i965: Use LOAD_PAYLOAD for SIMD8 TES input loads, not MOV.
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (var->data.index > 0) {
134 assert(var->data.location == FRAG_RESULT_DATA0);
135 assert(var->data.index == 1);
136 this->dual_src_output = reg;
137 this->do_dual_src = true;
138 } else if (var->data.location == FRAG_RESULT_COLOR) {
139 /* Writing gl_FragColor outputs to all color regions. */
140 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
141 this->outputs[i] = reg;
142 this->output_components[i] = 4;
143 }
144 } else if (var->data.location == FRAG_RESULT_DEPTH) {
145 this->frag_depth = reg;
146 } else if (var->data.location == FRAG_RESULT_STENCIL) {
147 this->frag_stencil = reg;
148 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
149 this->sample_mask = reg;
150 } else {
151 int vector_elements = var->type->without_array()->vector_elements;
152
153 /* gl_FragData or a user-defined FS output */
154 assert(var->data.location >= FRAG_RESULT_DATA0 &&
155 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
156
157 /* General color output. */
158 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
159 int output = var->data.location - FRAG_RESULT_DATA0 + i;
160 this->outputs[output] = offset(reg, bld, vector_elements * i);
161 this->output_components[output] = vector_elements;
162 }
163 }
164 break;
165 default:
166 unreachable("unhandled shader stage");
167 }
168 }
169 }
170
171 void
172 fs_visitor::nir_setup_uniforms()
173 {
174 if (dispatch_width != 8)
175 return;
176
177 uniforms = nir->num_uniforms / 4;
178
179 nir_foreach_variable(var, &nir->uniforms) {
180 /* UBO's and atomics don't take up space in the uniform file */
181 if (var->interface_type != NULL || var->type->contains_atomic())
182 continue;
183
184 if (type_size_scalar(var->type) > 0)
185 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
186 }
187 }
188
189 static bool
190 emit_system_values_block(nir_block *block, void *void_visitor)
191 {
192 fs_visitor *v = (fs_visitor *)void_visitor;
193 fs_reg *reg;
194
195 nir_foreach_instr(block, instr) {
196 if (instr->type != nir_instr_type_intrinsic)
197 continue;
198
199 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
200 switch (intrin->intrinsic) {
201 case nir_intrinsic_load_vertex_id:
202 unreachable("should be lowered by lower_vertex_id().");
203
204 case nir_intrinsic_load_vertex_id_zero_base:
205 assert(v->stage == MESA_SHADER_VERTEX);
206 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
207 if (reg->file == BAD_FILE)
208 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
209 break;
210
211 case nir_intrinsic_load_base_vertex:
212 assert(v->stage == MESA_SHADER_VERTEX);
213 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
214 if (reg->file == BAD_FILE)
215 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
216 break;
217
218 case nir_intrinsic_load_instance_id:
219 assert(v->stage == MESA_SHADER_VERTEX);
220 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
221 if (reg->file == BAD_FILE)
222 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
223 break;
224
225 case nir_intrinsic_load_base_instance:
226 assert(v->stage == MESA_SHADER_VERTEX);
227 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
228 if (reg->file == BAD_FILE)
229 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
230 break;
231
232 case nir_intrinsic_load_draw_id:
233 assert(v->stage == MESA_SHADER_VERTEX);
234 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
235 if (reg->file == BAD_FILE)
236 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
237 break;
238
239 case nir_intrinsic_load_invocation_id:
240 assert(v->stage == MESA_SHADER_GEOMETRY);
241 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
242 if (reg->file == BAD_FILE) {
243 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
244 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
245 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
246 abld.SHR(iid, g1, brw_imm_ud(27u));
247 *reg = iid;
248 }
249 break;
250
251 case nir_intrinsic_load_sample_pos:
252 assert(v->stage == MESA_SHADER_FRAGMENT);
253 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
254 if (reg->file == BAD_FILE)
255 *reg = *v->emit_samplepos_setup();
256 break;
257
258 case nir_intrinsic_load_sample_id:
259 assert(v->stage == MESA_SHADER_FRAGMENT);
260 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
261 if (reg->file == BAD_FILE)
262 *reg = *v->emit_sampleid_setup();
263 break;
264
265 case nir_intrinsic_load_sample_mask_in:
266 assert(v->stage == MESA_SHADER_FRAGMENT);
267 assert(v->devinfo->gen >= 7);
268 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
269 if (reg->file == BAD_FILE)
270 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
271 BRW_REGISTER_TYPE_D));
272 break;
273
274 case nir_intrinsic_load_local_invocation_id:
275 assert(v->stage == MESA_SHADER_COMPUTE);
276 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
277 if (reg->file == BAD_FILE)
278 *reg = *v->emit_cs_local_invocation_id_setup();
279 break;
280
281 case nir_intrinsic_load_work_group_id:
282 assert(v->stage == MESA_SHADER_COMPUTE);
283 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
284 if (reg->file == BAD_FILE)
285 *reg = *v->emit_cs_work_group_id_setup();
286 break;
287
288 case nir_intrinsic_load_helper_invocation:
289 assert(v->stage == MESA_SHADER_FRAGMENT);
290 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
291 if (reg->file == BAD_FILE) {
292 const fs_builder abld =
293 v->bld.annotate("gl_HelperInvocation", NULL);
294
295 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
296 * pixel mask is in g1.7 of the thread payload.
297 *
298 * We move the per-channel pixel enable bit to the low bit of each
299 * channel by shifting the byte containing the pixel mask by the
300 * vector immediate 0x76543210UV.
301 *
302 * The region of <1,8,0> reads only 1 byte (the pixel masks for
303 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
304 * masks for 2 and 3) in SIMD16.
305 */
306 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
307 abld.SHR(shifted,
308 stride(byte_offset(retype(brw_vec1_grf(1, 0),
309 BRW_REGISTER_TYPE_UB), 28),
310 1, 8, 0),
311 brw_imm_uv(0x76543210));
312
313 /* A set bit in the pixel mask means the channel is enabled, but
314 * that is the opposite of gl_HelperInvocation so we need to invert
315 * the mask.
316 *
317 * The negate source-modifier bit of logical instructions on Gen8+
318 * performs 1's complement negation, so we can use that instead of
319 * a NOT instruction.
320 */
321 fs_reg inverted = negate(shifted);
322 if (v->devinfo->gen < 8) {
323 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
324 abld.NOT(inverted, shifted);
325 }
326
327 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
328 * with 1 and negating.
329 */
330 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
331 abld.AND(anded, inverted, brw_imm_uw(1));
332
333 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
334 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
335 *reg = dst;
336 }
337 break;
338
339 default:
340 break;
341 }
342 }
343
344 return true;
345 }
346
347 void
348 fs_visitor::nir_emit_system_values()
349 {
350 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
351 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
352 nir_system_values[i] = fs_reg();
353 }
354
355 nir_foreach_function(nir, function) {
356 assert(strcmp(function->name, "main") == 0);
357 assert(function->impl);
358 nir_foreach_block(function->impl, emit_system_values_block, this);
359 }
360 }
361
362 void
363 fs_visitor::nir_emit_impl(nir_function_impl *impl)
364 {
365 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
366 for (unsigned i = 0; i < impl->reg_alloc; i++) {
367 nir_locals[i] = fs_reg();
368 }
369
370 foreach_list_typed(nir_register, reg, node, &impl->registers) {
371 unsigned array_elems =
372 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
373 unsigned size = array_elems * reg->num_components;
374 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
375 }
376
377 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
378 impl->ssa_alloc);
379
380 nir_emit_cf_list(&impl->body);
381 }
382
383 void
384 fs_visitor::nir_emit_cf_list(exec_list *list)
385 {
386 exec_list_validate(list);
387 foreach_list_typed(nir_cf_node, node, node, list) {
388 switch (node->type) {
389 case nir_cf_node_if:
390 nir_emit_if(nir_cf_node_as_if(node));
391 break;
392
393 case nir_cf_node_loop:
394 nir_emit_loop(nir_cf_node_as_loop(node));
395 break;
396
397 case nir_cf_node_block:
398 nir_emit_block(nir_cf_node_as_block(node));
399 break;
400
401 default:
402 unreachable("Invalid CFG node block");
403 }
404 }
405 }
406
407 void
408 fs_visitor::nir_emit_if(nir_if *if_stmt)
409 {
410 /* first, put the condition into f0 */
411 fs_inst *inst = bld.MOV(bld.null_reg_d(),
412 retype(get_nir_src(if_stmt->condition),
413 BRW_REGISTER_TYPE_D));
414 inst->conditional_mod = BRW_CONDITIONAL_NZ;
415
416 bld.IF(BRW_PREDICATE_NORMAL);
417
418 nir_emit_cf_list(&if_stmt->then_list);
419
420 /* note: if the else is empty, dead CF elimination will remove it */
421 bld.emit(BRW_OPCODE_ELSE);
422
423 nir_emit_cf_list(&if_stmt->else_list);
424
425 bld.emit(BRW_OPCODE_ENDIF);
426 }
427
428 void
429 fs_visitor::nir_emit_loop(nir_loop *loop)
430 {
431 bld.emit(BRW_OPCODE_DO);
432
433 nir_emit_cf_list(&loop->body);
434
435 bld.emit(BRW_OPCODE_WHILE);
436 }
437
438 void
439 fs_visitor::nir_emit_block(nir_block *block)
440 {
441 nir_foreach_instr(block, instr) {
442 nir_emit_instr(instr);
443 }
444 }
445
446 void
447 fs_visitor::nir_emit_instr(nir_instr *instr)
448 {
449 const fs_builder abld = bld.annotate(NULL, instr);
450
451 switch (instr->type) {
452 case nir_instr_type_alu:
453 nir_emit_alu(abld, nir_instr_as_alu(instr));
454 break;
455
456 case nir_instr_type_intrinsic:
457 switch (stage) {
458 case MESA_SHADER_VERTEX:
459 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
460 break;
461 case MESA_SHADER_TESS_EVAL:
462 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
463 break;
464 case MESA_SHADER_GEOMETRY:
465 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
466 break;
467 case MESA_SHADER_FRAGMENT:
468 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
469 break;
470 case MESA_SHADER_COMPUTE:
471 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
472 break;
473 default:
474 unreachable("unsupported shader stage");
475 }
476 break;
477
478 case nir_instr_type_tex:
479 nir_emit_texture(abld, nir_instr_as_tex(instr));
480 break;
481
482 case nir_instr_type_load_const:
483 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
484 break;
485
486 case nir_instr_type_ssa_undef:
487 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
488 break;
489
490 case nir_instr_type_jump:
491 nir_emit_jump(abld, nir_instr_as_jump(instr));
492 break;
493
494 default:
495 unreachable("unknown instruction type");
496 }
497 }
498
499 bool
500 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
501 const fs_reg &result)
502 {
503 if (!instr->src[0].src.is_ssa ||
504 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
505 return false;
506
507 nir_intrinsic_instr *src0 =
508 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
509
510 if (src0->intrinsic != nir_intrinsic_load_front_face)
511 return false;
512
513 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
514 if (!value1 || fabsf(value1->f[0]) != 1.0f)
515 return false;
516
517 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
518 if (!value2 || fabsf(value2->f[0]) != 1.0f)
519 return false;
520
521 fs_reg tmp = vgrf(glsl_type::int_type);
522
523 if (devinfo->gen >= 6) {
524 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
525 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
526
527 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
528 *
529 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
530 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
531 *
532 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
533 *
534 * This negation looks like it's safe in practice, because bits 0:4 will
535 * surely be TRIANGLES
536 */
537
538 if (value1->f[0] == -1.0f) {
539 g0.negate = true;
540 }
541
542 tmp.type = BRW_REGISTER_TYPE_W;
543 tmp.subreg_offset = 2;
544 tmp.stride = 2;
545
546 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
547
548 tmp.type = BRW_REGISTER_TYPE_D;
549 tmp.subreg_offset = 0;
550 tmp.stride = 1;
551 } else {
552 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
553 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
554
555 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
556 *
557 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
558 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
559 *
560 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
561 *
562 * This negation looks like it's safe in practice, because bits 0:4 will
563 * surely be TRIANGLES
564 */
565
566 if (value1->f[0] == -1.0f) {
567 g1_6.negate = true;
568 }
569
570 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
571 }
572 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
573
574 return true;
575 }
576
577 void
578 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
579 {
580 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
581 fs_inst *inst;
582
583 fs_reg result = get_nir_dest(instr->dest.dest);
584 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
585
586 fs_reg op[4];
587 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
588 op[i] = get_nir_src(instr->src[i].src);
589 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
590 op[i].abs = instr->src[i].abs;
591 op[i].negate = instr->src[i].negate;
592 }
593
594 /* We get a bunch of mov's out of the from_ssa pass and they may still
595 * be vectorized. We'll handle them as a special-case. We'll also
596 * handle vecN here because it's basically the same thing.
597 */
598 switch (instr->op) {
599 case nir_op_imov:
600 case nir_op_fmov:
601 case nir_op_vec2:
602 case nir_op_vec3:
603 case nir_op_vec4: {
604 fs_reg temp = result;
605 bool need_extra_copy = false;
606 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
607 if (!instr->src[i].src.is_ssa &&
608 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
609 need_extra_copy = true;
610 temp = bld.vgrf(result.type, 4);
611 break;
612 }
613 }
614
615 for (unsigned i = 0; i < 4; i++) {
616 if (!(instr->dest.write_mask & (1 << i)))
617 continue;
618
619 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
620 inst = bld.MOV(offset(temp, bld, i),
621 offset(op[0], bld, instr->src[0].swizzle[i]));
622 } else {
623 inst = bld.MOV(offset(temp, bld, i),
624 offset(op[i], bld, instr->src[i].swizzle[0]));
625 }
626 inst->saturate = instr->dest.saturate;
627 }
628
629 /* In this case the source and destination registers were the same,
630 * so we need to insert an extra set of moves in order to deal with
631 * any swizzling.
632 */
633 if (need_extra_copy) {
634 for (unsigned i = 0; i < 4; i++) {
635 if (!(instr->dest.write_mask & (1 << i)))
636 continue;
637
638 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
639 }
640 }
641 return;
642 }
643 default:
644 break;
645 }
646
647 /* At this point, we have dealt with any instruction that operates on
648 * more than a single channel. Therefore, we can just adjust the source
649 * and destination registers for that channel and emit the instruction.
650 */
651 unsigned channel = 0;
652 if (nir_op_infos[instr->op].output_size == 0) {
653 /* Since NIR is doing the scalarizing for us, we should only ever see
654 * vectorized operations with a single channel.
655 */
656 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
657 channel = ffs(instr->dest.write_mask) - 1;
658
659 result = offset(result, bld, channel);
660 }
661
662 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
663 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
664 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
665 }
666
667 switch (instr->op) {
668 case nir_op_i2f:
669 case nir_op_u2f:
670 inst = bld.MOV(result, op[0]);
671 inst->saturate = instr->dest.saturate;
672 break;
673
674 case nir_op_f2i:
675 case nir_op_f2u:
676 bld.MOV(result, op[0]);
677 break;
678
679 case nir_op_fsign: {
680 /* AND(val, 0x80000000) gives the sign bit.
681 *
682 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
683 * zero.
684 */
685 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
686
687 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
688 op[0].type = BRW_REGISTER_TYPE_UD;
689 result.type = BRW_REGISTER_TYPE_UD;
690 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
691
692 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
693 inst->predicate = BRW_PREDICATE_NORMAL;
694 if (instr->dest.saturate) {
695 inst = bld.MOV(result, result);
696 inst->saturate = true;
697 }
698 break;
699 }
700
701 case nir_op_isign:
702 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
703 * -> non-negative val generates 0x00000000.
704 * Predicated OR sets 1 if val is positive.
705 */
706 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
707 bld.ASR(result, op[0], brw_imm_d(31));
708 inst = bld.OR(result, result, brw_imm_d(1));
709 inst->predicate = BRW_PREDICATE_NORMAL;
710 break;
711
712 case nir_op_frcp:
713 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
714 inst->saturate = instr->dest.saturate;
715 break;
716
717 case nir_op_fexp2:
718 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
719 inst->saturate = instr->dest.saturate;
720 break;
721
722 case nir_op_flog2:
723 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
724 inst->saturate = instr->dest.saturate;
725 break;
726
727 case nir_op_fsin:
728 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
729 inst->saturate = instr->dest.saturate;
730 break;
731
732 case nir_op_fcos:
733 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
734 inst->saturate = instr->dest.saturate;
735 break;
736
737 case nir_op_fddx:
738 if (fs_key->high_quality_derivatives) {
739 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
740 } else {
741 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
742 }
743 inst->saturate = instr->dest.saturate;
744 break;
745 case nir_op_fddx_fine:
746 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddx_coarse:
750 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
751 inst->saturate = instr->dest.saturate;
752 break;
753 case nir_op_fddy:
754 if (fs_key->high_quality_derivatives) {
755 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
756 brw_imm_d(fs_key->render_to_fbo));
757 } else {
758 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
759 brw_imm_d(fs_key->render_to_fbo));
760 }
761 inst->saturate = instr->dest.saturate;
762 break;
763 case nir_op_fddy_fine:
764 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
765 brw_imm_d(fs_key->render_to_fbo));
766 inst->saturate = instr->dest.saturate;
767 break;
768 case nir_op_fddy_coarse:
769 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
770 brw_imm_d(fs_key->render_to_fbo));
771 inst->saturate = instr->dest.saturate;
772 break;
773
774 case nir_op_fadd:
775 case nir_op_iadd:
776 inst = bld.ADD(result, op[0], op[1]);
777 inst->saturate = instr->dest.saturate;
778 break;
779
780 case nir_op_fmul:
781 inst = bld.MUL(result, op[0], op[1]);
782 inst->saturate = instr->dest.saturate;
783 break;
784
785 case nir_op_imul:
786 bld.MUL(result, op[0], op[1]);
787 break;
788
789 case nir_op_imul_high:
790 case nir_op_umul_high:
791 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
792 break;
793
794 case nir_op_idiv:
795 case nir_op_udiv:
796 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
797 break;
798
799 case nir_op_uadd_carry:
800 unreachable("Should have been lowered by carry_to_arith().");
801
802 case nir_op_usub_borrow:
803 unreachable("Should have been lowered by borrow_to_arith().");
804
805 case nir_op_umod:
806 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
807 break;
808
809 case nir_op_flt:
810 case nir_op_ilt:
811 case nir_op_ult:
812 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
813 break;
814
815 case nir_op_fge:
816 case nir_op_ige:
817 case nir_op_uge:
818 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
819 break;
820
821 case nir_op_feq:
822 case nir_op_ieq:
823 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
824 break;
825
826 case nir_op_fne:
827 case nir_op_ine:
828 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
829 break;
830
831 case nir_op_inot:
832 if (devinfo->gen >= 8) {
833 op[0] = resolve_source_modifiers(op[0]);
834 }
835 bld.NOT(result, op[0]);
836 break;
837 case nir_op_ixor:
838 if (devinfo->gen >= 8) {
839 op[0] = resolve_source_modifiers(op[0]);
840 op[1] = resolve_source_modifiers(op[1]);
841 }
842 bld.XOR(result, op[0], op[1]);
843 break;
844 case nir_op_ior:
845 if (devinfo->gen >= 8) {
846 op[0] = resolve_source_modifiers(op[0]);
847 op[1] = resolve_source_modifiers(op[1]);
848 }
849 bld.OR(result, op[0], op[1]);
850 break;
851 case nir_op_iand:
852 if (devinfo->gen >= 8) {
853 op[0] = resolve_source_modifiers(op[0]);
854 op[1] = resolve_source_modifiers(op[1]);
855 }
856 bld.AND(result, op[0], op[1]);
857 break;
858
859 case nir_op_fdot2:
860 case nir_op_fdot3:
861 case nir_op_fdot4:
862 case nir_op_ball_fequal2:
863 case nir_op_ball_iequal2:
864 case nir_op_ball_fequal3:
865 case nir_op_ball_iequal3:
866 case nir_op_ball_fequal4:
867 case nir_op_ball_iequal4:
868 case nir_op_bany_fnequal2:
869 case nir_op_bany_inequal2:
870 case nir_op_bany_fnequal3:
871 case nir_op_bany_inequal3:
872 case nir_op_bany_fnequal4:
873 case nir_op_bany_inequal4:
874 unreachable("Lowered by nir_lower_alu_reductions");
875
876 case nir_op_fnoise1_1:
877 case nir_op_fnoise1_2:
878 case nir_op_fnoise1_3:
879 case nir_op_fnoise1_4:
880 case nir_op_fnoise2_1:
881 case nir_op_fnoise2_2:
882 case nir_op_fnoise2_3:
883 case nir_op_fnoise2_4:
884 case nir_op_fnoise3_1:
885 case nir_op_fnoise3_2:
886 case nir_op_fnoise3_3:
887 case nir_op_fnoise3_4:
888 case nir_op_fnoise4_1:
889 case nir_op_fnoise4_2:
890 case nir_op_fnoise4_3:
891 case nir_op_fnoise4_4:
892 unreachable("not reached: should be handled by lower_noise");
893
894 case nir_op_ldexp:
895 unreachable("not reached: should be handled by ldexp_to_arith()");
896
897 case nir_op_fsqrt:
898 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
899 inst->saturate = instr->dest.saturate;
900 break;
901
902 case nir_op_frsq:
903 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
904 inst->saturate = instr->dest.saturate;
905 break;
906
907 case nir_op_b2i:
908 case nir_op_b2f:
909 bld.MOV(result, negate(op[0]));
910 break;
911
912 case nir_op_f2b:
913 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
914 break;
915 case nir_op_i2b:
916 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
917 break;
918
919 case nir_op_ftrunc:
920 inst = bld.RNDZ(result, op[0]);
921 inst->saturate = instr->dest.saturate;
922 break;
923
924 case nir_op_fceil: {
925 op[0].negate = !op[0].negate;
926 fs_reg temp = vgrf(glsl_type::float_type);
927 bld.RNDD(temp, op[0]);
928 temp.negate = true;
929 inst = bld.MOV(result, temp);
930 inst->saturate = instr->dest.saturate;
931 break;
932 }
933 case nir_op_ffloor:
934 inst = bld.RNDD(result, op[0]);
935 inst->saturate = instr->dest.saturate;
936 break;
937 case nir_op_ffract:
938 inst = bld.FRC(result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941 case nir_op_fround_even:
942 inst = bld.RNDE(result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945
946 case nir_op_fmin:
947 case nir_op_imin:
948 case nir_op_umin:
949 if (devinfo->gen >= 6) {
950 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
951 inst->conditional_mod = BRW_CONDITIONAL_L;
952 } else {
953 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
954 inst = bld.SEL(result, op[0], op[1]);
955 inst->predicate = BRW_PREDICATE_NORMAL;
956 }
957 inst->saturate = instr->dest.saturate;
958 break;
959
960 case nir_op_fmax:
961 case nir_op_imax:
962 case nir_op_umax:
963 if (devinfo->gen >= 6) {
964 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
965 inst->conditional_mod = BRW_CONDITIONAL_GE;
966 } else {
967 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
968 inst = bld.SEL(result, op[0], op[1]);
969 inst->predicate = BRW_PREDICATE_NORMAL;
970 }
971 inst->saturate = instr->dest.saturate;
972 break;
973
974 case nir_op_pack_snorm_2x16:
975 case nir_op_pack_snorm_4x8:
976 case nir_op_pack_unorm_2x16:
977 case nir_op_pack_unorm_4x8:
978 case nir_op_unpack_snorm_2x16:
979 case nir_op_unpack_snorm_4x8:
980 case nir_op_unpack_unorm_2x16:
981 case nir_op_unpack_unorm_4x8:
982 case nir_op_unpack_half_2x16:
983 case nir_op_pack_half_2x16:
984 unreachable("not reached: should be handled by lower_packing_builtins");
985
986 case nir_op_unpack_half_2x16_split_x:
987 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
988 inst->saturate = instr->dest.saturate;
989 break;
990 case nir_op_unpack_half_2x16_split_y:
991 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
992 inst->saturate = instr->dest.saturate;
993 break;
994
995 case nir_op_fpow:
996 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
997 inst->saturate = instr->dest.saturate;
998 break;
999
1000 case nir_op_bitfield_reverse:
1001 bld.BFREV(result, op[0]);
1002 break;
1003
1004 case nir_op_bit_count:
1005 bld.CBIT(result, op[0]);
1006 break;
1007
1008 case nir_op_ufind_msb:
1009 case nir_op_ifind_msb: {
1010 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1011
1012 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1013 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1014 * subtract the result from 31 to convert the MSB count into an LSB count.
1015 */
1016 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1017
1018 inst = bld.ADD(result, result, brw_imm_d(31));
1019 inst->predicate = BRW_PREDICATE_NORMAL;
1020 inst->src[0].negate = true;
1021 break;
1022 }
1023
1024 case nir_op_find_lsb:
1025 bld.FBL(result, op[0]);
1026 break;
1027
1028 case nir_op_ubitfield_extract:
1029 case nir_op_ibitfield_extract:
1030 bld.BFE(result, op[2], op[1], op[0]);
1031 break;
1032 case nir_op_bfm:
1033 bld.BFI1(result, op[0], op[1]);
1034 break;
1035 case nir_op_bfi:
1036 bld.BFI2(result, op[0], op[1], op[2]);
1037 break;
1038
1039 case nir_op_bitfield_insert:
1040 unreachable("not reached: should be handled by "
1041 "lower_instructions::bitfield_insert_to_bfm_bfi");
1042
1043 case nir_op_ishl:
1044 bld.SHL(result, op[0], op[1]);
1045 break;
1046 case nir_op_ishr:
1047 bld.ASR(result, op[0], op[1]);
1048 break;
1049 case nir_op_ushr:
1050 bld.SHR(result, op[0], op[1]);
1051 break;
1052
1053 case nir_op_pack_half_2x16_split:
1054 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1055 break;
1056
1057 case nir_op_ffma:
1058 inst = bld.MAD(result, op[2], op[1], op[0]);
1059 inst->saturate = instr->dest.saturate;
1060 break;
1061
1062 case nir_op_flrp:
1063 inst = bld.LRP(result, op[0], op[1], op[2]);
1064 inst->saturate = instr->dest.saturate;
1065 break;
1066
1067 case nir_op_bcsel:
1068 if (optimize_frontfacing_ternary(instr, result))
1069 return;
1070
1071 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1072 inst = bld.SEL(result, op[1], op[2]);
1073 inst->predicate = BRW_PREDICATE_NORMAL;
1074 break;
1075
1076 default:
1077 unreachable("unhandled instruction");
1078 }
1079
1080 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1081 * to sign extend the low bit to 0/~0
1082 */
1083 if (devinfo->gen <= 5 &&
1084 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1085 fs_reg masked = vgrf(glsl_type::int_type);
1086 bld.AND(masked, result, brw_imm_d(1));
1087 masked.negate = true;
1088 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1089 }
1090 }
1091
1092 void
1093 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1094 nir_load_const_instr *instr)
1095 {
1096 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1097
1098 for (unsigned i = 0; i < instr->def.num_components; i++)
1099 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1100
1101 nir_ssa_values[instr->def.index] = reg;
1102 }
1103
1104 void
1105 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1106 {
1107 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1108 instr->def.num_components);
1109 }
1110
1111 fs_reg
1112 fs_visitor::get_nir_src(nir_src src)
1113 {
1114 fs_reg reg;
1115 if (src.is_ssa) {
1116 reg = nir_ssa_values[src.ssa->index];
1117 } else {
1118 /* We don't handle indirects on locals */
1119 assert(src.reg.indirect == NULL);
1120 reg = offset(nir_locals[src.reg.reg->index], bld,
1121 src.reg.base_offset * src.reg.reg->num_components);
1122 }
1123
1124 /* to avoid floating-point denorm flushing problems, set the type by
1125 * default to D - instructions that need floating point semantics will set
1126 * this to F if they need to
1127 */
1128 return retype(reg, BRW_REGISTER_TYPE_D);
1129 }
1130
1131 fs_reg
1132 fs_visitor::get_nir_dest(nir_dest dest)
1133 {
1134 if (dest.is_ssa) {
1135 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1136 dest.ssa.num_components);
1137 return nir_ssa_values[dest.ssa.index];
1138 } else {
1139 /* We don't handle indirects on locals */
1140 assert(dest.reg.indirect == NULL);
1141 return offset(nir_locals[dest.reg.reg->index], bld,
1142 dest.reg.base_offset * dest.reg.reg->num_components);
1143 }
1144 }
1145
1146 fs_reg
1147 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1148 {
1149 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1150 BRW_REGISTER_TYPE_UD);
1151
1152 for (const nir_deref *tail = &deref->deref; tail->child;
1153 tail = tail->child) {
1154 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1155 assert(tail->child->deref_type == nir_deref_type_array);
1156 const unsigned size = glsl_get_length(tail->type);
1157 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1158 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1159 image = offset(image, bld, base * element_size);
1160
1161 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1162 fs_reg tmp = vgrf(glsl_type::int_type);
1163
1164 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1165 /* IVB hangs when trying to access an invalid surface index with
1166 * the dataport. According to the spec "if the index used to
1167 * select an individual element is negative or greater than or
1168 * equal to the size of the array, the results of the operation
1169 * are undefined but may not lead to termination" -- which is one
1170 * of the possible outcomes of the hang. Clamp the index to
1171 * prevent access outside of the array bounds.
1172 */
1173 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1174 BRW_REGISTER_TYPE_UD),
1175 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1176 } else {
1177 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1178 }
1179
1180 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1181 if (image.reladdr)
1182 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1183 else
1184 image.reladdr = new(mem_ctx) fs_reg(tmp);
1185 }
1186 }
1187
1188 return image;
1189 }
1190
1191 void
1192 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1193 unsigned wr_mask)
1194 {
1195 for (unsigned i = 0; i < 4; i++) {
1196 if (!((wr_mask >> i) & 1))
1197 continue;
1198
1199 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1200 new_inst->dst = offset(new_inst->dst, bld, i);
1201 for (unsigned j = 0; j < new_inst->sources; j++)
1202 if (new_inst->src[j].file == VGRF)
1203 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1204
1205 bld.emit(new_inst);
1206 }
1207 }
1208
1209 /**
1210 * Get the matching channel register datatype for an image intrinsic of the
1211 * specified GLSL image type.
1212 */
1213 static brw_reg_type
1214 get_image_base_type(const glsl_type *type)
1215 {
1216 switch ((glsl_base_type)type->sampler_type) {
1217 case GLSL_TYPE_UINT:
1218 return BRW_REGISTER_TYPE_UD;
1219 case GLSL_TYPE_INT:
1220 return BRW_REGISTER_TYPE_D;
1221 case GLSL_TYPE_FLOAT:
1222 return BRW_REGISTER_TYPE_F;
1223 default:
1224 unreachable("Not reached.");
1225 }
1226 }
1227
1228 /**
1229 * Get the appropriate atomic op for an image atomic intrinsic.
1230 */
1231 static unsigned
1232 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1233 {
1234 switch (op) {
1235 case nir_intrinsic_image_atomic_add:
1236 return BRW_AOP_ADD;
1237 case nir_intrinsic_image_atomic_min:
1238 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1239 BRW_AOP_IMIN : BRW_AOP_UMIN);
1240 case nir_intrinsic_image_atomic_max:
1241 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1242 BRW_AOP_IMAX : BRW_AOP_UMAX);
1243 case nir_intrinsic_image_atomic_and:
1244 return BRW_AOP_AND;
1245 case nir_intrinsic_image_atomic_or:
1246 return BRW_AOP_OR;
1247 case nir_intrinsic_image_atomic_xor:
1248 return BRW_AOP_XOR;
1249 case nir_intrinsic_image_atomic_exchange:
1250 return BRW_AOP_MOV;
1251 case nir_intrinsic_image_atomic_comp_swap:
1252 return BRW_AOP_CMPWR;
1253 default:
1254 unreachable("Not reachable.");
1255 }
1256 }
1257
1258 static fs_inst *
1259 emit_pixel_interpolater_send(const fs_builder &bld,
1260 enum opcode opcode,
1261 const fs_reg &dst,
1262 const fs_reg &src,
1263 const fs_reg &desc,
1264 glsl_interp_qualifier interpolation)
1265 {
1266 fs_inst *inst;
1267 fs_reg payload;
1268 int mlen;
1269
1270 if (src.file == BAD_FILE) {
1271 /* Dummy payload */
1272 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1273 mlen = 1;
1274 } else {
1275 payload = src;
1276 mlen = 2 * bld.dispatch_width() / 8;
1277 }
1278
1279 inst = bld.emit(opcode, dst, payload, desc);
1280 inst->mlen = mlen;
1281 /* 2 floats per slot returned */
1282 inst->regs_written = 2 * bld.dispatch_width() / 8;
1283 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1284
1285 return inst;
1286 }
1287
1288 /**
1289 * Computes 1 << x, given a D/UD register containing some value x.
1290 */
1291 static fs_reg
1292 intexp2(const fs_builder &bld, const fs_reg &x)
1293 {
1294 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1295
1296 fs_reg result = bld.vgrf(x.type, 1);
1297 fs_reg one = bld.vgrf(x.type, 1);
1298
1299 bld.MOV(one, retype(brw_imm_d(1), one.type));
1300 bld.SHL(result, one, x);
1301 return result;
1302 }
1303
1304 void
1305 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1306 {
1307 assert(stage == MESA_SHADER_GEOMETRY);
1308
1309 struct brw_gs_prog_data *gs_prog_data =
1310 (struct brw_gs_prog_data *) prog_data;
1311
1312 /* We can only do EndPrimitive() functionality when the control data
1313 * consists of cut bits. Fortunately, the only time it isn't is when the
1314 * output type is points, in which case EndPrimitive() is a no-op.
1315 */
1316 if (gs_prog_data->control_data_format !=
1317 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1318 return;
1319 }
1320
1321 /* Cut bits use one bit per vertex. */
1322 assert(gs_compile->control_data_bits_per_vertex == 1);
1323
1324 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1325 vertex_count.type = BRW_REGISTER_TYPE_UD;
1326
1327 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1328 * vertex n, 0 otherwise. So all we need to do here is mark bit
1329 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1330 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1331 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1332 *
1333 * Note that if EndPrimitive() is called before emitting any vertices, this
1334 * will cause us to set bit 31 of the control_data_bits register to 1.
1335 * That's fine because:
1336 *
1337 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1338 * output, so the hardware will ignore cut bit 31.
1339 *
1340 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1341 * last vertex, so setting cut bit 31 has no effect (since the primitive
1342 * is automatically ended when the GS terminates).
1343 *
1344 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1345 * control_data_bits register to 0 when the first vertex is emitted.
1346 */
1347
1348 const fs_builder abld = bld.annotate("end primitive");
1349
1350 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1351 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1352 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1353 fs_reg mask = intexp2(abld, prev_count);
1354 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1355 * attention to the lower 5 bits of its second source argument, so on this
1356 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1357 * ((vertex_count - 1) % 32).
1358 */
1359 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1360 }
1361
1362 void
1363 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1364 {
1365 assert(stage == MESA_SHADER_GEOMETRY);
1366 assert(gs_compile->control_data_bits_per_vertex != 0);
1367
1368 struct brw_gs_prog_data *gs_prog_data =
1369 (struct brw_gs_prog_data *) prog_data;
1370
1371 const fs_builder abld = bld.annotate("emit control data bits");
1372 const fs_builder fwa_bld = bld.exec_all();
1373
1374 /* We use a single UD register to accumulate control data bits (32 bits
1375 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1376 * at a time.
1377 *
1378 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1379 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1380 * use the Channel Mask phase to enable/disable which DWord within that
1381 * group to write. (Remember, different SIMD8 channels may have emitted
1382 * different numbers of vertices, so we may need per-slot offsets.)
1383 *
1384 * Channel masking presents an annoying problem: we may have to replicate
1385 * the data up to 4 times:
1386 *
1387 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1388 *
1389 * To avoid penalizing shaders that emit a small number of vertices, we
1390 * can avoid these sometimes: if the size of the control data header is
1391 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1392 * land in the same 128-bit group, so we can skip per-slot offsets.
1393 *
1394 * Similarly, if the control data header is <= 32 bits, there is only one
1395 * DWord, so we can skip channel masks.
1396 */
1397 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1398
1399 fs_reg channel_mask, per_slot_offset;
1400
1401 if (gs_compile->control_data_header_size_bits > 32) {
1402 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1403 channel_mask = vgrf(glsl_type::uint_type);
1404 }
1405
1406 if (gs_compile->control_data_header_size_bits > 128) {
1407 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1408 per_slot_offset = vgrf(glsl_type::uint_type);
1409 }
1410
1411 /* Figure out which DWord we're trying to write to using the formula:
1412 *
1413 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1414 *
1415 * Since bits_per_vertex is a power of two, and is known at compile
1416 * time, this can be optimized to:
1417 *
1418 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1419 */
1420 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1421 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1422 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1423 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1424 unsigned log2_bits_per_vertex =
1425 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1426 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1427
1428 if (per_slot_offset.file != BAD_FILE) {
1429 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1430 * the appropriate OWord within the control data header.
1431 */
1432 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1433 }
1434
1435 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1436 * write to the appropriate DWORD within the OWORD.
1437 */
1438 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1439 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1440 channel_mask = intexp2(fwa_bld, channel);
1441 /* Then the channel masks need to be in bits 23:16. */
1442 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1443 }
1444
1445 /* Store the control data bits in the message payload and send it. */
1446 int mlen = 2;
1447 if (channel_mask.file != BAD_FILE)
1448 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1449 if (per_slot_offset.file != BAD_FILE)
1450 mlen++;
1451
1452 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1453 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1454 int i = 0;
1455 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1456 if (per_slot_offset.file != BAD_FILE)
1457 sources[i++] = per_slot_offset;
1458 if (channel_mask.file != BAD_FILE)
1459 sources[i++] = channel_mask;
1460 while (i < mlen) {
1461 sources[i++] = this->control_data_bits;
1462 }
1463
1464 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1465 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1466 inst->mlen = mlen;
1467 /* We need to increment Global Offset by 256-bits to make room for
1468 * Broadwell's extra "Vertex Count" payload at the beginning of the
1469 * URB entry. Since this is an OWord message, Global Offset is counted
1470 * in 128-bit units, so we must set it to 2.
1471 */
1472 if (gs_prog_data->static_vertex_count == -1)
1473 inst->offset = 2;
1474 }
1475
1476 void
1477 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1478 unsigned stream_id)
1479 {
1480 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1481
1482 /* Note: we are calling this *before* increasing vertex_count, so
1483 * this->vertex_count == vertex_count - 1 in the formula above.
1484 */
1485
1486 /* Stream mode uses 2 bits per vertex */
1487 assert(gs_compile->control_data_bits_per_vertex == 2);
1488
1489 /* Must be a valid stream */
1490 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1491
1492 /* Control data bits are initialized to 0 so we don't have to set any
1493 * bits when sending vertices to stream 0.
1494 */
1495 if (stream_id == 0)
1496 return;
1497
1498 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1499
1500 /* reg::sid = stream_id */
1501 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1502 abld.MOV(sid, brw_imm_ud(stream_id));
1503
1504 /* reg:shift_count = 2 * (vertex_count - 1) */
1505 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1506 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1507
1508 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1509 * attention to the lower 5 bits of its second source argument, so on this
1510 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1511 * stream_id << ((2 * (vertex_count - 1)) % 32).
1512 */
1513 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1514 abld.SHL(mask, sid, shift_count);
1515 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1516 }
1517
1518 void
1519 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1520 unsigned stream_id)
1521 {
1522 assert(stage == MESA_SHADER_GEOMETRY);
1523
1524 struct brw_gs_prog_data *gs_prog_data =
1525 (struct brw_gs_prog_data *) prog_data;
1526
1527 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1528 vertex_count.type = BRW_REGISTER_TYPE_UD;
1529
1530 /* Haswell and later hardware ignores the "Render Stream Select" bits
1531 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1532 * and instead sends all primitives down the pipeline for rasterization.
1533 * If the SOL stage is enabled, "Render Stream Select" is honored and
1534 * primitives bound to non-zero streams are discarded after stream output.
1535 *
1536 * Since the only purpose of primives sent to non-zero streams is to
1537 * be recorded by transform feedback, we can simply discard all geometry
1538 * bound to these streams when transform feedback is disabled.
1539 */
1540 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1541 return;
1542
1543 /* If we're outputting 32 control data bits or less, then we can wait
1544 * until the shader is over to output them all. Otherwise we need to
1545 * output them as we go. Now is the time to do it, since we're about to
1546 * output the vertex_count'th vertex, so it's guaranteed that the
1547 * control data bits associated with the (vertex_count - 1)th vertex are
1548 * correct.
1549 */
1550 if (gs_compile->control_data_header_size_bits > 32) {
1551 const fs_builder abld =
1552 bld.annotate("emit vertex: emit control data bits");
1553
1554 /* Only emit control data bits if we've finished accumulating a batch
1555 * of 32 bits. This is the case when:
1556 *
1557 * (vertex_count * bits_per_vertex) % 32 == 0
1558 *
1559 * (in other words, when the last 5 bits of vertex_count *
1560 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1561 * integer n (which is always the case, since bits_per_vertex is
1562 * always 1 or 2), this is equivalent to requiring that the last 5-n
1563 * bits of vertex_count are 0:
1564 *
1565 * vertex_count & (2^(5-n) - 1) == 0
1566 *
1567 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1568 * equivalent to:
1569 *
1570 * vertex_count & (32 / bits_per_vertex - 1) == 0
1571 *
1572 * TODO: If vertex_count is an immediate, we could do some of this math
1573 * at compile time...
1574 */
1575 fs_inst *inst =
1576 abld.AND(bld.null_reg_d(), vertex_count,
1577 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1578 inst->conditional_mod = BRW_CONDITIONAL_Z;
1579
1580 abld.IF(BRW_PREDICATE_NORMAL);
1581 /* If vertex_count is 0, then no control data bits have been
1582 * accumulated yet, so we can skip emitting them.
1583 */
1584 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1585 BRW_CONDITIONAL_NEQ);
1586 abld.IF(BRW_PREDICATE_NORMAL);
1587 emit_gs_control_data_bits(vertex_count);
1588 abld.emit(BRW_OPCODE_ENDIF);
1589
1590 /* Reset control_data_bits to 0 so we can start accumulating a new
1591 * batch.
1592 *
1593 * Note: in the case where vertex_count == 0, this neutralizes the
1594 * effect of any call to EndPrimitive() that the shader may have
1595 * made before outputting its first vertex.
1596 */
1597 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1598 inst->force_writemask_all = true;
1599 abld.emit(BRW_OPCODE_ENDIF);
1600 }
1601
1602 emit_urb_writes(vertex_count);
1603
1604 /* In stream mode we have to set control data bits for all vertices
1605 * unless we have disabled control data bits completely (which we do
1606 * do for GL_POINTS outputs that don't use streams).
1607 */
1608 if (gs_compile->control_data_header_size_bits > 0 &&
1609 gs_prog_data->control_data_format ==
1610 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1611 set_gs_stream_control_data_bits(vertex_count, stream_id);
1612 }
1613 }
1614
1615 void
1616 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1617 const nir_src &vertex_src,
1618 unsigned base_offset,
1619 const nir_src &offset_src,
1620 unsigned num_components)
1621 {
1622 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1623
1624 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1625 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1626 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1627
1628 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1629 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1630 * gl_PointSize is available as a GS input, however, so it must be that.
1631 */
1632 const bool is_point_size = (base_offset == 0);
1633
1634 if (offset_const != NULL && vertex_const != NULL &&
1635 4 * (base_offset + offset_const->u[0]) < push_reg_count) {
1636 int imm_offset = (base_offset + offset_const->u[0]) * 4 +
1637 vertex_const->u[0] * push_reg_count;
1638 /* This input was pushed into registers. */
1639 if (is_point_size) {
1640 /* gl_PointSize comes in .w */
1641 assert(imm_offset == 0);
1642 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1643 } else {
1644 for (unsigned i = 0; i < num_components; i++) {
1645 bld.MOV(offset(dst, bld, i),
1646 fs_reg(ATTR, imm_offset + i, dst.type));
1647 }
1648 }
1649 } else {
1650 /* Resort to the pull model. Ensure the VUE handles are provided. */
1651 gs_prog_data->base.include_vue_handles = true;
1652
1653 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1654 fs_reg icp_handle;
1655
1656 if (vertex_const) {
1657 /* The vertex index is constant; just select the proper URB handle. */
1658 icp_handle =
1659 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1660 BRW_REGISTER_TYPE_UD);
1661 } else {
1662 /* The vertex index is non-constant. We need to use indirect
1663 * addressing to fetch the proper URB handle.
1664 *
1665 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1666 * indicating that channel <n> should read the handle from
1667 * DWord <n>. We convert that to bytes by multiplying by 4.
1668 *
1669 * Next, we convert the vertex index to bytes by multiplying
1670 * by 32 (shifting by 5), and add the two together. This is
1671 * the final indirect byte offset.
1672 */
1673 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1674 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1675 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1676 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1677 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1678
1679 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1680 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1681 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1682 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1683 /* Convert vertex_index to bytes (multiply by 32) */
1684 bld.SHL(vertex_offset_bytes,
1685 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1686 brw_imm_ud(5u));
1687 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1688
1689 /* Use first_icp_handle as the base offset. There is one register
1690 * of URB handles per vertex, so inform the register allocator that
1691 * we might read up to nir->info.gs.vertices_in registers.
1692 */
1693 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1694 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1695 fs_reg(icp_offset_bytes),
1696 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1697 }
1698
1699 fs_inst *inst;
1700 if (offset_const) {
1701 /* Constant indexing - use global offset. */
1702 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1703 inst->offset = base_offset + offset_const->u[0];
1704 inst->base_mrf = -1;
1705 inst->mlen = 1;
1706 inst->regs_written = num_components;
1707 } else {
1708 /* Indirect indexing - use per-slot offsets as well. */
1709 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1710 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1711 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1712
1713 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1714 inst->offset = base_offset;
1715 inst->base_mrf = -1;
1716 inst->mlen = 2;
1717 inst->regs_written = num_components;
1718 }
1719
1720 if (is_point_size) {
1721 /* Read the whole VUE header (because of alignment) and read .w. */
1722 fs_reg tmp = bld.vgrf(dst.type, 4);
1723 inst->dst = tmp;
1724 inst->regs_written = 4;
1725 bld.MOV(dst, offset(tmp, bld, 3));
1726 }
1727 }
1728 }
1729
1730 fs_reg
1731 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1732 {
1733 nir_src *offset_src = nir_get_io_offset_src(instr);
1734 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1735
1736 if (const_value) {
1737 /* The only constant offset we should find is 0. brw_nir.c's
1738 * add_const_offset_to_base() will fold other constant offsets
1739 * into instr->const_index[0].
1740 */
1741 assert(const_value->u[0] == 0);
1742 return fs_reg();
1743 }
1744
1745 return get_nir_src(*offset_src);
1746 }
1747
1748 void
1749 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1750 nir_intrinsic_instr *instr)
1751 {
1752 assert(stage == MESA_SHADER_VERTEX);
1753
1754 fs_reg dest;
1755 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1756 dest = get_nir_dest(instr->dest);
1757
1758 switch (instr->intrinsic) {
1759 case nir_intrinsic_load_vertex_id:
1760 unreachable("should be lowered by lower_vertex_id()");
1761
1762 case nir_intrinsic_load_vertex_id_zero_base:
1763 case nir_intrinsic_load_base_vertex:
1764 case nir_intrinsic_load_instance_id:
1765 case nir_intrinsic_load_base_instance:
1766 case nir_intrinsic_load_draw_id: {
1767 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1768 fs_reg val = nir_system_values[sv];
1769 assert(val.file != BAD_FILE);
1770 dest.type = val.type;
1771 bld.MOV(dest, val);
1772 break;
1773 }
1774
1775 default:
1776 nir_emit_intrinsic(bld, instr);
1777 break;
1778 }
1779 }
1780
1781 void
1782 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1783 nir_intrinsic_instr *instr)
1784 {
1785 assert(stage == MESA_SHADER_TESS_EVAL);
1786 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1787
1788 fs_reg dest;
1789 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1790 dest = get_nir_dest(instr->dest);
1791
1792 switch (instr->intrinsic) {
1793 case nir_intrinsic_load_primitive_id:
1794 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1795 break;
1796 case nir_intrinsic_load_tess_coord:
1797 /* gl_TessCoord is part of the payload in g1-3 */
1798 for (unsigned i = 0; i < 3; i++) {
1799 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1800 }
1801 break;
1802
1803 case nir_intrinsic_load_tess_level_outer:
1804 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1805 * appears as a push-model input. So, we can simply use the ATTR file
1806 * rather than issuing URB read messages. The data is stored in the
1807 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1808 * .y, and so on.
1809 */
1810 switch (tes_prog_data->domain) {
1811 case BRW_TESS_DOMAIN_QUAD:
1812 for (unsigned i = 0; i < 4; i++)
1813 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1814 break;
1815 case BRW_TESS_DOMAIN_TRI:
1816 for (unsigned i = 0; i < 3; i++)
1817 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1818 break;
1819 case BRW_TESS_DOMAIN_ISOLINE:
1820 for (unsigned i = 0; i < 2; i++)
1821 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1822 break;
1823 }
1824 break;
1825
1826 case nir_intrinsic_load_tess_level_inner:
1827 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1828 * appears as a push-model input. So, we can simply use the ATTR file
1829 * rather than issuing URB read messages.
1830 */
1831 switch (tes_prog_data->domain) {
1832 case BRW_TESS_DOMAIN_QUAD:
1833 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1834 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1835 break;
1836 case BRW_TESS_DOMAIN_TRI:
1837 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1838 break;
1839 case BRW_TESS_DOMAIN_ISOLINE:
1840 /* ignore - value is undefined */
1841 break;
1842 }
1843 break;
1844
1845 case nir_intrinsic_load_input:
1846 case nir_intrinsic_load_per_vertex_input: {
1847 fs_reg indirect_offset = get_indirect_offset(instr);
1848 unsigned imm_offset = instr->const_index[0];
1849
1850 fs_inst *inst;
1851 if (indirect_offset.file == BAD_FILE) {
1852 /* Replicate the patch handle to all enabled channels */
1853 const fs_reg srcs[] = {
1854 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1855 };
1856 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1857 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1858
1859 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1860 inst->mlen = 1;
1861 } else {
1862 /* Indirect indexing - use per-slot offsets as well. */
1863 const fs_reg srcs[] = {
1864 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1865 indirect_offset
1866 };
1867 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1868 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1869
1870 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1871 inst->mlen = 2;
1872 }
1873 inst->offset = imm_offset;
1874 inst->base_mrf = -1;
1875 inst->regs_written = instr->num_components;
1876 break;
1877 }
1878 default:
1879 nir_emit_intrinsic(bld, instr);
1880 break;
1881 }
1882 }
1883
1884 void
1885 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1886 nir_intrinsic_instr *instr)
1887 {
1888 assert(stage == MESA_SHADER_GEOMETRY);
1889 fs_reg indirect_offset;
1890
1891 fs_reg dest;
1892 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1893 dest = get_nir_dest(instr->dest);
1894
1895 switch (instr->intrinsic) {
1896 case nir_intrinsic_load_primitive_id:
1897 assert(stage == MESA_SHADER_GEOMETRY);
1898 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
1899 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
1900 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
1901 break;
1902
1903 case nir_intrinsic_load_input:
1904 unreachable("load_input intrinsics are invalid for the GS stage");
1905
1906 case nir_intrinsic_load_per_vertex_input:
1907 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
1908 instr->src[1], instr->num_components);
1909 break;
1910
1911 case nir_intrinsic_emit_vertex_with_counter:
1912 emit_gs_vertex(instr->src[0], instr->const_index[0]);
1913 break;
1914
1915 case nir_intrinsic_end_primitive_with_counter:
1916 emit_gs_end_primitive(instr->src[0]);
1917 break;
1918
1919 case nir_intrinsic_set_vertex_count:
1920 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
1921 break;
1922
1923 case nir_intrinsic_load_invocation_id: {
1924 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
1925 assert(val.file != BAD_FILE);
1926 dest.type = val.type;
1927 bld.MOV(dest, val);
1928 break;
1929 }
1930
1931 default:
1932 nir_emit_intrinsic(bld, instr);
1933 break;
1934 }
1935 }
1936
1937 void
1938 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
1939 nir_intrinsic_instr *instr)
1940 {
1941 assert(stage == MESA_SHADER_FRAGMENT);
1942 struct brw_wm_prog_data *wm_prog_data =
1943 (struct brw_wm_prog_data *) prog_data;
1944
1945 fs_reg dest;
1946 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1947 dest = get_nir_dest(instr->dest);
1948
1949 switch (instr->intrinsic) {
1950 case nir_intrinsic_load_front_face:
1951 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1952 *emit_frontfacing_interpolation());
1953 break;
1954
1955 case nir_intrinsic_load_sample_pos: {
1956 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1957 assert(sample_pos.file != BAD_FILE);
1958 dest.type = sample_pos.type;
1959 bld.MOV(dest, sample_pos);
1960 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1961 break;
1962 }
1963
1964 case nir_intrinsic_load_helper_invocation:
1965 case nir_intrinsic_load_sample_mask_in:
1966 case nir_intrinsic_load_sample_id: {
1967 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1968 fs_reg val = nir_system_values[sv];
1969 assert(val.file != BAD_FILE);
1970 dest.type = val.type;
1971 bld.MOV(dest, val);
1972 break;
1973 }
1974
1975 case nir_intrinsic_discard:
1976 case nir_intrinsic_discard_if: {
1977 /* We track our discarded pixels in f0.1. By predicating on it, we can
1978 * update just the flag bits that aren't yet discarded. If there's no
1979 * condition, we emit a CMP of g0 != g0, so all currently executing
1980 * channels will get turned off.
1981 */
1982 fs_inst *cmp;
1983 if (instr->intrinsic == nir_intrinsic_discard_if) {
1984 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
1985 brw_imm_d(0), BRW_CONDITIONAL_Z);
1986 } else {
1987 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
1988 BRW_REGISTER_TYPE_UW));
1989 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
1990 }
1991 cmp->predicate = BRW_PREDICATE_NORMAL;
1992 cmp->flag_subreg = 1;
1993
1994 if (devinfo->gen >= 6) {
1995 emit_discard_jump();
1996 }
1997 break;
1998 }
1999
2000 case nir_intrinsic_interp_var_at_centroid:
2001 case nir_intrinsic_interp_var_at_sample:
2002 case nir_intrinsic_interp_var_at_offset: {
2003 /* Handle ARB_gpu_shader5 interpolation intrinsics
2004 *
2005 * It's worth a quick word of explanation as to why we handle the full
2006 * variable-based interpolation intrinsic rather than a lowered version
2007 * with like we do for other inputs. We have to do that because the way
2008 * we set up inputs doesn't allow us to use the already setup inputs for
2009 * interpolation. At the beginning of the shader, we go through all of
2010 * the input variables and do the initial interpolation and put it in
2011 * the nir_inputs array based on its location as determined in
2012 * nir_lower_io. If the input isn't used, dead code cleans up and
2013 * everything works fine. However, when we get to the ARB_gpu_shader5
2014 * interpolation intrinsics, we need to reinterpolate the input
2015 * differently. If we used an intrinsic that just had an index it would
2016 * only give us the offset into the nir_inputs array. However, this is
2017 * useless because that value is post-interpolation and we need
2018 * pre-interpolation. In order to get the actual location of the bits
2019 * we get from the vertex fetching hardware, we need the variable.
2020 */
2021 wm_prog_data->pulls_bary = true;
2022
2023 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2024 const glsl_interp_qualifier interpolation =
2025 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2026
2027 switch (instr->intrinsic) {
2028 case nir_intrinsic_interp_var_at_centroid:
2029 emit_pixel_interpolater_send(bld,
2030 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2031 dst_xy,
2032 fs_reg(), /* src */
2033 brw_imm_ud(0u),
2034 interpolation);
2035 break;
2036
2037 case nir_intrinsic_interp_var_at_sample: {
2038 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2039
2040 if (const_sample) {
2041 unsigned msg_data = const_sample->i[0] << 4;
2042
2043 emit_pixel_interpolater_send(bld,
2044 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2045 dst_xy,
2046 fs_reg(), /* src */
2047 brw_imm_ud(msg_data),
2048 interpolation);
2049 } else {
2050 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2051 BRW_REGISTER_TYPE_UD);
2052
2053 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2054 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2055 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2056 bld.exec_all().group(1, 0)
2057 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2058 emit_pixel_interpolater_send(bld,
2059 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2060 dst_xy,
2061 fs_reg(), /* src */
2062 msg_data,
2063 interpolation);
2064 } else {
2065 /* Make a loop that sends a message to the pixel interpolater
2066 * for the sample number in each live channel. If there are
2067 * multiple channels with the same sample number then these
2068 * will be handled simultaneously with a single interation of
2069 * the loop.
2070 */
2071 bld.emit(BRW_OPCODE_DO);
2072
2073 /* Get the next live sample number into sample_id_reg */
2074 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2075
2076 /* Set the flag register so that we can perform the send
2077 * message on all channels that have the same sample number
2078 */
2079 bld.CMP(bld.null_reg_ud(),
2080 sample_src, sample_id,
2081 BRW_CONDITIONAL_EQ);
2082 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2083 bld.exec_all().group(1, 0)
2084 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2085 fs_inst *inst =
2086 emit_pixel_interpolater_send(bld,
2087 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2088 dst_xy,
2089 fs_reg(), /* src */
2090 msg_data,
2091 interpolation);
2092 set_predicate(BRW_PREDICATE_NORMAL, inst);
2093
2094 /* Continue the loop if there are any live channels left */
2095 set_predicate_inv(BRW_PREDICATE_NORMAL,
2096 true, /* inverse */
2097 bld.emit(BRW_OPCODE_WHILE));
2098 }
2099 }
2100
2101 break;
2102 }
2103
2104 case nir_intrinsic_interp_var_at_offset: {
2105 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2106
2107 if (const_offset) {
2108 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
2109 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
2110
2111 emit_pixel_interpolater_send(bld,
2112 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2113 dst_xy,
2114 fs_reg(), /* src */
2115 brw_imm_ud(off_x | (off_y << 4)),
2116 interpolation);
2117 } else {
2118 fs_reg src = vgrf(glsl_type::ivec2_type);
2119 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2120 BRW_REGISTER_TYPE_F);
2121 for (int i = 0; i < 2; i++) {
2122 fs_reg temp = vgrf(glsl_type::float_type);
2123 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2124 fs_reg itemp = vgrf(glsl_type::int_type);
2125 bld.MOV(itemp, temp); /* float to int */
2126
2127 /* Clamp the upper end of the range to +7/16.
2128 * ARB_gpu_shader5 requires that we support a maximum offset
2129 * of +0.5, which isn't representable in a S0.4 value -- if
2130 * we didn't clamp it, we'd end up with -8/16, which is the
2131 * opposite of what the shader author wanted.
2132 *
2133 * This is legal due to ARB_gpu_shader5's quantization
2134 * rules:
2135 *
2136 * "Not all values of <offset> may be supported; x and y
2137 * offsets may be rounded to fixed-point values with the
2138 * number of fraction bits given by the
2139 * implementation-dependent constant
2140 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2141 */
2142 set_condmod(BRW_CONDITIONAL_L,
2143 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2144 }
2145
2146 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2147 emit_pixel_interpolater_send(bld,
2148 opcode,
2149 dst_xy,
2150 src,
2151 brw_imm_ud(0u),
2152 interpolation);
2153 }
2154 break;
2155 }
2156
2157 default:
2158 unreachable("Invalid intrinsic");
2159 }
2160
2161 for (unsigned j = 0; j < instr->num_components; j++) {
2162 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2163 src.type = dest.type;
2164
2165 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2166 dest = offset(dest, bld, 1);
2167 }
2168 break;
2169 }
2170 default:
2171 nir_emit_intrinsic(bld, instr);
2172 break;
2173 }
2174 }
2175
2176 void
2177 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2178 nir_intrinsic_instr *instr)
2179 {
2180 assert(stage == MESA_SHADER_COMPUTE);
2181 struct brw_cs_prog_data *cs_prog_data =
2182 (struct brw_cs_prog_data *) prog_data;
2183
2184 fs_reg dest;
2185 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2186 dest = get_nir_dest(instr->dest);
2187
2188 switch (instr->intrinsic) {
2189 case nir_intrinsic_barrier:
2190 emit_barrier();
2191 cs_prog_data->uses_barrier = true;
2192 break;
2193
2194 case nir_intrinsic_load_local_invocation_id:
2195 case nir_intrinsic_load_work_group_id: {
2196 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2197 fs_reg val = nir_system_values[sv];
2198 assert(val.file != BAD_FILE);
2199 dest.type = val.type;
2200 for (unsigned i = 0; i < 3; i++)
2201 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2202 break;
2203 }
2204
2205 case nir_intrinsic_load_num_work_groups: {
2206 const unsigned surface =
2207 cs_prog_data->binding_table.work_groups_start;
2208
2209 cs_prog_data->uses_num_work_groups = true;
2210
2211 fs_reg surf_index = brw_imm_ud(surface);
2212 brw_mark_surface_used(prog_data, surface);
2213
2214 /* Read the 3 GLuint components of gl_NumWorkGroups */
2215 for (unsigned i = 0; i < 3; i++) {
2216 fs_reg read_result =
2217 emit_untyped_read(bld, surf_index,
2218 brw_imm_ud(i << 2),
2219 1 /* dims */, 1 /* size */,
2220 BRW_PREDICATE_NONE);
2221 read_result.type = dest.type;
2222 bld.MOV(dest, read_result);
2223 dest = offset(dest, bld, 1);
2224 }
2225 break;
2226 }
2227
2228 case nir_intrinsic_shared_atomic_add:
2229 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2230 break;
2231 case nir_intrinsic_shared_atomic_imin:
2232 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2233 break;
2234 case nir_intrinsic_shared_atomic_umin:
2235 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2236 break;
2237 case nir_intrinsic_shared_atomic_imax:
2238 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2239 break;
2240 case nir_intrinsic_shared_atomic_umax:
2241 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2242 break;
2243 case nir_intrinsic_shared_atomic_and:
2244 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2245 break;
2246 case nir_intrinsic_shared_atomic_or:
2247 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2248 break;
2249 case nir_intrinsic_shared_atomic_xor:
2250 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2251 break;
2252 case nir_intrinsic_shared_atomic_exchange:
2253 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2254 break;
2255 case nir_intrinsic_shared_atomic_comp_swap:
2256 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2257 break;
2258
2259 default:
2260 nir_emit_intrinsic(bld, instr);
2261 break;
2262 }
2263 }
2264
2265 void
2266 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2267 {
2268 fs_reg dest;
2269 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2270 dest = get_nir_dest(instr->dest);
2271
2272 switch (instr->intrinsic) {
2273 case nir_intrinsic_atomic_counter_inc:
2274 case nir_intrinsic_atomic_counter_dec:
2275 case nir_intrinsic_atomic_counter_read: {
2276 using namespace surface_access;
2277
2278 /* Get the arguments of the atomic intrinsic. */
2279 const fs_reg offset = get_nir_src(instr->src[0]);
2280 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2281 instr->const_index[0]);
2282 fs_reg tmp;
2283
2284 /* Emit a surface read or atomic op. */
2285 switch (instr->intrinsic) {
2286 case nir_intrinsic_atomic_counter_read:
2287 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2288 break;
2289
2290 case nir_intrinsic_atomic_counter_inc:
2291 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2292 fs_reg(), 1, 1, BRW_AOP_INC);
2293 break;
2294
2295 case nir_intrinsic_atomic_counter_dec:
2296 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2297 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2298 break;
2299
2300 default:
2301 unreachable("Unreachable");
2302 }
2303
2304 /* Assign the result. */
2305 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2306
2307 /* Mark the surface as used. */
2308 brw_mark_surface_used(stage_prog_data, surface);
2309 break;
2310 }
2311
2312 case nir_intrinsic_image_load:
2313 case nir_intrinsic_image_store:
2314 case nir_intrinsic_image_atomic_add:
2315 case nir_intrinsic_image_atomic_min:
2316 case nir_intrinsic_image_atomic_max:
2317 case nir_intrinsic_image_atomic_and:
2318 case nir_intrinsic_image_atomic_or:
2319 case nir_intrinsic_image_atomic_xor:
2320 case nir_intrinsic_image_atomic_exchange:
2321 case nir_intrinsic_image_atomic_comp_swap: {
2322 using namespace image_access;
2323
2324 /* Get the referenced image variable and type. */
2325 const nir_variable *var = instr->variables[0]->var;
2326 const glsl_type *type = var->type->without_array();
2327 const brw_reg_type base_type = get_image_base_type(type);
2328
2329 /* Get some metadata from the image intrinsic. */
2330 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2331 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2332 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2333 const mesa_format format =
2334 (var->data.image.write_only ? MESA_FORMAT_NONE :
2335 _mesa_get_shader_image_format(var->data.image.format));
2336
2337 /* Get the arguments of the image intrinsic. */
2338 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2339 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2340 BRW_REGISTER_TYPE_UD);
2341 const fs_reg src0 = (info->num_srcs >= 3 ?
2342 retype(get_nir_src(instr->src[2]), base_type) :
2343 fs_reg());
2344 const fs_reg src1 = (info->num_srcs >= 4 ?
2345 retype(get_nir_src(instr->src[3]), base_type) :
2346 fs_reg());
2347 fs_reg tmp;
2348
2349 /* Emit an image load, store or atomic op. */
2350 if (instr->intrinsic == nir_intrinsic_image_load)
2351 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2352
2353 else if (instr->intrinsic == nir_intrinsic_image_store)
2354 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2355
2356 else
2357 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2358 surf_dims, arr_dims, info->dest_components,
2359 get_image_atomic_op(instr->intrinsic, type));
2360
2361 /* Assign the result. */
2362 for (unsigned c = 0; c < info->dest_components; ++c)
2363 bld.MOV(offset(retype(dest, base_type), bld, c),
2364 offset(tmp, bld, c));
2365 break;
2366 }
2367
2368 case nir_intrinsic_memory_barrier_atomic_counter:
2369 case nir_intrinsic_memory_barrier_buffer:
2370 case nir_intrinsic_memory_barrier_image:
2371 case nir_intrinsic_memory_barrier: {
2372 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2373 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2374 ->regs_written = 2;
2375 break;
2376 }
2377
2378 case nir_intrinsic_group_memory_barrier:
2379 case nir_intrinsic_memory_barrier_shared:
2380 /* We treat these workgroup-level barriers as no-ops. This should be
2381 * safe at present and as long as:
2382 *
2383 * - Memory access instructions are not subsequently reordered by the
2384 * compiler back-end.
2385 *
2386 * - All threads from a given compute shader workgroup fit within a
2387 * single subslice and therefore talk to the same HDC shared unit
2388 * what supposedly guarantees ordering and coherency between threads
2389 * from the same workgroup. This may change in the future when we
2390 * start splitting workgroups across multiple subslices.
2391 *
2392 * - The context is not in fault-and-stream mode, which could cause
2393 * memory transactions (including to SLM) prior to the barrier to be
2394 * replayed after the barrier if a pagefault occurs. This shouldn't
2395 * be a problem up to and including SKL because fault-and-stream is
2396 * not usable due to hardware issues, but that's likely to change in
2397 * the future.
2398 */
2399 break;
2400
2401 case nir_intrinsic_shader_clock: {
2402 /* We cannot do anything if there is an event, so ignore it for now */
2403 fs_reg shader_clock = get_timestamp(bld);
2404 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2405
2406 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2407 break;
2408 }
2409
2410 case nir_intrinsic_image_size: {
2411 /* Get the referenced image variable and type. */
2412 const nir_variable *var = instr->variables[0]->var;
2413 const glsl_type *type = var->type->without_array();
2414
2415 /* Get the size of the image. */
2416 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2417 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2418
2419 /* For 1DArray image types, the array index is stored in the Z component.
2420 * Fix this by swizzling the Z component to the Y component.
2421 */
2422 const bool is_1d_array_image =
2423 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2424 type->sampler_array;
2425
2426 /* For CubeArray images, we should count the number of cubes instead
2427 * of the number of faces. Fix it by dividing the (Z component) by 6.
2428 */
2429 const bool is_cube_array_image =
2430 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2431 type->sampler_array;
2432
2433 /* Copy all the components. */
2434 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2435 for (unsigned c = 0; c < info->dest_components; ++c) {
2436 if ((int)c >= type->coordinate_components()) {
2437 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2438 brw_imm_d(1));
2439 } else if (c == 1 && is_1d_array_image) {
2440 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2441 offset(size, bld, 2));
2442 } else if (c == 2 && is_cube_array_image) {
2443 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2444 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2445 offset(size, bld, c), brw_imm_d(6));
2446 } else {
2447 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2448 offset(size, bld, c));
2449 }
2450 }
2451
2452 break;
2453 }
2454
2455 case nir_intrinsic_image_samples:
2456 /* The driver does not support multi-sampled images. */
2457 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2458 break;
2459
2460 case nir_intrinsic_load_uniform: {
2461 /* Offsets are in bytes but they should always be multiples of 4 */
2462 assert(instr->const_index[0] % 4 == 0);
2463
2464 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2465
2466 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2467 if (const_offset) {
2468 /* Offsets are in bytes but they should always be multiples of 4 */
2469 assert(const_offset->u[0] % 4 == 0);
2470 src.reg_offset = const_offset->u[0] / 4;
2471 } else {
2472 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2473 }
2474
2475 for (unsigned j = 0; j < instr->num_components; j++) {
2476 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2477 }
2478 break;
2479 }
2480
2481 case nir_intrinsic_load_ubo: {
2482 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2483 fs_reg surf_index;
2484
2485 if (const_index) {
2486 const unsigned index = stage_prog_data->binding_table.ubo_start +
2487 const_index->u[0];
2488 surf_index = brw_imm_ud(index);
2489 brw_mark_surface_used(prog_data, index);
2490 } else {
2491 /* The block index is not a constant. Evaluate the index expression
2492 * per-channel and add the base UBO index; we have to select a value
2493 * from any live channel.
2494 */
2495 surf_index = vgrf(glsl_type::uint_type);
2496 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2497 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2498 surf_index = bld.emit_uniformize(surf_index);
2499
2500 /* Assume this may touch any UBO. It would be nice to provide
2501 * a tighter bound, but the array information is already lowered away.
2502 */
2503 brw_mark_surface_used(prog_data,
2504 stage_prog_data->binding_table.ubo_start +
2505 nir->info.num_ubos - 1);
2506 }
2507
2508 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2509 if (const_offset == NULL) {
2510 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2511 BRW_REGISTER_TYPE_D);
2512
2513 for (int i = 0; i < instr->num_components; i++)
2514 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2515 base_offset, i * 4);
2516 } else {
2517 fs_reg packed_consts = vgrf(glsl_type::float_type);
2518 packed_consts.type = dest.type;
2519
2520 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u[0] & ~15);
2521 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2522 surf_index, const_offset_reg);
2523
2524 for (unsigned i = 0; i < instr->num_components; i++) {
2525 packed_consts.set_smear(const_offset->u[0] % 16 / 4 + i);
2526
2527 /* The std140 packing rules don't allow vectors to cross 16-byte
2528 * boundaries, and a reg is 32 bytes.
2529 */
2530 assert(packed_consts.subreg_offset < 32);
2531
2532 bld.MOV(dest, packed_consts);
2533 dest = offset(dest, bld, 1);
2534 }
2535 }
2536 break;
2537 }
2538
2539 case nir_intrinsic_load_ssbo: {
2540 assert(devinfo->gen >= 7);
2541
2542 nir_const_value *const_uniform_block =
2543 nir_src_as_const_value(instr->src[0]);
2544
2545 fs_reg surf_index;
2546 if (const_uniform_block) {
2547 unsigned index = stage_prog_data->binding_table.ssbo_start +
2548 const_uniform_block->u[0];
2549 surf_index = brw_imm_ud(index);
2550 brw_mark_surface_used(prog_data, index);
2551 } else {
2552 surf_index = vgrf(glsl_type::uint_type);
2553 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2554 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2555
2556 /* Assume this may touch any UBO. It would be nice to provide
2557 * a tighter bound, but the array information is already lowered away.
2558 */
2559 brw_mark_surface_used(prog_data,
2560 stage_prog_data->binding_table.ssbo_start +
2561 nir->info.num_ssbos - 1);
2562 }
2563
2564 fs_reg offset_reg;
2565 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2566 if (const_offset) {
2567 offset_reg = brw_imm_ud(const_offset->u[0]);
2568 } else {
2569 offset_reg = get_nir_src(instr->src[1]);
2570 }
2571
2572 /* Read the vector */
2573 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2574 1 /* dims */,
2575 instr->num_components,
2576 BRW_PREDICATE_NONE);
2577 read_result.type = dest.type;
2578 for (int i = 0; i < instr->num_components; i++)
2579 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2580
2581 break;
2582 }
2583
2584 case nir_intrinsic_load_shared: {
2585 assert(devinfo->gen >= 7);
2586
2587 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2588
2589 /* Get the offset to read from */
2590 fs_reg offset_reg;
2591 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2592 if (const_offset) {
2593 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0]);
2594 } else {
2595 offset_reg = vgrf(glsl_type::uint_type);
2596 bld.ADD(offset_reg,
2597 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2598 brw_imm_ud(instr->const_index[0]));
2599 }
2600
2601 /* Read the vector */
2602 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2603 1 /* dims */,
2604 instr->num_components,
2605 BRW_PREDICATE_NONE);
2606 read_result.type = dest.type;
2607 for (int i = 0; i < instr->num_components; i++)
2608 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2609
2610 break;
2611 }
2612
2613 case nir_intrinsic_store_shared: {
2614 assert(devinfo->gen >= 7);
2615
2616 /* Block index */
2617 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2618
2619 /* Value */
2620 fs_reg val_reg = get_nir_src(instr->src[0]);
2621
2622 /* Writemask */
2623 unsigned writemask = instr->const_index[1];
2624
2625 /* Combine groups of consecutive enabled channels in one write
2626 * message. We use ffs to find the first enabled channel and then ffs on
2627 * the bit-inverse, down-shifted writemask to determine the length of
2628 * the block of enabled bits.
2629 */
2630 while (writemask) {
2631 unsigned first_component = ffs(writemask) - 1;
2632 unsigned length = ffs(~(writemask >> first_component)) - 1;
2633 fs_reg offset_reg;
2634
2635 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2636 if (const_offset) {
2637 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0] +
2638 4 * first_component);
2639 } else {
2640 offset_reg = vgrf(glsl_type::uint_type);
2641 bld.ADD(offset_reg,
2642 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2643 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2644 }
2645
2646 emit_untyped_write(bld, surf_index, offset_reg,
2647 offset(val_reg, bld, first_component),
2648 1 /* dims */, length,
2649 BRW_PREDICATE_NONE);
2650
2651 /* Clear the bits in the writemask that we just wrote, then try
2652 * again to see if more channels are left.
2653 */
2654 writemask &= (15 << (first_component + length));
2655 }
2656
2657 break;
2658 }
2659
2660 case nir_intrinsic_load_input: {
2661 fs_reg src;
2662 if (stage == MESA_SHADER_VERTEX) {
2663 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2664 } else {
2665 src = offset(retype(nir_inputs, dest.type), bld,
2666 instr->const_index[0]);
2667 }
2668
2669 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2670 assert(const_offset && "Indirect input loads not allowed");
2671 src = offset(src, bld, const_offset->u[0]);
2672
2673 for (unsigned j = 0; j < instr->num_components; j++) {
2674 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2675 }
2676 break;
2677 }
2678
2679 case nir_intrinsic_store_ssbo: {
2680 assert(devinfo->gen >= 7);
2681
2682 /* Block index */
2683 fs_reg surf_index;
2684 nir_const_value *const_uniform_block =
2685 nir_src_as_const_value(instr->src[1]);
2686 if (const_uniform_block) {
2687 unsigned index = stage_prog_data->binding_table.ssbo_start +
2688 const_uniform_block->u[0];
2689 surf_index = brw_imm_ud(index);
2690 brw_mark_surface_used(prog_data, index);
2691 } else {
2692 surf_index = vgrf(glsl_type::uint_type);
2693 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2694 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2695
2696 brw_mark_surface_used(prog_data,
2697 stage_prog_data->binding_table.ssbo_start +
2698 nir->info.num_ssbos - 1);
2699 }
2700
2701 /* Value */
2702 fs_reg val_reg = get_nir_src(instr->src[0]);
2703
2704 /* Writemask */
2705 unsigned writemask = instr->const_index[0];
2706
2707 /* Combine groups of consecutive enabled channels in one write
2708 * message. We use ffs to find the first enabled channel and then ffs on
2709 * the bit-inverse, down-shifted writemask to determine the length of
2710 * the block of enabled bits.
2711 */
2712 while (writemask) {
2713 unsigned first_component = ffs(writemask) - 1;
2714 unsigned length = ffs(~(writemask >> first_component)) - 1;
2715
2716 fs_reg offset_reg;
2717 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2718 if (const_offset) {
2719 offset_reg = brw_imm_ud(const_offset->u[0] + 4 * first_component);
2720 } else {
2721 offset_reg = vgrf(glsl_type::uint_type);
2722 bld.ADD(offset_reg,
2723 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2724 brw_imm_ud(4 * first_component));
2725 }
2726
2727 emit_untyped_write(bld, surf_index, offset_reg,
2728 offset(val_reg, bld, first_component),
2729 1 /* dims */, length,
2730 BRW_PREDICATE_NONE);
2731
2732 /* Clear the bits in the writemask that we just wrote, then try
2733 * again to see if more channels are left.
2734 */
2735 writemask &= (15 << (first_component + length));
2736 }
2737 break;
2738 }
2739
2740 case nir_intrinsic_store_output: {
2741 fs_reg src = get_nir_src(instr->src[0]);
2742 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2743 instr->const_index[0]);
2744
2745 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2746 assert(const_offset && "Indirect output stores not allowed");
2747 new_dest = offset(new_dest, bld, const_offset->u[0]);
2748
2749 for (unsigned j = 0; j < instr->num_components; j++) {
2750 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2751 }
2752 break;
2753 }
2754
2755 case nir_intrinsic_ssbo_atomic_add:
2756 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2757 break;
2758 case nir_intrinsic_ssbo_atomic_imin:
2759 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2760 break;
2761 case nir_intrinsic_ssbo_atomic_umin:
2762 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2763 break;
2764 case nir_intrinsic_ssbo_atomic_imax:
2765 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2766 break;
2767 case nir_intrinsic_ssbo_atomic_umax:
2768 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2769 break;
2770 case nir_intrinsic_ssbo_atomic_and:
2771 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2772 break;
2773 case nir_intrinsic_ssbo_atomic_or:
2774 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2775 break;
2776 case nir_intrinsic_ssbo_atomic_xor:
2777 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2778 break;
2779 case nir_intrinsic_ssbo_atomic_exchange:
2780 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2781 break;
2782 case nir_intrinsic_ssbo_atomic_comp_swap:
2783 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2784 break;
2785
2786 case nir_intrinsic_get_buffer_size: {
2787 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2788 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2789 int reg_width = dispatch_width / 8;
2790
2791 /* Set LOD = 0 */
2792 fs_reg source = brw_imm_d(0);
2793
2794 int mlen = 1 * reg_width;
2795
2796 /* A resinfo's sampler message is used to get the buffer size.
2797 * The SIMD8's writeback message consists of four registers and
2798 * SIMD16's writeback message consists of 8 destination registers
2799 * (two per each component), although we are only interested on the
2800 * first component, where resinfo returns the buffer size for
2801 * SURFTYPE_BUFFER.
2802 */
2803 int regs_written = 4 * mlen;
2804 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2805 BRW_REGISTER_TYPE_UD);
2806 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2807 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2808 BRW_REGISTER_TYPE_UD);
2809 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2810 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2811 src_payload, brw_imm_ud(index));
2812 inst->header_size = 0;
2813 inst->mlen = mlen;
2814 inst->regs_written = regs_written;
2815 bld.emit(inst);
2816 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2817
2818 brw_mark_surface_used(prog_data, index);
2819 break;
2820 }
2821
2822 default:
2823 unreachable("unknown intrinsic");
2824 }
2825 }
2826
2827 void
2828 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2829 int op, nir_intrinsic_instr *instr)
2830 {
2831 fs_reg dest;
2832 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2833 dest = get_nir_dest(instr->dest);
2834
2835 fs_reg surface;
2836 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2837 if (const_surface) {
2838 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2839 const_surface->u[0];
2840 surface = brw_imm_ud(surf_index);
2841 brw_mark_surface_used(prog_data, surf_index);
2842 } else {
2843 surface = vgrf(glsl_type::uint_type);
2844 bld.ADD(surface, get_nir_src(instr->src[0]),
2845 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2846
2847 /* Assume this may touch any SSBO. This is the same we do for other
2848 * UBO/SSBO accesses with non-constant surface.
2849 */
2850 brw_mark_surface_used(prog_data,
2851 stage_prog_data->binding_table.ssbo_start +
2852 nir->info.num_ssbos - 1);
2853 }
2854
2855 fs_reg offset = get_nir_src(instr->src[1]);
2856 fs_reg data1 = get_nir_src(instr->src[2]);
2857 fs_reg data2;
2858 if (op == BRW_AOP_CMPWR)
2859 data2 = get_nir_src(instr->src[3]);
2860
2861 /* Emit the actual atomic operation operation */
2862
2863 fs_reg atomic_result =
2864 surface_access::emit_untyped_atomic(bld, surface, offset,
2865 data1, data2,
2866 1 /* dims */, 1 /* rsize */,
2867 op,
2868 BRW_PREDICATE_NONE);
2869 dest.type = atomic_result.type;
2870 bld.MOV(dest, atomic_result);
2871 }
2872
2873 void
2874 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
2875 int op, nir_intrinsic_instr *instr)
2876 {
2877 fs_reg dest;
2878 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2879 dest = get_nir_dest(instr->dest);
2880
2881 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
2882 fs_reg offset = get_nir_src(instr->src[0]);
2883 fs_reg data1 = get_nir_src(instr->src[1]);
2884 fs_reg data2;
2885 if (op == BRW_AOP_CMPWR)
2886 data2 = get_nir_src(instr->src[2]);
2887
2888 /* Emit the actual atomic operation operation */
2889
2890 fs_reg atomic_result =
2891 surface_access::emit_untyped_atomic(bld, surface, offset,
2892 data1, data2,
2893 1 /* dims */, 1 /* rsize */,
2894 op,
2895 BRW_PREDICATE_NONE);
2896 dest.type = atomic_result.type;
2897 bld.MOV(dest, atomic_result);
2898 }
2899
2900 void
2901 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
2902 {
2903 unsigned sampler = instr->sampler_index;
2904 fs_reg sampler_reg(brw_imm_ud(sampler));
2905
2906 int gather_component = instr->component;
2907
2908 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
2909 instr->is_array;
2910
2911 int lod_components = 0;
2912 int UNUSED offset_components = 0;
2913
2914 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
2915
2916 for (unsigned i = 0; i < instr->num_srcs; i++) {
2917 fs_reg src = get_nir_src(instr->src[i].src);
2918 switch (instr->src[i].src_type) {
2919 case nir_tex_src_bias:
2920 lod = retype(src, BRW_REGISTER_TYPE_F);
2921 break;
2922 case nir_tex_src_comparitor:
2923 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
2924 break;
2925 case nir_tex_src_coord:
2926 switch (instr->op) {
2927 case nir_texop_txf:
2928 case nir_texop_txf_ms:
2929 case nir_texop_samples_identical:
2930 coordinate = retype(src, BRW_REGISTER_TYPE_D);
2931 break;
2932 default:
2933 coordinate = retype(src, BRW_REGISTER_TYPE_F);
2934 break;
2935 }
2936 break;
2937 case nir_tex_src_ddx:
2938 lod = retype(src, BRW_REGISTER_TYPE_F);
2939 lod_components = nir_tex_instr_src_size(instr, i);
2940 break;
2941 case nir_tex_src_ddy:
2942 lod2 = retype(src, BRW_REGISTER_TYPE_F);
2943 break;
2944 case nir_tex_src_lod:
2945 switch (instr->op) {
2946 case nir_texop_txs:
2947 lod = retype(src, BRW_REGISTER_TYPE_UD);
2948 break;
2949 case nir_texop_txf:
2950 lod = retype(src, BRW_REGISTER_TYPE_D);
2951 break;
2952 default:
2953 lod = retype(src, BRW_REGISTER_TYPE_F);
2954 break;
2955 }
2956 break;
2957 case nir_tex_src_ms_index:
2958 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
2959 break;
2960 case nir_tex_src_offset:
2961 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
2962 if (instr->is_array)
2963 offset_components = instr->coord_components - 1;
2964 else
2965 offset_components = instr->coord_components;
2966 break;
2967 case nir_tex_src_projector:
2968 unreachable("should be lowered");
2969
2970 case nir_tex_src_sampler_offset: {
2971 /* Figure out the highest possible sampler index and mark it as used */
2972 uint32_t max_used = sampler + instr->sampler_array_size - 1;
2973 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
2974 max_used += stage_prog_data->binding_table.gather_texture_start;
2975 } else {
2976 max_used += stage_prog_data->binding_table.texture_start;
2977 }
2978 brw_mark_surface_used(prog_data, max_used);
2979
2980 /* Emit code to evaluate the actual indexing expression */
2981 sampler_reg = vgrf(glsl_type::uint_type);
2982 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
2983 sampler_reg = bld.emit_uniformize(sampler_reg);
2984 break;
2985 }
2986
2987 default:
2988 unreachable("unknown texture source");
2989 }
2990 }
2991
2992 if (instr->op == nir_texop_txf_ms ||
2993 instr->op == nir_texop_samples_identical) {
2994 if (devinfo->gen >= 7 &&
2995 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
2996 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
2997 } else {
2998 mcs = brw_imm_ud(0u);
2999 }
3000 }
3001
3002 for (unsigned i = 0; i < 3; i++) {
3003 if (instr->const_offset[i] != 0) {
3004 assert(offset_components == 0);
3005 tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
3006 break;
3007 }
3008 }
3009
3010 enum glsl_base_type dest_base_type =
3011 brw_glsl_base_type_for_nir_type (instr->dest_type);
3012
3013 const glsl_type *dest_type =
3014 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3015 1);
3016
3017 ir_texture_opcode op;
3018 switch (instr->op) {
3019 case nir_texop_lod: op = ir_lod; break;
3020 case nir_texop_query_levels: op = ir_query_levels; break;
3021 case nir_texop_tex: op = ir_tex; break;
3022 case nir_texop_tg4: op = ir_tg4; break;
3023 case nir_texop_txb: op = ir_txb; break;
3024 case nir_texop_txd: op = ir_txd; break;
3025 case nir_texop_txf: op = ir_txf; break;
3026 case nir_texop_txf_ms: op = ir_txf_ms; break;
3027 case nir_texop_txl: op = ir_txl; break;
3028 case nir_texop_txs: op = ir_txs; break;
3029 case nir_texop_texture_samples: {
3030 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3031 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3032 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3033 sampler_reg);
3034 inst->mlen = 1;
3035 inst->header_size = 1;
3036 inst->base_mrf = -1;
3037 return;
3038 }
3039 case nir_texop_samples_identical: op = ir_samples_identical; break;
3040 default:
3041 unreachable("unknown texture opcode");
3042 }
3043
3044 emit_texture(op, dest_type, coordinate, instr->coord_components,
3045 shadow_comparitor, lod, lod2, lod_components, sample_index,
3046 tex_offset, mcs, gather_component,
3047 is_cube_array, sampler, sampler_reg);
3048
3049 fs_reg dest = get_nir_dest(instr->dest);
3050 dest.type = this->result.type;
3051 unsigned num_components = nir_tex_instr_dest_size(instr);
3052 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3053 dest, this->result),
3054 (1 << num_components) - 1);
3055 }
3056
3057 void
3058 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3059 {
3060 switch (instr->type) {
3061 case nir_jump_break:
3062 bld.emit(BRW_OPCODE_BREAK);
3063 break;
3064 case nir_jump_continue:
3065 bld.emit(BRW_OPCODE_CONTINUE);
3066 break;
3067 case nir_jump_return:
3068 default:
3069 unreachable("unknown jump");
3070 }
3071 }