i965/nir: Add new utility method brw_glsl_base_type_for_nir_type()
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_fs_surface_builder.h"
30 #include "brw_nir.h"
31
32 using namespace brw;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 nir_shader *nir = prog->nir;
38
39 /* emit the arrays used for inputs and outputs - load/store intrinsics will
40 * be converted to reads/writes of these arrays
41 */
42 nir_setup_inputs(nir);
43 nir_setup_outputs(nir);
44 nir_setup_uniforms(nir);
45 nir_emit_system_values(nir);
46
47 /* get the main function and emit it */
48 nir_foreach_overload(nir, overload) {
49 assert(strcmp(overload->function->name, "main") == 0);
50 assert(overload->impl);
51 nir_emit_impl(overload->impl);
52 }
53 }
54
55 void
56 fs_visitor::nir_setup_inputs(nir_shader *shader)
57 {
58 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_inputs);
59
60 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
61 enum brw_reg_type type = brw_type_for_base_type(var->type);
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 switch (stage) {
66 case MESA_SHADER_VERTEX: {
67 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
68 * stored in nir_variable::location.
69 *
70 * However, NIR's load_input intrinsics use a different index - an
71 * offset into a single contiguous array containing all inputs.
72 * This index corresponds to the nir_variable::driver_location field.
73 *
74 * So, we need to copy from fs_reg(ATTR, var->location) to
75 * offset(nir_inputs, var->data.driver_location).
76 */
77 const glsl_type *const t = var->type->without_array();
78 const unsigned components = t->components();
79 const unsigned cols = t->matrix_columns;
80 const unsigned elts = t->vector_elements;
81 unsigned array_length = var->type->is_array() ? var->type->length : 1;
82 for (unsigned i = 0; i < array_length; i++) {
83 for (unsigned j = 0; j < cols; j++) {
84 for (unsigned k = 0; k < elts; k++) {
85 bld.MOV(offset(retype(input, type), bld,
86 components * i + elts * j + k),
87 offset(fs_reg(ATTR, var->data.location + i, type),
88 bld, 4 * j + k));
89 }
90 }
91 }
92 break;
93 }
94 case MESA_SHADER_GEOMETRY:
95 case MESA_SHADER_COMPUTE:
96 case MESA_SHADER_TESS_CTRL:
97 case MESA_SHADER_TESS_EVAL:
98 unreachable("fs_visitor not used for these stages yet.");
99 break;
100 case MESA_SHADER_FRAGMENT:
101 if (var->data.location == VARYING_SLOT_POS) {
102 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
103 var->data.origin_upper_left);
104 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
105 input, reg), 0xF);
106 } else {
107 emit_general_interpolation(input, var->name, var->type,
108 (glsl_interp_qualifier) var->data.interpolation,
109 var->data.location, var->data.centroid,
110 var->data.sample);
111 }
112 break;
113 }
114 }
115 }
116
117 void
118 fs_visitor::nir_setup_outputs(nir_shader *shader)
119 {
120 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
121
122 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, shader->num_outputs);
123
124 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
125 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
126
127 int vector_elements =
128 var->type->is_array() ? var->type->fields.array->vector_elements
129 : var->type->vector_elements;
130
131 switch (stage) {
132 case MESA_SHADER_VERTEX:
133 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
134 int output = var->data.location + i;
135 this->outputs[output] = offset(reg, bld, 4 * i);
136 this->output_components[output] = vector_elements;
137 }
138 break;
139 case MESA_SHADER_FRAGMENT:
140 if (var->data.index > 0) {
141 assert(var->data.location == FRAG_RESULT_DATA0);
142 assert(var->data.index == 1);
143 this->dual_src_output = reg;
144 this->do_dual_src = true;
145 } else if (var->data.location == FRAG_RESULT_COLOR) {
146 /* Writing gl_FragColor outputs to all color regions. */
147 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
148 this->outputs[i] = reg;
149 this->output_components[i] = 4;
150 }
151 } else if (var->data.location == FRAG_RESULT_DEPTH) {
152 this->frag_depth = reg;
153 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
154 this->sample_mask = reg;
155 } else {
156 /* gl_FragData or a user-defined FS output */
157 assert(var->data.location >= FRAG_RESULT_DATA0 &&
158 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
159
160 /* General color output. */
161 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
162 int output = var->data.location - FRAG_RESULT_DATA0 + i;
163 this->outputs[output] = offset(reg, bld, vector_elements * i);
164 this->output_components[output] = vector_elements;
165 }
166 }
167 break;
168 default:
169 unreachable("unhandled shader stage");
170 }
171 }
172 }
173
174 void
175 fs_visitor::nir_setup_uniforms(nir_shader *shader)
176 {
177 num_direct_uniforms = shader->num_direct_uniforms;
178
179 if (dispatch_width != 8)
180 return;
181
182 /* We split the uniform register file in half. The first half is
183 * entirely direct uniforms. The second half is indirect.
184 */
185 if (num_direct_uniforms > 0)
186 param_size[0] = num_direct_uniforms;
187 if (shader->num_uniforms > num_direct_uniforms)
188 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
189
190 uniforms = shader->num_uniforms;
191
192 if (shader_prog) {
193 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
194 /* UBO's and atomics don't take up space in the uniform file */
195 if (var->interface_type != NULL || var->type->contains_atomic())
196 continue;
197
198 if (strncmp(var->name, "gl_", 3) == 0)
199 nir_setup_builtin_uniform(var);
200 else
201 nir_setup_uniform(var);
202 }
203 } else {
204 /* prog_to_nir doesn't create uniform variables; set param up directly. */
205 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
206 for (unsigned int i = 0; i < 4; i++) {
207 stage_prog_data->param[4 * p + i] =
208 &prog->Parameters->ParameterValues[p][i];
209 }
210 }
211 }
212 }
213
214 void
215 fs_visitor::nir_setup_uniform(nir_variable *var)
216 {
217 int namelen = strlen(var->name);
218
219 /* The data for our (non-builtin) uniforms is stored in a series of
220 * gl_uniform_driver_storage structs for each subcomponent that
221 * glGetUniformLocation() could name. We know it's been set up in the
222 * same order we'd walk the type, so walk the list of storage and find
223 * anything with our name, or the prefix of a component that starts with
224 * our name.
225 */
226 unsigned index = var->data.driver_location;
227 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
228 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
229
230 if (storage->builtin)
231 continue;
232
233 if (strncmp(var->name, storage->name, namelen) != 0 ||
234 (storage->name[namelen] != 0 &&
235 storage->name[namelen] != '.' &&
236 storage->name[namelen] != '[')) {
237 continue;
238 }
239
240 unsigned slots = storage->type->component_slots();
241 if (storage->array_elements)
242 slots *= storage->array_elements;
243
244 for (unsigned i = 0; i < slots; i++) {
245 stage_prog_data->param[index++] = &storage->storage[i];
246 }
247 }
248
249 /* Make sure we actually initialized the right amount of stuff here. */
250 assert(var->data.driver_location + var->type->component_slots() == index);
251 }
252
253 void
254 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
255 {
256 const nir_state_slot *const slots = var->state_slots;
257 assert(var->state_slots != NULL);
258
259 unsigned uniform_index = var->data.driver_location;
260 for (unsigned int i = 0; i < var->num_state_slots; i++) {
261 /* This state reference has already been setup by ir_to_mesa, but we'll
262 * get the same index back here.
263 */
264 int index = _mesa_add_state_reference(this->prog->Parameters,
265 (gl_state_index *)slots[i].tokens);
266
267 /* Add each of the unique swizzles of the element as a parameter.
268 * This'll end up matching the expected layout of the
269 * array/matrix/structure we're trying to fill in.
270 */
271 int last_swiz = -1;
272 for (unsigned int j = 0; j < 4; j++) {
273 int swiz = GET_SWZ(slots[i].swizzle, j);
274 if (swiz == last_swiz)
275 break;
276 last_swiz = swiz;
277
278 stage_prog_data->param[uniform_index++] =
279 &prog->Parameters->ParameterValues[index][swiz];
280 }
281 }
282 }
283
284 static bool
285 emit_system_values_block(nir_block *block, void *void_visitor)
286 {
287 fs_visitor *v = (fs_visitor *)void_visitor;
288 fs_reg *reg;
289
290 nir_foreach_instr(block, instr) {
291 if (instr->type != nir_instr_type_intrinsic)
292 continue;
293
294 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
295 switch (intrin->intrinsic) {
296 case nir_intrinsic_load_vertex_id:
297 unreachable("should be lowered by lower_vertex_id().");
298
299 case nir_intrinsic_load_vertex_id_zero_base:
300 assert(v->stage == MESA_SHADER_VERTEX);
301 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
302 if (reg->file == BAD_FILE)
303 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
304 break;
305
306 case nir_intrinsic_load_base_vertex:
307 assert(v->stage == MESA_SHADER_VERTEX);
308 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
309 if (reg->file == BAD_FILE)
310 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
311 break;
312
313 case nir_intrinsic_load_instance_id:
314 assert(v->stage == MESA_SHADER_VERTEX);
315 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
316 if (reg->file == BAD_FILE)
317 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
318 break;
319
320 case nir_intrinsic_load_sample_pos:
321 assert(v->stage == MESA_SHADER_FRAGMENT);
322 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
323 if (reg->file == BAD_FILE)
324 *reg = *v->emit_samplepos_setup();
325 break;
326
327 case nir_intrinsic_load_sample_id:
328 assert(v->stage == MESA_SHADER_FRAGMENT);
329 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
330 if (reg->file == BAD_FILE)
331 *reg = *v->emit_sampleid_setup();
332 break;
333
334 case nir_intrinsic_load_sample_mask_in:
335 assert(v->stage == MESA_SHADER_FRAGMENT);
336 assert(v->devinfo->gen >= 7);
337 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
338 if (reg->file == BAD_FILE)
339 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
340 BRW_REGISTER_TYPE_D));
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values(nir_shader *shader)
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 nir_foreach_overload(shader, overload) {
356 assert(strcmp(overload->function->name, "main") == 0);
357 assert(overload->impl);
358 nir_foreach_block(overload->impl, emit_system_values_block, this);
359 }
360 }
361
362 void
363 fs_visitor::nir_emit_impl(nir_function_impl *impl)
364 {
365 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
366 foreach_list_typed(nir_register, reg, node, &impl->registers) {
367 unsigned array_elems =
368 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
369 unsigned size = array_elems * reg->num_components;
370 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
371 }
372
373 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
374 impl->ssa_alloc);
375
376 nir_emit_cf_list(&impl->body);
377 }
378
379 void
380 fs_visitor::nir_emit_cf_list(exec_list *list)
381 {
382 exec_list_validate(list);
383 foreach_list_typed(nir_cf_node, node, node, list) {
384 switch (node->type) {
385 case nir_cf_node_if:
386 nir_emit_if(nir_cf_node_as_if(node));
387 break;
388
389 case nir_cf_node_loop:
390 nir_emit_loop(nir_cf_node_as_loop(node));
391 break;
392
393 case nir_cf_node_block:
394 nir_emit_block(nir_cf_node_as_block(node));
395 break;
396
397 default:
398 unreachable("Invalid CFG node block");
399 }
400 }
401 }
402
403 void
404 fs_visitor::nir_emit_if(nir_if *if_stmt)
405 {
406 /* first, put the condition into f0 */
407 fs_inst *inst = bld.MOV(bld.null_reg_d(),
408 retype(get_nir_src(if_stmt->condition),
409 BRW_REGISTER_TYPE_D));
410 inst->conditional_mod = BRW_CONDITIONAL_NZ;
411
412 bld.IF(BRW_PREDICATE_NORMAL);
413
414 nir_emit_cf_list(&if_stmt->then_list);
415
416 /* note: if the else is empty, dead CF elimination will remove it */
417 bld.emit(BRW_OPCODE_ELSE);
418
419 nir_emit_cf_list(&if_stmt->else_list);
420
421 bld.emit(BRW_OPCODE_ENDIF);
422
423 try_replace_with_sel();
424 }
425
426 void
427 fs_visitor::nir_emit_loop(nir_loop *loop)
428 {
429 bld.emit(BRW_OPCODE_DO);
430
431 nir_emit_cf_list(&loop->body);
432
433 bld.emit(BRW_OPCODE_WHILE);
434 }
435
436 void
437 fs_visitor::nir_emit_block(nir_block *block)
438 {
439 nir_foreach_instr(block, instr) {
440 nir_emit_instr(instr);
441 }
442 }
443
444 void
445 fs_visitor::nir_emit_instr(nir_instr *instr)
446 {
447 const fs_builder abld = bld.annotate(NULL, instr);
448
449 switch (instr->type) {
450 case nir_instr_type_alu:
451 nir_emit_alu(abld, nir_instr_as_alu(instr));
452 break;
453
454 case nir_instr_type_intrinsic:
455 nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
456 break;
457
458 case nir_instr_type_tex:
459 nir_emit_texture(abld, nir_instr_as_tex(instr));
460 break;
461
462 case nir_instr_type_load_const:
463 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
464 break;
465
466 case nir_instr_type_ssa_undef:
467 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
468 break;
469
470 case nir_instr_type_jump:
471 nir_emit_jump(abld, nir_instr_as_jump(instr));
472 break;
473
474 default:
475 unreachable("unknown instruction type");
476 }
477 }
478
479 bool
480 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
481 const fs_reg &result)
482 {
483 if (!instr->src[0].src.is_ssa ||
484 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
485 return false;
486
487 nir_intrinsic_instr *src0 =
488 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
489
490 if (src0->intrinsic != nir_intrinsic_load_front_face)
491 return false;
492
493 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
494 if (!value1 || fabsf(value1->f[0]) != 1.0f)
495 return false;
496
497 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
498 if (!value2 || fabsf(value2->f[0]) != 1.0f)
499 return false;
500
501 fs_reg tmp = vgrf(glsl_type::int_type);
502
503 if (devinfo->gen >= 6) {
504 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
505 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
506
507 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
508 *
509 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
510 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
511 *
512 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
513 *
514 * This negation looks like it's safe in practice, because bits 0:4 will
515 * surely be TRIANGLES
516 */
517
518 if (value1->f[0] == -1.0f) {
519 g0.negate = true;
520 }
521
522 tmp.type = BRW_REGISTER_TYPE_W;
523 tmp.subreg_offset = 2;
524 tmp.stride = 2;
525
526 fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
527 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
528
529 tmp.type = BRW_REGISTER_TYPE_D;
530 tmp.subreg_offset = 0;
531 tmp.stride = 1;
532 } else {
533 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
534 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
535
536 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
537 *
538 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
539 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
540 *
541 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
542 *
543 * This negation looks like it's safe in practice, because bits 0:4 will
544 * surely be TRIANGLES
545 */
546
547 if (value1->f[0] == -1.0f) {
548 g1_6.negate = true;
549 }
550
551 bld.OR(tmp, g1_6, fs_reg(0x3f800000));
552 }
553 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
554
555 return true;
556 }
557
558 void
559 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
560 {
561 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
562 fs_inst *inst;
563
564 fs_reg result = get_nir_dest(instr->dest.dest);
565 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
566
567 fs_reg op[4];
568 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
569 op[i] = get_nir_src(instr->src[i].src);
570 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
571 op[i].abs = instr->src[i].abs;
572 op[i].negate = instr->src[i].negate;
573 }
574
575 /* We get a bunch of mov's out of the from_ssa pass and they may still
576 * be vectorized. We'll handle them as a special-case. We'll also
577 * handle vecN here because it's basically the same thing.
578 */
579 switch (instr->op) {
580 case nir_op_imov:
581 case nir_op_fmov:
582 case nir_op_vec2:
583 case nir_op_vec3:
584 case nir_op_vec4: {
585 fs_reg temp = result;
586 bool need_extra_copy = false;
587 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
588 if (!instr->src[i].src.is_ssa &&
589 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
590 need_extra_copy = true;
591 temp = bld.vgrf(result.type, 4);
592 break;
593 }
594 }
595
596 for (unsigned i = 0; i < 4; i++) {
597 if (!(instr->dest.write_mask & (1 << i)))
598 continue;
599
600 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
601 inst = bld.MOV(offset(temp, bld, i),
602 offset(op[0], bld, instr->src[0].swizzle[i]));
603 } else {
604 inst = bld.MOV(offset(temp, bld, i),
605 offset(op[i], bld, instr->src[i].swizzle[0]));
606 }
607 inst->saturate = instr->dest.saturate;
608 }
609
610 /* In this case the source and destination registers were the same,
611 * so we need to insert an extra set of moves in order to deal with
612 * any swizzling.
613 */
614 if (need_extra_copy) {
615 for (unsigned i = 0; i < 4; i++) {
616 if (!(instr->dest.write_mask & (1 << i)))
617 continue;
618
619 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
620 }
621 }
622 return;
623 }
624 default:
625 break;
626 }
627
628 /* At this point, we have dealt with any instruction that operates on
629 * more than a single channel. Therefore, we can just adjust the source
630 * and destination registers for that channel and emit the instruction.
631 */
632 unsigned channel = 0;
633 if (nir_op_infos[instr->op].output_size == 0) {
634 /* Since NIR is doing the scalarizing for us, we should only ever see
635 * vectorized operations with a single channel.
636 */
637 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
638 channel = ffs(instr->dest.write_mask) - 1;
639
640 result = offset(result, bld, channel);
641 }
642
643 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
644 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
645 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
646 }
647
648 switch (instr->op) {
649 case nir_op_i2f:
650 case nir_op_u2f:
651 inst = bld.MOV(result, op[0]);
652 inst->saturate = instr->dest.saturate;
653 break;
654
655 case nir_op_f2i:
656 case nir_op_f2u:
657 bld.MOV(result, op[0]);
658 break;
659
660 case nir_op_fsign: {
661 /* AND(val, 0x80000000) gives the sign bit.
662 *
663 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
664 * zero.
665 */
666 bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
667
668 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
669 op[0].type = BRW_REGISTER_TYPE_UD;
670 result.type = BRW_REGISTER_TYPE_UD;
671 bld.AND(result_int, op[0], fs_reg(0x80000000u));
672
673 inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
674 inst->predicate = BRW_PREDICATE_NORMAL;
675 if (instr->dest.saturate) {
676 inst = bld.MOV(result, result);
677 inst->saturate = true;
678 }
679 break;
680 }
681
682 case nir_op_isign:
683 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
684 * -> non-negative val generates 0x00000000.
685 * Predicated OR sets 1 if val is positive.
686 */
687 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
688 bld.ASR(result, op[0], fs_reg(31));
689 inst = bld.OR(result, result, fs_reg(1));
690 inst->predicate = BRW_PREDICATE_NORMAL;
691 break;
692
693 case nir_op_frcp:
694 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
695 inst->saturate = instr->dest.saturate;
696 break;
697
698 case nir_op_fexp2:
699 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
700 inst->saturate = instr->dest.saturate;
701 break;
702
703 case nir_op_flog2:
704 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
705 inst->saturate = instr->dest.saturate;
706 break;
707
708 case nir_op_fsin:
709 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
710 inst->saturate = instr->dest.saturate;
711 break;
712
713 case nir_op_fcos:
714 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
715 inst->saturate = instr->dest.saturate;
716 break;
717
718 case nir_op_fddx:
719 if (fs_key->high_quality_derivatives) {
720 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
721 } else {
722 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
723 }
724 inst->saturate = instr->dest.saturate;
725 break;
726 case nir_op_fddx_fine:
727 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
728 inst->saturate = instr->dest.saturate;
729 break;
730 case nir_op_fddx_coarse:
731 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
732 inst->saturate = instr->dest.saturate;
733 break;
734 case nir_op_fddy:
735 if (fs_key->high_quality_derivatives) {
736 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
737 fs_reg(fs_key->render_to_fbo));
738 } else {
739 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
740 fs_reg(fs_key->render_to_fbo));
741 }
742 inst->saturate = instr->dest.saturate;
743 break;
744 case nir_op_fddy_fine:
745 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
746 fs_reg(fs_key->render_to_fbo));
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddy_coarse:
750 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
751 fs_reg(fs_key->render_to_fbo));
752 inst->saturate = instr->dest.saturate;
753 break;
754
755 case nir_op_fadd:
756 case nir_op_iadd:
757 inst = bld.ADD(result, op[0], op[1]);
758 inst->saturate = instr->dest.saturate;
759 break;
760
761 case nir_op_fmul:
762 inst = bld.MUL(result, op[0], op[1]);
763 inst->saturate = instr->dest.saturate;
764 break;
765
766 case nir_op_imul:
767 bld.MUL(result, op[0], op[1]);
768 break;
769
770 case nir_op_imul_high:
771 case nir_op_umul_high: {
772 if (devinfo->gen >= 7)
773 no16("SIMD16 explicit accumulator operands unsupported\n");
774
775 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
776
777 fs_inst *mul = bld.MUL(acc, op[0], op[1]);
778 bld.MACH(result, op[0], op[1]);
779
780 /* Until Gen8, integer multiplies read 32-bits from one source, and
781 * 16-bits from the other, and relying on the MACH instruction to
782 * generate the high bits of the result.
783 *
784 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
785 * but in order to do a 64x64-bit multiply we have to simulate the
786 * previous behavior and then use a MACH instruction.
787 *
788 * FINISHME: Don't use source modifiers on src1.
789 */
790 if (devinfo->gen >= 8) {
791 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
792 mul->src[1].type == BRW_REGISTER_TYPE_UD);
793 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
794 mul->src[1].type = BRW_REGISTER_TYPE_W;
795 mul->src[1].stride = 2;
796 } else {
797 mul->src[1].type = BRW_REGISTER_TYPE_UW;
798 mul->src[1].stride = 2;
799 }
800 }
801 break;
802 }
803
804 case nir_op_idiv:
805 case nir_op_udiv:
806 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
807 break;
808
809 case nir_op_uadd_carry:
810 unreachable("Should have been lowered by carry_to_arith().");
811
812 case nir_op_usub_borrow:
813 unreachable("Should have been lowered by borrow_to_arith().");
814
815 case nir_op_umod:
816 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
817 break;
818
819 case nir_op_flt:
820 case nir_op_ilt:
821 case nir_op_ult:
822 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
823 break;
824
825 case nir_op_fge:
826 case nir_op_ige:
827 case nir_op_uge:
828 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
829 break;
830
831 case nir_op_feq:
832 case nir_op_ieq:
833 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
834 break;
835
836 case nir_op_fne:
837 case nir_op_ine:
838 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
839 break;
840
841 case nir_op_inot:
842 if (devinfo->gen >= 8) {
843 resolve_source_modifiers(&op[0]);
844 }
845 bld.NOT(result, op[0]);
846 break;
847 case nir_op_ixor:
848 if (devinfo->gen >= 8) {
849 resolve_source_modifiers(&op[0]);
850 resolve_source_modifiers(&op[1]);
851 }
852 bld.XOR(result, op[0], op[1]);
853 break;
854 case nir_op_ior:
855 if (devinfo->gen >= 8) {
856 resolve_source_modifiers(&op[0]);
857 resolve_source_modifiers(&op[1]);
858 }
859 bld.OR(result, op[0], op[1]);
860 break;
861 case nir_op_iand:
862 if (devinfo->gen >= 8) {
863 resolve_source_modifiers(&op[0]);
864 resolve_source_modifiers(&op[1]);
865 }
866 bld.AND(result, op[0], op[1]);
867 break;
868
869 case nir_op_fdot2:
870 case nir_op_fdot3:
871 case nir_op_fdot4:
872 case nir_op_bany2:
873 case nir_op_bany3:
874 case nir_op_bany4:
875 case nir_op_ball2:
876 case nir_op_ball3:
877 case nir_op_ball4:
878 case nir_op_ball_fequal2:
879 case nir_op_ball_iequal2:
880 case nir_op_ball_fequal3:
881 case nir_op_ball_iequal3:
882 case nir_op_ball_fequal4:
883 case nir_op_ball_iequal4:
884 case nir_op_bany_fnequal2:
885 case nir_op_bany_inequal2:
886 case nir_op_bany_fnequal3:
887 case nir_op_bany_inequal3:
888 case nir_op_bany_fnequal4:
889 case nir_op_bany_inequal4:
890 unreachable("Lowered by nir_lower_alu_reductions");
891
892 case nir_op_fnoise1_1:
893 case nir_op_fnoise1_2:
894 case nir_op_fnoise1_3:
895 case nir_op_fnoise1_4:
896 case nir_op_fnoise2_1:
897 case nir_op_fnoise2_2:
898 case nir_op_fnoise2_3:
899 case nir_op_fnoise2_4:
900 case nir_op_fnoise3_1:
901 case nir_op_fnoise3_2:
902 case nir_op_fnoise3_3:
903 case nir_op_fnoise3_4:
904 case nir_op_fnoise4_1:
905 case nir_op_fnoise4_2:
906 case nir_op_fnoise4_3:
907 case nir_op_fnoise4_4:
908 unreachable("not reached: should be handled by lower_noise");
909
910 case nir_op_ldexp:
911 unreachable("not reached: should be handled by ldexp_to_arith()");
912
913 case nir_op_fsqrt:
914 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
915 inst->saturate = instr->dest.saturate;
916 break;
917
918 case nir_op_frsq:
919 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
920 inst->saturate = instr->dest.saturate;
921 break;
922
923 case nir_op_b2i:
924 case nir_op_b2f:
925 bld.MOV(result, negate(op[0]));
926 break;
927
928 case nir_op_f2b:
929 bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
930 break;
931 case nir_op_i2b:
932 bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
933 break;
934
935 case nir_op_ftrunc:
936 inst = bld.RNDZ(result, op[0]);
937 inst->saturate = instr->dest.saturate;
938 break;
939
940 case nir_op_fceil: {
941 op[0].negate = !op[0].negate;
942 fs_reg temp = vgrf(glsl_type::float_type);
943 bld.RNDD(temp, op[0]);
944 temp.negate = true;
945 inst = bld.MOV(result, temp);
946 inst->saturate = instr->dest.saturate;
947 break;
948 }
949 case nir_op_ffloor:
950 inst = bld.RNDD(result, op[0]);
951 inst->saturate = instr->dest.saturate;
952 break;
953 case nir_op_ffract:
954 inst = bld.FRC(result, op[0]);
955 inst->saturate = instr->dest.saturate;
956 break;
957 case nir_op_fround_even:
958 inst = bld.RNDE(result, op[0]);
959 inst->saturate = instr->dest.saturate;
960 break;
961
962 case nir_op_fmin:
963 case nir_op_imin:
964 case nir_op_umin:
965 if (devinfo->gen >= 6) {
966 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
967 inst->conditional_mod = BRW_CONDITIONAL_L;
968 } else {
969 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
970 inst = bld.SEL(result, op[0], op[1]);
971 inst->predicate = BRW_PREDICATE_NORMAL;
972 }
973 inst->saturate = instr->dest.saturate;
974 break;
975
976 case nir_op_fmax:
977 case nir_op_imax:
978 case nir_op_umax:
979 if (devinfo->gen >= 6) {
980 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
981 inst->conditional_mod = BRW_CONDITIONAL_GE;
982 } else {
983 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
984 inst = bld.SEL(result, op[0], op[1]);
985 inst->predicate = BRW_PREDICATE_NORMAL;
986 }
987 inst->saturate = instr->dest.saturate;
988 break;
989
990 case nir_op_pack_snorm_2x16:
991 case nir_op_pack_snorm_4x8:
992 case nir_op_pack_unorm_2x16:
993 case nir_op_pack_unorm_4x8:
994 case nir_op_unpack_snorm_2x16:
995 case nir_op_unpack_snorm_4x8:
996 case nir_op_unpack_unorm_2x16:
997 case nir_op_unpack_unorm_4x8:
998 case nir_op_unpack_half_2x16:
999 case nir_op_pack_half_2x16:
1000 unreachable("not reached: should be handled by lower_packing_builtins");
1001
1002 case nir_op_unpack_half_2x16_split_x:
1003 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1004 inst->saturate = instr->dest.saturate;
1005 break;
1006 case nir_op_unpack_half_2x16_split_y:
1007 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1008 inst->saturate = instr->dest.saturate;
1009 break;
1010
1011 case nir_op_fpow:
1012 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1013 inst->saturate = instr->dest.saturate;
1014 break;
1015
1016 case nir_op_bitfield_reverse:
1017 bld.BFREV(result, op[0]);
1018 break;
1019
1020 case nir_op_bit_count:
1021 bld.CBIT(result, op[0]);
1022 break;
1023
1024 case nir_op_ufind_msb:
1025 case nir_op_ifind_msb: {
1026 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1027
1028 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1029 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1030 * subtract the result from 31 to convert the MSB count into an LSB count.
1031 */
1032
1033 bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
1034 fs_reg neg_result(result);
1035 neg_result.negate = true;
1036 inst = bld.ADD(result, neg_result, fs_reg(31));
1037 inst->predicate = BRW_PREDICATE_NORMAL;
1038 break;
1039 }
1040
1041 case nir_op_find_lsb:
1042 bld.FBL(result, op[0]);
1043 break;
1044
1045 case nir_op_ubitfield_extract:
1046 case nir_op_ibitfield_extract:
1047 bld.BFE(result, op[2], op[1], op[0]);
1048 break;
1049 case nir_op_bfm:
1050 bld.BFI1(result, op[0], op[1]);
1051 break;
1052 case nir_op_bfi:
1053 bld.BFI2(result, op[0], op[1], op[2]);
1054 break;
1055
1056 case nir_op_bitfield_insert:
1057 unreachable("not reached: should be handled by "
1058 "lower_instructions::bitfield_insert_to_bfm_bfi");
1059
1060 case nir_op_ishl:
1061 bld.SHL(result, op[0], op[1]);
1062 break;
1063 case nir_op_ishr:
1064 bld.ASR(result, op[0], op[1]);
1065 break;
1066 case nir_op_ushr:
1067 bld.SHR(result, op[0], op[1]);
1068 break;
1069
1070 case nir_op_pack_half_2x16_split:
1071 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1072 break;
1073
1074 case nir_op_ffma:
1075 inst = bld.MAD(result, op[2], op[1], op[0]);
1076 inst->saturate = instr->dest.saturate;
1077 break;
1078
1079 case nir_op_flrp:
1080 inst = bld.LRP(result, op[0], op[1], op[2]);
1081 inst->saturate = instr->dest.saturate;
1082 break;
1083
1084 case nir_op_bcsel:
1085 if (optimize_frontfacing_ternary(instr, result))
1086 return;
1087
1088 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
1089 inst = bld.SEL(result, op[1], op[2]);
1090 inst->predicate = BRW_PREDICATE_NORMAL;
1091 break;
1092
1093 default:
1094 unreachable("unhandled instruction");
1095 }
1096
1097 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1098 * to sign extend the low bit to 0/~0
1099 */
1100 if (devinfo->gen <= 5 &&
1101 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1102 fs_reg masked = vgrf(glsl_type::int_type);
1103 bld.AND(masked, result, fs_reg(1));
1104 masked.negate = true;
1105 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1106 }
1107 }
1108
1109 void
1110 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1111 nir_load_const_instr *instr)
1112 {
1113 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1114
1115 for (unsigned i = 0; i < instr->def.num_components; i++)
1116 bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
1117
1118 nir_ssa_values[instr->def.index] = reg;
1119 }
1120
1121 void
1122 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1123 {
1124 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1125 instr->def.num_components);
1126 }
1127
1128 static fs_reg
1129 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1130 unsigned base_offset, nir_src *indirect)
1131 {
1132 fs_reg reg;
1133
1134 assert(!nir_reg->is_global);
1135
1136 reg = v->nir_locals[nir_reg->index];
1137
1138 reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
1139 if (indirect) {
1140 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1141
1142 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1143 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1144 fs_reg(multiplier));
1145 }
1146
1147 return reg;
1148 }
1149
1150 fs_reg
1151 fs_visitor::get_nir_src(nir_src src)
1152 {
1153 fs_reg reg;
1154 if (src.is_ssa) {
1155 reg = nir_ssa_values[src.ssa->index];
1156 } else {
1157 reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1158 src.reg.indirect);
1159 }
1160
1161 /* to avoid floating-point denorm flushing problems, set the type by
1162 * default to D - instructions that need floating point semantics will set
1163 * this to F if they need to
1164 */
1165 return retype(reg, BRW_REGISTER_TYPE_D);
1166 }
1167
1168 fs_reg
1169 fs_visitor::get_nir_dest(nir_dest dest)
1170 {
1171 if (dest.is_ssa) {
1172 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1173 dest.ssa.num_components);
1174 return nir_ssa_values[dest.ssa.index];
1175 }
1176
1177 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1178 dest.reg.indirect);
1179 }
1180
1181 void
1182 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1183 unsigned wr_mask)
1184 {
1185 for (unsigned i = 0; i < 4; i++) {
1186 if (!((wr_mask >> i) & 1))
1187 continue;
1188
1189 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1190 new_inst->dst = offset(new_inst->dst, bld, i);
1191 for (unsigned j = 0; j < new_inst->sources; j++)
1192 if (new_inst->src[j].file == GRF)
1193 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1194
1195 bld.emit(new_inst);
1196 }
1197 }
1198
1199 void
1200 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
1201 {
1202 fs_reg dest;
1203 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1204 dest = get_nir_dest(instr->dest);
1205
1206 bool has_indirect = false;
1207
1208 switch (instr->intrinsic) {
1209 case nir_intrinsic_discard:
1210 case nir_intrinsic_discard_if: {
1211 /* We track our discarded pixels in f0.1. By predicating on it, we can
1212 * update just the flag bits that aren't yet discarded. If there's no
1213 * condition, we emit a CMP of g0 != g0, so all currently executing
1214 * channels will get turned off.
1215 */
1216 fs_inst *cmp;
1217 if (instr->intrinsic == nir_intrinsic_discard_if) {
1218 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1219 fs_reg(0), BRW_CONDITIONAL_Z);
1220 } else {
1221 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1222 BRW_REGISTER_TYPE_UW));
1223 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1224 }
1225 cmp->predicate = BRW_PREDICATE_NORMAL;
1226 cmp->flag_subreg = 1;
1227
1228 if (devinfo->gen >= 6) {
1229 emit_discard_jump();
1230 }
1231 break;
1232 }
1233
1234 case nir_intrinsic_atomic_counter_inc:
1235 case nir_intrinsic_atomic_counter_dec:
1236 case nir_intrinsic_atomic_counter_read: {
1237 using namespace surface_access;
1238
1239 /* Get the arguments of the atomic intrinsic. */
1240 const fs_reg offset = get_nir_src(instr->src[0]);
1241 const unsigned surface = (stage_prog_data->binding_table.abo_start +
1242 instr->const_index[0]);
1243 fs_reg tmp;
1244
1245 /* Emit a surface read or atomic op. */
1246 switch (instr->intrinsic) {
1247 case nir_intrinsic_atomic_counter_read:
1248 tmp = emit_untyped_read(bld, fs_reg(surface), offset, 1, 1);
1249 break;
1250
1251 case nir_intrinsic_atomic_counter_inc:
1252 tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
1253 fs_reg(), 1, 1, BRW_AOP_INC);
1254 break;
1255
1256 case nir_intrinsic_atomic_counter_dec:
1257 tmp = emit_untyped_atomic(bld, fs_reg(surface), offset, fs_reg(),
1258 fs_reg(), 1, 1, BRW_AOP_PREDEC);
1259 break;
1260
1261 default:
1262 unreachable("Unreachable");
1263 }
1264
1265 /* Assign the result. */
1266 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
1267
1268 /* Mark the surface as used. */
1269 brw_mark_surface_used(stage_prog_data, surface);
1270 break;
1271 }
1272
1273 case nir_intrinsic_memory_barrier: {
1274 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
1275 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
1276 ->regs_written = 2;
1277 break;
1278 }
1279
1280 case nir_intrinsic_load_front_face:
1281 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1282 *emit_frontfacing_interpolation());
1283 break;
1284
1285 case nir_intrinsic_load_vertex_id:
1286 unreachable("should be lowered by lower_vertex_id()");
1287
1288 case nir_intrinsic_load_vertex_id_zero_base: {
1289 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1290 assert(vertex_id.file != BAD_FILE);
1291 dest.type = vertex_id.type;
1292 bld.MOV(dest, vertex_id);
1293 break;
1294 }
1295
1296 case nir_intrinsic_load_base_vertex: {
1297 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1298 assert(base_vertex.file != BAD_FILE);
1299 dest.type = base_vertex.type;
1300 bld.MOV(dest, base_vertex);
1301 break;
1302 }
1303
1304 case nir_intrinsic_load_instance_id: {
1305 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1306 assert(instance_id.file != BAD_FILE);
1307 dest.type = instance_id.type;
1308 bld.MOV(dest, instance_id);
1309 break;
1310 }
1311
1312 case nir_intrinsic_load_sample_mask_in: {
1313 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1314 assert(sample_mask_in.file != BAD_FILE);
1315 dest.type = sample_mask_in.type;
1316 bld.MOV(dest, sample_mask_in);
1317 break;
1318 }
1319
1320 case nir_intrinsic_load_sample_pos: {
1321 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1322 assert(sample_pos.file != BAD_FILE);
1323 dest.type = sample_pos.type;
1324 bld.MOV(dest, sample_pos);
1325 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1326 break;
1327 }
1328
1329 case nir_intrinsic_load_sample_id: {
1330 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1331 assert(sample_id.file != BAD_FILE);
1332 dest.type = sample_id.type;
1333 bld.MOV(dest, sample_id);
1334 break;
1335 }
1336
1337 case nir_intrinsic_load_uniform_indirect:
1338 has_indirect = true;
1339 /* fallthrough */
1340 case nir_intrinsic_load_uniform: {
1341 unsigned index = instr->const_index[0];
1342
1343 fs_reg uniform_reg;
1344 if (index < num_direct_uniforms) {
1345 uniform_reg = fs_reg(UNIFORM, 0);
1346 } else {
1347 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1348 index -= num_direct_uniforms;
1349 }
1350
1351 for (unsigned j = 0; j < instr->num_components; j++) {
1352 fs_reg src = offset(retype(uniform_reg, dest.type), bld, index);
1353 if (has_indirect)
1354 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1355 index++;
1356
1357 bld.MOV(dest, src);
1358 dest = offset(dest, bld, 1);
1359 }
1360 break;
1361 }
1362
1363 case nir_intrinsic_load_ubo_indirect:
1364 has_indirect = true;
1365 /* fallthrough */
1366 case nir_intrinsic_load_ubo: {
1367 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1368 fs_reg surf_index;
1369
1370 if (const_index) {
1371 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1372 const_index->u[0]);
1373 } else {
1374 /* The block index is not a constant. Evaluate the index expression
1375 * per-channel and add the base UBO index; we have to select a value
1376 * from any live channel.
1377 */
1378 surf_index = vgrf(glsl_type::uint_type);
1379 bld.ADD(surf_index, get_nir_src(instr->src[0]),
1380 fs_reg(stage_prog_data->binding_table.ubo_start));
1381 surf_index = bld.emit_uniformize(surf_index);
1382
1383 /* Assume this may touch any UBO. It would be nice to provide
1384 * a tighter bound, but the array information is already lowered away.
1385 */
1386 brw_mark_surface_used(prog_data,
1387 stage_prog_data->binding_table.ubo_start +
1388 shader_prog->NumUniformBlocks - 1);
1389 }
1390
1391 if (has_indirect) {
1392 /* Turn the byte offset into a dword offset. */
1393 fs_reg base_offset = vgrf(glsl_type::int_type);
1394 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
1395 BRW_REGISTER_TYPE_D),
1396 fs_reg(2));
1397
1398 unsigned vec4_offset = instr->const_index[0] / 4;
1399 for (int i = 0; i < instr->num_components; i++)
1400 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
1401 base_offset, vec4_offset + i);
1402 } else {
1403 fs_reg packed_consts = vgrf(glsl_type::float_type);
1404 packed_consts.type = dest.type;
1405
1406 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1407 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1408 surf_index, const_offset_reg);
1409
1410 for (unsigned i = 0; i < instr->num_components; i++) {
1411 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1412
1413 /* The std140 packing rules don't allow vectors to cross 16-byte
1414 * boundaries, and a reg is 32 bytes.
1415 */
1416 assert(packed_consts.subreg_offset < 32);
1417
1418 bld.MOV(dest, packed_consts);
1419 dest = offset(dest, bld, 1);
1420 }
1421 }
1422 break;
1423 }
1424
1425 case nir_intrinsic_load_input_indirect:
1426 has_indirect = true;
1427 /* fallthrough */
1428 case nir_intrinsic_load_input: {
1429 unsigned index = 0;
1430 for (unsigned j = 0; j < instr->num_components; j++) {
1431 fs_reg src = offset(retype(nir_inputs, dest.type), bld,
1432 instr->const_index[0] + index);
1433 if (has_indirect)
1434 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1435 index++;
1436
1437 bld.MOV(dest, src);
1438 dest = offset(dest, bld, 1);
1439 }
1440 break;
1441 }
1442
1443 /* Handle ARB_gpu_shader5 interpolation intrinsics
1444 *
1445 * It's worth a quick word of explanation as to why we handle the full
1446 * variable-based interpolation intrinsic rather than a lowered version
1447 * with like we do for other inputs. We have to do that because the way
1448 * we set up inputs doesn't allow us to use the already setup inputs for
1449 * interpolation. At the beginning of the shader, we go through all of
1450 * the input variables and do the initial interpolation and put it in
1451 * the nir_inputs array based on its location as determined in
1452 * nir_lower_io. If the input isn't used, dead code cleans up and
1453 * everything works fine. However, when we get to the ARB_gpu_shader5
1454 * interpolation intrinsics, we need to reinterpolate the input
1455 * differently. If we used an intrinsic that just had an index it would
1456 * only give us the offset into the nir_inputs array. However, this is
1457 * useless because that value is post-interpolation and we need
1458 * pre-interpolation. In order to get the actual location of the bits
1459 * we get from the vertex fetching hardware, we need the variable.
1460 */
1461 case nir_intrinsic_interp_var_at_centroid:
1462 case nir_intrinsic_interp_var_at_sample:
1463 case nir_intrinsic_interp_var_at_offset: {
1464 assert(stage == MESA_SHADER_FRAGMENT);
1465
1466 ((struct brw_wm_prog_data *) prog_data)->pulls_bary = true;
1467
1468 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1469
1470 /* For most messages, we need one reg of ignored data; the hardware
1471 * requires mlen==1 even when there is no payload. in the per-slot
1472 * offset case, we'll replace this with the proper source data.
1473 */
1474 fs_reg src = vgrf(glsl_type::float_type);
1475 int mlen = 1; /* one reg unless overriden */
1476 fs_inst *inst;
1477
1478 switch (instr->intrinsic) {
1479 case nir_intrinsic_interp_var_at_centroid:
1480 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
1481 dst_xy, src, fs_reg(0u));
1482 break;
1483
1484 case nir_intrinsic_interp_var_at_sample: {
1485 /* XXX: We should probably handle non-constant sample id's */
1486 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1487 assert(const_sample);
1488 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1489 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1490 fs_reg(msg_data));
1491 break;
1492 }
1493
1494 case nir_intrinsic_interp_var_at_offset: {
1495 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1496
1497 if (const_offset) {
1498 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1499 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1500
1501 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1502 fs_reg(off_x | (off_y << 4)));
1503 } else {
1504 src = vgrf(glsl_type::ivec2_type);
1505 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1506 BRW_REGISTER_TYPE_F);
1507 for (int i = 0; i < 2; i++) {
1508 fs_reg temp = vgrf(glsl_type::float_type);
1509 bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
1510 fs_reg itemp = vgrf(glsl_type::int_type);
1511 bld.MOV(itemp, temp); /* float to int */
1512
1513 /* Clamp the upper end of the range to +7/16.
1514 * ARB_gpu_shader5 requires that we support a maximum offset
1515 * of +0.5, which isn't representable in a S0.4 value -- if
1516 * we didn't clamp it, we'd end up with -8/16, which is the
1517 * opposite of what the shader author wanted.
1518 *
1519 * This is legal due to ARB_gpu_shader5's quantization
1520 * rules:
1521 *
1522 * "Not all values of <offset> may be supported; x and y
1523 * offsets may be rounded to fixed-point values with the
1524 * number of fraction bits given by the
1525 * implementation-dependent constant
1526 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1527 */
1528 set_condmod(BRW_CONDITIONAL_L,
1529 bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
1530 }
1531
1532 mlen = 2 * dispatch_width / 8;
1533 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1534 fs_reg(0u));
1535 }
1536 break;
1537 }
1538
1539 default:
1540 unreachable("Invalid intrinsic");
1541 }
1542
1543 inst->mlen = mlen;
1544 /* 2 floats per slot returned */
1545 inst->regs_written = 2 * dispatch_width / 8;
1546 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1547 INTERP_QUALIFIER_NOPERSPECTIVE;
1548
1549 for (unsigned j = 0; j < instr->num_components; j++) {
1550 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1551 src.type = dest.type;
1552
1553 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1554 dest = offset(dest, bld, 1);
1555 }
1556 break;
1557 }
1558
1559 case nir_intrinsic_store_output_indirect:
1560 has_indirect = true;
1561 /* fallthrough */
1562 case nir_intrinsic_store_output: {
1563 fs_reg src = get_nir_src(instr->src[0]);
1564 unsigned index = 0;
1565 for (unsigned j = 0; j < instr->num_components; j++) {
1566 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
1567 instr->const_index[0] + index);
1568 if (has_indirect)
1569 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1570 index++;
1571 bld.MOV(new_dest, src);
1572 src = offset(src, bld, 1);
1573 }
1574 break;
1575 }
1576
1577 case nir_intrinsic_barrier:
1578 emit_barrier();
1579 break;
1580
1581 default:
1582 unreachable("unknown intrinsic");
1583 }
1584 }
1585
1586 void
1587 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
1588 {
1589 unsigned sampler = instr->sampler_index;
1590 fs_reg sampler_reg(sampler);
1591
1592 /* FINISHME: We're failing to recompile our programs when the sampler is
1593 * updated. This only matters for the texture rectangle scale parameters
1594 * (pre-gen6, or gen6+ with GL_CLAMP).
1595 */
1596 int texunit = prog->SamplerUnits[sampler];
1597
1598 int gather_component = instr->component;
1599
1600 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1601
1602 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1603 instr->is_array;
1604
1605 int lod_components = 0;
1606 int UNUSED offset_components = 0;
1607
1608 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1609
1610 for (unsigned i = 0; i < instr->num_srcs; i++) {
1611 fs_reg src = get_nir_src(instr->src[i].src);
1612 switch (instr->src[i].src_type) {
1613 case nir_tex_src_bias:
1614 lod = retype(src, BRW_REGISTER_TYPE_F);
1615 break;
1616 case nir_tex_src_comparitor:
1617 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1618 break;
1619 case nir_tex_src_coord:
1620 switch (instr->op) {
1621 case nir_texop_txf:
1622 case nir_texop_txf_ms:
1623 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1624 break;
1625 default:
1626 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1627 break;
1628 }
1629 break;
1630 case nir_tex_src_ddx:
1631 lod = retype(src, BRW_REGISTER_TYPE_F);
1632 lod_components = nir_tex_instr_src_size(instr, i);
1633 break;
1634 case nir_tex_src_ddy:
1635 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1636 break;
1637 case nir_tex_src_lod:
1638 switch (instr->op) {
1639 case nir_texop_txs:
1640 lod = retype(src, BRW_REGISTER_TYPE_UD);
1641 break;
1642 case nir_texop_txf:
1643 lod = retype(src, BRW_REGISTER_TYPE_D);
1644 break;
1645 default:
1646 lod = retype(src, BRW_REGISTER_TYPE_F);
1647 break;
1648 }
1649 break;
1650 case nir_tex_src_ms_index:
1651 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1652 break;
1653 case nir_tex_src_offset:
1654 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1655 if (instr->is_array)
1656 offset_components = instr->coord_components - 1;
1657 else
1658 offset_components = instr->coord_components;
1659 break;
1660 case nir_tex_src_projector:
1661 unreachable("should be lowered");
1662
1663 case nir_tex_src_sampler_offset: {
1664 /* Figure out the highest possible sampler index and mark it as used */
1665 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1666 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1667 max_used += stage_prog_data->binding_table.gather_texture_start;
1668 } else {
1669 max_used += stage_prog_data->binding_table.texture_start;
1670 }
1671 brw_mark_surface_used(prog_data, max_used);
1672
1673 /* Emit code to evaluate the actual indexing expression */
1674 sampler_reg = vgrf(glsl_type::uint_type);
1675 bld.ADD(sampler_reg, src, fs_reg(sampler));
1676 sampler_reg = bld.emit_uniformize(sampler_reg);
1677 break;
1678 }
1679
1680 default:
1681 unreachable("unknown texture source");
1682 }
1683 }
1684
1685 if (instr->op == nir_texop_txf_ms) {
1686 if (devinfo->gen >= 7 &&
1687 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1688 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1689 } else {
1690 mcs = fs_reg(0u);
1691 }
1692 }
1693
1694 for (unsigned i = 0; i < 3; i++) {
1695 if (instr->const_offset[i] != 0) {
1696 assert(offset_components == 0);
1697 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1698 break;
1699 }
1700 }
1701
1702 enum glsl_base_type dest_base_type =
1703 brw_glsl_base_type_for_nir_type (instr->dest_type);
1704
1705 const glsl_type *dest_type =
1706 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1707 1);
1708
1709 ir_texture_opcode op;
1710 switch (instr->op) {
1711 case nir_texop_lod: op = ir_lod; break;
1712 case nir_texop_query_levels: op = ir_query_levels; break;
1713 case nir_texop_tex: op = ir_tex; break;
1714 case nir_texop_tg4: op = ir_tg4; break;
1715 case nir_texop_txb: op = ir_txb; break;
1716 case nir_texop_txd: op = ir_txd; break;
1717 case nir_texop_txf: op = ir_txf; break;
1718 case nir_texop_txf_ms: op = ir_txf_ms; break;
1719 case nir_texop_txl: op = ir_txl; break;
1720 case nir_texop_txs: op = ir_txs; break;
1721 default:
1722 unreachable("unknown texture opcode");
1723 }
1724
1725 emit_texture(op, dest_type, coordinate, instr->coord_components,
1726 shadow_comparitor, lod, lod2, lod_components, sample_index,
1727 tex_offset, mcs, gather_component,
1728 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1729
1730 fs_reg dest = get_nir_dest(instr->dest);
1731 dest.type = this->result.type;
1732 unsigned num_components = nir_tex_instr_dest_size(instr);
1733 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
1734 dest, this->result),
1735 (1 << num_components) - 1);
1736 }
1737
1738 void
1739 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
1740 {
1741 switch (instr->type) {
1742 case nir_jump_break:
1743 bld.emit(BRW_OPCODE_BREAK);
1744 break;
1745 case nir_jump_continue:
1746 bld.emit(BRW_OPCODE_CONTINUE);
1747 break;
1748 case nir_jump_return:
1749 default:
1750 unreachable("unknown jump");
1751 }
1752 }