i965/nir/vec4: Implement load_const intrinsic
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_fs_surface_builder.h"
30 #include "brw_nir.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 nir_shader *nir = prog->nir;
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_inputs(nir);
43 nir_setup_outputs(nir);
44 nir_setup_uniforms(nir);
45 nir_emit_system_values(nir);
46
47 /* get the main function and emit it */
48 nir_foreach_overload(nir, overload) {
49 assert(strcmp(overload->function->name, "main") == 0);
50 assert(overload->impl);
51 nir_emit_impl(overload->impl);
52 }
53 }
54
55 void
56 fs_visitor::nir_setup_inputs(nir_shader *shader)
57 {
58 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_inputs);
59
60 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
61 enum brw_reg_type type = brw_type_for_base_type(var->type);
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 switch (stage) {
66 case MESA_SHADER_VERTEX: {
67 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
68 * stored in nir_variable::location.
69 *
70 * However, NIR's load_input intrinsics use a different index - an
71 * offset into a single contiguous array containing all inputs.
72 * This index corresponds to the nir_variable::driver_location field.
73 *
74 * So, we need to copy from fs_reg(ATTR, var->location) to
75 * offset(nir_inputs, var->data.driver_location).
76 */
77 const glsl_type *const t = var->type->without_array();
78 const unsigned components = t->components();
79 const unsigned cols = t->matrix_columns;
80 const unsigned elts = t->vector_elements;
81 unsigned array_length = var->type->is_array() ? var->type->length : 1;
82 for (unsigned i = 0; i < array_length; i++) {
83 for (unsigned j = 0; j < cols; j++) {
84 for (unsigned k = 0; k < elts; k++) {
85 bld.MOV(offset(retype(input, type), bld,
86 components * i + elts * j + k),
87 offset(fs_reg(ATTR, var->data.location + i, type),
88 bld, 4 * j + k));
89 }
90 }
91 }
92 break;
93 }
94 case MESA_SHADER_GEOMETRY:
95 case MESA_SHADER_COMPUTE:
96 case MESA_SHADER_TESS_CTRL:
97 case MESA_SHADER_TESS_EVAL:
98 unreachable("fs_visitor not used for these stages yet.");
99 break;
100 case MESA_SHADER_FRAGMENT:
101 if (var->data.location == VARYING_SLOT_POS) {
102 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
103 var->data.origin_upper_left);
104 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
105 input, reg), 0xF);
106 } else {
107 emit_general_interpolation(input, var->name, var->type,
108 (glsl_interp_qualifier) var->data.interpolation,
109 var->data.location, var->data.centroid,
110 var->data.sample);
111 }
112 break;
113 }
114 }
115 }
116
117 void
118 fs_visitor::nir_setup_outputs(nir_shader *shader)
119 {
120 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
121
122 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_outputs);
123
124 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
125 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
126
127 int vector_elements =
128 var->type->is_array() ? var->type->fields.array->vector_elements
129 : var->type->vector_elements;
130
131 switch (stage) {
132 case MESA_SHADER_VERTEX:
133 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
134 int output = var->data.location + i;
135 this->outputs[output] = offset(reg, bld, 4 * i);
136 this->output_components[output] = vector_elements;
137 }
138 break;
139 case MESA_SHADER_FRAGMENT:
140 if (var->data.index > 0) {
141 assert(var->data.location == FRAG_RESULT_DATA0);
142 assert(var->data.index == 1);
143 this->dual_src_output = reg;
144 this->do_dual_src = true;
145 } else if (var->data.location == FRAG_RESULT_COLOR) {
146 /* Writing gl_FragColor outputs to all color regions. */
147 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
148 this->outputs[i] = reg;
149 this->output_components[i] = 4;
150 }
151 } else if (var->data.location == FRAG_RESULT_DEPTH) {
152 this->frag_depth = reg;
153 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
154 this->sample_mask = reg;
155 } else {
156 /* gl_FragData or a user-defined FS output */
157 assert(var->data.location >= FRAG_RESULT_DATA0 &&
158 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
159
160 /* General color output. */
161 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
162 int output = var->data.location - FRAG_RESULT_DATA0 + i;
163 this->outputs[output] = offset(reg, bld, vector_elements * i);
164 this->output_components[output] = vector_elements;
165 }
166 }
167 break;
168 default:
169 unreachable("unhandled shader stage");
170 }
171 }
172 }
173
174 void
175 fs_visitor::nir_setup_uniforms(nir_shader *shader)
176 {
177 num_direct_uniforms = shader->num_direct_uniforms;
178
179 if (dispatch_width != 8)
180 return;
181
182 /* We split the uniform register file in half. The first half is
183 * entirely direct uniforms. The second half is indirect.
184 */
185 if (num_direct_uniforms > 0)
186 param_size[0] = num_direct_uniforms;
187 if (shader->num_uniforms > num_direct_uniforms)
188 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
189
190 uniforms = shader->num_uniforms;
191
192 if (shader_prog) {
193 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
194 /* UBO's and atomics don't take up space in the uniform file */
195 if (var->interface_type != NULL || var->type->contains_atomic())
196 continue;
197
198 if (strncmp(var->name, "gl_", 3) == 0)
199 nir_setup_builtin_uniform(var);
200 else
201 nir_setup_uniform(var);
202 }
203 } else {
204 /* prog_to_nir doesn't create uniform variables; set param up directly. */
205 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
206 for (unsigned int i = 0; i < 4; i++) {
207 stage_prog_data->param[4 * p + i] =
208 &prog->Parameters->ParameterValues[p][i];
209 }
210 }
211 }
212 }
213
214 void
215 fs_visitor::nir_setup_uniform(nir_variable *var)
216 {
217 int namelen = strlen(var->name);
218
219 /* The data for our (non-builtin) uniforms is stored in a series of
220 * gl_uniform_driver_storage structs for each subcomponent that
221 * glGetUniformLocation() could name. We know it's been set up in the
222 * same order we'd walk the type, so walk the list of storage and find
223 * anything with our name, or the prefix of a component that starts with
224 * our name.
225 */
226 unsigned index = var->data.driver_location;
227 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
228 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
229
230 if (storage->builtin)
231 continue;
232
233 if (strncmp(var->name, storage->name, namelen) != 0 ||
234 (storage->name[namelen] != 0 &&
235 storage->name[namelen] != '.' &&
236 storage->name[namelen] != '[')) {
237 continue;
238 }
239
240 unsigned slots = storage->type->component_slots();
241 if (storage->array_elements)
242 slots *= storage->array_elements;
243
244 for (unsigned i = 0; i < slots; i++) {
245 stage_prog_data->param[index++] = &storage->storage[i];
246 }
247 }
248
249 /* Make sure we actually initialized the right amount of stuff here. */
250 assert(var->data.driver_location + var->type->component_slots() == index);
251 }
252
253 void
254 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
255 {
256 const nir_state_slot *const slots = var->state_slots;
257 assert(var->state_slots != NULL);
258
259 unsigned uniform_index = var->data.driver_location;
260 for (unsigned int i = 0; i < var->num_state_slots; i++) {
261 /* This state reference has already been setup by ir_to_mesa, but we'll
262 * get the same index back here.
263 */
264 int index = _mesa_add_state_reference(this->prog->Parameters,
265 (gl_state_index *)slots[i].tokens);
266
267 /* Add each of the unique swizzles of the element as a parameter.
268 * This'll end up matching the expected layout of the
269 * array/matrix/structure we're trying to fill in.
270 */
271 int last_swiz = -1;
272 for (unsigned int j = 0; j < 4; j++) {
273 int swiz = GET_SWZ(slots[i].swizzle, j);
274 if (swiz == last_swiz)
275 break;
276 last_swiz = swiz;
277
278 stage_prog_data->param[uniform_index++] =
279 &prog->Parameters->ParameterValues[index][swiz];
280 }
281 }
282 }
283
284 static bool
285 emit_system_values_block(nir_block *block, void *void_visitor)
286 {
287 fs_visitor *v = (fs_visitor *)void_visitor;
288 fs_reg *reg;
289
290 nir_foreach_instr(block, instr) {
291 if (instr->type != nir_instr_type_intrinsic)
292 continue;
293
294 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
295 switch (intrin->intrinsic) {
296 case nir_intrinsic_load_vertex_id:
297 unreachable("should be lowered by lower_vertex_id().");
298
299 case nir_intrinsic_load_vertex_id_zero_base:
300 assert(v->stage == MESA_SHADER_VERTEX);
301 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
302 if (reg->file == BAD_FILE)
303 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
304 break;
305
306 case nir_intrinsic_load_base_vertex:
307 assert(v->stage == MESA_SHADER_VERTEX);
308 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
309 if (reg->file == BAD_FILE)
310 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
311 break;
312
313 case nir_intrinsic_load_instance_id:
314 assert(v->stage == MESA_SHADER_VERTEX);
315 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
316 if (reg->file == BAD_FILE)
317 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
318 break;
319
320 case nir_intrinsic_load_sample_pos:
321 assert(v->stage == MESA_SHADER_FRAGMENT);
322 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
323 if (reg->file == BAD_FILE)
324 *reg = *v->emit_samplepos_setup();
325 break;
326
327 case nir_intrinsic_load_sample_id:
328 assert(v->stage == MESA_SHADER_FRAGMENT);
329 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
330 if (reg->file == BAD_FILE)
331 *reg = *v->emit_sampleid_setup();
332 break;
333
334 case nir_intrinsic_load_sample_mask_in:
335 assert(v->stage == MESA_SHADER_FRAGMENT);
336 assert(v->devinfo->gen >= 7);
337 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
338 if (reg->file == BAD_FILE)
339 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
340 BRW_REGISTER_TYPE_D));
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values(nir_shader *shader)
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 nir_foreach_overload(shader, overload) {
356 assert(strcmp(overload->function->name, "main") == 0);
357 assert(overload->impl);
358 nir_foreach_block(overload->impl, emit_system_values_block, this);
359 }
360 }
361
362 void
363 fs_visitor::nir_emit_impl(nir_function_impl *impl)
364 {
365 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
366 foreach_list_typed(nir_register, reg, node, &impl->registers) {
367 unsigned array_elems =
368 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
369 unsigned size = array_elems * reg->num_components;
370 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
371 }
372
373 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
374 impl->ssa_alloc);
375
376 nir_emit_cf_list(&impl->body);
377 }
378
379 void
380 fs_visitor::nir_emit_cf_list(exec_list *list)
381 {
382 exec_list_validate(list);
383 foreach_list_typed(nir_cf_node, node, node, list) {
384 switch (node->type) {
385 case nir_cf_node_if:
386 nir_emit_if(nir_cf_node_as_if(node));
387 break;
388
389 case nir_cf_node_loop:
390 nir_emit_loop(nir_cf_node_as_loop(node));
391 break;
392
393 case nir_cf_node_block:
394 nir_emit_block(nir_cf_node_as_block(node));
395 break;
396
397 default:
398 unreachable("Invalid CFG node block");
399 }
400 }
401 }
402
403 void
404 fs_visitor::nir_emit_if(nir_if *if_stmt)
405 {
406 /* first, put the condition into f0 */
407 fs_inst *inst = bld.MOV(bld.null_reg_d(),
408 retype(get_nir_src(if_stmt->condition),
409 BRW_REGISTER_TYPE_D));
410 inst->conditional_mod = BRW_CONDITIONAL_NZ;
411
412 bld.IF(BRW_PREDICATE_NORMAL);
413
414 nir_emit_cf_list(&if_stmt->then_list);
415
416 /* note: if the else is empty, dead CF elimination will remove it */
417 bld.emit(BRW_OPCODE_ELSE);
418
419 nir_emit_cf_list(&if_stmt->else_list);
420
421 bld.emit(BRW_OPCODE_ENDIF);
422
423 try_replace_with_sel();
424 }
425
426 void
427 fs_visitor::nir_emit_loop(nir_loop *loop)
428 {
429 bld.emit(BRW_OPCODE_DO);
430
431 nir_emit_cf_list(&loop->body);
432
433 bld.emit(BRW_OPCODE_WHILE);
434 }
435
436 void
437 fs_visitor::nir_emit_block(nir_block *block)
438 {
439 nir_foreach_instr(block, instr) {
440 nir_emit_instr(instr);
441 }
442 }
443
444 void
445 fs_visitor::nir_emit_instr(nir_instr *instr)
446 {
447 const fs_builder abld = bld.annotate(NULL, instr);
448
449 switch (instr->type) {
450 case nir_instr_type_alu:
451 nir_emit_alu(abld, nir_instr_as_alu(instr));
452 break;
453
454 case nir_instr_type_intrinsic:
455 nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
456 break;
457
458 case nir_instr_type_tex:
459 nir_emit_texture(abld, nir_instr_as_tex(instr));
460 break;
461
462 case nir_instr_type_load_const:
463 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
464 break;
465
466 case nir_instr_type_ssa_undef:
467 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
468 break;
469
470 case nir_instr_type_jump:
471 nir_emit_jump(abld, nir_instr_as_jump(instr));
472 break;
473
474 default:
475 unreachable("unknown instruction type");
476 }
477 }
478
479 static brw_reg_type
480 brw_type_for_nir_type(nir_alu_type type)
481 {
482 switch (type) {
483 case nir_type_unsigned:
484 return BRW_REGISTER_TYPE_UD;
485 case nir_type_bool:
486 case nir_type_int:
487 return BRW_REGISTER_TYPE_D;
488 case nir_type_float:
489 return BRW_REGISTER_TYPE_F;
490 default:
491 unreachable("unknown type");
492 }
493
494 return BRW_REGISTER_TYPE_F;
495 }
496
497 bool
498 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
499 const fs_reg &result)
500 {
501 if (!instr->src[0].src.is_ssa ||
502 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
503 return false;
504
505 nir_intrinsic_instr *src0 =
506 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
507
508 if (src0->intrinsic != nir_intrinsic_load_front_face)
509 return false;
510
511 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
512 if (!value1 || fabsf(value1->f[0]) != 1.0f)
513 return false;
514
515 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
516 if (!value2 || fabsf(value2->f[0]) != 1.0f)
517 return false;
518
519 fs_reg tmp = vgrf(glsl_type::int_type);
520
521 if (devinfo->gen >= 6) {
522 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
523 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
524
525 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
526 *
527 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
528 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
529 *
530 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
531 *
532 * This negation looks like it's safe in practice, because bits 0:4 will
533 * surely be TRIANGLES
534 */
535
536 if (value1->f[0] == -1.0f) {
537 g0.negate = true;
538 }
539
540 tmp.type = BRW_REGISTER_TYPE_W;
541 tmp.subreg_offset = 2;
542 tmp.stride = 2;
543
544 fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
545 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
546
547 tmp.type = BRW_REGISTER_TYPE_D;
548 tmp.subreg_offset = 0;
549 tmp.stride = 1;
550 } else {
551 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
552 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
553
554 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
555 *
556 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
557 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
558 *
559 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
560 *
561 * This negation looks like it's safe in practice, because bits 0:4 will
562 * surely be TRIANGLES
563 */
564
565 if (value1->f[0] == -1.0f) {
566 g1_6.negate = true;
567 }
568
569 bld.OR(tmp, g1_6, fs_reg(0x3f800000));
570 }
571 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
572
573 return true;
574 }
575
576 void
577 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
578 {
579 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
580 fs_inst *inst;
581
582 fs_reg result = get_nir_dest(instr->dest.dest);
583 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
584
585 fs_reg op[4];
586 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
587 op[i] = get_nir_src(instr->src[i].src);
588 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
589 op[i].abs = instr->src[i].abs;
590 op[i].negate = instr->src[i].negate;
591 }
592
593 /* We get a bunch of mov's out of the from_ssa pass and they may still
594 * be vectorized. We'll handle them as a special-case. We'll also
595 * handle vecN here because it's basically the same thing.
596 */
597 switch (instr->op) {
598 case nir_op_imov:
599 case nir_op_fmov:
600 case nir_op_vec2:
601 case nir_op_vec3:
602 case nir_op_vec4: {
603 fs_reg temp = result;
604 bool need_extra_copy = false;
605 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
606 if (!instr->src[i].src.is_ssa &&
607 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
608 need_extra_copy = true;
609 temp = bld.vgrf(result.type, 4);
610 break;
611 }
612 }
613
614 for (unsigned i = 0; i < 4; i++) {
615 if (!(instr->dest.write_mask & (1 << i)))
616 continue;
617
618 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
619 inst = bld.MOV(offset(temp, bld, i),
620 offset(op[0], bld, instr->src[0].swizzle[i]));
621 } else {
622 inst = bld.MOV(offset(temp, bld, i),
623 offset(op[i], bld, instr->src[i].swizzle[0]));
624 }
625 inst->saturate = instr->dest.saturate;
626 }
627
628 /* In this case the source and destination registers were the same,
629 * so we need to insert an extra set of moves in order to deal with
630 * any swizzling.
631 */
632 if (need_extra_copy) {
633 for (unsigned i = 0; i < 4; i++) {
634 if (!(instr->dest.write_mask & (1 << i)))
635 continue;
636
637 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
638 }
639 }
640 return;
641 }
642 default:
643 break;
644 }
645
646 /* At this point, we have dealt with any instruction that operates on
647 * more than a single channel. Therefore, we can just adjust the source
648 * and destination registers for that channel and emit the instruction.
649 */
650 unsigned channel = 0;
651 if (nir_op_infos[instr->op].output_size == 0) {
652 /* Since NIR is doing the scalarizing for us, we should only ever see
653 * vectorized operations with a single channel.
654 */
655 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
656 channel = ffs(instr->dest.write_mask) - 1;
657
658 result = offset(result, bld, channel);
659 }
660
661 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
662 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
663 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
664 }
665
666 switch (instr->op) {
667 case nir_op_i2f:
668 case nir_op_u2f:
669 inst = bld.MOV(result, op[0]);
670 inst->saturate = instr->dest.saturate;
671 break;
672
673 case nir_op_f2i:
674 case nir_op_f2u:
675 bld.MOV(result, op[0]);
676 break;
677
678 case nir_op_fsign: {
679 /* AND(val, 0x80000000) gives the sign bit.
680 *
681 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
682 * zero.
683 */
684 bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
685
686 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
687 op[0].type = BRW_REGISTER_TYPE_UD;
688 result.type = BRW_REGISTER_TYPE_UD;
689 bld.AND(result_int, op[0], fs_reg(0x80000000u));
690
691 inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
692 inst->predicate = BRW_PREDICATE_NORMAL;
693 if (instr->dest.saturate) {
694 inst = bld.MOV(result, result);
695 inst->saturate = true;
696 }
697 break;
698 }
699
700 case nir_op_isign:
701 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
702 * -> non-negative val generates 0x00000000.
703 * Predicated OR sets 1 if val is positive.
704 */
705 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
706 bld.ASR(result, op[0], fs_reg(31));
707 inst = bld.OR(result, result, fs_reg(1));
708 inst->predicate = BRW_PREDICATE_NORMAL;
709 break;
710
711 case nir_op_frcp:
712 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
713 inst->saturate = instr->dest.saturate;
714 break;
715
716 case nir_op_fexp2:
717 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
718 inst->saturate = instr->dest.saturate;
719 break;
720
721 case nir_op_flog2:
722 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
723 inst->saturate = instr->dest.saturate;
724 break;
725
726 case nir_op_fsin:
727 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
728 inst->saturate = instr->dest.saturate;
729 break;
730
731 case nir_op_fcos:
732 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_fddx:
737 if (fs_key->high_quality_derivatives) {
738 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
739 } else {
740 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
741 }
742 inst->saturate = instr->dest.saturate;
743 break;
744 case nir_op_fddx_fine:
745 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
746 inst->saturate = instr->dest.saturate;
747 break;
748 case nir_op_fddx_coarse:
749 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
750 inst->saturate = instr->dest.saturate;
751 break;
752 case nir_op_fddy:
753 if (fs_key->high_quality_derivatives) {
754 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
755 fs_reg(fs_key->render_to_fbo));
756 } else {
757 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
758 fs_reg(fs_key->render_to_fbo));
759 }
760 inst->saturate = instr->dest.saturate;
761 break;
762 case nir_op_fddy_fine:
763 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
764 fs_reg(fs_key->render_to_fbo));
765 inst->saturate = instr->dest.saturate;
766 break;
767 case nir_op_fddy_coarse:
768 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
769 fs_reg(fs_key->render_to_fbo));
770 inst->saturate = instr->dest.saturate;
771 break;
772
773 case nir_op_fadd:
774 case nir_op_iadd:
775 inst = bld.ADD(result, op[0], op[1]);
776 inst->saturate = instr->dest.saturate;
777 break;
778
779 case nir_op_fmul:
780 inst = bld.MUL(result, op[0], op[1]);
781 inst->saturate = instr->dest.saturate;
782 break;
783
784 case nir_op_imul:
785 bld.MUL(result, op[0], op[1]);
786 break;
787
788 case nir_op_imul_high:
789 case nir_op_umul_high: {
790 if (devinfo->gen >= 7)
791 no16("SIMD16 explicit accumulator operands unsupported\n");
792
793 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
794
795 fs_inst *mul = bld.MUL(acc, op[0], op[1]);
796 bld.MACH(result, op[0], op[1]);
797
798 /* Until Gen8, integer multiplies read 32-bits from one source, and
799 * 16-bits from the other, and relying on the MACH instruction to
800 * generate the high bits of the result.
801 *
802 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
803 * but in order to do a 64x64-bit multiply we have to simulate the
804 * previous behavior and then use a MACH instruction.
805 *
806 * FINISHME: Don't use source modifiers on src1.
807 */
808 if (devinfo->gen >= 8) {
809 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
810 mul->src[1].type == BRW_REGISTER_TYPE_UD);
811 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
812 mul->src[1].type = BRW_REGISTER_TYPE_W;
813 mul->src[1].stride = 2;
814 } else {
815 mul->src[1].type = BRW_REGISTER_TYPE_UW;
816 mul->src[1].stride = 2;
817 }
818 }
819 break;
820 }
821
822 case nir_op_idiv:
823 case nir_op_udiv:
824 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
825 break;
826
827 case nir_op_uadd_carry:
828 unreachable("Should have been lowered by carry_to_arith().");
829
830 case nir_op_usub_borrow:
831 unreachable("Should have been lowered by borrow_to_arith().");
832
833 case nir_op_umod:
834 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
835 break;
836
837 case nir_op_flt:
838 case nir_op_ilt:
839 case nir_op_ult:
840 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
841 break;
842
843 case nir_op_fge:
844 case nir_op_ige:
845 case nir_op_uge:
846 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
847 break;
848
849 case nir_op_feq:
850 case nir_op_ieq:
851 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
852 break;
853
854 case nir_op_fne:
855 case nir_op_ine:
856 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
857 break;
858
859 case nir_op_inot:
860 if (devinfo->gen >= 8) {
861 resolve_source_modifiers(&op[0]);
862 }
863 bld.NOT(result, op[0]);
864 break;
865 case nir_op_ixor:
866 if (devinfo->gen >= 8) {
867 resolve_source_modifiers(&op[0]);
868 resolve_source_modifiers(&op[1]);
869 }
870 bld.XOR(result, op[0], op[1]);
871 break;
872 case nir_op_ior:
873 if (devinfo->gen >= 8) {
874 resolve_source_modifiers(&op[0]);
875 resolve_source_modifiers(&op[1]);
876 }
877 bld.OR(result, op[0], op[1]);
878 break;
879 case nir_op_iand:
880 if (devinfo->gen >= 8) {
881 resolve_source_modifiers(&op[0]);
882 resolve_source_modifiers(&op[1]);
883 }
884 bld.AND(result, op[0], op[1]);
885 break;
886
887 case nir_op_fdot2:
888 case nir_op_fdot3:
889 case nir_op_fdot4:
890 case nir_op_bany2:
891 case nir_op_bany3:
892 case nir_op_bany4:
893 case nir_op_ball2:
894 case nir_op_ball3:
895 case nir_op_ball4:
896 case nir_op_ball_fequal2:
897 case nir_op_ball_iequal2:
898 case nir_op_ball_fequal3:
899 case nir_op_ball_iequal3:
900 case nir_op_ball_fequal4:
901 case nir_op_ball_iequal4:
902 case nir_op_bany_fnequal2:
903 case nir_op_bany_inequal2:
904 case nir_op_bany_fnequal3:
905 case nir_op_bany_inequal3:
906 case nir_op_bany_fnequal4:
907 case nir_op_bany_inequal4:
908 unreachable("Lowered by nir_lower_alu_reductions");
909
910 case nir_op_fnoise1_1:
911 case nir_op_fnoise1_2:
912 case nir_op_fnoise1_3:
913 case nir_op_fnoise1_4:
914 case nir_op_fnoise2_1:
915 case nir_op_fnoise2_2:
916 case nir_op_fnoise2_3:
917 case nir_op_fnoise2_4:
918 case nir_op_fnoise3_1:
919 case nir_op_fnoise3_2:
920 case nir_op_fnoise3_3:
921 case nir_op_fnoise3_4:
922 case nir_op_fnoise4_1:
923 case nir_op_fnoise4_2:
924 case nir_op_fnoise4_3:
925 case nir_op_fnoise4_4:
926 unreachable("not reached: should be handled by lower_noise");
927
928 case nir_op_ldexp:
929 unreachable("not reached: should be handled by ldexp_to_arith()");
930
931 case nir_op_fsqrt:
932 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
933 inst->saturate = instr->dest.saturate;
934 break;
935
936 case nir_op_frsq:
937 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
938 inst->saturate = instr->dest.saturate;
939 break;
940
941 case nir_op_b2i:
942 case nir_op_b2f:
943 bld.MOV(result, negate(op[0]));
944 break;
945
946 case nir_op_f2b:
947 bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
948 break;
949 case nir_op_i2b:
950 bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
951 break;
952
953 case nir_op_ftrunc:
954 inst = bld.RNDZ(result, op[0]);
955 inst->saturate = instr->dest.saturate;
956 break;
957
958 case nir_op_fceil: {
959 op[0].negate = !op[0].negate;
960 fs_reg temp = vgrf(glsl_type::float_type);
961 bld.RNDD(temp, op[0]);
962 temp.negate = true;
963 inst = bld.MOV(result, temp);
964 inst->saturate = instr->dest.saturate;
965 break;
966 }
967 case nir_op_ffloor:
968 inst = bld.RNDD(result, op[0]);
969 inst->saturate = instr->dest.saturate;
970 break;
971 case nir_op_ffract:
972 inst = bld.FRC(result, op[0]);
973 inst->saturate = instr->dest.saturate;
974 break;
975 case nir_op_fround_even:
976 inst = bld.RNDE(result, op[0]);
977 inst->saturate = instr->dest.saturate;
978 break;
979
980 case nir_op_fmin:
981 case nir_op_imin:
982 case nir_op_umin:
983 if (devinfo->gen >= 6) {
984 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
985 inst->conditional_mod = BRW_CONDITIONAL_L;
986 } else {
987 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
988 inst = bld.SEL(result, op[0], op[1]);
989 inst->predicate = BRW_PREDICATE_NORMAL;
990 }
991 inst->saturate = instr->dest.saturate;
992 break;
993
994 case nir_op_fmax:
995 case nir_op_imax:
996 case nir_op_umax:
997 if (devinfo->gen >= 6) {
998 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
999 inst->conditional_mod = BRW_CONDITIONAL_GE;
1000 } else {
1001 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
1002 inst = bld.SEL(result, op[0], op[1]);
1003 inst->predicate = BRW_PREDICATE_NORMAL;
1004 }
1005 inst->saturate = instr->dest.saturate;
1006 break;
1007
1008 case nir_op_pack_snorm_2x16:
1009 case nir_op_pack_snorm_4x8:
1010 case nir_op_pack_unorm_2x16:
1011 case nir_op_pack_unorm_4x8:
1012 case nir_op_unpack_snorm_2x16:
1013 case nir_op_unpack_snorm_4x8:
1014 case nir_op_unpack_unorm_2x16:
1015 case nir_op_unpack_unorm_4x8:
1016 case nir_op_unpack_half_2x16:
1017 case nir_op_pack_half_2x16:
1018 unreachable("not reached: should be handled by lower_packing_builtins");
1019
1020 case nir_op_unpack_half_2x16_split_x:
1021 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1022 inst->saturate = instr->dest.saturate;
1023 break;
1024 case nir_op_unpack_half_2x16_split_y:
1025 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1026 inst->saturate = instr->dest.saturate;
1027 break;
1028
1029 case nir_op_fpow:
1030 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1031 inst->saturate = instr->dest.saturate;
1032 break;
1033
1034 case nir_op_bitfield_reverse:
1035 bld.BFREV(result, op[0]);
1036 break;
1037
1038 case nir_op_bit_count:
1039 bld.CBIT(result, op[0]);
1040 break;
1041
1042 case nir_op_ufind_msb:
1043 case nir_op_ifind_msb: {
1044 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1045
1046 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1047 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1048 * subtract the result from 31 to convert the MSB count into an LSB count.
1049 */
1050
1051 bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
1052 fs_reg neg_result(result);
1053 neg_result.negate = true;
1054 inst = bld.ADD(result, neg_result, fs_reg(31));
1055 inst->predicate = BRW_PREDICATE_NORMAL;
1056 break;
1057 }
1058
1059 case nir_op_find_lsb:
1060 bld.FBL(result, op[0]);
1061 break;
1062
1063 case nir_op_ubitfield_extract:
1064 case nir_op_ibitfield_extract:
1065 bld.BFE(result, op[2], op[1], op[0]);
1066 break;
1067 case nir_op_bfm:
1068 bld.BFI1(result, op[0], op[1]);
1069 break;
1070 case nir_op_bfi:
1071 bld.BFI2(result, op[0], op[1], op[2]);
1072 break;
1073
1074 case nir_op_bitfield_insert:
1075 unreachable("not reached: should be handled by "
1076 "lower_instructions::bitfield_insert_to_bfm_bfi");
1077
1078 case nir_op_ishl:
1079 bld.SHL(result, op[0], op[1]);
1080 break;
1081 case nir_op_ishr:
1082 bld.ASR(result, op[0], op[1]);
1083 break;
1084 case nir_op_ushr:
1085 bld.SHR(result, op[0], op[1]);
1086 break;
1087
1088 case nir_op_pack_half_2x16_split:
1089 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1090 break;
1091
1092 case nir_op_ffma:
1093 inst = bld.MAD(result, op[2], op[1], op[0]);
1094 inst->saturate = instr->dest.saturate;
1095 break;
1096
1097 case nir_op_flrp:
1098 inst = bld.LRP(result, op[0], op[1], op[2]);
1099 inst->saturate = instr->dest.saturate;
1100 break;
1101
1102 case nir_op_bcsel:
1103 if (optimize_frontfacing_ternary(instr, result))
1104 return;
1105
1106 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
1107 inst = bld.SEL(result, op[1], op[2]);
1108 inst->predicate = BRW_PREDICATE_NORMAL;
1109 break;
1110
1111 default:
1112 unreachable("unhandled instruction");
1113 }
1114
1115 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1116 * to sign extend the low bit to 0/~0
1117 */
1118 if (devinfo->gen <= 5 &&
1119 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1120 fs_reg masked = vgrf(glsl_type::int_type);
1121 bld.AND(masked, result, fs_reg(1));
1122 masked.negate = true;
1123 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1124 }
1125 }
1126
1127 void
1128 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1129 nir_load_const_instr *instr)
1130 {
1131 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1132
1133 for (unsigned i = 0; i < instr->def.num_components; i++)
1134 bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
1135
1136 nir_ssa_values[instr->def.index] = reg;
1137 }
1138
1139 void
1140 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1141 {
1142 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1143 instr->def.num_components);
1144 }
1145
1146 static fs_reg
1147 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1148 unsigned base_offset, nir_src *indirect)
1149 {
1150 fs_reg reg;
1151
1152 assert(!nir_reg->is_global);
1153
1154 reg = v->nir_locals[nir_reg->index];
1155
1156 reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
1157 if (indirect) {
1158 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1159
1160 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1161 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1162 fs_reg(multiplier));
1163 }
1164
1165 return reg;
1166 }
1167
1168 fs_reg
1169 fs_visitor::get_nir_src(nir_src src)
1170 {
1171 fs_reg reg;
1172 if (src.is_ssa) {
1173 reg = nir_ssa_values[src.ssa->index];
1174 } else {
1175 reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1176 src.reg.indirect);
1177 }
1178
1179 /* to avoid floating-point denorm flushing problems, set the type by
1180 * default to D - instructions that need floating point semantics will set
1181 * this to F if they need to
1182 */
1183 return retype(reg, BRW_REGISTER_TYPE_D);
1184 }
1185
1186 fs_reg
1187 fs_visitor::get_nir_dest(nir_dest dest)
1188 {
1189 if (dest.is_ssa) {
1190 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1191 dest.ssa.num_components);
1192 return nir_ssa_values[dest.ssa.index];
1193 }
1194
1195 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1196 dest.reg.indirect);
1197 }
1198
1199 void
1200 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1201 unsigned wr_mask)
1202 {
1203 for (unsigned i = 0; i < 4; i++) {
1204 if (!((wr_mask >> i) & 1))
1205 continue;
1206
1207 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1208 new_inst->dst = offset(new_inst->dst, bld, i);
1209 for (unsigned j = 0; j < new_inst->sources; j++)
1210 if (new_inst->src[j].file == GRF)
1211 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1212
1213 bld.emit(new_inst);
1214 }
1215 }
1216
1217 void
1218 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
1219 {
1220 fs_reg dest;
1221 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1222 dest = get_nir_dest(instr->dest);
1223
1224 bool has_indirect = false;
1225
1226 switch (instr->intrinsic) {
1227 case nir_intrinsic_discard:
1228 case nir_intrinsic_discard_if: {
1229 /* We track our discarded pixels in f0.1. By predicating on it, we can
1230 * update just the flag bits that aren't yet discarded. If there's no
1231 * condition, we emit a CMP of g0 != g0, so all currently executing
1232 * channels will get turned off.
1233 */
1234 fs_inst *cmp;
1235 if (instr->intrinsic == nir_intrinsic_discard_if) {
1236 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1237 fs_reg(0), BRW_CONDITIONAL_Z);
1238 } else {
1239 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1240 BRW_REGISTER_TYPE_UW));
1241 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1242 }
1243 cmp->predicate = BRW_PREDICATE_NORMAL;
1244 cmp->flag_subreg = 1;
1245
1246 if (devinfo->gen >= 6) {
1247 emit_discard_jump();
1248 }
1249 break;
1250 }
1251
1252 case nir_intrinsic_atomic_counter_inc:
1253 case nir_intrinsic_atomic_counter_dec:
1254 case nir_intrinsic_atomic_counter_read: {
1255 using namespace surface_access;
1256
1257 /* Get the arguments of the atomic intrinsic. */
1258 const fs_reg offset = get_nir_src(instr->src[0]);
1259 const unsigned surface = (stage_prog_data->binding_table.abo_start +
1260 instr->const_index[0]);
1261 fs_reg tmp;
1262
1263 /* Emit a surface read or atomic op. */
1264 switch (instr->intrinsic) {
1265 case nir_intrinsic_atomic_counter_read:
1266 tmp = emit_untyped_read(bld, fs_reg(surface), offset, 1, 1);
1267 break;
1268
1269 case nir_intrinsic_atomic_counter_inc:
1270 tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
1271 fs_reg(), 1, 1, BRW_AOP_INC);
1272 break;
1273
1274 case nir_intrinsic_atomic_counter_dec:
1275 tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
1276 fs_reg(), 1, 1, BRW_AOP_PREDEC);
1277 break;
1278
1279 default:
1280 unreachable("Unreachable");
1281 }
1282
1283 /* Assign the result. */
1284 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
1285
1286 /* Mark the surface as used. */
1287 brw_mark_surface_used(stage_prog_data, surface);
1288 break;
1289 }
1290
1291 case nir_intrinsic_memory_barrier: {
1292 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
1293 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
1294 ->regs_written = 2;
1295 break;
1296 }
1297
1298 case nir_intrinsic_load_front_face:
1299 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1300 *emit_frontfacing_interpolation());
1301 break;
1302
1303 case nir_intrinsic_load_vertex_id:
1304 unreachable("should be lowered by lower_vertex_id()");
1305
1306 case nir_intrinsic_load_vertex_id_zero_base: {
1307 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1308 assert(vertex_id.file != BAD_FILE);
1309 dest.type = vertex_id.type;
1310 bld.MOV(dest, vertex_id);
1311 break;
1312 }
1313
1314 case nir_intrinsic_load_base_vertex: {
1315 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1316 assert(base_vertex.file != BAD_FILE);
1317 dest.type = base_vertex.type;
1318 bld.MOV(dest, base_vertex);
1319 break;
1320 }
1321
1322 case nir_intrinsic_load_instance_id: {
1323 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1324 assert(instance_id.file != BAD_FILE);
1325 dest.type = instance_id.type;
1326 bld.MOV(dest, instance_id);
1327 break;
1328 }
1329
1330 case nir_intrinsic_load_sample_mask_in: {
1331 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1332 assert(sample_mask_in.file != BAD_FILE);
1333 dest.type = sample_mask_in.type;
1334 bld.MOV(dest, sample_mask_in);
1335 break;
1336 }
1337
1338 case nir_intrinsic_load_sample_pos: {
1339 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1340 assert(sample_pos.file != BAD_FILE);
1341 dest.type = sample_pos.type;
1342 bld.MOV(dest, sample_pos);
1343 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1344 break;
1345 }
1346
1347 case nir_intrinsic_load_sample_id: {
1348 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1349 assert(sample_id.file != BAD_FILE);
1350 dest.type = sample_id.type;
1351 bld.MOV(dest, sample_id);
1352 break;
1353 }
1354
1355 case nir_intrinsic_load_uniform_indirect:
1356 has_indirect = true;
1357 /* fallthrough */
1358 case nir_intrinsic_load_uniform: {
1359 unsigned index = instr->const_index[0];
1360
1361 fs_reg uniform_reg;
1362 if (index < num_direct_uniforms) {
1363 uniform_reg = fs_reg(UNIFORM, 0);
1364 } else {
1365 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1366 index -= num_direct_uniforms;
1367 }
1368
1369 for (unsigned j = 0; j < instr->num_components; j++) {
1370 fs_reg src = offset(retype(uniform_reg, dest.type), bld, index);
1371 if (has_indirect)
1372 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1373 index++;
1374
1375 bld.MOV(dest, src);
1376 dest = offset(dest, bld, 1);
1377 }
1378 break;
1379 }
1380
1381 case nir_intrinsic_load_ubo_indirect:
1382 has_indirect = true;
1383 /* fallthrough */
1384 case nir_intrinsic_load_ubo: {
1385 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1386 fs_reg surf_index;
1387
1388 if (const_index) {
1389 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1390 const_index->u[0]);
1391 } else {
1392 /* The block index is not a constant. Evaluate the index expression
1393 * per-channel and add the base UBO index; we have to select a value
1394 * from any live channel.
1395 */
1396 surf_index = vgrf(glsl_type::uint_type);
1397 bld.ADD(surf_index, get_nir_src(instr->src[0]),
1398 fs_reg(stage_prog_data->binding_table.ubo_start));
1399 surf_index = bld.emit_uniformize(surf_index);
1400
1401 /* Assume this may touch any UBO. It would be nice to provide
1402 * a tighter bound, but the array information is already lowered away.
1403 */
1404 brw_mark_surface_used(prog_data,
1405 stage_prog_data->binding_table.ubo_start +
1406 shader_prog->NumUniformBlocks - 1);
1407 }
1408
1409 if (has_indirect) {
1410 /* Turn the byte offset into a dword offset. */
1411 fs_reg base_offset = vgrf(glsl_type::int_type);
1412 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
1413 BRW_REGISTER_TYPE_D),
1414 fs_reg(2));
1415
1416 unsigned vec4_offset = instr->const_index[0] / 4;
1417 for (int i = 0; i < instr->num_components; i++)
1418 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
1419 base_offset, vec4_offset + i);
1420 } else {
1421 fs_reg packed_consts = vgrf(glsl_type::float_type);
1422 packed_consts.type = dest.type;
1423
1424 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1425 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1426 surf_index, const_offset_reg);
1427
1428 for (unsigned i = 0; i < instr->num_components; i++) {
1429 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1430
1431 /* The std140 packing rules don't allow vectors to cross 16-byte
1432 * boundaries, and a reg is 32 bytes.
1433 */
1434 assert(packed_consts.subreg_offset < 32);
1435
1436 bld.MOV(dest, packed_consts);
1437 dest = offset(dest, bld, 1);
1438 }
1439 }
1440 break;
1441 }
1442
1443 case nir_intrinsic_load_input_indirect:
1444 has_indirect = true;
1445 /* fallthrough */
1446 case nir_intrinsic_load_input: {
1447 unsigned index = 0;
1448 for (unsigned j = 0; j < instr->num_components; j++) {
1449 fs_reg src = offset(retype(nir_inputs, dest.type), bld,
1450 instr->const_index[0] + index);
1451 if (has_indirect)
1452 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1453 index++;
1454
1455 bld.MOV(dest, src);
1456 dest = offset(dest, bld, 1);
1457 }
1458 break;
1459 }
1460
1461 /* Handle ARB_gpu_shader5 interpolation intrinsics
1462 *
1463 * It's worth a quick word of explanation as to why we handle the full
1464 * variable-based interpolation intrinsic rather than a lowered version
1465 * with like we do for other inputs. We have to do that because the way
1466 * we set up inputs doesn't allow us to use the already setup inputs for
1467 * interpolation. At the beginning of the shader, we go through all of
1468 * the input variables and do the initial interpolation and put it in
1469 * the nir_inputs array based on its location as determined in
1470 * nir_lower_io. If the input isn't used, dead code cleans up and
1471 * everything works fine. However, when we get to the ARB_gpu_shader5
1472 * interpolation intrinsics, we need to reinterpolate the input
1473 * differently. If we used an intrinsic that just had an index it would
1474 * only give us the offset into the nir_inputs array. However, this is
1475 * useless because that value is post-interpolation and we need
1476 * pre-interpolation. In order to get the actual location of the bits
1477 * we get from the vertex fetching hardware, we need the variable.
1478 */
1479 case nir_intrinsic_interp_var_at_centroid:
1480 case nir_intrinsic_interp_var_at_sample:
1481 case nir_intrinsic_interp_var_at_offset: {
1482 assert(stage == MESA_SHADER_FRAGMENT);
1483
1484 ((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
1485
1486 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1487
1488 /* For most messages, we need one reg of ignored data; the hardware
1489 * requires mlen==1 even when there is no payload. in the per-slot
1490 * offset case, we'll replace this with the proper source data.
1491 */
1492 fs_reg src = vgrf(glsl_type::float_type);
1493 int mlen = 1; /* one reg unless overriden */
1494 fs_inst *inst;
1495
1496 switch (instr->intrinsic) {
1497 case nir_intrinsic_interp_var_at_centroid:
1498 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
1499 dst_xy, src, fs_reg(0u));
1500 break;
1501
1502 case nir_intrinsic_interp_var_at_sample: {
1503 /* XXX: We should probably handle non-constant sample id's */
1504 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1505 assert(const_sample);
1506 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1507 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1508 fs_reg(msg_data));
1509 break;
1510 }
1511
1512 case nir_intrinsic_interp_var_at_offset: {
1513 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1514
1515 if (const_offset) {
1516 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1517 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1518
1519 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1520 fs_reg(off_x | (off_y << 4)));
1521 } else {
1522 src = vgrf(glsl_type::ivec2_type);
1523 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1524 BRW_REGISTER_TYPE_F);
1525 for (int i = 0; i < 2; i++) {
1526 fs_reg temp = vgrf(glsl_type::float_type);
1527 bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
1528 fs_reg itemp = vgrf(glsl_type::int_type);
1529 bld.MOV(itemp, temp); /* float to int */
1530
1531 /* Clamp the upper end of the range to +7/16.
1532 * ARB_gpu_shader5 requires that we support a maximum offset
1533 * of +0.5, which isn't representable in a S0.4 value -- if
1534 * we didn't clamp it, we'd end up with -8/16, which is the
1535 * opposite of what the shader author wanted.
1536 *
1537 * This is legal due to ARB_gpu_shader5's quantization
1538 * rules:
1539 *
1540 * "Not all values of <offset> may be supported; x and y
1541 * offsets may be rounded to fixed-point values with the
1542 * number of fraction bits given by the
1543 * implementation-dependent constant
1544 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1545 */
1546 set_condmod(BRW_CONDITIONAL_L,
1547 bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
1548 }
1549
1550 mlen = 2 * dispatch_width / 8;
1551 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1552 fs_reg(0u));
1553 }
1554 break;
1555 }
1556
1557 default:
1558 unreachable("Invalid intrinsic");
1559 }
1560
1561 inst->mlen = mlen;
1562 /* 2 floats per slot returned */
1563 inst->regs_written = 2 * dispatch_width / 8;
1564 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1565 INTERP_QUALIFIER_NOPERSPECTIVE;
1566
1567 for (unsigned j = 0; j < instr->num_components; j++) {
1568 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1569 src.type = dest.type;
1570
1571 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1572 dest = offset(dest, bld, 1);
1573 }
1574 break;
1575 }
1576
1577 case nir_intrinsic_store_output_indirect:
1578 has_indirect = true;
1579 /* fallthrough */
1580 case nir_intrinsic_store_output: {
1581 fs_reg src = get_nir_src(instr->src[0]);
1582 unsigned index = 0;
1583 for (unsigned j = 0; j < instr->num_components; j++) {
1584 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
1585 instr->const_index[0] + index);
1586 if (has_indirect)
1587 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1588 index++;
1589 bld.MOV(new_dest, src);
1590 src = offset(src, bld, 1);
1591 }
1592 break;
1593 }
1594
1595 case nir_intrinsic_barrier:
1596 emit_barrier();
1597 break;
1598
1599 default:
1600 unreachable("unknown intrinsic");
1601 }
1602 }
1603
1604 void
1605 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
1606 {
1607 unsigned sampler = instr->sampler_index;
1608 fs_reg sampler_reg(sampler);
1609
1610 /* FINISHME: We're failing to recompile our programs when the sampler is
1611 * updated. This only matters for the texture rectangle scale parameters
1612 * (pre-gen6, or gen6+ with GL_CLAMP).
1613 */
1614 int texunit = prog->SamplerUnits[sampler];
1615
1616 int gather_component = instr->component;
1617
1618 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1619
1620 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1621 instr->is_array;
1622
1623 int lod_components = 0;
1624 int UNUSED offset_components = 0;
1625
1626 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1627
1628 for (unsigned i = 0; i < instr->num_srcs; i++) {
1629 fs_reg src = get_nir_src(instr->src[i].src);
1630 switch (instr->src[i].src_type) {
1631 case nir_tex_src_bias:
1632 lod = retype(src, BRW_REGISTER_TYPE_F);
1633 break;
1634 case nir_tex_src_comparitor:
1635 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1636 break;
1637 case nir_tex_src_coord:
1638 switch (instr->op) {
1639 case nir_texop_txf:
1640 case nir_texop_txf_ms:
1641 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1642 break;
1643 default:
1644 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1645 break;
1646 }
1647 break;
1648 case nir_tex_src_ddx:
1649 lod = retype(src, BRW_REGISTER_TYPE_F);
1650 lod_components = nir_tex_instr_src_size(instr, i);
1651 break;
1652 case nir_tex_src_ddy:
1653 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1654 break;
1655 case nir_tex_src_lod:
1656 switch (instr->op) {
1657 case nir_texop_txs:
1658 lod = retype(src, BRW_REGISTER_TYPE_UD);
1659 break;
1660 case nir_texop_txf:
1661 lod = retype(src, BRW_REGISTER_TYPE_D);
1662 break;
1663 default:
1664 lod = retype(src, BRW_REGISTER_TYPE_F);
1665 break;
1666 }
1667 break;
1668 case nir_tex_src_ms_index:
1669 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1670 break;
1671 case nir_tex_src_offset:
1672 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1673 if (instr->is_array)
1674 offset_components = instr->coord_components - 1;
1675 else
1676 offset_components = instr->coord_components;
1677 break;
1678 case nir_tex_src_projector:
1679 unreachable("should be lowered");
1680
1681 case nir_tex_src_sampler_offset: {
1682 /* Figure out the highest possible sampler index and mark it as used */
1683 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1684 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1685 max_used += stage_prog_data->binding_table.gather_texture_start;
1686 } else {
1687 max_used += stage_prog_data->binding_table.texture_start;
1688 }
1689 brw_mark_surface_used(prog_data, max_used);
1690
1691 /* Emit code to evaluate the actual indexing expression */
1692 sampler_reg = vgrf(glsl_type::uint_type);
1693 bld.ADD(sampler_reg, src, fs_reg(sampler));
1694 sampler_reg = bld.emit_uniformize(sampler_reg);
1695 break;
1696 }
1697
1698 default:
1699 unreachable("unknown texture source");
1700 }
1701 }
1702
1703 if (instr->op == nir_texop_txf_ms) {
1704 if (devinfo->gen >= 7 &&
1705 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1706 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1707 } else {
1708 mcs = fs_reg(0u);
1709 }
1710 }
1711
1712 for (unsigned i = 0; i < 3; i++) {
1713 if (instr->const_offset[i] != 0) {
1714 assert(offset_components == 0);
1715 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1716 break;
1717 }
1718 }
1719
1720 enum glsl_base_type dest_base_type;
1721 switch (instr->dest_type) {
1722 case nir_type_float:
1723 dest_base_type = GLSL_TYPE_FLOAT;
1724 break;
1725 case nir_type_int:
1726 dest_base_type = GLSL_TYPE_INT;
1727 break;
1728 case nir_type_unsigned:
1729 dest_base_type = GLSL_TYPE_UINT;
1730 break;
1731 default:
1732 unreachable("bad type");
1733 }
1734
1735 const glsl_type *dest_type =
1736 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1737 1);
1738
1739 ir_texture_opcode op;
1740 switch (instr->op) {
1741 case nir_texop_lod: op = ir_lod; break;
1742 case nir_texop_query_levels: op = ir_query_levels; break;
1743 case nir_texop_tex: op = ir_tex; break;
1744 case nir_texop_tg4: op = ir_tg4; break;
1745 case nir_texop_txb: op = ir_txb; break;
1746 case nir_texop_txd: op = ir_txd; break;
1747 case nir_texop_txf: op = ir_txf; break;
1748 case nir_texop_txf_ms: op = ir_txf_ms; break;
1749 case nir_texop_txl: op = ir_txl; break;
1750 case nir_texop_txs: op = ir_txs; break;
1751 default:
1752 unreachable("unknown texture opcode");
1753 }
1754
1755 emit_texture(op, dest_type, coordinate, instr->coord_components,
1756 shadow_comparitor, lod, lod2, lod_components, sample_index,
1757 tex_offset, mcs, gather_component,
1758 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1759
1760 fs_reg dest = get_nir_dest(instr->dest);
1761 dest.type = this->result.type;
1762 unsigned num_components = nir_tex_instr_dest_size(instr);
1763 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
1764 dest, this->result),
1765 (1 << num_components) - 1);
1766 }
1767
1768 void
1769 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
1770 {
1771 switch (instr->type) {
1772 case nir_jump_break:
1773 bld.emit(BRW_OPCODE_BREAK);
1774 break;
1775 case nir_jump_continue:
1776 bld.emit(BRW_OPCODE_CONTINUE);
1777 break;
1778 case nir_jump_return:
1779 default:
1780 unreachable("unknown jump");
1781 }
1782 }