= 7 &&
3138 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
3139 mcs = emit_mcs_fetch(coordinate, instr->coord_components, texture_reg);
3140 } else {
3141 mcs = brw_imm_ud(0u);
3142 }
3143 }
3144
3145 enum glsl_base_type dest_base_type =
3146 brw_glsl_base_type_for_nir_type (instr->dest_type);
3147
3148 const glsl_type *dest_type =
3149 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3150 1);
3151
3152 ir_texture_opcode op;
3153 switch (instr->op) {
3154 case nir_texop_lod: op = ir_lod; break;
3155 case nir_texop_query_levels: op = ir_query_levels; break;
3156 case nir_texop_tex: op = ir_tex; break;
3157 case nir_texop_tg4: op = ir_tg4; break;
3158 case nir_texop_txb: op = ir_txb; break;
3159 case nir_texop_txd: op = ir_txd; break;
3160 case nir_texop_txf: op = ir_txf; break;
3161 case nir_texop_txf_ms: op = ir_txf_ms; break;
3162 case nir_texop_txl: op = ir_txl; break;
3163 case nir_texop_txs: op = ir_txs; break;
3164 case nir_texop_texture_samples: {
3165 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3166 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3167 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3168 texture_reg, texture_reg);
3169 inst->mlen = 1;
3170 inst->header_size = 1;
3171 inst->base_mrf = -1;
3172 return;
3173 }
3174 case nir_texop_samples_identical: op = ir_samples_identical; break;
3175 default:
3176 unreachable("unknown texture opcode");
3177 }
3178
3179 emit_texture(op, dest_type, coordinate, instr->coord_components,
3180 shadow_comparitor, lod, lod2, lod_components, sample_index,
3181 tex_offset, mcs, gather_component, is_cube_array,
3182 texture, texture_reg, sampler, sampler_reg);
3183
3184 fs_reg dest = get_nir_dest(instr->dest);
3185 dest.type = this->result.type;
3186 unsigned num_components = nir_tex_instr_dest_size(instr);
3187 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3188 dest, this->result),
3189 (1 << num_components) - 1);
3190 }
3191
3192 void
3193 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3194 {
3195 switch (instr->type) {
3196 case nir_jump_break:
3197 bld.emit(BRW_OPCODE_BREAK);
3198 break;
3199 case nir_jump_continue:
3200 bld.emit(BRW_OPCODE_CONTINUE);
3201 break;
3202 case nir_jump_return:
3203 default:
3204 unreachable("unknown jump");
3205 }
3206 }