i965: Use nir_lower_tex for texture coordinate lowering
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "main/shaderimage.h"
28 #include "program/prog_to_nir.h"
29 #include "brw_fs.h"
30 #include "brw_fs_surface_builder.h"
31 #include "brw_vec4_gs_visitor.h"
32 #include "brw_nir.h"
33 #include "brw_fs_surface_builder.h"
34 #include "brw_vec4_gs_visitor.h"
35
36 using namespace brw;
37 using namespace brw::surface_access;
38
39 void
40 fs_visitor::emit_nir_code()
41 {
42 /* emit the arrays used for inputs and outputs - load/store intrinsics will
43 * be converted to reads/writes of these arrays
44 */
45 nir_setup_inputs();
46 nir_setup_outputs();
47 nir_setup_uniforms();
48 nir_emit_system_values();
49
50 /* get the main function and emit it */
51 nir_foreach_overload(nir, overload) {
52 assert(strcmp(overload->function->name, "main") == 0);
53 assert(overload->impl);
54 nir_emit_impl(overload->impl);
55 }
56 }
57
58 void
59 fs_visitor::nir_setup_inputs()
60 {
61 if (stage != MESA_SHADER_FRAGMENT)
62 return;
63
64 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
65
66 nir_foreach_variable(var, &nir->inputs) {
67 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
68
69 fs_reg reg;
70 if (var->data.location == VARYING_SLOT_POS) {
71 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
72 var->data.origin_upper_left);
73 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
74 input, reg), 0xF);
75 } else if (var->data.location == VARYING_SLOT_LAYER) {
76 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
77 reg.type = BRW_REGISTER_TYPE_D;
78 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
79 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
80 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
81 reg.type = BRW_REGISTER_TYPE_D;
82 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
83 } else {
84 emit_general_interpolation(input, var->name, var->type,
85 (glsl_interp_qualifier) var->data.interpolation,
86 var->data.location, var->data.centroid,
87 var->data.sample);
88 }
89 }
90 }
91
92 void
93 fs_visitor::nir_setup_outputs()
94 {
95 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
96
97 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
98
99 nir_foreach_variable(var, &nir->outputs) {
100 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
101
102 int vector_elements = var->type->without_array()->vector_elements;
103
104 switch (stage) {
105 case MESA_SHADER_VERTEX:
106 case MESA_SHADER_GEOMETRY:
107 for (int i = 0; i < type_size_vec4(var->type); i++) {
108 int output = var->data.location + i;
109 this->outputs[output] = offset(reg, bld, 4 * i);
110 this->output_components[output] = vector_elements;
111 }
112 break;
113 case MESA_SHADER_FRAGMENT:
114 if (var->data.index > 0) {
115 assert(var->data.location == FRAG_RESULT_DATA0);
116 assert(var->data.index == 1);
117 this->dual_src_output = reg;
118 this->do_dual_src = true;
119 } else if (var->data.location == FRAG_RESULT_COLOR) {
120 /* Writing gl_FragColor outputs to all color regions. */
121 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
122 this->outputs[i] = reg;
123 this->output_components[i] = 4;
124 }
125 } else if (var->data.location == FRAG_RESULT_DEPTH) {
126 this->frag_depth = reg;
127 } else if (var->data.location == FRAG_RESULT_STENCIL) {
128 this->frag_stencil = reg;
129 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
130 this->sample_mask = reg;
131 } else {
132 /* gl_FragData or a user-defined FS output */
133 assert(var->data.location >= FRAG_RESULT_DATA0 &&
134 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
135
136 /* General color output. */
137 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
138 int output = var->data.location - FRAG_RESULT_DATA0 + i;
139 this->outputs[output] = offset(reg, bld, vector_elements * i);
140 this->output_components[output] = vector_elements;
141 }
142 }
143 break;
144 default:
145 unreachable("unhandled shader stage");
146 }
147 }
148 }
149
150 void
151 fs_visitor::nir_setup_uniforms()
152 {
153 if (dispatch_width != 8)
154 return;
155
156 uniforms = nir->num_uniforms;
157
158 nir_foreach_variable(var, &nir->uniforms) {
159 /* UBO's and atomics don't take up space in the uniform file */
160 if (var->interface_type != NULL || var->type->contains_atomic())
161 continue;
162
163 if (type_size_scalar(var->type) > 0)
164 param_size[var->data.driver_location] = type_size_scalar(var->type);
165 }
166 }
167
168 static bool
169 emit_system_values_block(nir_block *block, void *void_visitor)
170 {
171 fs_visitor *v = (fs_visitor *)void_visitor;
172 fs_reg *reg;
173
174 nir_foreach_instr(block, instr) {
175 if (instr->type != nir_instr_type_intrinsic)
176 continue;
177
178 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
179 switch (intrin->intrinsic) {
180 case nir_intrinsic_load_vertex_id:
181 unreachable("should be lowered by lower_vertex_id().");
182
183 case nir_intrinsic_load_vertex_id_zero_base:
184 assert(v->stage == MESA_SHADER_VERTEX);
185 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
186 if (reg->file == BAD_FILE)
187 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
188 break;
189
190 case nir_intrinsic_load_base_vertex:
191 assert(v->stage == MESA_SHADER_VERTEX);
192 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
193 if (reg->file == BAD_FILE)
194 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
195 break;
196
197 case nir_intrinsic_load_instance_id:
198 assert(v->stage == MESA_SHADER_VERTEX);
199 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
200 if (reg->file == BAD_FILE)
201 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
202 break;
203
204 case nir_intrinsic_load_invocation_id:
205 assert(v->stage == MESA_SHADER_GEOMETRY);
206 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
207 if (reg->file == BAD_FILE) {
208 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
209 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
210 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
211 abld.SHR(iid, g1, brw_imm_ud(27u));
212 *reg = iid;
213 }
214 break;
215
216 case nir_intrinsic_load_sample_pos:
217 assert(v->stage == MESA_SHADER_FRAGMENT);
218 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
219 if (reg->file == BAD_FILE)
220 *reg = *v->emit_samplepos_setup();
221 break;
222
223 case nir_intrinsic_load_sample_id:
224 assert(v->stage == MESA_SHADER_FRAGMENT);
225 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
226 if (reg->file == BAD_FILE)
227 *reg = *v->emit_sampleid_setup();
228 break;
229
230 case nir_intrinsic_load_sample_mask_in:
231 assert(v->stage == MESA_SHADER_FRAGMENT);
232 assert(v->devinfo->gen >= 7);
233 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
234 if (reg->file == BAD_FILE)
235 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
236 BRW_REGISTER_TYPE_D));
237 break;
238
239 case nir_intrinsic_load_local_invocation_id:
240 assert(v->stage == MESA_SHADER_COMPUTE);
241 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
242 if (reg->file == BAD_FILE)
243 *reg = *v->emit_cs_local_invocation_id_setup();
244 break;
245
246 case nir_intrinsic_load_work_group_id:
247 assert(v->stage == MESA_SHADER_COMPUTE);
248 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
249 if (reg->file == BAD_FILE)
250 *reg = *v->emit_cs_work_group_id_setup();
251 break;
252
253 case nir_intrinsic_load_helper_invocation:
254 assert(v->stage == MESA_SHADER_FRAGMENT);
255 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
256 if (reg->file == BAD_FILE) {
257 const fs_builder abld =
258 v->bld.annotate("gl_HelperInvocation", NULL);
259
260 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
261 * pixel mask is in g1.7 of the thread payload.
262 *
263 * We move the per-channel pixel enable bit to the low bit of each
264 * channel by shifting the byte containing the pixel mask by the
265 * vector immediate 0x76543210UV.
266 *
267 * The region of <1,8,0> reads only 1 byte (the pixel masks for
268 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
269 * masks for 2 and 3) in SIMD16.
270 */
271 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
272 abld.SHR(shifted,
273 stride(byte_offset(retype(brw_vec1_grf(1, 0),
274 BRW_REGISTER_TYPE_UB), 28),
275 1, 8, 0),
276 brw_imm_uv(0x76543210));
277
278 /* A set bit in the pixel mask means the channel is enabled, but
279 * that is the opposite of gl_HelperInvocation so we need to invert
280 * the mask.
281 *
282 * The negate source-modifier bit of logical instructions on Gen8+
283 * performs 1's complement negation, so we can use that instead of
284 * a NOT instruction.
285 */
286 fs_reg inverted = negate(shifted);
287 if (v->devinfo->gen < 8) {
288 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
289 abld.NOT(inverted, shifted);
290 }
291
292 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
293 * with 1 and negating.
294 */
295 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
296 abld.AND(anded, inverted, brw_imm_uw(1));
297
298 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
299 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
300 *reg = dst;
301 }
302 break;
303
304 default:
305 break;
306 }
307 }
308
309 return true;
310 }
311
312 void
313 fs_visitor::nir_emit_system_values()
314 {
315 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
316 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
317 nir_system_values[i] = fs_reg();
318 }
319
320 nir_foreach_overload(nir, overload) {
321 assert(strcmp(overload->function->name, "main") == 0);
322 assert(overload->impl);
323 nir_foreach_block(overload->impl, emit_system_values_block, this);
324 }
325 }
326
327 void
328 fs_visitor::nir_emit_impl(nir_function_impl *impl)
329 {
330 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
331 for (unsigned i = 0; i < impl->reg_alloc; i++) {
332 nir_locals[i] = fs_reg();
333 }
334
335 foreach_list_typed(nir_register, reg, node, &impl->registers) {
336 unsigned array_elems =
337 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
338 unsigned size = array_elems * reg->num_components;
339 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
340 }
341
342 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
343 impl->ssa_alloc);
344
345 nir_emit_cf_list(&impl->body);
346 }
347
348 void
349 fs_visitor::nir_emit_cf_list(exec_list *list)
350 {
351 exec_list_validate(list);
352 foreach_list_typed(nir_cf_node, node, node, list) {
353 switch (node->type) {
354 case nir_cf_node_if:
355 nir_emit_if(nir_cf_node_as_if(node));
356 break;
357
358 case nir_cf_node_loop:
359 nir_emit_loop(nir_cf_node_as_loop(node));
360 break;
361
362 case nir_cf_node_block:
363 nir_emit_block(nir_cf_node_as_block(node));
364 break;
365
366 default:
367 unreachable("Invalid CFG node block");
368 }
369 }
370 }
371
372 void
373 fs_visitor::nir_emit_if(nir_if *if_stmt)
374 {
375 /* first, put the condition into f0 */
376 fs_inst *inst = bld.MOV(bld.null_reg_d(),
377 retype(get_nir_src(if_stmt->condition),
378 BRW_REGISTER_TYPE_D));
379 inst->conditional_mod = BRW_CONDITIONAL_NZ;
380
381 bld.IF(BRW_PREDICATE_NORMAL);
382
383 nir_emit_cf_list(&if_stmt->then_list);
384
385 /* note: if the else is empty, dead CF elimination will remove it */
386 bld.emit(BRW_OPCODE_ELSE);
387
388 nir_emit_cf_list(&if_stmt->else_list);
389
390 bld.emit(BRW_OPCODE_ENDIF);
391 }
392
393 void
394 fs_visitor::nir_emit_loop(nir_loop *loop)
395 {
396 bld.emit(BRW_OPCODE_DO);
397
398 nir_emit_cf_list(&loop->body);
399
400 bld.emit(BRW_OPCODE_WHILE);
401 }
402
403 void
404 fs_visitor::nir_emit_block(nir_block *block)
405 {
406 nir_foreach_instr(block, instr) {
407 nir_emit_instr(instr);
408 }
409 }
410
411 void
412 fs_visitor::nir_emit_instr(nir_instr *instr)
413 {
414 const fs_builder abld = bld.annotate(NULL, instr);
415
416 switch (instr->type) {
417 case nir_instr_type_alu:
418 nir_emit_alu(abld, nir_instr_as_alu(instr));
419 break;
420
421 case nir_instr_type_intrinsic:
422 switch (stage) {
423 case MESA_SHADER_VERTEX:
424 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
425 break;
426 case MESA_SHADER_GEOMETRY:
427 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
428 break;
429 case MESA_SHADER_FRAGMENT:
430 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
431 break;
432 case MESA_SHADER_COMPUTE:
433 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
434 break;
435 default:
436 unreachable("unsupported shader stage");
437 }
438 break;
439
440 case nir_instr_type_tex:
441 nir_emit_texture(abld, nir_instr_as_tex(instr));
442 break;
443
444 case nir_instr_type_load_const:
445 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
446 break;
447
448 case nir_instr_type_ssa_undef:
449 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
450 break;
451
452 case nir_instr_type_jump:
453 nir_emit_jump(abld, nir_instr_as_jump(instr));
454 break;
455
456 default:
457 unreachable("unknown instruction type");
458 }
459 }
460
461 bool
462 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
463 const fs_reg &result)
464 {
465 if (!instr->src[0].src.is_ssa ||
466 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
467 return false;
468
469 nir_intrinsic_instr *src0 =
470 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
471
472 if (src0->intrinsic != nir_intrinsic_load_front_face)
473 return false;
474
475 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
476 if (!value1 || fabsf(value1->f[0]) != 1.0f)
477 return false;
478
479 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
480 if (!value2 || fabsf(value2->f[0]) != 1.0f)
481 return false;
482
483 fs_reg tmp = vgrf(glsl_type::int_type);
484
485 if (devinfo->gen >= 6) {
486 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
487 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
488
489 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
490 *
491 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
492 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
493 *
494 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
495 *
496 * This negation looks like it's safe in practice, because bits 0:4 will
497 * surely be TRIANGLES
498 */
499
500 if (value1->f[0] == -1.0f) {
501 g0.negate = true;
502 }
503
504 tmp.type = BRW_REGISTER_TYPE_W;
505 tmp.subreg_offset = 2;
506 tmp.stride = 2;
507
508 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
509
510 tmp.type = BRW_REGISTER_TYPE_D;
511 tmp.subreg_offset = 0;
512 tmp.stride = 1;
513 } else {
514 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
515 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
516
517 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
518 *
519 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
520 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
521 *
522 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
523 *
524 * This negation looks like it's safe in practice, because bits 0:4 will
525 * surely be TRIANGLES
526 */
527
528 if (value1->f[0] == -1.0f) {
529 g1_6.negate = true;
530 }
531
532 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
533 }
534 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
535
536 return true;
537 }
538
539 void
540 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
541 {
542 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
543 fs_inst *inst;
544
545 fs_reg result = get_nir_dest(instr->dest.dest);
546 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
547
548 fs_reg op[4];
549 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
550 op[i] = get_nir_src(instr->src[i].src);
551 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
552 op[i].abs = instr->src[i].abs;
553 op[i].negate = instr->src[i].negate;
554 }
555
556 /* We get a bunch of mov's out of the from_ssa pass and they may still
557 * be vectorized. We'll handle them as a special-case. We'll also
558 * handle vecN here because it's basically the same thing.
559 */
560 switch (instr->op) {
561 case nir_op_imov:
562 case nir_op_fmov:
563 case nir_op_vec2:
564 case nir_op_vec3:
565 case nir_op_vec4: {
566 fs_reg temp = result;
567 bool need_extra_copy = false;
568 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
569 if (!instr->src[i].src.is_ssa &&
570 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
571 need_extra_copy = true;
572 temp = bld.vgrf(result.type, 4);
573 break;
574 }
575 }
576
577 for (unsigned i = 0; i < 4; i++) {
578 if (!(instr->dest.write_mask & (1 << i)))
579 continue;
580
581 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
582 inst = bld.MOV(offset(temp, bld, i),
583 offset(op[0], bld, instr->src[0].swizzle[i]));
584 } else {
585 inst = bld.MOV(offset(temp, bld, i),
586 offset(op[i], bld, instr->src[i].swizzle[0]));
587 }
588 inst->saturate = instr->dest.saturate;
589 }
590
591 /* In this case the source and destination registers were the same,
592 * so we need to insert an extra set of moves in order to deal with
593 * any swizzling.
594 */
595 if (need_extra_copy) {
596 for (unsigned i = 0; i < 4; i++) {
597 if (!(instr->dest.write_mask & (1 << i)))
598 continue;
599
600 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
601 }
602 }
603 return;
604 }
605 default:
606 break;
607 }
608
609 /* At this point, we have dealt with any instruction that operates on
610 * more than a single channel. Therefore, we can just adjust the source
611 * and destination registers for that channel and emit the instruction.
612 */
613 unsigned channel = 0;
614 if (nir_op_infos[instr->op].output_size == 0) {
615 /* Since NIR is doing the scalarizing for us, we should only ever see
616 * vectorized operations with a single channel.
617 */
618 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
619 channel = ffs(instr->dest.write_mask) - 1;
620
621 result = offset(result, bld, channel);
622 }
623
624 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
625 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
626 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
627 }
628
629 switch (instr->op) {
630 case nir_op_i2f:
631 case nir_op_u2f:
632 inst = bld.MOV(result, op[0]);
633 inst->saturate = instr->dest.saturate;
634 break;
635
636 case nir_op_f2i:
637 case nir_op_f2u:
638 bld.MOV(result, op[0]);
639 break;
640
641 case nir_op_fsign: {
642 /* AND(val, 0x80000000) gives the sign bit.
643 *
644 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
645 * zero.
646 */
647 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
648
649 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
650 op[0].type = BRW_REGISTER_TYPE_UD;
651 result.type = BRW_REGISTER_TYPE_UD;
652 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
653
654 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
655 inst->predicate = BRW_PREDICATE_NORMAL;
656 if (instr->dest.saturate) {
657 inst = bld.MOV(result, result);
658 inst->saturate = true;
659 }
660 break;
661 }
662
663 case nir_op_isign:
664 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
665 * -> non-negative val generates 0x00000000.
666 * Predicated OR sets 1 if val is positive.
667 */
668 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
669 bld.ASR(result, op[0], brw_imm_d(31));
670 inst = bld.OR(result, result, brw_imm_d(1));
671 inst->predicate = BRW_PREDICATE_NORMAL;
672 break;
673
674 case nir_op_frcp:
675 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
676 inst->saturate = instr->dest.saturate;
677 break;
678
679 case nir_op_fexp2:
680 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
681 inst->saturate = instr->dest.saturate;
682 break;
683
684 case nir_op_flog2:
685 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
686 inst->saturate = instr->dest.saturate;
687 break;
688
689 case nir_op_fsin:
690 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
691 inst->saturate = instr->dest.saturate;
692 break;
693
694 case nir_op_fcos:
695 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
696 inst->saturate = instr->dest.saturate;
697 break;
698
699 case nir_op_fddx:
700 if (fs_key->high_quality_derivatives) {
701 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
702 } else {
703 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
704 }
705 inst->saturate = instr->dest.saturate;
706 break;
707 case nir_op_fddx_fine:
708 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
709 inst->saturate = instr->dest.saturate;
710 break;
711 case nir_op_fddx_coarse:
712 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
713 inst->saturate = instr->dest.saturate;
714 break;
715 case nir_op_fddy:
716 if (fs_key->high_quality_derivatives) {
717 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
718 brw_imm_d(fs_key->render_to_fbo));
719 } else {
720 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
721 brw_imm_d(fs_key->render_to_fbo));
722 }
723 inst->saturate = instr->dest.saturate;
724 break;
725 case nir_op_fddy_fine:
726 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
727 brw_imm_d(fs_key->render_to_fbo));
728 inst->saturate = instr->dest.saturate;
729 break;
730 case nir_op_fddy_coarse:
731 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
732 brw_imm_d(fs_key->render_to_fbo));
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_fadd:
737 case nir_op_iadd:
738 inst = bld.ADD(result, op[0], op[1]);
739 inst->saturate = instr->dest.saturate;
740 break;
741
742 case nir_op_fmul:
743 inst = bld.MUL(result, op[0], op[1]);
744 inst->saturate = instr->dest.saturate;
745 break;
746
747 case nir_op_imul:
748 bld.MUL(result, op[0], op[1]);
749 break;
750
751 case nir_op_imul_high:
752 case nir_op_umul_high:
753 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
754 break;
755
756 case nir_op_idiv:
757 case nir_op_udiv:
758 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
759 break;
760
761 case nir_op_uadd_carry:
762 unreachable("Should have been lowered by carry_to_arith().");
763
764 case nir_op_usub_borrow:
765 unreachable("Should have been lowered by borrow_to_arith().");
766
767 case nir_op_umod:
768 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
769 break;
770
771 case nir_op_flt:
772 case nir_op_ilt:
773 case nir_op_ult:
774 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
775 break;
776
777 case nir_op_fge:
778 case nir_op_ige:
779 case nir_op_uge:
780 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
781 break;
782
783 case nir_op_feq:
784 case nir_op_ieq:
785 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
786 break;
787
788 case nir_op_fne:
789 case nir_op_ine:
790 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
791 break;
792
793 case nir_op_inot:
794 if (devinfo->gen >= 8) {
795 op[0] = resolve_source_modifiers(op[0]);
796 }
797 bld.NOT(result, op[0]);
798 break;
799 case nir_op_ixor:
800 if (devinfo->gen >= 8) {
801 op[0] = resolve_source_modifiers(op[0]);
802 op[1] = resolve_source_modifiers(op[1]);
803 }
804 bld.XOR(result, op[0], op[1]);
805 break;
806 case nir_op_ior:
807 if (devinfo->gen >= 8) {
808 op[0] = resolve_source_modifiers(op[0]);
809 op[1] = resolve_source_modifiers(op[1]);
810 }
811 bld.OR(result, op[0], op[1]);
812 break;
813 case nir_op_iand:
814 if (devinfo->gen >= 8) {
815 op[0] = resolve_source_modifiers(op[0]);
816 op[1] = resolve_source_modifiers(op[1]);
817 }
818 bld.AND(result, op[0], op[1]);
819 break;
820
821 case nir_op_fdot2:
822 case nir_op_fdot3:
823 case nir_op_fdot4:
824 case nir_op_bany2:
825 case nir_op_bany3:
826 case nir_op_bany4:
827 case nir_op_ball2:
828 case nir_op_ball3:
829 case nir_op_ball4:
830 case nir_op_ball_fequal2:
831 case nir_op_ball_iequal2:
832 case nir_op_ball_fequal3:
833 case nir_op_ball_iequal3:
834 case nir_op_ball_fequal4:
835 case nir_op_ball_iequal4:
836 case nir_op_bany_fnequal2:
837 case nir_op_bany_inequal2:
838 case nir_op_bany_fnequal3:
839 case nir_op_bany_inequal3:
840 case nir_op_bany_fnequal4:
841 case nir_op_bany_inequal4:
842 unreachable("Lowered by nir_lower_alu_reductions");
843
844 case nir_op_fnoise1_1:
845 case nir_op_fnoise1_2:
846 case nir_op_fnoise1_3:
847 case nir_op_fnoise1_4:
848 case nir_op_fnoise2_1:
849 case nir_op_fnoise2_2:
850 case nir_op_fnoise2_3:
851 case nir_op_fnoise2_4:
852 case nir_op_fnoise3_1:
853 case nir_op_fnoise3_2:
854 case nir_op_fnoise3_3:
855 case nir_op_fnoise3_4:
856 case nir_op_fnoise4_1:
857 case nir_op_fnoise4_2:
858 case nir_op_fnoise4_3:
859 case nir_op_fnoise4_4:
860 unreachable("not reached: should be handled by lower_noise");
861
862 case nir_op_ldexp:
863 unreachable("not reached: should be handled by ldexp_to_arith()");
864
865 case nir_op_fsqrt:
866 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
867 inst->saturate = instr->dest.saturate;
868 break;
869
870 case nir_op_frsq:
871 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
872 inst->saturate = instr->dest.saturate;
873 break;
874
875 case nir_op_b2i:
876 case nir_op_b2f:
877 bld.MOV(result, negate(op[0]));
878 break;
879
880 case nir_op_f2b:
881 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
882 break;
883 case nir_op_i2b:
884 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
885 break;
886
887 case nir_op_ftrunc:
888 inst = bld.RNDZ(result, op[0]);
889 inst->saturate = instr->dest.saturate;
890 break;
891
892 case nir_op_fceil: {
893 op[0].negate = !op[0].negate;
894 fs_reg temp = vgrf(glsl_type::float_type);
895 bld.RNDD(temp, op[0]);
896 temp.negate = true;
897 inst = bld.MOV(result, temp);
898 inst->saturate = instr->dest.saturate;
899 break;
900 }
901 case nir_op_ffloor:
902 inst = bld.RNDD(result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905 case nir_op_ffract:
906 inst = bld.FRC(result, op[0]);
907 inst->saturate = instr->dest.saturate;
908 break;
909 case nir_op_fround_even:
910 inst = bld.RNDE(result, op[0]);
911 inst->saturate = instr->dest.saturate;
912 break;
913
914 case nir_op_fmin:
915 case nir_op_imin:
916 case nir_op_umin:
917 if (devinfo->gen >= 6) {
918 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
919 inst->conditional_mod = BRW_CONDITIONAL_L;
920 } else {
921 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
922 inst = bld.SEL(result, op[0], op[1]);
923 inst->predicate = BRW_PREDICATE_NORMAL;
924 }
925 inst->saturate = instr->dest.saturate;
926 break;
927
928 case nir_op_fmax:
929 case nir_op_imax:
930 case nir_op_umax:
931 if (devinfo->gen >= 6) {
932 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
933 inst->conditional_mod = BRW_CONDITIONAL_GE;
934 } else {
935 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
936 inst = bld.SEL(result, op[0], op[1]);
937 inst->predicate = BRW_PREDICATE_NORMAL;
938 }
939 inst->saturate = instr->dest.saturate;
940 break;
941
942 case nir_op_pack_snorm_2x16:
943 case nir_op_pack_snorm_4x8:
944 case nir_op_pack_unorm_2x16:
945 case nir_op_pack_unorm_4x8:
946 case nir_op_unpack_snorm_2x16:
947 case nir_op_unpack_snorm_4x8:
948 case nir_op_unpack_unorm_2x16:
949 case nir_op_unpack_unorm_4x8:
950 case nir_op_unpack_half_2x16:
951 case nir_op_pack_half_2x16:
952 unreachable("not reached: should be handled by lower_packing_builtins");
953
954 case nir_op_unpack_half_2x16_split_x:
955 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
956 inst->saturate = instr->dest.saturate;
957 break;
958 case nir_op_unpack_half_2x16_split_y:
959 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
960 inst->saturate = instr->dest.saturate;
961 break;
962
963 case nir_op_fpow:
964 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
965 inst->saturate = instr->dest.saturate;
966 break;
967
968 case nir_op_bitfield_reverse:
969 bld.BFREV(result, op[0]);
970 break;
971
972 case nir_op_bit_count:
973 bld.CBIT(result, op[0]);
974 break;
975
976 case nir_op_ufind_msb:
977 case nir_op_ifind_msb: {
978 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
979
980 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
981 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
982 * subtract the result from 31 to convert the MSB count into an LSB count.
983 */
984 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
985
986 inst = bld.ADD(result, result, brw_imm_d(31));
987 inst->predicate = BRW_PREDICATE_NORMAL;
988 inst->src[0].negate = true;
989 break;
990 }
991
992 case nir_op_find_lsb:
993 bld.FBL(result, op[0]);
994 break;
995
996 case nir_op_ubitfield_extract:
997 case nir_op_ibitfield_extract:
998 bld.BFE(result, op[2], op[1], op[0]);
999 break;
1000 case nir_op_bfm:
1001 bld.BFI1(result, op[0], op[1]);
1002 break;
1003 case nir_op_bfi:
1004 bld.BFI2(result, op[0], op[1], op[2]);
1005 break;
1006
1007 case nir_op_bitfield_insert:
1008 unreachable("not reached: should be handled by "
1009 "lower_instructions::bitfield_insert_to_bfm_bfi");
1010
1011 case nir_op_ishl:
1012 bld.SHL(result, op[0], op[1]);
1013 break;
1014 case nir_op_ishr:
1015 bld.ASR(result, op[0], op[1]);
1016 break;
1017 case nir_op_ushr:
1018 bld.SHR(result, op[0], op[1]);
1019 break;
1020
1021 case nir_op_pack_half_2x16_split:
1022 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1023 break;
1024
1025 case nir_op_ffma:
1026 inst = bld.MAD(result, op[2], op[1], op[0]);
1027 inst->saturate = instr->dest.saturate;
1028 break;
1029
1030 case nir_op_flrp:
1031 inst = bld.LRP(result, op[0], op[1], op[2]);
1032 inst->saturate = instr->dest.saturate;
1033 break;
1034
1035 case nir_op_bcsel:
1036 if (optimize_frontfacing_ternary(instr, result))
1037 return;
1038
1039 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1040 inst = bld.SEL(result, op[1], op[2]);
1041 inst->predicate = BRW_PREDICATE_NORMAL;
1042 break;
1043
1044 default:
1045 unreachable("unhandled instruction");
1046 }
1047
1048 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1049 * to sign extend the low bit to 0/~0
1050 */
1051 if (devinfo->gen <= 5 &&
1052 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1053 fs_reg masked = vgrf(glsl_type::int_type);
1054 bld.AND(masked, result, brw_imm_d(1));
1055 masked.negate = true;
1056 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1057 }
1058 }
1059
1060 void
1061 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1062 nir_load_const_instr *instr)
1063 {
1064 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1065
1066 for (unsigned i = 0; i < instr->def.num_components; i++)
1067 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1068
1069 nir_ssa_values[instr->def.index] = reg;
1070 }
1071
1072 void
1073 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1074 {
1075 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1076 instr->def.num_components);
1077 }
1078
1079 static fs_reg
1080 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1081 unsigned base_offset, nir_src *indirect)
1082 {
1083 fs_reg reg;
1084
1085 assert(!nir_reg->is_global);
1086
1087 reg = v->nir_locals[nir_reg->index];
1088
1089 reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
1090 if (indirect) {
1091 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1092
1093 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1094 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1095 brw_imm_d(multiplier));
1096 }
1097
1098 return reg;
1099 }
1100
1101 fs_reg
1102 fs_visitor::get_nir_src(nir_src src)
1103 {
1104 fs_reg reg;
1105 if (src.is_ssa) {
1106 reg = nir_ssa_values[src.ssa->index];
1107 } else {
1108 reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1109 src.reg.indirect);
1110 }
1111
1112 /* to avoid floating-point denorm flushing problems, set the type by
1113 * default to D - instructions that need floating point semantics will set
1114 * this to F if they need to
1115 */
1116 return retype(reg, BRW_REGISTER_TYPE_D);
1117 }
1118
1119 fs_reg
1120 fs_visitor::get_nir_dest(nir_dest dest)
1121 {
1122 if (dest.is_ssa) {
1123 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1124 dest.ssa.num_components);
1125 return nir_ssa_values[dest.ssa.index];
1126 }
1127
1128 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1129 dest.reg.indirect);
1130 }
1131
1132 fs_reg
1133 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1134 {
1135 fs_reg image(UNIFORM, deref->var->data.driver_location,
1136 BRW_REGISTER_TYPE_UD);
1137
1138 for (const nir_deref *tail = &deref->deref; tail->child;
1139 tail = tail->child) {
1140 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1141 assert(tail->child->deref_type == nir_deref_type_array);
1142 const unsigned size = glsl_get_length(tail->type);
1143 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1144 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1145 image = offset(image, bld, base * element_size);
1146
1147 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1148 fs_reg tmp = vgrf(glsl_type::int_type);
1149
1150 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1151 /* IVB hangs when trying to access an invalid surface index with
1152 * the dataport. According to the spec "if the index used to
1153 * select an individual element is negative or greater than or
1154 * equal to the size of the array, the results of the operation
1155 * are undefined but may not lead to termination" -- which is one
1156 * of the possible outcomes of the hang. Clamp the index to
1157 * prevent access outside of the array bounds.
1158 */
1159 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1160 BRW_REGISTER_TYPE_UD),
1161 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1162 } else {
1163 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1164 }
1165
1166 bld.MUL(tmp, tmp, brw_imm_ud(element_size));
1167 if (image.reladdr)
1168 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1169 else
1170 image.reladdr = new(mem_ctx) fs_reg(tmp);
1171 }
1172 }
1173
1174 return image;
1175 }
1176
1177 void
1178 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1179 unsigned wr_mask)
1180 {
1181 for (unsigned i = 0; i < 4; i++) {
1182 if (!((wr_mask >> i) & 1))
1183 continue;
1184
1185 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1186 new_inst->dst = offset(new_inst->dst, bld, i);
1187 for (unsigned j = 0; j < new_inst->sources; j++)
1188 if (new_inst->src[j].file == VGRF)
1189 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1190
1191 bld.emit(new_inst);
1192 }
1193 }
1194
1195 /**
1196 * Get the matching channel register datatype for an image intrinsic of the
1197 * specified GLSL image type.
1198 */
1199 static brw_reg_type
1200 get_image_base_type(const glsl_type *type)
1201 {
1202 switch ((glsl_base_type)type->sampler_type) {
1203 case GLSL_TYPE_UINT:
1204 return BRW_REGISTER_TYPE_UD;
1205 case GLSL_TYPE_INT:
1206 return BRW_REGISTER_TYPE_D;
1207 case GLSL_TYPE_FLOAT:
1208 return BRW_REGISTER_TYPE_F;
1209 default:
1210 unreachable("Not reached.");
1211 }
1212 }
1213
1214 /**
1215 * Get the appropriate atomic op for an image atomic intrinsic.
1216 */
1217 static unsigned
1218 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1219 {
1220 switch (op) {
1221 case nir_intrinsic_image_atomic_add:
1222 return BRW_AOP_ADD;
1223 case nir_intrinsic_image_atomic_min:
1224 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1225 BRW_AOP_IMIN : BRW_AOP_UMIN);
1226 case nir_intrinsic_image_atomic_max:
1227 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1228 BRW_AOP_IMAX : BRW_AOP_UMAX);
1229 case nir_intrinsic_image_atomic_and:
1230 return BRW_AOP_AND;
1231 case nir_intrinsic_image_atomic_or:
1232 return BRW_AOP_OR;
1233 case nir_intrinsic_image_atomic_xor:
1234 return BRW_AOP_XOR;
1235 case nir_intrinsic_image_atomic_exchange:
1236 return BRW_AOP_MOV;
1237 case nir_intrinsic_image_atomic_comp_swap:
1238 return BRW_AOP_CMPWR;
1239 default:
1240 unreachable("Not reachable.");
1241 }
1242 }
1243
1244 static fs_inst *
1245 emit_pixel_interpolater_send(const fs_builder &bld,
1246 enum opcode opcode,
1247 const fs_reg &dst,
1248 const fs_reg &src,
1249 const fs_reg &desc,
1250 glsl_interp_qualifier interpolation)
1251 {
1252 fs_inst *inst;
1253 fs_reg payload;
1254 int mlen;
1255
1256 if (src.file == BAD_FILE) {
1257 /* Dummy payload */
1258 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1259 mlen = 1;
1260 } else {
1261 payload = src;
1262 mlen = 2 * bld.dispatch_width() / 8;
1263 }
1264
1265 inst = bld.emit(opcode, dst, payload, desc);
1266 inst->mlen = mlen;
1267 /* 2 floats per slot returned */
1268 inst->regs_written = 2 * bld.dispatch_width() / 8;
1269 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1270
1271 return inst;
1272 }
1273
1274 /**
1275 * Computes 1 << x, given a D/UD register containing some value x.
1276 */
1277 static fs_reg
1278 intexp2(const fs_builder &bld, const fs_reg &x)
1279 {
1280 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1281
1282 fs_reg result = bld.vgrf(x.type, 1);
1283 fs_reg one = bld.vgrf(x.type, 1);
1284
1285 bld.MOV(one, retype(brw_imm_d(1), one.type));
1286 bld.SHL(result, one, x);
1287 return result;
1288 }
1289
1290 void
1291 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1292 {
1293 assert(stage == MESA_SHADER_GEOMETRY);
1294
1295 struct brw_gs_prog_data *gs_prog_data =
1296 (struct brw_gs_prog_data *) prog_data;
1297
1298 /* We can only do EndPrimitive() functionality when the control data
1299 * consists of cut bits. Fortunately, the only time it isn't is when the
1300 * output type is points, in which case EndPrimitive() is a no-op.
1301 */
1302 if (gs_prog_data->control_data_format !=
1303 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1304 return;
1305 }
1306
1307 /* Cut bits use one bit per vertex. */
1308 assert(gs_compile->control_data_bits_per_vertex == 1);
1309
1310 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1311 vertex_count.type = BRW_REGISTER_TYPE_UD;
1312
1313 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1314 * vertex n, 0 otherwise. So all we need to do here is mark bit
1315 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1316 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1317 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1318 *
1319 * Note that if EndPrimitive() is called before emitting any vertices, this
1320 * will cause us to set bit 31 of the control_data_bits register to 1.
1321 * That's fine because:
1322 *
1323 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1324 * output, so the hardware will ignore cut bit 31.
1325 *
1326 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1327 * last vertex, so setting cut bit 31 has no effect (since the primitive
1328 * is automatically ended when the GS terminates).
1329 *
1330 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1331 * control_data_bits register to 0 when the first vertex is emitted.
1332 */
1333
1334 const fs_builder abld = bld.annotate("end primitive");
1335
1336 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1337 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1338 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1339 fs_reg mask = intexp2(abld, prev_count);
1340 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1341 * attention to the lower 5 bits of its second source argument, so on this
1342 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1343 * ((vertex_count - 1) % 32).
1344 */
1345 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1346 }
1347
1348 void
1349 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1350 {
1351 assert(stage == MESA_SHADER_GEOMETRY);
1352 assert(gs_compile->control_data_bits_per_vertex != 0);
1353
1354 struct brw_gs_prog_data *gs_prog_data =
1355 (struct brw_gs_prog_data *) prog_data;
1356
1357 const fs_builder abld = bld.annotate("emit control data bits");
1358 const fs_builder fwa_bld = bld.exec_all();
1359
1360 /* We use a single UD register to accumulate control data bits (32 bits
1361 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1362 * at a time.
1363 *
1364 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1365 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1366 * use the Channel Mask phase to enable/disable which DWord within that
1367 * group to write. (Remember, different SIMD8 channels may have emitted
1368 * different numbers of vertices, so we may need per-slot offsets.)
1369 *
1370 * Channel masking presents an annoying problem: we may have to replicate
1371 * the data up to 4 times:
1372 *
1373 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1374 *
1375 * To avoid penalizing shaders that emit a small number of vertices, we
1376 * can avoid these sometimes: if the size of the control data header is
1377 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1378 * land in the same 128-bit group, so we can skip per-slot offsets.
1379 *
1380 * Similarly, if the control data header is <= 32 bits, there is only one
1381 * DWord, so we can skip channel masks.
1382 */
1383 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1384
1385 fs_reg channel_mask, per_slot_offset;
1386
1387 if (gs_compile->control_data_header_size_bits > 32) {
1388 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1389 channel_mask = vgrf(glsl_type::uint_type);
1390 }
1391
1392 if (gs_compile->control_data_header_size_bits > 128) {
1393 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1394 per_slot_offset = vgrf(glsl_type::uint_type);
1395 }
1396
1397 /* Figure out which DWord we're trying to write to using the formula:
1398 *
1399 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1400 *
1401 * Since bits_per_vertex is a power of two, and is known at compile
1402 * time, this can be optimized to:
1403 *
1404 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1405 */
1406 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1407 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1408 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1409 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1410 unsigned log2_bits_per_vertex =
1411 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1412 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1413
1414 if (per_slot_offset.file != BAD_FILE) {
1415 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1416 * the appropriate OWord within the control data header.
1417 */
1418 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1419 }
1420
1421 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1422 * write to the appropriate DWORD within the OWORD.
1423 */
1424 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1425 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1426 channel_mask = intexp2(fwa_bld, channel);
1427 /* Then the channel masks need to be in bits 23:16. */
1428 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1429 }
1430
1431 /* Store the control data bits in the message payload and send it. */
1432 int mlen = 2;
1433 if (channel_mask.file != BAD_FILE)
1434 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1435 if (per_slot_offset.file != BAD_FILE)
1436 mlen++;
1437
1438 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1439 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1440 int i = 0;
1441 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1442 if (per_slot_offset.file != BAD_FILE)
1443 sources[i++] = per_slot_offset;
1444 if (channel_mask.file != BAD_FILE)
1445 sources[i++] = channel_mask;
1446 while (i < mlen) {
1447 sources[i++] = this->control_data_bits;
1448 }
1449
1450 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1451 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1452 inst->mlen = mlen;
1453 /* We need to increment Global Offset by 256-bits to make room for
1454 * Broadwell's extra "Vertex Count" payload at the beginning of the
1455 * URB entry. Since this is an OWord message, Global Offset is counted
1456 * in 128-bit units, so we must set it to 2.
1457 */
1458 if (gs_prog_data->static_vertex_count == -1)
1459 inst->offset = 2;
1460 }
1461
1462 void
1463 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1464 unsigned stream_id)
1465 {
1466 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1467
1468 /* Note: we are calling this *before* increasing vertex_count, so
1469 * this->vertex_count == vertex_count - 1 in the formula above.
1470 */
1471
1472 /* Stream mode uses 2 bits per vertex */
1473 assert(gs_compile->control_data_bits_per_vertex == 2);
1474
1475 /* Must be a valid stream */
1476 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1477
1478 /* Control data bits are initialized to 0 so we don't have to set any
1479 * bits when sending vertices to stream 0.
1480 */
1481 if (stream_id == 0)
1482 return;
1483
1484 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1485
1486 /* reg::sid = stream_id */
1487 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1488 abld.MOV(sid, brw_imm_ud(stream_id));
1489
1490 /* reg:shift_count = 2 * (vertex_count - 1) */
1491 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1492 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1493
1494 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1495 * attention to the lower 5 bits of its second source argument, so on this
1496 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1497 * stream_id << ((2 * (vertex_count - 1)) % 32).
1498 */
1499 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1500 abld.SHL(mask, sid, shift_count);
1501 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1502 }
1503
1504 void
1505 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1506 unsigned stream_id)
1507 {
1508 assert(stage == MESA_SHADER_GEOMETRY);
1509
1510 struct brw_gs_prog_data *gs_prog_data =
1511 (struct brw_gs_prog_data *) prog_data;
1512
1513 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1514 vertex_count.type = BRW_REGISTER_TYPE_UD;
1515
1516 /* Haswell and later hardware ignores the "Render Stream Select" bits
1517 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1518 * and instead sends all primitives down the pipeline for rasterization.
1519 * If the SOL stage is enabled, "Render Stream Select" is honored and
1520 * primitives bound to non-zero streams are discarded after stream output.
1521 *
1522 * Since the only purpose of primives sent to non-zero streams is to
1523 * be recorded by transform feedback, we can simply discard all geometry
1524 * bound to these streams when transform feedback is disabled.
1525 */
1526 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1527 return;
1528
1529 /* If we're outputting 32 control data bits or less, then we can wait
1530 * until the shader is over to output them all. Otherwise we need to
1531 * output them as we go. Now is the time to do it, since we're about to
1532 * output the vertex_count'th vertex, so it's guaranteed that the
1533 * control data bits associated with the (vertex_count - 1)th vertex are
1534 * correct.
1535 */
1536 if (gs_compile->control_data_header_size_bits > 32) {
1537 const fs_builder abld =
1538 bld.annotate("emit vertex: emit control data bits");
1539
1540 /* Only emit control data bits if we've finished accumulating a batch
1541 * of 32 bits. This is the case when:
1542 *
1543 * (vertex_count * bits_per_vertex) % 32 == 0
1544 *
1545 * (in other words, when the last 5 bits of vertex_count *
1546 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1547 * integer n (which is always the case, since bits_per_vertex is
1548 * always 1 or 2), this is equivalent to requiring that the last 5-n
1549 * bits of vertex_count are 0:
1550 *
1551 * vertex_count & (2^(5-n) - 1) == 0
1552 *
1553 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1554 * equivalent to:
1555 *
1556 * vertex_count & (32 / bits_per_vertex - 1) == 0
1557 *
1558 * TODO: If vertex_count is an immediate, we could do some of this math
1559 * at compile time...
1560 */
1561 fs_inst *inst =
1562 abld.AND(bld.null_reg_d(), vertex_count,
1563 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1564 inst->conditional_mod = BRW_CONDITIONAL_Z;
1565
1566 abld.IF(BRW_PREDICATE_NORMAL);
1567 /* If vertex_count is 0, then no control data bits have been
1568 * accumulated yet, so we can skip emitting them.
1569 */
1570 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1571 BRW_CONDITIONAL_NEQ);
1572 abld.IF(BRW_PREDICATE_NORMAL);
1573 emit_gs_control_data_bits(vertex_count);
1574 abld.emit(BRW_OPCODE_ENDIF);
1575
1576 /* Reset control_data_bits to 0 so we can start accumulating a new
1577 * batch.
1578 *
1579 * Note: in the case where vertex_count == 0, this neutralizes the
1580 * effect of any call to EndPrimitive() that the shader may have
1581 * made before outputting its first vertex.
1582 */
1583 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1584 inst->force_writemask_all = true;
1585 abld.emit(BRW_OPCODE_ENDIF);
1586 }
1587
1588 emit_urb_writes(vertex_count);
1589
1590 /* In stream mode we have to set control data bits for all vertices
1591 * unless we have disabled control data bits completely (which we do
1592 * do for GL_POINTS outputs that don't use streams).
1593 */
1594 if (gs_compile->control_data_header_size_bits > 0 &&
1595 gs_prog_data->control_data_format ==
1596 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1597 set_gs_stream_control_data_bits(vertex_count, stream_id);
1598 }
1599 }
1600
1601 void
1602 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1603 const nir_src &vertex_src,
1604 const fs_reg &indirect_offset,
1605 unsigned imm_offset,
1606 unsigned num_components)
1607 {
1608 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1609
1610 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1611 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1612 * gl_PointSize is available as a GS input, however, so it must be that.
1613 */
1614 const bool is_point_size =
1615 indirect_offset.file == BAD_FILE && imm_offset == 0;
1616
1617 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1618 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1619
1620 if (indirect_offset.file == BAD_FILE && vertex_const != NULL &&
1621 4 * imm_offset < push_reg_count) {
1622 imm_offset = 4 * imm_offset + vertex_const->u[0] * push_reg_count;
1623 /* This input was pushed into registers. */
1624 if (is_point_size) {
1625 /* gl_PointSize comes in .w */
1626 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1627 } else {
1628 for (unsigned i = 0; i < num_components; i++) {
1629 bld.MOV(offset(dst, bld, i),
1630 fs_reg(ATTR, imm_offset + i, dst.type));
1631 }
1632 }
1633 } else {
1634 /* Resort to the pull model. Ensure the VUE handles are provided. */
1635 gs_prog_data->base.include_vue_handles = true;
1636
1637 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1638 fs_reg icp_handle;
1639
1640 if (vertex_const) {
1641 /* The vertex index is constant; just select the proper URB handle. */
1642 icp_handle =
1643 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1644 BRW_REGISTER_TYPE_UD);
1645 } else {
1646 /* The vertex index is non-constant. We need to use indirect
1647 * addressing to fetch the proper URB handle.
1648 *
1649 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1650 * indicating that channel <n> should read the handle from
1651 * DWord <n>. We convert that to bytes by multiplying by 4.
1652 *
1653 * Next, we convert the vertex index to bytes by multiplying
1654 * by 32 (shifting by 5), and add the two together. This is
1655 * the final indirect byte offset.
1656 */
1657 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1658 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1659 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1660 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1661 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1662
1663 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1664 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1665 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1666 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1667 /* Convert vertex_index to bytes (multiply by 32) */
1668 bld.SHL(vertex_offset_bytes,
1669 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1670 brw_imm_ud(5u));
1671 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1672
1673 /* Use first_icp_handle as the base offset. There is one register
1674 * of URB handles per vertex, so inform the register allocator that
1675 * we might read up to nir->info.gs.vertices_in registers.
1676 */
1677 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1678 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1679 fs_reg(icp_offset_bytes),
1680 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1681 }
1682
1683 fs_inst *inst;
1684 if (indirect_offset.file == BAD_FILE) {
1685 /* Constant indexing - use global offset. */
1686 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1687 inst->offset = imm_offset;
1688 inst->base_mrf = -1;
1689 inst->mlen = 1;
1690 inst->regs_written = num_components;
1691 } else {
1692 /* Indirect indexing - use per-slot offsets as well. */
1693 const fs_reg srcs[] = { icp_handle, indirect_offset };
1694 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1695 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1696
1697 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1698 inst->offset = imm_offset;
1699 inst->base_mrf = -1;
1700 inst->mlen = 2;
1701 inst->regs_written = num_components;
1702 }
1703
1704 if (is_point_size) {
1705 /* Read the whole VUE header (because of alignment) and read .w. */
1706 fs_reg tmp = bld.vgrf(dst.type, 4);
1707 inst->dst = tmp;
1708 inst->regs_written = 4;
1709 bld.MOV(dst, offset(tmp, bld, 3));
1710 }
1711 }
1712 }
1713
1714 void
1715 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1716 nir_intrinsic_instr *instr)
1717 {
1718 assert(stage == MESA_SHADER_VERTEX);
1719
1720 fs_reg dest;
1721 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1722 dest = get_nir_dest(instr->dest);
1723
1724 switch (instr->intrinsic) {
1725 case nir_intrinsic_load_vertex_id:
1726 unreachable("should be lowered by lower_vertex_id()");
1727
1728 case nir_intrinsic_load_vertex_id_zero_base:
1729 case nir_intrinsic_load_base_vertex:
1730 case nir_intrinsic_load_instance_id: {
1731 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1732 fs_reg val = nir_system_values[sv];
1733 assert(val.file != BAD_FILE);
1734 dest.type = val.type;
1735 bld.MOV(dest, val);
1736 break;
1737 }
1738
1739 default:
1740 nir_emit_intrinsic(bld, instr);
1741 break;
1742 }
1743 }
1744
1745 void
1746 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1747 nir_intrinsic_instr *instr)
1748 {
1749 assert(stage == MESA_SHADER_GEOMETRY);
1750 fs_reg indirect_offset;
1751
1752 fs_reg dest;
1753 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1754 dest = get_nir_dest(instr->dest);
1755
1756 switch (instr->intrinsic) {
1757 case nir_intrinsic_load_primitive_id:
1758 assert(stage == MESA_SHADER_GEOMETRY);
1759 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
1760 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
1761 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
1762 break;
1763
1764 case nir_intrinsic_load_input_indirect:
1765 case nir_intrinsic_load_input:
1766 unreachable("load_input intrinsics are invalid for the GS stage");
1767
1768 case nir_intrinsic_load_per_vertex_input_indirect:
1769 indirect_offset = retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_D);
1770 /* fallthrough */
1771 case nir_intrinsic_load_per_vertex_input:
1772 emit_gs_input_load(dest, instr->src[0],
1773 indirect_offset, instr->const_index[0],
1774 instr->num_components);
1775 break;
1776
1777 case nir_intrinsic_emit_vertex_with_counter:
1778 emit_gs_vertex(instr->src[0], instr->const_index[0]);
1779 break;
1780
1781 case nir_intrinsic_end_primitive_with_counter:
1782 emit_gs_end_primitive(instr->src[0]);
1783 break;
1784
1785 case nir_intrinsic_set_vertex_count:
1786 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
1787 break;
1788
1789 case nir_intrinsic_load_invocation_id: {
1790 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
1791 assert(val.file != BAD_FILE);
1792 dest.type = val.type;
1793 bld.MOV(dest, val);
1794 break;
1795 }
1796
1797 default:
1798 nir_emit_intrinsic(bld, instr);
1799 break;
1800 }
1801 }
1802
1803 void
1804 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
1805 nir_intrinsic_instr *instr)
1806 {
1807 assert(stage == MESA_SHADER_FRAGMENT);
1808 struct brw_wm_prog_data *wm_prog_data =
1809 (struct brw_wm_prog_data *) prog_data;
1810
1811 fs_reg dest;
1812 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1813 dest = get_nir_dest(instr->dest);
1814
1815 switch (instr->intrinsic) {
1816 case nir_intrinsic_load_front_face:
1817 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1818 *emit_frontfacing_interpolation());
1819 break;
1820
1821 case nir_intrinsic_load_sample_pos: {
1822 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1823 assert(sample_pos.file != BAD_FILE);
1824 dest.type = sample_pos.type;
1825 bld.MOV(dest, sample_pos);
1826 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1827 break;
1828 }
1829
1830 case nir_intrinsic_load_helper_invocation:
1831 case nir_intrinsic_load_sample_mask_in:
1832 case nir_intrinsic_load_sample_id: {
1833 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1834 fs_reg val = nir_system_values[sv];
1835 assert(val.file != BAD_FILE);
1836 dest.type = val.type;
1837 bld.MOV(dest, val);
1838 break;
1839 }
1840
1841 case nir_intrinsic_discard:
1842 case nir_intrinsic_discard_if: {
1843 /* We track our discarded pixels in f0.1. By predicating on it, we can
1844 * update just the flag bits that aren't yet discarded. If there's no
1845 * condition, we emit a CMP of g0 != g0, so all currently executing
1846 * channels will get turned off.
1847 */
1848 fs_inst *cmp;
1849 if (instr->intrinsic == nir_intrinsic_discard_if) {
1850 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1851 brw_imm_d(0), BRW_CONDITIONAL_Z);
1852 } else {
1853 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1854 BRW_REGISTER_TYPE_UW));
1855 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1856 }
1857 cmp->predicate = BRW_PREDICATE_NORMAL;
1858 cmp->flag_subreg = 1;
1859
1860 if (devinfo->gen >= 6) {
1861 emit_discard_jump();
1862 }
1863 break;
1864 }
1865
1866 case nir_intrinsic_interp_var_at_centroid:
1867 case nir_intrinsic_interp_var_at_sample:
1868 case nir_intrinsic_interp_var_at_offset: {
1869 /* Handle ARB_gpu_shader5 interpolation intrinsics
1870 *
1871 * It's worth a quick word of explanation as to why we handle the full
1872 * variable-based interpolation intrinsic rather than a lowered version
1873 * with like we do for other inputs. We have to do that because the way
1874 * we set up inputs doesn't allow us to use the already setup inputs for
1875 * interpolation. At the beginning of the shader, we go through all of
1876 * the input variables and do the initial interpolation and put it in
1877 * the nir_inputs array based on its location as determined in
1878 * nir_lower_io. If the input isn't used, dead code cleans up and
1879 * everything works fine. However, when we get to the ARB_gpu_shader5
1880 * interpolation intrinsics, we need to reinterpolate the input
1881 * differently. If we used an intrinsic that just had an index it would
1882 * only give us the offset into the nir_inputs array. However, this is
1883 * useless because that value is post-interpolation and we need
1884 * pre-interpolation. In order to get the actual location of the bits
1885 * we get from the vertex fetching hardware, we need the variable.
1886 */
1887 wm_prog_data->pulls_bary = true;
1888
1889 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1890 const glsl_interp_qualifier interpolation =
1891 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
1892
1893 switch (instr->intrinsic) {
1894 case nir_intrinsic_interp_var_at_centroid:
1895 emit_pixel_interpolater_send(bld,
1896 FS_OPCODE_INTERPOLATE_AT_CENTROID,
1897 dst_xy,
1898 fs_reg(), /* src */
1899 brw_imm_ud(0u),
1900 interpolation);
1901 break;
1902
1903 case nir_intrinsic_interp_var_at_sample: {
1904 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1905
1906 if (const_sample) {
1907 unsigned msg_data = const_sample->i[0] << 4;
1908
1909 emit_pixel_interpolater_send(bld,
1910 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
1911 dst_xy,
1912 fs_reg(), /* src */
1913 brw_imm_ud(msg_data),
1914 interpolation);
1915 } else {
1916 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
1917 BRW_REGISTER_TYPE_UD);
1918
1919 if (nir_src_is_dynamically_uniform(instr->src[0])) {
1920 const fs_reg sample_id = bld.emit_uniformize(sample_src);
1921 const fs_reg msg_data = vgrf(glsl_type::uint_type);
1922 bld.exec_all().group(1, 0)
1923 .SHL(msg_data, sample_id, brw_imm_ud(4u));
1924 emit_pixel_interpolater_send(bld,
1925 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
1926 dst_xy,
1927 fs_reg(), /* src */
1928 msg_data,
1929 interpolation);
1930 } else {
1931 /* Make a loop that sends a message to the pixel interpolater
1932 * for the sample number in each live channel. If there are
1933 * multiple channels with the same sample number then these
1934 * will be handled simultaneously with a single interation of
1935 * the loop.
1936 */
1937 bld.emit(BRW_OPCODE_DO);
1938
1939 /* Get the next live sample number into sample_id_reg */
1940 const fs_reg sample_id = bld.emit_uniformize(sample_src);
1941
1942 /* Set the flag register so that we can perform the send
1943 * message on all channels that have the same sample number
1944 */
1945 bld.CMP(bld.null_reg_ud(),
1946 sample_src, sample_id,
1947 BRW_CONDITIONAL_EQ);
1948 const fs_reg msg_data = vgrf(glsl_type::uint_type);
1949 bld.exec_all().group(1, 0)
1950 .SHL(msg_data, sample_id, brw_imm_ud(4u));
1951 fs_inst *inst =
1952 emit_pixel_interpolater_send(bld,
1953 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
1954 dst_xy,
1955 fs_reg(), /* src */
1956 msg_data,
1957 interpolation);
1958 set_predicate(BRW_PREDICATE_NORMAL, inst);
1959
1960 /* Continue the loop if there are any live channels left */
1961 set_predicate_inv(BRW_PREDICATE_NORMAL,
1962 true, /* inverse */
1963 bld.emit(BRW_OPCODE_WHILE));
1964 }
1965 }
1966
1967 break;
1968 }
1969
1970 case nir_intrinsic_interp_var_at_offset: {
1971 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1972
1973 if (const_offset) {
1974 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1975 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1976
1977 emit_pixel_interpolater_send(bld,
1978 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
1979 dst_xy,
1980 fs_reg(), /* src */
1981 brw_imm_ud(off_x | (off_y << 4)),
1982 interpolation);
1983 } else {
1984 fs_reg src = vgrf(glsl_type::ivec2_type);
1985 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1986 BRW_REGISTER_TYPE_F);
1987 for (int i = 0; i < 2; i++) {
1988 fs_reg temp = vgrf(glsl_type::float_type);
1989 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
1990 fs_reg itemp = vgrf(glsl_type::int_type);
1991 bld.MOV(itemp, temp); /* float to int */
1992
1993 /* Clamp the upper end of the range to +7/16.
1994 * ARB_gpu_shader5 requires that we support a maximum offset
1995 * of +0.5, which isn't representable in a S0.4 value -- if
1996 * we didn't clamp it, we'd end up with -8/16, which is the
1997 * opposite of what the shader author wanted.
1998 *
1999 * This is legal due to ARB_gpu_shader5's quantization
2000 * rules:
2001 *
2002 * "Not all values of <offset> may be supported; x and y
2003 * offsets may be rounded to fixed-point values with the
2004 * number of fraction bits given by the
2005 * implementation-dependent constant
2006 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2007 */
2008 set_condmod(BRW_CONDITIONAL_L,
2009 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2010 }
2011
2012 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2013 emit_pixel_interpolater_send(bld,
2014 opcode,
2015 dst_xy,
2016 src,
2017 brw_imm_ud(0u),
2018 interpolation);
2019 }
2020 break;
2021 }
2022
2023 default:
2024 unreachable("Invalid intrinsic");
2025 }
2026
2027 for (unsigned j = 0; j < instr->num_components; j++) {
2028 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2029 src.type = dest.type;
2030
2031 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2032 dest = offset(dest, bld, 1);
2033 }
2034 break;
2035 }
2036 default:
2037 nir_emit_intrinsic(bld, instr);
2038 break;
2039 }
2040 }
2041
2042 void
2043 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2044 nir_intrinsic_instr *instr)
2045 {
2046 assert(stage == MESA_SHADER_COMPUTE);
2047 struct brw_cs_prog_data *cs_prog_data =
2048 (struct brw_cs_prog_data *) prog_data;
2049
2050 fs_reg dest;
2051 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2052 dest = get_nir_dest(instr->dest);
2053
2054 switch (instr->intrinsic) {
2055 case nir_intrinsic_barrier:
2056 emit_barrier();
2057 cs_prog_data->uses_barrier = true;
2058 break;
2059
2060 case nir_intrinsic_load_local_invocation_id:
2061 case nir_intrinsic_load_work_group_id: {
2062 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2063 fs_reg val = nir_system_values[sv];
2064 assert(val.file != BAD_FILE);
2065 dest.type = val.type;
2066 for (unsigned i = 0; i < 3; i++)
2067 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2068 break;
2069 }
2070
2071 case nir_intrinsic_load_num_work_groups: {
2072 const unsigned surface =
2073 cs_prog_data->binding_table.work_groups_start;
2074
2075 cs_prog_data->uses_num_work_groups = true;
2076
2077 fs_reg surf_index = brw_imm_ud(surface);
2078 brw_mark_surface_used(prog_data, surface);
2079
2080 /* Read the 3 GLuint components of gl_NumWorkGroups */
2081 for (unsigned i = 0; i < 3; i++) {
2082 fs_reg read_result =
2083 emit_untyped_read(bld, surf_index,
2084 brw_imm_ud(i << 2),
2085 1 /* dims */, 1 /* size */,
2086 BRW_PREDICATE_NONE);
2087 read_result.type = dest.type;
2088 bld.MOV(dest, read_result);
2089 dest = offset(dest, bld, 1);
2090 }
2091 break;
2092 }
2093
2094 default:
2095 nir_emit_intrinsic(bld, instr);
2096 break;
2097 }
2098 }
2099
2100 void
2101 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2102 {
2103 fs_reg dest;
2104 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2105 dest = get_nir_dest(instr->dest);
2106
2107 bool has_indirect = false;
2108
2109 switch (instr->intrinsic) {
2110 case nir_intrinsic_atomic_counter_inc:
2111 case nir_intrinsic_atomic_counter_dec:
2112 case nir_intrinsic_atomic_counter_read: {
2113 using namespace surface_access;
2114
2115 /* Get the arguments of the atomic intrinsic. */
2116 const fs_reg offset = get_nir_src(instr->src[0]);
2117 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2118 instr->const_index[0]);
2119 fs_reg tmp;
2120
2121 /* Emit a surface read or atomic op. */
2122 switch (instr->intrinsic) {
2123 case nir_intrinsic_atomic_counter_read:
2124 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2125 break;
2126
2127 case nir_intrinsic_atomic_counter_inc:
2128 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2129 fs_reg(), 1, 1, BRW_AOP_INC);
2130 break;
2131
2132 case nir_intrinsic_atomic_counter_dec:
2133 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2134 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2135 break;
2136
2137 default:
2138 unreachable("Unreachable");
2139 }
2140
2141 /* Assign the result. */
2142 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2143
2144 /* Mark the surface as used. */
2145 brw_mark_surface_used(stage_prog_data, surface);
2146 break;
2147 }
2148
2149 case nir_intrinsic_image_load:
2150 case nir_intrinsic_image_store:
2151 case nir_intrinsic_image_atomic_add:
2152 case nir_intrinsic_image_atomic_min:
2153 case nir_intrinsic_image_atomic_max:
2154 case nir_intrinsic_image_atomic_and:
2155 case nir_intrinsic_image_atomic_or:
2156 case nir_intrinsic_image_atomic_xor:
2157 case nir_intrinsic_image_atomic_exchange:
2158 case nir_intrinsic_image_atomic_comp_swap: {
2159 using namespace image_access;
2160
2161 /* Get the referenced image variable and type. */
2162 const nir_variable *var = instr->variables[0]->var;
2163 const glsl_type *type = var->type->without_array();
2164 const brw_reg_type base_type = get_image_base_type(type);
2165
2166 /* Get some metadata from the image intrinsic. */
2167 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2168 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2169 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2170 const mesa_format format =
2171 (var->data.image.write_only ? MESA_FORMAT_NONE :
2172 _mesa_get_shader_image_format(var->data.image.format));
2173
2174 /* Get the arguments of the image intrinsic. */
2175 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2176 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2177 BRW_REGISTER_TYPE_UD);
2178 const fs_reg src0 = (info->num_srcs >= 3 ?
2179 retype(get_nir_src(instr->src[2]), base_type) :
2180 fs_reg());
2181 const fs_reg src1 = (info->num_srcs >= 4 ?
2182 retype(get_nir_src(instr->src[3]), base_type) :
2183 fs_reg());
2184 fs_reg tmp;
2185
2186 /* Emit an image load, store or atomic op. */
2187 if (instr->intrinsic == nir_intrinsic_image_load)
2188 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2189
2190 else if (instr->intrinsic == nir_intrinsic_image_store)
2191 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2192
2193 else
2194 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2195 surf_dims, arr_dims, info->dest_components,
2196 get_image_atomic_op(instr->intrinsic, type));
2197
2198 /* Assign the result. */
2199 for (unsigned c = 0; c < info->dest_components; ++c)
2200 bld.MOV(offset(retype(dest, base_type), bld, c),
2201 offset(tmp, bld, c));
2202 break;
2203 }
2204
2205 case nir_intrinsic_memory_barrier_atomic_counter:
2206 case nir_intrinsic_memory_barrier_buffer:
2207 case nir_intrinsic_memory_barrier_image:
2208 case nir_intrinsic_memory_barrier: {
2209 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2210 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2211 ->regs_written = 2;
2212 break;
2213 }
2214
2215 case nir_intrinsic_group_memory_barrier:
2216 case nir_intrinsic_memory_barrier_shared:
2217 /* We treat these workgroup-level barriers as no-ops. This should be
2218 * safe at present and as long as:
2219 *
2220 * - Memory access instructions are not subsequently reordered by the
2221 * compiler back-end.
2222 *
2223 * - All threads from a given compute shader workgroup fit within a
2224 * single subslice and therefore talk to the same HDC shared unit
2225 * what supposedly guarantees ordering and coherency between threads
2226 * from the same workgroup. This may change in the future when we
2227 * start splitting workgroups across multiple subslices.
2228 *
2229 * - The context is not in fault-and-stream mode, which could cause
2230 * memory transactions (including to SLM) prior to the barrier to be
2231 * replayed after the barrier if a pagefault occurs. This shouldn't
2232 * be a problem up to and including SKL because fault-and-stream is
2233 * not usable due to hardware issues, but that's likely to change in
2234 * the future.
2235 */
2236 break;
2237
2238 case nir_intrinsic_shader_clock: {
2239 /* We cannot do anything if there is an event, so ignore it for now */
2240 fs_reg shader_clock = get_timestamp(bld);
2241 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2242
2243 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2244 break;
2245 }
2246
2247 case nir_intrinsic_image_size: {
2248 /* Get the referenced image variable and type. */
2249 const nir_variable *var = instr->variables[0]->var;
2250 const glsl_type *type = var->type->without_array();
2251
2252 /* Get the size of the image. */
2253 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2254 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2255
2256 /* For 1DArray image types, the array index is stored in the Z component.
2257 * Fix this by swizzling the Z component to the Y component.
2258 */
2259 const bool is_1d_array_image =
2260 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2261 type->sampler_array;
2262
2263 /* For CubeArray images, we should count the number of cubes instead
2264 * of the number of faces. Fix it by dividing the (Z component) by 6.
2265 */
2266 const bool is_cube_array_image =
2267 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2268 type->sampler_array;
2269
2270 /* Copy all the components. */
2271 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2272 for (unsigned c = 0; c < info->dest_components; ++c) {
2273 if ((int)c >= type->coordinate_components()) {
2274 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2275 brw_imm_d(1));
2276 } else if (c == 1 && is_1d_array_image) {
2277 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2278 offset(size, bld, 2));
2279 } else if (c == 2 && is_cube_array_image) {
2280 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2281 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2282 offset(size, bld, c), brw_imm_d(6));
2283 } else {
2284 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2285 offset(size, bld, c));
2286 }
2287 }
2288
2289 break;
2290 }
2291
2292 case nir_intrinsic_image_samples:
2293 /* The driver does not support multi-sampled images. */
2294 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2295 break;
2296
2297 case nir_intrinsic_load_uniform_indirect:
2298 has_indirect = true;
2299 /* fallthrough */
2300 case nir_intrinsic_load_uniform: {
2301 fs_reg uniform_reg(UNIFORM, instr->const_index[0]);
2302 uniform_reg.reg_offset = instr->const_index[1];
2303
2304 for (unsigned j = 0; j < instr->num_components; j++) {
2305 fs_reg src = offset(retype(uniform_reg, dest.type), bld, j);
2306 if (has_indirect)
2307 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2308
2309 bld.MOV(dest, src);
2310 dest = offset(dest, bld, 1);
2311 }
2312 break;
2313 }
2314
2315 case nir_intrinsic_load_ubo_indirect:
2316 has_indirect = true;
2317 /* fallthrough */
2318 case nir_intrinsic_load_ubo: {
2319 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2320 fs_reg surf_index;
2321
2322 if (const_index) {
2323 const unsigned index = stage_prog_data->binding_table.ubo_start +
2324 const_index->u[0];
2325 surf_index = brw_imm_ud(index);
2326 brw_mark_surface_used(prog_data, index);
2327 } else {
2328 /* The block index is not a constant. Evaluate the index expression
2329 * per-channel and add the base UBO index; we have to select a value
2330 * from any live channel.
2331 */
2332 surf_index = vgrf(glsl_type::uint_type);
2333 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2334 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2335 surf_index = bld.emit_uniformize(surf_index);
2336
2337 /* Assume this may touch any UBO. It would be nice to provide
2338 * a tighter bound, but the array information is already lowered away.
2339 */
2340 brw_mark_surface_used(prog_data,
2341 stage_prog_data->binding_table.ubo_start +
2342 nir->info.num_ubos - 1);
2343 }
2344
2345 if (has_indirect) {
2346 /* Turn the byte offset into a dword offset. */
2347 fs_reg base_offset = vgrf(glsl_type::int_type);
2348 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
2349 BRW_REGISTER_TYPE_D),
2350 brw_imm_d(2));
2351
2352 unsigned vec4_offset = instr->const_index[0] / 4;
2353 for (int i = 0; i < instr->num_components; i++)
2354 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2355 base_offset, vec4_offset + i);
2356 } else {
2357 fs_reg packed_consts = vgrf(glsl_type::float_type);
2358 packed_consts.type = dest.type;
2359
2360 struct brw_reg const_offset_reg = brw_imm_ud(instr->const_index[0] & ~15);
2361 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2362 surf_index, const_offset_reg);
2363
2364 for (unsigned i = 0; i < instr->num_components; i++) {
2365 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
2366
2367 /* The std140 packing rules don't allow vectors to cross 16-byte
2368 * boundaries, and a reg is 32 bytes.
2369 */
2370 assert(packed_consts.subreg_offset < 32);
2371
2372 bld.MOV(dest, packed_consts);
2373 dest = offset(dest, bld, 1);
2374 }
2375 }
2376 break;
2377 }
2378
2379 case nir_intrinsic_load_ssbo_indirect:
2380 has_indirect = true;
2381 /* fallthrough */
2382 case nir_intrinsic_load_ssbo: {
2383 assert(devinfo->gen >= 7);
2384
2385 nir_const_value *const_uniform_block =
2386 nir_src_as_const_value(instr->src[0]);
2387
2388 fs_reg surf_index;
2389 if (const_uniform_block) {
2390 unsigned index = stage_prog_data->binding_table.ssbo_start +
2391 const_uniform_block->u[0];
2392 surf_index = brw_imm_ud(index);
2393 brw_mark_surface_used(prog_data, index);
2394 } else {
2395 surf_index = vgrf(glsl_type::uint_type);
2396 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2397 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2398
2399 /* Assume this may touch any UBO. It would be nice to provide
2400 * a tighter bound, but the array information is already lowered away.
2401 */
2402 brw_mark_surface_used(prog_data,
2403 stage_prog_data->binding_table.ssbo_start +
2404 nir->info.num_ssbos - 1);
2405 }
2406
2407 /* Get the offset to read from */
2408 fs_reg offset_reg;
2409 if (has_indirect) {
2410 offset_reg = get_nir_src(instr->src[1]);
2411 } else {
2412 offset_reg = brw_imm_ud(instr->const_index[0]);
2413 }
2414
2415 /* Read the vector */
2416 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2417 1 /* dims */,
2418 instr->num_components,
2419 BRW_PREDICATE_NONE);
2420 read_result.type = dest.type;
2421 for (int i = 0; i < instr->num_components; i++)
2422 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2423
2424 break;
2425 }
2426
2427 case nir_intrinsic_load_input_indirect:
2428 has_indirect = true;
2429 /* fallthrough */
2430 case nir_intrinsic_load_input: {
2431 unsigned index = 0;
2432 for (unsigned j = 0; j < instr->num_components; j++) {
2433 fs_reg src;
2434 if (stage == MESA_SHADER_VERTEX) {
2435 src = offset(fs_reg(ATTR, instr->const_index[0], dest.type), bld, index);
2436 } else {
2437 src = offset(retype(nir_inputs, dest.type), bld,
2438 instr->const_index[0] + index);
2439 }
2440 if (has_indirect)
2441 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2442 index++;
2443
2444 bld.MOV(dest, src);
2445 dest = offset(dest, bld, 1);
2446 }
2447 break;
2448 }
2449
2450 case nir_intrinsic_store_ssbo_indirect:
2451 has_indirect = true;
2452 /* fallthrough */
2453 case nir_intrinsic_store_ssbo: {
2454 assert(devinfo->gen >= 7);
2455
2456 /* Block index */
2457 fs_reg surf_index;
2458 nir_const_value *const_uniform_block =
2459 nir_src_as_const_value(instr->src[1]);
2460 if (const_uniform_block) {
2461 unsigned index = stage_prog_data->binding_table.ssbo_start +
2462 const_uniform_block->u[0];
2463 surf_index = brw_imm_ud(index);
2464 brw_mark_surface_used(prog_data, index);
2465 } else {
2466 surf_index = vgrf(glsl_type::uint_type);
2467 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2468 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2469
2470 brw_mark_surface_used(prog_data,
2471 stage_prog_data->binding_table.ssbo_start +
2472 nir->info.num_ssbos - 1);
2473 }
2474
2475 /* Value */
2476 fs_reg val_reg = get_nir_src(instr->src[0]);
2477
2478 /* Writemask */
2479 unsigned writemask = instr->const_index[1];
2480
2481 /* Combine groups of consecutive enabled channels in one write
2482 * message. We use ffs to find the first enabled channel and then ffs on
2483 * the bit-inverse, down-shifted writemask to determine the length of
2484 * the block of enabled bits.
2485 */
2486 while (writemask) {
2487 unsigned first_component = ffs(writemask) - 1;
2488 unsigned length = ffs(~(writemask >> first_component)) - 1;
2489 fs_reg offset_reg;
2490
2491 if (!has_indirect) {
2492 offset_reg = brw_imm_ud(instr->const_index[0] + 4 * first_component);
2493 } else {
2494 offset_reg = vgrf(glsl_type::uint_type);
2495 bld.ADD(offset_reg,
2496 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2497 brw_imm_ud(4 * first_component));
2498 }
2499
2500 emit_untyped_write(bld, surf_index, offset_reg,
2501 offset(val_reg, bld, first_component),
2502 1 /* dims */, length,
2503 BRW_PREDICATE_NONE);
2504
2505 /* Clear the bits in the writemask that we just wrote, then try
2506 * again to see if more channels are left.
2507 */
2508 writemask &= (15 << (first_component + length));
2509 }
2510 break;
2511 }
2512
2513 case nir_intrinsic_store_output_indirect:
2514 has_indirect = true;
2515 /* fallthrough */
2516 case nir_intrinsic_store_output: {
2517 fs_reg src = get_nir_src(instr->src[0]);
2518 unsigned index = 0;
2519 for (unsigned j = 0; j < instr->num_components; j++) {
2520 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2521 instr->const_index[0] + index);
2522 if (has_indirect)
2523 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
2524 index++;
2525 bld.MOV(new_dest, src);
2526 src = offset(src, bld, 1);
2527 }
2528 break;
2529 }
2530
2531 case nir_intrinsic_ssbo_atomic_add:
2532 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2533 break;
2534 case nir_intrinsic_ssbo_atomic_imin:
2535 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2536 break;
2537 case nir_intrinsic_ssbo_atomic_umin:
2538 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2539 break;
2540 case nir_intrinsic_ssbo_atomic_imax:
2541 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2542 break;
2543 case nir_intrinsic_ssbo_atomic_umax:
2544 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2545 break;
2546 case nir_intrinsic_ssbo_atomic_and:
2547 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2548 break;
2549 case nir_intrinsic_ssbo_atomic_or:
2550 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2551 break;
2552 case nir_intrinsic_ssbo_atomic_xor:
2553 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2554 break;
2555 case nir_intrinsic_ssbo_atomic_exchange:
2556 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2557 break;
2558 case nir_intrinsic_ssbo_atomic_comp_swap:
2559 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2560 break;
2561
2562 case nir_intrinsic_get_buffer_size: {
2563 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2564 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2565 int reg_width = dispatch_width / 8;
2566
2567 /* Set LOD = 0 */
2568 fs_reg source = brw_imm_d(0);
2569
2570 int mlen = 1 * reg_width;
2571
2572 /* A resinfo's sampler message is used to get the buffer size.
2573 * The SIMD8's writeback message consists of four registers and
2574 * SIMD16's writeback message consists of 8 destination registers
2575 * (two per each component), although we are only interested on the
2576 * first component, where resinfo returns the buffer size for
2577 * SURFTYPE_BUFFER.
2578 */
2579 int regs_written = 4 * mlen;
2580 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2581 BRW_REGISTER_TYPE_UD);
2582 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2583 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2584 BRW_REGISTER_TYPE_UD);
2585 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2586 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2587 src_payload, brw_imm_ud(index));
2588 inst->header_size = 0;
2589 inst->mlen = mlen;
2590 inst->regs_written = regs_written;
2591 bld.emit(inst);
2592 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2593
2594 brw_mark_surface_used(prog_data, index);
2595 break;
2596 }
2597
2598 default:
2599 unreachable("unknown intrinsic");
2600 }
2601 }
2602
2603 void
2604 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2605 int op, nir_intrinsic_instr *instr)
2606 {
2607 fs_reg dest;
2608 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2609 dest = get_nir_dest(instr->dest);
2610
2611 fs_reg surface;
2612 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2613 if (const_surface) {
2614 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2615 const_surface->u[0];
2616 surface = brw_imm_ud(surf_index);
2617 brw_mark_surface_used(prog_data, surf_index);
2618 } else {
2619 surface = vgrf(glsl_type::uint_type);
2620 bld.ADD(surface, get_nir_src(instr->src[0]),
2621 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2622
2623 /* Assume this may touch any SSBO. This is the same we do for other
2624 * UBO/SSBO accesses with non-constant surface.
2625 */
2626 brw_mark_surface_used(prog_data,
2627 stage_prog_data->binding_table.ssbo_start +
2628 nir->info.num_ssbos - 1);
2629 }
2630
2631 fs_reg offset = get_nir_src(instr->src[1]);
2632 fs_reg data1 = get_nir_src(instr->src[2]);
2633 fs_reg data2;
2634 if (op == BRW_AOP_CMPWR)
2635 data2 = get_nir_src(instr->src[3]);
2636
2637 /* Emit the actual atomic operation operation */
2638
2639 fs_reg atomic_result =
2640 surface_access::emit_untyped_atomic(bld, surface, offset,
2641 data1, data2,
2642 1 /* dims */, 1 /* rsize */,
2643 op,
2644 BRW_PREDICATE_NONE);
2645 dest.type = atomic_result.type;
2646 bld.MOV(dest, atomic_result);
2647 }
2648
2649 void
2650 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
2651 {
2652 unsigned sampler = instr->sampler_index;
2653 fs_reg sampler_reg(brw_imm_ud(sampler));
2654
2655 int gather_component = instr->component;
2656
2657 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
2658 instr->is_array;
2659
2660 int lod_components = 0;
2661 int UNUSED offset_components = 0;
2662
2663 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
2664
2665 for (unsigned i = 0; i < instr->num_srcs; i++) {
2666 fs_reg src = get_nir_src(instr->src[i].src);
2667 switch (instr->src[i].src_type) {
2668 case nir_tex_src_bias:
2669 lod = retype(src, BRW_REGISTER_TYPE_F);
2670 break;
2671 case nir_tex_src_comparitor:
2672 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
2673 break;
2674 case nir_tex_src_coord:
2675 switch (instr->op) {
2676 case nir_texop_txf:
2677 case nir_texop_txf_ms:
2678 case nir_texop_samples_identical:
2679 coordinate = retype(src, BRW_REGISTER_TYPE_D);
2680 break;
2681 default:
2682 coordinate = retype(src, BRW_REGISTER_TYPE_F);
2683 break;
2684 }
2685 break;
2686 case nir_tex_src_ddx:
2687 lod = retype(src, BRW_REGISTER_TYPE_F);
2688 lod_components = nir_tex_instr_src_size(instr, i);
2689 break;
2690 case nir_tex_src_ddy:
2691 lod2 = retype(src, BRW_REGISTER_TYPE_F);
2692 break;
2693 case nir_tex_src_lod:
2694 switch (instr->op) {
2695 case nir_texop_txs:
2696 lod = retype(src, BRW_REGISTER_TYPE_UD);
2697 break;
2698 case nir_texop_txf:
2699 lod = retype(src, BRW_REGISTER_TYPE_D);
2700 break;
2701 default:
2702 lod = retype(src, BRW_REGISTER_TYPE_F);
2703 break;
2704 }
2705 break;
2706 case nir_tex_src_ms_index:
2707 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
2708 break;
2709 case nir_tex_src_offset:
2710 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
2711 if (instr->is_array)
2712 offset_components = instr->coord_components - 1;
2713 else
2714 offset_components = instr->coord_components;
2715 break;
2716 case nir_tex_src_projector:
2717 unreachable("should be lowered");
2718
2719 case nir_tex_src_sampler_offset: {
2720 /* Figure out the highest possible sampler index and mark it as used */
2721 uint32_t max_used = sampler + instr->sampler_array_size - 1;
2722 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
2723 max_used += stage_prog_data->binding_table.gather_texture_start;
2724 } else {
2725 max_used += stage_prog_data->binding_table.texture_start;
2726 }
2727 brw_mark_surface_used(prog_data, max_used);
2728
2729 /* Emit code to evaluate the actual indexing expression */
2730 sampler_reg = vgrf(glsl_type::uint_type);
2731 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
2732 sampler_reg = bld.emit_uniformize(sampler_reg);
2733 break;
2734 }
2735
2736 default:
2737 unreachable("unknown texture source");
2738 }
2739 }
2740
2741 if (instr->op == nir_texop_txf_ms ||
2742 instr->op == nir_texop_samples_identical) {
2743 if (devinfo->gen >= 7 &&
2744 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2745 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
2746 } else {
2747 mcs = brw_imm_ud(0u);
2748 }
2749 }
2750
2751 for (unsigned i = 0; i < 3; i++) {
2752 if (instr->const_offset[i] != 0) {
2753 assert(offset_components == 0);
2754 tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
2755 break;
2756 }
2757 }
2758
2759 enum glsl_base_type dest_base_type =
2760 brw_glsl_base_type_for_nir_type (instr->dest_type);
2761
2762 const glsl_type *dest_type =
2763 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
2764 1);
2765
2766 ir_texture_opcode op;
2767 switch (instr->op) {
2768 case nir_texop_lod: op = ir_lod; break;
2769 case nir_texop_query_levels: op = ir_query_levels; break;
2770 case nir_texop_tex: op = ir_tex; break;
2771 case nir_texop_tg4: op = ir_tg4; break;
2772 case nir_texop_txb: op = ir_txb; break;
2773 case nir_texop_txd: op = ir_txd; break;
2774 case nir_texop_txf: op = ir_txf; break;
2775 case nir_texop_txf_ms: op = ir_txf_ms; break;
2776 case nir_texop_txl: op = ir_txl; break;
2777 case nir_texop_txs: op = ir_txs; break;
2778 case nir_texop_texture_samples: {
2779 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
2780 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
2781 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
2782 sampler_reg);
2783 inst->mlen = 1;
2784 inst->header_size = 1;
2785 inst->base_mrf = -1;
2786 return;
2787 }
2788 case nir_texop_samples_identical: op = ir_samples_identical; break;
2789 default:
2790 unreachable("unknown texture opcode");
2791 }
2792
2793 emit_texture(op, dest_type, coordinate, instr->coord_components,
2794 shadow_comparitor, lod, lod2, lod_components, sample_index,
2795 tex_offset, mcs, gather_component,
2796 is_cube_array, sampler, sampler_reg);
2797
2798 fs_reg dest = get_nir_dest(instr->dest);
2799 dest.type = this->result.type;
2800 unsigned num_components = nir_tex_instr_dest_size(instr);
2801 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
2802 dest, this->result),
2803 (1 << num_components) - 1);
2804 }
2805
2806 void
2807 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
2808 {
2809 switch (instr->type) {
2810 case nir_jump_break:
2811 bld.emit(BRW_OPCODE_BREAK);
2812 break;
2813 case nir_jump_continue:
2814 bld.emit(BRW_OPCODE_CONTINUE);
2815 break;
2816 case nir_jump_return:
2817 default:
2818 unreachable("unknown jump");
2819 }
2820 }