i965/fs: Migrate NIR variable handling to the IR builder.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "glsl/ir_optimization.h"
26 #include "glsl/nir/glsl_to_nir.h"
27 #include "program/prog_to_nir.h"
28 #include "brw_fs.h"
29 #include "brw_nir.h"
30
31 using namespace brw;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 nir_shader *nir = prog->nir;
37
38 /* emit the arrays used for inputs and outputs - load/store intrinsics will
39 * be converted to reads/writes of these arrays
40 */
41
42 if (nir->num_inputs > 0) {
43 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
44 nir_setup_inputs(nir);
45 }
46
47 if (nir->num_outputs > 0) {
48 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
49 nir_setup_outputs(nir);
50 }
51
52 if (nir->num_uniforms > 0) {
53 nir_setup_uniforms(nir);
54 }
55
56 nir_emit_system_values(nir);
57
58 nir_globals = ralloc_array(mem_ctx, fs_reg, nir->reg_alloc);
59 foreach_list_typed(nir_register, reg, node, &nir->registers) {
60 unsigned array_elems =
61 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
62 unsigned size = array_elems * reg->num_components;
63 nir_globals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
64 }
65
66 /* get the main function and emit it */
67 nir_foreach_overload(nir, overload) {
68 assert(strcmp(overload->function->name, "main") == 0);
69 assert(overload->impl);
70 nir_emit_impl(overload->impl);
71 }
72 }
73
74 void
75 fs_visitor::nir_setup_inputs(nir_shader *shader)
76 {
77 foreach_list_typed(nir_variable, var, node, &shader->inputs) {
78 enum brw_reg_type type = brw_type_for_base_type(var->type);
79 fs_reg input = offset(nir_inputs, var->data.driver_location);
80
81 fs_reg reg;
82 switch (stage) {
83 case MESA_SHADER_VERTEX: {
84 /* Our ATTR file is indexed by VERT_ATTRIB_*, which is the value
85 * stored in nir_variable::location.
86 *
87 * However, NIR's load_input intrinsics use a different index - an
88 * offset into a single contiguous array containing all inputs.
89 * This index corresponds to the nir_variable::driver_location field.
90 *
91 * So, we need to copy from fs_reg(ATTR, var->location) to
92 * offset(nir_inputs, var->data.driver_location).
93 */
94 unsigned components = var->type->without_array()->components();
95 unsigned array_length = var->type->is_array() ? var->type->length : 1;
96 for (unsigned i = 0; i < array_length; i++) {
97 for (unsigned j = 0; j < components; j++) {
98 bld.MOV(retype(offset(input, components * i + j), type),
99 offset(fs_reg(ATTR, var->data.location + i, type), j));
100 }
101 }
102 break;
103 }
104 case MESA_SHADER_GEOMETRY:
105 case MESA_SHADER_COMPUTE:
106 unreachable("fs_visitor not used for these stages yet.");
107 break;
108 case MESA_SHADER_FRAGMENT:
109 if (var->data.location == VARYING_SLOT_POS) {
110 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
111 var->data.origin_upper_left);
112 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, input, reg), 0xF);
113 } else {
114 emit_general_interpolation(input, var->name, var->type,
115 (glsl_interp_qualifier) var->data.interpolation,
116 var->data.location, var->data.centroid,
117 var->data.sample);
118 }
119 break;
120 }
121 }
122 }
123
124 void
125 fs_visitor::nir_setup_outputs(nir_shader *shader)
126 {
127 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
128
129 foreach_list_typed(nir_variable, var, node, &shader->outputs) {
130 fs_reg reg = offset(nir_outputs, var->data.driver_location);
131
132 int vector_elements =
133 var->type->is_array() ? var->type->fields.array->vector_elements
134 : var->type->vector_elements;
135
136 if (stage == MESA_SHADER_VERTEX) {
137 for (int i = 0; i < ALIGN(type_size(var->type), 4) / 4; i++) {
138 int output = var->data.location + i;
139 this->outputs[output] = offset(reg, 4 * i);
140 this->output_components[output] = vector_elements;
141 }
142 } else if (var->data.index > 0) {
143 assert(var->data.location == FRAG_RESULT_DATA0);
144 assert(var->data.index == 1);
145 this->dual_src_output = reg;
146 this->do_dual_src = true;
147 } else if (var->data.location == FRAG_RESULT_COLOR) {
148 /* Writing gl_FragColor outputs to all color regions. */
149 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
150 this->outputs[i] = reg;
151 this->output_components[i] = 4;
152 }
153 } else if (var->data.location == FRAG_RESULT_DEPTH) {
154 this->frag_depth = reg;
155 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
156 this->sample_mask = reg;
157 } else {
158 /* gl_FragData or a user-defined FS output */
159 assert(var->data.location >= FRAG_RESULT_DATA0 &&
160 var->data.location < FRAG_RESULT_DATA0 + BRW_MAX_DRAW_BUFFERS);
161
162 /* General color output. */
163 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
164 int output = var->data.location - FRAG_RESULT_DATA0 + i;
165 this->outputs[output] = offset(reg, vector_elements * i);
166 this->output_components[output] = vector_elements;
167 }
168 }
169 }
170 }
171
172 void
173 fs_visitor::nir_setup_uniforms(nir_shader *shader)
174 {
175 uniforms = shader->num_uniforms;
176 num_direct_uniforms = shader->num_direct_uniforms;
177
178 /* We split the uniform register file in half. The first half is
179 * entirely direct uniforms. The second half is indirect.
180 */
181 param_size[0] = num_direct_uniforms;
182 if (shader->num_uniforms > num_direct_uniforms)
183 param_size[num_direct_uniforms] = shader->num_uniforms - num_direct_uniforms;
184
185 if (dispatch_width != 8)
186 return;
187
188 if (shader_prog) {
189 foreach_list_typed(nir_variable, var, node, &shader->uniforms) {
190 /* UBO's and atomics don't take up space in the uniform file */
191 if (var->interface_type != NULL || var->type->contains_atomic())
192 continue;
193
194 if (strncmp(var->name, "gl_", 3) == 0)
195 nir_setup_builtin_uniform(var);
196 else
197 nir_setup_uniform(var);
198 }
199 } else {
200 /* prog_to_nir doesn't create uniform variables; set param up directly. */
201 for (unsigned p = 0; p < prog->Parameters->NumParameters; p++) {
202 for (unsigned int i = 0; i < 4; i++) {
203 stage_prog_data->param[4 * p + i] =
204 &prog->Parameters->ParameterValues[p][i];
205 }
206 }
207 }
208 }
209
210 void
211 fs_visitor::nir_setup_uniform(nir_variable *var)
212 {
213 int namelen = strlen(var->name);
214
215 /* The data for our (non-builtin) uniforms is stored in a series of
216 * gl_uniform_driver_storage structs for each subcomponent that
217 * glGetUniformLocation() could name. We know it's been set up in the
218 * same order we'd walk the type, so walk the list of storage and find
219 * anything with our name, or the prefix of a component that starts with
220 * our name.
221 */
222 unsigned index = var->data.driver_location;
223 for (unsigned u = 0; u < shader_prog->NumUniformStorage; u++) {
224 struct gl_uniform_storage *storage = &shader_prog->UniformStorage[u];
225
226 if (storage->builtin)
227 continue;
228
229 if (strncmp(var->name, storage->name, namelen) != 0 ||
230 (storage->name[namelen] != 0 &&
231 storage->name[namelen] != '.' &&
232 storage->name[namelen] != '[')) {
233 continue;
234 }
235
236 unsigned slots = storage->type->component_slots();
237 if (storage->array_elements)
238 slots *= storage->array_elements;
239
240 for (unsigned i = 0; i < slots; i++) {
241 stage_prog_data->param[index++] = &storage->storage[i];
242 }
243 }
244
245 /* Make sure we actually initialized the right amount of stuff here. */
246 assert(var->data.driver_location + var->type->component_slots() == index);
247 }
248
249 void
250 fs_visitor::nir_setup_builtin_uniform(nir_variable *var)
251 {
252 const nir_state_slot *const slots = var->state_slots;
253 assert(var->state_slots != NULL);
254
255 unsigned uniform_index = var->data.driver_location;
256 for (unsigned int i = 0; i < var->num_state_slots; i++) {
257 /* This state reference has already been setup by ir_to_mesa, but we'll
258 * get the same index back here.
259 */
260 int index = _mesa_add_state_reference(this->prog->Parameters,
261 (gl_state_index *)slots[i].tokens);
262
263 /* Add each of the unique swizzles of the element as a parameter.
264 * This'll end up matching the expected layout of the
265 * array/matrix/structure we're trying to fill in.
266 */
267 int last_swiz = -1;
268 for (unsigned int j = 0; j < 4; j++) {
269 int swiz = GET_SWZ(slots[i].swizzle, j);
270 if (swiz == last_swiz)
271 break;
272 last_swiz = swiz;
273
274 stage_prog_data->param[uniform_index++] =
275 &prog->Parameters->ParameterValues[index][swiz];
276 }
277 }
278 }
279
280 static bool
281 emit_system_values_block(nir_block *block, void *void_visitor)
282 {
283 fs_visitor *v = (fs_visitor *)void_visitor;
284 fs_reg *reg;
285
286 nir_foreach_instr(block, instr) {
287 if (instr->type != nir_instr_type_intrinsic)
288 continue;
289
290 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
291 switch (intrin->intrinsic) {
292 case nir_intrinsic_load_vertex_id:
293 unreachable("should be lowered by lower_vertex_id().");
294
295 case nir_intrinsic_load_vertex_id_zero_base:
296 assert(v->stage == MESA_SHADER_VERTEX);
297 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
298 if (reg->file == BAD_FILE)
299 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
300 break;
301
302 case nir_intrinsic_load_base_vertex:
303 assert(v->stage == MESA_SHADER_VERTEX);
304 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
305 if (reg->file == BAD_FILE)
306 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
307 break;
308
309 case nir_intrinsic_load_instance_id:
310 assert(v->stage == MESA_SHADER_VERTEX);
311 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
312 if (reg->file == BAD_FILE)
313 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
314 break;
315
316 case nir_intrinsic_load_sample_pos:
317 assert(v->stage == MESA_SHADER_FRAGMENT);
318 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
319 if (reg->file == BAD_FILE)
320 *reg = *v->emit_samplepos_setup();
321 break;
322
323 case nir_intrinsic_load_sample_id:
324 assert(v->stage == MESA_SHADER_FRAGMENT);
325 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
326 if (reg->file == BAD_FILE)
327 *reg = *v->emit_sampleid_setup();
328 break;
329
330 case nir_intrinsic_load_sample_mask_in:
331 assert(v->stage == MESA_SHADER_FRAGMENT);
332 assert(v->devinfo->gen >= 7);
333 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
334 if (reg->file == BAD_FILE)
335 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
336 BRW_REGISTER_TYPE_D));
337 break;
338
339 default:
340 break;
341 }
342 }
343
344 return true;
345 }
346
347 void
348 fs_visitor::nir_emit_system_values(nir_shader *shader)
349 {
350 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
351 nir_foreach_overload(shader, overload) {
352 assert(strcmp(overload->function->name, "main") == 0);
353 assert(overload->impl);
354 nir_foreach_block(overload->impl, emit_system_values_block, this);
355 }
356 }
357
358 void
359 fs_visitor::nir_emit_impl(nir_function_impl *impl)
360 {
361 nir_locals = reralloc(mem_ctx, nir_locals, fs_reg, impl->reg_alloc);
362 foreach_list_typed(nir_register, reg, node, &impl->registers) {
363 unsigned array_elems =
364 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
365 unsigned size = array_elems * reg->num_components;
366 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
367 }
368
369 nir_emit_cf_list(&impl->body);
370 }
371
372 void
373 fs_visitor::nir_emit_cf_list(exec_list *list)
374 {
375 exec_list_validate(list);
376 foreach_list_typed(nir_cf_node, node, node, list) {
377 switch (node->type) {
378 case nir_cf_node_if:
379 nir_emit_if(nir_cf_node_as_if(node));
380 break;
381
382 case nir_cf_node_loop:
383 nir_emit_loop(nir_cf_node_as_loop(node));
384 break;
385
386 case nir_cf_node_block:
387 nir_emit_block(nir_cf_node_as_block(node));
388 break;
389
390 default:
391 unreachable("Invalid CFG node block");
392 }
393 }
394 }
395
396 void
397 fs_visitor::nir_emit_if(nir_if *if_stmt)
398 {
399 /* first, put the condition into f0 */
400 fs_inst *inst = emit(MOV(reg_null_d,
401 retype(get_nir_src(if_stmt->condition),
402 BRW_REGISTER_TYPE_D)));
403 inst->conditional_mod = BRW_CONDITIONAL_NZ;
404
405 emit(IF(BRW_PREDICATE_NORMAL));
406
407 nir_emit_cf_list(&if_stmt->then_list);
408
409 /* note: if the else is empty, dead CF elimination will remove it */
410 emit(BRW_OPCODE_ELSE);
411
412 nir_emit_cf_list(&if_stmt->else_list);
413
414 emit(BRW_OPCODE_ENDIF);
415
416 if (!try_replace_with_sel() && devinfo->gen < 6) {
417 no16("Can't support (non-uniform) control flow on SIMD16\n");
418 }
419 }
420
421 void
422 fs_visitor::nir_emit_loop(nir_loop *loop)
423 {
424 if (devinfo->gen < 6) {
425 no16("Can't support (non-uniform) control flow on SIMD16\n");
426 }
427
428 emit(BRW_OPCODE_DO);
429
430 nir_emit_cf_list(&loop->body);
431
432 emit(BRW_OPCODE_WHILE);
433 }
434
435 void
436 fs_visitor::nir_emit_block(nir_block *block)
437 {
438 nir_foreach_instr(block, instr) {
439 nir_emit_instr(instr);
440 }
441 }
442
443 void
444 fs_visitor::nir_emit_instr(nir_instr *instr)
445 {
446 this->base_ir = instr;
447
448 switch (instr->type) {
449 case nir_instr_type_alu:
450 nir_emit_alu(nir_instr_as_alu(instr));
451 break;
452
453 case nir_instr_type_intrinsic:
454 nir_emit_intrinsic(nir_instr_as_intrinsic(instr));
455 break;
456
457 case nir_instr_type_tex:
458 nir_emit_texture(nir_instr_as_tex(instr));
459 break;
460
461 case nir_instr_type_load_const:
462 /* We can hit these, but we do nothing now and use them as
463 * immediates later.
464 */
465 break;
466
467 case nir_instr_type_jump:
468 nir_emit_jump(nir_instr_as_jump(instr));
469 break;
470
471 default:
472 unreachable("unknown instruction type");
473 }
474
475 this->base_ir = NULL;
476 }
477
478 static brw_reg_type
479 brw_type_for_nir_type(nir_alu_type type)
480 {
481 switch (type) {
482 case nir_type_unsigned:
483 return BRW_REGISTER_TYPE_UD;
484 case nir_type_bool:
485 case nir_type_int:
486 return BRW_REGISTER_TYPE_D;
487 case nir_type_float:
488 return BRW_REGISTER_TYPE_F;
489 default:
490 unreachable("unknown type");
491 }
492
493 return BRW_REGISTER_TYPE_F;
494 }
495
496 bool
497 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
498 const fs_reg &result)
499 {
500 if (instr->src[0].src.is_ssa ||
501 !instr->src[0].src.reg.reg ||
502 !instr->src[0].src.reg.reg->parent_instr)
503 return false;
504
505 if (instr->src[0].src.reg.reg->parent_instr->type !=
506 nir_instr_type_intrinsic)
507 return false;
508
509 nir_intrinsic_instr *src0 =
510 nir_instr_as_intrinsic(instr->src[0].src.reg.reg->parent_instr);
511
512 if (src0->intrinsic != nir_intrinsic_load_front_face)
513 return false;
514
515 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
516 if (!value1 || fabsf(value1->f[0]) != 1.0f)
517 return false;
518
519 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
520 if (!value2 || fabsf(value2->f[0]) != 1.0f)
521 return false;
522
523 fs_reg tmp = vgrf(glsl_type::int_type);
524
525 if (devinfo->gen >= 6) {
526 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
527 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
528
529 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
530 *
531 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
532 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
533 *
534 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
535 *
536 * This negation looks like it's safe in practice, because bits 0:4 will
537 * surely be TRIANGLES
538 */
539
540 if (value1->f[0] == -1.0f) {
541 g0.negate = true;
542 }
543
544 tmp.type = BRW_REGISTER_TYPE_W;
545 tmp.subreg_offset = 2;
546 tmp.stride = 2;
547
548 fs_inst *or_inst = emit(OR(tmp, g0, fs_reg(0x3f80)));
549 or_inst->src[1].type = BRW_REGISTER_TYPE_UW;
550
551 tmp.type = BRW_REGISTER_TYPE_D;
552 tmp.subreg_offset = 0;
553 tmp.stride = 1;
554 } else {
555 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
556 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
557
558 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
559 *
560 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
561 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
562 *
563 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
564 *
565 * This negation looks like it's safe in practice, because bits 0:4 will
566 * surely be TRIANGLES
567 */
568
569 if (value1->f[0] == -1.0f) {
570 g1_6.negate = true;
571 }
572
573 emit(OR(tmp, g1_6, fs_reg(0x3f800000)));
574 }
575 emit(AND(retype(result, BRW_REGISTER_TYPE_D), tmp, fs_reg(0xbf800000)));
576
577 return true;
578 }
579
580 void
581 fs_visitor::nir_emit_alu(nir_alu_instr *instr)
582 {
583 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
584 fs_inst *inst;
585
586 fs_reg result = get_nir_dest(instr->dest.dest);
587 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
588
589 fs_reg op[4];
590 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
591 op[i] = get_nir_src(instr->src[i].src);
592 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
593 op[i].abs = instr->src[i].abs;
594 op[i].negate = instr->src[i].negate;
595 }
596
597 /* We get a bunch of mov's out of the from_ssa pass and they may still
598 * be vectorized. We'll handle them as a special-case. We'll also
599 * handle vecN here because it's basically the same thing.
600 */
601 switch (instr->op) {
602 case nir_op_imov:
603 case nir_op_fmov:
604 case nir_op_vec2:
605 case nir_op_vec3:
606 case nir_op_vec4: {
607 fs_reg temp = result;
608 bool need_extra_copy = false;
609 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
610 if (!instr->src[i].src.is_ssa &&
611 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
612 need_extra_copy = true;
613 temp = retype(vgrf(4), result.type);
614 break;
615 }
616 }
617
618 for (unsigned i = 0; i < 4; i++) {
619 if (!(instr->dest.write_mask & (1 << i)))
620 continue;
621
622 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
623 inst = emit(MOV(offset(temp, i),
624 offset(op[0], instr->src[0].swizzle[i])));
625 } else {
626 inst = emit(MOV(offset(temp, i),
627 offset(op[i], instr->src[i].swizzle[0])));
628 }
629 inst->saturate = instr->dest.saturate;
630 }
631
632 /* In this case the source and destination registers were the same,
633 * so we need to insert an extra set of moves in order to deal with
634 * any swizzling.
635 */
636 if (need_extra_copy) {
637 for (unsigned i = 0; i < 4; i++) {
638 if (!(instr->dest.write_mask & (1 << i)))
639 continue;
640
641 emit(MOV(offset(result, i), offset(temp, i)));
642 }
643 }
644 return;
645 }
646 default:
647 break;
648 }
649
650 /* At this point, we have dealt with any instruction that operates on
651 * more than a single channel. Therefore, we can just adjust the source
652 * and destination registers for that channel and emit the instruction.
653 */
654 unsigned channel = 0;
655 if (nir_op_infos[instr->op].output_size == 0) {
656 /* Since NIR is doing the scalarizing for us, we should only ever see
657 * vectorized operations with a single channel.
658 */
659 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
660 channel = ffs(instr->dest.write_mask) - 1;
661
662 result = offset(result, channel);
663 }
664
665 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
666 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
667 op[i] = offset(op[i], instr->src[i].swizzle[channel]);
668 }
669
670 switch (instr->op) {
671 case nir_op_i2f:
672 case nir_op_u2f:
673 inst = emit(MOV(result, op[0]));
674 inst->saturate = instr->dest.saturate;
675 break;
676
677 case nir_op_f2i:
678 case nir_op_f2u:
679 emit(MOV(result, op[0]));
680 break;
681
682 case nir_op_fsign: {
683 /* AND(val, 0x80000000) gives the sign bit.
684 *
685 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
686 * zero.
687 */
688 emit(CMP(reg_null_f, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
689
690 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
691 op[0].type = BRW_REGISTER_TYPE_UD;
692 result.type = BRW_REGISTER_TYPE_UD;
693 emit(AND(result_int, op[0], fs_reg(0x80000000u)));
694
695 inst = emit(OR(result_int, result_int, fs_reg(0x3f800000u)));
696 inst->predicate = BRW_PREDICATE_NORMAL;
697 if (instr->dest.saturate) {
698 inst = emit(MOV(result, result));
699 inst->saturate = true;
700 }
701 break;
702 }
703
704 case nir_op_isign:
705 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
706 * -> non-negative val generates 0x00000000.
707 * Predicated OR sets 1 if val is positive.
708 */
709 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_G));
710 emit(ASR(result, op[0], fs_reg(31)));
711 inst = emit(OR(result, result, fs_reg(1)));
712 inst->predicate = BRW_PREDICATE_NORMAL;
713 break;
714
715 case nir_op_frcp:
716 inst = emit_math(SHADER_OPCODE_RCP, result, op[0]);
717 inst->saturate = instr->dest.saturate;
718 break;
719
720 case nir_op_fexp2:
721 inst = emit_math(SHADER_OPCODE_EXP2, result, op[0]);
722 inst->saturate = instr->dest.saturate;
723 break;
724
725 case nir_op_flog2:
726 inst = emit_math(SHADER_OPCODE_LOG2, result, op[0]);
727 inst->saturate = instr->dest.saturate;
728 break;
729
730 case nir_op_fsin:
731 inst = emit_math(SHADER_OPCODE_SIN, result, op[0]);
732 inst->saturate = instr->dest.saturate;
733 break;
734
735 case nir_op_fcos:
736 inst = emit_math(SHADER_OPCODE_COS, result, op[0]);
737 inst->saturate = instr->dest.saturate;
738 break;
739
740 case nir_op_fddx:
741 if (fs_key->high_quality_derivatives) {
742 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
743 } else {
744 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
745 }
746 inst->saturate = instr->dest.saturate;
747 break;
748 case nir_op_fddx_fine:
749 inst = emit(FS_OPCODE_DDX_FINE, result, op[0]);
750 inst->saturate = instr->dest.saturate;
751 break;
752 case nir_op_fddx_coarse:
753 inst = emit(FS_OPCODE_DDX_COARSE, result, op[0]);
754 inst->saturate = instr->dest.saturate;
755 break;
756 case nir_op_fddy:
757 if (fs_key->high_quality_derivatives) {
758 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
759 fs_reg(fs_key->render_to_fbo));
760 } else {
761 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
762 fs_reg(fs_key->render_to_fbo));
763 }
764 inst->saturate = instr->dest.saturate;
765 break;
766 case nir_op_fddy_fine:
767 inst = emit(FS_OPCODE_DDY_FINE, result, op[0],
768 fs_reg(fs_key->render_to_fbo));
769 inst->saturate = instr->dest.saturate;
770 break;
771 case nir_op_fddy_coarse:
772 inst = emit(FS_OPCODE_DDY_COARSE, result, op[0],
773 fs_reg(fs_key->render_to_fbo));
774 inst->saturate = instr->dest.saturate;
775 break;
776
777 case nir_op_fadd:
778 case nir_op_iadd:
779 inst = emit(ADD(result, op[0], op[1]));
780 inst->saturate = instr->dest.saturate;
781 break;
782
783 case nir_op_fmul:
784 inst = emit(MUL(result, op[0], op[1]));
785 inst->saturate = instr->dest.saturate;
786 break;
787
788 case nir_op_imul:
789 emit(MUL(result, op[0], op[1]));
790 break;
791
792 case nir_op_imul_high:
793 case nir_op_umul_high: {
794 if (devinfo->gen >= 7)
795 no16("SIMD16 explicit accumulator operands unsupported\n");
796
797 struct brw_reg acc = retype(brw_acc_reg(dispatch_width), result.type);
798
799 fs_inst *mul = emit(MUL(acc, op[0], op[1]));
800 emit(MACH(result, op[0], op[1]));
801
802 /* Until Gen8, integer multiplies read 32-bits from one source, and
803 * 16-bits from the other, and relying on the MACH instruction to
804 * generate the high bits of the result.
805 *
806 * On Gen8, the multiply instruction does a full 32x32-bit multiply,
807 * but in order to do a 64x64-bit multiply we have to simulate the
808 * previous behavior and then use a MACH instruction.
809 *
810 * FINISHME: Don't use source modifiers on src1.
811 */
812 if (devinfo->gen >= 8) {
813 assert(mul->src[1].type == BRW_REGISTER_TYPE_D ||
814 mul->src[1].type == BRW_REGISTER_TYPE_UD);
815 if (mul->src[1].type == BRW_REGISTER_TYPE_D) {
816 mul->src[1].type = BRW_REGISTER_TYPE_W;
817 mul->src[1].stride = 2;
818 } else {
819 mul->src[1].type = BRW_REGISTER_TYPE_UW;
820 mul->src[1].stride = 2;
821 }
822 }
823 break;
824 }
825
826 case nir_op_idiv:
827 case nir_op_udiv:
828 emit_math(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
829 break;
830
831 case nir_op_uadd_carry: {
832 if (devinfo->gen >= 7)
833 no16("SIMD16 explicit accumulator operands unsupported\n");
834
835 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
836 BRW_REGISTER_TYPE_UD);
837
838 emit(ADDC(reg_null_ud, op[0], op[1]));
839 emit(MOV(result, fs_reg(acc)));
840 break;
841 }
842
843 case nir_op_usub_borrow: {
844 if (devinfo->gen >= 7)
845 no16("SIMD16 explicit accumulator operands unsupported\n");
846
847 struct brw_reg acc = retype(brw_acc_reg(dispatch_width),
848 BRW_REGISTER_TYPE_UD);
849
850 emit(SUBB(reg_null_ud, op[0], op[1]));
851 emit(MOV(result, fs_reg(acc)));
852 break;
853 }
854
855 case nir_op_umod:
856 emit_math(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
857 break;
858
859 case nir_op_flt:
860 case nir_op_ilt:
861 case nir_op_ult:
862 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_L));
863 break;
864
865 case nir_op_fge:
866 case nir_op_ige:
867 case nir_op_uge:
868 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_GE));
869 break;
870
871 case nir_op_feq:
872 case nir_op_ieq:
873 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_Z));
874 break;
875
876 case nir_op_fne:
877 case nir_op_ine:
878 emit(CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ));
879 break;
880
881 case nir_op_inot:
882 if (devinfo->gen >= 8) {
883 resolve_source_modifiers(&op[0]);
884 }
885 emit(NOT(result, op[0]));
886 break;
887 case nir_op_ixor:
888 if (devinfo->gen >= 8) {
889 resolve_source_modifiers(&op[0]);
890 resolve_source_modifiers(&op[1]);
891 }
892 emit(XOR(result, op[0], op[1]));
893 break;
894 case nir_op_ior:
895 if (devinfo->gen >= 8) {
896 resolve_source_modifiers(&op[0]);
897 resolve_source_modifiers(&op[1]);
898 }
899 emit(OR(result, op[0], op[1]));
900 break;
901 case nir_op_iand:
902 if (devinfo->gen >= 8) {
903 resolve_source_modifiers(&op[0]);
904 resolve_source_modifiers(&op[1]);
905 }
906 emit(AND(result, op[0], op[1]));
907 break;
908
909 case nir_op_fdot2:
910 case nir_op_fdot3:
911 case nir_op_fdot4:
912 case nir_op_bany2:
913 case nir_op_bany3:
914 case nir_op_bany4:
915 case nir_op_ball2:
916 case nir_op_ball3:
917 case nir_op_ball4:
918 case nir_op_ball_fequal2:
919 case nir_op_ball_iequal2:
920 case nir_op_ball_fequal3:
921 case nir_op_ball_iequal3:
922 case nir_op_ball_fequal4:
923 case nir_op_ball_iequal4:
924 case nir_op_bany_fnequal2:
925 case nir_op_bany_inequal2:
926 case nir_op_bany_fnequal3:
927 case nir_op_bany_inequal3:
928 case nir_op_bany_fnequal4:
929 case nir_op_bany_inequal4:
930 unreachable("Lowered by nir_lower_alu_reductions");
931
932 case nir_op_fnoise1_1:
933 case nir_op_fnoise1_2:
934 case nir_op_fnoise1_3:
935 case nir_op_fnoise1_4:
936 case nir_op_fnoise2_1:
937 case nir_op_fnoise2_2:
938 case nir_op_fnoise2_3:
939 case nir_op_fnoise2_4:
940 case nir_op_fnoise3_1:
941 case nir_op_fnoise3_2:
942 case nir_op_fnoise3_3:
943 case nir_op_fnoise3_4:
944 case nir_op_fnoise4_1:
945 case nir_op_fnoise4_2:
946 case nir_op_fnoise4_3:
947 case nir_op_fnoise4_4:
948 unreachable("not reached: should be handled by lower_noise");
949
950 case nir_op_ldexp:
951 unreachable("not reached: should be handled by ldexp_to_arith()");
952
953 case nir_op_fsqrt:
954 inst = emit_math(SHADER_OPCODE_SQRT, result, op[0]);
955 inst->saturate = instr->dest.saturate;
956 break;
957
958 case nir_op_frsq:
959 inst = emit_math(SHADER_OPCODE_RSQ, result, op[0]);
960 inst->saturate = instr->dest.saturate;
961 break;
962
963 case nir_op_b2i:
964 emit(AND(result, op[0], fs_reg(1)));
965 break;
966 case nir_op_b2f:
967 emit(AND(retype(result, BRW_REGISTER_TYPE_UD), op[0], fs_reg(0x3f800000u)));
968 break;
969
970 case nir_op_f2b:
971 emit(CMP(result, op[0], fs_reg(0.0f), BRW_CONDITIONAL_NZ));
972 break;
973 case nir_op_i2b:
974 emit(CMP(result, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
975 break;
976
977 case nir_op_ftrunc:
978 inst = emit(RNDZ(result, op[0]));
979 inst->saturate = instr->dest.saturate;
980 break;
981
982 case nir_op_fceil: {
983 op[0].negate = !op[0].negate;
984 fs_reg temp = vgrf(glsl_type::float_type);
985 emit(RNDD(temp, op[0]));
986 temp.negate = true;
987 inst = emit(MOV(result, temp));
988 inst->saturate = instr->dest.saturate;
989 break;
990 }
991 case nir_op_ffloor:
992 inst = emit(RNDD(result, op[0]));
993 inst->saturate = instr->dest.saturate;
994 break;
995 case nir_op_ffract:
996 inst = emit(FRC(result, op[0]));
997 inst->saturate = instr->dest.saturate;
998 break;
999 case nir_op_fround_even:
1000 inst = emit(RNDE(result, op[0]));
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003
1004 case nir_op_fmin:
1005 case nir_op_imin:
1006 case nir_op_umin:
1007 if (devinfo->gen >= 6) {
1008 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1009 inst->conditional_mod = BRW_CONDITIONAL_L;
1010 } else {
1011 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_L));
1012 inst = emit(SEL(result, op[0], op[1]));
1013 inst->predicate = BRW_PREDICATE_NORMAL;
1014 }
1015 inst->saturate = instr->dest.saturate;
1016 break;
1017
1018 case nir_op_fmax:
1019 case nir_op_imax:
1020 case nir_op_umax:
1021 if (devinfo->gen >= 6) {
1022 inst = emit(BRW_OPCODE_SEL, result, op[0], op[1]);
1023 inst->conditional_mod = BRW_CONDITIONAL_GE;
1024 } else {
1025 emit(CMP(reg_null_d, op[0], op[1], BRW_CONDITIONAL_GE));
1026 inst = emit(SEL(result, op[0], op[1]));
1027 inst->predicate = BRW_PREDICATE_NORMAL;
1028 }
1029 inst->saturate = instr->dest.saturate;
1030 break;
1031
1032 case nir_op_pack_snorm_2x16:
1033 case nir_op_pack_snorm_4x8:
1034 case nir_op_pack_unorm_2x16:
1035 case nir_op_pack_unorm_4x8:
1036 case nir_op_unpack_snorm_2x16:
1037 case nir_op_unpack_snorm_4x8:
1038 case nir_op_unpack_unorm_2x16:
1039 case nir_op_unpack_unorm_4x8:
1040 case nir_op_unpack_half_2x16:
1041 case nir_op_pack_half_2x16:
1042 unreachable("not reached: should be handled by lower_packing_builtins");
1043
1044 case nir_op_unpack_half_2x16_split_x:
1045 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1046 inst->saturate = instr->dest.saturate;
1047 break;
1048 case nir_op_unpack_half_2x16_split_y:
1049 inst = emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1050 inst->saturate = instr->dest.saturate;
1051 break;
1052
1053 case nir_op_fpow:
1054 inst = emit_math(SHADER_OPCODE_POW, result, op[0], op[1]);
1055 inst->saturate = instr->dest.saturate;
1056 break;
1057
1058 case nir_op_bitfield_reverse:
1059 emit(BFREV(result, op[0]));
1060 break;
1061
1062 case nir_op_bit_count:
1063 emit(CBIT(result, op[0]));
1064 break;
1065
1066 case nir_op_ufind_msb:
1067 case nir_op_ifind_msb: {
1068 emit(FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]));
1069
1070 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1071 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1072 * subtract the result from 31 to convert the MSB count into an LSB count.
1073 */
1074
1075 emit(CMP(reg_null_d, result, fs_reg(-1), BRW_CONDITIONAL_NZ));
1076 fs_reg neg_result(result);
1077 neg_result.negate = true;
1078 inst = emit(ADD(result, neg_result, fs_reg(31)));
1079 inst->predicate = BRW_PREDICATE_NORMAL;
1080 break;
1081 }
1082
1083 case nir_op_find_lsb:
1084 emit(FBL(result, op[0]));
1085 break;
1086
1087 case nir_op_ubitfield_extract:
1088 case nir_op_ibitfield_extract:
1089 emit(BFE(result, op[2], op[1], op[0]));
1090 break;
1091 case nir_op_bfm:
1092 emit(BFI1(result, op[0], op[1]));
1093 break;
1094 case nir_op_bfi:
1095 emit(BFI2(result, op[0], op[1], op[2]));
1096 break;
1097
1098 case nir_op_bitfield_insert:
1099 unreachable("not reached: should be handled by "
1100 "lower_instructions::bitfield_insert_to_bfm_bfi");
1101
1102 case nir_op_ishl:
1103 emit(SHL(result, op[0], op[1]));
1104 break;
1105 case nir_op_ishr:
1106 emit(ASR(result, op[0], op[1]));
1107 break;
1108 case nir_op_ushr:
1109 emit(SHR(result, op[0], op[1]));
1110 break;
1111
1112 case nir_op_pack_half_2x16_split:
1113 emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1114 break;
1115
1116 case nir_op_ffma:
1117 inst = emit(MAD(result, op[2], op[1], op[0]));
1118 inst->saturate = instr->dest.saturate;
1119 break;
1120
1121 case nir_op_flrp:
1122 inst = emit_lrp(result, op[0], op[1], op[2]);
1123 inst->saturate = instr->dest.saturate;
1124 break;
1125
1126 case nir_op_bcsel:
1127 if (optimize_frontfacing_ternary(instr, result))
1128 return;
1129
1130 emit(CMP(reg_null_d, op[0], fs_reg(0), BRW_CONDITIONAL_NZ));
1131 inst = emit(SEL(result, op[1], op[2]));
1132 inst->predicate = BRW_PREDICATE_NORMAL;
1133 break;
1134
1135 default:
1136 unreachable("unhandled instruction");
1137 }
1138
1139 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1140 * to sign extend the low bit to 0/~0
1141 */
1142 if (devinfo->gen <= 5 &&
1143 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1144 fs_reg masked = vgrf(glsl_type::int_type);
1145 emit(AND(masked, result, fs_reg(1)));
1146 masked.negate = true;
1147 emit(MOV(retype(result, BRW_REGISTER_TYPE_D), masked));
1148 }
1149 }
1150
1151 static fs_reg
1152 fs_reg_for_nir_reg(fs_visitor *v, nir_register *nir_reg,
1153 unsigned base_offset, nir_src *indirect)
1154 {
1155 fs_reg reg;
1156 if (nir_reg->is_global)
1157 reg = v->nir_globals[nir_reg->index];
1158 else
1159 reg = v->nir_locals[nir_reg->index];
1160
1161 reg = offset(reg, base_offset * nir_reg->num_components);
1162 if (indirect) {
1163 int multiplier = nir_reg->num_components * (v->dispatch_width / 8);
1164
1165 reg.reladdr = new(v->mem_ctx) fs_reg(v->vgrf(glsl_type::int_type));
1166 v->bld.MUL(*reg.reladdr, v->get_nir_src(*indirect),
1167 fs_reg(multiplier));
1168 }
1169
1170 return reg;
1171 }
1172
1173 fs_reg
1174 fs_visitor::get_nir_src(nir_src src)
1175 {
1176 if (src.is_ssa) {
1177 assert(src.ssa->parent_instr->type == nir_instr_type_load_const);
1178 nir_load_const_instr *load = nir_instr_as_load_const(src.ssa->parent_instr);
1179 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, src.ssa->num_components);
1180
1181 for (unsigned i = 0; i < src.ssa->num_components; ++i)
1182 bld.MOV(offset(reg, i), fs_reg(load->value.i[i]));
1183
1184 return reg;
1185 } else {
1186 fs_reg reg = fs_reg_for_nir_reg(this, src.reg.reg, src.reg.base_offset,
1187 src.reg.indirect);
1188
1189 /* to avoid floating-point denorm flushing problems, set the type by
1190 * default to D - instructions that need floating point semantics will set
1191 * this to F if they need to
1192 */
1193 return retype(reg, BRW_REGISTER_TYPE_D);
1194 }
1195 }
1196
1197 fs_reg
1198 fs_visitor::get_nir_dest(nir_dest dest)
1199 {
1200 return fs_reg_for_nir_reg(this, dest.reg.reg, dest.reg.base_offset,
1201 dest.reg.indirect);
1202 }
1203
1204 void
1205 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1206 unsigned wr_mask)
1207 {
1208 for (unsigned i = 0; i < 4; i++) {
1209 if (!((wr_mask >> i) & 1))
1210 continue;
1211
1212 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1213 new_inst->dst = offset(new_inst->dst, i);
1214 for (unsigned j = 0; j < new_inst->sources; j++)
1215 if (new_inst->src[j].file == GRF)
1216 new_inst->src[j] = offset(new_inst->src[j], i);
1217
1218 bld.emit(new_inst);
1219 }
1220 }
1221
1222 void
1223 fs_visitor::nir_emit_intrinsic(nir_intrinsic_instr *instr)
1224 {
1225 fs_reg dest;
1226 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1227 dest = get_nir_dest(instr->dest);
1228
1229 bool has_indirect = false;
1230
1231 switch (instr->intrinsic) {
1232 case nir_intrinsic_discard:
1233 case nir_intrinsic_discard_if: {
1234 /* We track our discarded pixels in f0.1. By predicating on it, we can
1235 * update just the flag bits that aren't yet discarded. If there's no
1236 * condition, we emit a CMP of g0 != g0, so all currently executing
1237 * channels will get turned off.
1238 */
1239 fs_inst *cmp;
1240 if (instr->intrinsic == nir_intrinsic_discard_if) {
1241 cmp = emit(CMP(reg_null_f, get_nir_src(instr->src[0]),
1242 fs_reg(0), BRW_CONDITIONAL_Z));
1243 } else {
1244 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1245 BRW_REGISTER_TYPE_UW));
1246 cmp = emit(CMP(reg_null_f, some_reg, some_reg, BRW_CONDITIONAL_NZ));
1247 }
1248 cmp->predicate = BRW_PREDICATE_NORMAL;
1249 cmp->flag_subreg = 1;
1250
1251 if (devinfo->gen >= 6) {
1252 emit_discard_jump();
1253 }
1254 break;
1255 }
1256
1257 case nir_intrinsic_atomic_counter_inc:
1258 case nir_intrinsic_atomic_counter_dec:
1259 case nir_intrinsic_atomic_counter_read: {
1260 unsigned surf_index = prog_data->binding_table.abo_start +
1261 (unsigned) instr->const_index[0];
1262 fs_reg offset = fs_reg(get_nir_src(instr->src[0]));
1263
1264 switch (instr->intrinsic) {
1265 case nir_intrinsic_atomic_counter_inc:
1266 emit_untyped_atomic(BRW_AOP_INC, surf_index, dest, offset,
1267 fs_reg(), fs_reg());
1268 break;
1269 case nir_intrinsic_atomic_counter_dec:
1270 emit_untyped_atomic(BRW_AOP_PREDEC, surf_index, dest, offset,
1271 fs_reg(), fs_reg());
1272 break;
1273 case nir_intrinsic_atomic_counter_read:
1274 emit_untyped_surface_read(surf_index, dest, offset);
1275 break;
1276 default:
1277 unreachable("Unreachable");
1278 }
1279 break;
1280 }
1281
1282 case nir_intrinsic_load_front_face:
1283 emit(MOV(retype(dest, BRW_REGISTER_TYPE_D),
1284 *emit_frontfacing_interpolation()));
1285 break;
1286
1287 case nir_intrinsic_load_vertex_id:
1288 unreachable("should be lowered by lower_vertex_id()");
1289
1290 case nir_intrinsic_load_vertex_id_zero_base: {
1291 fs_reg vertex_id = nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
1292 assert(vertex_id.file != BAD_FILE);
1293 dest.type = vertex_id.type;
1294 emit(MOV(dest, vertex_id));
1295 break;
1296 }
1297
1298 case nir_intrinsic_load_base_vertex: {
1299 fs_reg base_vertex = nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
1300 assert(base_vertex.file != BAD_FILE);
1301 dest.type = base_vertex.type;
1302 emit(MOV(dest, base_vertex));
1303 break;
1304 }
1305
1306 case nir_intrinsic_load_instance_id: {
1307 fs_reg instance_id = nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
1308 assert(instance_id.file != BAD_FILE);
1309 dest.type = instance_id.type;
1310 emit(MOV(dest, instance_id));
1311 break;
1312 }
1313
1314 case nir_intrinsic_load_sample_mask_in: {
1315 fs_reg sample_mask_in = nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
1316 assert(sample_mask_in.file != BAD_FILE);
1317 dest.type = sample_mask_in.type;
1318 emit(MOV(dest, sample_mask_in));
1319 break;
1320 }
1321
1322 case nir_intrinsic_load_sample_pos: {
1323 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1324 assert(sample_pos.file != BAD_FILE);
1325 dest.type = sample_pos.type;
1326 emit(MOV(dest, sample_pos));
1327 emit(MOV(offset(dest, 1), offset(sample_pos, 1)));
1328 break;
1329 }
1330
1331 case nir_intrinsic_load_sample_id: {
1332 fs_reg sample_id = nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
1333 assert(sample_id.file != BAD_FILE);
1334 dest.type = sample_id.type;
1335 emit(MOV(dest, sample_id));
1336 break;
1337 }
1338
1339 case nir_intrinsic_load_uniform_indirect:
1340 has_indirect = true;
1341 /* fallthrough */
1342 case nir_intrinsic_load_uniform: {
1343 unsigned index = instr->const_index[0];
1344
1345 fs_reg uniform_reg;
1346 if (index < num_direct_uniforms) {
1347 uniform_reg = fs_reg(UNIFORM, 0);
1348 } else {
1349 uniform_reg = fs_reg(UNIFORM, num_direct_uniforms);
1350 index -= num_direct_uniforms;
1351 }
1352
1353 for (unsigned j = 0; j < instr->num_components; j++) {
1354 fs_reg src = offset(retype(uniform_reg, dest.type), index);
1355 if (has_indirect)
1356 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1357 index++;
1358
1359 emit(MOV(dest, src));
1360 dest = offset(dest, 1);
1361 }
1362 break;
1363 }
1364
1365 case nir_intrinsic_load_ubo_indirect:
1366 has_indirect = true;
1367 /* fallthrough */
1368 case nir_intrinsic_load_ubo: {
1369 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
1370 fs_reg surf_index;
1371
1372 if (const_index) {
1373 surf_index = fs_reg(stage_prog_data->binding_table.ubo_start +
1374 const_index->u[0]);
1375 } else {
1376 /* The block index is not a constant. Evaluate the index expression
1377 * per-channel and add the base UBO index; we have to select a value
1378 * from any live channel.
1379 */
1380 surf_index = vgrf(glsl_type::uint_type);
1381 emit(ADD(surf_index, get_nir_src(instr->src[0]),
1382 fs_reg(stage_prog_data->binding_table.ubo_start)));
1383 emit_uniformize(surf_index, surf_index);
1384
1385 /* Assume this may touch any UBO. It would be nice to provide
1386 * a tighter bound, but the array information is already lowered away.
1387 */
1388 brw_mark_surface_used(prog_data,
1389 stage_prog_data->binding_table.ubo_start +
1390 shader_prog->NumUniformBlocks - 1);
1391 }
1392
1393 if (has_indirect) {
1394 /* Turn the byte offset into a dword offset. */
1395 fs_reg base_offset = vgrf(glsl_type::int_type);
1396 emit(SHR(base_offset, retype(get_nir_src(instr->src[1]),
1397 BRW_REGISTER_TYPE_D),
1398 fs_reg(2)));
1399
1400 unsigned vec4_offset = instr->const_index[0] / 4;
1401 for (int i = 0; i < instr->num_components; i++)
1402 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, i), surf_index,
1403 base_offset, vec4_offset + i);
1404 } else {
1405 fs_reg packed_consts = vgrf(glsl_type::float_type);
1406 packed_consts.type = dest.type;
1407
1408 fs_reg const_offset_reg((unsigned) instr->const_index[0] & ~15);
1409 emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
1410 surf_index, const_offset_reg);
1411
1412 for (unsigned i = 0; i < instr->num_components; i++) {
1413 packed_consts.set_smear(instr->const_index[0] % 16 / 4 + i);
1414
1415 /* The std140 packing rules don't allow vectors to cross 16-byte
1416 * boundaries, and a reg is 32 bytes.
1417 */
1418 assert(packed_consts.subreg_offset < 32);
1419
1420 emit(MOV(dest, packed_consts));
1421 dest = offset(dest, 1);
1422 }
1423 }
1424 break;
1425 }
1426
1427 case nir_intrinsic_load_input_indirect:
1428 has_indirect = true;
1429 /* fallthrough */
1430 case nir_intrinsic_load_input: {
1431 unsigned index = 0;
1432 for (unsigned j = 0; j < instr->num_components; j++) {
1433 fs_reg src = offset(retype(nir_inputs, dest.type),
1434 instr->const_index[0] + index);
1435 if (has_indirect)
1436 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
1437 index++;
1438
1439 emit(MOV(dest, src));
1440 dest = offset(dest, 1);
1441 }
1442 break;
1443 }
1444
1445 /* Handle ARB_gpu_shader5 interpolation intrinsics
1446 *
1447 * It's worth a quick word of explanation as to why we handle the full
1448 * variable-based interpolation intrinsic rather than a lowered version
1449 * with like we do for other inputs. We have to do that because the way
1450 * we set up inputs doesn't allow us to use the already setup inputs for
1451 * interpolation. At the beginning of the shader, we go through all of
1452 * the input variables and do the initial interpolation and put it in
1453 * the nir_inputs array based on its location as determined in
1454 * nir_lower_io. If the input isn't used, dead code cleans up and
1455 * everything works fine. However, when we get to the ARB_gpu_shader5
1456 * interpolation intrinsics, we need to reinterpolate the input
1457 * differently. If we used an intrinsic that just had an index it would
1458 * only give us the offset into the nir_inputs array. However, this is
1459 * useless because that value is post-interpolation and we need
1460 * pre-interpolation. In order to get the actual location of the bits
1461 * we get from the vertex fetching hardware, we need the variable.
1462 */
1463 case nir_intrinsic_interp_var_at_centroid:
1464 case nir_intrinsic_interp_var_at_sample:
1465 case nir_intrinsic_interp_var_at_offset: {
1466 /* in SIMD16 mode, the pixel interpolator returns coords interleaved
1467 * 8 channels at a time, same as the barycentric coords presented in
1468 * the FS payload. this requires a bit of extra work to support.
1469 */
1470 no16("interpolate_at_* not yet supported in SIMD16 mode.");
1471
1472 fs_reg dst_xy = vgrf(2);
1473
1474 /* For most messages, we need one reg of ignored data; the hardware
1475 * requires mlen==1 even when there is no payload. in the per-slot
1476 * offset case, we'll replace this with the proper source data.
1477 */
1478 fs_reg src = vgrf(glsl_type::float_type);
1479 int mlen = 1; /* one reg unless overriden */
1480 fs_inst *inst;
1481
1482 switch (instr->intrinsic) {
1483 case nir_intrinsic_interp_var_at_centroid:
1484 inst = emit(FS_OPCODE_INTERPOLATE_AT_CENTROID, dst_xy, src, fs_reg(0u));
1485 break;
1486
1487 case nir_intrinsic_interp_var_at_sample: {
1488 /* XXX: We should probably handle non-constant sample id's */
1489 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
1490 assert(const_sample);
1491 unsigned msg_data = const_sample ? const_sample->i[0] << 4 : 0;
1492 inst = emit(FS_OPCODE_INTERPOLATE_AT_SAMPLE, dst_xy, src,
1493 fs_reg(msg_data));
1494 break;
1495 }
1496
1497 case nir_intrinsic_interp_var_at_offset: {
1498 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
1499
1500 if (const_offset) {
1501 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
1502 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
1503
1504 inst = emit(FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET, dst_xy, src,
1505 fs_reg(off_x | (off_y << 4)));
1506 } else {
1507 src = vgrf(glsl_type::ivec2_type);
1508 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
1509 BRW_REGISTER_TYPE_F);
1510 for (int i = 0; i < 2; i++) {
1511 fs_reg temp = vgrf(glsl_type::float_type);
1512 emit(MUL(temp, offset(offset_src, i), fs_reg(16.0f)));
1513 fs_reg itemp = vgrf(glsl_type::int_type);
1514 emit(MOV(itemp, temp)); /* float to int */
1515
1516 /* Clamp the upper end of the range to +7/16.
1517 * ARB_gpu_shader5 requires that we support a maximum offset
1518 * of +0.5, which isn't representable in a S0.4 value -- if
1519 * we didn't clamp it, we'd end up with -8/16, which is the
1520 * opposite of what the shader author wanted.
1521 *
1522 * This is legal due to ARB_gpu_shader5's quantization
1523 * rules:
1524 *
1525 * "Not all values of <offset> may be supported; x and y
1526 * offsets may be rounded to fixed-point values with the
1527 * number of fraction bits given by the
1528 * implementation-dependent constant
1529 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
1530 */
1531
1532 emit(BRW_OPCODE_SEL, offset(src, i), itemp, fs_reg(7))
1533 ->conditional_mod = BRW_CONDITIONAL_L; /* min(src2, 7) */
1534 }
1535
1536 mlen = 2;
1537 inst = emit(FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET, dst_xy, src,
1538 fs_reg(0u));
1539 }
1540 break;
1541 }
1542
1543 default:
1544 unreachable("Invalid intrinsic");
1545 }
1546
1547 inst->mlen = mlen;
1548 inst->regs_written = 2; /* 2 floats per slot returned */
1549 inst->pi_noperspective = instr->variables[0]->var->data.interpolation ==
1550 INTERP_QUALIFIER_NOPERSPECTIVE;
1551
1552 for (unsigned j = 0; j < instr->num_components; j++) {
1553 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
1554 src.type = dest.type;
1555
1556 emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
1557 dest = offset(dest, 1);
1558 }
1559 break;
1560 }
1561
1562 case nir_intrinsic_store_output_indirect:
1563 has_indirect = true;
1564 /* fallthrough */
1565 case nir_intrinsic_store_output: {
1566 fs_reg src = get_nir_src(instr->src[0]);
1567 unsigned index = 0;
1568 for (unsigned j = 0; j < instr->num_components; j++) {
1569 fs_reg new_dest = offset(retype(nir_outputs, src.type),
1570 instr->const_index[0] + index);
1571 if (has_indirect)
1572 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[1]));
1573 index++;
1574 emit(MOV(new_dest, src));
1575 src = offset(src, 1);
1576 }
1577 break;
1578 }
1579
1580 default:
1581 unreachable("unknown intrinsic");
1582 }
1583 }
1584
1585 void
1586 fs_visitor::nir_emit_texture(nir_tex_instr *instr)
1587 {
1588 unsigned sampler = instr->sampler_index;
1589 fs_reg sampler_reg(sampler);
1590
1591 /* FINISHME: We're failing to recompile our programs when the sampler is
1592 * updated. This only matters for the texture rectangle scale parameters
1593 * (pre-gen6, or gen6+ with GL_CLAMP).
1594 */
1595 int texunit = prog->SamplerUnits[sampler];
1596
1597 int gather_component = instr->component;
1598
1599 bool is_rect = instr->sampler_dim == GLSL_SAMPLER_DIM_RECT;
1600
1601 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
1602 instr->is_array;
1603
1604 int lod_components = 0, offset_components = 0;
1605
1606 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
1607
1608 for (unsigned i = 0; i < instr->num_srcs; i++) {
1609 fs_reg src = get_nir_src(instr->src[i].src);
1610 switch (instr->src[i].src_type) {
1611 case nir_tex_src_bias:
1612 lod = retype(src, BRW_REGISTER_TYPE_F);
1613 break;
1614 case nir_tex_src_comparitor:
1615 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
1616 break;
1617 case nir_tex_src_coord:
1618 switch (instr->op) {
1619 case nir_texop_txf:
1620 case nir_texop_txf_ms:
1621 coordinate = retype(src, BRW_REGISTER_TYPE_D);
1622 break;
1623 default:
1624 coordinate = retype(src, BRW_REGISTER_TYPE_F);
1625 break;
1626 }
1627 break;
1628 case nir_tex_src_ddx:
1629 lod = retype(src, BRW_REGISTER_TYPE_F);
1630 lod_components = nir_tex_instr_src_size(instr, i);
1631 break;
1632 case nir_tex_src_ddy:
1633 lod2 = retype(src, BRW_REGISTER_TYPE_F);
1634 break;
1635 case nir_tex_src_lod:
1636 switch (instr->op) {
1637 case nir_texop_txs:
1638 lod = retype(src, BRW_REGISTER_TYPE_UD);
1639 break;
1640 case nir_texop_txf:
1641 lod = retype(src, BRW_REGISTER_TYPE_D);
1642 break;
1643 default:
1644 lod = retype(src, BRW_REGISTER_TYPE_F);
1645 break;
1646 }
1647 break;
1648 case nir_tex_src_ms_index:
1649 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
1650 break;
1651 case nir_tex_src_offset:
1652 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
1653 if (instr->is_array)
1654 offset_components = instr->coord_components - 1;
1655 else
1656 offset_components = instr->coord_components;
1657 break;
1658 case nir_tex_src_projector:
1659 unreachable("should be lowered");
1660
1661 case nir_tex_src_sampler_offset: {
1662 /* Figure out the highest possible sampler index and mark it as used */
1663 uint32_t max_used = sampler + instr->sampler_array_size - 1;
1664 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
1665 max_used += stage_prog_data->binding_table.gather_texture_start;
1666 } else {
1667 max_used += stage_prog_data->binding_table.texture_start;
1668 }
1669 brw_mark_surface_used(prog_data, max_used);
1670
1671 /* Emit code to evaluate the actual indexing expression */
1672 sampler_reg = vgrf(glsl_type::uint_type);
1673 emit(ADD(sampler_reg, src, fs_reg(sampler)));
1674 emit_uniformize(sampler_reg, sampler_reg);
1675 break;
1676 }
1677
1678 default:
1679 unreachable("unknown texture source");
1680 }
1681 }
1682
1683 if (instr->op == nir_texop_txf_ms) {
1684 if (devinfo->gen >= 7 &&
1685 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
1686 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
1687 } else {
1688 mcs = fs_reg(0u);
1689 }
1690 }
1691
1692 for (unsigned i = 0; i < 3; i++) {
1693 if (instr->const_offset[i] != 0) {
1694 assert(offset_components == 0);
1695 tex_offset = fs_reg(brw_texture_offset(instr->const_offset, 3));
1696 break;
1697 }
1698 }
1699
1700 enum glsl_base_type dest_base_type;
1701 switch (instr->dest_type) {
1702 case nir_type_float:
1703 dest_base_type = GLSL_TYPE_FLOAT;
1704 break;
1705 case nir_type_int:
1706 dest_base_type = GLSL_TYPE_INT;
1707 break;
1708 case nir_type_unsigned:
1709 dest_base_type = GLSL_TYPE_UINT;
1710 break;
1711 default:
1712 unreachable("bad type");
1713 }
1714
1715 const glsl_type *dest_type =
1716 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
1717 1);
1718
1719 ir_texture_opcode op;
1720 switch (instr->op) {
1721 case nir_texop_lod: op = ir_lod; break;
1722 case nir_texop_query_levels: op = ir_query_levels; break;
1723 case nir_texop_tex: op = ir_tex; break;
1724 case nir_texop_tg4: op = ir_tg4; break;
1725 case nir_texop_txb: op = ir_txb; break;
1726 case nir_texop_txd: op = ir_txd; break;
1727 case nir_texop_txf: op = ir_txf; break;
1728 case nir_texop_txf_ms: op = ir_txf_ms; break;
1729 case nir_texop_txl: op = ir_txl; break;
1730 case nir_texop_txs: op = ir_txs; break;
1731 default:
1732 unreachable("unknown texture opcode");
1733 }
1734
1735 emit_texture(op, dest_type, coordinate, instr->coord_components,
1736 shadow_comparitor, lod, lod2, lod_components, sample_index,
1737 tex_offset, mcs, gather_component,
1738 is_cube_array, is_rect, sampler, sampler_reg, texunit);
1739
1740 fs_reg dest = get_nir_dest(instr->dest);
1741 dest.type = this->result.type;
1742 unsigned num_components = nir_tex_instr_dest_size(instr);
1743 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, dest, this->result),
1744 (1 << num_components) - 1);
1745 }
1746
1747 void
1748 fs_visitor::nir_emit_jump(nir_jump_instr *instr)
1749 {
1750 switch (instr->type) {
1751 case nir_jump_break:
1752 emit(BRW_OPCODE_BREAK);
1753 break;
1754 case nir_jump_continue:
1755 emit(BRW_OPCODE_CONTINUE);
1756 break;
1757 case nir_jump_return:
1758 default:
1759 unreachable("unknown jump");
1760 }
1761 }