nir: Use a source for uniform buffer indices instead of an index
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "brw_fs.h"
28
29 void
30 fs_visitor::emit_nir_code()
31 {
32 /* first, lower the GLSL IR shader to NIR */
33 lower_output_reads(shader->base.ir);
34 nir_shader *nir = glsl_to_nir(shader->base.ir, NULL, true);
35 nir_validate_shader(nir);
36
37 nir_lower_global_vars_to_local(nir);
38 nir_validate_shader(nir);
39
40 nir_split_var_copies(nir);
41 nir_validate_shader(nir);
42
43 bool progress;
44 do {
45 progress = false;
46 nir_lower_variables(nir);
47 nir_validate_shader(nir);
48 progress |= nir_copy_prop(nir);
49 nir_validate_shader(nir);
50 progress |= nir_opt_dce(nir);
51 nir_validate_shader(nir);
52 progress |= nir_opt_cse(nir);
53 nir_validate_shader(nir);
54 progress |= nir_opt_peephole_select(nir);
55 nir_validate_shader(nir);
56 progress |= nir_opt_algebraic(nir);
57 nir_validate_shader(nir);
58 progress |= nir_opt_constant_folding(nir);
59 nir_validate_shader(nir);
60 } while (progress);
61
62 /* Lower a bunch of stuff */
63 nir_lower_io(nir);
64 nir_validate_shader(nir);
65
66 nir_lower_locals_to_regs(nir);
67 nir_validate_shader(nir);
68
69 nir_remove_dead_variables(nir);
70 nir_validate_shader(nir);
71
72 nir_lower_to_source_mods(nir);
73 nir_validate_shader(nir);
74 nir_copy_prop(nir);
75 nir_validate_shader(nir);
76 nir_convert_from_ssa(nir);
77 nir_validate_shader(nir);
78 nir_lower_vec_to_movs(nir);
79 nir_validate_shader(nir);
80
81 nir_lower_samplers(nir, shader_prog, shader->base.Program);
82 nir_validate_shader(nir);
83
84 nir_lower_system_values(nir);
85 nir_validate_shader(nir);
86
87 nir_lower_atomics(nir);
88 nir_validate_shader(nir);
89
90 /* emit the arrays used for inputs and outputs - load/store intrinsics will
91 * be converted to reads/writes of these arrays
92 */
93
94 if (nir->num_inputs > 0) {
95 nir_inputs = fs_reg(GRF, virtual_grf_alloc(nir->num_inputs));
96 nir_setup_inputs(nir);
97 }
98
99 if (nir->num_outputs > 0) {
100 nir_outputs = fs_reg(GRF, virtual_grf_alloc(nir->num_outputs));
101 nir_setup_outputs(nir);
102 }
103
104 if (nir->num_uniforms > 0) {
105 nir_uniforms = fs_reg(UNIFORM, 0);
106 nir_setup_uniforms(nir);
107 }
108
109 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
110 foreach_list_typed(nir_register, reg, node, &nir->registers) {
111 unsigned array_elems =
112 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
113 unsigned size = array_elems * reg->num_components;
114 nir_globals[reg->index] = fs_reg(GRF, virtual_grf_alloc(size));
115 }
116
117 /* get the main function and emit it */
118 nir_foreach_overload(nir, overload) {
119 assert(strcmp(overload->function->name, "main") == 0);
120 assert(overload->impl);
121 nir_emit_impl(overload->impl);
122 }
123
124 ralloc_free(nir);
125 }
126
127 void
128 fs_visitor::nir_setup_inputs(nir_shader *shader)
129 {
130 fs_reg varying = nir_inputs;
131
132 struct hash_entry *entry;
133 hash_table_foreach(shader->inputs, entry) {
134 nir_variable *var = (nir_variable *) entry->data;
135 varying.reg_offset = var->data.driver_location;
136
137 fs_reg reg;
138 if (!strcmp(var->name, "gl_FragCoord")) {
139 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
140 var->data.origin_upper_left);
141 emit_percomp(MOV(varying, reg), 0xF);
142 } else if (!strcmp(var->name, "gl_FrontFacing")) {
143 reg = *emit_frontfacing_interpolation();
144 emit(MOV(retype(varying, BRW_REGISTER_TYPE_UD), reg));
145 } else {
146 emit_general_interpolation(varying, var->name, var->type,
147 (glsl_interp_qualifier) var->data.interpolation,
148 var->data.location, var->data.centroid,
149 var->data.sample);
150 }
151 }
152 }
153
154 void
155 fs_visitor::nir_setup_outputs(nir_shader *shader)
156 {
157 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
158 fs_reg reg = nir_outputs;
159
160 struct hash_entry *entry;
161 hash_table_foreach(shader->outputs, entry) {
162 nir_variable *var = (nir_variable *) entry->data;
163 reg.reg_offset = var->data.driver_location;
164
165 if (var->data.index > 0) {
166 assert(var->data.location == FRAG_RESULT_DATA0);
167 assert(var->data.index == 1);
168 this->dual_src_output = reg;
169 this->do_dual_src = true;
170 } else if (var->data.location == FRAG_RESULT_COLOR) {
171 /* Writing gl_FragColor outputs to all color regions. */
172 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
173 this->outputs[i] = reg;
174 this->output_components[i] = 4;
175 }
176 } else if (var->data.location == FRAG_RESULT_DEPTH) {
177 this->frag_depth = reg;
178 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
179 this->sample_mask = reg;
180 } else {
181 /* gl_FragData or a user-defined FS output */
182 assert(var->data.location >= FRAG_RESULT_DATA0 &&
183 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
184
185 int vector_elements =
186 var->type->is_array() ? var->type->fields.array->vector_elements
187 : var->type->vector_elements;
188
189 /* General color output. */
190 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
191 int output = var->data.location - FRAG_RESULT_DATA0 + i;
192 this->outputs[output] = reg;
193 this->outputs[output].reg_offset += vector_elements * i;
194 this->output_components[output] = vector_elements;
195 }
196 }
197 }
198 }
199
200 void
201 fs_visitor::nir_setup_uniforms(nir_shader *shader)
202 {
203 uniforms = shader->num_uniforms;
204 param_size[0] = shader->num_uniforms;
205
206 if (dispatch_width != 8)
207 return;
208
209 struct hash_entry *entry;
210 hash_table_foreach(shader->uniforms, entry) {
211 nir_variable *var = (nir_variable *) entry->data;
212
213 /* UBO's and atomics don't take up space in the uniform file */
214
215 if (var->interface_type != NULL || var->type->contains_atomic())
216 continue;
217
218 if (strncmp(var->name, "gl_", 3) == 0)
219 nir_setup_builtin_uniform(var);
220 else
221 nir_setup_uniform(var);
222 }
223 }
224
225 void
226 fs_visitor::nir_setup_uniform(nir_variable *var)
227 {
228 int namelen = strlen(var->name);
229
230 /* The data for our (non-builtin) uniforms is stored in a series of
231 * gl_uniform_driver_storage structs for each subcomponent that
232 * glGetUniformLocation() could name. We know it's been set up in the
233 * same order we'd walk the type, so walk the list of storage and find
234 * anything with our name, or the prefix of a component that starts with
235 * our name.
236 */
237 unsigned index = var->data.driver_location;
238 for (unsigned u = 0; u < shader_prog->NumUserUniformStorage; u++) {
239 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
240
241 if (strncmp(var->name, storage->name, namelen) != 0 ||
242 (storage->name[namelen] != 0 &&
243 storage->name[namelen] != '.' &&
244 storage->name[namelen] != '[')) {
245 continue;
246 }
247
248 unsigned slots = storage->type->component_slots();
249 if (storage->array_elements)
250 slots *= storage->array_elements;
251
252 for (unsigned i = 0; i < slots; i++) {
253 stage_prog_data->param[index++] = &storage->storage[i];
254 }
255 }
256
257 /* Make sure we actually initialized the right amount of stuff here. */
258 assert(var->data.driver_location + var->type->component_slots() == index);
259 }
260
261 void
262 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
263 {
264 const nir_state_slot *const slots = var->state_slots;
265 assert(var->state_slots != NULL);
266
267 unsigned uniform_index = var->data.driver_location;
268 for (unsigned int i = 0; i < var->num_state_slots; i++) {
269 /* This state reference has already been setup by ir_to_mesa, but we'll
270 * get the same index back here.
271 */
272 int index = _mesa_add_state_reference(this->prog->Parameters,
273 (gl_state_index *)slots[i].tokens);
274
275 /* Add each of the unique swizzles of the element as a parameter.
276 * This'll end up matching the expected layout of the
277 * array/matrix/structure we're trying to fill in.
278 */
279 int last_swiz = -1;
280 for (unsigned int j = 0; j < 4; j++) {
281 int swiz = GET_SWZ(slots[i].swizzle, j);
282 if (swiz == last_swiz)
283 break;
284 last_swiz = swiz;
285
286 stage_prog_data->param[uniform_index++] =
287 &prog->Parameters->ParameterValues[index][swiz];
288 }
289 }
290 }
291
292 void
293 fs_visitor::nir_emit_impl(nir_function_impl *impl)
294 {
295 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
296 foreach_list_typed(nir_register, reg, node, &impl->registers) {
297 unsigned array_elems =
298 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
299 unsigned size = array_elems * reg->num_components;
300 nir_locals[reg->index] = fs_reg(GRF, virtual_grf_alloc(size));
301 }
302
303 nir_emit_cf_list(&impl->body);
304 }
305
306 void
307 fs_visitor::nir_emit_cf_list(exec_list *list)
308 {
309 foreach_list_typed(nir_cf_node, node, node, list) {
310 switch (node->type) {
311 case nir_cf_node_if:
312 nir_emit_if(nir_cf_node_as_if(node));
313 break;
314
315 case nir_cf_node_loop:
316 nir_emit_loop(nir_cf_node_as_loop(node));
317 break;
318
319 case nir_cf_node_block:
320 nir_emit_block(nir_cf_node_as_block(node));
321 break;
322
323 default:
324 unreachable("Invalid CFG node block");
325 }
326 }
327 }
328
329 void
330 fs_visitor::nir_emit_if(nir_if *if_stmt)
331 {
332 if (brw->gen < 6) {
333 no16("Can't support (non-uniform) control flow on SIMD16\n");
334 }
335
336 /* first, put the condition into f0 */
337 fs_inst *inst = emit(MOV(reg_null_d,
338 retype(get_nir_src(if_stmt->condition),
339 BRW_REGISTER_TYPE_UD)));
340 inst->conditional_mod = BRW_CONDITIONAL_NZ;
341
342 emit(IF(BRW_PREDICATE_NORMAL));
343
344 nir_emit_cf_list(&if_stmt->then_list);
345
346 /* note: if the else is empty, dead CF elimination will remove it */
347 emit(BRW_OPCODE_ELSE);
348
349 nir_emit_cf_list(&if_stmt->else_list);
350
351 emit(BRW_OPCODE_ENDIF);
352
353 try_replace_with_sel();
354 }
355
356 void
357 fs_visitor::nir_emit_loop(nir_loop *loop)
358 {
359 if (brw->gen < 6) {
360 no16("Can't support (non-uniform) control flow on SIMD16\n");
361 }
362
363 emit(BRW_OPCODE_DO);
364
365 nir_emit_cf_list(&loop->body);
366
367 emit(BRW_OPCODE_WHILE);
368 }
369
370 void
371 fs_visitor::nir_emit_block(nir_block *block)
372 {
373 nir_foreach_instr(block, instr) {
374 nir_emit_instr(instr);
375 }
376 }
377
378 void
379 fs_visitor::nir_emit_instr(nir_instr *instr)
380 {
381 switch (instr->type) {
382 case nir_instr_type_alu:
383 nir_emit_alu(nir_instr_as_alu(instr));
384 break;
385
386 case nir_instr_type_intrinsic:
387 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
388 break;
389
390 case nir_instr_type_tex:
391 nir_emit_texture(nir_instr_as_tex(instr));
392 break;
393
394 case nir_instr_type_load_const:
395 nir_emit_load_const(nir_instr_as_load_const(instr));
396 break;
397
398 case nir_instr_type_jump:
399 nir_emit_jump(nir_instr_as_jump(instr));
400 break;
401
402 default:
403 unreachable("unknown instruction type");
404 }
405 }
406
407 static brw_reg_type
408 brw_type_for_nir_type(nir_alu_type type)
409 {
410 switch (type) {
411 case nir_type_bool:
412 case nir_type_unsigned:
413 return BRW_REGISTER_TYPE_UD;
414 case nir_type_int:
415 return BRW_REGISTER_TYPE_D;
416 case nir_type_float:
417 return BRW_REGISTER_TYPE_F;
418 default:
419 unreachable("unknown type");
420 }
421
422 return BRW_REGISTER_TYPE_F;
423 }
424
425 void
426 fs_visitor::nir_emit_alu(nir_alu_instr *instr)
427 {
428 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
429
430 fs_reg op[3];
431 fs_reg dest = get_nir_dest(instr->dest.dest);
432 dest.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
433
434 fs_reg result;
435 if (instr->has_predicate) {
436 result = fs_reg(GRF, virtual_grf_alloc(4));
437 result.type = dest.type;
438 } else {
439 result = dest;
440 }
441
442
443 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++)
444 op[i] = get_nir_alu_src(instr, i);
445
446 switch (instr->op) {
447 case nir_op_fmov:
448 case nir_op_i2f:
449 case nir_op_u2f: {
450 fs_inst *inst = MOV(result, op[0]);
451 inst->saturate = instr->dest.saturate;
452 emit_percomp(inst, instr->dest.write_mask);
453 }
454 break;
455
456 case nir_op_imov:
457 case nir_op_f2i:
458 case nir_op_f2u:
459 emit_percomp(MOV(result, op[0]), instr->dest.write_mask);
460 break;
461
462 case nir_op_fsign: {
463 /* AND(val, 0x80000000) gives the sign bit.
464 *
465 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
466 * zero.
467 */
468 emit_percomp(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ),
469 instr->dest.write_mask);
470
471 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
472 op[0].type = BRW_REGISTER_TYPE_UD;
473 result.type = BRW_REGISTER_TYPE_UD;
474 emit_percomp(AND(result_int, op[0], fs_reg(0x80000000u)),
475 instr->dest.write_mask);
476
477 fs_inst *inst = OR(result_int, result_int, fs_reg(0x3f800000u));
478 inst->predicate = BRW_PREDICATE_NORMAL;
479 emit_percomp(inst, instr->dest.write_mask);
480 if (instr->dest.saturate) {
481 fs_inst *inst = MOV(result, result);
482 inst->saturate = true;
483 emit_percomp(inst, instr->dest.write_mask);
484 }
485 break;
486 }
487
488 case nir_op_isign: {
489 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
490 * -> non-negative val generates 0x00000000.
491 * Predicated OR sets 1 if val is positive.
492 */
493 emit_percomp(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G),
494 instr->dest.write_mask);
495
496 emit_percomp(ASR(result, op[0], fs_reg(31)), instr->dest.write_mask);
497
498 fs_inst *inst = OR(result, result, fs_reg(1));
499 inst->predicate = BRW_PREDICATE_NORMAL;
500 emit_percomp(inst, instr->dest.write_mask);
501 break;
502 }
503
504 case nir_op_frcp:
505 emit_math_percomp(SHADER_OPCODE_RCP, result, op[0],
506 instr->dest.write_mask, instr->dest.saturate);
507 break;
508
509 case nir_op_fexp2:
510 emit_math_percomp(SHADER_OPCODE_EXP2, result, op[0],
511 instr->dest.write_mask, instr->dest.saturate);
512 break;
513
514 case nir_op_flog2:
515 emit_math_percomp(SHADER_OPCODE_LOG2, result, op[0],
516 instr->dest.write_mask, instr->dest.saturate);
517 break;
518
519 case nir_op_fexp:
520 case nir_op_flog:
521 unreachable("not reached: should be handled by ir_explog_to_explog2");
522
523 case nir_op_fsin:
524 case nir_op_fsin_reduced:
525 emit_math_percomp(SHADER_OPCODE_SIN, result, op[0],
526 instr->dest.write_mask, instr->dest.saturate);
527 break;
528
529 case nir_op_fcos:
530 case nir_op_fcos_reduced:
531 emit_math_percomp(SHADER_OPCODE_COS, result, op[0],
532 instr->dest.write_mask, instr->dest.saturate);
533 break;
534
535 case nir_op_fddx:
536 if (fs_key->high_quality_derivatives)
537 emit_percomp(FS_OPCODE_DDX_FINE, result, op[0],
538 instr->dest.write_mask, instr->dest.saturate);
539 else
540 emit_percomp(FS_OPCODE_DDX_COARSE, result, op[0],
541 instr->dest.write_mask, instr->dest.saturate);
542 break;
543 case nir_op_fddx_fine:
544 emit_percomp(FS_OPCODE_DDX_FINE, result, op[0],
545 instr->dest.write_mask, instr->dest.saturate);
546 break;
547 case nir_op_fddx_coarse:
548 emit_percomp(FS_OPCODE_DDX_COARSE, result, op[0],
549 instr->dest.write_mask, instr->dest.saturate);
550 break;
551 case nir_op_fddy:
552 if (fs_key->high_quality_derivatives)
553 emit_percomp(FS_OPCODE_DDY_FINE, result, op[0],
554 fs_reg(fs_key->render_to_fbo),
555 instr->dest.write_mask, instr->dest.saturate);
556 else
557 emit_percomp(FS_OPCODE_DDY_COARSE, result, op[0],
558 fs_reg(fs_key->render_to_fbo),
559 instr->dest.write_mask, instr->dest.saturate);
560 break;
561 case nir_op_fddy_fine:
562 emit_percomp(FS_OPCODE_DDY_FINE, result, op[0],
563 fs_reg(fs_key->render_to_fbo),
564 instr->dest.write_mask, instr->dest.saturate);
565 break;
566 case nir_op_fddy_coarse:
567 emit_percomp(FS_OPCODE_DDY_COARSE, result, op[0],
568 fs_reg(fs_key->render_to_fbo),
569 instr->dest.write_mask, instr->dest.saturate);
570 break;
571
572 case nir_op_fadd:
573 case nir_op_iadd: {
574 fs_inst *inst = ADD(result, op[0], op[1]);
575 inst->saturate = instr->dest.saturate;
576 emit_percomp(inst, instr->dest.write_mask);
577 break;
578 }
579
580 case nir_op_fmul: {
581 fs_inst *inst = MUL(result, op[0], op[1]);
582 inst->saturate = instr->dest.saturate;
583 emit_percomp(inst, instr->dest.write_mask);
584 break;
585 }
586
587 case nir_op_imul: {
588 /* TODO put in the 16-bit constant optimization once we have SSA */
589
590 if (brw->gen >= 7)
591 no16("SIMD16 explicit accumulator operands unsupported\n");
592
593 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
594
595 emit_percomp(MUL(acc, op[0], op[1]), instr->dest.write_mask);
596 emit_percomp(MACH(reg_null_d, op[0], op[1]), instr->dest.write_mask);
597 emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
598 break;
599 }
600
601 case nir_op_imul_high:
602 case nir_op_umul_high: {
603 if (brw->gen >= 7)
604 no16("SIMD16 explicit accumulator operands unsupported\n");
605
606 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
607
608 emit_percomp(MUL(acc, op[0], op[1]), instr->dest.write_mask);
609 emit_percomp(MACH(result, op[0], op[1]), instr->dest.write_mask);
610 break;
611 }
612
613 case nir_op_idiv:
614 case nir_op_udiv:
615 emit_math_percomp(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1],
616 instr->dest.write_mask);
617 break;
618
619 case nir_op_uadd_carry: {
620 if (brw->gen >= 7)
621 no16("SIMD16 explicit accumulator operands unsupported\n");
622
623 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
624 BRW_REGISTER_TYPE_UD);
625
626 emit_percomp(ADDC(reg_null_ud, op[0], op[1]), instr->dest.write_mask);
627 emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
628 break;
629 }
630
631 case nir_op_usub_borrow: {
632 if (brw->gen >= 7)
633 no16("SIMD16 explicit accumulator operands unsupported\n");
634
635 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
636 BRW_REGISTER_TYPE_UD);
637
638 emit_percomp(SUBB(reg_null_ud, op[0], op[1]), instr->dest.write_mask);
639 emit_percomp(MOV(result, fs_reg(acc)), instr->dest.write_mask);
640 break;
641 }
642
643 case nir_op_umod:
644 emit_math_percomp(SHADER_OPCODE_INT_REMAINDER, result, op[0],
645 op[1], instr->dest.write_mask);
646 break;
647
648 case nir_op_flt:
649 case nir_op_ilt:
650 case nir_op_ult:
651 emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_L),
652 instr->dest.write_mask);
653 break;
654
655 case nir_op_fge:
656 case nir_op_ige:
657 case nir_op_uge:
658 emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE),
659 instr->dest.write_mask);
660 break;
661
662 case nir_op_feq:
663 case nir_op_ieq:
664 emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z),
665 instr->dest.write_mask);
666 break;
667
668 case nir_op_fne:
669 case nir_op_ine:
670 emit_percomp(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ),
671 instr->dest.write_mask);
672 break;
673
674 case nir_op_ball_fequal2:
675 case nir_op_ball_iequal2:
676 case nir_op_ball_fequal3:
677 case nir_op_ball_iequal3:
678 case nir_op_ball_fequal4:
679 case nir_op_ball_iequal4: {
680 unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
681 fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
682 emit_percomp(CMP(temp, op[0], op[1], BRW_CONDITIONAL_Z),
683 (1 << num_components) - 1);
684 emit_reduction(BRW_OPCODE_AND, result, temp, num_components);
685 break;
686 }
687
688 case nir_op_bany_fnequal2:
689 case nir_op_bany_inequal2:
690 case nir_op_bany_fnequal3:
691 case nir_op_bany_inequal3:
692 case nir_op_bany_fnequal4:
693 case nir_op_bany_inequal4: {
694 unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
695 fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
696 temp.type = BRW_REGISTER_TYPE_UD;
697 emit_percomp(CMP(temp, op[0], op[1], BRW_CONDITIONAL_NZ),
698 (1 << num_components) - 1);
699 emit_reduction(BRW_OPCODE_OR, result, temp, num_components);
700 break;
701 }
702
703 case nir_op_inot:
704 emit_percomp(NOT(result, op[0]), instr->dest.write_mask);
705 break;
706 case nir_op_ixor:
707 emit_percomp(XOR(result, op[0], op[1]), instr->dest.write_mask);
708 break;
709 case nir_op_ior:
710 emit_percomp(OR(result, op[0], op[1]), instr->dest.write_mask);
711 break;
712 case nir_op_iand:
713 emit_percomp(AND(result, op[0], op[1]), instr->dest.write_mask);
714 break;
715
716 case nir_op_fdot2:
717 case nir_op_fdot3:
718 case nir_op_fdot4: {
719 unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
720 fs_reg temp = fs_reg(GRF, virtual_grf_alloc(num_components));
721 emit_percomp(MUL(temp, op[0], op[1]), (1 << num_components) - 1);
722 emit_reduction(BRW_OPCODE_ADD, result, temp, num_components);
723 if (instr->dest.saturate) {
724 fs_inst *inst = emit(MOV(result, result));
725 inst->saturate = true;
726 }
727 break;
728 }
729
730 case nir_op_bany2:
731 case nir_op_bany3:
732 case nir_op_bany4: {
733 unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
734 emit_reduction(BRW_OPCODE_OR, result, op[0], num_components);
735 break;
736 }
737
738 case nir_op_ball2:
739 case nir_op_ball3:
740 case nir_op_ball4: {
741 unsigned num_components = nir_op_infos[instr->op].input_sizes[0];
742 emit_reduction(BRW_OPCODE_AND, result, op[0], num_components);
743 break;
744 }
745
746 case nir_op_fnoise1_1:
747 case nir_op_fnoise1_2:
748 case nir_op_fnoise1_3:
749 case nir_op_fnoise1_4:
750 case nir_op_fnoise2_1:
751 case nir_op_fnoise2_2:
752 case nir_op_fnoise2_3:
753 case nir_op_fnoise2_4:
754 case nir_op_fnoise3_1:
755 case nir_op_fnoise3_2:
756 case nir_op_fnoise3_3:
757 case nir_op_fnoise3_4:
758 case nir_op_fnoise4_1:
759 case nir_op_fnoise4_2:
760 case nir_op_fnoise4_3:
761 case nir_op_fnoise4_4:
762 unreachable("not reached: should be handled by lower_noise");
763
764 case nir_op_vec2:
765 case nir_op_vec3:
766 case nir_op_vec4:
767 unreachable("not reached: should be handled by lower_quadop_vector");
768
769 case nir_op_ldexp:
770 unreachable("not reached: should be handled by ldexp_to_arith()");
771
772 case nir_op_fsqrt:
773 emit_math_percomp(SHADER_OPCODE_SQRT, result, op[0],
774 instr->dest.write_mask, instr->dest.saturate);
775 break;
776
777 case nir_op_frsq:
778 emit_math_percomp(SHADER_OPCODE_RSQ, result, op[0],
779 instr->dest.write_mask, instr->dest.saturate);
780 break;
781
782 case nir_op_b2i:
783 emit_percomp(AND(result, op[0], fs_reg(1)), instr->dest.write_mask);
784 break;
785 case nir_op_b2f: {
786 emit_percomp(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0],
787 fs_reg(0x3f800000u)),
788 instr->dest.write_mask);
789 break;
790 }
791
792 case nir_op_f2b:
793 emit_percomp(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ),
794 instr->dest.write_mask);
795 break;
796 case nir_op_i2b:
797 emit_percomp(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ),
798 instr->dest.write_mask);
799 break;
800
801 case nir_op_ftrunc: {
802 fs_inst *inst = RNDZ(result, op[0]);
803 inst->saturate = instr->dest.saturate;
804 emit_percomp(inst, instr->dest.write_mask);
805 break;
806 }
807 case nir_op_fceil: {
808 op[0].negate = !op[0].negate;
809 fs_reg temp = fs_reg(this, glsl_type::vec4_type);
810 emit_percomp(RNDD(temp, op[0]), instr->dest.write_mask);
811 temp.negate = true;
812 fs_inst *inst = MOV(result, temp);
813 inst->saturate = instr->dest.saturate;
814 emit_percomp(inst, instr->dest.write_mask);
815 break;
816 }
817 case nir_op_ffloor: {
818 fs_inst *inst = RNDD(result, op[0]);
819 inst->saturate = instr->dest.saturate;
820 emit_percomp(inst, instr->dest.write_mask);
821 break;
822 }
823 case nir_op_ffract: {
824 fs_inst *inst = FRC(result, op[0]);
825 inst->saturate = instr->dest.saturate;
826 emit_percomp(inst, instr->dest.write_mask);
827 break;
828 }
829 case nir_op_fround_even: {
830 fs_inst *inst = RNDE(result, op[0]);
831 inst->saturate = instr->dest.saturate;
832 emit_percomp(inst, instr->dest.write_mask);
833 break;
834 }
835
836 case nir_op_fmin:
837 case nir_op_imin:
838 case nir_op_umin:
839 if (brw->gen >= 6) {
840 emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
841 instr->dest.write_mask, instr->dest.saturate,
842 BRW_PREDICATE_NONE, BRW_CONDITIONAL_L);
843 } else {
844 emit_percomp(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L),
845 instr->dest.write_mask);
846
847 emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
848 instr->dest.write_mask, instr->dest.saturate,
849 BRW_PREDICATE_NORMAL);
850 }
851 break;
852
853 case nir_op_fmax:
854 case nir_op_imax:
855 case nir_op_umax:
856 if (brw->gen >= 6) {
857 emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
858 instr->dest.write_mask, instr->dest.saturate,
859 BRW_PREDICATE_NONE, BRW_CONDITIONAL_GE);
860 } else {
861 emit_percomp(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE),
862 instr->dest.write_mask);
863
864 emit_percomp(BRW_OPCODE_SEL, result, op[0], op[1],
865 instr->dest.write_mask, instr->dest.saturate,
866 BRW_PREDICATE_NORMAL);
867 }
868 break;
869
870 case nir_op_pack_snorm_2x16:
871 case nir_op_pack_snorm_4x8:
872 case nir_op_pack_unorm_2x16:
873 case nir_op_pack_unorm_4x8:
874 case nir_op_unpack_snorm_2x16:
875 case nir_op_unpack_snorm_4x8:
876 case nir_op_unpack_unorm_2x16:
877 case nir_op_unpack_unorm_4x8:
878 case nir_op_unpack_half_2x16:
879 case nir_op_pack_half_2x16:
880 unreachable("not reached: should be handled by lower_packing_builtins");
881
882 case nir_op_unpack_half_2x16_split_x:
883 emit_percomp(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0],
884 instr->dest.write_mask, instr->dest.saturate);
885 break;
886 case nir_op_unpack_half_2x16_split_y:
887 emit_percomp(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0],
888 instr->dest.write_mask, instr->dest.saturate);
889 break;
890
891 case nir_op_fpow:
892 emit_percomp(SHADER_OPCODE_POW, result, op[0], op[1],
893 instr->dest.write_mask, instr->dest.saturate);
894 break;
895
896 case nir_op_bitfield_reverse:
897 emit_percomp(BFREV(result, op[0]), instr->dest.write_mask);
898 break;
899
900 case nir_op_bit_count:
901 emit_percomp(CBIT(result, op[0]), instr->dest.write_mask);
902 break;
903
904 case nir_op_ufind_msb:
905 case nir_op_ifind_msb: {
906 emit_percomp(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]),
907 instr->dest.write_mask);
908
909 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
910 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
911 * subtract the result from 31 to convert the MSB count into an LSB count.
912 */
913
914 emit_percomp(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ),
915 instr->dest.write_mask);
916 fs_reg neg_result(result);
917 neg_result.negate = true;
918 fs_inst *inst = ADD(result, neg_result, fs_reg(31));
919 inst->predicate = BRW_PREDICATE_NORMAL;
920 emit_percomp(inst, instr->dest.write_mask);
921 break;
922 }
923
924 case nir_op_find_lsb:
925 emit_percomp(FBL(result, op[0]), instr->dest.write_mask);
926 break;
927
928 case nir_op_ubitfield_extract:
929 case nir_op_ibitfield_extract:
930 emit_percomp(BFE(result, op[2], op[1], op[0]), instr->dest.write_mask);
931 break;
932 case nir_op_bfm:
933 emit_percomp(BFI1(result, op[0], op[1]), instr->dest.write_mask);
934 break;
935 case nir_op_bfi:
936 emit_percomp(BFI2(result, op[0], op[1], op[2]), instr->dest.write_mask);
937 break;
938
939 case nir_op_bitfield_insert:
940 unreachable("not reached: should be handled by "
941 "lower_instructions::bitfield_insert_to_bfm_bfi");
942
943 case nir_op_ishl:
944 emit_percomp(SHL(result, op[0], op[1]), instr->dest.write_mask);
945 break;
946 case nir_op_ishr:
947 emit_percomp(ASR(result, op[0], op[1]), instr->dest.write_mask);
948 break;
949 case nir_op_ushr:
950 emit_percomp(SHR(result, op[0], op[1]), instr->dest.write_mask);
951 break;
952
953 case nir_op_pack_half_2x16_split:
954 emit_percomp(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1],
955 instr->dest.write_mask);
956 break;
957
958 case nir_op_ffma:
959 emit_percomp(MAD(result, op[2], op[1], op[0]), instr->dest.write_mask);
960 break;
961
962 case nir_op_flrp:
963 /* TODO emulate for gen < 6 */
964 emit_percomp(LRP(result, op[2], op[1], op[0]), instr->dest.write_mask);
965 break;
966
967 case nir_op_bcsel:
968 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
969 emit_percomp(BRW_OPCODE_SEL, result, op[1], op[2],
970 instr->dest.write_mask, false, BRW_PREDICATE_NORMAL);
971 break;
972
973 default:
974 unreachable("unhandled instruction");
975 }
976
977 /* emit a predicated move if there was predication */
978 if (instr->has_predicate) {
979 fs_inst *inst = emit(MOV(reg_null_d,
980 retype(get_nir_src(instr->predicate),
981 BRW_REGISTER_TYPE_UD)));
982 inst->conditional_mod = BRW_CONDITIONAL_NZ;
983 inst = MOV(dest, result);
984 inst->predicate = BRW_PREDICATE_NORMAL;
985 emit_percomp(inst, instr->dest.write_mask);
986 }
987 }
988
989 fs_reg
990 fs_visitor::get_nir_src(nir_src src)
991 {
992 if (src.is_ssa) {
993 assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
994 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
995 fs_reg reg(GRF, virtual_grf_alloc(src.ssa->num_components),
996 BRW_REGISTER_TYPE_D);
997
998 for (unsigned i = 0; i < src.ssa->num_components; ++i)
999 emit(MOV(offset(reg, i), fs_reg(load->value.i[i])));
1000
1001 return reg;
1002 } else {
1003 fs_reg reg;
1004 if (src.reg.reg->is_global)
1005 reg = nir_globals[src.reg.reg->index];
1006 else
1007 reg = nir_locals[src.reg.reg->index];
1008
1009 /* to avoid floating-point denorm flushing problems, set the type by
1010 * default to D - instructions that need floating point semantics will set
1011 * this to F if they need to
1012 */
1013 reg.type = BRW_REGISTER_TYPE_D;
1014 reg.reg_offset = src.reg.base_offset;
1015 if (src.reg.indirect) {
1016 reg.reladdr = new(mem_ctx) fs_reg();
1017 *reg.reladdr = retype(get_nir_src(*src.reg.indirect),
1018 BRW_REGISTER_TYPE_D);
1019 }
1020
1021 return reg;
1022 }
1023 }
1024
1025 fs_reg
1026 fs_visitor::get_nir_alu_src(nir_alu_instr *instr, unsigned src)
1027 {
1028 fs_reg reg = get_nir_src(instr->src[src].src);
1029
1030 reg.type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[src]);
1031 reg.abs = instr->src[src].abs;
1032 reg.negate = instr->src[src].negate;
1033
1034 bool needs_swizzle = false;
1035 unsigned num_components = 0;
1036 for (unsigned i = 0; i < 4; i++) {
1037 if (!nir_alu_instr_channel_used(instr, src, i))
1038 continue;
1039
1040 if (instr->src[src].swizzle[i] != i)
1041 needs_swizzle = true;
1042
1043 num_components = i + 1;
1044 }
1045
1046 if (needs_swizzle) {
1047 /* resolve the swizzle through MOV's */
1048 fs_reg new_reg = fs_reg(GRF, virtual_grf_alloc(num_components), reg.type);
1049
1050 for (unsigned i = 0; i < 4; i++) {
1051 if (!nir_alu_instr_channel_used(instr, src, i))
1052 continue;
1053
1054 emit(MOV(offset(new_reg, i),
1055 offset(reg, instr->src[src].swizzle[i])));
1056 }
1057
1058 return new_reg;
1059 }
1060
1061 return reg;
1062 }
1063
1064 fs_reg
1065 fs_visitor::get_nir_dest(nir_dest dest)
1066 {
1067 fs_reg reg;
1068 if (dest.reg.reg->is_global)
1069 reg = nir_globals[dest.reg.reg->index];
1070 else
1071 reg = nir_locals[dest.reg.reg->index];
1072
1073 reg.reg_offset = dest.reg.base_offset;
1074 if (dest.reg.indirect) {
1075 reg.reladdr = new(mem_ctx) fs_reg();
1076 *reg.reladdr = retype(get_nir_src(*dest.reg.indirect),
1077 BRW_REGISTER_TYPE_D);
1078 }
1079
1080 return reg;
1081 }
1082
1083 void
1084 fs_visitor::emit_percomp(fs_inst *inst, unsigned wr_mask)
1085 {
1086 for (unsigned i = 0; i < 4; i++) {
1087 if (!((wr_mask >> i) & 1))
1088 continue;
1089
1090 fs_inst *new_inst = new(mem_ctx) fs_inst(*inst);
1091 new_inst->dst.reg_offset += i;
1092 for (unsigned j = 0; j < new_inst->sources; j++)
1093 if (inst->src[j].file == GRF)
1094 new_inst->src[j].reg_offset += i;
1095
1096 emit(new_inst);
1097 }
1098 }
1099
1100 void
1101 fs_visitor::emit_percomp(enum opcode op, fs_reg dest, fs_reg src0,
1102 unsigned wr_mask, bool saturate,
1103 enum brw_predicate predicate,
1104 enum brw_conditional_mod mod)
1105 {
1106 for (unsigned i = 0; i < 4; i++) {
1107 if (!((wr_mask >> i) & 1))
1108 continue;
1109
1110 fs_inst *new_inst = new(mem_ctx) fs_inst(op, dest, src0);
1111 new_inst->dst.reg_offset += i;
1112 for (unsigned j = 0; j < new_inst->sources; j++)
1113 if (new_inst->src[j].file == GRF)
1114 new_inst->src[j].reg_offset += i;
1115
1116 new_inst->predicate = predicate;
1117 new_inst->conditional_mod = mod;
1118 new_inst->saturate = saturate;
1119 emit(new_inst);
1120 }
1121 }
1122
1123 void
1124 fs_visitor::emit_percomp(enum opcode op, fs_reg dest, fs_reg src0, fs_reg src1,
1125 unsigned wr_mask, bool saturate,
1126 enum brw_predicate predicate,
1127 enum brw_conditional_mod mod)
1128 {
1129 for (unsigned i = 0; i < 4; i++) {
1130 if (!((wr_mask >> i) & 1))
1131 continue;
1132
1133 fs_inst *new_inst = new(mem_ctx) fs_inst(op, dest, src0, src1);
1134 new_inst->dst.reg_offset += i;
1135 for (unsigned j = 0; j < new_inst->sources; j++)
1136 if (new_inst->src[j].file == GRF)
1137 new_inst->src[j].reg_offset += i;
1138
1139 new_inst->predicate = predicate;
1140 new_inst->conditional_mod = mod;
1141 new_inst->saturate = saturate;
1142 emit(new_inst);
1143 }
1144 }
1145
1146 void
1147 fs_visitor::emit_math_percomp(enum opcode op, fs_reg dest, fs_reg src0,
1148 unsigned wr_mask, bool saturate)
1149 {
1150 for (unsigned i = 0; i < 4; i++) {
1151 if (!((wr_mask >> i) & 1))
1152 continue;
1153
1154 fs_reg new_dest = dest;
1155 new_dest.reg_offset += i;
1156 fs_reg new_src0 = src0;
1157 if (src0.file == GRF)
1158 new_src0.reg_offset += i;
1159
1160 fs_inst *new_inst = emit_math(op, new_dest, new_src0);
1161 new_inst->saturate = saturate;
1162 }
1163 }
1164
1165 void
1166 fs_visitor::emit_math_percomp(enum opcode op, fs_reg dest, fs_reg src0,
1167 fs_reg src1, unsigned wr_mask,
1168 bool saturate)
1169 {
1170 for (unsigned i = 0; i < 4; i++) {
1171 if (!((wr_mask >> i) & 1))
1172 continue;
1173
1174 fs_reg new_dest = dest;
1175 new_dest.reg_offset += i;
1176 fs_reg new_src0 = src0;
1177 if (src0.file == GRF)
1178 new_src0.reg_offset += i;
1179 fs_reg new_src1 = src1;
1180 if (src1.file == GRF)
1181 new_src1.reg_offset += i;
1182
1183 fs_inst *new_inst = emit_math(op, new_dest, new_src0, new_src1);
1184 new_inst->saturate = saturate;
1185 }
1186 }
1187
1188 void
1189 fs_visitor::emit_reduction(enum opcode op, fs_reg dest, fs_reg src,
1190 unsigned num_components)
1191 {
1192 fs_reg src0 = src;
1193 fs_reg src1 = src;
1194 src1.reg_offset++;
1195
1196 if (num_components == 2) {
1197 emit(op, dest, src0, src1);
1198 return;
1199 }
1200
1201 fs_reg temp1 = fs_reg(GRF, virtual_grf_alloc(1));
1202 temp1.type = src.type;
1203 emit(op, temp1, src0, src1);
1204
1205 fs_reg src2 = src;
1206 src2.reg_offset += 2;
1207
1208 if (num_components == 3) {
1209 emit(op, dest, temp1, src2);
1210 return;
1211 }
1212
1213 assert(num_components == 4);
1214
1215 fs_reg src3 = src;
1216 src3.reg_offset += 3;
1217 fs_reg temp2 = fs_reg(GRF, virtual_grf_alloc(1));
1218 temp2.type = src.type;
1219
1220 emit(op, temp2, src2, src3);
1221 emit(op, dest, temp1, temp2);
1222 }
1223
1224 void
1225 fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
1226 {
1227 fs_reg dest;
1228 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1229 dest = get_nir_dest(instr->dest);
1230 if (instr->has_predicate) {
1231 fs_inst *inst = emit(MOV(reg_null_d,
1232 retype(get_nir_src(instr->predicate),
1233 BRW_REGISTER_TYPE_UD)));
1234 inst->conditional_mod = BRW_CONDITIONAL_NZ;
1235 }
1236
1237 bool has_indirect = false;
1238
1239 switch (instr->intrinsic) {
1240 case nir_intrinsic_discard: {
1241 /* We track our discarded pixels in f0.1. By predicating on it, we can
1242 * update just the flag bits that aren't yet discarded. By emitting a
1243 * CMP of g0 != g0, all our currently executing channels will get turned
1244 * off.
1245 */
1246 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1247 BRW_REGISTER_TYPE_UW));
1248 fs_inst *cmp = emit(CMP(reg_null_f, some_reg, some_reg,
1249 BRW_CONDITIONAL_NZ));
1250 cmp->predicate = BRW_PREDICATE_NORMAL;
1251 cmp->flag_subreg = 1;
1252
1253 if (brw->gen >= 6) {
1254 /* For performance, after a discard, jump to the end of the shader.
1255 * Only jump if all relevant channels have been discarded.
1256 */
1257 fs_inst *discard_jump = emit(FS_OPCODE_DISCARD_JUMP);
1258 discard_jump->flag_subreg = 1;
1259
1260 discard_jump->predicate = (dispatch_width == 8)
1261 ? BRW_PREDICATE_ALIGN1_ANY8H
1262 : BRW_PREDICATE_ALIGN1_ANY16H;
1263 discard_jump->predicate_inverse = true;
1264 }
1265
1266 break;
1267 }
1268
1269 case nir_intrinsic_atomic_counter_inc:
1270 case nir_intrinsic_atomic_counter_dec:
1271 case nir_intrinsic_atomic_counter_read: {
1272 unsigned surf_index = prog_data->binding_table.abo_start +
1273 (unsigned) instr->const_index[0];
1274 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1275
1276 switch (instr->intrinsic) {
1277 case nir_intrinsic_atomic_counter_inc:
1278 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1279 fs_reg(), fs_reg());
1280 break;
1281 case nir_intrinsic_atomic_counter_dec:
1282 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1283 fs_reg(), fs_reg());
1284 break;
1285 case nir_intrinsic_atomic_counter_read:
1286 emit_untyped_surface_read(surf_index, dest, offset);
1287 break;
1288 default:
1289 unreachable("Unreachable");
1290 }
1291 break;
1292 }
1293
1294 case nir_intrinsic_load_front_face:
1295 assert(!"TODO");
1296
1297 case nir_intrinsic_load_sample_mask_in: {
1298 assert(brw->gen >= 7);
1299 fs_reg reg = fs_reg(retype(brw_vec8_grf(payload.sample_mask_in_reg, 0),
1300 BRW_REGISTER_TYPE_D));
1301 dest.type = reg.type;
1302 fs_inst *inst = MOV(dest, reg);
1303 if (instr->has_predicate)
1304 inst->predicate = BRW_PREDICATE_NORMAL;
1305 emit(inst);
1306 break;
1307 }
1308
1309 case nir_intrinsic_load_sample_pos: {
1310 fs_reg *reg = emit_samplepos_setup();
1311 dest.type = reg->type;
1312 emit(MOV(dest, *reg));
1313 emit(MOV(offset(dest, 1), offset(*reg, 1)));
1314 break;
1315 }
1316
1317 case nir_intrinsic_load_sample_id: {
1318 fs_reg *reg = emit_sampleid_setup();
1319 dest.type = reg->type;
1320 emit(MOV(dest, *reg));
1321 break;
1322 }
1323
1324 case nir_intrinsic_load_uniform_indirect:
1325 has_indirect = true;
1326 case nir_intrinsic_load_uniform: {
1327 unsigned index = 0;
1328 for (int i = 0; i < instr->const_index[1]; i++) {
1329 for (unsigned j = 0; j < instr->num_components; j++) {
1330 fs_reg src = nir_uniforms;
1331 src.reg_offset = instr->const_index[0] + index;
1332 if (has_indirect)
1333 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1334 src.type = dest.type;
1335 index++;
1336
1337 fs_inst *inst = MOV(dest, src);
1338 if (instr->has_predicate)
1339 inst->predicate = BRW_PREDICATE_NORMAL;
1340 emit(inst);
1341 dest.reg_offset++;
1342 }
1343 }
1344 break;
1345 }
1346
1347 case nir_intrinsic_load_ubo_indirect:
1348 has_indirect = true;
1349 case nir_intrinsic_load_ubo: {
1350 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1351 fs_reg surf_index;
1352
1353 if (const_index) {
1354 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1355 const_index->u[0]);
1356 } else {
1357 /* The block index is not a constant. Evaluate the index expression
1358 * per-channel and add the base UBO index; the generator will select
1359 * a value from any live channel.
1360 */
1361 surf_index = fs_reg(this, glsl_type::uint_type);
1362 emit(ADD(surf_index, get_nir_src(instr->src[0]),
1363 fs_reg(stage_prog_data->binding_table.ubo_start)))
1364 ->force_writemask_all = true;
1365
1366 /* Assume this may touch any UBO. It would be nice to provide
1367 * a tighter bound, but the array information is already lowered away.
1368 */
1369 brw_mark_surface_used(prog_data,
1370 stage_prog_data->binding_table.ubo_start +
1371 shader_prog->NumUniformBlocks - 1);
1372 }
1373
1374 if (has_indirect) {
1375 /* Turn the byte offset into a dword offset. */
1376 fs_reg base_offset = fs_reg(this, glsl_type::int_type);
1377 emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
1378 BRW_REGISTER_TYPE_D),
1379 fs_reg(2)));
1380
1381 unsigned vec4_offset = instr->const_index[0] / 4;
1382 for (int i = 0; i < instr->num_components; i++) {
1383 exec_list list = VARYING_PULL_CONSTANT_LOAD(offset(dest, i),
1384 surf_index, base_offset,
1385 vec4_offset + i);
1386
1387 fs_inst *last_inst = (fs_inst *) list.get_tail();
1388 if (instr->has_predicate)
1389 last_inst->predicate = BRW_PREDICATE_NORMAL;
1390 emit(list);
1391 }
1392 } else {
1393 fs_reg packed_consts = fs_reg(this, glsl_type::float_type);
1394 packed_consts.type = dest.type;
1395
1396 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1397 emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1398 surf_index, const_offset_reg);
1399
1400 for (unsigned i = 0; i < instr->num_components; i++) {
1401 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1402
1403 /* The std140 packing rules don't allow vectors to cross 16-byte
1404 * boundaries, and a reg is 32 bytes.
1405 */
1406 assert(packed_consts.subreg_offset < 32);
1407
1408 fs_inst *inst = MOV(dest, packed_consts);
1409 if (instr->has_predicate)
1410 inst->predicate = BRW_PREDICATE_NORMAL;
1411 emit(inst);
1412
1413 dest.reg_offset++;
1414 }
1415 }
1416 break;
1417 }
1418
1419 case nir_intrinsic_load_input_indirect:
1420 has_indirect = true;
1421 case nir_intrinsic_load_input: {
1422 unsigned index = 0;
1423 for (int i = 0; i < instr->const_index[1]; i++) {
1424 for (unsigned j = 0; j < instr->num_components; j++) {
1425 fs_reg src = nir_inputs;
1426 src.reg_offset = instr->const_index[0] + index;
1427 if (has_indirect)
1428 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1429 src.type = dest.type;
1430 index++;
1431
1432 fs_inst *inst = MOV(dest, src);
1433 if (instr->has_predicate)
1434 inst->predicate = BRW_PREDICATE_NORMAL;
1435 emit(inst);
1436 dest.reg_offset++;
1437 }
1438 }
1439 break;
1440 }
1441
1442 /* Handle ARB_gpu_shader5 interpolation intrinsics
1443 *
1444 * It's worth a quick word of explanation as to why we handle the full
1445 * variable-based interpolation intrinsic rather than a lowered version
1446 * with like we do for other inputs. We have to do that because the way
1447 * we set up inputs doesn't allow us to use the already setup inputs for
1448 * interpolation. At the beginning of the shader, we go through all of
1449 * the input variables and do the initial interpolation and put it in
1450 * the nir_inputs array based on its location as determined in
1451 * nir_lower_io. If the input isn't used, dead code cleans up and
1452 * everything works fine. However, when we get to the ARB_gpu_shader5
1453 * interpolation intrinsics, we need to reinterpolate the input
1454 * differently. If we used an intrinsic that just had an index it would
1455 * only give us the offset into the nir_inputs array. However, this is
1456 * useless because that value is post-interpolation and we need
1457 * pre-interpolation. In order to get the actual location of the bits
1458 * we get from the vertex fetching hardware, we need the variable.
1459 */
1460 case nir_intrinsic_interp_var_at_centroid:
1461 case nir_intrinsic_interp_var_at_sample:
1462 case nir_intrinsic_interp_var_at_offset: {
1463 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
1464 * 8 channels at a time, same as the barycentric coords presented in
1465 * the FS payload. this requires a bit of extra work to support.
1466 */
1467 no16("interpolate_at_* not yet supported in SIMD16 mode.");
1468
1469 fs_reg dst_x(GRF, virtual_grf_alloc(2), BRW_REGISTER_TYPE_F);
1470 fs_reg dst_y = offset(dst_x, 1);
1471
1472 /* For most messages, we need one reg of ignored data; the hardware
1473 * requires mlen==1 even when there is no payload. in the per-slot
1474 * offset case, we'll replace this with the proper source data.
1475 */
1476 fs_reg src(this, glsl_type::float_type);
1477 int mlen = 1; /* one reg unless overriden */
1478 fs_inst *inst;
1479
1480 switch (instr->intrinsic) {
1481 case nir_intrinsic_interp_var_at_centroid:
1482 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_x, src, fs_reg(0u));
1483 break;
1484
1485 case nir_intrinsic_interp_var_at_sample: {
1486 /* XXX: We should probably handle non-constant sample id's */
1487 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1488 assert(const_sample);
1489 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1490 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_x, src,
1491 fs_reg(msg_data));
1492 break;
1493 }
1494
1495 case nir_intrinsic_interp_var_at_offset: {
1496 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1497
1498 if (const_offset) {
1499 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1500 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1501
1502 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_x, src,
1503 fs_reg(off_x | (off_y << 4)));
1504 } else {
1505 src = fs_reg(this, glsl_type::ivec2_type);
1506 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1507 BRW_REGISTER_TYPE_F);
1508 for (int i = 0; i < 2; i++) {
1509 fs_reg temp(this, glsl_type::float_type);
1510 emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
1511 fs_reg itemp(this, glsl_type::int_type);
1512 emit(MOV(itemp, temp)); /* float to int */
1513
1514 /* Clamp the upper end of the range to +7/16.
1515 * ARB_gpu_shader5 requires that we support a maximum offset
1516 * of +0.5, which isn't representable in a S0.4 value -- if
1517 * we didn't clamp it, we'd end up with -8/16, which is the
1518 * opposite of what the shader author wanted.
1519 *
1520 * This is legal due to ARB_gpu_shader5's quantization
1521 * rules:
1522 *
1523 * "Not all values of <offset> may be supported; x and y
1524 * offsets may be rounded to fixed-point values with the
1525 * number of fraction bits given by the
1526 * implementation-dependent constant
1527 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1528 */
1529
1530 emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
1531 ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
1532 }
1533
1534 mlen = 2;
1535 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_x, src,
1536 fs_reg(0u));
1537 }
1538 break;
1539 }
1540
1541 default:
1542 unreachable("Invalid intrinsic");
1543 }
1544
1545 inst->mlen = mlen;
1546 inst->regs_written = 2; /* 2 floats per slot returned */
1547 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1548 INTERP_QUALIFIER_NOPERSPECTIVE;
1549
1550 for (unsigned j = 0; j < instr->num_components; j++) {
1551 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1552 src.type = dest.type;
1553
1554 fs_inst *inst = emit(FS_OPCODE_LINTERP, dest, dst_x, dst_y, src);
1555 if (instr->has_predicate)
1556 inst->predicate = BRW_PREDICATE_NORMAL;
1557 dest.reg_offset++;
1558 }
1559 break;
1560 }
1561
1562 case nir_intrinsic_store_output_indirect:
1563 has_indirect = true;
1564 case nir_intrinsic_store_output: {
1565 fs_reg src = get_nir_src(instr->src[0]);
1566 unsigned index = 0;
1567 for (int i = 0; i < instr->const_index[1]; i++) {
1568 for (unsigned j = 0; j < instr->num_components; j++) {
1569 fs_reg new_dest = nir_outputs;
1570 new_dest.reg_offset = instr->const_index[0] + index;
1571 if (has_indirect)
1572 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1573 new_dest.type = src.type;
1574 index++;
1575 fs_inst *inst = MOV(new_dest, src);
1576 if (instr->has_predicate)
1577 inst->predicate = BRW_PREDICATE_NORMAL;
1578 emit(inst);
1579 src.reg_offset++;
1580 }
1581 }
1582 break;
1583 }
1584
1585 default:
1586 unreachable("unknown intrinsic");
1587 }
1588 }
1589
1590 void
1591 fs_visitor::nir_emit_texture(nir_tex_instr *instr)
1592 {
1593 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
1594 unsigned sampler = instr->sampler_index;
1595
1596 /* FINISHME: We're failing to recompile our programs when the sampler is
1597 * updated. This only matters for the texture rectangle scale parameters
1598 * (pre-gen6, or gen6+ with GL_CLAMP).
1599 */
1600 int texunit = prog->SamplerUnits[sampler];
1601
1602 int gather_component = instr->component;
1603
1604 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1605
1606 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1607 instr->is_array;
1608
1609 int lod_components, offset_components = 0;
1610
1611 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, offset;
1612
1613 for (unsigned i = 0; i < instr->num_srcs; i++) {
1614 fs_reg src = get_nir_src(instr->src[i]);
1615 switch (instr->src_type[i]) {
1616 case nir_tex_src_bias:
1617 lod = retype(src, BRW_REGISTER_TYPE_F);
1618 break;
1619 case nir_tex_src_comparitor:
1620 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1621 break;
1622 case nir_tex_src_coord:
1623 switch (instr->op) {
1624 case nir_texop_txf:
1625 case nir_texop_txf_ms:
1626 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1627 break;
1628 default:
1629 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1630 break;
1631 }
1632 break;
1633 case nir_tex_src_ddx:
1634 lod = retype(src, BRW_REGISTER_TYPE_F);
1635 lod_components = nir_tex_instr_src_size(instr, i);
1636 break;
1637 case nir_tex_src_ddy:
1638 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1639 break;
1640 case nir_tex_src_lod:
1641 switch (instr->op) {
1642 case nir_texop_txs:
1643 lod = retype(src, BRW_REGISTER_TYPE_UD);
1644 break;
1645 case nir_texop_txf:
1646 lod = retype(src, BRW_REGISTER_TYPE_D);
1647 break;
1648 default:
1649 lod = retype(src, BRW_REGISTER_TYPE_F);
1650 break;
1651 }
1652 break;
1653 case nir_tex_src_ms_index:
1654 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1655 break;
1656 case nir_tex_src_offset:
1657 offset = retype(src, BRW_REGISTER_TYPE_D);
1658 if (instr->is_array)
1659 offset_components = instr->coord_components - 1;
1660 else
1661 offset_components = instr->coord_components;
1662 break;
1663 case nir_tex_src_projector:
1664 unreachable("should be lowered");
1665 case nir_tex_src_sampler_index:
1666 unreachable("not yet supported");
1667 default:
1668 unreachable("unknown texture source");
1669 }
1670 }
1671
1672 if (instr->op == nir_texop_txf_ms) {
1673 if (brw->gen >= 7 && key->tex.compressed_multisample_layout_mask & (1<<sampler))
1674 mcs = emit_mcs_fetch(coordinate, instr->coord_components, fs_reg(sampler));
1675 else
1676 mcs = fs_reg(0u);
1677 }
1678
1679 for (unsigned i = 0; i < 3; i++) {
1680 if (instr->const_offset[i] != 0) {
1681 assert(offset_components == 0);
1682 offset = fs_reg(brw_texture_offset(ctx, instr->const_offset, 3));
1683 break;
1684 }
1685 }
1686
1687 enum glsl_base_type dest_base_type;
1688 switch (instr->dest_type) {
1689 case nir_type_float:
1690 dest_base_type = GLSL_TYPE_FLOAT;
1691 break;
1692 case nir_type_int:
1693 dest_base_type = GLSL_TYPE_INT;
1694 break;
1695 case nir_type_unsigned:
1696 dest_base_type = GLSL_TYPE_UINT;
1697 break;
1698 default:
1699 unreachable("bad type");
1700 }
1701
1702 const glsl_type *dest_type =
1703 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1704 1);
1705
1706 ir_texture_opcode op;
1707 switch (instr->op) {
1708 case nir_texop_lod: op = ir_lod; break;
1709 case nir_texop_query_levels: op = ir_query_levels; break;
1710 case nir_texop_tex: op = ir_tex; break;
1711 case nir_texop_tg4: op = ir_tg4; break;
1712 case nir_texop_txb: op = ir_txb; break;
1713 case nir_texop_txd: op = ir_txd; break;
1714 case nir_texop_txf: op = ir_txf; break;
1715 case nir_texop_txf_ms: op = ir_txf_ms; break;
1716 case nir_texop_txl: op = ir_txl; break;
1717 case nir_texop_txs: op = ir_txs; break;
1718 default:
1719 unreachable("unknown texture opcode");
1720 }
1721
1722 emit_texture(op, dest_type, coordinate, instr->coord_components,
1723 shadow_comparitor, lod, lod2, lod_components, sample_index,
1724 offset, offset_components, mcs, gather_component,
1725 is_cube_array, is_rect, sampler, fs_reg(sampler), texunit);
1726
1727 fs_reg dest = get_nir_dest(instr->dest);
1728 dest.type = this->result.type;
1729 unsigned num_components = nir_tex_instr_dest_size(instr);
1730 emit_percomp(MOV(dest, this->result), (1 << num_components) - 1);
1731 }
1732
1733 void
1734 fs_visitor::nir_emit_load_const(nir_load_const_instr *instr)
1735 {
1736 /* Bail on SSA constant loads. These are used for immediates. */
1737 if (instr->dest.is_ssa)
1738 return;
1739
1740 fs_reg dest = get_nir_dest(instr->dest);
1741 dest.type = BRW_REGISTER_TYPE_UD;
1742 if (instr->array_elems == 0) {
1743 for (unsigned i = 0; i < instr->num_components; i++) {
1744 emit(MOV(dest, fs_reg(instr->value.u[i])));
1745 dest.reg_offset++;
1746 }
1747 } else {
1748 for (unsigned i = 0; i < instr->array_elems; i++) {
1749 for (unsigned j = 0; j < instr->num_components; j++) {
1750 emit(MOV(dest, fs_reg(instr->array[i].u[j])));
1751 dest.reg_offset++;
1752 }
1753 }
1754 }
1755 }
1756
1757 void
1758 fs_visitor::nir_emit_jump(nir_jump_instr *instr)
1759 {
1760 switch (instr->type) {
1761 case nir_jump_break:
1762 emit(BRW_OPCODE_BREAK);
1763 break;
1764 case nir_jump_continue:
1765 emit(BRW_OPCODE_CONTINUE);
1766 break;
1767 case nir_jump_return:
1768 default:
1769 unreachable("unknown jump");
1770 }
1771 }