nir: Get rid of the array elements parameter on load/store intrinsics
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 void
32 fs_visitor::emit_nir_code()
33 {
34 nir_shader *nir = prog->nir;
35
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39
40 if (nir->num_inputs > 0) {
41 nir_inputs = vgrf(nir->num_inputs);
42 nir_setup_inputs(nir);
43 }
44
45 if (nir->num_outputs > 0) {
46 nir_outputs = vgrf(nir->num_outputs);
47 nir_setup_outputs(nir);
48 }
49
50 if (nir->num_uniforms > 0) {
51 nir_setup_uniforms(nir);
52 }
53
54 nir_emit_system_values(nir);
55
56 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
57 foreach_list_typed(nir_register, reg, node, &nir->registers) {
58 unsigned array_elems =
59 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
60 unsigned size = array_elems * reg->num_components;
61 nir_globals[reg->index] = vgrf(size);
62 }
63
64 /* get the main function and emit it */
65 nir_foreach_overload(nir, overload) {
66 assert(strcmp(overload->function->name, "main") == 0);
67 assert(overload->impl);
68 nir_emit_impl(overload->impl);
69 }
70 }
71
72 void
73 fs_visitor::nir_setup_inputs(nir_shader *shader)
74 {
75 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
76 enum brw_reg_type type = brw_type_for_base_type(var->type);
77 fs_reg input = offset(nir_inputs, var->data.driver_location);
78
79 fs_reg reg;
80 switch (stage) {
81 case MESA_SHADER_VERTEX: {
82 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
83 * stored in nir_variable::location.
84 *
85 * However, NIR's load_input intrinsics use a different index - an
86 * offset into a single contiguous array containing all inputs.
87 * This index corresponds to the nir_variable::driver_location field.
88 *
89 * So, we need to copy from fs_reg(ATTR, var->location) to
90 * offset(nir_inputs, var->data.driver_location).
91 */
92 unsigned components = var->type->without_array()->components();
93 unsigned array_length = var->type->is_array() ? var->type->length : 1;
94 for (unsigned i = 0; i < array_length; i++) {
95 for (unsigned j = 0; j < components; j++) {
96 emit(MOV(retype(offset(input, components * i + j), type),
97 offset(fs_reg(ATTR, var->data.location + i, type), j)));
98 }
99 }
100 break;
101 }
102 case MESA_SHADER_GEOMETRY:
103 case MESA_SHADER_COMPUTE:
104 unreachable("fs_visitor not used for these stages yet.");
105 break;
106 case MESA_SHADER_FRAGMENT:
107 if (var->data.location == VARYING_SLOT_POS) {
108 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
109 var->data.origin_upper_left);
110 emit_percomp(MOV(input, reg), 0xF);
111 } else {
112 emit_general_interpolation(input, var->name, var->type,
113 (glsl_interp_qualifier) var->data.interpolation,
114 var->data.location, var->data.centroid,
115 var->data.sample);
116 }
117 break;
118 }
119 }
120 }
121
122 void
123 fs_visitor::nir_setup_outputs(nir_shader *shader)
124 {
125 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
126
127 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
128 fs_reg reg = offset(nir_outputs, var->data.driver_location);
129
130 int vector_elements =
131 var->type->is_array() ? var->type->fields.array->vector_elements
132 : var->type->vector_elements;
133
134 if (stage == MESA_SHADER_VERTEX) {
135 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
136 int output = var->data.location + i;
137 this->outputs[output] = offset(reg, 4 * i);
138 this->output_components[output] = vector_elements;
139 }
140 } else if (var->data.index > 0) {
141 assert(var->data.location == FRAG_RESULT_DATA0);
142 assert(var->data.index == 1);
143 this->dual_src_output = reg;
144 this->do_dual_src = true;
145 } else if (var->data.location == FRAG_RESULT_COLOR) {
146 /* Writing gl_FragColor outputs to all color regions. */
147 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
148 this->outputs[i] = reg;
149 this->output_components[i] = 4;
150 }
151 } else if (var->data.location == FRAG_RESULT_DEPTH) {
152 this->frag_depth = reg;
153 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
154 this->sample_mask = reg;
155 } else {
156 /* gl_FragData or a user-defined FS output */
157 assert(var->data.location >= FRAG_RESULT_DATA0 &&
158 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
159
160 /* General color output. */
161 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
162 int output = var->data.location - FRAG_RESULT_DATA0 + i;
163 this->outputs[output] = offset(reg, vector_elements * i);
164 this->output_components[output] = vector_elements;
165 }
166 }
167 }
168 }
169
170 void
171 fs_visitor::nir_setup_uniforms(nir_shader *shader)
172 {
173 uniforms = shader->num_uniforms;
174 num_direct_uniforms = shader->num_direct_uniforms;
175
176 /* We split the uniform register file in half. The first half is
177 * entirely direct uniforms. The second half is indirect.
178 */
179 param_size[0] = num_direct_uniforms;
180 if (shader->num_uniforms > num_direct_uniforms)
181 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
182
183 if (dispatch_width != 8)
184 return;
185
186 if (shader_prog) {
187 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
188 /* UBO's and atomics don't take up space in the uniform file */
189 if (var->interface_type != NULL || var->type->contains_atomic())
190 continue;
191
192 if (strncmp(var->name, "gl_", 3) == 0)
193 nir_setup_builtin_uniform(var);
194 else
195 nir_setup_uniform(var);
196 }
197 } else {
198 /* prog_to_nir doesn't create uniform variables; set param up directly. */
199 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
200 for (unsigned int i = 0; i < 4; i++) {
201 stage_prog_data->param[4 * p + i] =
202 &prog->Parameters->ParameterValues[p][i];
203 }
204 }
205 }
206 }
207
208 void
209 fs_visitor::nir_setup_uniform(nir_variable *var)
210 {
211 int namelen = strlen(var->name);
212
213 /* The data for our (non-builtin) uniforms is stored in a series of
214 * gl_uniform_driver_storage structs for each subcomponent that
215 * glGetUniformLocation() could name. We know it's been set up in the
216 * same order we'd walk the type, so walk the list of storage and find
217 * anything with our name, or the prefix of a component that starts with
218 * our name.
219 */
220 unsigned index = var->data.driver_location;
221 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
222 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
223
224 if (strncmp(var->name, storage->name, namelen) != 0 ||
225 (storage->name[namelen] != 0 &&
226 storage->name[namelen] != '.' &&
227 storage->name[namelen] != '[')) {
228 continue;
229 }
230
231 unsigned slots = storage->type->component_slots();
232 if (storage->array_elements)
233 slots *= storage->array_elements;
234
235 for (unsigned i = 0; i < slots; i++) {
236 stage_prog_data->param[index++] = &storage->storage[i];
237 }
238 }
239
240 /* Make sure we actually initialized the right amount of stuff here. */
241 assert(var->data.driver_location + var->type->component_slots() == index);
242 }
243
244 void
245 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
246 {
247 const nir_state_slot *const slots = var->state_slots;
248 assert(var->state_slots != NULL);
249
250 unsigned uniform_index = var->data.driver_location;
251 for (unsigned int i = 0; i < var->num_state_slots; i++) {
252 /* This state reference has already been setup by ir_to_mesa, but we'll
253 * get the same index back here.
254 */
255 int index = _mesa_add_state_reference(this->prog->Parameters,
256 (gl_state_index *)slots[i].tokens);
257
258 /* Add each of the unique swizzles of the element as a parameter.
259 * This'll end up matching the expected layout of the
260 * array/matrix/structure we're trying to fill in.
261 */
262 int last_swiz = -1;
263 for (unsigned int j = 0; j < 4; j++) {
264 int swiz = GET_SWZ(slots[i].swizzle, j);
265 if (swiz == last_swiz)
266 break;
267 last_swiz = swiz;
268
269 stage_prog_data->param[uniform_index++] =
270 &prog->Parameters->ParameterValues[index][swiz];
271 }
272 }
273 }
274
275 static bool
276 emit_system_values_block(nir_block *block, void *void_visitor)
277 {
278 fs_visitor *v = (fs_visitor *)void_visitor;
279 fs_reg *reg;
280
281 nir_foreach_instr(block, instr) {
282 if (instr->type != nir_instr_type_intrinsic)
283 continue;
284
285 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
286 switch (intrin->intrinsic) {
287 case nir_intrinsic_load_vertex_id:
288 unreachable("should be lowered by lower_vertex_id().");
289
290 case nir_intrinsic_load_vertex_id_zero_base:
291 assert(v->stage == MESA_SHADER_VERTEX);
292 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
293 if (reg->file == BAD_FILE)
294 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
295 break;
296
297 case nir_intrinsic_load_base_vertex:
298 assert(v->stage == MESA_SHADER_VERTEX);
299 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
300 if (reg->file == BAD_FILE)
301 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
302 break;
303
304 case nir_intrinsic_load_instance_id:
305 assert(v->stage == MESA_SHADER_VERTEX);
306 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
307 if (reg->file == BAD_FILE)
308 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
309 break;
310
311 case nir_intrinsic_load_sample_pos:
312 assert(v->stage == MESA_SHADER_FRAGMENT);
313 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
314 if (reg->file == BAD_FILE)
315 *reg = *v->emit_samplepos_setup();
316 break;
317
318 case nir_intrinsic_load_sample_id:
319 assert(v->stage == MESA_SHADER_FRAGMENT);
320 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
321 if (reg->file == BAD_FILE)
322 *reg = *v->emit_sampleid_setup();
323 break;
324
325 case nir_intrinsic_load_sample_mask_in:
326 assert(v->stage == MESA_SHADER_FRAGMENT);
327 assert(v->devinfo->gen >= 7);
328 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
329 if (reg->file == BAD_FILE)
330 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
331 BRW_REGISTER_TYPE_D));
332 break;
333
334 default:
335 break;
336 }
337 }
338
339 return true;
340 }
341
342 void
343 fs_visitor::nir_emit_system_values(nir_shader *shader)
344 {
345 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
346 nir_foreach_overload(shader, overload) {
347 assert(strcmp(overload->function->name, "main") == 0);
348 assert(overload->impl);
349 nir_foreach_block(overload->impl, emit_system_values_block, this);
350 }
351 }
352
353 void
354 fs_visitor::nir_emit_impl(nir_function_impl *impl)
355 {
356 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
357 foreach_list_typed(nir_register, reg, node, &impl->registers) {
358 unsigned array_elems =
359 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
360 unsigned size = array_elems * reg->num_components;
361 nir_locals[reg->index] = vgrf(size);
362 }
363
364 nir_emit_cf_list(&impl->body);
365 }
366
367 void
368 fs_visitor::nir_emit_cf_list(exec_list *list)
369 {
370 exec_list_validate(list);
371 foreach_list_typed(nir_cf_node, node, node, list) {
372 switch (node->type) {
373 case nir_cf_node_if:
374 nir_emit_if(nir_cf_node_as_if(node));
375 break;
376
377 case nir_cf_node_loop:
378 nir_emit_loop(nir_cf_node_as_loop(node));
379 break;
380
381 case nir_cf_node_block:
382 nir_emit_block(nir_cf_node_as_block(node));
383 break;
384
385 default:
386 unreachable("Invalid CFG node block");
387 }
388 }
389 }
390
391 void
392 fs_visitor::nir_emit_if(nir_if *if_stmt)
393 {
394 /* first, put the condition into f0 */
395 fs_inst *inst = emit(MOV(reg_null_d,
396 retype(get_nir_src(if_stmt->condition),
397 BRW_REGISTER_TYPE_D)));
398 inst->conditional_mod = BRW_CONDITIONAL_NZ;
399
400 emit(IF(BRW_PREDICATE_NORMAL));
401
402 nir_emit_cf_list(&if_stmt->then_list);
403
404 /* note: if the else is empty, dead CF elimination will remove it */
405 emit(BRW_OPCODE_ELSE);
406
407 nir_emit_cf_list(&if_stmt->else_list);
408
409 emit(BRW_OPCODE_ENDIF);
410
411 if (!try_replace_with_sel() && devinfo->gen < 6) {
412 no16("Can't support (non-uniform) control flow on SIMD16\n");
413 }
414 }
415
416 void
417 fs_visitor::nir_emit_loop(nir_loop *loop)
418 {
419 if (devinfo->gen < 6) {
420 no16("Can't support (non-uniform) control flow on SIMD16\n");
421 }
422
423 emit(BRW_OPCODE_DO);
424
425 nir_emit_cf_list(&loop->body);
426
427 emit(BRW_OPCODE_WHILE);
428 }
429
430 void
431 fs_visitor::nir_emit_block(nir_block *block)
432 {
433 nir_foreach_instr(block, instr) {
434 nir_emit_instr(instr);
435 }
436 }
437
438 void
439 fs_visitor::nir_emit_instr(nir_instr *instr)
440 {
441 this->base_ir = instr;
442
443 switch (instr->type) {
444 case nir_instr_type_alu:
445 nir_emit_alu(nir_instr_as_alu(instr));
446 break;
447
448 case nir_instr_type_intrinsic:
449 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
450 break;
451
452 case nir_instr_type_tex:
453 nir_emit_texture(nir_instr_as_tex(instr));
454 break;
455
456 case nir_instr_type_load_const:
457 /* We can hit these, but we do nothing now and use them as
458 * immediates later.
459 */
460 break;
461
462 case nir_instr_type_jump:
463 nir_emit_jump(nir_instr_as_jump(instr));
464 break;
465
466 default:
467 unreachable("unknown instruction type");
468 }
469
470 this->base_ir = NULL;
471 }
472
473 static brw_reg_type
474 brw_type_for_nir_type(nir_alu_type type)
475 {
476 switch (type) {
477 case nir_type_unsigned:
478 return BRW_REGISTER_TYPE_UD;
479 case nir_type_bool:
480 case nir_type_int:
481 return BRW_REGISTER_TYPE_D;
482 case nir_type_float:
483 return BRW_REGISTER_TYPE_F;
484 default:
485 unreachable("unknown type");
486 }
487
488 return BRW_REGISTER_TYPE_F;
489 }
490
491 bool
492 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
493 const fs_reg &result)
494 {
495 if (instr->src[0].src.is_ssa ||
496 !instr->src[0].src.reg.reg ||
497 !instr->src[0].src.reg.reg->parent_instr)
498 return false;
499
500 if (instr->src[0].src.reg.reg->parent_instr->type !=
501 nir_instr_type_intrinsic)
502 return false;
503
504 nir_intrinsic_instr *src0 =
505 nir_instr_as_intrinsic(instr->src[0].src.reg.reg->parent_instr);
506
507 if (src0->intrinsic != nir_intrinsic_load_front_face)
508 return false;
509
510 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
511 if (!value1 || fabsf(value1->f[0]) != 1.0f)
512 return false;
513
514 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
515 if (!value2 || fabsf(value2->f[0]) != 1.0f)
516 return false;
517
518 fs_reg tmp = vgrf(glsl_type::int_type);
519
520 if (devinfo->gen >= 6) {
521 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
522 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
523
524 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
525 *
526 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
527 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
528 *
529 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
530 *
531 * This negation looks like it's safe in practice, because bits 0:4 will
532 * surely be TRIANGLES
533 */
534
535 if (value1->f[0] == -1.0f) {
536 g0.negate = true;
537 }
538
539 tmp.type = BRW_REGISTER_TYPE_W;
540 tmp.subreg_offset = 2;
541 tmp.stride = 2;
542
543 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
544 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
545
546 tmp.type = BRW_REGISTER_TYPE_D;
547 tmp.subreg_offset = 0;
548 tmp.stride = 1;
549 } else {
550 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
551 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
552
553 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
554 *
555 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
556 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
557 *
558 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
559 *
560 * This negation looks like it's safe in practice, because bits 0:4 will
561 * surely be TRIANGLES
562 */
563
564 if (value1->f[0] == -1.0f) {
565 g1_6.negate = true;
566 }
567
568 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
569 }
570 emit(AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000)));
571
572 return true;
573 }
574
575 void
576 fs_visitor::nir_emit_alu(nir_alu_instr *instr)
577 {
578 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
579 fs_inst *inst;
580
581 fs_reg result = get_nir_dest(instr->dest.dest);
582 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
583
584 fs_reg op[4];
585 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
586 op[i] = get_nir_src(instr->src[i].src);
587 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
588 op[i].abs = instr->src[i].abs;
589 op[i].negate = instr->src[i].negate;
590 }
591
592 /* We get a bunch of mov's out of the from_ssa pass and they may still
593 * be vectorized. We'll handle them as a special-case. We'll also
594 * handle vecN here because it's basically the same thing.
595 */
596 switch (instr->op) {
597 case nir_op_imov:
598 case nir_op_fmov:
599 case nir_op_vec2:
600 case nir_op_vec3:
601 case nir_op_vec4: {
602 fs_reg temp = result;
603 bool need_extra_copy = false;
604 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
605 if (!instr->src[i].src.is_ssa &&
606 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
607 need_extra_copy = true;
608 temp = retype(vgrf(4), result.type);
609 break;
610 }
611 }
612
613 for (unsigned i = 0; i < 4; i++) {
614 if (!(instr->dest.write_mask & (1 << i)))
615 continue;
616
617 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
618 inst = emit(MOV(offset(temp, i),
619 offset(op[0], instr->src[0].swizzle[i])));
620 } else {
621 inst = emit(MOV(offset(temp, i),
622 offset(op[i], instr->src[i].swizzle[0])));
623 }
624 inst->saturate = instr->dest.saturate;
625 }
626
627 /* In this case the source and destination registers were the same,
628 * so we need to insert an extra set of moves in order to deal with
629 * any swizzling.
630 */
631 if (need_extra_copy) {
632 for (unsigned i = 0; i < 4; i++) {
633 if (!(instr->dest.write_mask & (1 << i)))
634 continue;
635
636 emit(MOV(offset(result, i), offset(temp, i)));
637 }
638 }
639 return;
640 }
641 default:
642 break;
643 }
644
645 /* At this point, we have dealt with any instruction that operates on
646 * more than a single channel. Therefore, we can just adjust the source
647 * and destination registers for that channel and emit the instruction.
648 */
649 unsigned channel = 0;
650 if (nir_op_infos[instr->op].output_size == 0) {
651 /* Since NIR is doing the scalarizing for us, we should only ever see
652 * vectorized operations with a single channel.
653 */
654 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
655 channel = ffs(instr->dest.write_mask) - 1;
656
657 result = offset(result, channel);
658 }
659
660 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
661 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
662 op[i] = offset(op[i], instr->src[i].swizzle[channel]);
663 }
664
665 switch (instr->op) {
666 case nir_op_i2f:
667 case nir_op_u2f:
668 inst = emit(MOV(result, op[0]));
669 inst->saturate = instr->dest.saturate;
670 break;
671
672 case nir_op_f2i:
673 case nir_op_f2u:
674 emit(MOV(result, op[0]));
675 break;
676
677 case nir_op_fsign: {
678 /* AND(val, 0x80000000) gives the sign bit.
679 *
680 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
681 * zero.
682 */
683 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
684
685 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
686 op[0].type = BRW_REGISTER_TYPE_UD;
687 result.type = BRW_REGISTER_TYPE_UD;
688 emit(AND(result_int, op[0], fs_reg(0x80000000u)));
689
690 inst = emit(OR(result_int, result_int, fs_reg(0x3f800000u)));
691 inst->predicate = BRW_PREDICATE_NORMAL;
692 if (instr->dest.saturate) {
693 inst = emit(MOV(result, result));
694 inst->saturate = true;
695 }
696 break;
697 }
698
699 case nir_op_isign:
700 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
701 * -> non-negative val generates 0x00000000.
702 * Predicated OR sets 1 if val is positive.
703 */
704 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
705 emit(ASR(result, op[0], fs_reg(31)));
706 inst = emit(OR(result, result, fs_reg(1)));
707 inst->predicate = BRW_PREDICATE_NORMAL;
708 break;
709
710 case nir_op_frcp:
711 inst = emit_math(SHADER_OPCODE_RCP, result, op[0]);
712 inst->saturate = instr->dest.saturate;
713 break;
714
715 case nir_op_fexp2:
716 inst = emit_math(SHADER_OPCODE_EXP2, result, op[0]);
717 inst->saturate = instr->dest.saturate;
718 break;
719
720 case nir_op_flog2:
721 inst = emit_math(SHADER_OPCODE_LOG2, result, op[0]);
722 inst->saturate = instr->dest.saturate;
723 break;
724
725 case nir_op_fsin:
726 inst = emit_math(SHADER_OPCODE_SIN, result, op[0]);
727 inst->saturate = instr->dest.saturate;
728 break;
729
730 case nir_op_fcos:
731 inst = emit_math(SHADER_OPCODE_COS, result, op[0]);
732 inst->saturate = instr->dest.saturate;
733 break;
734
735 case nir_op_fddx:
736 if (fs_key->high_quality_derivatives) {
737 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
738 } else {
739 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
740 }
741 inst->saturate = instr->dest.saturate;
742 break;
743 case nir_op_fddx_fine:
744 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
745 inst->saturate = instr->dest.saturate;
746 break;
747 case nir_op_fddx_coarse:
748 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
749 inst->saturate = instr->dest.saturate;
750 break;
751 case nir_op_fddy:
752 if (fs_key->high_quality_derivatives) {
753 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
754 fs_reg(fs_key->render_to_fbo));
755 } else {
756 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
757 fs_reg(fs_key->render_to_fbo));
758 }
759 inst->saturate = instr->dest.saturate;
760 break;
761 case nir_op_fddy_fine:
762 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
763 fs_reg(fs_key->render_to_fbo));
764 inst->saturate = instr->dest.saturate;
765 break;
766 case nir_op_fddy_coarse:
767 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
768 fs_reg(fs_key->render_to_fbo));
769 inst->saturate = instr->dest.saturate;
770 break;
771
772 case nir_op_fadd:
773 case nir_op_iadd:
774 inst = emit(ADD(result, op[0], op[1]));
775 inst->saturate = instr->dest.saturate;
776 break;
777
778 case nir_op_fmul:
779 inst = emit(MUL(result, op[0], op[1]));
780 inst->saturate = instr->dest.saturate;
781 break;
782
783 case nir_op_imul:
784 emit(MUL(result, op[0], op[1]));
785 break;
786
787 case nir_op_imul_high:
788 case nir_op_umul_high: {
789 if (devinfo->gen >= 7)
790 no16("SIMD16 explicit accumulator operands unsupported\n");
791
792 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
793
794 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
795 emit(MACH(result, op[0], op[1]));
796
797 /* Until Gen8, integer multiplies read 32-bits from one source, and
798 * 16-bits from the other, and relying on the MACH instruction to
799 * generate the high bits of the result.
800 *
801 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
802 * but in order to do a 64x64-bit multiply we have to simulate the
803 * previous behavior and then use a MACH instruction.
804 *
805 * FINISHME: Don't use source modifiers on src1.
806 */
807 if (devinfo->gen >= 8) {
808 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
809 mul->src[1].type == BRW_REGISTER_TYPE_UD);
810 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
811 mul->src[1].type = BRW_REGISTER_TYPE_W;
812 mul->src[1].stride = 2;
813 } else {
814 mul->src[1].type = BRW_REGISTER_TYPE_UW;
815 mul->src[1].stride = 2;
816 }
817 }
818 break;
819 }
820
821 case nir_op_idiv:
822 case nir_op_udiv:
823 emit_math(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
824 break;
825
826 case nir_op_uadd_carry: {
827 if (devinfo->gen >= 7)
828 no16("SIMD16 explicit accumulator operands unsupported\n");
829
830 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
831 BRW_REGISTER_TYPE_UD);
832
833 emit(ADDC(reg_null_ud, op[0], op[1]));
834 emit(MOV(result, fs_reg(acc)));
835 break;
836 }
837
838 case nir_op_usub_borrow: {
839 if (devinfo->gen >= 7)
840 no16("SIMD16 explicit accumulator operands unsupported\n");
841
842 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
843 BRW_REGISTER_TYPE_UD);
844
845 emit(SUBB(reg_null_ud, op[0], op[1]));
846 emit(MOV(result, fs_reg(acc)));
847 break;
848 }
849
850 case nir_op_umod:
851 emit_math(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
852 break;
853
854 case nir_op_flt:
855 case nir_op_ilt:
856 case nir_op_ult:
857 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_L));
858 break;
859
860 case nir_op_fge:
861 case nir_op_ige:
862 case nir_op_uge:
863 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE));
864 break;
865
866 case nir_op_feq:
867 case nir_op_ieq:
868 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z));
869 break;
870
871 case nir_op_fne:
872 case nir_op_ine:
873 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ));
874 break;
875
876 case nir_op_inot:
877 if (devinfo->gen >= 8) {
878 resolve_source_modifiers(&op[0]);
879 }
880 emit(NOT(result, op[0]));
881 break;
882 case nir_op_ixor:
883 if (devinfo->gen >= 8) {
884 resolve_source_modifiers(&op[0]);
885 resolve_source_modifiers(&op[1]);
886 }
887 emit(XOR(result, op[0], op[1]));
888 break;
889 case nir_op_ior:
890 if (devinfo->gen >= 8) {
891 resolve_source_modifiers(&op[0]);
892 resolve_source_modifiers(&op[1]);
893 }
894 emit(OR(result, op[0], op[1]));
895 break;
896 case nir_op_iand:
897 if (devinfo->gen >= 8) {
898 resolve_source_modifiers(&op[0]);
899 resolve_source_modifiers(&op[1]);
900 }
901 emit(AND(result, op[0], op[1]));
902 break;
903
904 case nir_op_fdot2:
905 case nir_op_fdot3:
906 case nir_op_fdot4:
907 case nir_op_bany2:
908 case nir_op_bany3:
909 case nir_op_bany4:
910 case nir_op_ball2:
911 case nir_op_ball3:
912 case nir_op_ball4:
913 case nir_op_ball_fequal2:
914 case nir_op_ball_iequal2:
915 case nir_op_ball_fequal3:
916 case nir_op_ball_iequal3:
917 case nir_op_ball_fequal4:
918 case nir_op_ball_iequal4:
919 case nir_op_bany_fnequal2:
920 case nir_op_bany_inequal2:
921 case nir_op_bany_fnequal3:
922 case nir_op_bany_inequal3:
923 case nir_op_bany_fnequal4:
924 case nir_op_bany_inequal4:
925 unreachable("Lowered by nir_lower_alu_reductions");
926
927 case nir_op_fnoise1_1:
928 case nir_op_fnoise1_2:
929 case nir_op_fnoise1_3:
930 case nir_op_fnoise1_4:
931 case nir_op_fnoise2_1:
932 case nir_op_fnoise2_2:
933 case nir_op_fnoise2_3:
934 case nir_op_fnoise2_4:
935 case nir_op_fnoise3_1:
936 case nir_op_fnoise3_2:
937 case nir_op_fnoise3_3:
938 case nir_op_fnoise3_4:
939 case nir_op_fnoise4_1:
940 case nir_op_fnoise4_2:
941 case nir_op_fnoise4_3:
942 case nir_op_fnoise4_4:
943 unreachable("not reached: should be handled by lower_noise");
944
945 case nir_op_ldexp:
946 unreachable("not reached: should be handled by ldexp_to_arith()");
947
948 case nir_op_fsqrt:
949 inst = emit_math(SHADER_OPCODE_SQRT, result, op[0]);
950 inst->saturate = instr->dest.saturate;
951 break;
952
953 case nir_op_frsq:
954 inst = emit_math(SHADER_OPCODE_RSQ, result, op[0]);
955 inst->saturate = instr->dest.saturate;
956 break;
957
958 case nir_op_b2i:
959 emit(AND(result, op[0], fs_reg(1)));
960 break;
961 case nir_op_b2f:
962 emit(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u)));
963 break;
964
965 case nir_op_f2b:
966 emit(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
967 break;
968 case nir_op_i2b:
969 emit(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
970 break;
971
972 case nir_op_ftrunc:
973 inst = emit(RNDZ(result, op[0]));
974 inst->saturate = instr->dest.saturate;
975 break;
976
977 case nir_op_fceil: {
978 op[0].negate = !op[0].negate;
979 fs_reg temp = vgrf(glsl_type::float_type);
980 emit(RNDD(temp, op[0]));
981 temp.negate = true;
982 inst = emit(MOV(result, temp));
983 inst->saturate = instr->dest.saturate;
984 break;
985 }
986 case nir_op_ffloor:
987 inst = emit(RNDD(result, op[0]));
988 inst->saturate = instr->dest.saturate;
989 break;
990 case nir_op_ffract:
991 inst = emit(FRC(result, op[0]));
992 inst->saturate = instr->dest.saturate;
993 break;
994 case nir_op_fround_even:
995 inst = emit(RNDE(result, op[0]));
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fmin:
1000 case nir_op_imin:
1001 case nir_op_umin:
1002 if (devinfo->gen >= 6) {
1003 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1004 inst->conditional_mod = BRW_CONDITIONAL_L;
1005 } else {
1006 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L));
1007 inst = emit(SEL(result, op[0], op[1]));
1008 inst->predicate = BRW_PREDICATE_NORMAL;
1009 }
1010 inst->saturate = instr->dest.saturate;
1011 break;
1012
1013 case nir_op_fmax:
1014 case nir_op_imax:
1015 case nir_op_umax:
1016 if (devinfo->gen >= 6) {
1017 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1018 inst->conditional_mod = BRW_CONDITIONAL_GE;
1019 } else {
1020 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE));
1021 inst = emit(SEL(result, op[0], op[1]));
1022 inst->predicate = BRW_PREDICATE_NORMAL;
1023 }
1024 inst->saturate = instr->dest.saturate;
1025 break;
1026
1027 case nir_op_pack_snorm_2x16:
1028 case nir_op_pack_snorm_4x8:
1029 case nir_op_pack_unorm_2x16:
1030 case nir_op_pack_unorm_4x8:
1031 case nir_op_unpack_snorm_2x16:
1032 case nir_op_unpack_snorm_4x8:
1033 case nir_op_unpack_unorm_2x16:
1034 case nir_op_unpack_unorm_4x8:
1035 case nir_op_unpack_half_2x16:
1036 case nir_op_pack_half_2x16:
1037 unreachable("not reached: should be handled by lower_packing_builtins");
1038
1039 case nir_op_unpack_half_2x16_split_x:
1040 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1041 inst->saturate = instr->dest.saturate;
1042 break;
1043 case nir_op_unpack_half_2x16_split_y:
1044 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1045 inst->saturate = instr->dest.saturate;
1046 break;
1047
1048 case nir_op_fpow:
1049 inst = emit_math(SHADER_OPCODE_POW, result, op[0], op[1]);
1050 inst->saturate = instr->dest.saturate;
1051 break;
1052
1053 case nir_op_bitfield_reverse:
1054 emit(BFREV(result, op[0]));
1055 break;
1056
1057 case nir_op_bit_count:
1058 emit(CBIT(result, op[0]));
1059 break;
1060
1061 case nir_op_ufind_msb:
1062 case nir_op_ifind_msb: {
1063 emit(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]));
1064
1065 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1066 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1067 * subtract the result from 31 to convert the MSB count into an LSB count.
1068 */
1069
1070 emit(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1071 fs_reg neg_result(result);
1072 neg_result.negate = true;
1073 inst = emit(ADD(result, neg_result, fs_reg(31)));
1074 inst->predicate = BRW_PREDICATE_NORMAL;
1075 break;
1076 }
1077
1078 case nir_op_find_lsb:
1079 emit(FBL(result, op[0]));
1080 break;
1081
1082 case nir_op_ubitfield_extract:
1083 case nir_op_ibitfield_extract:
1084 emit(BFE(result, op[2], op[1], op[0]));
1085 break;
1086 case nir_op_bfm:
1087 emit(BFI1(result, op[0], op[1]));
1088 break;
1089 case nir_op_bfi:
1090 emit(BFI2(result, op[0], op[1], op[2]));
1091 break;
1092
1093 case nir_op_bitfield_insert:
1094 unreachable("not reached: should be handled by "
1095 "lower_instructions::bitfield_insert_to_bfm_bfi");
1096
1097 case nir_op_ishl:
1098 emit(SHL(result, op[0], op[1]));
1099 break;
1100 case nir_op_ishr:
1101 emit(ASR(result, op[0], op[1]));
1102 break;
1103 case nir_op_ushr:
1104 emit(SHR(result, op[0], op[1]));
1105 break;
1106
1107 case nir_op_pack_half_2x16_split:
1108 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1109 break;
1110
1111 case nir_op_ffma:
1112 inst = emit(MAD(result, op[2], op[1], op[0]));
1113 inst->saturate = instr->dest.saturate;
1114 break;
1115
1116 case nir_op_flrp:
1117 inst = emit_lrp(result, op[0], op[1], op[2]);
1118 inst->saturate = instr->dest.saturate;
1119 break;
1120
1121 case nir_op_bcsel:
1122 if (optimize_frontfacing_ternary(instr, result))
1123 return;
1124
1125 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1126 inst = emit(SEL(result, op[1], op[2]));
1127 inst->predicate = BRW_PREDICATE_NORMAL;
1128 break;
1129
1130 default:
1131 unreachable("unhandled instruction");
1132 }
1133
1134 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1135 * to sign extend the low bit to 0/~0
1136 */
1137 if (devinfo->gen <= 5 &&
1138 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1139 fs_reg masked = vgrf(glsl_type::int_type);
1140 emit(AND(masked, result, fs_reg(1)));
1141 masked.negate = true;
1142 emit(MOV(retype(result, BRW_REGISTER_TYPE_D), masked));
1143 }
1144 }
1145
1146 static fs_reg
1147 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1148 unsigned base_offset, nir_src *indirect)
1149 {
1150 fs_reg reg;
1151 if (nir_reg->is_global)
1152 reg = v->nir_globals[nir_reg->index];
1153 else
1154 reg = v->nir_locals[nir_reg->index];
1155
1156 reg = offset(reg, base_offset * nir_reg->num_components);
1157 if (indirect) {
1158 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1159
1160 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1161 v->emit(v->MUL(*reg.reladdr, v->get_nir_src(*indirect),
1162 fs_reg(multiplier)));
1163 }
1164
1165 return reg;
1166 }
1167
1168 fs_reg
1169 fs_visitor::get_nir_src(nir_src src)
1170 {
1171 if (src.is_ssa) {
1172 assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
1173 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
1174 fs_reg reg = vgrf(src.ssa->num_components);
1175 reg.type = BRW_REGISTER_TYPE_D;
1176
1177 for (unsigned i = 0; i < src.ssa->num_components; ++i)
1178 emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));
1179
1180 return reg;
1181 } else {
1182 fs_reg reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1183 src.reg.indirect);
1184
1185 /* to avoid floating-point denorm flushing problems, set the type by
1186 * default to D - instructions that need floating point semantics will set
1187 * this to F if they need to
1188 */
1189 return retype(reg, BRW_REGISTER_TYPE_D);
1190 }
1191 }
1192
1193 fs_reg
1194 fs_visitor::get_nir_dest(nir_dest dest)
1195 {
1196 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1197 dest.reg.indirect);
1198 }
1199
1200 void
1201 fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
1202 {
1203 for (unsigned i = 0; i < 4; i++) {
1204 if (!((wr_mask >> i) & 1))
1205 continue;
1206
1207 fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
1208 new_inst->dst = offset(new_inst->dst, i);
1209 for (unsigned j = 0; j < new_inst->sources; j++)
1210 if (inst->src[j].file == GRF)
1211 new_inst->src[j] = offset(new_inst->src[j], i);
1212
1213 emit(new_inst);
1214 }
1215 }
1216
1217 void
1218 fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
1219 {
1220 fs_reg dest;
1221 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1222 dest = get_nir_dest(instr->dest);
1223
1224 bool has_indirect = false;
1225
1226 switch (instr->intrinsic) {
1227 case nir_intrinsic_discard:
1228 case nir_intrinsic_discard_if: {
1229 /* We track our discarded pixels in f0.1. By predicating on it, we can
1230 * update just the flag bits that aren't yet discarded. If there's no
1231 * condition, we emit a CMP of g0 != g0, so all currently executing
1232 * channels will get turned off.
1233 */
1234 fs_inst *cmp;
1235 if (instr->intrinsic == nir_intrinsic_discard_if) {
1236 cmp = emit(CMP(reg_null_f, get_nir_src(instr->src[0]),
1237 fs_reg(0), BRW_CONDITIONAL_Z));
1238 } else {
1239 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1240 BRW_REGISTER_TYPE_UW));
1241 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
1242 }
1243 cmp->predicate = BRW_PREDICATE_NORMAL;
1244 cmp->flag_subreg = 1;
1245
1246 if (devinfo->gen >= 6) {
1247 emit_discard_jump();
1248 }
1249 break;
1250 }
1251
1252 case nir_intrinsic_atomic_counter_inc:
1253 case nir_intrinsic_atomic_counter_dec:
1254 case nir_intrinsic_atomic_counter_read: {
1255 unsigned surf_index = prog_data->binding_table.abo_start +
1256 (unsigned) instr->const_index[0];
1257 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1258
1259 switch (instr->intrinsic) {
1260 case nir_intrinsic_atomic_counter_inc:
1261 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1262 fs_reg(), fs_reg());
1263 break;
1264 case nir_intrinsic_atomic_counter_dec:
1265 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1266 fs_reg(), fs_reg());
1267 break;
1268 case nir_intrinsic_atomic_counter_read:
1269 emit_untyped_surface_read(surf_index, dest, offset);
1270 break;
1271 default:
1272 unreachable("Unreachable");
1273 }
1274 break;
1275 }
1276
1277 case nir_intrinsic_load_front_face:
1278 emit(MOV(retype(dest, BRW_REGISTER_TYPE_D),
1279 *emit_frontfacing_interpolation()));
1280 break;
1281
1282 case nir_intrinsic_load_vertex_id:
1283 unreachable("should be lowered by lower_vertex_id()");
1284
1285 case nir_intrinsic_load_vertex_id_zero_base: {
1286 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1287 assert(vertex_id.file != BAD_FILE);
1288 dest.type = vertex_id.type;
1289 emit(MOV(dest, vertex_id));
1290 break;
1291 }
1292
1293 case nir_intrinsic_load_base_vertex: {
1294 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1295 assert(base_vertex.file != BAD_FILE);
1296 dest.type = base_vertex.type;
1297 emit(MOV(dest, base_vertex));
1298 break;
1299 }
1300
1301 case nir_intrinsic_load_instance_id: {
1302 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1303 assert(instance_id.file != BAD_FILE);
1304 dest.type = instance_id.type;
1305 emit(MOV(dest, instance_id));
1306 break;
1307 }
1308
1309 case nir_intrinsic_load_sample_mask_in: {
1310 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1311 assert(sample_mask_in.file != BAD_FILE);
1312 dest.type = sample_mask_in.type;
1313 emit(MOV(dest, sample_mask_in));
1314 break;
1315 }
1316
1317 case nir_intrinsic_load_sample_pos: {
1318 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1319 assert(sample_pos.file != BAD_FILE);
1320 dest.type = sample_pos.type;
1321 emit(MOV(dest, sample_pos));
1322 emit(MOV(offset(dest, 1), offset(sample_pos, 1)));
1323 break;
1324 }
1325
1326 case nir_intrinsic_load_sample_id: {
1327 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1328 assert(sample_id.file != BAD_FILE);
1329 dest.type = sample_id.type;
1330 emit(MOV(dest, sample_id));
1331 break;
1332 }
1333
1334 case nir_intrinsic_load_uniform_indirect:
1335 has_indirect = true;
1336 /* fallthrough */
1337 case nir_intrinsic_load_uniform: {
1338 unsigned index = instr->const_index[0];
1339
1340 fs_reg uniform_reg;
1341 if (index < num_direct_uniforms) {
1342 uniform_reg = fs_reg(UNIFORM, 0);
1343 } else {
1344 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1345 index -= num_direct_uniforms;
1346 }
1347
1348 for (unsigned j = 0; j < instr->num_components; j++) {
1349 fs_reg src = offset(retype(uniform_reg, dest.type), index);
1350 if (has_indirect)
1351 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1352 index++;
1353
1354 emit(MOV(dest, src));
1355 dest = offset(dest, 1);
1356 }
1357 break;
1358 }
1359
1360 case nir_intrinsic_load_ubo_indirect:
1361 has_indirect = true;
1362 /* fallthrough */
1363 case nir_intrinsic_load_ubo: {
1364 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1365 fs_reg surf_index;
1366
1367 if (const_index) {
1368 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1369 const_index->u[0]);
1370 } else {
1371 /* The block index is not a constant. Evaluate the index expression
1372 * per-channel and add the base UBO index; we have to select a value
1373 * from any live channel.
1374 */
1375 surf_index = vgrf(glsl_type::uint_type);
1376 emit(ADD(surf_index, get_nir_src(instr->src[0]),
1377 fs_reg(stage_prog_data->binding_table.ubo_start)));
1378 emit_uniformize(surf_index, surf_index);
1379
1380 /* Assume this may touch any UBO. It would be nice to provide
1381 * a tighter bound, but the array information is already lowered away.
1382 */
1383 brw_mark_surface_used(prog_data,
1384 stage_prog_data->binding_table.ubo_start +
1385 shader_prog->NumUniformBlocks - 1);
1386 }
1387
1388 if (has_indirect) {
1389 /* Turn the byte offset into a dword offset. */
1390 fs_reg base_offset = vgrf(glsl_type::int_type);
1391 emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
1392 BRW_REGISTER_TYPE_D),
1393 fs_reg(2)));
1394
1395 unsigned vec4_offset = instr->const_index[0] / 4;
1396 for (int i = 0; i < instr->num_components; i++)
1397 emit(VARYING_PULL_CONSTANT_LOAD(offset(dest, i), surf_index,
1398 base_offset, vec4_offset + i));
1399 } else {
1400 fs_reg packed_consts = vgrf(glsl_type::float_type);
1401 packed_consts.type = dest.type;
1402
1403 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1404 emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1405 surf_index, const_offset_reg);
1406
1407 for (unsigned i = 0; i < instr->num_components; i++) {
1408 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1409
1410 /* The std140 packing rules don't allow vectors to cross 16-byte
1411 * boundaries, and a reg is 32 bytes.
1412 */
1413 assert(packed_consts.subreg_offset < 32);
1414
1415 emit(MOV(dest, packed_consts));
1416 dest = offset(dest, 1);
1417 }
1418 }
1419 break;
1420 }
1421
1422 case nir_intrinsic_load_input_indirect:
1423 has_indirect = true;
1424 /* fallthrough */
1425 case nir_intrinsic_load_input: {
1426 unsigned index = 0;
1427 for (unsigned j = 0; j < instr->num_components; j++) {
1428 fs_reg src = offset(retype(nir_inputs, dest.type),
1429 instr->const_index[0] + index);
1430 if (has_indirect)
1431 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1432 index++;
1433
1434 emit(MOV(dest, src));
1435 dest = offset(dest, 1);
1436 }
1437 break;
1438 }
1439
1440 /* Handle ARB_gpu_shader5 interpolation intrinsics
1441 *
1442 * It's worth a quick word of explanation as to why we handle the full
1443 * variable-based interpolation intrinsic rather than a lowered version
1444 * with like we do for other inputs. We have to do that because the way
1445 * we set up inputs doesn't allow us to use the already setup inputs for
1446 * interpolation. At the beginning of the shader, we go through all of
1447 * the input variables and do the initial interpolation and put it in
1448 * the nir_inputs array based on its location as determined in
1449 * nir_lower_io. If the input isn't used, dead code cleans up and
1450 * everything works fine. However, when we get to the ARB_gpu_shader5
1451 * interpolation intrinsics, we need to reinterpolate the input
1452 * differently. If we used an intrinsic that just had an index it would
1453 * only give us the offset into the nir_inputs array. However, this is
1454 * useless because that value is post-interpolation and we need
1455 * pre-interpolation. In order to get the actual location of the bits
1456 * we get from the vertex fetching hardware, we need the variable.
1457 */
1458 case nir_intrinsic_interp_var_at_centroid:
1459 case nir_intrinsic_interp_var_at_sample:
1460 case nir_intrinsic_interp_var_at_offset: {
1461 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
1462 * 8 channels at a time, same as the barycentric coords presented in
1463 * the FS payload. this requires a bit of extra work to support.
1464 */
1465 no16("interpolate_at_* not yet supported in SIMD16 mode.");
1466
1467 fs_reg dst_xy = vgrf(2);
1468
1469 /* For most messages, we need one reg of ignored data; the hardware
1470 * requires mlen==1 even when there is no payload. in the per-slot
1471 * offset case, we'll replace this with the proper source data.
1472 */
1473 fs_reg src = vgrf(glsl_type::float_type);
1474 int mlen = 1; /* one reg unless overriden */
1475 fs_inst *inst;
1476
1477 switch (instr->intrinsic) {
1478 case nir_intrinsic_interp_var_at_centroid:
1479 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
1480 break;
1481
1482 case nir_intrinsic_interp_var_at_sample: {
1483 /* XXX: We should probably handle non-constant sample id's */
1484 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1485 assert(const_sample);
1486 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1487 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1488 fs_reg(msg_data));
1489 break;
1490 }
1491
1492 case nir_intrinsic_interp_var_at_offset: {
1493 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1494
1495 if (const_offset) {
1496 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1497 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1498
1499 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1500 fs_reg(off_x | (off_y << 4)));
1501 } else {
1502 src = vgrf(glsl_type::ivec2_type);
1503 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1504 BRW_REGISTER_TYPE_F);
1505 for (int i = 0; i < 2; i++) {
1506 fs_reg temp = vgrf(glsl_type::float_type);
1507 emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
1508 fs_reg itemp = vgrf(glsl_type::int_type);
1509 emit(MOV(itemp, temp)); /* float to int */
1510
1511 /* Clamp the upper end of the range to +7/16.
1512 * ARB_gpu_shader5 requires that we support a maximum offset
1513 * of +0.5, which isn't representable in a S0.4 value -- if
1514 * we didn't clamp it, we'd end up with -8/16, which is the
1515 * opposite of what the shader author wanted.
1516 *
1517 * This is legal due to ARB_gpu_shader5's quantization
1518 * rules:
1519 *
1520 * "Not all values of <offset> may be supported; x and y
1521 * offsets may be rounded to fixed-point values with the
1522 * number of fraction bits given by the
1523 * implementation-dependent constant
1524 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1525 */
1526
1527 emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
1528 ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
1529 }
1530
1531 mlen = 2;
1532 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1533 fs_reg(0u));
1534 }
1535 break;
1536 }
1537
1538 default:
1539 unreachable("Invalid intrinsic");
1540 }
1541
1542 inst->mlen = mlen;
1543 inst->regs_written = 2; /* 2 floats per slot returned */
1544 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1545 INTERP_QUALIFIER_NOPERSPECTIVE;
1546
1547 for (unsigned j = 0; j < instr->num_components; j++) {
1548 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1549 src.type = dest.type;
1550
1551 emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1552 dest = offset(dest, 1);
1553 }
1554 break;
1555 }
1556
1557 case nir_intrinsic_store_output_indirect:
1558 has_indirect = true;
1559 /* fallthrough */
1560 case nir_intrinsic_store_output: {
1561 fs_reg src = get_nir_src(instr->src[0]);
1562 unsigned index = 0;
1563 for (unsigned j = 0; j < instr->num_components; j++) {
1564 fs_reg new_dest = offset(retype(nir_outputs, src.type),
1565 instr->const_index[0] + index);
1566 if (has_indirect)
1567 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1568 index++;
1569 emit(MOV(new_dest, src));
1570 src = offset(src, 1);
1571 }
1572 break;
1573 }
1574
1575 default:
1576 unreachable("unknown intrinsic");
1577 }
1578 }
1579
1580 void
1581 fs_visitor::nir_emit_texture(nir_tex_instr *instr)
1582 {
1583 unsigned sampler = instr->sampler_index;
1584 fs_reg sampler_reg(sampler);
1585
1586 /* FINISHME: We're failing to recompile our programs when the sampler is
1587 * updated. This only matters for the texture rectangle scale parameters
1588 * (pre-gen6, or gen6+ with GL_CLAMP).
1589 */
1590 int texunit = prog->SamplerUnits[sampler];
1591
1592 int gather_component = instr->component;
1593
1594 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1595
1596 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1597 instr->is_array;
1598
1599 int lod_components = 0, offset_components = 0;
1600
1601 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1602
1603 for (unsigned i = 0; i < instr->num_srcs; i++) {
1604 fs_reg src = get_nir_src(instr->src[i].src);
1605 switch (instr->src[i].src_type) {
1606 case nir_tex_src_bias:
1607 lod = retype(src, BRW_REGISTER_TYPE_F);
1608 break;
1609 case nir_tex_src_comparitor:
1610 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1611 break;
1612 case nir_tex_src_coord:
1613 switch (instr->op) {
1614 case nir_texop_txf:
1615 case nir_texop_txf_ms:
1616 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1617 break;
1618 default:
1619 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1620 break;
1621 }
1622 break;
1623 case nir_tex_src_ddx:
1624 lod = retype(src, BRW_REGISTER_TYPE_F);
1625 lod_components = nir_tex_instr_src_size(instr, i);
1626 break;
1627 case nir_tex_src_ddy:
1628 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1629 break;
1630 case nir_tex_src_lod:
1631 switch (instr->op) {
1632 case nir_texop_txs:
1633 lod = retype(src, BRW_REGISTER_TYPE_UD);
1634 break;
1635 case nir_texop_txf:
1636 lod = retype(src, BRW_REGISTER_TYPE_D);
1637 break;
1638 default:
1639 lod = retype(src, BRW_REGISTER_TYPE_F);
1640 break;
1641 }
1642 break;
1643 case nir_tex_src_ms_index:
1644 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1645 break;
1646 case nir_tex_src_offset:
1647 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1648 if (instr->is_array)
1649 offset_components = instr->coord_components - 1;
1650 else
1651 offset_components = instr->coord_components;
1652 break;
1653 case nir_tex_src_projector:
1654 unreachable("should be lowered");
1655
1656 case nir_tex_src_sampler_offset: {
1657 /* Figure out the highest possible sampler index and mark it as used */
1658 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1659 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1660 max_used += stage_prog_data->binding_table.gather_texture_start;
1661 } else {
1662 max_used += stage_prog_data->binding_table.texture_start;
1663 }
1664 brw_mark_surface_used(prog_data, max_used);
1665
1666 /* Emit code to evaluate the actual indexing expression */
1667 sampler_reg = vgrf(glsl_type::uint_type);
1668 emit(ADD(sampler_reg, src, fs_reg(sampler)));
1669 emit_uniformize(sampler_reg, sampler_reg);
1670 break;
1671 }
1672
1673 default:
1674 unreachable("unknown texture source");
1675 }
1676 }
1677
1678 if (instr->op == nir_texop_txf_ms) {
1679 if (devinfo->gen >= 7 &&
1680 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1681 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1682 } else {
1683 mcs = fs_reg(0u);
1684 }
1685 }
1686
1687 for (unsigned i = 0; i < 3; i++) {
1688 if (instr->const_offset[i] != 0) {
1689 assert(offset_components == 0);
1690 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1691 break;
1692 }
1693 }
1694
1695 enum glsl_base_type dest_base_type;
1696 switch (instr->dest_type) {
1697 case nir_type_float:
1698 dest_base_type = GLSL_TYPE_FLOAT;
1699 break;
1700 case nir_type_int:
1701 dest_base_type = GLSL_TYPE_INT;
1702 break;
1703 case nir_type_unsigned:
1704 dest_base_type = GLSL_TYPE_UINT;
1705 break;
1706 default:
1707 unreachable("bad type");
1708 }
1709
1710 const glsl_type *dest_type =
1711 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1712 1);
1713
1714 ir_texture_opcode op;
1715 switch (instr->op) {
1716 case nir_texop_lod: op = ir_lod; break;
1717 case nir_texop_query_levels: op = ir_query_levels; break;
1718 case nir_texop_tex: op = ir_tex; break;
1719 case nir_texop_tg4: op = ir_tg4; break;
1720 case nir_texop_txb: op = ir_txb; break;
1721 case nir_texop_txd: op = ir_txd; break;
1722 case nir_texop_txf: op = ir_txf; break;
1723 case nir_texop_txf_ms: op = ir_txf_ms; break;
1724 case nir_texop_txl: op = ir_txl; break;
1725 case nir_texop_txs: op = ir_txs; break;
1726 default:
1727 unreachable("unknown texture opcode");
1728 }
1729
1730 emit_texture(op, dest_type, coordinate, instr->coord_components,
1731 shadow_comparitor, lod, lod2, lod_components, sample_index,
1732 tex_offset, mcs, gather_component,
1733 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1734
1735 fs_reg dest = get_nir_dest(instr->dest);
1736 dest.type = this->result.type;
1737 unsigned num_components = nir_tex_instr_dest_size(instr);
1738 emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
1739 }
1740
1741 void
1742 fs_visitor::nir_emit_jump(nir_jump_instr *instr)
1743 {
1744 switch (instr->type) {
1745 case nir_jump_break:
1746 emit(BRW_OPCODE_BREAK);
1747 break;
1748 case nir_jump_continue:
1749 emit(BRW_OPCODE_CONTINUE);
1750 break;
1751 case nir_jump_return:
1752 default:
1753 unreachable("unknown jump");
1754 }
1755 }