i965/fs: Fix code emission for imul_high in NIR.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 void
32 fs_visitor::emit_nir_code()
33 {
34 nir_shader *nir = prog->nir;
35
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39
40 if (nir->num_inputs > 0) {
41 nir_inputs = vgrf(nir->num_inputs);
42 nir_setup_inputs(nir);
43 }
44
45 if (nir->num_outputs > 0) {
46 nir_outputs = vgrf(nir->num_outputs);
47 nir_setup_outputs(nir);
48 }
49
50 if (nir->num_uniforms > 0) {
51 nir_setup_uniforms(nir);
52 }
53
54 nir_emit_system_values(nir);
55
56 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
57 foreach_list_typed(nir_register, reg, node, &nir->registers) {
58 unsigned array_elems =
59 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
60 unsigned size = array_elems * reg->num_components;
61 nir_globals[reg->index] = vgrf(size);
62 }
63
64 /* get the main function and emit it */
65 nir_foreach_overload(nir, overload) {
66 assert(strcmp(overload->function->name, "main") == 0);
67 assert(overload->impl);
68 nir_emit_impl(overload->impl);
69 }
70 }
71
72 void
73 fs_visitor::nir_setup_inputs(nir_shader *shader)
74 {
75 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
76 enum brw_reg_type type = brw_type_for_base_type(var->type);
77 fs_reg input = offset(nir_inputs, var->data.driver_location);
78
79 fs_reg reg;
80 switch (stage) {
81 case MESA_SHADER_VERTEX: {
82 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
83 * stored in nir_variable::location.
84 *
85 * However, NIR's load_input intrinsics use a different index - an
86 * offset into a single contiguous array containing all inputs.
87 * This index corresponds to the nir_variable::driver_location field.
88 *
89 * So, we need to copy from fs_reg(ATTR, var->location) to
90 * offset(nir_inputs, var->data.driver_location).
91 */
92 unsigned components = var->type->without_array()->components();
93 unsigned array_length = var->type->is_array() ? var->type->length : 1;
94 for (unsigned i = 0; i < array_length; i++) {
95 for (unsigned j = 0; j < components; j++) {
96 emit(MOV(retype(offset(input, components * i + j), type),
97 offset(fs_reg(ATTR, var->data.location + i, type), j)));
98 }
99 }
100 break;
101 }
102 case MESA_SHADER_GEOMETRY:
103 case MESA_SHADER_COMPUTE:
104 unreachable("fs_visitor not used for these stages yet.");
105 break;
106 case MESA_SHADER_FRAGMENT:
107 if (var->data.location == VARYING_SLOT_POS) {
108 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
109 var->data.origin_upper_left);
110 emit_percomp(MOV(input, reg), 0xF);
111 } else {
112 emit_general_interpolation(input, var->name, var->type,
113 (glsl_interp_qualifier) var->data.interpolation,
114 var->data.location, var->data.centroid,
115 var->data.sample);
116 }
117 break;
118 }
119 }
120 }
121
122 void
123 fs_visitor::nir_setup_outputs(nir_shader *shader)
124 {
125 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
126
127 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
128 fs_reg reg = offset(nir_outputs, var->data.driver_location);
129
130 int vector_elements =
131 var->type->is_array() ? var->type->fields.array->vector_elements
132 : var->type->vector_elements;
133
134 if (stage == MESA_SHADER_VERTEX) {
135 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
136 int output = var->data.location + i;
137 this->outputs[output] = offset(reg, 4 * i);
138 this->output_components[output] = vector_elements;
139 }
140 } else if (var->data.index > 0) {
141 assert(var->data.location == FRAG_RESULT_DATA0);
142 assert(var->data.index == 1);
143 this->dual_src_output = reg;
144 this->do_dual_src = true;
145 } else if (var->data.location == FRAG_RESULT_COLOR) {
146 /* Writing gl_FragColor outputs to all color regions. */
147 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
148 this->outputs[i] = reg;
149 this->output_components[i] = 4;
150 }
151 } else if (var->data.location == FRAG_RESULT_DEPTH) {
152 this->frag_depth = reg;
153 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
154 this->sample_mask = reg;
155 } else {
156 /* gl_FragData or a user-defined FS output */
157 assert(var->data.location >= FRAG_RESULT_DATA0 &&
158 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
159
160 /* General color output. */
161 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
162 int output = var->data.location - FRAG_RESULT_DATA0 + i;
163 this->outputs[output] = offset(reg, vector_elements * i);
164 this->output_components[output] = vector_elements;
165 }
166 }
167 }
168 }
169
170 void
171 fs_visitor::nir_setup_uniforms(nir_shader *shader)
172 {
173 uniforms = shader->num_uniforms;
174 num_direct_uniforms = shader->num_direct_uniforms;
175
176 /* We split the uniform register file in half. The first half is
177 * entirely direct uniforms. The second half is indirect.
178 */
179 param_size[0] = num_direct_uniforms;
180 if (shader->num_uniforms > num_direct_uniforms)
181 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
182
183 if (dispatch_width != 8)
184 return;
185
186 if (shader_prog) {
187 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
188 /* UBO's and atomics don't take up space in the uniform file */
189 if (var->interface_type != NULL || var->type->contains_atomic())
190 continue;
191
192 if (strncmp(var->name, "gl_", 3) == 0)
193 nir_setup_builtin_uniform(var);
194 else
195 nir_setup_uniform(var);
196 }
197 } else {
198 /* prog_to_nir doesn't create uniform variables; set param up directly. */
199 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
200 for (unsigned int i = 0; i < 4; i++) {
201 stage_prog_data->param[4 * p + i] =
202 &prog->Parameters->ParameterValues[p][i];
203 }
204 }
205 }
206 }
207
208 void
209 fs_visitor::nir_setup_uniform(nir_variable *var)
210 {
211 int namelen = strlen(var->name);
212
213 /* The data for our (non-builtin) uniforms is stored in a series of
214 * gl_uniform_driver_storage structs for each subcomponent that
215 * glGetUniformLocation() could name. We know it's been set up in the
216 * same order we'd walk the type, so walk the list of storage and find
217 * anything with our name, or the prefix of a component that starts with
218 * our name.
219 */
220 unsigned index = var->data.driver_location;
221 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
222 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
223
224 if (strncmp(var->name, storage->name, namelen) != 0 ||
225 (storage->name[namelen] != 0 &&
226 storage->name[namelen] != '.' &&
227 storage->name[namelen] != '[')) {
228 continue;
229 }
230
231 unsigned slots = storage->type->component_slots();
232 if (storage->array_elements)
233 slots *= storage->array_elements;
234
235 for (unsigned i = 0; i < slots; i++) {
236 stage_prog_data->param[index++] = &storage->storage[i];
237 }
238 }
239
240 /* Make sure we actually initialized the right amount of stuff here. */
241 assert(var->data.driver_location + var->type->component_slots() == index);
242 }
243
244 void
245 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
246 {
247 const nir_state_slot *const slots = var->state_slots;
248 assert(var->state_slots != NULL);
249
250 unsigned uniform_index = var->data.driver_location;
251 for (unsigned int i = 0; i < var->num_state_slots; i++) {
252 /* This state reference has already been setup by ir_to_mesa, but we'll
253 * get the same index back here.
254 */
255 int index = _mesa_add_state_reference(this->prog->Parameters,
256 (gl_state_index *)slots[i].tokens);
257
258 /* Add each of the unique swizzles of the element as a parameter.
259 * This'll end up matching the expected layout of the
260 * array/matrix/structure we're trying to fill in.
261 */
262 int last_swiz = -1;
263 for (unsigned int j = 0; j < 4; j++) {
264 int swiz = GET_SWZ(slots[i].swizzle, j);
265 if (swiz == last_swiz)
266 break;
267 last_swiz = swiz;
268
269 stage_prog_data->param[uniform_index++] =
270 &prog->Parameters->ParameterValues[index][swiz];
271 }
272 }
273 }
274
275 static bool
276 emit_system_values_block(nir_block *block, void *void_visitor)
277 {
278 fs_visitor *v = (fs_visitor *)void_visitor;
279 fs_reg *reg;
280
281 nir_foreach_instr(block, instr) {
282 if (instr->type != nir_instr_type_intrinsic)
283 continue;
284
285 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
286 switch (intrin->intrinsic) {
287 case nir_intrinsic_load_vertex_id:
288 unreachable("should be lowered by lower_vertex_id().");
289
290 case nir_intrinsic_load_vertex_id_zero_base:
291 assert(v->stage == MESA_SHADER_VERTEX);
292 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
293 if (reg->file == BAD_FILE)
294 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
295 break;
296
297 case nir_intrinsic_load_base_vertex:
298 assert(v->stage == MESA_SHADER_VERTEX);
299 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
300 if (reg->file == BAD_FILE)
301 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
302 break;
303
304 case nir_intrinsic_load_instance_id:
305 assert(v->stage == MESA_SHADER_VERTEX);
306 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
307 if (reg->file == BAD_FILE)
308 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
309 break;
310
311 case nir_intrinsic_load_sample_pos:
312 assert(v->stage == MESA_SHADER_FRAGMENT);
313 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
314 if (reg->file == BAD_FILE)
315 *reg = *v->emit_samplepos_setup();
316 break;
317
318 case nir_intrinsic_load_sample_id:
319 assert(v->stage == MESA_SHADER_FRAGMENT);
320 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
321 if (reg->file == BAD_FILE)
322 *reg = *v->emit_sampleid_setup();
323 break;
324
325 case nir_intrinsic_load_sample_mask_in:
326 assert(v->stage == MESA_SHADER_FRAGMENT);
327 assert(v->devinfo->gen >= 7);
328 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
329 if (reg->file == BAD_FILE)
330 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
331 BRW_REGISTER_TYPE_D));
332 break;
333
334 default:
335 break;
336 }
337 }
338
339 return true;
340 }
341
342 void
343 fs_visitor::nir_emit_system_values(nir_shader *shader)
344 {
345 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
346 nir_foreach_overload(shader, overload) {
347 assert(strcmp(overload->function->name, "main") == 0);
348 assert(overload->impl);
349 nir_foreach_block(overload->impl, emit_system_values_block, this);
350 }
351 }
352
353 void
354 fs_visitor::nir_emit_impl(nir_function_impl *impl)
355 {
356 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
357 foreach_list_typed(nir_register, reg, node, &impl->registers) {
358 unsigned array_elems =
359 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
360 unsigned size = array_elems * reg->num_components;
361 nir_locals[reg->index] = vgrf(size);
362 }
363
364 nir_emit_cf_list(&impl->body);
365 }
366
367 void
368 fs_visitor::nir_emit_cf_list(exec_list *list)
369 {
370 exec_list_validate(list);
371 foreach_list_typed(nir_cf_node, node, node, list) {
372 switch (node->type) {
373 case nir_cf_node_if:
374 nir_emit_if(nir_cf_node_as_if(node));
375 break;
376
377 case nir_cf_node_loop:
378 nir_emit_loop(nir_cf_node_as_loop(node));
379 break;
380
381 case nir_cf_node_block:
382 nir_emit_block(nir_cf_node_as_block(node));
383 break;
384
385 default:
386 unreachable("Invalid CFG node block");
387 }
388 }
389 }
390
391 void
392 fs_visitor::nir_emit_if(nir_if *if_stmt)
393 {
394 /* first, put the condition into f0 */
395 fs_inst *inst = emit(MOV(reg_null_d,
396 retype(get_nir_src(if_stmt->condition),
397 BRW_REGISTER_TYPE_D)));
398 inst->conditional_mod = BRW_CONDITIONAL_NZ;
399
400 emit(IF(BRW_PREDICATE_NORMAL));
401
402 nir_emit_cf_list(&if_stmt->then_list);
403
404 /* note: if the else is empty, dead CF elimination will remove it */
405 emit(BRW_OPCODE_ELSE);
406
407 nir_emit_cf_list(&if_stmt->else_list);
408
409 emit(BRW_OPCODE_ENDIF);
410
411 if (!try_replace_with_sel() && devinfo->gen < 6) {
412 no16("Can't support (non-uniform) control flow on SIMD16\n");
413 }
414 }
415
416 void
417 fs_visitor::nir_emit_loop(nir_loop *loop)
418 {
419 if (devinfo->gen < 6) {
420 no16("Can't support (non-uniform) control flow on SIMD16\n");
421 }
422
423 emit(BRW_OPCODE_DO);
424
425 nir_emit_cf_list(&loop->body);
426
427 emit(BRW_OPCODE_WHILE);
428 }
429
430 void
431 fs_visitor::nir_emit_block(nir_block *block)
432 {
433 nir_foreach_instr(block, instr) {
434 nir_emit_instr(instr);
435 }
436 }
437
438 void
439 fs_visitor::nir_emit_instr(nir_instr *instr)
440 {
441 this->base_ir = instr;
442
443 switch (instr->type) {
444 case nir_instr_type_alu:
445 nir_emit_alu(nir_instr_as_alu(instr));
446 break;
447
448 case nir_instr_type_intrinsic:
449 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
450 break;
451
452 case nir_instr_type_tex:
453 nir_emit_texture(nir_instr_as_tex(instr));
454 break;
455
456 case nir_instr_type_load_const:
457 /* We can hit these, but we do nothing now and use them as
458 * immediates later.
459 */
460 break;
461
462 case nir_instr_type_jump:
463 nir_emit_jump(nir_instr_as_jump(instr));
464 break;
465
466 default:
467 unreachable("unknown instruction type");
468 }
469
470 this->base_ir = NULL;
471 }
472
473 static brw_reg_type
474 brw_type_for_nir_type(nir_alu_type type)
475 {
476 switch (type) {
477 case nir_type_unsigned:
478 return BRW_REGISTER_TYPE_UD;
479 case nir_type_bool:
480 case nir_type_int:
481 return BRW_REGISTER_TYPE_D;
482 case nir_type_float:
483 return BRW_REGISTER_TYPE_F;
484 default:
485 unreachable("unknown type");
486 }
487
488 return BRW_REGISTER_TYPE_F;
489 }
490
491 bool
492 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
493 const fs_reg &result)
494 {
495 if (instr->src[0].src.is_ssa ||
496 !instr->src[0].src.reg.reg ||
497 !instr->src[0].src.reg.reg->parent_instr)
498 return false;
499
500 if (instr->src[0].src.reg.reg->parent_instr->type !=
501 nir_instr_type_intrinsic)
502 return false;
503
504 nir_intrinsic_instr *src0 =
505 nir_instr_as_intrinsic(instr->src[0].src.reg.reg->parent_instr);
506
507 if (src0->intrinsic != nir_intrinsic_load_front_face)
508 return false;
509
510 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
511 if (!value1 || fabsf(value1->f[0]) != 1.0f)
512 return false;
513
514 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
515 if (!value2 || fabsf(value2->f[0]) != 1.0f)
516 return false;
517
518 fs_reg tmp = vgrf(glsl_type::int_type);
519
520 if (devinfo->gen >= 6) {
521 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
522 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
523
524 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
525 *
526 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
527 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
528 *
529 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
530 *
531 * This negation looks like it's safe in practice, because bits 0:4 will
532 * surely be TRIANGLES
533 */
534
535 if (value1->f[0] == -1.0f) {
536 g0.negate = true;
537 }
538
539 tmp.type = BRW_REGISTER_TYPE_W;
540 tmp.subreg_offset = 2;
541 tmp.stride = 2;
542
543 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
544 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
545
546 tmp.type = BRW_REGISTER_TYPE_D;
547 tmp.subreg_offset = 0;
548 tmp.stride = 1;
549 } else {
550 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
551 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
552
553 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
554 *
555 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
556 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
557 *
558 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
559 *
560 * This negation looks like it's safe in practice, because bits 0:4 will
561 * surely be TRIANGLES
562 */
563
564 if (value1->f[0] == -1.0f) {
565 g1_6.negate = true;
566 }
567
568 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
569 }
570 emit(AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000)));
571
572 return true;
573 }
574
575 void
576 fs_visitor::nir_emit_alu(nir_alu_instr *instr)
577 {
578 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
579 fs_inst *inst;
580
581 fs_reg result = get_nir_dest(instr->dest.dest);
582 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
583
584 fs_reg op[4];
585 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
586 op[i] = get_nir_src(instr->src[i].src);
587 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
588 op[i].abs = instr->src[i].abs;
589 op[i].negate = instr->src[i].negate;
590 }
591
592 /* We get a bunch of mov's out of the from_ssa pass and they may still
593 * be vectorized. We'll handle them as a special-case. We'll also
594 * handle vecN here because it's basically the same thing.
595 */
596 switch (instr->op) {
597 case nir_op_imov:
598 case nir_op_fmov:
599 case nir_op_vec2:
600 case nir_op_vec3:
601 case nir_op_vec4: {
602 fs_reg temp = result;
603 bool need_extra_copy = false;
604 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
605 if (!instr->src[i].src.is_ssa &&
606 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
607 need_extra_copy = true;
608 temp = retype(vgrf(4), result.type);
609 break;
610 }
611 }
612
613 for (unsigned i = 0; i < 4; i++) {
614 if (!(instr->dest.write_mask & (1 << i)))
615 continue;
616
617 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
618 inst = emit(MOV(offset(temp, i),
619 offset(op[0], instr->src[0].swizzle[i])));
620 } else {
621 inst = emit(MOV(offset(temp, i),
622 offset(op[i], instr->src[i].swizzle[0])));
623 }
624 inst->saturate = instr->dest.saturate;
625 }
626
627 /* In this case the source and destination registers were the same,
628 * so we need to insert an extra set of moves in order to deal with
629 * any swizzling.
630 */
631 if (need_extra_copy) {
632 for (unsigned i = 0; i < 4; i++) {
633 if (!(instr->dest.write_mask & (1 << i)))
634 continue;
635
636 emit(MOV(offset(result, i), offset(temp, i)));
637 }
638 }
639 return;
640 }
641 default:
642 break;
643 }
644
645 /* At this point, we have dealt with any instruction that operates on
646 * more than a single channel. Therefore, we can just adjust the source
647 * and destination registers for that channel and emit the instruction.
648 */
649 unsigned channel = 0;
650 if (nir_op_infos[instr->op].output_size == 0) {
651 /* Since NIR is doing the scalarizing for us, we should only ever see
652 * vectorized operations with a single channel.
653 */
654 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
655 channel = ffs(instr->dest.write_mask) - 1;
656
657 result = offset(result, channel);
658 }
659
660 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
661 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
662 op[i] = offset(op[i], instr->src[i].swizzle[channel]);
663 }
664
665 switch (instr->op) {
666 case nir_op_i2f:
667 case nir_op_u2f:
668 inst = emit(MOV(result, op[0]));
669 inst->saturate = instr->dest.saturate;
670 break;
671
672 case nir_op_f2i:
673 case nir_op_f2u:
674 emit(MOV(result, op[0]));
675 break;
676
677 case nir_op_fsign: {
678 /* AND(val, 0x80000000) gives the sign bit.
679 *
680 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
681 * zero.
682 */
683 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
684
685 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
686 op[0].type = BRW_REGISTER_TYPE_UD;
687 result.type = BRW_REGISTER_TYPE_UD;
688 emit(AND(result_int, op[0], fs_reg(0x80000000u)));
689
690 inst = emit(OR(result_int, result_int, fs_reg(0x3f800000u)));
691 inst->predicate = BRW_PREDICATE_NORMAL;
692 if (instr->dest.saturate) {
693 inst = emit(MOV(result, result));
694 inst->saturate = true;
695 }
696 break;
697 }
698
699 case nir_op_isign:
700 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
701 * -> non-negative val generates 0x00000000.
702 * Predicated OR sets 1 if val is positive.
703 */
704 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
705 emit(ASR(result, op[0], fs_reg(31)));
706 inst = emit(OR(result, result, fs_reg(1)));
707 inst->predicate = BRW_PREDICATE_NORMAL;
708 break;
709
710 case nir_op_frcp:
711 inst = emit_math(SHADER_OPCODE_RCP, result, op[0]);
712 inst->saturate = instr->dest.saturate;
713 break;
714
715 case nir_op_fexp2:
716 inst = emit_math(SHADER_OPCODE_EXP2, result, op[0]);
717 inst->saturate = instr->dest.saturate;
718 break;
719
720 case nir_op_flog2:
721 inst = emit_math(SHADER_OPCODE_LOG2, result, op[0]);
722 inst->saturate = instr->dest.saturate;
723 break;
724
725 case nir_op_fexp:
726 case nir_op_flog:
727 unreachable("not reached: should be handled by ir_explog_to_explog2");
728
729 case nir_op_fsin:
730 inst = emit_math(SHADER_OPCODE_SIN, result, op[0]);
731 inst->saturate = instr->dest.saturate;
732 break;
733
734 case nir_op_fcos:
735 inst = emit_math(SHADER_OPCODE_COS, result, op[0]);
736 inst->saturate = instr->dest.saturate;
737 break;
738
739 case nir_op_fddx:
740 if (fs_key->high_quality_derivatives) {
741 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
742 } else {
743 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
744 }
745 inst->saturate = instr->dest.saturate;
746 break;
747 case nir_op_fddx_fine:
748 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
749 inst->saturate = instr->dest.saturate;
750 break;
751 case nir_op_fddx_coarse:
752 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
753 inst->saturate = instr->dest.saturate;
754 break;
755 case nir_op_fddy:
756 if (fs_key->high_quality_derivatives) {
757 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
758 fs_reg(fs_key->render_to_fbo));
759 } else {
760 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
761 fs_reg(fs_key->render_to_fbo));
762 }
763 inst->saturate = instr->dest.saturate;
764 break;
765 case nir_op_fddy_fine:
766 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
767 fs_reg(fs_key->render_to_fbo));
768 inst->saturate = instr->dest.saturate;
769 break;
770 case nir_op_fddy_coarse:
771 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
772 fs_reg(fs_key->render_to_fbo));
773 inst->saturate = instr->dest.saturate;
774 break;
775
776 case nir_op_fadd:
777 case nir_op_iadd:
778 inst = emit(ADD(result, op[0], op[1]));
779 inst->saturate = instr->dest.saturate;
780 break;
781
782 case nir_op_fmul:
783 inst = emit(MUL(result, op[0], op[1]));
784 inst->saturate = instr->dest.saturate;
785 break;
786
787 case nir_op_imul: {
788 if (devinfo->gen >= 8) {
789 emit(MUL(result, op[0], op[1]));
790 break;
791 } else {
792 nir_const_value *value0 = nir_src_as_const_value(instr->src[0].src);
793 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
794
795 if (value0 && value0->u[0] < (1 << 16)) {
796 if (devinfo->gen < 7) {
797 emit(MUL(result, op[0], op[1]));
798 } else {
799 emit(MUL(result, op[1], op[0]));
800 }
801 break;
802 } else if (value1 && value1->u[0] < (1 << 16)) {
803 if (devinfo->gen < 7) {
804 emit(MUL(result, op[1], op[0]));
805 } else {
806 emit(MUL(result, op[0], op[1]));
807 }
808 break;
809 }
810 }
811
812 if (devinfo->gen >= 7)
813 no16("SIMD16 explicit accumulator operands unsupported\n");
814
815 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
816
817 emit(MUL(acc, op[0], op[1]));
818 emit(MACH(reg_null_d, op[0], op[1]));
819 emit(MOV(result, fs_reg(acc)));
820 break;
821 }
822
823 case nir_op_imul_high:
824 case nir_op_umul_high: {
825 if (devinfo->gen >= 7)
826 no16("SIMD16 explicit accumulator operands unsupported\n");
827
828 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
829
830 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
831 emit(MACH(result, op[0], op[1]));
832
833 /* Until Gen8, integer multiplies read 32-bits from one source, and
834 * 16-bits from the other, and relying on the MACH instruction to
835 * generate the high bits of the result.
836 *
837 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
838 * but in order to do a 64x64-bit multiply we have to simulate the
839 * previous behavior and then use a MACH instruction.
840 *
841 * FINISHME: Don't use source modifiers on src1.
842 */
843 if (devinfo->gen >= 8) {
844 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
845 mul->src[1].type == BRW_REGISTER_TYPE_UD);
846 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
847 mul->src[1].type = BRW_REGISTER_TYPE_W;
848 mul->src[1].stride = 2;
849 } else {
850 mul->src[1].type = BRW_REGISTER_TYPE_UW;
851 mul->src[1].stride = 2;
852 }
853 }
854 break;
855 }
856
857 case nir_op_idiv:
858 case nir_op_udiv:
859 emit_math(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
860 break;
861
862 case nir_op_uadd_carry: {
863 if (devinfo->gen >= 7)
864 no16("SIMD16 explicit accumulator operands unsupported\n");
865
866 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
867 BRW_REGISTER_TYPE_UD);
868
869 emit(ADDC(reg_null_ud, op[0], op[1]));
870 emit(MOV(result, fs_reg(acc)));
871 break;
872 }
873
874 case nir_op_usub_borrow: {
875 if (devinfo->gen >= 7)
876 no16("SIMD16 explicit accumulator operands unsupported\n");
877
878 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
879 BRW_REGISTER_TYPE_UD);
880
881 emit(SUBB(reg_null_ud, op[0], op[1]));
882 emit(MOV(result, fs_reg(acc)));
883 break;
884 }
885
886 case nir_op_umod:
887 emit_math(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
888 break;
889
890 case nir_op_flt:
891 case nir_op_ilt:
892 case nir_op_ult:
893 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_L));
894 break;
895
896 case nir_op_fge:
897 case nir_op_ige:
898 case nir_op_uge:
899 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE));
900 break;
901
902 case nir_op_feq:
903 case nir_op_ieq:
904 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z));
905 break;
906
907 case nir_op_fne:
908 case nir_op_ine:
909 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ));
910 break;
911
912 case nir_op_inot:
913 if (devinfo->gen >= 8) {
914 resolve_source_modifiers(&op[0]);
915 }
916 emit(NOT(result, op[0]));
917 break;
918 case nir_op_ixor:
919 if (devinfo->gen >= 8) {
920 resolve_source_modifiers(&op[0]);
921 resolve_source_modifiers(&op[1]);
922 }
923 emit(XOR(result, op[0], op[1]));
924 break;
925 case nir_op_ior:
926 if (devinfo->gen >= 8) {
927 resolve_source_modifiers(&op[0]);
928 resolve_source_modifiers(&op[1]);
929 }
930 emit(OR(result, op[0], op[1]));
931 break;
932 case nir_op_iand:
933 if (devinfo->gen >= 8) {
934 resolve_source_modifiers(&op[0]);
935 resolve_source_modifiers(&op[1]);
936 }
937 emit(AND(result, op[0], op[1]));
938 break;
939
940 case nir_op_fdot2:
941 case nir_op_fdot3:
942 case nir_op_fdot4:
943 case nir_op_bany2:
944 case nir_op_bany3:
945 case nir_op_bany4:
946 case nir_op_ball2:
947 case nir_op_ball3:
948 case nir_op_ball4:
949 case nir_op_ball_fequal2:
950 case nir_op_ball_iequal2:
951 case nir_op_ball_fequal3:
952 case nir_op_ball_iequal3:
953 case nir_op_ball_fequal4:
954 case nir_op_ball_iequal4:
955 case nir_op_bany_fnequal2:
956 case nir_op_bany_inequal2:
957 case nir_op_bany_fnequal3:
958 case nir_op_bany_inequal3:
959 case nir_op_bany_fnequal4:
960 case nir_op_bany_inequal4:
961 unreachable("Lowered by nir_lower_alu_reductions");
962
963 case nir_op_fnoise1_1:
964 case nir_op_fnoise1_2:
965 case nir_op_fnoise1_3:
966 case nir_op_fnoise1_4:
967 case nir_op_fnoise2_1:
968 case nir_op_fnoise2_2:
969 case nir_op_fnoise2_3:
970 case nir_op_fnoise2_4:
971 case nir_op_fnoise3_1:
972 case nir_op_fnoise3_2:
973 case nir_op_fnoise3_3:
974 case nir_op_fnoise3_4:
975 case nir_op_fnoise4_1:
976 case nir_op_fnoise4_2:
977 case nir_op_fnoise4_3:
978 case nir_op_fnoise4_4:
979 unreachable("not reached: should be handled by lower_noise");
980
981 case nir_op_ldexp:
982 unreachable("not reached: should be handled by ldexp_to_arith()");
983
984 case nir_op_fsqrt:
985 inst = emit_math(SHADER_OPCODE_SQRT, result, op[0]);
986 inst->saturate = instr->dest.saturate;
987 break;
988
989 case nir_op_frsq:
990 inst = emit_math(SHADER_OPCODE_RSQ, result, op[0]);
991 inst->saturate = instr->dest.saturate;
992 break;
993
994 case nir_op_b2i:
995 emit(AND(result, op[0], fs_reg(1)));
996 break;
997 case nir_op_b2f:
998 emit(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u)));
999 break;
1000
1001 case nir_op_f2b:
1002 emit(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
1003 break;
1004 case nir_op_i2b:
1005 emit(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1006 break;
1007
1008 case nir_op_ftrunc:
1009 inst = emit(RNDZ(result, op[0]));
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_fceil: {
1014 op[0].negate = !op[0].negate;
1015 fs_reg temp = vgrf(glsl_type::float_type);
1016 emit(RNDD(temp, op[0]));
1017 temp.negate = true;
1018 inst = emit(MOV(result, temp));
1019 inst->saturate = instr->dest.saturate;
1020 break;
1021 }
1022 case nir_op_ffloor:
1023 inst = emit(RNDD(result, op[0]));
1024 inst->saturate = instr->dest.saturate;
1025 break;
1026 case nir_op_ffract:
1027 inst = emit(FRC(result, op[0]));
1028 inst->saturate = instr->dest.saturate;
1029 break;
1030 case nir_op_fround_even:
1031 inst = emit(RNDE(result, op[0]));
1032 inst->saturate = instr->dest.saturate;
1033 break;
1034
1035 case nir_op_fmin:
1036 case nir_op_imin:
1037 case nir_op_umin:
1038 if (devinfo->gen >= 6) {
1039 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1040 inst->conditional_mod = BRW_CONDITIONAL_L;
1041 } else {
1042 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L));
1043 inst = emit(SEL(result, op[0], op[1]));
1044 inst->predicate = BRW_PREDICATE_NORMAL;
1045 }
1046 inst->saturate = instr->dest.saturate;
1047 break;
1048
1049 case nir_op_fmax:
1050 case nir_op_imax:
1051 case nir_op_umax:
1052 if (devinfo->gen >= 6) {
1053 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1054 inst->conditional_mod = BRW_CONDITIONAL_GE;
1055 } else {
1056 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE));
1057 inst = emit(SEL(result, op[0], op[1]));
1058 inst->predicate = BRW_PREDICATE_NORMAL;
1059 }
1060 inst->saturate = instr->dest.saturate;
1061 break;
1062
1063 case nir_op_pack_snorm_2x16:
1064 case nir_op_pack_snorm_4x8:
1065 case nir_op_pack_unorm_2x16:
1066 case nir_op_pack_unorm_4x8:
1067 case nir_op_unpack_snorm_2x16:
1068 case nir_op_unpack_snorm_4x8:
1069 case nir_op_unpack_unorm_2x16:
1070 case nir_op_unpack_unorm_4x8:
1071 case nir_op_unpack_half_2x16:
1072 case nir_op_pack_half_2x16:
1073 unreachable("not reached: should be handled by lower_packing_builtins");
1074
1075 case nir_op_unpack_half_2x16_split_x:
1076 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1077 inst->saturate = instr->dest.saturate;
1078 break;
1079 case nir_op_unpack_half_2x16_split_y:
1080 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1081 inst->saturate = instr->dest.saturate;
1082 break;
1083
1084 case nir_op_fpow:
1085 inst = emit_math(SHADER_OPCODE_POW, result, op[0], op[1]);
1086 inst->saturate = instr->dest.saturate;
1087 break;
1088
1089 case nir_op_bitfield_reverse:
1090 emit(BFREV(result, op[0]));
1091 break;
1092
1093 case nir_op_bit_count:
1094 emit(CBIT(result, op[0]));
1095 break;
1096
1097 case nir_op_ufind_msb:
1098 case nir_op_ifind_msb: {
1099 emit(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]));
1100
1101 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1102 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1103 * subtract the result from 31 to convert the MSB count into an LSB count.
1104 */
1105
1106 emit(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1107 fs_reg neg_result(result);
1108 neg_result.negate = true;
1109 inst = emit(ADD(result, neg_result, fs_reg(31)));
1110 inst->predicate = BRW_PREDICATE_NORMAL;
1111 break;
1112 }
1113
1114 case nir_op_find_lsb:
1115 emit(FBL(result, op[0]));
1116 break;
1117
1118 case nir_op_ubitfield_extract:
1119 case nir_op_ibitfield_extract:
1120 emit(BFE(result, op[2], op[1], op[0]));
1121 break;
1122 case nir_op_bfm:
1123 emit(BFI1(result, op[0], op[1]));
1124 break;
1125 case nir_op_bfi:
1126 emit(BFI2(result, op[0], op[1], op[2]));
1127 break;
1128
1129 case nir_op_bitfield_insert:
1130 unreachable("not reached: should be handled by "
1131 "lower_instructions::bitfield_insert_to_bfm_bfi");
1132
1133 case nir_op_ishl:
1134 emit(SHL(result, op[0], op[1]));
1135 break;
1136 case nir_op_ishr:
1137 emit(ASR(result, op[0], op[1]));
1138 break;
1139 case nir_op_ushr:
1140 emit(SHR(result, op[0], op[1]));
1141 break;
1142
1143 case nir_op_pack_half_2x16_split:
1144 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1145 break;
1146
1147 case nir_op_ffma:
1148 inst = emit(MAD(result, op[2], op[1], op[0]));
1149 inst->saturate = instr->dest.saturate;
1150 break;
1151
1152 case nir_op_flrp:
1153 inst = emit_lrp(result, op[0], op[1], op[2]);
1154 inst->saturate = instr->dest.saturate;
1155 break;
1156
1157 case nir_op_bcsel:
1158 if (optimize_frontfacing_ternary(instr, result))
1159 return;
1160
1161 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1162 inst = emit(SEL(result, op[1], op[2]));
1163 inst->predicate = BRW_PREDICATE_NORMAL;
1164 break;
1165
1166 default:
1167 unreachable("unhandled instruction");
1168 }
1169
1170 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1171 * to sign extend the low bit to 0/~0
1172 */
1173 if (devinfo->gen <= 5 &&
1174 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1175 fs_reg masked = vgrf(glsl_type::int_type);
1176 emit(AND(masked, result, fs_reg(1)));
1177 masked.negate = true;
1178 emit(MOV(retype(result, BRW_REGISTER_TYPE_D), masked));
1179 }
1180 }
1181
1182 static fs_reg
1183 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1184 unsigned base_offset, nir_src *indirect)
1185 {
1186 fs_reg reg;
1187 if (nir_reg->is_global)
1188 reg = v->nir_globals[nir_reg->index];
1189 else
1190 reg = v->nir_locals[nir_reg->index];
1191
1192 reg = offset(reg, base_offset * nir_reg->num_components);
1193 if (indirect) {
1194 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1195
1196 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1197 v->emit(v->MUL(*reg.reladdr, v->get_nir_src(*indirect),
1198 fs_reg(multiplier)));
1199 }
1200
1201 return reg;
1202 }
1203
1204 fs_reg
1205 fs_visitor::get_nir_src(nir_src src)
1206 {
1207 if (src.is_ssa) {
1208 assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
1209 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
1210 fs_reg reg = vgrf(src.ssa->num_components);
1211 reg.type = BRW_REGISTER_TYPE_D;
1212
1213 for (unsigned i = 0; i < src.ssa->num_components; ++i)
1214 emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));
1215
1216 return reg;
1217 } else {
1218 fs_reg reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1219 src.reg.indirect);
1220
1221 /* to avoid floating-point denorm flushing problems, set the type by
1222 * default to D - instructions that need floating point semantics will set
1223 * this to F if they need to
1224 */
1225 return retype(reg, BRW_REGISTER_TYPE_D);
1226 }
1227 }
1228
1229 fs_reg
1230 fs_visitor::get_nir_dest(nir_dest dest)
1231 {
1232 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1233 dest.reg.indirect);
1234 }
1235
1236 void
1237 fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
1238 {
1239 for (unsigned i = 0; i < 4; i++) {
1240 if (!((wr_mask >> i) & 1))
1241 continue;
1242
1243 fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
1244 new_inst->dst = offset(new_inst->dst, i);
1245 for (unsigned j = 0; j < new_inst->sources; j++)
1246 if (inst->src[j].file == GRF)
1247 new_inst->src[j] = offset(new_inst->src[j], i);
1248
1249 emit(new_inst);
1250 }
1251 }
1252
1253 void
1254 fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
1255 {
1256 fs_reg dest;
1257 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1258 dest = get_nir_dest(instr->dest);
1259
1260 bool has_indirect = false;
1261
1262 switch (instr->intrinsic) {
1263 case nir_intrinsic_discard:
1264 case nir_intrinsic_discard_if: {
1265 /* We track our discarded pixels in f0.1. By predicating on it, we can
1266 * update just the flag bits that aren't yet discarded. If there's no
1267 * condition, we emit a CMP of g0 != g0, so all currently executing
1268 * channels will get turned off.
1269 */
1270 fs_inst *cmp;
1271 if (instr->intrinsic == nir_intrinsic_discard_if) {
1272 cmp = emit(CMP(reg_null_f, get_nir_src(instr->src[0]),
1273 fs_reg(0), BRW_CONDITIONAL_Z));
1274 } else {
1275 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1276 BRW_REGISTER_TYPE_UW));
1277 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
1278 }
1279 cmp->predicate = BRW_PREDICATE_NORMAL;
1280 cmp->flag_subreg = 1;
1281
1282 if (devinfo->gen >= 6) {
1283 emit_discard_jump();
1284 }
1285 break;
1286 }
1287
1288 case nir_intrinsic_atomic_counter_inc:
1289 case nir_intrinsic_atomic_counter_dec:
1290 case nir_intrinsic_atomic_counter_read: {
1291 unsigned surf_index = prog_data->binding_table.abo_start +
1292 (unsigned) instr->const_index[0];
1293 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1294
1295 switch (instr->intrinsic) {
1296 case nir_intrinsic_atomic_counter_inc:
1297 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1298 fs_reg(), fs_reg());
1299 break;
1300 case nir_intrinsic_atomic_counter_dec:
1301 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1302 fs_reg(), fs_reg());
1303 break;
1304 case nir_intrinsic_atomic_counter_read:
1305 emit_untyped_surface_read(surf_index, dest, offset);
1306 break;
1307 default:
1308 unreachable("Unreachable");
1309 }
1310 break;
1311 }
1312
1313 case nir_intrinsic_load_front_face:
1314 emit(MOV(retype(dest, BRW_REGISTER_TYPE_D),
1315 *emit_frontfacing_interpolation()));
1316 break;
1317
1318 case nir_intrinsic_load_vertex_id:
1319 unreachable("should be lowered by lower_vertex_id()");
1320
1321 case nir_intrinsic_load_vertex_id_zero_base: {
1322 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1323 assert(vertex_id.file != BAD_FILE);
1324 dest.type = vertex_id.type;
1325 emit(MOV(dest, vertex_id));
1326 break;
1327 }
1328
1329 case nir_intrinsic_load_base_vertex: {
1330 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1331 assert(base_vertex.file != BAD_FILE);
1332 dest.type = base_vertex.type;
1333 emit(MOV(dest, base_vertex));
1334 break;
1335 }
1336
1337 case nir_intrinsic_load_instance_id: {
1338 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1339 assert(instance_id.file != BAD_FILE);
1340 dest.type = instance_id.type;
1341 emit(MOV(dest, instance_id));
1342 break;
1343 }
1344
1345 case nir_intrinsic_load_sample_mask_in: {
1346 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1347 assert(sample_mask_in.file != BAD_FILE);
1348 dest.type = sample_mask_in.type;
1349 emit(MOV(dest, sample_mask_in));
1350 break;
1351 }
1352
1353 case nir_intrinsic_load_sample_pos: {
1354 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1355 assert(sample_pos.file != BAD_FILE);
1356 dest.type = sample_pos.type;
1357 emit(MOV(dest, sample_pos));
1358 emit(MOV(offset(dest, 1), offset(sample_pos, 1)));
1359 break;
1360 }
1361
1362 case nir_intrinsic_load_sample_id: {
1363 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1364 assert(sample_id.file != BAD_FILE);
1365 dest.type = sample_id.type;
1366 emit(MOV(dest, sample_id));
1367 break;
1368 }
1369
1370 case nir_intrinsic_load_uniform_indirect:
1371 has_indirect = true;
1372 /* fallthrough */
1373 case nir_intrinsic_load_uniform: {
1374 unsigned index = instr->const_index[0];
1375
1376 fs_reg uniform_reg;
1377 if (index < num_direct_uniforms) {
1378 uniform_reg = fs_reg(UNIFORM, 0);
1379 } else {
1380 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1381 index -= num_direct_uniforms;
1382 }
1383
1384 for (int i = 0; i < instr->const_index[1]; i++) {
1385 for (unsigned j = 0; j < instr->num_components; j++) {
1386 fs_reg src = offset(retype(uniform_reg, dest.type), index);
1387 if (has_indirect)
1388 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1389 index++;
1390
1391 emit(MOV(dest, src));
1392 dest = offset(dest, 1);
1393 }
1394 }
1395 break;
1396 }
1397
1398 case nir_intrinsic_load_ubo_indirect:
1399 has_indirect = true;
1400 /* fallthrough */
1401 case nir_intrinsic_load_ubo: {
1402 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1403 fs_reg surf_index;
1404
1405 if (const_index) {
1406 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1407 const_index->u[0]);
1408 } else {
1409 /* The block index is not a constant. Evaluate the index expression
1410 * per-channel and add the base UBO index; the generator will select
1411 * a value from any live channel.
1412 */
1413 surf_index = vgrf(glsl_type::uint_type);
1414 emit(ADD(surf_index, get_nir_src(instr->src[0]),
1415 fs_reg(stage_prog_data->binding_table.ubo_start)))
1416 ->force_writemask_all = true;
1417
1418 /* Assume this may touch any UBO. It would be nice to provide
1419 * a tighter bound, but the array information is already lowered away.
1420 */
1421 brw_mark_surface_used(prog_data,
1422 stage_prog_data->binding_table.ubo_start +
1423 shader_prog->NumUniformBlocks - 1);
1424 }
1425
1426 if (has_indirect) {
1427 /* Turn the byte offset into a dword offset. */
1428 fs_reg base_offset = vgrf(glsl_type::int_type);
1429 emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
1430 BRW_REGISTER_TYPE_D),
1431 fs_reg(2)));
1432
1433 unsigned vec4_offset = instr->const_index[0] / 4;
1434 for (int i = 0; i < instr->num_components; i++)
1435 emit(VARYING_PULL_CONSTANT_LOAD(offset(dest, i), surf_index,
1436 base_offset, vec4_offset + i));
1437 } else {
1438 fs_reg packed_consts = vgrf(glsl_type::float_type);
1439 packed_consts.type = dest.type;
1440
1441 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1442 emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1443 surf_index, const_offset_reg);
1444
1445 for (unsigned i = 0; i < instr->num_components; i++) {
1446 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1447
1448 /* The std140 packing rules don't allow vectors to cross 16-byte
1449 * boundaries, and a reg is 32 bytes.
1450 */
1451 assert(packed_consts.subreg_offset < 32);
1452
1453 emit(MOV(dest, packed_consts));
1454 dest = offset(dest, 1);
1455 }
1456 }
1457 break;
1458 }
1459
1460 case nir_intrinsic_load_input_indirect:
1461 has_indirect = true;
1462 /* fallthrough */
1463 case nir_intrinsic_load_input: {
1464 unsigned index = 0;
1465 for (int i = 0; i < instr->const_index[1]; i++) {
1466 for (unsigned j = 0; j < instr->num_components; j++) {
1467 fs_reg src = offset(retype(nir_inputs, dest.type),
1468 instr->const_index[0] + index);
1469 if (has_indirect)
1470 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1471 index++;
1472
1473 emit(MOV(dest, src));
1474 dest = offset(dest, 1);
1475 }
1476 }
1477 break;
1478 }
1479
1480 /* Handle ARB_gpu_shader5 interpolation intrinsics
1481 *
1482 * It's worth a quick word of explanation as to why we handle the full
1483 * variable-based interpolation intrinsic rather than a lowered version
1484 * with like we do for other inputs. We have to do that because the way
1485 * we set up inputs doesn't allow us to use the already setup inputs for
1486 * interpolation. At the beginning of the shader, we go through all of
1487 * the input variables and do the initial interpolation and put it in
1488 * the nir_inputs array based on its location as determined in
1489 * nir_lower_io. If the input isn't used, dead code cleans up and
1490 * everything works fine. However, when we get to the ARB_gpu_shader5
1491 * interpolation intrinsics, we need to reinterpolate the input
1492 * differently. If we used an intrinsic that just had an index it would
1493 * only give us the offset into the nir_inputs array. However, this is
1494 * useless because that value is post-interpolation and we need
1495 * pre-interpolation. In order to get the actual location of the bits
1496 * we get from the vertex fetching hardware, we need the variable.
1497 */
1498 case nir_intrinsic_interp_var_at_centroid:
1499 case nir_intrinsic_interp_var_at_sample:
1500 case nir_intrinsic_interp_var_at_offset: {
1501 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
1502 * 8 channels at a time, same as the barycentric coords presented in
1503 * the FS payload. this requires a bit of extra work to support.
1504 */
1505 no16("interpolate_at_* not yet supported in SIMD16 mode.");
1506
1507 fs_reg dst_xy = vgrf(2);
1508
1509 /* For most messages, we need one reg of ignored data; the hardware
1510 * requires mlen==1 even when there is no payload. in the per-slot
1511 * offset case, we'll replace this with the proper source data.
1512 */
1513 fs_reg src = vgrf(glsl_type::float_type);
1514 int mlen = 1; /* one reg unless overriden */
1515 fs_inst *inst;
1516
1517 switch (instr->intrinsic) {
1518 case nir_intrinsic_interp_var_at_centroid:
1519 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
1520 break;
1521
1522 case nir_intrinsic_interp_var_at_sample: {
1523 /* XXX: We should probably handle non-constant sample id's */
1524 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1525 assert(const_sample);
1526 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1527 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1528 fs_reg(msg_data));
1529 break;
1530 }
1531
1532 case nir_intrinsic_interp_var_at_offset: {
1533 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1534
1535 if (const_offset) {
1536 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1537 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1538
1539 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1540 fs_reg(off_x | (off_y << 4)));
1541 } else {
1542 src = vgrf(glsl_type::ivec2_type);
1543 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1544 BRW_REGISTER_TYPE_F);
1545 for (int i = 0; i < 2; i++) {
1546 fs_reg temp = vgrf(glsl_type::float_type);
1547 emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
1548 fs_reg itemp = vgrf(glsl_type::int_type);
1549 emit(MOV(itemp, temp)); /* float to int */
1550
1551 /* Clamp the upper end of the range to +7/16.
1552 * ARB_gpu_shader5 requires that we support a maximum offset
1553 * of +0.5, which isn't representable in a S0.4 value -- if
1554 * we didn't clamp it, we'd end up with -8/16, which is the
1555 * opposite of what the shader author wanted.
1556 *
1557 * This is legal due to ARB_gpu_shader5's quantization
1558 * rules:
1559 *
1560 * "Not all values of <offset> may be supported; x and y
1561 * offsets may be rounded to fixed-point values with the
1562 * number of fraction bits given by the
1563 * implementation-dependent constant
1564 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1565 */
1566
1567 emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
1568 ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
1569 }
1570
1571 mlen = 2;
1572 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1573 fs_reg(0u));
1574 }
1575 break;
1576 }
1577
1578 default:
1579 unreachable("Invalid intrinsic");
1580 }
1581
1582 inst->mlen = mlen;
1583 inst->regs_written = 2; /* 2 floats per slot returned */
1584 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1585 INTERP_QUALIFIER_NOPERSPECTIVE;
1586
1587 for (unsigned j = 0; j < instr->num_components; j++) {
1588 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1589 src.type = dest.type;
1590
1591 emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1592 dest = offset(dest, 1);
1593 }
1594 break;
1595 }
1596
1597 case nir_intrinsic_store_output_indirect:
1598 has_indirect = true;
1599 /* fallthrough */
1600 case nir_intrinsic_store_output: {
1601 fs_reg src = get_nir_src(instr->src[0]);
1602 unsigned index = 0;
1603 for (int i = 0; i < instr->const_index[1]; i++) {
1604 for (unsigned j = 0; j < instr->num_components; j++) {
1605 fs_reg new_dest = offset(retype(nir_outputs, src.type),
1606 instr->const_index[0] + index);
1607 if (has_indirect)
1608 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1609 index++;
1610 emit(MOV(new_dest, src));
1611 src = offset(src, 1);
1612 }
1613 }
1614 break;
1615 }
1616
1617 default:
1618 unreachable("unknown intrinsic");
1619 }
1620 }
1621
1622 void
1623 fs_visitor::nir_emit_texture(nir_tex_instr *instr)
1624 {
1625 unsigned sampler = instr->sampler_index;
1626 fs_reg sampler_reg(sampler);
1627
1628 /* FINISHME: We're failing to recompile our programs when the sampler is
1629 * updated. This only matters for the texture rectangle scale parameters
1630 * (pre-gen6, or gen6+ with GL_CLAMP).
1631 */
1632 int texunit = prog->SamplerUnits[sampler];
1633
1634 int gather_component = instr->component;
1635
1636 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1637
1638 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1639 instr->is_array;
1640
1641 int lod_components = 0, offset_components = 0;
1642
1643 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1644
1645 for (unsigned i = 0; i < instr->num_srcs; i++) {
1646 fs_reg src = get_nir_src(instr->src[i].src);
1647 switch (instr->src[i].src_type) {
1648 case nir_tex_src_bias:
1649 lod = retype(src, BRW_REGISTER_TYPE_F);
1650 break;
1651 case nir_tex_src_comparitor:
1652 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1653 break;
1654 case nir_tex_src_coord:
1655 switch (instr->op) {
1656 case nir_texop_txf:
1657 case nir_texop_txf_ms:
1658 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1659 break;
1660 default:
1661 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1662 break;
1663 }
1664 break;
1665 case nir_tex_src_ddx:
1666 lod = retype(src, BRW_REGISTER_TYPE_F);
1667 lod_components = nir_tex_instr_src_size(instr, i);
1668 break;
1669 case nir_tex_src_ddy:
1670 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1671 break;
1672 case nir_tex_src_lod:
1673 switch (instr->op) {
1674 case nir_texop_txs:
1675 lod = retype(src, BRW_REGISTER_TYPE_UD);
1676 break;
1677 case nir_texop_txf:
1678 lod = retype(src, BRW_REGISTER_TYPE_D);
1679 break;
1680 default:
1681 lod = retype(src, BRW_REGISTER_TYPE_F);
1682 break;
1683 }
1684 break;
1685 case nir_tex_src_ms_index:
1686 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1687 break;
1688 case nir_tex_src_offset:
1689 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1690 if (instr->is_array)
1691 offset_components = instr->coord_components - 1;
1692 else
1693 offset_components = instr->coord_components;
1694 break;
1695 case nir_tex_src_projector:
1696 unreachable("should be lowered");
1697
1698 case nir_tex_src_sampler_offset: {
1699 /* Figure out the highest possible sampler index and mark it as used */
1700 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1701 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1702 max_used += stage_prog_data->binding_table.gather_texture_start;
1703 } else {
1704 max_used += stage_prog_data->binding_table.texture_start;
1705 }
1706 brw_mark_surface_used(prog_data, max_used);
1707
1708 /* Emit code to evaluate the actual indexing expression */
1709 sampler_reg = vgrf(glsl_type::uint_type);
1710 emit(ADD(sampler_reg, src, fs_reg(sampler)))
1711 ->force_writemask_all = true;
1712 break;
1713 }
1714
1715 default:
1716 unreachable("unknown texture source");
1717 }
1718 }
1719
1720 if (instr->op == nir_texop_txf_ms) {
1721 if (devinfo->gen >= 7 &&
1722 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1723 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1724 } else {
1725 mcs = fs_reg(0u);
1726 }
1727 }
1728
1729 for (unsigned i = 0; i < 3; i++) {
1730 if (instr->const_offset[i] != 0) {
1731 assert(offset_components == 0);
1732 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1733 break;
1734 }
1735 }
1736
1737 enum glsl_base_type dest_base_type;
1738 switch (instr->dest_type) {
1739 case nir_type_float:
1740 dest_base_type = GLSL_TYPE_FLOAT;
1741 break;
1742 case nir_type_int:
1743 dest_base_type = GLSL_TYPE_INT;
1744 break;
1745 case nir_type_unsigned:
1746 dest_base_type = GLSL_TYPE_UINT;
1747 break;
1748 default:
1749 unreachable("bad type");
1750 }
1751
1752 const glsl_type *dest_type =
1753 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1754 1);
1755
1756 ir_texture_opcode op;
1757 switch (instr->op) {
1758 case nir_texop_lod: op = ir_lod; break;
1759 case nir_texop_query_levels: op = ir_query_levels; break;
1760 case nir_texop_tex: op = ir_tex; break;
1761 case nir_texop_tg4: op = ir_tg4; break;
1762 case nir_texop_txb: op = ir_txb; break;
1763 case nir_texop_txd: op = ir_txd; break;
1764 case nir_texop_txf: op = ir_txf; break;
1765 case nir_texop_txf_ms: op = ir_txf_ms; break;
1766 case nir_texop_txl: op = ir_txl; break;
1767 case nir_texop_txs: op = ir_txs; break;
1768 default:
1769 unreachable("unknown texture opcode");
1770 }
1771
1772 emit_texture(op, dest_type, coordinate, instr->coord_components,
1773 shadow_comparitor, lod, lod2, lod_components, sample_index,
1774 tex_offset, mcs, gather_component,
1775 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1776
1777 fs_reg dest = get_nir_dest(instr->dest);
1778 dest.type = this->result.type;
1779 unsigned num_components = nir_tex_instr_dest_size(instr);
1780 emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
1781 }
1782
1783 void
1784 fs_visitor::nir_emit_jump(nir_jump_instr *instr)
1785 {
1786 switch (instr->type) {
1787 case nir_jump_break:
1788 emit(BRW_OPCODE_BREAK);
1789 break;
1790 case nir_jump_continue:
1791 emit(BRW_OPCODE_CONTINUE);
1792 break;
1793 case nir_jump_return:
1794 default:
1795 unreachable("unknown jump");
1796 }
1797 }