i965/fs: Implement support for extract_word.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (var->data.index > 0) {
134 assert(var->data.location == FRAG_RESULT_DATA0);
135 assert(var->data.index == 1);
136 this->dual_src_output = reg;
137 this->do_dual_src = true;
138 } else if (var->data.location == FRAG_RESULT_COLOR) {
139 /* Writing gl_FragColor outputs to all color regions. */
140 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
141 this->outputs[i] = reg;
142 this->output_components[i] = 4;
143 }
144 } else if (var->data.location == FRAG_RESULT_DEPTH) {
145 this->frag_depth = reg;
146 } else if (var->data.location == FRAG_RESULT_STENCIL) {
147 this->frag_stencil = reg;
148 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
149 this->sample_mask = reg;
150 } else {
151 int vector_elements = var->type->without_array()->vector_elements;
152
153 /* gl_FragData or a user-defined FS output */
154 assert(var->data.location >= FRAG_RESULT_DATA0 &&
155 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
156
157 /* General color output. */
158 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
159 int output = var->data.location - FRAG_RESULT_DATA0 + i;
160 this->outputs[output] = offset(reg, bld, vector_elements * i);
161 this->output_components[output] = vector_elements;
162 }
163 }
164 break;
165 default:
166 unreachable("unhandled shader stage");
167 }
168 }
169 }
170
171 void
172 fs_visitor::nir_setup_uniforms()
173 {
174 if (dispatch_width != 8)
175 return;
176
177 uniforms = nir->num_uniforms / 4;
178
179 nir_foreach_variable(var, &nir->uniforms) {
180 /* UBO's and atomics don't take up space in the uniform file */
181 if (var->interface_type != NULL || var->type->contains_atomic())
182 continue;
183
184 if (type_size_scalar(var->type) > 0)
185 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
186 }
187 }
188
189 static bool
190 emit_system_values_block(nir_block *block, void *void_visitor)
191 {
192 fs_visitor *v = (fs_visitor *)void_visitor;
193 fs_reg *reg;
194
195 nir_foreach_instr(block, instr) {
196 if (instr->type != nir_instr_type_intrinsic)
197 continue;
198
199 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
200 switch (intrin->intrinsic) {
201 case nir_intrinsic_load_vertex_id:
202 unreachable("should be lowered by lower_vertex_id().");
203
204 case nir_intrinsic_load_vertex_id_zero_base:
205 assert(v->stage == MESA_SHADER_VERTEX);
206 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
207 if (reg->file == BAD_FILE)
208 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
209 break;
210
211 case nir_intrinsic_load_base_vertex:
212 assert(v->stage == MESA_SHADER_VERTEX);
213 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
214 if (reg->file == BAD_FILE)
215 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
216 break;
217
218 case nir_intrinsic_load_instance_id:
219 assert(v->stage == MESA_SHADER_VERTEX);
220 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
221 if (reg->file == BAD_FILE)
222 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
223 break;
224
225 case nir_intrinsic_load_base_instance:
226 assert(v->stage == MESA_SHADER_VERTEX);
227 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
228 if (reg->file == BAD_FILE)
229 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
230 break;
231
232 case nir_intrinsic_load_draw_id:
233 assert(v->stage == MESA_SHADER_VERTEX);
234 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
235 if (reg->file == BAD_FILE)
236 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
237 break;
238
239 case nir_intrinsic_load_invocation_id:
240 assert(v->stage == MESA_SHADER_GEOMETRY);
241 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
242 if (reg->file == BAD_FILE) {
243 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
244 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
245 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
246 abld.SHR(iid, g1, brw_imm_ud(27u));
247 *reg = iid;
248 }
249 break;
250
251 case nir_intrinsic_load_sample_pos:
252 assert(v->stage == MESA_SHADER_FRAGMENT);
253 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
254 if (reg->file == BAD_FILE)
255 *reg = *v->emit_samplepos_setup();
256 break;
257
258 case nir_intrinsic_load_sample_id:
259 assert(v->stage == MESA_SHADER_FRAGMENT);
260 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
261 if (reg->file == BAD_FILE)
262 *reg = *v->emit_sampleid_setup();
263 break;
264
265 case nir_intrinsic_load_sample_mask_in:
266 assert(v->stage == MESA_SHADER_FRAGMENT);
267 assert(v->devinfo->gen >= 7);
268 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
269 if (reg->file == BAD_FILE)
270 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
271 BRW_REGISTER_TYPE_D));
272 break;
273
274 case nir_intrinsic_load_local_invocation_id:
275 assert(v->stage == MESA_SHADER_COMPUTE);
276 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
277 if (reg->file == BAD_FILE)
278 *reg = *v->emit_cs_local_invocation_id_setup();
279 break;
280
281 case nir_intrinsic_load_work_group_id:
282 assert(v->stage == MESA_SHADER_COMPUTE);
283 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
284 if (reg->file == BAD_FILE)
285 *reg = *v->emit_cs_work_group_id_setup();
286 break;
287
288 case nir_intrinsic_load_helper_invocation:
289 assert(v->stage == MESA_SHADER_FRAGMENT);
290 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
291 if (reg->file == BAD_FILE) {
292 const fs_builder abld =
293 v->bld.annotate("gl_HelperInvocation", NULL);
294
295 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
296 * pixel mask is in g1.7 of the thread payload.
297 *
298 * We move the per-channel pixel enable bit to the low bit of each
299 * channel by shifting the byte containing the pixel mask by the
300 * vector immediate 0x76543210UV.
301 *
302 * The region of <1,8,0> reads only 1 byte (the pixel masks for
303 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
304 * masks for 2 and 3) in SIMD16.
305 */
306 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
307 abld.SHR(shifted,
308 stride(byte_offset(retype(brw_vec1_grf(1, 0),
309 BRW_REGISTER_TYPE_UB), 28),
310 1, 8, 0),
311 brw_imm_uv(0x76543210));
312
313 /* A set bit in the pixel mask means the channel is enabled, but
314 * that is the opposite of gl_HelperInvocation so we need to invert
315 * the mask.
316 *
317 * The negate source-modifier bit of logical instructions on Gen8+
318 * performs 1's complement negation, so we can use that instead of
319 * a NOT instruction.
320 */
321 fs_reg inverted = negate(shifted);
322 if (v->devinfo->gen < 8) {
323 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
324 abld.NOT(inverted, shifted);
325 }
326
327 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
328 * with 1 and negating.
329 */
330 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
331 abld.AND(anded, inverted, brw_imm_uw(1));
332
333 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
334 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
335 *reg = dst;
336 }
337 break;
338
339 default:
340 break;
341 }
342 }
343
344 return true;
345 }
346
347 void
348 fs_visitor::nir_emit_system_values()
349 {
350 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
351 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
352 nir_system_values[i] = fs_reg();
353 }
354
355 nir_foreach_function(nir, function) {
356 assert(strcmp(function->name, "main") == 0);
357 assert(function->impl);
358 nir_foreach_block(function->impl, emit_system_values_block, this);
359 }
360 }
361
362 void
363 fs_visitor::nir_emit_impl(nir_function_impl *impl)
364 {
365 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
366 for (unsigned i = 0; i < impl->reg_alloc; i++) {
367 nir_locals[i] = fs_reg();
368 }
369
370 foreach_list_typed(nir_register, reg, node, &impl->registers) {
371 unsigned array_elems =
372 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
373 unsigned size = array_elems * reg->num_components;
374 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
375 }
376
377 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
378 impl->ssa_alloc);
379
380 nir_emit_cf_list(&impl->body);
381 }
382
383 void
384 fs_visitor::nir_emit_cf_list(exec_list *list)
385 {
386 exec_list_validate(list);
387 foreach_list_typed(nir_cf_node, node, node, list) {
388 switch (node->type) {
389 case nir_cf_node_if:
390 nir_emit_if(nir_cf_node_as_if(node));
391 break;
392
393 case nir_cf_node_loop:
394 nir_emit_loop(nir_cf_node_as_loop(node));
395 break;
396
397 case nir_cf_node_block:
398 nir_emit_block(nir_cf_node_as_block(node));
399 break;
400
401 default:
402 unreachable("Invalid CFG node block");
403 }
404 }
405 }
406
407 void
408 fs_visitor::nir_emit_if(nir_if *if_stmt)
409 {
410 /* first, put the condition into f0 */
411 fs_inst *inst = bld.MOV(bld.null_reg_d(),
412 retype(get_nir_src(if_stmt->condition),
413 BRW_REGISTER_TYPE_D));
414 inst->conditional_mod = BRW_CONDITIONAL_NZ;
415
416 bld.IF(BRW_PREDICATE_NORMAL);
417
418 nir_emit_cf_list(&if_stmt->then_list);
419
420 /* note: if the else is empty, dead CF elimination will remove it */
421 bld.emit(BRW_OPCODE_ELSE);
422
423 nir_emit_cf_list(&if_stmt->else_list);
424
425 bld.emit(BRW_OPCODE_ENDIF);
426 }
427
428 void
429 fs_visitor::nir_emit_loop(nir_loop *loop)
430 {
431 bld.emit(BRW_OPCODE_DO);
432
433 nir_emit_cf_list(&loop->body);
434
435 bld.emit(BRW_OPCODE_WHILE);
436 }
437
438 void
439 fs_visitor::nir_emit_block(nir_block *block)
440 {
441 nir_foreach_instr(block, instr) {
442 nir_emit_instr(instr);
443 }
444 }
445
446 void
447 fs_visitor::nir_emit_instr(nir_instr *instr)
448 {
449 const fs_builder abld = bld.annotate(NULL, instr);
450
451 switch (instr->type) {
452 case nir_instr_type_alu:
453 nir_emit_alu(abld, nir_instr_as_alu(instr));
454 break;
455
456 case nir_instr_type_intrinsic:
457 switch (stage) {
458 case MESA_SHADER_VERTEX:
459 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
460 break;
461 case MESA_SHADER_TESS_EVAL:
462 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_GEOMETRY:
465 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_FRAGMENT:
468 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_COMPUTE:
471 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 default:
474 unreachable("unsupported shader stage");
475 }
476 break;
477
478 case nir_instr_type_tex:
479 nir_emit_texture(abld, nir_instr_as_tex(instr));
480 break;
481
482 case nir_instr_type_load_const:
483 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
484 break;
485
486 case nir_instr_type_ssa_undef:
487 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
488 break;
489
490 case nir_instr_type_jump:
491 nir_emit_jump(abld, nir_instr_as_jump(instr));
492 break;
493
494 default:
495 unreachable("unknown instruction type");
496 }
497 }
498
499 bool
500 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
501 const fs_reg &result)
502 {
503 if (!instr->src[0].src.is_ssa ||
504 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
505 return false;
506
507 nir_intrinsic_instr *src0 =
508 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
509
510 if (src0->intrinsic != nir_intrinsic_load_front_face)
511 return false;
512
513 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
514 if (!value1 || fabsf(value1->f[0]) != 1.0f)
515 return false;
516
517 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
518 if (!value2 || fabsf(value2->f[0]) != 1.0f)
519 return false;
520
521 fs_reg tmp = vgrf(glsl_type::int_type);
522
523 if (devinfo->gen >= 6) {
524 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
525 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
526
527 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
528 *
529 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
530 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
531 *
532 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
533 *
534 * This negation looks like it's safe in practice, because bits 0:4 will
535 * surely be TRIANGLES
536 */
537
538 if (value1->f[0] == -1.0f) {
539 g0.negate = true;
540 }
541
542 tmp.type = BRW_REGISTER_TYPE_W;
543 tmp.subreg_offset = 2;
544 tmp.stride = 2;
545
546 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
547
548 tmp.type = BRW_REGISTER_TYPE_D;
549 tmp.subreg_offset = 0;
550 tmp.stride = 1;
551 } else {
552 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
553 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
554
555 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
556 *
557 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
558 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
559 *
560 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
561 *
562 * This negation looks like it's safe in practice, because bits 0:4 will
563 * surely be TRIANGLES
564 */
565
566 if (value1->f[0] == -1.0f) {
567 g1_6.negate = true;
568 }
569
570 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
571 }
572 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
573
574 return true;
575 }
576
577 void
578 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
579 {
580 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
581 fs_inst *inst;
582
583 fs_reg result = get_nir_dest(instr->dest.dest);
584 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
585
586 fs_reg op[4];
587 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
588 op[i] = get_nir_src(instr->src[i].src);
589 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
590 op[i].abs = instr->src[i].abs;
591 op[i].negate = instr->src[i].negate;
592 }
593
594 /* We get a bunch of mov's out of the from_ssa pass and they may still
595 * be vectorized. We'll handle them as a special-case. We'll also
596 * handle vecN here because it's basically the same thing.
597 */
598 switch (instr->op) {
599 case nir_op_imov:
600 case nir_op_fmov:
601 case nir_op_vec2:
602 case nir_op_vec3:
603 case nir_op_vec4: {
604 fs_reg temp = result;
605 bool need_extra_copy = false;
606 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
607 if (!instr->src[i].src.is_ssa &&
608 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
609 need_extra_copy = true;
610 temp = bld.vgrf(result.type, 4);
611 break;
612 }
613 }
614
615 for (unsigned i = 0; i < 4; i++) {
616 if (!(instr->dest.write_mask & (1 << i)))
617 continue;
618
619 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
620 inst = bld.MOV(offset(temp, bld, i),
621 offset(op[0], bld, instr->src[0].swizzle[i]));
622 } else {
623 inst = bld.MOV(offset(temp, bld, i),
624 offset(op[i], bld, instr->src[i].swizzle[0]));
625 }
626 inst->saturate = instr->dest.saturate;
627 }
628
629 /* In this case the source and destination registers were the same,
630 * so we need to insert an extra set of moves in order to deal with
631 * any swizzling.
632 */
633 if (need_extra_copy) {
634 for (unsigned i = 0; i < 4; i++) {
635 if (!(instr->dest.write_mask & (1 << i)))
636 continue;
637
638 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
639 }
640 }
641 return;
642 }
643 default:
644 break;
645 }
646
647 /* At this point, we have dealt with any instruction that operates on
648 * more than a single channel. Therefore, we can just adjust the source
649 * and destination registers for that channel and emit the instruction.
650 */
651 unsigned channel = 0;
652 if (nir_op_infos[instr->op].output_size == 0) {
653 /* Since NIR is doing the scalarizing for us, we should only ever see
654 * vectorized operations with a single channel.
655 */
656 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
657 channel = ffs(instr->dest.write_mask) - 1;
658
659 result = offset(result, bld, channel);
660 }
661
662 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
663 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
664 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
665 }
666
667 switch (instr->op) {
668 case nir_op_i2f:
669 case nir_op_u2f:
670 inst = bld.MOV(result, op[0]);
671 inst->saturate = instr->dest.saturate;
672 break;
673
674 case nir_op_f2i:
675 case nir_op_f2u:
676 bld.MOV(result, op[0]);
677 break;
678
679 case nir_op_fsign: {
680 /* AND(val, 0x80000000) gives the sign bit.
681 *
682 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
683 * zero.
684 */
685 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
686
687 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
688 op[0].type = BRW_REGISTER_TYPE_UD;
689 result.type = BRW_REGISTER_TYPE_UD;
690 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
691
692 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
693 inst->predicate = BRW_PREDICATE_NORMAL;
694 if (instr->dest.saturate) {
695 inst = bld.MOV(result, result);
696 inst->saturate = true;
697 }
698 break;
699 }
700
701 case nir_op_isign:
702 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
703 * -> non-negative val generates 0x00000000.
704 * Predicated OR sets 1 if val is positive.
705 */
706 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
707 bld.ASR(result, op[0], brw_imm_d(31));
708 inst = bld.OR(result, result, brw_imm_d(1));
709 inst->predicate = BRW_PREDICATE_NORMAL;
710 break;
711
712 case nir_op_frcp:
713 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
714 inst->saturate = instr->dest.saturate;
715 break;
716
717 case nir_op_fexp2:
718 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
719 inst->saturate = instr->dest.saturate;
720 break;
721
722 case nir_op_flog2:
723 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
724 inst->saturate = instr->dest.saturate;
725 break;
726
727 case nir_op_fsin:
728 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
729 inst->saturate = instr->dest.saturate;
730 break;
731
732 case nir_op_fcos:
733 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
734 inst->saturate = instr->dest.saturate;
735 break;
736
737 case nir_op_fddx:
738 if (fs_key->high_quality_derivatives) {
739 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
740 } else {
741 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
742 }
743 inst->saturate = instr->dest.saturate;
744 break;
745 case nir_op_fddx_fine:
746 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddx_coarse:
750 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
751 inst->saturate = instr->dest.saturate;
752 break;
753 case nir_op_fddy:
754 if (fs_key->high_quality_derivatives) {
755 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
756 brw_imm_d(fs_key->render_to_fbo));
757 } else {
758 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
759 brw_imm_d(fs_key->render_to_fbo));
760 }
761 inst->saturate = instr->dest.saturate;
762 break;
763 case nir_op_fddy_fine:
764 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
765 brw_imm_d(fs_key->render_to_fbo));
766 inst->saturate = instr->dest.saturate;
767 break;
768 case nir_op_fddy_coarse:
769 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
770 brw_imm_d(fs_key->render_to_fbo));
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_fadd:
775 case nir_op_iadd:
776 inst = bld.ADD(result, op[0], op[1]);
777 inst->saturate = instr->dest.saturate;
778 break;
779
780 case nir_op_fmul:
781 inst = bld.MUL(result, op[0], op[1]);
782 inst->saturate = instr->dest.saturate;
783 break;
784
785 case nir_op_imul:
786 bld.MUL(result, op[0], op[1]);
787 break;
788
789 case nir_op_imul_high:
790 case nir_op_umul_high:
791 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
792 break;
793
794 case nir_op_idiv:
795 case nir_op_udiv:
796 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
797 break;
798
799 case nir_op_uadd_carry:
800 unreachable("Should have been lowered by carry_to_arith().");
801
802 case nir_op_usub_borrow:
803 unreachable("Should have been lowered by borrow_to_arith().");
804
805 case nir_op_umod:
806 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
807 break;
808
809 case nir_op_flt:
810 case nir_op_ilt:
811 case nir_op_ult:
812 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
813 break;
814
815 case nir_op_fge:
816 case nir_op_ige:
817 case nir_op_uge:
818 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
819 break;
820
821 case nir_op_feq:
822 case nir_op_ieq:
823 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
824 break;
825
826 case nir_op_fne:
827 case nir_op_ine:
828 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
829 break;
830
831 case nir_op_inot:
832 if (devinfo->gen >= 8) {
833 op[0] = resolve_source_modifiers(op[0]);
834 }
835 bld.NOT(result, op[0]);
836 break;
837 case nir_op_ixor:
838 if (devinfo->gen >= 8) {
839 op[0] = resolve_source_modifiers(op[0]);
840 op[1] = resolve_source_modifiers(op[1]);
841 }
842 bld.XOR(result, op[0], op[1]);
843 break;
844 case nir_op_ior:
845 if (devinfo->gen >= 8) {
846 op[0] = resolve_source_modifiers(op[0]);
847 op[1] = resolve_source_modifiers(op[1]);
848 }
849 bld.OR(result, op[0], op[1]);
850 break;
851 case nir_op_iand:
852 if (devinfo->gen >= 8) {
853 op[0] = resolve_source_modifiers(op[0]);
854 op[1] = resolve_source_modifiers(op[1]);
855 }
856 bld.AND(result, op[0], op[1]);
857 break;
858
859 case nir_op_fdot2:
860 case nir_op_fdot3:
861 case nir_op_fdot4:
862 case nir_op_ball_fequal2:
863 case nir_op_ball_iequal2:
864 case nir_op_ball_fequal3:
865 case nir_op_ball_iequal3:
866 case nir_op_ball_fequal4:
867 case nir_op_ball_iequal4:
868 case nir_op_bany_fnequal2:
869 case nir_op_bany_inequal2:
870 case nir_op_bany_fnequal3:
871 case nir_op_bany_inequal3:
872 case nir_op_bany_fnequal4:
873 case nir_op_bany_inequal4:
874 unreachable("Lowered by nir_lower_alu_reductions");
875
876 case nir_op_fnoise1_1:
877 case nir_op_fnoise1_2:
878 case nir_op_fnoise1_3:
879 case nir_op_fnoise1_4:
880 case nir_op_fnoise2_1:
881 case nir_op_fnoise2_2:
882 case nir_op_fnoise2_3:
883 case nir_op_fnoise2_4:
884 case nir_op_fnoise3_1:
885 case nir_op_fnoise3_2:
886 case nir_op_fnoise3_3:
887 case nir_op_fnoise3_4:
888 case nir_op_fnoise4_1:
889 case nir_op_fnoise4_2:
890 case nir_op_fnoise4_3:
891 case nir_op_fnoise4_4:
892 unreachable("not reached: should be handled by lower_noise");
893
894 case nir_op_ldexp:
895 unreachable("not reached: should be handled by ldexp_to_arith()");
896
897 case nir_op_fsqrt:
898 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
899 inst->saturate = instr->dest.saturate;
900 break;
901
902 case nir_op_frsq:
903 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
904 inst->saturate = instr->dest.saturate;
905 break;
906
907 case nir_op_b2i:
908 case nir_op_b2f:
909 bld.MOV(result, negate(op[0]));
910 break;
911
912 case nir_op_f2b:
913 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
914 break;
915 case nir_op_i2b:
916 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
917 break;
918
919 case nir_op_ftrunc:
920 inst = bld.RNDZ(result, op[0]);
921 inst->saturate = instr->dest.saturate;
922 break;
923
924 case nir_op_fceil: {
925 op[0].negate = !op[0].negate;
926 fs_reg temp = vgrf(glsl_type::float_type);
927 bld.RNDD(temp, op[0]);
928 temp.negate = true;
929 inst = bld.MOV(result, temp);
930 inst->saturate = instr->dest.saturate;
931 break;
932 }
933 case nir_op_ffloor:
934 inst = bld.RNDD(result, op[0]);
935 inst->saturate = instr->dest.saturate;
936 break;
937 case nir_op_ffract:
938 inst = bld.FRC(result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941 case nir_op_fround_even:
942 inst = bld.RNDE(result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945
946 case nir_op_fmin:
947 case nir_op_imin:
948 case nir_op_umin:
949 if (devinfo->gen >= 6) {
950 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
951 inst->conditional_mod = BRW_CONDITIONAL_L;
952 } else {
953 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
954 inst = bld.SEL(result, op[0], op[1]);
955 inst->predicate = BRW_PREDICATE_NORMAL;
956 }
957 inst->saturate = instr->dest.saturate;
958 break;
959
960 case nir_op_fmax:
961 case nir_op_imax:
962 case nir_op_umax:
963 if (devinfo->gen >= 6) {
964 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
965 inst->conditional_mod = BRW_CONDITIONAL_GE;
966 } else {
967 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
968 inst = bld.SEL(result, op[0], op[1]);
969 inst->predicate = BRW_PREDICATE_NORMAL;
970 }
971 inst->saturate = instr->dest.saturate;
972 break;
973
974 case nir_op_pack_snorm_2x16:
975 case nir_op_pack_snorm_4x8:
976 case nir_op_pack_unorm_2x16:
977 case nir_op_pack_unorm_4x8:
978 case nir_op_unpack_snorm_2x16:
979 case nir_op_unpack_snorm_4x8:
980 case nir_op_unpack_unorm_2x16:
981 case nir_op_unpack_unorm_4x8:
982 case nir_op_unpack_half_2x16:
983 case nir_op_pack_half_2x16:
984 unreachable("not reached: should be handled by lower_packing_builtins");
985
986 case nir_op_unpack_half_2x16_split_x:
987 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
988 inst->saturate = instr->dest.saturate;
989 break;
990 case nir_op_unpack_half_2x16_split_y:
991 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
992 inst->saturate = instr->dest.saturate;
993 break;
994
995 case nir_op_fpow:
996 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
997 inst->saturate = instr->dest.saturate;
998 break;
999
1000 case nir_op_bitfield_reverse:
1001 bld.BFREV(result, op[0]);
1002 break;
1003
1004 case nir_op_bit_count:
1005 bld.CBIT(result, op[0]);
1006 break;
1007
1008 case nir_op_ufind_msb:
1009 case nir_op_ifind_msb: {
1010 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1011
1012 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1013 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1014 * subtract the result from 31 to convert the MSB count into an LSB count.
1015 */
1016 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1017
1018 inst = bld.ADD(result, result, brw_imm_d(31));
1019 inst->predicate = BRW_PREDICATE_NORMAL;
1020 inst->src[0].negate = true;
1021 break;
1022 }
1023
1024 case nir_op_find_lsb:
1025 bld.FBL(result, op[0]);
1026 break;
1027
1028 case nir_op_ubitfield_extract:
1029 case nir_op_ibitfield_extract:
1030 unreachable("should have been lowered");
1031 case nir_op_ubfe:
1032 case nir_op_ibfe:
1033 bld.BFE(result, op[2], op[1], op[0]);
1034 break;
1035 case nir_op_bfm:
1036 bld.BFI1(result, op[0], op[1]);
1037 break;
1038 case nir_op_bfi:
1039 bld.BFI2(result, op[0], op[1], op[2]);
1040 break;
1041
1042 case nir_op_bitfield_insert:
1043 unreachable("not reached: should have been lowered");
1044
1045 case nir_op_ishl:
1046 bld.SHL(result, op[0], op[1]);
1047 break;
1048 case nir_op_ishr:
1049 bld.ASR(result, op[0], op[1]);
1050 break;
1051 case nir_op_ushr:
1052 bld.SHR(result, op[0], op[1]);
1053 break;
1054
1055 case nir_op_pack_half_2x16_split:
1056 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1057 break;
1058
1059 case nir_op_ffma:
1060 inst = bld.MAD(result, op[2], op[1], op[0]);
1061 inst->saturate = instr->dest.saturate;
1062 break;
1063
1064 case nir_op_flrp:
1065 inst = bld.LRP(result, op[0], op[1], op[2]);
1066 inst->saturate = instr->dest.saturate;
1067 break;
1068
1069 case nir_op_bcsel:
1070 if (optimize_frontfacing_ternary(instr, result))
1071 return;
1072
1073 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1074 inst = bld.SEL(result, op[1], op[2]);
1075 inst->predicate = BRW_PREDICATE_NORMAL;
1076 break;
1077
1078 case nir_op_extract_ubyte:
1079 case nir_op_extract_ibyte: {
1080 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1081 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1082 result, op[0], brw_imm_ud(byte->u[0]));
1083 break;
1084 }
1085
1086 case nir_op_extract_uword:
1087 case nir_op_extract_iword: {
1088 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1089 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1090 result, op[0], brw_imm_ud(word->u[0]));
1091 break;
1092 }
1093
1094 default:
1095 unreachable("unhandled instruction");
1096 }
1097
1098 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1099 * to sign extend the low bit to 0/~0
1100 */
1101 if (devinfo->gen <= 5 &&
1102 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1103 fs_reg masked = vgrf(glsl_type::int_type);
1104 bld.AND(masked, result, brw_imm_d(1));
1105 masked.negate = true;
1106 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1107 }
1108 }
1109
1110 void
1111 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1112 nir_load_const_instr *instr)
1113 {
1114 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1115
1116 for (unsigned i = 0; i < instr->def.num_components; i++)
1117 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1118
1119 nir_ssa_values[instr->def.index] = reg;
1120 }
1121
1122 void
1123 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1124 {
1125 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1126 instr->def.num_components);
1127 }
1128
1129 fs_reg
1130 fs_visitor::get_nir_src(nir_src src)
1131 {
1132 fs_reg reg;
1133 if (src.is_ssa) {
1134 reg = nir_ssa_values[src.ssa->index];
1135 } else {
1136 /* We don't handle indirects on locals */
1137 assert(src.reg.indirect == NULL);
1138 reg = offset(nir_locals[src.reg.reg->index], bld,
1139 src.reg.base_offset * src.reg.reg->num_components);
1140 }
1141
1142 /* to avoid floating-point denorm flushing problems, set the type by
1143 * default to D - instructions that need floating point semantics will set
1144 * this to F if they need to
1145 */
1146 return retype(reg, BRW_REGISTER_TYPE_D);
1147 }
1148
1149 fs_reg
1150 fs_visitor::get_nir_dest(nir_dest dest)
1151 {
1152 if (dest.is_ssa) {
1153 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1154 dest.ssa.num_components);
1155 return nir_ssa_values[dest.ssa.index];
1156 } else {
1157 /* We don't handle indirects on locals */
1158 assert(dest.reg.indirect == NULL);
1159 return offset(nir_locals[dest.reg.reg->index], bld,
1160 dest.reg.base_offset * dest.reg.reg->num_components);
1161 }
1162 }
1163
1164 fs_reg
1165 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1166 {
1167 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1168 BRW_REGISTER_TYPE_UD);
1169
1170 for (const nir_deref *tail = &deref->deref; tail->child;
1171 tail = tail->child) {
1172 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1173 assert(tail->child->deref_type == nir_deref_type_array);
1174 const unsigned size = glsl_get_length(tail->type);
1175 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1176 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1177 image = offset(image, bld, base * element_size);
1178
1179 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1180 fs_reg tmp = vgrf(glsl_type::int_type);
1181
1182 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1183 /* IVB hangs when trying to access an invalid surface index with
1184 * the dataport. According to the spec "if the index used to
1185 * select an individual element is negative or greater than or
1186 * equal to the size of the array, the results of the operation
1187 * are undefined but may not lead to termination" -- which is one
1188 * of the possible outcomes of the hang. Clamp the index to
1189 * prevent access outside of the array bounds.
1190 */
1191 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1192 BRW_REGISTER_TYPE_UD),
1193 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1194 } else {
1195 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1196 }
1197
1198 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1199 if (image.reladdr)
1200 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1201 else
1202 image.reladdr = new(mem_ctx) fs_reg(tmp);
1203 }
1204 }
1205
1206 return image;
1207 }
1208
1209 void
1210 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1211 unsigned wr_mask)
1212 {
1213 for (unsigned i = 0; i < 4; i++) {
1214 if (!((wr_mask >> i) & 1))
1215 continue;
1216
1217 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1218 new_inst->dst = offset(new_inst->dst, bld, i);
1219 for (unsigned j = 0; j < new_inst->sources; j++)
1220 if (new_inst->src[j].file == VGRF)
1221 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1222
1223 bld.emit(new_inst);
1224 }
1225 }
1226
1227 /**
1228 * Get the matching channel register datatype for an image intrinsic of the
1229 * specified GLSL image type.
1230 */
1231 static brw_reg_type
1232 get_image_base_type(const glsl_type *type)
1233 {
1234 switch ((glsl_base_type)type->sampler_type) {
1235 case GLSL_TYPE_UINT:
1236 return BRW_REGISTER_TYPE_UD;
1237 case GLSL_TYPE_INT:
1238 return BRW_REGISTER_TYPE_D;
1239 case GLSL_TYPE_FLOAT:
1240 return BRW_REGISTER_TYPE_F;
1241 default:
1242 unreachable("Not reached.");
1243 }
1244 }
1245
1246 /**
1247 * Get the appropriate atomic op for an image atomic intrinsic.
1248 */
1249 static unsigned
1250 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1251 {
1252 switch (op) {
1253 case nir_intrinsic_image_atomic_add:
1254 return BRW_AOP_ADD;
1255 case nir_intrinsic_image_atomic_min:
1256 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1257 BRW_AOP_IMIN : BRW_AOP_UMIN);
1258 case nir_intrinsic_image_atomic_max:
1259 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1260 BRW_AOP_IMAX : BRW_AOP_UMAX);
1261 case nir_intrinsic_image_atomic_and:
1262 return BRW_AOP_AND;
1263 case nir_intrinsic_image_atomic_or:
1264 return BRW_AOP_OR;
1265 case nir_intrinsic_image_atomic_xor:
1266 return BRW_AOP_XOR;
1267 case nir_intrinsic_image_atomic_exchange:
1268 return BRW_AOP_MOV;
1269 case nir_intrinsic_image_atomic_comp_swap:
1270 return BRW_AOP_CMPWR;
1271 default:
1272 unreachable("Not reachable.");
1273 }
1274 }
1275
1276 static fs_inst *
1277 emit_pixel_interpolater_send(const fs_builder &bld,
1278 enum opcode opcode,
1279 const fs_reg &dst,
1280 const fs_reg &src,
1281 const fs_reg &desc,
1282 glsl_interp_qualifier interpolation)
1283 {
1284 fs_inst *inst;
1285 fs_reg payload;
1286 int mlen;
1287
1288 if (src.file == BAD_FILE) {
1289 /* Dummy payload */
1290 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1291 mlen = 1;
1292 } else {
1293 payload = src;
1294 mlen = 2 * bld.dispatch_width() / 8;
1295 }
1296
1297 inst = bld.emit(opcode, dst, payload, desc);
1298 inst->mlen = mlen;
1299 /* 2 floats per slot returned */
1300 inst->regs_written = 2 * bld.dispatch_width() / 8;
1301 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1302
1303 return inst;
1304 }
1305
1306 /**
1307 * Computes 1 << x, given a D/UD register containing some value x.
1308 */
1309 static fs_reg
1310 intexp2(const fs_builder &bld, const fs_reg &x)
1311 {
1312 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1313
1314 fs_reg result = bld.vgrf(x.type, 1);
1315 fs_reg one = bld.vgrf(x.type, 1);
1316
1317 bld.MOV(one, retype(brw_imm_d(1), one.type));
1318 bld.SHL(result, one, x);
1319 return result;
1320 }
1321
1322 void
1323 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1324 {
1325 assert(stage == MESA_SHADER_GEOMETRY);
1326
1327 struct brw_gs_prog_data *gs_prog_data =
1328 (struct brw_gs_prog_data *) prog_data;
1329
1330 /* We can only do EndPrimitive() functionality when the control data
1331 * consists of cut bits. Fortunately, the only time it isn't is when the
1332 * output type is points, in which case EndPrimitive() is a no-op.
1333 */
1334 if (gs_prog_data->control_data_format !=
1335 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1336 return;
1337 }
1338
1339 /* Cut bits use one bit per vertex. */
1340 assert(gs_compile->control_data_bits_per_vertex == 1);
1341
1342 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1343 vertex_count.type = BRW_REGISTER_TYPE_UD;
1344
1345 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1346 * vertex n, 0 otherwise. So all we need to do here is mark bit
1347 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1348 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1349 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1350 *
1351 * Note that if EndPrimitive() is called before emitting any vertices, this
1352 * will cause us to set bit 31 of the control_data_bits register to 1.
1353 * That's fine because:
1354 *
1355 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1356 * output, so the hardware will ignore cut bit 31.
1357 *
1358 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1359 * last vertex, so setting cut bit 31 has no effect (since the primitive
1360 * is automatically ended when the GS terminates).
1361 *
1362 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1363 * control_data_bits register to 0 when the first vertex is emitted.
1364 */
1365
1366 const fs_builder abld = bld.annotate("end primitive");
1367
1368 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1369 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1370 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1371 fs_reg mask = intexp2(abld, prev_count);
1372 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1373 * attention to the lower 5 bits of its second source argument, so on this
1374 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1375 * ((vertex_count - 1) % 32).
1376 */
1377 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1378 }
1379
1380 void
1381 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1382 {
1383 assert(stage == MESA_SHADER_GEOMETRY);
1384 assert(gs_compile->control_data_bits_per_vertex != 0);
1385
1386 struct brw_gs_prog_data *gs_prog_data =
1387 (struct brw_gs_prog_data *) prog_data;
1388
1389 const fs_builder abld = bld.annotate("emit control data bits");
1390 const fs_builder fwa_bld = bld.exec_all();
1391
1392 /* We use a single UD register to accumulate control data bits (32 bits
1393 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1394 * at a time.
1395 *
1396 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1397 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1398 * use the Channel Mask phase to enable/disable which DWord within that
1399 * group to write. (Remember, different SIMD8 channels may have emitted
1400 * different numbers of vertices, so we may need per-slot offsets.)
1401 *
1402 * Channel masking presents an annoying problem: we may have to replicate
1403 * the data up to 4 times:
1404 *
1405 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1406 *
1407 * To avoid penalizing shaders that emit a small number of vertices, we
1408 * can avoid these sometimes: if the size of the control data header is
1409 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1410 * land in the same 128-bit group, so we can skip per-slot offsets.
1411 *
1412 * Similarly, if the control data header is <= 32 bits, there is only one
1413 * DWord, so we can skip channel masks.
1414 */
1415 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1416
1417 fs_reg channel_mask, per_slot_offset;
1418
1419 if (gs_compile->control_data_header_size_bits > 32) {
1420 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1421 channel_mask = vgrf(glsl_type::uint_type);
1422 }
1423
1424 if (gs_compile->control_data_header_size_bits > 128) {
1425 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1426 per_slot_offset = vgrf(glsl_type::uint_type);
1427 }
1428
1429 /* Figure out which DWord we're trying to write to using the formula:
1430 *
1431 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1432 *
1433 * Since bits_per_vertex is a power of two, and is known at compile
1434 * time, this can be optimized to:
1435 *
1436 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1437 */
1438 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1439 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1440 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1441 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1442 unsigned log2_bits_per_vertex =
1443 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1444 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1445
1446 if (per_slot_offset.file != BAD_FILE) {
1447 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1448 * the appropriate OWord within the control data header.
1449 */
1450 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1451 }
1452
1453 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1454 * write to the appropriate DWORD within the OWORD.
1455 */
1456 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1457 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1458 channel_mask = intexp2(fwa_bld, channel);
1459 /* Then the channel masks need to be in bits 23:16. */
1460 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1461 }
1462
1463 /* Store the control data bits in the message payload and send it. */
1464 int mlen = 2;
1465 if (channel_mask.file != BAD_FILE)
1466 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1467 if (per_slot_offset.file != BAD_FILE)
1468 mlen++;
1469
1470 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1471 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1472 int i = 0;
1473 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1474 if (per_slot_offset.file != BAD_FILE)
1475 sources[i++] = per_slot_offset;
1476 if (channel_mask.file != BAD_FILE)
1477 sources[i++] = channel_mask;
1478 while (i < mlen) {
1479 sources[i++] = this->control_data_bits;
1480 }
1481
1482 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1483 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1484 inst->mlen = mlen;
1485 /* We need to increment Global Offset by 256-bits to make room for
1486 * Broadwell's extra "Vertex Count" payload at the beginning of the
1487 * URB entry. Since this is an OWord message, Global Offset is counted
1488 * in 128-bit units, so we must set it to 2.
1489 */
1490 if (gs_prog_data->static_vertex_count == -1)
1491 inst->offset = 2;
1492 }
1493
1494 void
1495 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1496 unsigned stream_id)
1497 {
1498 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1499
1500 /* Note: we are calling this *before* increasing vertex_count, so
1501 * this->vertex_count == vertex_count - 1 in the formula above.
1502 */
1503
1504 /* Stream mode uses 2 bits per vertex */
1505 assert(gs_compile->control_data_bits_per_vertex == 2);
1506
1507 /* Must be a valid stream */
1508 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1509
1510 /* Control data bits are initialized to 0 so we don't have to set any
1511 * bits when sending vertices to stream 0.
1512 */
1513 if (stream_id == 0)
1514 return;
1515
1516 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1517
1518 /* reg::sid = stream_id */
1519 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1520 abld.MOV(sid, brw_imm_ud(stream_id));
1521
1522 /* reg:shift_count = 2 * (vertex_count - 1) */
1523 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1524 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1525
1526 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1527 * attention to the lower 5 bits of its second source argument, so on this
1528 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1529 * stream_id << ((2 * (vertex_count - 1)) % 32).
1530 */
1531 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1532 abld.SHL(mask, sid, shift_count);
1533 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1534 }
1535
1536 void
1537 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1538 unsigned stream_id)
1539 {
1540 assert(stage == MESA_SHADER_GEOMETRY);
1541
1542 struct brw_gs_prog_data *gs_prog_data =
1543 (struct brw_gs_prog_data *) prog_data;
1544
1545 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1546 vertex_count.type = BRW_REGISTER_TYPE_UD;
1547
1548 /* Haswell and later hardware ignores the "Render Stream Select" bits
1549 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1550 * and instead sends all primitives down the pipeline for rasterization.
1551 * If the SOL stage is enabled, "Render Stream Select" is honored and
1552 * primitives bound to non-zero streams are discarded after stream output.
1553 *
1554 * Since the only purpose of primives sent to non-zero streams is to
1555 * be recorded by transform feedback, we can simply discard all geometry
1556 * bound to these streams when transform feedback is disabled.
1557 */
1558 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1559 return;
1560
1561 /* If we're outputting 32 control data bits or less, then we can wait
1562 * until the shader is over to output them all. Otherwise we need to
1563 * output them as we go. Now is the time to do it, since we're about to
1564 * output the vertex_count'th vertex, so it's guaranteed that the
1565 * control data bits associated with the (vertex_count - 1)th vertex are
1566 * correct.
1567 */
1568 if (gs_compile->control_data_header_size_bits > 32) {
1569 const fs_builder abld =
1570 bld.annotate("emit vertex: emit control data bits");
1571
1572 /* Only emit control data bits if we've finished accumulating a batch
1573 * of 32 bits. This is the case when:
1574 *
1575 * (vertex_count * bits_per_vertex) % 32 == 0
1576 *
1577 * (in other words, when the last 5 bits of vertex_count *
1578 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1579 * integer n (which is always the case, since bits_per_vertex is
1580 * always 1 or 2), this is equivalent to requiring that the last 5-n
1581 * bits of vertex_count are 0:
1582 *
1583 * vertex_count & (2^(5-n) - 1) == 0
1584 *
1585 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1586 * equivalent to:
1587 *
1588 * vertex_count & (32 / bits_per_vertex - 1) == 0
1589 *
1590 * TODO: If vertex_count is an immediate, we could do some of this math
1591 * at compile time...
1592 */
1593 fs_inst *inst =
1594 abld.AND(bld.null_reg_d(), vertex_count,
1595 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1596 inst->conditional_mod = BRW_CONDITIONAL_Z;
1597
1598 abld.IF(BRW_PREDICATE_NORMAL);
1599 /* If vertex_count is 0, then no control data bits have been
1600 * accumulated yet, so we can skip emitting them.
1601 */
1602 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1603 BRW_CONDITIONAL_NEQ);
1604 abld.IF(BRW_PREDICATE_NORMAL);
1605 emit_gs_control_data_bits(vertex_count);
1606 abld.emit(BRW_OPCODE_ENDIF);
1607
1608 /* Reset control_data_bits to 0 so we can start accumulating a new
1609 * batch.
1610 *
1611 * Note: in the case where vertex_count == 0, this neutralizes the
1612 * effect of any call to EndPrimitive() that the shader may have
1613 * made before outputting its first vertex.
1614 */
1615 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1616 inst->force_writemask_all = true;
1617 abld.emit(BRW_OPCODE_ENDIF);
1618 }
1619
1620 emit_urb_writes(vertex_count);
1621
1622 /* In stream mode we have to set control data bits for all vertices
1623 * unless we have disabled control data bits completely (which we do
1624 * do for GL_POINTS outputs that don't use streams).
1625 */
1626 if (gs_compile->control_data_header_size_bits > 0 &&
1627 gs_prog_data->control_data_format ==
1628 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1629 set_gs_stream_control_data_bits(vertex_count, stream_id);
1630 }
1631 }
1632
1633 void
1634 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1635 const nir_src &vertex_src,
1636 unsigned base_offset,
1637 const nir_src &offset_src,
1638 unsigned num_components)
1639 {
1640 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1641
1642 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1643 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1644 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1645
1646 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1647 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1648 * gl_PointSize is available as a GS input, however, so it must be that.
1649 */
1650 const bool is_point_size = (base_offset == 0);
1651
1652 if (offset_const != NULL && vertex_const != NULL &&
1653 4 * (base_offset + offset_const->u[0]) < push_reg_count) {
1654 int imm_offset = (base_offset + offset_const->u[0]) * 4 +
1655 vertex_const->u[0] * push_reg_count;
1656 /* This input was pushed into registers. */
1657 if (is_point_size) {
1658 /* gl_PointSize comes in .w */
1659 assert(imm_offset == 0);
1660 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1661 } else {
1662 for (unsigned i = 0; i < num_components; i++) {
1663 bld.MOV(offset(dst, bld, i),
1664 fs_reg(ATTR, imm_offset + i, dst.type));
1665 }
1666 }
1667 } else {
1668 /* Resort to the pull model. Ensure the VUE handles are provided. */
1669 gs_prog_data->base.include_vue_handles = true;
1670
1671 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1672 fs_reg icp_handle;
1673
1674 if (vertex_const) {
1675 /* The vertex index is constant; just select the proper URB handle. */
1676 icp_handle =
1677 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1678 BRW_REGISTER_TYPE_UD);
1679 } else {
1680 /* The vertex index is non-constant. We need to use indirect
1681 * addressing to fetch the proper URB handle.
1682 *
1683 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1684 * indicating that channel <n> should read the handle from
1685 * DWord <n>. We convert that to bytes by multiplying by 4.
1686 *
1687 * Next, we convert the vertex index to bytes by multiplying
1688 * by 32 (shifting by 5), and add the two together. This is
1689 * the final indirect byte offset.
1690 */
1691 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1692 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1693 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1694 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1695 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1696
1697 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1698 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1699 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1700 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1701 /* Convert vertex_index to bytes (multiply by 32) */
1702 bld.SHL(vertex_offset_bytes,
1703 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1704 brw_imm_ud(5u));
1705 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1706
1707 /* Use first_icp_handle as the base offset. There is one register
1708 * of URB handles per vertex, so inform the register allocator that
1709 * we might read up to nir->info.gs.vertices_in registers.
1710 */
1711 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1712 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1713 fs_reg(icp_offset_bytes),
1714 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1715 }
1716
1717 fs_inst *inst;
1718 if (offset_const) {
1719 /* Constant indexing - use global offset. */
1720 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1721 inst->offset = base_offset + offset_const->u[0];
1722 inst->base_mrf = -1;
1723 inst->mlen = 1;
1724 inst->regs_written = num_components;
1725 } else {
1726 /* Indirect indexing - use per-slot offsets as well. */
1727 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1728 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1729 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1730
1731 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1732 inst->offset = base_offset;
1733 inst->base_mrf = -1;
1734 inst->mlen = 2;
1735 inst->regs_written = num_components;
1736 }
1737
1738 if (is_point_size) {
1739 /* Read the whole VUE header (because of alignment) and read .w. */
1740 fs_reg tmp = bld.vgrf(dst.type, 4);
1741 inst->dst = tmp;
1742 inst->regs_written = 4;
1743 bld.MOV(dst, offset(tmp, bld, 3));
1744 }
1745 }
1746 }
1747
1748 fs_reg
1749 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1750 {
1751 nir_src *offset_src = nir_get_io_offset_src(instr);
1752 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1753
1754 if (const_value) {
1755 /* The only constant offset we should find is 0. brw_nir.c's
1756 * add_const_offset_to_base() will fold other constant offsets
1757 * into instr->const_index[0].
1758 */
1759 assert(const_value->u[0] == 0);
1760 return fs_reg();
1761 }
1762
1763 return get_nir_src(*offset_src);
1764 }
1765
1766 void
1767 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1768 nir_intrinsic_instr *instr)
1769 {
1770 assert(stage == MESA_SHADER_VERTEX);
1771
1772 fs_reg dest;
1773 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1774 dest = get_nir_dest(instr->dest);
1775
1776 switch (instr->intrinsic) {
1777 case nir_intrinsic_load_vertex_id:
1778 unreachable("should be lowered by lower_vertex_id()");
1779
1780 case nir_intrinsic_load_vertex_id_zero_base:
1781 case nir_intrinsic_load_base_vertex:
1782 case nir_intrinsic_load_instance_id:
1783 case nir_intrinsic_load_base_instance:
1784 case nir_intrinsic_load_draw_id: {
1785 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1786 fs_reg val = nir_system_values[sv];
1787 assert(val.file != BAD_FILE);
1788 dest.type = val.type;
1789 bld.MOV(dest, val);
1790 break;
1791 }
1792
1793 default:
1794 nir_emit_intrinsic(bld, instr);
1795 break;
1796 }
1797 }
1798
1799 void
1800 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1801 nir_intrinsic_instr *instr)
1802 {
1803 assert(stage == MESA_SHADER_TESS_EVAL);
1804 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1805
1806 fs_reg dest;
1807 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1808 dest = get_nir_dest(instr->dest);
1809
1810 switch (instr->intrinsic) {
1811 case nir_intrinsic_load_primitive_id:
1812 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1813 break;
1814 case nir_intrinsic_load_tess_coord:
1815 /* gl_TessCoord is part of the payload in g1-3 */
1816 for (unsigned i = 0; i < 3; i++) {
1817 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1818 }
1819 break;
1820
1821 case nir_intrinsic_load_tess_level_outer:
1822 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1823 * appears as a push-model input. So, we can simply use the ATTR file
1824 * rather than issuing URB read messages. The data is stored in the
1825 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1826 * .y, and so on.
1827 */
1828 switch (tes_prog_data->domain) {
1829 case BRW_TESS_DOMAIN_QUAD:
1830 for (unsigned i = 0; i < 4; i++)
1831 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1832 break;
1833 case BRW_TESS_DOMAIN_TRI:
1834 for (unsigned i = 0; i < 3; i++)
1835 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1836 break;
1837 case BRW_TESS_DOMAIN_ISOLINE:
1838 for (unsigned i = 0; i < 2; i++)
1839 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1840 break;
1841 }
1842 break;
1843
1844 case nir_intrinsic_load_tess_level_inner:
1845 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1846 * appears as a push-model input. So, we can simply use the ATTR file
1847 * rather than issuing URB read messages.
1848 */
1849 switch (tes_prog_data->domain) {
1850 case BRW_TESS_DOMAIN_QUAD:
1851 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1852 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1853 break;
1854 case BRW_TESS_DOMAIN_TRI:
1855 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1856 break;
1857 case BRW_TESS_DOMAIN_ISOLINE:
1858 /* ignore - value is undefined */
1859 break;
1860 }
1861 break;
1862
1863 case nir_intrinsic_load_input:
1864 case nir_intrinsic_load_per_vertex_input: {
1865 fs_reg indirect_offset = get_indirect_offset(instr);
1866 unsigned imm_offset = instr->const_index[0];
1867
1868 fs_inst *inst;
1869 if (indirect_offset.file == BAD_FILE) {
1870 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1871 * which is 16 registers (since each holds 2 vec4 slots).
1872 */
1873 const unsigned max_push_slots = 32;
1874 if (imm_offset < max_push_slots) {
1875 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1876 for (int i = 0; i < instr->num_components; i++) {
1877 bld.MOV(offset(dest, bld, i),
1878 component(src, 4 * (imm_offset % 2) + i));
1879 }
1880 tes_prog_data->base.urb_read_length =
1881 MAX2(tes_prog_data->base.urb_read_length,
1882 DIV_ROUND_UP(imm_offset + 1, 2));
1883 } else {
1884 /* Replicate the patch handle to all enabled channels */
1885 const fs_reg srcs[] = {
1886 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1887 };
1888 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1889 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1890
1891 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1892 inst->mlen = 1;
1893 inst->offset = imm_offset;
1894 inst->base_mrf = -1;
1895 inst->regs_written = instr->num_components;
1896 }
1897 } else {
1898 /* Indirect indexing - use per-slot offsets as well. */
1899 const fs_reg srcs[] = {
1900 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1901 indirect_offset
1902 };
1903 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1904 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1905
1906 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1907 inst->mlen = 2;
1908 inst->offset = imm_offset;
1909 inst->base_mrf = -1;
1910 inst->regs_written = instr->num_components;
1911 }
1912 break;
1913 }
1914 default:
1915 nir_emit_intrinsic(bld, instr);
1916 break;
1917 }
1918 }
1919
1920 void
1921 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1922 nir_intrinsic_instr *instr)
1923 {
1924 assert(stage == MESA_SHADER_GEOMETRY);
1925 fs_reg indirect_offset;
1926
1927 fs_reg dest;
1928 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1929 dest = get_nir_dest(instr->dest);
1930
1931 switch (instr->intrinsic) {
1932 case nir_intrinsic_load_primitive_id:
1933 assert(stage == MESA_SHADER_GEOMETRY);
1934 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
1935 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
1936 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
1937 break;
1938
1939 case nir_intrinsic_load_input:
1940 unreachable("load_input intrinsics are invalid for the GS stage");
1941
1942 case nir_intrinsic_load_per_vertex_input:
1943 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
1944 instr->src[1], instr->num_components);
1945 break;
1946
1947 case nir_intrinsic_emit_vertex_with_counter:
1948 emit_gs_vertex(instr->src[0], instr->const_index[0]);
1949 break;
1950
1951 case nir_intrinsic_end_primitive_with_counter:
1952 emit_gs_end_primitive(instr->src[0]);
1953 break;
1954
1955 case nir_intrinsic_set_vertex_count:
1956 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
1957 break;
1958
1959 case nir_intrinsic_load_invocation_id: {
1960 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
1961 assert(val.file != BAD_FILE);
1962 dest.type = val.type;
1963 bld.MOV(dest, val);
1964 break;
1965 }
1966
1967 default:
1968 nir_emit_intrinsic(bld, instr);
1969 break;
1970 }
1971 }
1972
1973 void
1974 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
1975 nir_intrinsic_instr *instr)
1976 {
1977 assert(stage == MESA_SHADER_FRAGMENT);
1978 struct brw_wm_prog_data *wm_prog_data =
1979 (struct brw_wm_prog_data *) prog_data;
1980
1981 fs_reg dest;
1982 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1983 dest = get_nir_dest(instr->dest);
1984
1985 switch (instr->intrinsic) {
1986 case nir_intrinsic_load_front_face:
1987 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1988 *emit_frontfacing_interpolation());
1989 break;
1990
1991 case nir_intrinsic_load_sample_pos: {
1992 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1993 assert(sample_pos.file != BAD_FILE);
1994 dest.type = sample_pos.type;
1995 bld.MOV(dest, sample_pos);
1996 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1997 break;
1998 }
1999
2000 case nir_intrinsic_load_helper_invocation:
2001 case nir_intrinsic_load_sample_mask_in:
2002 case nir_intrinsic_load_sample_id: {
2003 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2004 fs_reg val = nir_system_values[sv];
2005 assert(val.file != BAD_FILE);
2006 dest.type = val.type;
2007 bld.MOV(dest, val);
2008 break;
2009 }
2010
2011 case nir_intrinsic_discard:
2012 case nir_intrinsic_discard_if: {
2013 /* We track our discarded pixels in f0.1. By predicating on it, we can
2014 * update just the flag bits that aren't yet discarded. If there's no
2015 * condition, we emit a CMP of g0 != g0, so all currently executing
2016 * channels will get turned off.
2017 */
2018 fs_inst *cmp;
2019 if (instr->intrinsic == nir_intrinsic_discard_if) {
2020 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2021 brw_imm_d(0), BRW_CONDITIONAL_Z);
2022 } else {
2023 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2024 BRW_REGISTER_TYPE_UW));
2025 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2026 }
2027 cmp->predicate = BRW_PREDICATE_NORMAL;
2028 cmp->flag_subreg = 1;
2029
2030 if (devinfo->gen >= 6) {
2031 emit_discard_jump();
2032 }
2033 break;
2034 }
2035
2036 case nir_intrinsic_interp_var_at_centroid:
2037 case nir_intrinsic_interp_var_at_sample:
2038 case nir_intrinsic_interp_var_at_offset: {
2039 /* Handle ARB_gpu_shader5 interpolation intrinsics
2040 *
2041 * It's worth a quick word of explanation as to why we handle the full
2042 * variable-based interpolation intrinsic rather than a lowered version
2043 * with like we do for other inputs. We have to do that because the way
2044 * we set up inputs doesn't allow us to use the already setup inputs for
2045 * interpolation. At the beginning of the shader, we go through all of
2046 * the input variables and do the initial interpolation and put it in
2047 * the nir_inputs array based on its location as determined in
2048 * nir_lower_io. If the input isn't used, dead code cleans up and
2049 * everything works fine. However, when we get to the ARB_gpu_shader5
2050 * interpolation intrinsics, we need to reinterpolate the input
2051 * differently. If we used an intrinsic that just had an index it would
2052 * only give us the offset into the nir_inputs array. However, this is
2053 * useless because that value is post-interpolation and we need
2054 * pre-interpolation. In order to get the actual location of the bits
2055 * we get from the vertex fetching hardware, we need the variable.
2056 */
2057 wm_prog_data->pulls_bary = true;
2058
2059 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2060 const glsl_interp_qualifier interpolation =
2061 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2062
2063 switch (instr->intrinsic) {
2064 case nir_intrinsic_interp_var_at_centroid:
2065 emit_pixel_interpolater_send(bld,
2066 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2067 dst_xy,
2068 fs_reg(), /* src */
2069 brw_imm_ud(0u),
2070 interpolation);
2071 break;
2072
2073 case nir_intrinsic_interp_var_at_sample: {
2074 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2075
2076 if (const_sample) {
2077 unsigned msg_data = const_sample->i[0] << 4;
2078
2079 emit_pixel_interpolater_send(bld,
2080 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2081 dst_xy,
2082 fs_reg(), /* src */
2083 brw_imm_ud(msg_data),
2084 interpolation);
2085 } else {
2086 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2087 BRW_REGISTER_TYPE_UD);
2088
2089 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2090 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2091 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2092 bld.exec_all().group(1, 0)
2093 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2094 emit_pixel_interpolater_send(bld,
2095 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2096 dst_xy,
2097 fs_reg(), /* src */
2098 msg_data,
2099 interpolation);
2100 } else {
2101 /* Make a loop that sends a message to the pixel interpolater
2102 * for the sample number in each live channel. If there are
2103 * multiple channels with the same sample number then these
2104 * will be handled simultaneously with a single interation of
2105 * the loop.
2106 */
2107 bld.emit(BRW_OPCODE_DO);
2108
2109 /* Get the next live sample number into sample_id_reg */
2110 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2111
2112 /* Set the flag register so that we can perform the send
2113 * message on all channels that have the same sample number
2114 */
2115 bld.CMP(bld.null_reg_ud(),
2116 sample_src, sample_id,
2117 BRW_CONDITIONAL_EQ);
2118 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2119 bld.exec_all().group(1, 0)
2120 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2121 fs_inst *inst =
2122 emit_pixel_interpolater_send(bld,
2123 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2124 dst_xy,
2125 fs_reg(), /* src */
2126 msg_data,
2127 interpolation);
2128 set_predicate(BRW_PREDICATE_NORMAL, inst);
2129
2130 /* Continue the loop if there are any live channels left */
2131 set_predicate_inv(BRW_PREDICATE_NORMAL,
2132 true, /* inverse */
2133 bld.emit(BRW_OPCODE_WHILE));
2134 }
2135 }
2136
2137 break;
2138 }
2139
2140 case nir_intrinsic_interp_var_at_offset: {
2141 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2142
2143 if (const_offset) {
2144 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
2145 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
2146
2147 emit_pixel_interpolater_send(bld,
2148 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2149 dst_xy,
2150 fs_reg(), /* src */
2151 brw_imm_ud(off_x | (off_y << 4)),
2152 interpolation);
2153 } else {
2154 fs_reg src = vgrf(glsl_type::ivec2_type);
2155 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2156 BRW_REGISTER_TYPE_F);
2157 for (int i = 0; i < 2; i++) {
2158 fs_reg temp = vgrf(glsl_type::float_type);
2159 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2160 fs_reg itemp = vgrf(glsl_type::int_type);
2161 bld.MOV(itemp, temp); /* float to int */
2162
2163 /* Clamp the upper end of the range to +7/16.
2164 * ARB_gpu_shader5 requires that we support a maximum offset
2165 * of +0.5, which isn't representable in a S0.4 value -- if
2166 * we didn't clamp it, we'd end up with -8/16, which is the
2167 * opposite of what the shader author wanted.
2168 *
2169 * This is legal due to ARB_gpu_shader5's quantization
2170 * rules:
2171 *
2172 * "Not all values of <offset> may be supported; x and y
2173 * offsets may be rounded to fixed-point values with the
2174 * number of fraction bits given by the
2175 * implementation-dependent constant
2176 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2177 */
2178 set_condmod(BRW_CONDITIONAL_L,
2179 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2180 }
2181
2182 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2183 emit_pixel_interpolater_send(bld,
2184 opcode,
2185 dst_xy,
2186 src,
2187 brw_imm_ud(0u),
2188 interpolation);
2189 }
2190 break;
2191 }
2192
2193 default:
2194 unreachable("Invalid intrinsic");
2195 }
2196
2197 for (unsigned j = 0; j < instr->num_components; j++) {
2198 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2199 src.type = dest.type;
2200
2201 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2202 dest = offset(dest, bld, 1);
2203 }
2204 break;
2205 }
2206 default:
2207 nir_emit_intrinsic(bld, instr);
2208 break;
2209 }
2210 }
2211
2212 void
2213 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2214 nir_intrinsic_instr *instr)
2215 {
2216 assert(stage == MESA_SHADER_COMPUTE);
2217 struct brw_cs_prog_data *cs_prog_data =
2218 (struct brw_cs_prog_data *) prog_data;
2219
2220 fs_reg dest;
2221 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2222 dest = get_nir_dest(instr->dest);
2223
2224 switch (instr->intrinsic) {
2225 case nir_intrinsic_barrier:
2226 emit_barrier();
2227 cs_prog_data->uses_barrier = true;
2228 break;
2229
2230 case nir_intrinsic_load_local_invocation_id:
2231 case nir_intrinsic_load_work_group_id: {
2232 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2233 fs_reg val = nir_system_values[sv];
2234 assert(val.file != BAD_FILE);
2235 dest.type = val.type;
2236 for (unsigned i = 0; i < 3; i++)
2237 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2238 break;
2239 }
2240
2241 case nir_intrinsic_load_num_work_groups: {
2242 const unsigned surface =
2243 cs_prog_data->binding_table.work_groups_start;
2244
2245 cs_prog_data->uses_num_work_groups = true;
2246
2247 fs_reg surf_index = brw_imm_ud(surface);
2248 brw_mark_surface_used(prog_data, surface);
2249
2250 /* Read the 3 GLuint components of gl_NumWorkGroups */
2251 for (unsigned i = 0; i < 3; i++) {
2252 fs_reg read_result =
2253 emit_untyped_read(bld, surf_index,
2254 brw_imm_ud(i << 2),
2255 1 /* dims */, 1 /* size */,
2256 BRW_PREDICATE_NONE);
2257 read_result.type = dest.type;
2258 bld.MOV(dest, read_result);
2259 dest = offset(dest, bld, 1);
2260 }
2261 break;
2262 }
2263
2264 case nir_intrinsic_shared_atomic_add:
2265 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2266 break;
2267 case nir_intrinsic_shared_atomic_imin:
2268 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2269 break;
2270 case nir_intrinsic_shared_atomic_umin:
2271 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2272 break;
2273 case nir_intrinsic_shared_atomic_imax:
2274 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2275 break;
2276 case nir_intrinsic_shared_atomic_umax:
2277 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2278 break;
2279 case nir_intrinsic_shared_atomic_and:
2280 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2281 break;
2282 case nir_intrinsic_shared_atomic_or:
2283 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2284 break;
2285 case nir_intrinsic_shared_atomic_xor:
2286 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2287 break;
2288 case nir_intrinsic_shared_atomic_exchange:
2289 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2290 break;
2291 case nir_intrinsic_shared_atomic_comp_swap:
2292 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2293 break;
2294
2295 default:
2296 nir_emit_intrinsic(bld, instr);
2297 break;
2298 }
2299 }
2300
2301 void
2302 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2303 {
2304 fs_reg dest;
2305 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2306 dest = get_nir_dest(instr->dest);
2307
2308 switch (instr->intrinsic) {
2309 case nir_intrinsic_atomic_counter_inc:
2310 case nir_intrinsic_atomic_counter_dec:
2311 case nir_intrinsic_atomic_counter_read: {
2312 using namespace surface_access;
2313
2314 /* Get the arguments of the atomic intrinsic. */
2315 const fs_reg offset = get_nir_src(instr->src[0]);
2316 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2317 instr->const_index[0]);
2318 fs_reg tmp;
2319
2320 /* Emit a surface read or atomic op. */
2321 switch (instr->intrinsic) {
2322 case nir_intrinsic_atomic_counter_read:
2323 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2324 break;
2325
2326 case nir_intrinsic_atomic_counter_inc:
2327 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2328 fs_reg(), 1, 1, BRW_AOP_INC);
2329 break;
2330
2331 case nir_intrinsic_atomic_counter_dec:
2332 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2333 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2334 break;
2335
2336 default:
2337 unreachable("Unreachable");
2338 }
2339
2340 /* Assign the result. */
2341 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2342
2343 /* Mark the surface as used. */
2344 brw_mark_surface_used(stage_prog_data, surface);
2345 break;
2346 }
2347
2348 case nir_intrinsic_image_load:
2349 case nir_intrinsic_image_store:
2350 case nir_intrinsic_image_atomic_add:
2351 case nir_intrinsic_image_atomic_min:
2352 case nir_intrinsic_image_atomic_max:
2353 case nir_intrinsic_image_atomic_and:
2354 case nir_intrinsic_image_atomic_or:
2355 case nir_intrinsic_image_atomic_xor:
2356 case nir_intrinsic_image_atomic_exchange:
2357 case nir_intrinsic_image_atomic_comp_swap: {
2358 using namespace image_access;
2359
2360 /* Get the referenced image variable and type. */
2361 const nir_variable *var = instr->variables[0]->var;
2362 const glsl_type *type = var->type->without_array();
2363 const brw_reg_type base_type = get_image_base_type(type);
2364
2365 /* Get some metadata from the image intrinsic. */
2366 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2367 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2368 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2369 const mesa_format format =
2370 (var->data.image.write_only ? MESA_FORMAT_NONE :
2371 _mesa_get_shader_image_format(var->data.image.format));
2372
2373 /* Get the arguments of the image intrinsic. */
2374 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2375 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2376 BRW_REGISTER_TYPE_UD);
2377 const fs_reg src0 = (info->num_srcs >= 3 ?
2378 retype(get_nir_src(instr->src[2]), base_type) :
2379 fs_reg());
2380 const fs_reg src1 = (info->num_srcs >= 4 ?
2381 retype(get_nir_src(instr->src[3]), base_type) :
2382 fs_reg());
2383 fs_reg tmp;
2384
2385 /* Emit an image load, store or atomic op. */
2386 if (instr->intrinsic == nir_intrinsic_image_load)
2387 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2388
2389 else if (instr->intrinsic == nir_intrinsic_image_store)
2390 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2391
2392 else
2393 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2394 surf_dims, arr_dims, info->dest_components,
2395 get_image_atomic_op(instr->intrinsic, type));
2396
2397 /* Assign the result. */
2398 for (unsigned c = 0; c < info->dest_components; ++c)
2399 bld.MOV(offset(retype(dest, base_type), bld, c),
2400 offset(tmp, bld, c));
2401 break;
2402 }
2403
2404 case nir_intrinsic_memory_barrier_atomic_counter:
2405 case nir_intrinsic_memory_barrier_buffer:
2406 case nir_intrinsic_memory_barrier_image:
2407 case nir_intrinsic_memory_barrier: {
2408 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2409 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2410 ->regs_written = 2;
2411 break;
2412 }
2413
2414 case nir_intrinsic_group_memory_barrier:
2415 case nir_intrinsic_memory_barrier_shared:
2416 /* We treat these workgroup-level barriers as no-ops. This should be
2417 * safe at present and as long as:
2418 *
2419 * - Memory access instructions are not subsequently reordered by the
2420 * compiler back-end.
2421 *
2422 * - All threads from a given compute shader workgroup fit within a
2423 * single subslice and therefore talk to the same HDC shared unit
2424 * what supposedly guarantees ordering and coherency between threads
2425 * from the same workgroup. This may change in the future when we
2426 * start splitting workgroups across multiple subslices.
2427 *
2428 * - The context is not in fault-and-stream mode, which could cause
2429 * memory transactions (including to SLM) prior to the barrier to be
2430 * replayed after the barrier if a pagefault occurs. This shouldn't
2431 * be a problem up to and including SKL because fault-and-stream is
2432 * not usable due to hardware issues, but that's likely to change in
2433 * the future.
2434 */
2435 break;
2436
2437 case nir_intrinsic_shader_clock: {
2438 /* We cannot do anything if there is an event, so ignore it for now */
2439 fs_reg shader_clock = get_timestamp(bld);
2440 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2441
2442 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2443 break;
2444 }
2445
2446 case nir_intrinsic_image_size: {
2447 /* Get the referenced image variable and type. */
2448 const nir_variable *var = instr->variables[0]->var;
2449 const glsl_type *type = var->type->without_array();
2450
2451 /* Get the size of the image. */
2452 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2453 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2454
2455 /* For 1DArray image types, the array index is stored in the Z component.
2456 * Fix this by swizzling the Z component to the Y component.
2457 */
2458 const bool is_1d_array_image =
2459 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2460 type->sampler_array;
2461
2462 /* For CubeArray images, we should count the number of cubes instead
2463 * of the number of faces. Fix it by dividing the (Z component) by 6.
2464 */
2465 const bool is_cube_array_image =
2466 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2467 type->sampler_array;
2468
2469 /* Copy all the components. */
2470 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2471 for (unsigned c = 0; c < info->dest_components; ++c) {
2472 if ((int)c >= type->coordinate_components()) {
2473 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2474 brw_imm_d(1));
2475 } else if (c == 1 && is_1d_array_image) {
2476 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2477 offset(size, bld, 2));
2478 } else if (c == 2 && is_cube_array_image) {
2479 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2480 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2481 offset(size, bld, c), brw_imm_d(6));
2482 } else {
2483 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2484 offset(size, bld, c));
2485 }
2486 }
2487
2488 break;
2489 }
2490
2491 case nir_intrinsic_image_samples:
2492 /* The driver does not support multi-sampled images. */
2493 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2494 break;
2495
2496 case nir_intrinsic_load_uniform: {
2497 /* Offsets are in bytes but they should always be multiples of 4 */
2498 assert(instr->const_index[0] % 4 == 0);
2499
2500 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2501
2502 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2503 if (const_offset) {
2504 /* Offsets are in bytes but they should always be multiples of 4 */
2505 assert(const_offset->u[0] % 4 == 0);
2506 src.reg_offset = const_offset->u[0] / 4;
2507 } else {
2508 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2509 }
2510
2511 for (unsigned j = 0; j < instr->num_components; j++) {
2512 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2513 }
2514 break;
2515 }
2516
2517 case nir_intrinsic_load_ubo: {
2518 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2519 fs_reg surf_index;
2520
2521 if (const_index) {
2522 const unsigned index = stage_prog_data->binding_table.ubo_start +
2523 const_index->u[0];
2524 surf_index = brw_imm_ud(index);
2525 brw_mark_surface_used(prog_data, index);
2526 } else {
2527 /* The block index is not a constant. Evaluate the index expression
2528 * per-channel and add the base UBO index; we have to select a value
2529 * from any live channel.
2530 */
2531 surf_index = vgrf(glsl_type::uint_type);
2532 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2533 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2534 surf_index = bld.emit_uniformize(surf_index);
2535
2536 /* Assume this may touch any UBO. It would be nice to provide
2537 * a tighter bound, but the array information is already lowered away.
2538 */
2539 brw_mark_surface_used(prog_data,
2540 stage_prog_data->binding_table.ubo_start +
2541 nir->info.num_ubos - 1);
2542 }
2543
2544 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2545 if (const_offset == NULL) {
2546 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2547 BRW_REGISTER_TYPE_D);
2548
2549 for (int i = 0; i < instr->num_components; i++)
2550 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2551 base_offset, i * 4);
2552 } else {
2553 fs_reg packed_consts = vgrf(glsl_type::float_type);
2554 packed_consts.type = dest.type;
2555
2556 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u[0] & ~15);
2557 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2558 surf_index, const_offset_reg);
2559
2560 for (unsigned i = 0; i < instr->num_components; i++) {
2561 packed_consts.set_smear(const_offset->u[0] % 16 / 4 + i);
2562
2563 /* The std140 packing rules don't allow vectors to cross 16-byte
2564 * boundaries, and a reg is 32 bytes.
2565 */
2566 assert(packed_consts.subreg_offset < 32);
2567
2568 bld.MOV(dest, packed_consts);
2569 dest = offset(dest, bld, 1);
2570 }
2571 }
2572 break;
2573 }
2574
2575 case nir_intrinsic_load_ssbo: {
2576 assert(devinfo->gen >= 7);
2577
2578 nir_const_value *const_uniform_block =
2579 nir_src_as_const_value(instr->src[0]);
2580
2581 fs_reg surf_index;
2582 if (const_uniform_block) {
2583 unsigned index = stage_prog_data->binding_table.ssbo_start +
2584 const_uniform_block->u[0];
2585 surf_index = brw_imm_ud(index);
2586 brw_mark_surface_used(prog_data, index);
2587 } else {
2588 surf_index = vgrf(glsl_type::uint_type);
2589 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2590 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2591
2592 /* Assume this may touch any UBO. It would be nice to provide
2593 * a tighter bound, but the array information is already lowered away.
2594 */
2595 brw_mark_surface_used(prog_data,
2596 stage_prog_data->binding_table.ssbo_start +
2597 nir->info.num_ssbos - 1);
2598 }
2599
2600 fs_reg offset_reg;
2601 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2602 if (const_offset) {
2603 offset_reg = brw_imm_ud(const_offset->u[0]);
2604 } else {
2605 offset_reg = get_nir_src(instr->src[1]);
2606 }
2607
2608 /* Read the vector */
2609 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2610 1 /* dims */,
2611 instr->num_components,
2612 BRW_PREDICATE_NONE);
2613 read_result.type = dest.type;
2614 for (int i = 0; i < instr->num_components; i++)
2615 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2616
2617 break;
2618 }
2619
2620 case nir_intrinsic_load_shared: {
2621 assert(devinfo->gen >= 7);
2622
2623 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2624
2625 /* Get the offset to read from */
2626 fs_reg offset_reg;
2627 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2628 if (const_offset) {
2629 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0]);
2630 } else {
2631 offset_reg = vgrf(glsl_type::uint_type);
2632 bld.ADD(offset_reg,
2633 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2634 brw_imm_ud(instr->const_index[0]));
2635 }
2636
2637 /* Read the vector */
2638 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2639 1 /* dims */,
2640 instr->num_components,
2641 BRW_PREDICATE_NONE);
2642 read_result.type = dest.type;
2643 for (int i = 0; i < instr->num_components; i++)
2644 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2645
2646 break;
2647 }
2648
2649 case nir_intrinsic_store_shared: {
2650 assert(devinfo->gen >= 7);
2651
2652 /* Block index */
2653 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2654
2655 /* Value */
2656 fs_reg val_reg = get_nir_src(instr->src[0]);
2657
2658 /* Writemask */
2659 unsigned writemask = instr->const_index[1];
2660
2661 /* Combine groups of consecutive enabled channels in one write
2662 * message. We use ffs to find the first enabled channel and then ffs on
2663 * the bit-inverse, down-shifted writemask to determine the length of
2664 * the block of enabled bits.
2665 */
2666 while (writemask) {
2667 unsigned first_component = ffs(writemask) - 1;
2668 unsigned length = ffs(~(writemask >> first_component)) - 1;
2669 fs_reg offset_reg;
2670
2671 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2672 if (const_offset) {
2673 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0] +
2674 4 * first_component);
2675 } else {
2676 offset_reg = vgrf(glsl_type::uint_type);
2677 bld.ADD(offset_reg,
2678 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2679 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2680 }
2681
2682 emit_untyped_write(bld, surf_index, offset_reg,
2683 offset(val_reg, bld, first_component),
2684 1 /* dims */, length,
2685 BRW_PREDICATE_NONE);
2686
2687 /* Clear the bits in the writemask that we just wrote, then try
2688 * again to see if more channels are left.
2689 */
2690 writemask &= (15 << (first_component + length));
2691 }
2692
2693 break;
2694 }
2695
2696 case nir_intrinsic_load_input: {
2697 fs_reg src;
2698 if (stage == MESA_SHADER_VERTEX) {
2699 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2700 } else {
2701 src = offset(retype(nir_inputs, dest.type), bld,
2702 instr->const_index[0]);
2703 }
2704
2705 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2706 assert(const_offset && "Indirect input loads not allowed");
2707 src = offset(src, bld, const_offset->u[0]);
2708
2709 for (unsigned j = 0; j < instr->num_components; j++) {
2710 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2711 }
2712 break;
2713 }
2714
2715 case nir_intrinsic_store_ssbo: {
2716 assert(devinfo->gen >= 7);
2717
2718 /* Block index */
2719 fs_reg surf_index;
2720 nir_const_value *const_uniform_block =
2721 nir_src_as_const_value(instr->src[1]);
2722 if (const_uniform_block) {
2723 unsigned index = stage_prog_data->binding_table.ssbo_start +
2724 const_uniform_block->u[0];
2725 surf_index = brw_imm_ud(index);
2726 brw_mark_surface_used(prog_data, index);
2727 } else {
2728 surf_index = vgrf(glsl_type::uint_type);
2729 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2730 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2731
2732 brw_mark_surface_used(prog_data,
2733 stage_prog_data->binding_table.ssbo_start +
2734 nir->info.num_ssbos - 1);
2735 }
2736
2737 /* Value */
2738 fs_reg val_reg = get_nir_src(instr->src[0]);
2739
2740 /* Writemask */
2741 unsigned writemask = instr->const_index[0];
2742
2743 /* Combine groups of consecutive enabled channels in one write
2744 * message. We use ffs to find the first enabled channel and then ffs on
2745 * the bit-inverse, down-shifted writemask to determine the length of
2746 * the block of enabled bits.
2747 */
2748 while (writemask) {
2749 unsigned first_component = ffs(writemask) - 1;
2750 unsigned length = ffs(~(writemask >> first_component)) - 1;
2751
2752 fs_reg offset_reg;
2753 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2754 if (const_offset) {
2755 offset_reg = brw_imm_ud(const_offset->u[0] + 4 * first_component);
2756 } else {
2757 offset_reg = vgrf(glsl_type::uint_type);
2758 bld.ADD(offset_reg,
2759 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2760 brw_imm_ud(4 * first_component));
2761 }
2762
2763 emit_untyped_write(bld, surf_index, offset_reg,
2764 offset(val_reg, bld, first_component),
2765 1 /* dims */, length,
2766 BRW_PREDICATE_NONE);
2767
2768 /* Clear the bits in the writemask that we just wrote, then try
2769 * again to see if more channels are left.
2770 */
2771 writemask &= (15 << (first_component + length));
2772 }
2773 break;
2774 }
2775
2776 case nir_intrinsic_store_output: {
2777 fs_reg src = get_nir_src(instr->src[0]);
2778 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2779 instr->const_index[0]);
2780
2781 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2782 assert(const_offset && "Indirect output stores not allowed");
2783 new_dest = offset(new_dest, bld, const_offset->u[0]);
2784
2785 for (unsigned j = 0; j < instr->num_components; j++) {
2786 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2787 }
2788 break;
2789 }
2790
2791 case nir_intrinsic_ssbo_atomic_add:
2792 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2793 break;
2794 case nir_intrinsic_ssbo_atomic_imin:
2795 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2796 break;
2797 case nir_intrinsic_ssbo_atomic_umin:
2798 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2799 break;
2800 case nir_intrinsic_ssbo_atomic_imax:
2801 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2802 break;
2803 case nir_intrinsic_ssbo_atomic_umax:
2804 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2805 break;
2806 case nir_intrinsic_ssbo_atomic_and:
2807 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2808 break;
2809 case nir_intrinsic_ssbo_atomic_or:
2810 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2811 break;
2812 case nir_intrinsic_ssbo_atomic_xor:
2813 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2814 break;
2815 case nir_intrinsic_ssbo_atomic_exchange:
2816 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2817 break;
2818 case nir_intrinsic_ssbo_atomic_comp_swap:
2819 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2820 break;
2821
2822 case nir_intrinsic_get_buffer_size: {
2823 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2824 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2825 int reg_width = dispatch_width / 8;
2826
2827 /* Set LOD = 0 */
2828 fs_reg source = brw_imm_d(0);
2829
2830 int mlen = 1 * reg_width;
2831
2832 /* A resinfo's sampler message is used to get the buffer size.
2833 * The SIMD8's writeback message consists of four registers and
2834 * SIMD16's writeback message consists of 8 destination registers
2835 * (two per each component), although we are only interested on the
2836 * first component, where resinfo returns the buffer size for
2837 * SURFTYPE_BUFFER.
2838 */
2839 int regs_written = 4 * mlen;
2840 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2841 BRW_REGISTER_TYPE_UD);
2842 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2843 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2844 BRW_REGISTER_TYPE_UD);
2845 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2846 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2847 src_payload, brw_imm_ud(index));
2848 inst->header_size = 0;
2849 inst->mlen = mlen;
2850 inst->regs_written = regs_written;
2851 bld.emit(inst);
2852 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2853
2854 brw_mark_surface_used(prog_data, index);
2855 break;
2856 }
2857
2858 default:
2859 unreachable("unknown intrinsic");
2860 }
2861 }
2862
2863 void
2864 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2865 int op, nir_intrinsic_instr *instr)
2866 {
2867 fs_reg dest;
2868 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2869 dest = get_nir_dest(instr->dest);
2870
2871 fs_reg surface;
2872 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2873 if (const_surface) {
2874 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2875 const_surface->u[0];
2876 surface = brw_imm_ud(surf_index);
2877 brw_mark_surface_used(prog_data, surf_index);
2878 } else {
2879 surface = vgrf(glsl_type::uint_type);
2880 bld.ADD(surface, get_nir_src(instr->src[0]),
2881 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2882
2883 /* Assume this may touch any SSBO. This is the same we do for other
2884 * UBO/SSBO accesses with non-constant surface.
2885 */
2886 brw_mark_surface_used(prog_data,
2887 stage_prog_data->binding_table.ssbo_start +
2888 nir->info.num_ssbos - 1);
2889 }
2890
2891 fs_reg offset = get_nir_src(instr->src[1]);
2892 fs_reg data1 = get_nir_src(instr->src[2]);
2893 fs_reg data2;
2894 if (op == BRW_AOP_CMPWR)
2895 data2 = get_nir_src(instr->src[3]);
2896
2897 /* Emit the actual atomic operation operation */
2898
2899 fs_reg atomic_result =
2900 surface_access::emit_untyped_atomic(bld, surface, offset,
2901 data1, data2,
2902 1 /* dims */, 1 /* rsize */,
2903 op,
2904 BRW_PREDICATE_NONE);
2905 dest.type = atomic_result.type;
2906 bld.MOV(dest, atomic_result);
2907 }
2908
2909 void
2910 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
2911 int op, nir_intrinsic_instr *instr)
2912 {
2913 fs_reg dest;
2914 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2915 dest = get_nir_dest(instr->dest);
2916
2917 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
2918 fs_reg offset = get_nir_src(instr->src[0]);
2919 fs_reg data1 = get_nir_src(instr->src[1]);
2920 fs_reg data2;
2921 if (op == BRW_AOP_CMPWR)
2922 data2 = get_nir_src(instr->src[2]);
2923
2924 /* Emit the actual atomic operation operation */
2925
2926 fs_reg atomic_result =
2927 surface_access::emit_untyped_atomic(bld, surface, offset,
2928 data1, data2,
2929 1 /* dims */, 1 /* rsize */,
2930 op,
2931 BRW_PREDICATE_NONE);
2932 dest.type = atomic_result.type;
2933 bld.MOV(dest, atomic_result);
2934 }
2935
2936 void
2937 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
2938 {
2939 unsigned sampler = instr->sampler_index;
2940 fs_reg sampler_reg(brw_imm_ud(sampler));
2941
2942 int gather_component = instr->component;
2943
2944 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
2945 instr->is_array;
2946
2947 int lod_components = 0;
2948 int UNUSED offset_components = 0;
2949
2950 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
2951
2952 for (unsigned i = 0; i < instr->num_srcs; i++) {
2953 fs_reg src = get_nir_src(instr->src[i].src);
2954 switch (instr->src[i].src_type) {
2955 case nir_tex_src_bias:
2956 lod = retype(src, BRW_REGISTER_TYPE_F);
2957 break;
2958 case nir_tex_src_comparitor:
2959 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
2960 break;
2961 case nir_tex_src_coord:
2962 switch (instr->op) {
2963 case nir_texop_txf:
2964 case nir_texop_txf_ms:
2965 case nir_texop_samples_identical:
2966 coordinate = retype(src, BRW_REGISTER_TYPE_D);
2967 break;
2968 default:
2969 coordinate = retype(src, BRW_REGISTER_TYPE_F);
2970 break;
2971 }
2972 break;
2973 case nir_tex_src_ddx:
2974 lod = retype(src, BRW_REGISTER_TYPE_F);
2975 lod_components = nir_tex_instr_src_size(instr, i);
2976 break;
2977 case nir_tex_src_ddy:
2978 lod2 = retype(src, BRW_REGISTER_TYPE_F);
2979 break;
2980 case nir_tex_src_lod:
2981 switch (instr->op) {
2982 case nir_texop_txs:
2983 lod = retype(src, BRW_REGISTER_TYPE_UD);
2984 break;
2985 case nir_texop_txf:
2986 lod = retype(src, BRW_REGISTER_TYPE_D);
2987 break;
2988 default:
2989 lod = retype(src, BRW_REGISTER_TYPE_F);
2990 break;
2991 }
2992 break;
2993 case nir_tex_src_ms_index:
2994 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
2995 break;
2996 case nir_tex_src_offset:
2997 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
2998 if (instr->is_array)
2999 offset_components = instr->coord_components - 1;
3000 else
3001 offset_components = instr->coord_components;
3002 break;
3003 case nir_tex_src_projector:
3004 unreachable("should be lowered");
3005
3006 case nir_tex_src_sampler_offset: {
3007 /* Figure out the highest possible sampler index and mark it as used */
3008 uint32_t max_used = sampler + instr->sampler_array_size - 1;
3009 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3010 max_used += stage_prog_data->binding_table.gather_texture_start;
3011 } else {
3012 max_used += stage_prog_data->binding_table.texture_start;
3013 }
3014 brw_mark_surface_used(prog_data, max_used);
3015
3016 /* Emit code to evaluate the actual indexing expression */
3017 sampler_reg = vgrf(glsl_type::uint_type);
3018 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3019 sampler_reg = bld.emit_uniformize(sampler_reg);
3020 break;
3021 }
3022
3023 default:
3024 unreachable("unknown texture source");
3025 }
3026 }
3027
3028 if (instr->op == nir_texop_txf_ms ||
3029 instr->op == nir_texop_samples_identical) {
3030 if (devinfo->gen >= 7 &&
3031 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
3032 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
3033 } else {
3034 mcs = brw_imm_ud(0u);
3035 }
3036 }
3037
3038 for (unsigned i = 0; i < 3; i++) {
3039 if (instr->const_offset[i] != 0) {
3040 assert(offset_components == 0);
3041 tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
3042 break;
3043 }
3044 }
3045
3046 enum glsl_base_type dest_base_type =
3047 brw_glsl_base_type_for_nir_type (instr->dest_type);
3048
3049 const glsl_type *dest_type =
3050 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3051 1);
3052
3053 ir_texture_opcode op;
3054 switch (instr->op) {
3055 case nir_texop_lod: op = ir_lod; break;
3056 case nir_texop_query_levels: op = ir_query_levels; break;
3057 case nir_texop_tex: op = ir_tex; break;
3058 case nir_texop_tg4: op = ir_tg4; break;
3059 case nir_texop_txb: op = ir_txb; break;
3060 case nir_texop_txd: op = ir_txd; break;
3061 case nir_texop_txf: op = ir_txf; break;
3062 case nir_texop_txf_ms: op = ir_txf_ms; break;
3063 case nir_texop_txl: op = ir_txl; break;
3064 case nir_texop_txs: op = ir_txs; break;
3065 case nir_texop_texture_samples: {
3066 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3067 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3068 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3069 sampler_reg);
3070 inst->mlen = 1;
3071 inst->header_size = 1;
3072 inst->base_mrf = -1;
3073 return;
3074 }
3075 case nir_texop_samples_identical: op = ir_samples_identical; break;
3076 default:
3077 unreachable("unknown texture opcode");
3078 }
3079
3080 emit_texture(op, dest_type, coordinate, instr->coord_components,
3081 shadow_comparitor, lod, lod2, lod_components, sample_index,
3082 tex_offset, mcs, gather_component,
3083 is_cube_array, sampler, sampler_reg);
3084
3085 fs_reg dest = get_nir_dest(instr->dest);
3086 dest.type = this->result.type;
3087 unsigned num_components = nir_tex_instr_dest_size(instr);
3088 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3089 dest, this->result),
3090 (1 << num_components) - 1);
3091 }
3092
3093 void
3094 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3095 {
3096 switch (instr->type) {
3097 case nir_jump_break:
3098 bld.emit(BRW_OPCODE_BREAK);
3099 break;
3100 case nir_jump_continue:
3101 bld.emit(BRW_OPCODE_CONTINUE);
3102 break;
3103 case nir_jump_return:
3104 default:
3105 unreachable("unknown jump");
3106 }
3107 }