i965/fs: Don't disable SIMD16 when using the pixel interpolator
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 nir_shader *nir = prog->nir;
37
38 /* emit the arrays used for inputs and outputs - load/store intrinsics will
39 * be converted to reads/writes of these arrays
40 */
41
42 if (nir->num_inputs > 0) {
43 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
44 nir_setup_inputs(nir);
45 }
46
47 if (nir->num_outputs > 0) {
48 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
49 nir_setup_outputs(nir);
50 }
51
52 if (nir->num_uniforms > 0) {
53 nir_setup_uniforms(nir);
54 }
55
56 nir_emit_system_values(nir);
57
58 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
59 foreach_list_typed(nir_register, reg, node, &nir->registers) {
60 unsigned array_elems =
61 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
62 unsigned size = array_elems * reg->num_components;
63 nir_globals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
64 }
65
66 /* get the main function and emit it */
67 nir_foreach_overload(nir, overload) {
68 assert(strcmp(overload->function->name, "main") == 0);
69 assert(overload->impl);
70 nir_emit_impl(overload->impl);
71 }
72 }
73
74 void
75 fs_visitor::nir_setup_inputs(nir_shader *shader)
76 {
77 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
78 enum brw_reg_type type = brw_type_for_base_type(var->type);
79 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
80
81 fs_reg reg;
82 switch (stage) {
83 case MESA_SHADER_VERTEX: {
84 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
85 * stored in nir_variable::location.
86 *
87 * However, NIR's load_input intrinsics use a different index - an
88 * offset into a single contiguous array containing all inputs.
89 * This index corresponds to the nir_variable::driver_location field.
90 *
91 * So, we need to copy from fs_reg(ATTR, var->location) to
92 * offset(nir_inputs, var->data.driver_location).
93 */
94 unsigned components = var->type->without_array()->components();
95 unsigned array_length = var->type->is_array() ? var->type->length : 1;
96 for (unsigned i = 0; i < array_length; i++) {
97 for (unsigned j = 0; j < components; j++) {
98 bld.MOV(retype(offset(input, bld, components * i + j), type),
99 offset(fs_reg(ATTR, var->data.location + i, type), bld, j));
100 }
101 }
102 break;
103 }
104 case MESA_SHADER_GEOMETRY:
105 case MESA_SHADER_COMPUTE:
106 unreachable("fs_visitor not used for these stages yet.");
107 break;
108 case MESA_SHADER_FRAGMENT:
109 if (var->data.location == VARYING_SLOT_POS) {
110 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
111 var->data.origin_upper_left);
112 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
113 input, reg), 0xF);
114 } else {
115 emit_general_interpolation(input, var->name, var->type,
116 (glsl_interp_qualifier) var->data.interpolation,
117 var->data.location, var->data.centroid,
118 var->data.sample);
119 }
120 break;
121 }
122 }
123 }
124
125 void
126 fs_visitor::nir_setup_outputs(nir_shader *shader)
127 {
128 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
129
130 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
131 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
132
133 int vector_elements =
134 var->type->is_array() ? var->type->fields.array->vector_elements
135 : var->type->vector_elements;
136
137 if (stage == MESA_SHADER_VERTEX) {
138 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
139 int output = var->data.location + i;
140 this->outputs[output] = offset(reg, bld, 4 * i);
141 this->output_components[output] = vector_elements;
142 }
143 } else if (var->data.index > 0) {
144 assert(var->data.location == FRAG_RESULT_DATA0);
145 assert(var->data.index == 1);
146 this->dual_src_output = reg;
147 this->do_dual_src = true;
148 } else if (var->data.location == FRAG_RESULT_COLOR) {
149 /* Writing gl_FragColor outputs to all color regions. */
150 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
151 this->outputs[i] = reg;
152 this->output_components[i] = 4;
153 }
154 } else if (var->data.location == FRAG_RESULT_DEPTH) {
155 this->frag_depth = reg;
156 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
157 this->sample_mask = reg;
158 } else {
159 /* gl_FragData or a user-defined FS output */
160 assert(var->data.location >= FRAG_RESULT_DATA0 &&
161 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
162
163 /* General color output. */
164 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
165 int output = var->data.location - FRAG_RESULT_DATA0 + i;
166 this->outputs[output] = offset(reg, bld, vector_elements * i);
167 this->output_components[output] = vector_elements;
168 }
169 }
170 }
171 }
172
173 void
174 fs_visitor::nir_setup_uniforms(nir_shader *shader)
175 {
176 uniforms = shader->num_uniforms;
177 num_direct_uniforms = shader->num_direct_uniforms;
178
179 /* We split the uniform register file in half. The first half is
180 * entirely direct uniforms. The second half is indirect.
181 */
182 param_size[0] = num_direct_uniforms;
183 if (shader->num_uniforms > num_direct_uniforms)
184 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
185
186 if (dispatch_width != 8)
187 return;
188
189 if (shader_prog) {
190 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
191 /* UBO's and atomics don't take up space in the uniform file */
192 if (var->interface_type != NULL || var->type->contains_atomic())
193 continue;
194
195 if (strncmp(var->name, "gl_", 3) == 0)
196 nir_setup_builtin_uniform(var);
197 else
198 nir_setup_uniform(var);
199 }
200 } else {
201 /* prog_to_nir doesn't create uniform variables; set param up directly. */
202 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
203 for (unsigned int i = 0; i < 4; i++) {
204 stage_prog_data->param[4 * p + i] =
205 &prog->Parameters->ParameterValues[p][i];
206 }
207 }
208 }
209 }
210
211 void
212 fs_visitor::nir_setup_uniform(nir_variable *var)
213 {
214 int namelen = strlen(var->name);
215
216 /* The data for our (non-builtin) uniforms is stored in a series of
217 * gl_uniform_driver_storage structs for each subcomponent that
218 * glGetUniformLocation() could name. We know it's been set up in the
219 * same order we'd walk the type, so walk the list of storage and find
220 * anything with our name, or the prefix of a component that starts with
221 * our name.
222 */
223 unsigned index = var->data.driver_location;
224 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
225 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
226
227 if (storage->builtin)
228 continue;
229
230 if (strncmp(var->name, storage->name, namelen) != 0 ||
231 (storage->name[namelen] != 0 &&
232 storage->name[namelen] != '.' &&
233 storage->name[namelen] != '[')) {
234 continue;
235 }
236
237 unsigned slots = storage->type->component_slots();
238 if (storage->array_elements)
239 slots *= storage->array_elements;
240
241 for (unsigned i = 0; i < slots; i++) {
242 stage_prog_data->param[index++] = &storage->storage[i];
243 }
244 }
245
246 /* Make sure we actually initialized the right amount of stuff here. */
247 assert(var->data.driver_location + var->type->component_slots() == index);
248 }
249
250 void
251 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
252 {
253 const nir_state_slot *const slots = var->state_slots;
254 assert(var->state_slots != NULL);
255
256 unsigned uniform_index = var->data.driver_location;
257 for (unsigned int i = 0; i < var->num_state_slots; i++) {
258 /* This state reference has already been setup by ir_to_mesa, but we'll
259 * get the same index back here.
260 */
261 int index = _mesa_add_state_reference(this->prog->Parameters,
262 (gl_state_index *)slots[i].tokens);
263
264 /* Add each of the unique swizzles of the element as a parameter.
265 * This'll end up matching the expected layout of the
266 * array/matrix/structure we're trying to fill in.
267 */
268 int last_swiz = -1;
269 for (unsigned int j = 0; j < 4; j++) {
270 int swiz = GET_SWZ(slots[i].swizzle, j);
271 if (swiz == last_swiz)
272 break;
273 last_swiz = swiz;
274
275 stage_prog_data->param[uniform_index++] =
276 &prog->Parameters->ParameterValues[index][swiz];
277 }
278 }
279 }
280
281 static bool
282 emit_system_values_block(nir_block *block, void *void_visitor)
283 {
284 fs_visitor *v = (fs_visitor *)void_visitor;
285 fs_reg *reg;
286
287 nir_foreach_instr(block, instr) {
288 if (instr->type != nir_instr_type_intrinsic)
289 continue;
290
291 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
292 switch (intrin->intrinsic) {
293 case nir_intrinsic_load_vertex_id:
294 unreachable("should be lowered by lower_vertex_id().");
295
296 case nir_intrinsic_load_vertex_id_zero_base:
297 assert(v->stage == MESA_SHADER_VERTEX);
298 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
299 if (reg->file == BAD_FILE)
300 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
301 break;
302
303 case nir_intrinsic_load_base_vertex:
304 assert(v->stage == MESA_SHADER_VERTEX);
305 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
306 if (reg->file == BAD_FILE)
307 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
308 break;
309
310 case nir_intrinsic_load_instance_id:
311 assert(v->stage == MESA_SHADER_VERTEX);
312 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
313 if (reg->file == BAD_FILE)
314 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
315 break;
316
317 case nir_intrinsic_load_sample_pos:
318 assert(v->stage == MESA_SHADER_FRAGMENT);
319 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
320 if (reg->file == BAD_FILE)
321 *reg = *v->emit_samplepos_setup();
322 break;
323
324 case nir_intrinsic_load_sample_id:
325 assert(v->stage == MESA_SHADER_FRAGMENT);
326 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
327 if (reg->file == BAD_FILE)
328 *reg = *v->emit_sampleid_setup();
329 break;
330
331 case nir_intrinsic_load_sample_mask_in:
332 assert(v->stage == MESA_SHADER_FRAGMENT);
333 assert(v->devinfo->gen >= 7);
334 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
335 if (reg->file == BAD_FILE)
336 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
337 BRW_REGISTER_TYPE_D));
338 break;
339
340 default:
341 break;
342 }
343 }
344
345 return true;
346 }
347
348 void
349 fs_visitor::nir_emit_system_values(nir_shader *shader)
350 {
351 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
352 nir_foreach_overload(shader, overload) {
353 assert(strcmp(overload->function->name, "main") == 0);
354 assert(overload->impl);
355 nir_foreach_block(overload->impl, emit_system_values_block, this);
356 }
357 }
358
359 void
360 fs_visitor::nir_emit_impl(nir_function_impl *impl)
361 {
362 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
363 foreach_list_typed(nir_register, reg, node, &impl->registers) {
364 unsigned array_elems =
365 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
366 unsigned size = array_elems * reg->num_components;
367 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
368 }
369
370 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
371 impl->ssa_alloc);
372
373 nir_emit_cf_list(&impl->body);
374 }
375
376 void
377 fs_visitor::nir_emit_cf_list(exec_list *list)
378 {
379 exec_list_validate(list);
380 foreach_list_typed(nir_cf_node, node, node, list) {
381 switch (node->type) {
382 case nir_cf_node_if:
383 nir_emit_if(nir_cf_node_as_if(node));
384 break;
385
386 case nir_cf_node_loop:
387 nir_emit_loop(nir_cf_node_as_loop(node));
388 break;
389
390 case nir_cf_node_block:
391 nir_emit_block(nir_cf_node_as_block(node));
392 break;
393
394 default:
395 unreachable("Invalid CFG node block");
396 }
397 }
398 }
399
400 void
401 fs_visitor::nir_emit_if(nir_if *if_stmt)
402 {
403 /* first, put the condition into f0 */
404 fs_inst *inst = bld.MOV(bld.null_reg_d(),
405 retype(get_nir_src(if_stmt->condition),
406 BRW_REGISTER_TYPE_D));
407 inst->conditional_mod = BRW_CONDITIONAL_NZ;
408
409 bld.IF(BRW_PREDICATE_NORMAL);
410
411 nir_emit_cf_list(&if_stmt->then_list);
412
413 /* note: if the else is empty, dead CF elimination will remove it */
414 bld.emit(BRW_OPCODE_ELSE);
415
416 nir_emit_cf_list(&if_stmt->else_list);
417
418 bld.emit(BRW_OPCODE_ENDIF);
419
420 if (!try_replace_with_sel() && devinfo->gen < 6) {
421 no16("Can't support (non-uniform) control flow on SIMD16\n");
422 }
423 }
424
425 void
426 fs_visitor::nir_emit_loop(nir_loop *loop)
427 {
428 if (devinfo->gen < 6) {
429 no16("Can't support (non-uniform) control flow on SIMD16\n");
430 }
431
432 bld.emit(BRW_OPCODE_DO);
433
434 nir_emit_cf_list(&loop->body);
435
436 bld.emit(BRW_OPCODE_WHILE);
437 }
438
439 void
440 fs_visitor::nir_emit_block(nir_block *block)
441 {
442 nir_foreach_instr(block, instr) {
443 nir_emit_instr(instr);
444 }
445 }
446
447 void
448 fs_visitor::nir_emit_instr(nir_instr *instr)
449 {
450 const fs_builder abld = bld.annotate(NULL, instr);
451
452 switch (instr->type) {
453 case nir_instr_type_alu:
454 nir_emit_alu(abld, nir_instr_as_alu(instr));
455 break;
456
457 case nir_instr_type_intrinsic:
458 nir_emit_intrinsic(abld, nir_instr_as_intrinsic(instr));
459 break;
460
461 case nir_instr_type_tex:
462 nir_emit_texture(abld, nir_instr_as_tex(instr));
463 break;
464
465 case nir_instr_type_load_const:
466 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
467 break;
468
469 case nir_instr_type_ssa_undef:
470 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
471 break;
472
473 case nir_instr_type_jump:
474 nir_emit_jump(abld, nir_instr_as_jump(instr));
475 break;
476
477 default:
478 unreachable("unknown instruction type");
479 }
480 }
481
482 static brw_reg_type
483 brw_type_for_nir_type(nir_alu_type type)
484 {
485 switch (type) {
486 case nir_type_unsigned:
487 return BRW_REGISTER_TYPE_UD;
488 case nir_type_bool:
489 case nir_type_int:
490 return BRW_REGISTER_TYPE_D;
491 case nir_type_float:
492 return BRW_REGISTER_TYPE_F;
493 default:
494 unreachable("unknown type");
495 }
496
497 return BRW_REGISTER_TYPE_F;
498 }
499
500 bool
501 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
502 const fs_reg &result)
503 {
504 if (!instr->src[0].src.is_ssa ||
505 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
506 return false;
507
508 nir_intrinsic_instr *src0 =
509 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
510
511 if (src0->intrinsic != nir_intrinsic_load_front_face)
512 return false;
513
514 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
515 if (!value1 || fabsf(value1->f[0]) != 1.0f)
516 return false;
517
518 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
519 if (!value2 || fabsf(value2->f[0]) != 1.0f)
520 return false;
521
522 fs_reg tmp = vgrf(glsl_type::int_type);
523
524 if (devinfo->gen >= 6) {
525 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
526 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
527
528 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
529 *
530 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
531 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
532 *
533 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
534 *
535 * This negation looks like it's safe in practice, because bits 0:4 will
536 * surely be TRIANGLES
537 */
538
539 if (value1->f[0] == -1.0f) {
540 g0.negate = true;
541 }
542
543 tmp.type = BRW_REGISTER_TYPE_W;
544 tmp.subreg_offset = 2;
545 tmp.stride = 2;
546
547 fs_inst *or_inst = bld.OR(tmp, g0, fs_reg(0x3f80));
548 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
549
550 tmp.type = BRW_REGISTER_TYPE_D;
551 tmp.subreg_offset = 0;
552 tmp.stride = 1;
553 } else {
554 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
555 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
556
557 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
558 *
559 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
560 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
561 *
562 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
563 *
564 * This negation looks like it's safe in practice, because bits 0:4 will
565 * surely be TRIANGLES
566 */
567
568 if (value1->f[0] == -1.0f) {
569 g1_6.negate = true;
570 }
571
572 bld.OR(tmp, g1_6, fs_reg(0x3f800000));
573 }
574 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000));
575
576 return true;
577 }
578
579 void
580 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
581 {
582 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
583 fs_inst *inst;
584
585 fs_reg result = get_nir_dest(instr->dest.dest);
586 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
587
588 fs_reg op[4];
589 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
590 op[i] = get_nir_src(instr->src[i].src);
591 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
592 op[i].abs = instr->src[i].abs;
593 op[i].negate = instr->src[i].negate;
594 }
595
596 /* We get a bunch of mov's out of the from_ssa pass and they may still
597 * be vectorized. We'll handle them as a special-case. We'll also
598 * handle vecN here because it's basically the same thing.
599 */
600 switch (instr->op) {
601 case nir_op_imov:
602 case nir_op_fmov:
603 case nir_op_vec2:
604 case nir_op_vec3:
605 case nir_op_vec4: {
606 fs_reg temp = result;
607 bool need_extra_copy = false;
608 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
609 if (!instr->src[i].src.is_ssa &&
610 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
611 need_extra_copy = true;
612 temp = bld.vgrf(result.type, 4);
613 break;
614 }
615 }
616
617 for (unsigned i = 0; i < 4; i++) {
618 if (!(instr->dest.write_mask & (1 << i)))
619 continue;
620
621 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
622 inst = bld.MOV(offset(temp, bld, i),
623 offset(op[0], bld, instr->src[0].swizzle[i]));
624 } else {
625 inst = bld.MOV(offset(temp, bld, i),
626 offset(op[i], bld, instr->src[i].swizzle[0]));
627 }
628 inst->saturate = instr->dest.saturate;
629 }
630
631 /* In this case the source and destination registers were the same,
632 * so we need to insert an extra set of moves in order to deal with
633 * any swizzling.
634 */
635 if (need_extra_copy) {
636 for (unsigned i = 0; i < 4; i++) {
637 if (!(instr->dest.write_mask & (1 << i)))
638 continue;
639
640 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
641 }
642 }
643 return;
644 }
645 default:
646 break;
647 }
648
649 /* At this point, we have dealt with any instruction that operates on
650 * more than a single channel. Therefore, we can just adjust the source
651 * and destination registers for that channel and emit the instruction.
652 */
653 unsigned channel = 0;
654 if (nir_op_infos[instr->op].output_size == 0) {
655 /* Since NIR is doing the scalarizing for us, we should only ever see
656 * vectorized operations with a single channel.
657 */
658 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
659 channel = ffs(instr->dest.write_mask) - 1;
660
661 result = offset(result, bld, channel);
662 }
663
664 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
665 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
666 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
667 }
668
669 switch (instr->op) {
670 case nir_op_i2f:
671 case nir_op_u2f:
672 inst = bld.MOV(result, op[0]);
673 inst->saturate = instr->dest.saturate;
674 break;
675
676 case nir_op_f2i:
677 case nir_op_f2u:
678 bld.MOV(result, op[0]);
679 break;
680
681 case nir_op_fsign: {
682 /* AND(val, 0x80000000) gives the sign bit.
683 *
684 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
685 * zero.
686 */
687 bld.CMP(bld.null_reg_f(), op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
688
689 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
690 op[0].type = BRW_REGISTER_TYPE_UD;
691 result.type = BRW_REGISTER_TYPE_UD;
692 bld.AND(result_int, op[0], fs_reg(0x80000000u));
693
694 inst = bld.OR(result_int, result_int, fs_reg(0x3f800000u));
695 inst->predicate = BRW_PREDICATE_NORMAL;
696 if (instr->dest.saturate) {
697 inst = bld.MOV(result, result);
698 inst->saturate = true;
699 }
700 break;
701 }
702
703 case nir_op_isign:
704 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
705 * -> non-negative val generates 0x00000000.
706 * Predicated OR sets 1 if val is positive.
707 */
708 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_G);
709 bld.ASR(result, op[0], fs_reg(31));
710 inst = bld.OR(result, result, fs_reg(1));
711 inst->predicate = BRW_PREDICATE_NORMAL;
712 break;
713
714 case nir_op_frcp:
715 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
716 inst->saturate = instr->dest.saturate;
717 break;
718
719 case nir_op_fexp2:
720 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
721 inst->saturate = instr->dest.saturate;
722 break;
723
724 case nir_op_flog2:
725 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
726 inst->saturate = instr->dest.saturate;
727 break;
728
729 case nir_op_fsin:
730 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
731 inst->saturate = instr->dest.saturate;
732 break;
733
734 case nir_op_fcos:
735 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
736 inst->saturate = instr->dest.saturate;
737 break;
738
739 case nir_op_fddx:
740 if (fs_key->high_quality_derivatives) {
741 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
742 } else {
743 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
744 }
745 inst->saturate = instr->dest.saturate;
746 break;
747 case nir_op_fddx_fine:
748 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
749 inst->saturate = instr->dest.saturate;
750 break;
751 case nir_op_fddx_coarse:
752 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
753 inst->saturate = instr->dest.saturate;
754 break;
755 case nir_op_fddy:
756 if (fs_key->high_quality_derivatives) {
757 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
758 fs_reg(fs_key->render_to_fbo));
759 } else {
760 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
761 fs_reg(fs_key->render_to_fbo));
762 }
763 inst->saturate = instr->dest.saturate;
764 break;
765 case nir_op_fddy_fine:
766 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
767 fs_reg(fs_key->render_to_fbo));
768 inst->saturate = instr->dest.saturate;
769 break;
770 case nir_op_fddy_coarse:
771 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
772 fs_reg(fs_key->render_to_fbo));
773 inst->saturate = instr->dest.saturate;
774 break;
775
776 case nir_op_fadd:
777 case nir_op_iadd:
778 inst = bld.ADD(result, op[0], op[1]);
779 inst->saturate = instr->dest.saturate;
780 break;
781
782 case nir_op_fmul:
783 inst = bld.MUL(result, op[0], op[1]);
784 inst->saturate = instr->dest.saturate;
785 break;
786
787 case nir_op_imul:
788 bld.MUL(result, op[0], op[1]);
789 break;
790
791 case nir_op_imul_high:
792 case nir_op_umul_high: {
793 if (devinfo->gen >= 7)
794 no16("SIMD16 explicit accumulator operands unsupported\n");
795
796 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
797
798 fs_inst *mul = bld.MUL(acc, op[0], op[1]);
799 bld.MACH(result, op[0], op[1]);
800
801 /* Until Gen8, integer multiplies read 32-bits from one source, and
802 * 16-bits from the other, and relying on the MACH instruction to
803 * generate the high bits of the result.
804 *
805 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
806 * but in order to do a 64x64-bit multiply we have to simulate the
807 * previous behavior and then use a MACH instruction.
808 *
809 * FINISHME: Don't use source modifiers on src1.
810 */
811 if (devinfo->gen >= 8) {
812 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
813 mul->src[1].type == BRW_REGISTER_TYPE_UD);
814 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
815 mul->src[1].type = BRW_REGISTER_TYPE_W;
816 mul->src[1].stride = 2;
817 } else {
818 mul->src[1].type = BRW_REGISTER_TYPE_UW;
819 mul->src[1].stride = 2;
820 }
821 }
822 break;
823 }
824
825 case nir_op_idiv:
826 case nir_op_udiv:
827 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
828 break;
829
830 case nir_op_uadd_carry: {
831 if (devinfo->gen >= 7)
832 no16("SIMD16 explicit accumulator operands unsupported\n");
833
834 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
835 BRW_REGISTER_TYPE_UD);
836
837 bld.ADDC(bld.null_reg_ud(), op[0], op[1]);
838 bld.MOV(result, fs_reg(acc));
839 break;
840 }
841
842 case nir_op_usub_borrow: {
843 if (devinfo->gen >= 7)
844 no16("SIMD16 explicit accumulator operands unsupported\n");
845
846 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
847 BRW_REGISTER_TYPE_UD);
848
849 bld.SUBB(bld.null_reg_ud(), op[0], op[1]);
850 bld.MOV(result, fs_reg(acc));
851 break;
852 }
853
854 case nir_op_umod:
855 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
856 break;
857
858 case nir_op_flt:
859 case nir_op_ilt:
860 case nir_op_ult:
861 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
862 break;
863
864 case nir_op_fge:
865 case nir_op_ige:
866 case nir_op_uge:
867 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
868 break;
869
870 case nir_op_feq:
871 case nir_op_ieq:
872 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
873 break;
874
875 case nir_op_fne:
876 case nir_op_ine:
877 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
878 break;
879
880 case nir_op_inot:
881 if (devinfo->gen >= 8) {
882 resolve_source_modifiers(&op[0]);
883 }
884 bld.NOT(result, op[0]);
885 break;
886 case nir_op_ixor:
887 if (devinfo->gen >= 8) {
888 resolve_source_modifiers(&op[0]);
889 resolve_source_modifiers(&op[1]);
890 }
891 bld.XOR(result, op[0], op[1]);
892 break;
893 case nir_op_ior:
894 if (devinfo->gen >= 8) {
895 resolve_source_modifiers(&op[0]);
896 resolve_source_modifiers(&op[1]);
897 }
898 bld.OR(result, op[0], op[1]);
899 break;
900 case nir_op_iand:
901 if (devinfo->gen >= 8) {
902 resolve_source_modifiers(&op[0]);
903 resolve_source_modifiers(&op[1]);
904 }
905 bld.AND(result, op[0], op[1]);
906 break;
907
908 case nir_op_fdot2:
909 case nir_op_fdot3:
910 case nir_op_fdot4:
911 case nir_op_bany2:
912 case nir_op_bany3:
913 case nir_op_bany4:
914 case nir_op_ball2:
915 case nir_op_ball3:
916 case nir_op_ball4:
917 case nir_op_ball_fequal2:
918 case nir_op_ball_iequal2:
919 case nir_op_ball_fequal3:
920 case nir_op_ball_iequal3:
921 case nir_op_ball_fequal4:
922 case nir_op_ball_iequal4:
923 case nir_op_bany_fnequal2:
924 case nir_op_bany_inequal2:
925 case nir_op_bany_fnequal3:
926 case nir_op_bany_inequal3:
927 case nir_op_bany_fnequal4:
928 case nir_op_bany_inequal4:
929 unreachable("Lowered by nir_lower_alu_reductions");
930
931 case nir_op_fnoise1_1:
932 case nir_op_fnoise1_2:
933 case nir_op_fnoise1_3:
934 case nir_op_fnoise1_4:
935 case nir_op_fnoise2_1:
936 case nir_op_fnoise2_2:
937 case nir_op_fnoise2_3:
938 case nir_op_fnoise2_4:
939 case nir_op_fnoise3_1:
940 case nir_op_fnoise3_2:
941 case nir_op_fnoise3_3:
942 case nir_op_fnoise3_4:
943 case nir_op_fnoise4_1:
944 case nir_op_fnoise4_2:
945 case nir_op_fnoise4_3:
946 case nir_op_fnoise4_4:
947 unreachable("not reached: should be handled by lower_noise");
948
949 case nir_op_ldexp:
950 unreachable("not reached: should be handled by ldexp_to_arith()");
951
952 case nir_op_fsqrt:
953 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
954 inst->saturate = instr->dest.saturate;
955 break;
956
957 case nir_op_frsq:
958 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
959 inst->saturate = instr->dest.saturate;
960 break;
961
962 case nir_op_b2i:
963 bld.AND(result, op[0], fs_reg(1));
964 break;
965 case nir_op_b2f:
966 bld.AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u));
967 break;
968
969 case nir_op_f2b:
970 bld.CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ);
971 break;
972 case nir_op_i2b:
973 bld.CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
974 break;
975
976 case nir_op_ftrunc:
977 inst = bld.RNDZ(result, op[0]);
978 inst->saturate = instr->dest.saturate;
979 break;
980
981 case nir_op_fceil: {
982 op[0].negate = !op[0].negate;
983 fs_reg temp = vgrf(glsl_type::float_type);
984 bld.RNDD(temp, op[0]);
985 temp.negate = true;
986 inst = bld.MOV(result, temp);
987 inst->saturate = instr->dest.saturate;
988 break;
989 }
990 case nir_op_ffloor:
991 inst = bld.RNDD(result, op[0]);
992 inst->saturate = instr->dest.saturate;
993 break;
994 case nir_op_ffract:
995 inst = bld.FRC(result, op[0]);
996 inst->saturate = instr->dest.saturate;
997 break;
998 case nir_op_fround_even:
999 inst = bld.RNDE(result, op[0]);
1000 inst->saturate = instr->dest.saturate;
1001 break;
1002
1003 case nir_op_fmin:
1004 case nir_op_imin:
1005 case nir_op_umin:
1006 if (devinfo->gen >= 6) {
1007 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1008 inst->conditional_mod = BRW_CONDITIONAL_L;
1009 } else {
1010 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
1011 inst = bld.SEL(result, op[0], op[1]);
1012 inst->predicate = BRW_PREDICATE_NORMAL;
1013 }
1014 inst->saturate = instr->dest.saturate;
1015 break;
1016
1017 case nir_op_fmax:
1018 case nir_op_imax:
1019 case nir_op_umax:
1020 if (devinfo->gen >= 6) {
1021 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1022 inst->conditional_mod = BRW_CONDITIONAL_GE;
1023 } else {
1024 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
1025 inst = bld.SEL(result, op[0], op[1]);
1026 inst->predicate = BRW_PREDICATE_NORMAL;
1027 }
1028 inst->saturate = instr->dest.saturate;
1029 break;
1030
1031 case nir_op_pack_snorm_2x16:
1032 case nir_op_pack_snorm_4x8:
1033 case nir_op_pack_unorm_2x16:
1034 case nir_op_pack_unorm_4x8:
1035 case nir_op_unpack_snorm_2x16:
1036 case nir_op_unpack_snorm_4x8:
1037 case nir_op_unpack_unorm_2x16:
1038 case nir_op_unpack_unorm_4x8:
1039 case nir_op_unpack_half_2x16:
1040 case nir_op_pack_half_2x16:
1041 unreachable("not reached: should be handled by lower_packing_builtins");
1042
1043 case nir_op_unpack_half_2x16_split_x:
1044 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1045 inst->saturate = instr->dest.saturate;
1046 break;
1047 case nir_op_unpack_half_2x16_split_y:
1048 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1049 inst->saturate = instr->dest.saturate;
1050 break;
1051
1052 case nir_op_fpow:
1053 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1054 inst->saturate = instr->dest.saturate;
1055 break;
1056
1057 case nir_op_bitfield_reverse:
1058 bld.BFREV(result, op[0]);
1059 break;
1060
1061 case nir_op_bit_count:
1062 bld.CBIT(result, op[0]);
1063 break;
1064
1065 case nir_op_ufind_msb:
1066 case nir_op_ifind_msb: {
1067 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1068
1069 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1070 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1071 * subtract the result from 31 to convert the MSB count into an LSB count.
1072 */
1073
1074 bld.CMP(bld.null_reg_d(), result, fs_reg(-1), BRW_CONDITIONAL_NZ);
1075 fs_reg neg_result(result);
1076 neg_result.negate = true;
1077 inst = bld.ADD(result, neg_result, fs_reg(31));
1078 inst->predicate = BRW_PREDICATE_NORMAL;
1079 break;
1080 }
1081
1082 case nir_op_find_lsb:
1083 bld.FBL(result, op[0]);
1084 break;
1085
1086 case nir_op_ubitfield_extract:
1087 case nir_op_ibitfield_extract:
1088 bld.BFE(result, op[2], op[1], op[0]);
1089 break;
1090 case nir_op_bfm:
1091 bld.BFI1(result, op[0], op[1]);
1092 break;
1093 case nir_op_bfi:
1094 bld.BFI2(result, op[0], op[1], op[2]);
1095 break;
1096
1097 case nir_op_bitfield_insert:
1098 unreachable("not reached: should be handled by "
1099 "lower_instructions::bitfield_insert_to_bfm_bfi");
1100
1101 case nir_op_ishl:
1102 bld.SHL(result, op[0], op[1]);
1103 break;
1104 case nir_op_ishr:
1105 bld.ASR(result, op[0], op[1]);
1106 break;
1107 case nir_op_ushr:
1108 bld.SHR(result, op[0], op[1]);
1109 break;
1110
1111 case nir_op_pack_half_2x16_split:
1112 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1113 break;
1114
1115 case nir_op_ffma:
1116 inst = bld.MAD(result, op[2], op[1], op[0]);
1117 inst->saturate = instr->dest.saturate;
1118 break;
1119
1120 case nir_op_flrp:
1121 inst = bld.LRP(result, op[0], op[1], op[2]);
1122 inst->saturate = instr->dest.saturate;
1123 break;
1124
1125 case nir_op_bcsel:
1126 if (optimize_frontfacing_ternary(instr, result))
1127 return;
1128
1129 bld.CMP(bld.null_reg_d(), op[0], fs_reg(0), BRW_CONDITIONAL_NZ);
1130 inst = bld.SEL(result, op[1], op[2]);
1131 inst->predicate = BRW_PREDICATE_NORMAL;
1132 break;
1133
1134 default:
1135 unreachable("unhandled instruction");
1136 }
1137
1138 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1139 * to sign extend the low bit to 0/~0
1140 */
1141 if (devinfo->gen <= 5 &&
1142 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1143 fs_reg masked = vgrf(glsl_type::int_type);
1144 bld.AND(masked, result, fs_reg(1));
1145 masked.negate = true;
1146 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1147 }
1148 }
1149
1150 void
1151 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1152 nir_load_const_instr *instr)
1153 {
1154 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1155
1156 for (unsigned i = 0; i < instr->def.num_components; i++)
1157 bld.MOV(offset(reg, bld, i), fs_reg(instr->value.i[i]));
1158
1159 nir_ssa_values[instr->def.index] = reg;
1160 }
1161
1162 void
1163 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1164 {
1165 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1166 instr->def.num_components);
1167 }
1168
1169 static fs_reg
1170 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1171 unsigned base_offset, nir_src *indirect)
1172 {
1173 fs_reg reg;
1174 if (nir_reg->is_global)
1175 reg = v->nir_globals[nir_reg->index];
1176 else
1177 reg = v->nir_locals[nir_reg->index];
1178
1179 reg = offset(reg, v->bld, base_offset * nir_reg->num_components);
1180 if (indirect) {
1181 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1182
1183 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1184 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1185 fs_reg(multiplier));
1186 }
1187
1188 return reg;
1189 }
1190
1191 fs_reg
1192 fs_visitor::get_nir_src(nir_src src)
1193 {
1194 fs_reg reg;
1195 if (src.is_ssa) {
1196 reg = nir_ssa_values[src.ssa->index];
1197 } else {
1198 reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1199 src.reg.indirect);
1200 }
1201
1202 /* to avoid floating-point denorm flushing problems, set the type by
1203 * default to D - instructions that need floating point semantics will set
1204 * this to F if they need to
1205 */
1206 return retype(reg, BRW_REGISTER_TYPE_D);
1207 }
1208
1209 fs_reg
1210 fs_visitor::get_nir_dest(nir_dest dest)
1211 {
1212 if (dest.is_ssa) {
1213 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1214 dest.ssa.num_components);
1215 return nir_ssa_values[dest.ssa.index];
1216 }
1217
1218 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1219 dest.reg.indirect);
1220 }
1221
1222 void
1223 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1224 unsigned wr_mask)
1225 {
1226 for (unsigned i = 0; i < 4; i++) {
1227 if (!((wr_mask >> i) & 1))
1228 continue;
1229
1230 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1231 new_inst->dst = offset(new_inst->dst, bld, i);
1232 for (unsigned j = 0; j < new_inst->sources; j++)
1233 if (new_inst->src[j].file == GRF)
1234 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1235
1236 bld.emit(new_inst);
1237 }
1238 }
1239
1240 void
1241 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
1242 {
1243 fs_reg dest;
1244 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1245 dest = get_nir_dest(instr->dest);
1246
1247 bool has_indirect = false;
1248
1249 switch (instr->intrinsic) {
1250 case nir_intrinsic_discard:
1251 case nir_intrinsic_discard_if: {
1252 /* We track our discarded pixels in f0.1. By predicating on it, we can
1253 * update just the flag bits that aren't yet discarded. If there's no
1254 * condition, we emit a CMP of g0 != g0, so all currently executing
1255 * channels will get turned off.
1256 */
1257 fs_inst *cmp;
1258 if (instr->intrinsic == nir_intrinsic_discard_if) {
1259 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1260 fs_reg(0), BRW_CONDITIONAL_Z);
1261 } else {
1262 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1263 BRW_REGISTER_TYPE_UW));
1264 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1265 }
1266 cmp->predicate = BRW_PREDICATE_NORMAL;
1267 cmp->flag_subreg = 1;
1268
1269 if (devinfo->gen >= 6) {
1270 emit_discard_jump();
1271 }
1272 break;
1273 }
1274
1275 case nir_intrinsic_atomic_counter_inc:
1276 case nir_intrinsic_atomic_counter_dec:
1277 case nir_intrinsic_atomic_counter_read: {
1278 unsigned surf_index = prog_data->binding_table.abo_start +
1279 (unsigned) instr->const_index[0];
1280 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1281
1282 switch (instr->intrinsic) {
1283 case nir_intrinsic_atomic_counter_inc:
1284 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1285 fs_reg(), fs_reg());
1286 break;
1287 case nir_intrinsic_atomic_counter_dec:
1288 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1289 fs_reg(), fs_reg());
1290 break;
1291 case nir_intrinsic_atomic_counter_read:
1292 emit_untyped_surface_read(surf_index, dest, offset);
1293 break;
1294 default:
1295 unreachable("Unreachable");
1296 }
1297 break;
1298 }
1299
1300 case nir_intrinsic_load_front_face:
1301 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1302 *emit_frontfacing_interpolation());
1303 break;
1304
1305 case nir_intrinsic_load_vertex_id:
1306 unreachable("should be lowered by lower_vertex_id()");
1307
1308 case nir_intrinsic_load_vertex_id_zero_base: {
1309 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1310 assert(vertex_id.file != BAD_FILE);
1311 dest.type = vertex_id.type;
1312 bld.MOV(dest, vertex_id);
1313 break;
1314 }
1315
1316 case nir_intrinsic_load_base_vertex: {
1317 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1318 assert(base_vertex.file != BAD_FILE);
1319 dest.type = base_vertex.type;
1320 bld.MOV(dest, base_vertex);
1321 break;
1322 }
1323
1324 case nir_intrinsic_load_instance_id: {
1325 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1326 assert(instance_id.file != BAD_FILE);
1327 dest.type = instance_id.type;
1328 bld.MOV(dest, instance_id);
1329 break;
1330 }
1331
1332 case nir_intrinsic_load_sample_mask_in: {
1333 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1334 assert(sample_mask_in.file != BAD_FILE);
1335 dest.type = sample_mask_in.type;
1336 bld.MOV(dest, sample_mask_in);
1337 break;
1338 }
1339
1340 case nir_intrinsic_load_sample_pos: {
1341 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1342 assert(sample_pos.file != BAD_FILE);
1343 dest.type = sample_pos.type;
1344 bld.MOV(dest, sample_pos);
1345 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1346 break;
1347 }
1348
1349 case nir_intrinsic_load_sample_id: {
1350 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1351 assert(sample_id.file != BAD_FILE);
1352 dest.type = sample_id.type;
1353 bld.MOV(dest, sample_id);
1354 break;
1355 }
1356
1357 case nir_intrinsic_load_uniform_indirect:
1358 has_indirect = true;
1359 /* fallthrough */
1360 case nir_intrinsic_load_uniform: {
1361 unsigned index = instr->const_index[0];
1362
1363 fs_reg uniform_reg;
1364 if (index < num_direct_uniforms) {
1365 uniform_reg = fs_reg(UNIFORM, 0);
1366 } else {
1367 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1368 index -= num_direct_uniforms;
1369 }
1370
1371 for (unsigned j = 0; j < instr->num_components; j++) {
1372 fs_reg src = offset(retype(uniform_reg, dest.type), bld, index);
1373 if (has_indirect)
1374 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1375 index++;
1376
1377 bld.MOV(dest, src);
1378 dest = offset(dest, bld, 1);
1379 }
1380 break;
1381 }
1382
1383 case nir_intrinsic_load_ubo_indirect:
1384 has_indirect = true;
1385 /* fallthrough */
1386 case nir_intrinsic_load_ubo: {
1387 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1388 fs_reg surf_index;
1389
1390 if (const_index) {
1391 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1392 const_index->u[0]);
1393 } else {
1394 /* The block index is not a constant. Evaluate the index expression
1395 * per-channel and add the base UBO index; we have to select a value
1396 * from any live channel.
1397 */
1398 surf_index = vgrf(glsl_type::uint_type);
1399 bld.ADD(surf_index, get_nir_src(instr->src[0]),
1400 fs_reg(stage_prog_data->binding_table.ubo_start));
1401 bld.emit_uniformize(surf_index, surf_index);
1402
1403 /* Assume this may touch any UBO. It would be nice to provide
1404 * a tighter bound, but the array information is already lowered away.
1405 */
1406 brw_mark_surface_used(prog_data,
1407 stage_prog_data->binding_table.ubo_start +
1408 shader_prog->NumUniformBlocks - 1);
1409 }
1410
1411 if (has_indirect) {
1412 /* Turn the byte offset into a dword offset. */
1413 fs_reg base_offset = vgrf(glsl_type::int_type);
1414 bld.SHR(base_offset, retype(get_nir_src(instr->src[1]),
1415 BRW_REGISTER_TYPE_D),
1416 fs_reg(2));
1417
1418 unsigned vec4_offset = instr->const_index[0] / 4;
1419 for (int i = 0; i < instr->num_components; i++)
1420 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
1421 base_offset, vec4_offset + i);
1422 } else {
1423 fs_reg packed_consts = vgrf(glsl_type::float_type);
1424 packed_consts.type = dest.type;
1425
1426 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1427 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1428 surf_index, const_offset_reg);
1429
1430 for (unsigned i = 0; i < instr->num_components; i++) {
1431 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1432
1433 /* The std140 packing rules don't allow vectors to cross 16-byte
1434 * boundaries, and a reg is 32 bytes.
1435 */
1436 assert(packed_consts.subreg_offset < 32);
1437
1438 bld.MOV(dest, packed_consts);
1439 dest = offset(dest, bld, 1);
1440 }
1441 }
1442 break;
1443 }
1444
1445 case nir_intrinsic_load_input_indirect:
1446 has_indirect = true;
1447 /* fallthrough */
1448 case nir_intrinsic_load_input: {
1449 unsigned index = 0;
1450 for (unsigned j = 0; j < instr->num_components; j++) {
1451 fs_reg src = offset(retype(nir_inputs, dest.type), bld,
1452 instr->const_index[0] + index);
1453 if (has_indirect)
1454 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1455 index++;
1456
1457 bld.MOV(dest, src);
1458 dest = offset(dest, bld, 1);
1459 }
1460 break;
1461 }
1462
1463 /* Handle ARB_gpu_shader5 interpolation intrinsics
1464 *
1465 * It's worth a quick word of explanation as to why we handle the full
1466 * variable-based interpolation intrinsic rather than a lowered version
1467 * with like we do for other inputs. We have to do that because the way
1468 * we set up inputs doesn't allow us to use the already setup inputs for
1469 * interpolation. At the beginning of the shader, we go through all of
1470 * the input variables and do the initial interpolation and put it in
1471 * the nir_inputs array based on its location as determined in
1472 * nir_lower_io. If the input isn't used, dead code cleans up and
1473 * everything works fine. However, when we get to the ARB_gpu_shader5
1474 * interpolation intrinsics, we need to reinterpolate the input
1475 * differently. If we used an intrinsic that just had an index it would
1476 * only give us the offset into the nir_inputs array. However, this is
1477 * useless because that value is post-interpolation and we need
1478 * pre-interpolation. In order to get the actual location of the bits
1479 * we get from the vertex fetching hardware, we need the variable.
1480 */
1481 case nir_intrinsic_interp_var_at_centroid:
1482 case nir_intrinsic_interp_var_at_sample:
1483 case nir_intrinsic_interp_var_at_offset: {
1484 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
1485
1486 /* For most messages, we need one reg of ignored data; the hardware
1487 * requires mlen==1 even when there is no payload. in the per-slot
1488 * offset case, we'll replace this with the proper source data.
1489 */
1490 fs_reg src = vgrf(glsl_type::float_type);
1491 int mlen = 1; /* one reg unless overriden */
1492 fs_inst *inst;
1493
1494 switch (instr->intrinsic) {
1495 case nir_intrinsic_interp_var_at_centroid:
1496 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_CENTROID,
1497 dst_xy, src, fs_reg(0u));
1498 break;
1499
1500 case nir_intrinsic_interp_var_at_sample: {
1501 /* XXX: We should probably handle non-constant sample id's */
1502 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1503 assert(const_sample);
1504 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1505 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1506 fs_reg(msg_data));
1507 break;
1508 }
1509
1510 case nir_intrinsic_interp_var_at_offset: {
1511 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1512
1513 if (const_offset) {
1514 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1515 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1516
1517 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1518 fs_reg(off_x | (off_y << 4)));
1519 } else {
1520 src = vgrf(glsl_type::ivec2_type);
1521 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1522 BRW_REGISTER_TYPE_F);
1523 for (int i = 0; i < 2; i++) {
1524 fs_reg temp = vgrf(glsl_type::float_type);
1525 bld.MUL(temp, offset(offset_src, bld, i), fs_reg(16.0f));
1526 fs_reg itemp = vgrf(glsl_type::int_type);
1527 bld.MOV(itemp, temp); /* float to int */
1528
1529 /* Clamp the upper end of the range to +7/16.
1530 * ARB_gpu_shader5 requires that we support a maximum offset
1531 * of +0.5, which isn't representable in a S0.4 value -- if
1532 * we didn't clamp it, we'd end up with -8/16, which is the
1533 * opposite of what the shader author wanted.
1534 *
1535 * This is legal due to ARB_gpu_shader5's quantization
1536 * rules:
1537 *
1538 * "Not all values of <offset> may be supported; x and y
1539 * offsets may be rounded to fixed-point values with the
1540 * number of fraction bits given by the
1541 * implementation-dependent constant
1542 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1543 */
1544 set_condmod(BRW_CONDITIONAL_L,
1545 bld.SEL(offset(src, bld, i), itemp, fs_reg(7)));
1546 }
1547
1548 mlen = 2 * dispatch_width / 8;
1549 inst = bld.emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1550 fs_reg(0u));
1551 }
1552 break;
1553 }
1554
1555 default:
1556 unreachable("Invalid intrinsic");
1557 }
1558
1559 inst->mlen = mlen;
1560 /* 2 floats per slot returned */
1561 inst->regs_written = 2 * dispatch_width / 8;
1562 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1563 INTERP_QUALIFIER_NOPERSPECTIVE;
1564
1565 for (unsigned j = 0; j < instr->num_components; j++) {
1566 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1567 src.type = dest.type;
1568
1569 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1570 dest = offset(dest, bld, 1);
1571 }
1572 break;
1573 }
1574
1575 case nir_intrinsic_store_output_indirect:
1576 has_indirect = true;
1577 /* fallthrough */
1578 case nir_intrinsic_store_output: {
1579 fs_reg src = get_nir_src(instr->src[0]);
1580 unsigned index = 0;
1581 for (unsigned j = 0; j < instr->num_components; j++) {
1582 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
1583 instr->const_index[0] + index);
1584 if (has_indirect)
1585 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1586 index++;
1587 bld.MOV(new_dest, src);
1588 src = offset(src, bld, 1);
1589 }
1590 break;
1591 }
1592
1593 case nir_intrinsic_barrier:
1594 emit_barrier();
1595 break;
1596
1597 default:
1598 unreachable("unknown intrinsic");
1599 }
1600 }
1601
1602 void
1603 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
1604 {
1605 unsigned sampler = instr->sampler_index;
1606 fs_reg sampler_reg(sampler);
1607
1608 /* FINISHME: We're failing to recompile our programs when the sampler is
1609 * updated. This only matters for the texture rectangle scale parameters
1610 * (pre-gen6, or gen6+ with GL_CLAMP).
1611 */
1612 int texunit = prog->SamplerUnits[sampler];
1613
1614 int gather_component = instr->component;
1615
1616 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1617
1618 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1619 instr->is_array;
1620
1621 int lod_components = 0;
1622 int UNUSED offset_components = 0;
1623
1624 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1625
1626 for (unsigned i = 0; i < instr->num_srcs; i++) {
1627 fs_reg src = get_nir_src(instr->src[i].src);
1628 switch (instr->src[i].src_type) {
1629 case nir_tex_src_bias:
1630 lod = retype(src, BRW_REGISTER_TYPE_F);
1631 break;
1632 case nir_tex_src_comparitor:
1633 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1634 break;
1635 case nir_tex_src_coord:
1636 switch (instr->op) {
1637 case nir_texop_txf:
1638 case nir_texop_txf_ms:
1639 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1640 break;
1641 default:
1642 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1643 break;
1644 }
1645 break;
1646 case nir_tex_src_ddx:
1647 lod = retype(src, BRW_REGISTER_TYPE_F);
1648 lod_components = nir_tex_instr_src_size(instr, i);
1649 break;
1650 case nir_tex_src_ddy:
1651 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1652 break;
1653 case nir_tex_src_lod:
1654 switch (instr->op) {
1655 case nir_texop_txs:
1656 lod = retype(src, BRW_REGISTER_TYPE_UD);
1657 break;
1658 case nir_texop_txf:
1659 lod = retype(src, BRW_REGISTER_TYPE_D);
1660 break;
1661 default:
1662 lod = retype(src, BRW_REGISTER_TYPE_F);
1663 break;
1664 }
1665 break;
1666 case nir_tex_src_ms_index:
1667 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1668 break;
1669 case nir_tex_src_offset:
1670 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1671 if (instr->is_array)
1672 offset_components = instr->coord_components - 1;
1673 else
1674 offset_components = instr->coord_components;
1675 break;
1676 case nir_tex_src_projector:
1677 unreachable("should be lowered");
1678
1679 case nir_tex_src_sampler_offset: {
1680 /* Figure out the highest possible sampler index and mark it as used */
1681 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1682 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1683 max_used += stage_prog_data->binding_table.gather_texture_start;
1684 } else {
1685 max_used += stage_prog_data->binding_table.texture_start;
1686 }
1687 brw_mark_surface_used(prog_data, max_used);
1688
1689 /* Emit code to evaluate the actual indexing expression */
1690 sampler_reg = vgrf(glsl_type::uint_type);
1691 bld.ADD(sampler_reg, src, fs_reg(sampler));
1692 bld.emit_uniformize(sampler_reg, sampler_reg);
1693 break;
1694 }
1695
1696 default:
1697 unreachable("unknown texture source");
1698 }
1699 }
1700
1701 if (instr->op == nir_texop_txf_ms) {
1702 if (devinfo->gen >= 7 &&
1703 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1704 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1705 } else {
1706 mcs = fs_reg(0u);
1707 }
1708 }
1709
1710 for (unsigned i = 0; i < 3; i++) {
1711 if (instr->const_offset[i] != 0) {
1712 assert(offset_components == 0);
1713 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1714 break;
1715 }
1716 }
1717
1718 enum glsl_base_type dest_base_type;
1719 switch (instr->dest_type) {
1720 case nir_type_float:
1721 dest_base_type = GLSL_TYPE_FLOAT;
1722 break;
1723 case nir_type_int:
1724 dest_base_type = GLSL_TYPE_INT;
1725 break;
1726 case nir_type_unsigned:
1727 dest_base_type = GLSL_TYPE_UINT;
1728 break;
1729 default:
1730 unreachable("bad type");
1731 }
1732
1733 const glsl_type *dest_type =
1734 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1735 1);
1736
1737 ir_texture_opcode op;
1738 switch (instr->op) {
1739 case nir_texop_lod: op = ir_lod; break;
1740 case nir_texop_query_levels: op = ir_query_levels; break;
1741 case nir_texop_tex: op = ir_tex; break;
1742 case nir_texop_tg4: op = ir_tg4; break;
1743 case nir_texop_txb: op = ir_txb; break;
1744 case nir_texop_txd: op = ir_txd; break;
1745 case nir_texop_txf: op = ir_txf; break;
1746 case nir_texop_txf_ms: op = ir_txf_ms; break;
1747 case nir_texop_txl: op = ir_txl; break;
1748 case nir_texop_txs: op = ir_txs; break;
1749 default:
1750 unreachable("unknown texture opcode");
1751 }
1752
1753 emit_texture(op, dest_type, coordinate, instr->coord_components,
1754 shadow_comparitor, lod, lod2, lod_components, sample_index,
1755 tex_offset, mcs, gather_component,
1756 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1757
1758 fs_reg dest = get_nir_dest(instr->dest);
1759 dest.type = this->result.type;
1760 unsigned num_components = nir_tex_instr_dest_size(instr);
1761 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
1762 dest, this->result),
1763 (1 << num_components) - 1);
1764 }
1765
1766 void
1767 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
1768 {
1769 switch (instr->type) {
1770 case nir_jump_break:
1771 bld.emit(BRW_OPCODE_BREAK);
1772 break;
1773 case nir_jump_continue:
1774 bld.emit(BRW_OPCODE_CONTINUE);
1775 break;
1776 case nir_jump_return:
1777 default:
1778 unreachable("unknown jump");
1779 }
1780 }