i965: If control_data_header_size_bits is zero, don't do EndPrimitive
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "brw_fs.h"
26 #include "brw_fs_surface_builder.h"
27 #include "brw_nir.h"
28 #include "brw_program.h"
29
30 using namespace brw;
31 using namespace brw::surface_access;
32
33 void
34 fs_visitor::emit_nir_code()
35 {
36 /* emit the arrays used for inputs and outputs - load/store intrinsics will
37 * be converted to reads/writes of these arrays
38 */
39 nir_setup_inputs();
40 nir_setup_outputs();
41 nir_setup_uniforms();
42 nir_emit_system_values();
43
44 /* get the main function and emit it */
45 nir_foreach_function(function, nir) {
46 assert(strcmp(function->name, "main") == 0);
47 assert(function->impl);
48 nir_emit_impl(function->impl);
49 }
50 }
51
52 void
53 fs_visitor::nir_setup_inputs()
54 {
55 if (stage != MESA_SHADER_FRAGMENT)
56 return;
57
58 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
59
60 nir_foreach_variable(var, &nir->inputs) {
61 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
62
63 fs_reg reg;
64 if (var->data.location == VARYING_SLOT_POS) {
65 reg = *emit_fragcoord_interpolation();
66 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
67 input, reg), 0xF);
68 } else if (var->data.location == VARYING_SLOT_LAYER) {
69 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
70 reg.type = BRW_REGISTER_TYPE_D;
71 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
72 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
73 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
74 reg.type = BRW_REGISTER_TYPE_D;
75 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
76 } else {
77 int location = var->data.location;
78 emit_general_interpolation(&input, var->name, var->type,
79 (glsl_interp_qualifier) var->data.interpolation,
80 &location, var->data.centroid,
81 var->data.sample);
82 }
83 }
84 }
85
86 void
87 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
88 const glsl_type *type,
89 unsigned *location)
90 {
91 if (type->is_array() || type->is_matrix()) {
92 const struct glsl_type *elem_type = glsl_get_array_element(type);
93 const unsigned length = glsl_get_length(type);
94
95 for (unsigned i = 0; i < length; i++) {
96 nir_setup_single_output_varying(reg, elem_type, location);
97 }
98 } else if (type->is_record()) {
99 for (unsigned i = 0; i < type->length; i++) {
100 const struct glsl_type *field_type = type->fields.structure[i].type;
101 nir_setup_single_output_varying(reg, field_type, location);
102 }
103 } else {
104 assert(type->is_scalar() || type->is_vector());
105 unsigned num_elements = type->vector_elements;
106 if (type->is_double())
107 num_elements *= 2;
108 for (unsigned count = 0; count < num_elements; count += 4) {
109 this->outputs[*location] = *reg;
110 this->output_components[*location] = MIN2(4, num_elements - count);
111 *reg = offset(*reg, bld, 4);
112 (*location)++;
113 }
114 }
115 }
116
117 void
118 fs_visitor::nir_setup_outputs()
119 {
120 if (stage == MESA_SHADER_TESS_CTRL)
121 return;
122
123 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
124
125 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
126
127 nir_foreach_variable(var, &nir->outputs) {
128 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
129
130 switch (stage) {
131 case MESA_SHADER_VERTEX:
132 case MESA_SHADER_TESS_EVAL:
133 case MESA_SHADER_GEOMETRY: {
134 unsigned location = var->data.location;
135 nir_setup_single_output_varying(&reg, var->type, &location);
136 break;
137 }
138 case MESA_SHADER_FRAGMENT:
139 if (key->force_dual_color_blend &&
140 var->data.location == FRAG_RESULT_DATA1) {
141 this->dual_src_output = reg;
142 this->do_dual_src = true;
143 } else if (var->data.index > 0) {
144 assert(var->data.location == FRAG_RESULT_DATA0);
145 assert(var->data.index == 1);
146 this->dual_src_output = reg;
147 this->do_dual_src = true;
148 } else if (var->data.location == FRAG_RESULT_COLOR) {
149 /* Writing gl_FragColor outputs to all color regions. */
150 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
151 this->outputs[i] = reg;
152 this->output_components[i] = 4;
153 }
154 } else if (var->data.location == FRAG_RESULT_DEPTH) {
155 this->frag_depth = reg;
156 } else if (var->data.location == FRAG_RESULT_STENCIL) {
157 this->frag_stencil = reg;
158 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
159 this->sample_mask = reg;
160 } else {
161 int vector_elements = var->type->without_array()->vector_elements;
162
163 /* gl_FragData or a user-defined FS output */
164 assert(var->data.location >= FRAG_RESULT_DATA0 &&
165 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
166
167 /* General color output. */
168 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
169 int output = var->data.location - FRAG_RESULT_DATA0 + i;
170 this->outputs[output] = offset(reg, bld, vector_elements * i);
171 this->output_components[output] = vector_elements;
172 }
173 }
174 break;
175 default:
176 unreachable("unhandled shader stage");
177 }
178 }
179 }
180
181 void
182 fs_visitor::nir_setup_uniforms()
183 {
184 if (dispatch_width != min_dispatch_width)
185 return;
186
187 uniforms = nir->num_uniforms / 4;
188 }
189
190 static bool
191 emit_system_values_block(nir_block *block, fs_visitor *v)
192 {
193 fs_reg *reg;
194
195 nir_foreach_instr(instr, block) {
196 if (instr->type != nir_instr_type_intrinsic)
197 continue;
198
199 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
200 switch (intrin->intrinsic) {
201 case nir_intrinsic_load_vertex_id:
202 unreachable("should be lowered by lower_vertex_id().");
203
204 case nir_intrinsic_load_vertex_id_zero_base:
205 assert(v->stage == MESA_SHADER_VERTEX);
206 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
207 if (reg->file == BAD_FILE)
208 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
209 break;
210
211 case nir_intrinsic_load_base_vertex:
212 assert(v->stage == MESA_SHADER_VERTEX);
213 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
214 if (reg->file == BAD_FILE)
215 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
216 break;
217
218 case nir_intrinsic_load_instance_id:
219 assert(v->stage == MESA_SHADER_VERTEX);
220 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
221 if (reg->file == BAD_FILE)
222 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
223 break;
224
225 case nir_intrinsic_load_base_instance:
226 assert(v->stage == MESA_SHADER_VERTEX);
227 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
228 if (reg->file == BAD_FILE)
229 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
230 break;
231
232 case nir_intrinsic_load_draw_id:
233 assert(v->stage == MESA_SHADER_VERTEX);
234 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
235 if (reg->file == BAD_FILE)
236 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
237 break;
238
239 case nir_intrinsic_load_invocation_id:
240 if (v->stage == MESA_SHADER_TESS_CTRL)
241 break;
242 assert(v->stage == MESA_SHADER_GEOMETRY);
243 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
244 if (reg->file == BAD_FILE) {
245 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
246 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
247 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
248 abld.SHR(iid, g1, brw_imm_ud(27u));
249 *reg = iid;
250 }
251 break;
252
253 case nir_intrinsic_load_sample_pos:
254 assert(v->stage == MESA_SHADER_FRAGMENT);
255 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
256 if (reg->file == BAD_FILE)
257 *reg = *v->emit_samplepos_setup();
258 break;
259
260 case nir_intrinsic_load_sample_id:
261 assert(v->stage == MESA_SHADER_FRAGMENT);
262 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
263 if (reg->file == BAD_FILE)
264 *reg = *v->emit_sampleid_setup();
265 break;
266
267 case nir_intrinsic_load_sample_mask_in:
268 assert(v->stage == MESA_SHADER_FRAGMENT);
269 assert(v->devinfo->gen >= 7);
270 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
271 if (reg->file == BAD_FILE)
272 *reg = *v->emit_samplemaskin_setup();
273 break;
274
275 case nir_intrinsic_load_local_invocation_id:
276 assert(v->stage == MESA_SHADER_COMPUTE);
277 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
278 if (reg->file == BAD_FILE)
279 *reg = *v->emit_cs_local_invocation_id_setup();
280 break;
281
282 case nir_intrinsic_load_work_group_id:
283 assert(v->stage == MESA_SHADER_COMPUTE);
284 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
285 if (reg->file == BAD_FILE)
286 *reg = *v->emit_cs_work_group_id_setup();
287 break;
288
289 case nir_intrinsic_load_helper_invocation:
290 assert(v->stage == MESA_SHADER_FRAGMENT);
291 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
292 if (reg->file == BAD_FILE) {
293 const fs_builder abld =
294 v->bld.annotate("gl_HelperInvocation", NULL);
295
296 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
297 * pixel mask is in g1.7 of the thread payload.
298 *
299 * We move the per-channel pixel enable bit to the low bit of each
300 * channel by shifting the byte containing the pixel mask by the
301 * vector immediate 0x76543210UV.
302 *
303 * The region of <1,8,0> reads only 1 byte (the pixel masks for
304 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
305 * masks for 2 and 3) in SIMD16.
306 */
307 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
308 abld.SHR(shifted,
309 stride(byte_offset(retype(brw_vec1_grf(1, 0),
310 BRW_REGISTER_TYPE_UB), 28),
311 1, 8, 0),
312 brw_imm_v(0x76543210));
313
314 /* A set bit in the pixel mask means the channel is enabled, but
315 * that is the opposite of gl_HelperInvocation so we need to invert
316 * the mask.
317 *
318 * The negate source-modifier bit of logical instructions on Gen8+
319 * performs 1's complement negation, so we can use that instead of
320 * a NOT instruction.
321 */
322 fs_reg inverted = negate(shifted);
323 if (v->devinfo->gen < 8) {
324 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
325 abld.NOT(inverted, shifted);
326 }
327
328 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
329 * with 1 and negating.
330 */
331 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
332 abld.AND(anded, inverted, brw_imm_uw(1));
333
334 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
335 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
336 *reg = dst;
337 }
338 break;
339
340 default:
341 break;
342 }
343 }
344
345 return true;
346 }
347
348 void
349 fs_visitor::nir_emit_system_values()
350 {
351 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
352 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
353 nir_system_values[i] = fs_reg();
354 }
355
356 nir_foreach_function(function, nir) {
357 assert(strcmp(function->name, "main") == 0);
358 assert(function->impl);
359 nir_foreach_block(block, function->impl) {
360 emit_system_values_block(block, this);
361 }
362 }
363 }
364
365 void
366 fs_visitor::nir_emit_impl(nir_function_impl *impl)
367 {
368 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
369 for (unsigned i = 0; i < impl->reg_alloc; i++) {
370 nir_locals[i] = fs_reg();
371 }
372
373 foreach_list_typed(nir_register, reg, node, &impl->registers) {
374 unsigned array_elems =
375 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
376 unsigned size = array_elems * reg->num_components;
377 const brw_reg_type reg_type =
378 reg->bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
379 nir_locals[reg->index] = bld.vgrf(reg_type, size);
380 }
381
382 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
383 impl->ssa_alloc);
384
385 nir_emit_cf_list(&impl->body);
386 }
387
388 void
389 fs_visitor::nir_emit_cf_list(exec_list *list)
390 {
391 exec_list_validate(list);
392 foreach_list_typed(nir_cf_node, node, node, list) {
393 switch (node->type) {
394 case nir_cf_node_if:
395 nir_emit_if(nir_cf_node_as_if(node));
396 break;
397
398 case nir_cf_node_loop:
399 nir_emit_loop(nir_cf_node_as_loop(node));
400 break;
401
402 case nir_cf_node_block:
403 nir_emit_block(nir_cf_node_as_block(node));
404 break;
405
406 default:
407 unreachable("Invalid CFG node block");
408 }
409 }
410 }
411
412 void
413 fs_visitor::nir_emit_if(nir_if *if_stmt)
414 {
415 /* first, put the condition into f0 */
416 fs_inst *inst = bld.MOV(bld.null_reg_d(),
417 retype(get_nir_src(if_stmt->condition),
418 BRW_REGISTER_TYPE_D));
419 inst->conditional_mod = BRW_CONDITIONAL_NZ;
420
421 bld.IF(BRW_PREDICATE_NORMAL);
422
423 nir_emit_cf_list(&if_stmt->then_list);
424
425 /* note: if the else is empty, dead CF elimination will remove it */
426 bld.emit(BRW_OPCODE_ELSE);
427
428 nir_emit_cf_list(&if_stmt->else_list);
429
430 bld.emit(BRW_OPCODE_ENDIF);
431 }
432
433 void
434 fs_visitor::nir_emit_loop(nir_loop *loop)
435 {
436 bld.emit(BRW_OPCODE_DO);
437
438 nir_emit_cf_list(&loop->body);
439
440 bld.emit(BRW_OPCODE_WHILE);
441 }
442
443 void
444 fs_visitor::nir_emit_block(nir_block *block)
445 {
446 nir_foreach_instr(instr, block) {
447 nir_emit_instr(instr);
448 }
449 }
450
451 void
452 fs_visitor::nir_emit_instr(nir_instr *instr)
453 {
454 const fs_builder abld = bld.annotate(NULL, instr);
455
456 switch (instr->type) {
457 case nir_instr_type_alu:
458 nir_emit_alu(abld, nir_instr_as_alu(instr));
459 break;
460
461 case nir_instr_type_intrinsic:
462 switch (stage) {
463 case MESA_SHADER_VERTEX:
464 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
465 break;
466 case MESA_SHADER_TESS_CTRL:
467 nir_emit_tcs_intrinsic(abld, nir_instr_as_intrinsic(instr));
468 break;
469 case MESA_SHADER_TESS_EVAL:
470 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
471 break;
472 case MESA_SHADER_GEOMETRY:
473 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
474 break;
475 case MESA_SHADER_FRAGMENT:
476 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
477 break;
478 case MESA_SHADER_COMPUTE:
479 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
480 break;
481 default:
482 unreachable("unsupported shader stage");
483 }
484 break;
485
486 case nir_instr_type_tex:
487 nir_emit_texture(abld, nir_instr_as_tex(instr));
488 break;
489
490 case nir_instr_type_load_const:
491 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
492 break;
493
494 case nir_instr_type_ssa_undef:
495 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
496 break;
497
498 case nir_instr_type_jump:
499 nir_emit_jump(abld, nir_instr_as_jump(instr));
500 break;
501
502 default:
503 unreachable("unknown instruction type");
504 }
505 }
506
507 /**
508 * Recognizes a parent instruction of nir_op_extract_* and changes the type to
509 * match instr.
510 */
511 bool
512 fs_visitor::optimize_extract_to_float(nir_alu_instr *instr,
513 const fs_reg &result)
514 {
515 if (!instr->src[0].src.is_ssa ||
516 !instr->src[0].src.ssa->parent_instr)
517 return false;
518
519 if (instr->src[0].src.ssa->parent_instr->type != nir_instr_type_alu)
520 return false;
521
522 nir_alu_instr *src0 =
523 nir_instr_as_alu(instr->src[0].src.ssa->parent_instr);
524
525 if (src0->op != nir_op_extract_u8 && src0->op != nir_op_extract_u16 &&
526 src0->op != nir_op_extract_i8 && src0->op != nir_op_extract_i16)
527 return false;
528
529 nir_const_value *element = nir_src_as_const_value(src0->src[1].src);
530 assert(element != NULL);
531
532 /* Element type to extract.*/
533 const brw_reg_type type = brw_int_type(
534 src0->op == nir_op_extract_u16 || src0->op == nir_op_extract_i16 ? 2 : 1,
535 src0->op == nir_op_extract_i16 || src0->op == nir_op_extract_i8);
536
537 fs_reg op0 = get_nir_src(src0->src[0].src);
538 op0.type = brw_type_for_nir_type(
539 (nir_alu_type)(nir_op_infos[src0->op].input_types[0] |
540 nir_src_bit_size(src0->src[0].src)));
541 op0 = offset(op0, bld, src0->src[0].swizzle[0]);
542
543 set_saturate(instr->dest.saturate,
544 bld.MOV(result, subscript(op0, type, element->u32[0])));
545 return true;
546 }
547
548 bool
549 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
550 const fs_reg &result)
551 {
552 if (!instr->src[0].src.is_ssa ||
553 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
554 return false;
555
556 nir_intrinsic_instr *src0 =
557 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
558
559 if (src0->intrinsic != nir_intrinsic_load_front_face)
560 return false;
561
562 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
563 if (!value1 || fabsf(value1->f32[0]) != 1.0f)
564 return false;
565
566 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
567 if (!value2 || fabsf(value2->f32[0]) != 1.0f)
568 return false;
569
570 fs_reg tmp = vgrf(glsl_type::int_type);
571
572 if (devinfo->gen >= 6) {
573 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
574 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
575
576 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
577 *
578 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
579 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
580 *
581 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
582 *
583 * This negation looks like it's safe in practice, because bits 0:4 will
584 * surely be TRIANGLES
585 */
586
587 if (value1->f32[0] == -1.0f) {
588 g0.negate = true;
589 }
590
591 tmp.type = BRW_REGISTER_TYPE_W;
592 tmp.subreg_offset = 2;
593 tmp.stride = 2;
594
595 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
596
597 tmp.type = BRW_REGISTER_TYPE_D;
598 tmp.subreg_offset = 0;
599 tmp.stride = 1;
600 } else {
601 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
602 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
603
604 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
605 *
606 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
607 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
608 *
609 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
610 *
611 * This negation looks like it's safe in practice, because bits 0:4 will
612 * surely be TRIANGLES
613 */
614
615 if (value1->f32[0] == -1.0f) {
616 g1_6.negate = true;
617 }
618
619 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
620 }
621 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
622
623 return true;
624 }
625
626 void
627 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
628 {
629 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
630 fs_inst *inst;
631
632 fs_reg result = get_nir_dest(instr->dest.dest);
633 result.type = brw_type_for_nir_type(
634 (nir_alu_type)(nir_op_infos[instr->op].output_type |
635 nir_dest_bit_size(instr->dest.dest)));
636
637 fs_reg op[4];
638 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
639 op[i] = get_nir_src(instr->src[i].src);
640 op[i].type = brw_type_for_nir_type(
641 (nir_alu_type)(nir_op_infos[instr->op].input_types[i] |
642 nir_src_bit_size(instr->src[i].src)));
643 op[i].abs = instr->src[i].abs;
644 op[i].negate = instr->src[i].negate;
645 }
646
647 /* We get a bunch of mov's out of the from_ssa pass and they may still
648 * be vectorized. We'll handle them as a special-case. We'll also
649 * handle vecN here because it's basically the same thing.
650 */
651 switch (instr->op) {
652 case nir_op_imov:
653 case nir_op_fmov:
654 case nir_op_vec2:
655 case nir_op_vec3:
656 case nir_op_vec4: {
657 fs_reg temp = result;
658 bool need_extra_copy = false;
659 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
660 if (!instr->src[i].src.is_ssa &&
661 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
662 need_extra_copy = true;
663 temp = bld.vgrf(result.type, 4);
664 break;
665 }
666 }
667
668 for (unsigned i = 0; i < 4; i++) {
669 if (!(instr->dest.write_mask & (1 << i)))
670 continue;
671
672 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
673 inst = bld.MOV(offset(temp, bld, i),
674 offset(op[0], bld, instr->src[0].swizzle[i]));
675 } else {
676 inst = bld.MOV(offset(temp, bld, i),
677 offset(op[i], bld, instr->src[i].swizzle[0]));
678 }
679 inst->saturate = instr->dest.saturate;
680 }
681
682 /* In this case the source and destination registers were the same,
683 * so we need to insert an extra set of moves in order to deal with
684 * any swizzling.
685 */
686 if (need_extra_copy) {
687 for (unsigned i = 0; i < 4; i++) {
688 if (!(instr->dest.write_mask & (1 << i)))
689 continue;
690
691 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
692 }
693 }
694 return;
695 }
696 default:
697 break;
698 }
699
700 /* At this point, we have dealt with any instruction that operates on
701 * more than a single channel. Therefore, we can just adjust the source
702 * and destination registers for that channel and emit the instruction.
703 */
704 unsigned channel = 0;
705 if (nir_op_infos[instr->op].output_size == 0) {
706 /* Since NIR is doing the scalarizing for us, we should only ever see
707 * vectorized operations with a single channel.
708 */
709 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
710 channel = ffs(instr->dest.write_mask) - 1;
711
712 result = offset(result, bld, channel);
713 }
714
715 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
716 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
717 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
718 }
719
720 switch (instr->op) {
721 case nir_op_i2f:
722 case nir_op_u2f:
723 if (optimize_extract_to_float(instr, result))
724 return;
725
726 case nir_op_f2d:
727 case nir_op_i2d:
728 case nir_op_u2d:
729 case nir_op_d2f:
730 case nir_op_d2i:
731 case nir_op_d2u:
732 inst = bld.MOV(result, op[0]);
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_f2i:
737 case nir_op_f2u:
738 bld.MOV(result, op[0]);
739 break;
740
741 case nir_op_fsign: {
742 if (type_sz(op[0].type) < 8) {
743 /* AND(val, 0x80000000) gives the sign bit.
744 *
745 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
746 * zero.
747 */
748 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
749
750 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
751 op[0].type = BRW_REGISTER_TYPE_UD;
752 result.type = BRW_REGISTER_TYPE_UD;
753 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
754
755 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
756 inst->predicate = BRW_PREDICATE_NORMAL;
757 if (instr->dest.saturate) {
758 inst = bld.MOV(result, result);
759 inst->saturate = true;
760 }
761 } else {
762 /* For doubles we do the same but we need to consider:
763 *
764 * - 2-src instructions can't operate with 64-bit immediates
765 * - The sign is encoded in the high 32-bit of each DF
766 * - CMP with DF requires special handling in SIMD16
767 * - We need to produce a DF result.
768 */
769
770 /* 2-src instructions can't have 64-bit immediates, so put 0.0 in
771 * a register and compare with that.
772 */
773 fs_reg tmp = vgrf(glsl_type::double_type);
774 bld.MOV(tmp, brw_imm_df(0.0));
775
776 /* A direct DF CMP using the flag register (null dst) won't work in
777 * SIMD16 because the CMP will be split in two by lower_simd_width,
778 * resulting in two CMP instructions with the same dst (NULL),
779 * leading to dead code elimination of the first one. In SIMD8,
780 * however, there is no need to split the CMP and we can save some
781 * work.
782 */
783 fs_reg dst_tmp = vgrf(glsl_type::double_type);
784 bld.CMP(dst_tmp, op[0], tmp, BRW_CONDITIONAL_NZ);
785
786 /* In SIMD16 we want to avoid using a NULL dst register with DF CMP,
787 * so we store the result of the comparison in a vgrf instead and
788 * then we generate a UD comparison from that that won't have to
789 * be split by lower_simd_width. This is what NIR does to handle
790 * double comparisons in the general case.
791 */
792 if (bld.dispatch_width() == 16 ) {
793 fs_reg dst_tmp_ud = retype(dst_tmp, BRW_REGISTER_TYPE_UD);
794 bld.MOV(dst_tmp_ud, subscript(dst_tmp, BRW_REGISTER_TYPE_UD, 0));
795 bld.CMP(bld.null_reg_ud(),
796 dst_tmp_ud, brw_imm_ud(0), BRW_CONDITIONAL_NZ);
797 }
798
799 /* Get the high 32-bit of each double component where the sign is */
800 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
801 bld.MOV(result_int, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
802
803 /* Get the sign bit */
804 bld.AND(result_int, result_int, brw_imm_ud(0x80000000u));
805
806 /* Add 1.0 to the sign, predicated to skip the case of op[0] == 0.0 */
807 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
808 inst->predicate = BRW_PREDICATE_NORMAL;
809
810 /* Convert from 32-bit float to 64-bit double */
811 result.type = BRW_REGISTER_TYPE_DF;
812 inst = bld.MOV(result, retype(result_int, BRW_REGISTER_TYPE_F));
813
814 if (instr->dest.saturate) {
815 inst = bld.MOV(result, result);
816 inst->saturate = true;
817 }
818 }
819 break;
820 }
821
822 case nir_op_isign:
823 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
824 * -> non-negative val generates 0x00000000.
825 * Predicated OR sets 1 if val is positive.
826 */
827 assert(nir_dest_bit_size(instr->dest.dest) < 64);
828 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
829 bld.ASR(result, op[0], brw_imm_d(31));
830 inst = bld.OR(result, result, brw_imm_d(1));
831 inst->predicate = BRW_PREDICATE_NORMAL;
832 break;
833
834 case nir_op_frcp:
835 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
836 inst->saturate = instr->dest.saturate;
837 break;
838
839 case nir_op_fexp2:
840 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
841 inst->saturate = instr->dest.saturate;
842 break;
843
844 case nir_op_flog2:
845 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
846 inst->saturate = instr->dest.saturate;
847 break;
848
849 case nir_op_fsin:
850 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
851 inst->saturate = instr->dest.saturate;
852 break;
853
854 case nir_op_fcos:
855 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
856 inst->saturate = instr->dest.saturate;
857 break;
858
859 case nir_op_fddx:
860 if (fs_key->high_quality_derivatives) {
861 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
862 } else {
863 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
864 }
865 inst->saturate = instr->dest.saturate;
866 break;
867 case nir_op_fddx_fine:
868 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
869 inst->saturate = instr->dest.saturate;
870 break;
871 case nir_op_fddx_coarse:
872 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
873 inst->saturate = instr->dest.saturate;
874 break;
875 case nir_op_fddy:
876 if (fs_key->high_quality_derivatives) {
877 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
878 } else {
879 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
880 }
881 inst->saturate = instr->dest.saturate;
882 break;
883 case nir_op_fddy_fine:
884 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0]);
885 inst->saturate = instr->dest.saturate;
886 break;
887 case nir_op_fddy_coarse:
888 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0]);
889 inst->saturate = instr->dest.saturate;
890 break;
891
892 case nir_op_iadd:
893 assert(nir_dest_bit_size(instr->dest.dest) < 64);
894 case nir_op_fadd:
895 inst = bld.ADD(result, op[0], op[1]);
896 inst->saturate = instr->dest.saturate;
897 break;
898
899 case nir_op_fmul:
900 inst = bld.MUL(result, op[0], op[1]);
901 inst->saturate = instr->dest.saturate;
902 break;
903
904 case nir_op_imul:
905 assert(nir_dest_bit_size(instr->dest.dest) < 64);
906 bld.MUL(result, op[0], op[1]);
907 break;
908
909 case nir_op_imul_high:
910 case nir_op_umul_high:
911 assert(nir_dest_bit_size(instr->dest.dest) < 64);
912 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
913 break;
914
915 case nir_op_idiv:
916 case nir_op_udiv:
917 assert(nir_dest_bit_size(instr->dest.dest) < 64);
918 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
919 break;
920
921 case nir_op_uadd_carry:
922 unreachable("Should have been lowered by carry_to_arith().");
923
924 case nir_op_usub_borrow:
925 unreachable("Should have been lowered by borrow_to_arith().");
926
927 case nir_op_umod:
928 case nir_op_irem:
929 /* According to the sign table for INT DIV in the Ivy Bridge PRM, it
930 * appears that our hardware just does the right thing for signed
931 * remainder.
932 */
933 assert(nir_dest_bit_size(instr->dest.dest) < 64);
934 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
935 break;
936
937 case nir_op_imod: {
938 /* Get a regular C-style remainder. If a % b == 0, set the predicate. */
939 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
940
941 /* Math instructions don't support conditional mod */
942 inst = bld.MOV(bld.null_reg_d(), result);
943 inst->conditional_mod = BRW_CONDITIONAL_NZ;
944
945 /* Now, we need to determine if signs of the sources are different.
946 * When we XOR the sources, the top bit is 0 if they are the same and 1
947 * if they are different. We can then use a conditional modifier to
948 * turn that into a predicate. This leads us to an XOR.l instruction.
949 *
950 * Technically, according to the PRM, you're not allowed to use .l on a
951 * XOR instruction. However, emperical experiments and Curro's reading
952 * of the simulator source both indicate that it's safe.
953 */
954 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_D);
955 inst = bld.XOR(tmp, op[0], op[1]);
956 inst->predicate = BRW_PREDICATE_NORMAL;
957 inst->conditional_mod = BRW_CONDITIONAL_L;
958
959 /* If the result of the initial remainder operation is non-zero and the
960 * two sources have different signs, add in a copy of op[1] to get the
961 * final integer modulus value.
962 */
963 inst = bld.ADD(result, result, op[1]);
964 inst->predicate = BRW_PREDICATE_NORMAL;
965 break;
966 }
967
968 case nir_op_flt:
969 case nir_op_fge:
970 case nir_op_feq:
971 case nir_op_fne: {
972 fs_reg dest = result;
973 if (nir_src_bit_size(instr->src[0].src) > 32) {
974 dest = bld.vgrf(BRW_REGISTER_TYPE_DF, 1);
975 }
976 brw_conditional_mod cond;
977 switch (instr->op) {
978 case nir_op_flt:
979 cond = BRW_CONDITIONAL_L;
980 break;
981 case nir_op_fge:
982 cond = BRW_CONDITIONAL_GE;
983 break;
984 case nir_op_feq:
985 cond = BRW_CONDITIONAL_Z;
986 break;
987 case nir_op_fne:
988 cond = BRW_CONDITIONAL_NZ;
989 break;
990 default:
991 unreachable("bad opcode");
992 }
993 bld.CMP(dest, op[0], op[1], cond);
994 if (nir_src_bit_size(instr->src[0].src) > 32) {
995 bld.MOV(result, subscript(dest, BRW_REGISTER_TYPE_UD, 0));
996 }
997 break;
998 }
999
1000 case nir_op_ilt:
1001 case nir_op_ult:
1002 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1003 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
1004 break;
1005
1006 case nir_op_ige:
1007 case nir_op_uge:
1008 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1009 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
1010 break;
1011
1012 case nir_op_ieq:
1013 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1014 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
1015 break;
1016
1017 case nir_op_ine:
1018 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1019 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
1020 break;
1021
1022 case nir_op_inot:
1023 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1024 if (devinfo->gen >= 8) {
1025 op[0] = resolve_source_modifiers(op[0]);
1026 }
1027 bld.NOT(result, op[0]);
1028 break;
1029 case nir_op_ixor:
1030 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1031 if (devinfo->gen >= 8) {
1032 op[0] = resolve_source_modifiers(op[0]);
1033 op[1] = resolve_source_modifiers(op[1]);
1034 }
1035 bld.XOR(result, op[0], op[1]);
1036 break;
1037 case nir_op_ior:
1038 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1039 if (devinfo->gen >= 8) {
1040 op[0] = resolve_source_modifiers(op[0]);
1041 op[1] = resolve_source_modifiers(op[1]);
1042 }
1043 bld.OR(result, op[0], op[1]);
1044 break;
1045 case nir_op_iand:
1046 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1047 if (devinfo->gen >= 8) {
1048 op[0] = resolve_source_modifiers(op[0]);
1049 op[1] = resolve_source_modifiers(op[1]);
1050 }
1051 bld.AND(result, op[0], op[1]);
1052 break;
1053
1054 case nir_op_fdot2:
1055 case nir_op_fdot3:
1056 case nir_op_fdot4:
1057 case nir_op_ball_fequal2:
1058 case nir_op_ball_iequal2:
1059 case nir_op_ball_fequal3:
1060 case nir_op_ball_iequal3:
1061 case nir_op_ball_fequal4:
1062 case nir_op_ball_iequal4:
1063 case nir_op_bany_fnequal2:
1064 case nir_op_bany_inequal2:
1065 case nir_op_bany_fnequal3:
1066 case nir_op_bany_inequal3:
1067 case nir_op_bany_fnequal4:
1068 case nir_op_bany_inequal4:
1069 unreachable("Lowered by nir_lower_alu_reductions");
1070
1071 case nir_op_fnoise1_1:
1072 case nir_op_fnoise1_2:
1073 case nir_op_fnoise1_3:
1074 case nir_op_fnoise1_4:
1075 case nir_op_fnoise2_1:
1076 case nir_op_fnoise2_2:
1077 case nir_op_fnoise2_3:
1078 case nir_op_fnoise2_4:
1079 case nir_op_fnoise3_1:
1080 case nir_op_fnoise3_2:
1081 case nir_op_fnoise3_3:
1082 case nir_op_fnoise3_4:
1083 case nir_op_fnoise4_1:
1084 case nir_op_fnoise4_2:
1085 case nir_op_fnoise4_3:
1086 case nir_op_fnoise4_4:
1087 unreachable("not reached: should be handled by lower_noise");
1088
1089 case nir_op_ldexp:
1090 unreachable("not reached: should be handled by ldexp_to_arith()");
1091
1092 case nir_op_fsqrt:
1093 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
1094 inst->saturate = instr->dest.saturate;
1095 break;
1096
1097 case nir_op_frsq:
1098 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
1099 inst->saturate = instr->dest.saturate;
1100 break;
1101
1102 case nir_op_b2i:
1103 case nir_op_b2f:
1104 bld.MOV(result, negate(op[0]));
1105 break;
1106
1107 case nir_op_f2b:
1108 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
1109 break;
1110 case nir_op_d2b: {
1111 /* two-argument instructions can't take 64-bit immediates */
1112 fs_reg zero = vgrf(glsl_type::double_type);
1113 bld.MOV(zero, brw_imm_df(0.0));
1114 /* A SIMD16 execution needs to be split in two instructions, so use
1115 * a vgrf instead of the flag register as dst so instruction splitting
1116 * works
1117 */
1118 fs_reg tmp = vgrf(glsl_type::double_type);
1119 bld.CMP(tmp, op[0], zero, BRW_CONDITIONAL_NZ);
1120 bld.MOV(result, subscript(tmp, BRW_REGISTER_TYPE_UD, 0));
1121 break;
1122 }
1123 case nir_op_i2b:
1124 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1125 break;
1126
1127 case nir_op_ftrunc:
1128 inst = bld.RNDZ(result, op[0]);
1129 inst->saturate = instr->dest.saturate;
1130 break;
1131
1132 case nir_op_fceil: {
1133 op[0].negate = !op[0].negate;
1134 fs_reg temp = vgrf(glsl_type::float_type);
1135 bld.RNDD(temp, op[0]);
1136 temp.negate = true;
1137 inst = bld.MOV(result, temp);
1138 inst->saturate = instr->dest.saturate;
1139 break;
1140 }
1141 case nir_op_ffloor:
1142 inst = bld.RNDD(result, op[0]);
1143 inst->saturate = instr->dest.saturate;
1144 break;
1145 case nir_op_ffract:
1146 inst = bld.FRC(result, op[0]);
1147 inst->saturate = instr->dest.saturate;
1148 break;
1149 case nir_op_fround_even:
1150 inst = bld.RNDE(result, op[0]);
1151 inst->saturate = instr->dest.saturate;
1152 break;
1153
1154 case nir_op_fquantize2f16: {
1155 fs_reg tmp16 = bld.vgrf(BRW_REGISTER_TYPE_D);
1156 fs_reg tmp32 = bld.vgrf(BRW_REGISTER_TYPE_F);
1157 fs_reg zero = bld.vgrf(BRW_REGISTER_TYPE_F);
1158
1159 /* The destination stride must be at least as big as the source stride. */
1160 tmp16.type = BRW_REGISTER_TYPE_W;
1161 tmp16.stride = 2;
1162
1163 /* Check for denormal */
1164 fs_reg abs_src0 = op[0];
1165 abs_src0.abs = true;
1166 bld.CMP(bld.null_reg_f(), abs_src0, brw_imm_f(ldexpf(1.0, -14)),
1167 BRW_CONDITIONAL_L);
1168 /* Get the appropriately signed zero */
1169 bld.AND(retype(zero, BRW_REGISTER_TYPE_UD),
1170 retype(op[0], BRW_REGISTER_TYPE_UD),
1171 brw_imm_ud(0x80000000));
1172 /* Do the actual F32 -> F16 -> F32 conversion */
1173 bld.emit(BRW_OPCODE_F32TO16, tmp16, op[0]);
1174 bld.emit(BRW_OPCODE_F16TO32, tmp32, tmp16);
1175 /* Select that or zero based on normal status */
1176 inst = bld.SEL(result, zero, tmp32);
1177 inst->predicate = BRW_PREDICATE_NORMAL;
1178 inst->saturate = instr->dest.saturate;
1179 break;
1180 }
1181
1182 case nir_op_imin:
1183 case nir_op_umin:
1184 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1185 case nir_op_fmin:
1186 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_L);
1187 inst->saturate = instr->dest.saturate;
1188 break;
1189
1190 case nir_op_imax:
1191 case nir_op_umax:
1192 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1193 case nir_op_fmax:
1194 inst = bld.emit_minmax(result, op[0], op[1], BRW_CONDITIONAL_GE);
1195 inst->saturate = instr->dest.saturate;
1196 break;
1197
1198 case nir_op_pack_snorm_2x16:
1199 case nir_op_pack_snorm_4x8:
1200 case nir_op_pack_unorm_2x16:
1201 case nir_op_pack_unorm_4x8:
1202 case nir_op_unpack_snorm_2x16:
1203 case nir_op_unpack_snorm_4x8:
1204 case nir_op_unpack_unorm_2x16:
1205 case nir_op_unpack_unorm_4x8:
1206 case nir_op_unpack_half_2x16:
1207 case nir_op_pack_half_2x16:
1208 unreachable("not reached: should be handled by lower_packing_builtins");
1209
1210 case nir_op_unpack_half_2x16_split_x:
1211 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
1212 inst->saturate = instr->dest.saturate;
1213 break;
1214 case nir_op_unpack_half_2x16_split_y:
1215 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
1216 inst->saturate = instr->dest.saturate;
1217 break;
1218
1219 case nir_op_pack_double_2x32_split:
1220 /* Optimize the common case where we are re-packing a double with
1221 * the result of a previous double unpack. In this case we can take the
1222 * 32-bit value to use in the re-pack from the original double and bypass
1223 * the unpack operation.
1224 */
1225 for (int i = 0; i < 2; i++) {
1226 if (instr->src[i].src.is_ssa)
1227 continue;
1228
1229 const nir_instr *parent_instr = instr->src[i].src.ssa->parent_instr;
1230 if (parent_instr->type == nir_instr_type_alu)
1231 continue;
1232
1233 const nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr);
1234 if (alu_parent->op == nir_op_unpack_double_2x32_split_x ||
1235 alu_parent->op == nir_op_unpack_double_2x32_split_y)
1236 continue;
1237
1238 if (!alu_parent->src[0].src.is_ssa)
1239 continue;
1240
1241 op[i] = get_nir_src(alu_parent->src[0].src);
1242 op[i] = offset(retype(op[i], BRW_REGISTER_TYPE_DF), bld,
1243 alu_parent->src[0].swizzle[channel]);
1244 if (alu_parent->op == nir_op_unpack_double_2x32_split_y)
1245 op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 1);
1246 else
1247 op[i] = subscript(op[i], BRW_REGISTER_TYPE_UD, 0);
1248 }
1249 bld.emit(FS_OPCODE_PACK, result, op[0], op[1]);
1250 break;
1251
1252 case nir_op_unpack_double_2x32_split_x:
1253 case nir_op_unpack_double_2x32_split_y: {
1254 /* Optimize the common case where we are unpacking from a double we have
1255 * previously packed. In this case we can just bypass the pack operation
1256 * and source directly from its arguments.
1257 */
1258 unsigned index = (instr->op == nir_op_unpack_double_2x32_split_x) ? 0 : 1;
1259 if (instr->src[0].src.is_ssa) {
1260 nir_instr *parent_instr = instr->src[0].src.ssa->parent_instr;
1261 if (parent_instr->type == nir_instr_type_alu) {
1262 nir_alu_instr *alu_parent = nir_instr_as_alu(parent_instr);
1263 if (alu_parent->op == nir_op_pack_double_2x32_split &&
1264 alu_parent->src[index].src.is_ssa) {
1265 op[0] = retype(get_nir_src(alu_parent->src[index].src),
1266 BRW_REGISTER_TYPE_UD);
1267 op[0] =
1268 offset(op[0], bld, alu_parent->src[index].swizzle[channel]);
1269 bld.MOV(result, op[0]);
1270 break;
1271 }
1272 }
1273 }
1274
1275 if (instr->op == nir_op_unpack_double_2x32_split_x)
1276 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 0));
1277 else
1278 bld.MOV(result, subscript(op[0], BRW_REGISTER_TYPE_UD, 1));
1279 break;
1280 }
1281
1282 case nir_op_fpow:
1283 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1284 inst->saturate = instr->dest.saturate;
1285 break;
1286
1287 case nir_op_bitfield_reverse:
1288 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1289 bld.BFREV(result, op[0]);
1290 break;
1291
1292 case nir_op_bit_count:
1293 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1294 bld.CBIT(result, op[0]);
1295 break;
1296
1297 case nir_op_ufind_msb:
1298 case nir_op_ifind_msb: {
1299 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1300 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1301
1302 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1303 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1304 * subtract the result from 31 to convert the MSB count into an LSB count.
1305 */
1306 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1307
1308 inst = bld.ADD(result, result, brw_imm_d(31));
1309 inst->predicate = BRW_PREDICATE_NORMAL;
1310 inst->src[0].negate = true;
1311 break;
1312 }
1313
1314 case nir_op_find_lsb:
1315 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1316 bld.FBL(result, op[0]);
1317 break;
1318
1319 case nir_op_ubitfield_extract:
1320 case nir_op_ibitfield_extract:
1321 unreachable("should have been lowered");
1322 case nir_op_ubfe:
1323 case nir_op_ibfe:
1324 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1325 bld.BFE(result, op[2], op[1], op[0]);
1326 break;
1327 case nir_op_bfm:
1328 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1329 bld.BFI1(result, op[0], op[1]);
1330 break;
1331 case nir_op_bfi:
1332 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1333 bld.BFI2(result, op[0], op[1], op[2]);
1334 break;
1335
1336 case nir_op_bitfield_insert:
1337 unreachable("not reached: should have been lowered");
1338
1339 case nir_op_ishl:
1340 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1341 bld.SHL(result, op[0], op[1]);
1342 break;
1343 case nir_op_ishr:
1344 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1345 bld.ASR(result, op[0], op[1]);
1346 break;
1347 case nir_op_ushr:
1348 assert(nir_dest_bit_size(instr->dest.dest) < 64);
1349 bld.SHR(result, op[0], op[1]);
1350 break;
1351
1352 case nir_op_pack_half_2x16_split:
1353 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1354 break;
1355
1356 case nir_op_ffma:
1357 inst = bld.MAD(result, op[2], op[1], op[0]);
1358 inst->saturate = instr->dest.saturate;
1359 break;
1360
1361 case nir_op_flrp:
1362 inst = bld.LRP(result, op[0], op[1], op[2]);
1363 inst->saturate = instr->dest.saturate;
1364 break;
1365
1366 case nir_op_bcsel:
1367 if (optimize_frontfacing_ternary(instr, result))
1368 return;
1369
1370 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1371 inst = bld.SEL(result, op[1], op[2]);
1372 inst->predicate = BRW_PREDICATE_NORMAL;
1373 break;
1374
1375 case nir_op_extract_u8:
1376 case nir_op_extract_i8: {
1377 const brw_reg_type type = brw_int_type(1, instr->op == nir_op_extract_i8);
1378 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1379 assert(byte != NULL);
1380 bld.MOV(result, subscript(op[0], type, byte->u32[0]));
1381 break;
1382 }
1383
1384 case nir_op_extract_u16:
1385 case nir_op_extract_i16: {
1386 const brw_reg_type type = brw_int_type(2, instr->op == nir_op_extract_i16);
1387 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1388 assert(word != NULL);
1389 bld.MOV(result, subscript(op[0], type, word->u32[0]));
1390 break;
1391 }
1392
1393 default:
1394 unreachable("unhandled instruction");
1395 }
1396
1397 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1398 * to sign extend the low bit to 0/~0
1399 */
1400 if (devinfo->gen <= 5 &&
1401 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1402 fs_reg masked = vgrf(glsl_type::int_type);
1403 bld.AND(masked, result, brw_imm_d(1));
1404 masked.negate = true;
1405 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1406 }
1407 }
1408
1409 void
1410 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1411 nir_load_const_instr *instr)
1412 {
1413 const brw_reg_type reg_type =
1414 instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1415 fs_reg reg = bld.vgrf(reg_type, instr->def.num_components);
1416
1417 switch (instr->def.bit_size) {
1418 case 32:
1419 for (unsigned i = 0; i < instr->def.num_components; i++)
1420 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i32[i]));
1421 break;
1422
1423 case 64:
1424 for (unsigned i = 0; i < instr->def.num_components; i++)
1425 bld.MOV(offset(reg, bld, i), brw_imm_df(instr->value.f64[i]));
1426 break;
1427
1428 default:
1429 unreachable("Invalid bit size");
1430 }
1431
1432 nir_ssa_values[instr->def.index] = reg;
1433 }
1434
1435 void
1436 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1437 {
1438 const brw_reg_type reg_type =
1439 instr->def.bit_size == 32 ? BRW_REGISTER_TYPE_D : BRW_REGISTER_TYPE_DF;
1440 nir_ssa_values[instr->def.index] =
1441 bld.vgrf(reg_type, instr->def.num_components);
1442 }
1443
1444 fs_reg
1445 fs_visitor::get_nir_src(const nir_src &src)
1446 {
1447 fs_reg reg;
1448 if (src.is_ssa) {
1449 reg = nir_ssa_values[src.ssa->index];
1450 } else {
1451 /* We don't handle indirects on locals */
1452 assert(src.reg.indirect == NULL);
1453 reg = offset(nir_locals[src.reg.reg->index], bld,
1454 src.reg.base_offset * src.reg.reg->num_components);
1455 }
1456
1457 /* to avoid floating-point denorm flushing problems, set the type by
1458 * default to D - instructions that need floating point semantics will set
1459 * this to F if they need to
1460 */
1461 return retype(reg, BRW_REGISTER_TYPE_D);
1462 }
1463
1464 /**
1465 * Return an IMM for constants; otherwise call get_nir_src() as normal.
1466 */
1467 fs_reg
1468 fs_visitor::get_nir_src_imm(const nir_src &src)
1469 {
1470 nir_const_value *val = nir_src_as_const_value(src);
1471 return val ? fs_reg(brw_imm_d(val->i32[0])) : get_nir_src(src);
1472 }
1473
1474 fs_reg
1475 fs_visitor::get_nir_dest(const nir_dest &dest)
1476 {
1477 if (dest.is_ssa) {
1478 const brw_reg_type reg_type =
1479 dest.ssa.bit_size == 32 ? BRW_REGISTER_TYPE_F : BRW_REGISTER_TYPE_DF;
1480 nir_ssa_values[dest.ssa.index] =
1481 bld.vgrf(reg_type, dest.ssa.num_components);
1482 return nir_ssa_values[dest.ssa.index];
1483 } else {
1484 /* We don't handle indirects on locals */
1485 assert(dest.reg.indirect == NULL);
1486 return offset(nir_locals[dest.reg.reg->index], bld,
1487 dest.reg.base_offset * dest.reg.reg->num_components);
1488 }
1489 }
1490
1491 fs_reg
1492 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1493 {
1494 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1495 BRW_REGISTER_TYPE_UD);
1496 fs_reg indirect;
1497 unsigned indirect_max = 0;
1498
1499 for (const nir_deref *tail = &deref->deref; tail->child;
1500 tail = tail->child) {
1501 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1502 assert(tail->child->deref_type == nir_deref_type_array);
1503 const unsigned size = glsl_get_length(tail->type);
1504 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1505 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1506 image = offset(image, bld, base * element_size);
1507
1508 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1509 fs_reg tmp = vgrf(glsl_type::uint_type);
1510
1511 /* Accessing an invalid surface index with the dataport can result
1512 * in a hang. According to the spec "if the index used to
1513 * select an individual element is negative or greater than or
1514 * equal to the size of the array, the results of the operation
1515 * are undefined but may not lead to termination" -- which is one
1516 * of the possible outcomes of the hang. Clamp the index to
1517 * prevent access outside of the array bounds.
1518 */
1519 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1520 BRW_REGISTER_TYPE_UD),
1521 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1522
1523 indirect_max += element_size * (tail->type->length - 1);
1524
1525 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1526 if (indirect.file == BAD_FILE) {
1527 indirect = tmp;
1528 } else {
1529 bld.ADD(indirect, indirect, tmp);
1530 }
1531 }
1532 }
1533
1534 if (indirect.file == BAD_FILE) {
1535 return image;
1536 } else {
1537 /* Emit a pile of MOVs to load the uniform into a temporary. The
1538 * dead-code elimination pass will get rid of what we don't use.
1539 */
1540 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, BRW_IMAGE_PARAM_SIZE);
1541 for (unsigned j = 0; j < BRW_IMAGE_PARAM_SIZE; j++) {
1542 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
1543 offset(tmp, bld, j), offset(image, bld, j),
1544 indirect, brw_imm_ud((indirect_max + 1) * 4));
1545 }
1546 return tmp;
1547 }
1548 }
1549
1550 void
1551 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1552 unsigned wr_mask)
1553 {
1554 for (unsigned i = 0; i < 4; i++) {
1555 if (!((wr_mask >> i) & 1))
1556 continue;
1557
1558 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1559 new_inst->dst = offset(new_inst->dst, bld, i);
1560 for (unsigned j = 0; j < new_inst->sources; j++)
1561 if (new_inst->src[j].file == VGRF)
1562 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1563
1564 bld.emit(new_inst);
1565 }
1566 }
1567
1568 /**
1569 * Get the matching channel register datatype for an image intrinsic of the
1570 * specified GLSL image type.
1571 */
1572 static brw_reg_type
1573 get_image_base_type(const glsl_type *type)
1574 {
1575 switch ((glsl_base_type)type->sampled_type) {
1576 case GLSL_TYPE_UINT:
1577 return BRW_REGISTER_TYPE_UD;
1578 case GLSL_TYPE_INT:
1579 return BRW_REGISTER_TYPE_D;
1580 case GLSL_TYPE_FLOAT:
1581 return BRW_REGISTER_TYPE_F;
1582 default:
1583 unreachable("Not reached.");
1584 }
1585 }
1586
1587 /**
1588 * Get the appropriate atomic op for an image atomic intrinsic.
1589 */
1590 static unsigned
1591 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1592 {
1593 switch (op) {
1594 case nir_intrinsic_image_atomic_add:
1595 return BRW_AOP_ADD;
1596 case nir_intrinsic_image_atomic_min:
1597 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1598 BRW_AOP_IMIN : BRW_AOP_UMIN);
1599 case nir_intrinsic_image_atomic_max:
1600 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1601 BRW_AOP_IMAX : BRW_AOP_UMAX);
1602 case nir_intrinsic_image_atomic_and:
1603 return BRW_AOP_AND;
1604 case nir_intrinsic_image_atomic_or:
1605 return BRW_AOP_OR;
1606 case nir_intrinsic_image_atomic_xor:
1607 return BRW_AOP_XOR;
1608 case nir_intrinsic_image_atomic_exchange:
1609 return BRW_AOP_MOV;
1610 case nir_intrinsic_image_atomic_comp_swap:
1611 return BRW_AOP_CMPWR;
1612 default:
1613 unreachable("Not reachable.");
1614 }
1615 }
1616
1617 static fs_inst *
1618 emit_pixel_interpolater_send(const fs_builder &bld,
1619 enum opcode opcode,
1620 const fs_reg &dst,
1621 const fs_reg &src,
1622 const fs_reg &desc,
1623 glsl_interp_qualifier interpolation)
1624 {
1625 fs_inst *inst;
1626 fs_reg payload;
1627 int mlen;
1628
1629 if (src.file == BAD_FILE) {
1630 /* Dummy payload */
1631 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1632 mlen = 1;
1633 } else {
1634 payload = src;
1635 mlen = 2 * bld.dispatch_width() / 8;
1636 }
1637
1638 inst = bld.emit(opcode, dst, payload, desc);
1639 inst->mlen = mlen;
1640 /* 2 floats per slot returned */
1641 inst->regs_written = 2 * bld.dispatch_width() / 8;
1642 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1643
1644 return inst;
1645 }
1646
1647 /**
1648 * Computes 1 << x, given a D/UD register containing some value x.
1649 */
1650 static fs_reg
1651 intexp2(const fs_builder &bld, const fs_reg &x)
1652 {
1653 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1654
1655 fs_reg result = bld.vgrf(x.type, 1);
1656 fs_reg one = bld.vgrf(x.type, 1);
1657
1658 bld.MOV(one, retype(brw_imm_d(1), one.type));
1659 bld.SHL(result, one, x);
1660 return result;
1661 }
1662
1663 void
1664 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1665 {
1666 assert(stage == MESA_SHADER_GEOMETRY);
1667
1668 struct brw_gs_prog_data *gs_prog_data =
1669 (struct brw_gs_prog_data *) prog_data;
1670
1671 if (gs_compile->control_data_header_size_bits == 0)
1672 return;
1673
1674 /* We can only do EndPrimitive() functionality when the control data
1675 * consists of cut bits. Fortunately, the only time it isn't is when the
1676 * output type is points, in which case EndPrimitive() is a no-op.
1677 */
1678 if (gs_prog_data->control_data_format !=
1679 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1680 return;
1681 }
1682
1683 /* Cut bits use one bit per vertex. */
1684 assert(gs_compile->control_data_bits_per_vertex == 1);
1685
1686 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1687 vertex_count.type = BRW_REGISTER_TYPE_UD;
1688
1689 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1690 * vertex n, 0 otherwise. So all we need to do here is mark bit
1691 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1692 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1693 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1694 *
1695 * Note that if EndPrimitive() is called before emitting any vertices, this
1696 * will cause us to set bit 31 of the control_data_bits register to 1.
1697 * That's fine because:
1698 *
1699 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1700 * output, so the hardware will ignore cut bit 31.
1701 *
1702 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1703 * last vertex, so setting cut bit 31 has no effect (since the primitive
1704 * is automatically ended when the GS terminates).
1705 *
1706 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1707 * control_data_bits register to 0 when the first vertex is emitted.
1708 */
1709
1710 const fs_builder abld = bld.annotate("end primitive");
1711
1712 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1713 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1714 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1715 fs_reg mask = intexp2(abld, prev_count);
1716 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1717 * attention to the lower 5 bits of its second source argument, so on this
1718 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1719 * ((vertex_count - 1) % 32).
1720 */
1721 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1722 }
1723
1724 void
1725 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1726 {
1727 assert(stage == MESA_SHADER_GEOMETRY);
1728 assert(gs_compile->control_data_bits_per_vertex != 0);
1729
1730 struct brw_gs_prog_data *gs_prog_data =
1731 (struct brw_gs_prog_data *) prog_data;
1732
1733 const fs_builder abld = bld.annotate("emit control data bits");
1734 const fs_builder fwa_bld = bld.exec_all();
1735
1736 /* We use a single UD register to accumulate control data bits (32 bits
1737 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1738 * at a time.
1739 *
1740 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1741 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1742 * use the Channel Mask phase to enable/disable which DWord within that
1743 * group to write. (Remember, different SIMD8 channels may have emitted
1744 * different numbers of vertices, so we may need per-slot offsets.)
1745 *
1746 * Channel masking presents an annoying problem: we may have to replicate
1747 * the data up to 4 times:
1748 *
1749 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1750 *
1751 * To avoid penalizing shaders that emit a small number of vertices, we
1752 * can avoid these sometimes: if the size of the control data header is
1753 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1754 * land in the same 128-bit group, so we can skip per-slot offsets.
1755 *
1756 * Similarly, if the control data header is <= 32 bits, there is only one
1757 * DWord, so we can skip channel masks.
1758 */
1759 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1760
1761 fs_reg channel_mask, per_slot_offset;
1762
1763 if (gs_compile->control_data_header_size_bits > 32) {
1764 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1765 channel_mask = vgrf(glsl_type::uint_type);
1766 }
1767
1768 if (gs_compile->control_data_header_size_bits > 128) {
1769 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1770 per_slot_offset = vgrf(glsl_type::uint_type);
1771 }
1772
1773 /* Figure out which DWord we're trying to write to using the formula:
1774 *
1775 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1776 *
1777 * Since bits_per_vertex is a power of two, and is known at compile
1778 * time, this can be optimized to:
1779 *
1780 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1781 */
1782 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1783 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1784 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1785 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1786 unsigned log2_bits_per_vertex =
1787 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1788 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1789
1790 if (per_slot_offset.file != BAD_FILE) {
1791 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1792 * the appropriate OWord within the control data header.
1793 */
1794 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1795 }
1796
1797 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1798 * write to the appropriate DWORD within the OWORD.
1799 */
1800 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1801 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1802 channel_mask = intexp2(fwa_bld, channel);
1803 /* Then the channel masks need to be in bits 23:16. */
1804 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1805 }
1806
1807 /* Store the control data bits in the message payload and send it. */
1808 int mlen = 2;
1809 if (channel_mask.file != BAD_FILE)
1810 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1811 if (per_slot_offset.file != BAD_FILE)
1812 mlen++;
1813
1814 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1815 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1816 int i = 0;
1817 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1818 if (per_slot_offset.file != BAD_FILE)
1819 sources[i++] = per_slot_offset;
1820 if (channel_mask.file != BAD_FILE)
1821 sources[i++] = channel_mask;
1822 while (i < mlen) {
1823 sources[i++] = this->control_data_bits;
1824 }
1825
1826 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1827 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1828 inst->mlen = mlen;
1829 /* We need to increment Global Offset by 256-bits to make room for
1830 * Broadwell's extra "Vertex Count" payload at the beginning of the
1831 * URB entry. Since this is an OWord message, Global Offset is counted
1832 * in 128-bit units, so we must set it to 2.
1833 */
1834 if (gs_prog_data->static_vertex_count == -1)
1835 inst->offset = 2;
1836 }
1837
1838 void
1839 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1840 unsigned stream_id)
1841 {
1842 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1843
1844 /* Note: we are calling this *before* increasing vertex_count, so
1845 * this->vertex_count == vertex_count - 1 in the formula above.
1846 */
1847
1848 /* Stream mode uses 2 bits per vertex */
1849 assert(gs_compile->control_data_bits_per_vertex == 2);
1850
1851 /* Must be a valid stream */
1852 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1853
1854 /* Control data bits are initialized to 0 so we don't have to set any
1855 * bits when sending vertices to stream 0.
1856 */
1857 if (stream_id == 0)
1858 return;
1859
1860 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1861
1862 /* reg::sid = stream_id */
1863 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1864 abld.MOV(sid, brw_imm_ud(stream_id));
1865
1866 /* reg:shift_count = 2 * (vertex_count - 1) */
1867 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1868 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1869
1870 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1871 * attention to the lower 5 bits of its second source argument, so on this
1872 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1873 * stream_id << ((2 * (vertex_count - 1)) % 32).
1874 */
1875 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1876 abld.SHL(mask, sid, shift_count);
1877 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1878 }
1879
1880 void
1881 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1882 unsigned stream_id)
1883 {
1884 assert(stage == MESA_SHADER_GEOMETRY);
1885
1886 struct brw_gs_prog_data *gs_prog_data =
1887 (struct brw_gs_prog_data *) prog_data;
1888
1889 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1890 vertex_count.type = BRW_REGISTER_TYPE_UD;
1891
1892 /* Haswell and later hardware ignores the "Render Stream Select" bits
1893 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1894 * and instead sends all primitives down the pipeline for rasterization.
1895 * If the SOL stage is enabled, "Render Stream Select" is honored and
1896 * primitives bound to non-zero streams are discarded after stream output.
1897 *
1898 * Since the only purpose of primives sent to non-zero streams is to
1899 * be recorded by transform feedback, we can simply discard all geometry
1900 * bound to these streams when transform feedback is disabled.
1901 */
1902 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1903 return;
1904
1905 /* If we're outputting 32 control data bits or less, then we can wait
1906 * until the shader is over to output them all. Otherwise we need to
1907 * output them as we go. Now is the time to do it, since we're about to
1908 * output the vertex_count'th vertex, so it's guaranteed that the
1909 * control data bits associated with the (vertex_count - 1)th vertex are
1910 * correct.
1911 */
1912 if (gs_compile->control_data_header_size_bits > 32) {
1913 const fs_builder abld =
1914 bld.annotate("emit vertex: emit control data bits");
1915
1916 /* Only emit control data bits if we've finished accumulating a batch
1917 * of 32 bits. This is the case when:
1918 *
1919 * (vertex_count * bits_per_vertex) % 32 == 0
1920 *
1921 * (in other words, when the last 5 bits of vertex_count *
1922 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1923 * integer n (which is always the case, since bits_per_vertex is
1924 * always 1 or 2), this is equivalent to requiring that the last 5-n
1925 * bits of vertex_count are 0:
1926 *
1927 * vertex_count & (2^(5-n) - 1) == 0
1928 *
1929 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1930 * equivalent to:
1931 *
1932 * vertex_count & (32 / bits_per_vertex - 1) == 0
1933 *
1934 * TODO: If vertex_count is an immediate, we could do some of this math
1935 * at compile time...
1936 */
1937 fs_inst *inst =
1938 abld.AND(bld.null_reg_d(), vertex_count,
1939 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1940 inst->conditional_mod = BRW_CONDITIONAL_Z;
1941
1942 abld.IF(BRW_PREDICATE_NORMAL);
1943 /* If vertex_count is 0, then no control data bits have been
1944 * accumulated yet, so we can skip emitting them.
1945 */
1946 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1947 BRW_CONDITIONAL_NEQ);
1948 abld.IF(BRW_PREDICATE_NORMAL);
1949 emit_gs_control_data_bits(vertex_count);
1950 abld.emit(BRW_OPCODE_ENDIF);
1951
1952 /* Reset control_data_bits to 0 so we can start accumulating a new
1953 * batch.
1954 *
1955 * Note: in the case where vertex_count == 0, this neutralizes the
1956 * effect of any call to EndPrimitive() that the shader may have
1957 * made before outputting its first vertex.
1958 */
1959 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1960 inst->force_writemask_all = true;
1961 abld.emit(BRW_OPCODE_ENDIF);
1962 }
1963
1964 emit_urb_writes(vertex_count);
1965
1966 /* In stream mode we have to set control data bits for all vertices
1967 * unless we have disabled control data bits completely (which we do
1968 * do for GL_POINTS outputs that don't use streams).
1969 */
1970 if (gs_compile->control_data_header_size_bits > 0 &&
1971 gs_prog_data->control_data_format ==
1972 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1973 set_gs_stream_control_data_bits(vertex_count, stream_id);
1974 }
1975 }
1976
1977 void
1978 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1979 const nir_src &vertex_src,
1980 unsigned base_offset,
1981 const nir_src &offset_src,
1982 unsigned num_components)
1983 {
1984 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1985
1986 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1987 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1988 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1989
1990 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1991 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1992 * gl_PointSize is available as a GS input, however, so it must be that.
1993 */
1994 const bool is_point_size = (base_offset == 0);
1995
1996 /* TODO: figure out push input layout for invocations == 1 */
1997 if (gs_prog_data->invocations == 1 &&
1998 offset_const != NULL && vertex_const != NULL &&
1999 4 * (base_offset + offset_const->u32[0]) < push_reg_count) {
2000 int imm_offset = (base_offset + offset_const->u32[0]) * 4 +
2001 vertex_const->u32[0] * push_reg_count;
2002 /* This input was pushed into registers. */
2003 if (is_point_size) {
2004 /* gl_PointSize comes in .w */
2005 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
2006 } else {
2007 for (unsigned i = 0; i < num_components; i++) {
2008 bld.MOV(offset(dst, bld, i),
2009 fs_reg(ATTR, imm_offset + i, dst.type));
2010 }
2011 }
2012 return;
2013 }
2014
2015 /* Resort to the pull model. Ensure the VUE handles are provided. */
2016 gs_prog_data->base.include_vue_handles = true;
2017
2018 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
2019 fs_reg icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2020
2021 if (gs_prog_data->invocations == 1) {
2022 if (vertex_const) {
2023 /* The vertex index is constant; just select the proper URB handle. */
2024 icp_handle =
2025 retype(brw_vec8_grf(first_icp_handle + vertex_const->i32[0], 0),
2026 BRW_REGISTER_TYPE_UD);
2027 } else {
2028 /* The vertex index is non-constant. We need to use indirect
2029 * addressing to fetch the proper URB handle.
2030 *
2031 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
2032 * indicating that channel <n> should read the handle from
2033 * DWord <n>. We convert that to bytes by multiplying by 4.
2034 *
2035 * Next, we convert the vertex index to bytes by multiplying
2036 * by 32 (shifting by 5), and add the two together. This is
2037 * the final indirect byte offset.
2038 */
2039 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
2040 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2041 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2042 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2043
2044 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
2045 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
2046 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
2047 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
2048 /* Convert vertex_index to bytes (multiply by 32) */
2049 bld.SHL(vertex_offset_bytes,
2050 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2051 brw_imm_ud(5u));
2052 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
2053
2054 /* Use first_icp_handle as the base offset. There is one register
2055 * of URB handles per vertex, so inform the register allocator that
2056 * we might read up to nir->info.gs.vertices_in registers.
2057 */
2058 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2059 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
2060 fs_reg(icp_offset_bytes),
2061 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
2062 }
2063 } else {
2064 assert(gs_prog_data->invocations > 1);
2065
2066 if (vertex_const) {
2067 assert(devinfo->gen >= 9 || vertex_const->i32[0] <= 5);
2068 bld.MOV(icp_handle,
2069 retype(brw_vec1_grf(first_icp_handle +
2070 vertex_const->i32[0] / 8,
2071 vertex_const->i32[0] % 8),
2072 BRW_REGISTER_TYPE_UD));
2073 } else {
2074 /* The vertex index is non-constant. We need to use indirect
2075 * addressing to fetch the proper URB handle.
2076 *
2077 */
2078 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2079
2080 /* Convert vertex_index to bytes (multiply by 4) */
2081 bld.SHL(icp_offset_bytes,
2082 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2083 brw_imm_ud(2u));
2084
2085 /* Use first_icp_handle as the base offset. There is one DWord
2086 * of URB handles per vertex, so inform the register allocator that
2087 * we might read up to ceil(nir->info.gs.vertices_in / 8) registers.
2088 */
2089 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2090 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
2091 fs_reg(icp_offset_bytes),
2092 brw_imm_ud(DIV_ROUND_UP(nir->info.gs.vertices_in, 8) *
2093 REG_SIZE));
2094 }
2095 }
2096
2097 fs_inst *inst;
2098 if (offset_const) {
2099 /* Constant indexing - use global offset. */
2100 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2101 inst->offset = base_offset + offset_const->u32[0];
2102 inst->base_mrf = -1;
2103 inst->mlen = 1;
2104 inst->regs_written = num_components;
2105 } else {
2106 /* Indirect indexing - use per-slot offsets as well. */
2107 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
2108 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2109 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2110
2111 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2112 inst->offset = base_offset;
2113 inst->base_mrf = -1;
2114 inst->mlen = 2;
2115 inst->regs_written = num_components;
2116 }
2117
2118 if (is_point_size) {
2119 /* Read the whole VUE header (because of alignment) and read .w. */
2120 fs_reg tmp = bld.vgrf(dst.type, 4);
2121 inst->dst = tmp;
2122 inst->regs_written = 4;
2123 bld.MOV(dst, offset(tmp, bld, 3));
2124 }
2125 }
2126
2127 fs_reg
2128 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
2129 {
2130 nir_src *offset_src = nir_get_io_offset_src(instr);
2131 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
2132
2133 if (const_value) {
2134 /* The only constant offset we should find is 0. brw_nir.c's
2135 * add_const_offset_to_base() will fold other constant offsets
2136 * into instr->const_index[0].
2137 */
2138 assert(const_value->u32[0] == 0);
2139 return fs_reg();
2140 }
2141
2142 return get_nir_src(*offset_src);
2143 }
2144
2145 static void
2146 do_untyped_vector_read(const fs_builder &bld,
2147 const fs_reg dest,
2148 const fs_reg surf_index,
2149 const fs_reg offset_reg,
2150 unsigned num_components)
2151 {
2152 if (type_sz(dest.type) == 4) {
2153 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2154 1 /* dims */,
2155 num_components,
2156 BRW_PREDICATE_NONE);
2157 read_result.type = dest.type;
2158 for (unsigned i = 0; i < num_components; i++)
2159 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2160 } else if (type_sz(dest.type) == 8) {
2161 /* Reading a dvec, so we need to:
2162 *
2163 * 1. Multiply num_components by 2, to account for the fact that we
2164 * need to read 64-bit components.
2165 * 2. Shuffle the result of the load to form valid 64-bit elements
2166 * 3. Emit a second load (for components z/w) if needed.
2167 */
2168 fs_reg read_offset = bld.vgrf(BRW_REGISTER_TYPE_UD);
2169 bld.MOV(read_offset, offset_reg);
2170
2171 int iters = num_components <= 2 ? 1 : 2;
2172
2173 /* Load the dvec, the first iteration loads components x/y, the second
2174 * iteration, if needed, loads components z/w
2175 */
2176 for (int it = 0; it < iters; it++) {
2177 /* Compute number of components to read in this iteration */
2178 int iter_components = MIN2(2, num_components);
2179 num_components -= iter_components;
2180
2181 /* Read. Since this message reads 32-bit components, we need to
2182 * read twice as many components.
2183 */
2184 fs_reg read_result = emit_untyped_read(bld, surf_index, read_offset,
2185 1 /* dims */,
2186 iter_components * 2,
2187 BRW_PREDICATE_NONE);
2188
2189 /* Shuffle the 32-bit load result into valid 64-bit data */
2190 const fs_reg packed_result = bld.vgrf(dest.type, iter_components);
2191 shuffle_32bit_load_result_to_64bit_data(
2192 bld, packed_result, read_result, iter_components);
2193
2194 /* Move each component to its destination */
2195 read_result = retype(read_result, BRW_REGISTER_TYPE_DF);
2196 for (int c = 0; c < iter_components; c++) {
2197 bld.MOV(offset(dest, bld, it * 2 + c),
2198 offset(packed_result, bld, c));
2199 }
2200
2201 bld.ADD(read_offset, read_offset, brw_imm_ud(16));
2202 }
2203 } else {
2204 unreachable("Unsupported type");
2205 }
2206 }
2207
2208 void
2209 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
2210 nir_intrinsic_instr *instr)
2211 {
2212 assert(stage == MESA_SHADER_VERTEX);
2213
2214 fs_reg dest;
2215 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2216 dest = get_nir_dest(instr->dest);
2217
2218 switch (instr->intrinsic) {
2219 case nir_intrinsic_load_vertex_id:
2220 unreachable("should be lowered by lower_vertex_id()");
2221
2222 case nir_intrinsic_load_vertex_id_zero_base:
2223 case nir_intrinsic_load_base_vertex:
2224 case nir_intrinsic_load_instance_id:
2225 case nir_intrinsic_load_base_instance:
2226 case nir_intrinsic_load_draw_id: {
2227 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2228 fs_reg val = nir_system_values[sv];
2229 assert(val.file != BAD_FILE);
2230 dest.type = val.type;
2231 bld.MOV(dest, val);
2232 break;
2233 }
2234
2235 default:
2236 nir_emit_intrinsic(bld, instr);
2237 break;
2238 }
2239 }
2240
2241 void
2242 fs_visitor::nir_emit_tcs_intrinsic(const fs_builder &bld,
2243 nir_intrinsic_instr *instr)
2244 {
2245 assert(stage == MESA_SHADER_TESS_CTRL);
2246 struct brw_tcs_prog_key *tcs_key = (struct brw_tcs_prog_key *) key;
2247 struct brw_tcs_prog_data *tcs_prog_data =
2248 (struct brw_tcs_prog_data *) prog_data;
2249
2250 fs_reg dst;
2251 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2252 dst = get_nir_dest(instr->dest);
2253
2254 switch (instr->intrinsic) {
2255 case nir_intrinsic_load_primitive_id:
2256 bld.MOV(dst, fs_reg(brw_vec1_grf(0, 1)));
2257 break;
2258 case nir_intrinsic_load_invocation_id:
2259 bld.MOV(retype(dst, invocation_id.type), invocation_id);
2260 break;
2261 case nir_intrinsic_load_patch_vertices_in:
2262 bld.MOV(retype(dst, BRW_REGISTER_TYPE_D),
2263 brw_imm_d(tcs_key->input_vertices));
2264 break;
2265
2266 case nir_intrinsic_barrier: {
2267 if (tcs_prog_data->instances == 1)
2268 break;
2269
2270 fs_reg m0 = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2271 fs_reg m0_2 = byte_offset(m0, 2 * sizeof(uint32_t));
2272
2273 const fs_builder fwa_bld = bld.exec_all();
2274
2275 /* Zero the message header */
2276 fwa_bld.MOV(m0, brw_imm_ud(0u));
2277
2278 /* Copy "Barrier ID" from r0.2, bits 16:13 */
2279 fwa_bld.AND(m0_2, retype(brw_vec1_grf(0, 2), BRW_REGISTER_TYPE_UD),
2280 brw_imm_ud(INTEL_MASK(16, 13)));
2281
2282 /* Shift it up to bits 27:24. */
2283 fwa_bld.SHL(m0_2, m0_2, brw_imm_ud(11));
2284
2285 /* Set the Barrier Count and the enable bit */
2286 fwa_bld.OR(m0_2, m0_2,
2287 brw_imm_ud(tcs_prog_data->instances << 8 | (1 << 15)));
2288
2289 bld.emit(SHADER_OPCODE_BARRIER, bld.null_reg_ud(), m0);
2290 break;
2291 }
2292
2293 case nir_intrinsic_load_input:
2294 unreachable("nir_lower_io should never give us these.");
2295 break;
2296
2297 case nir_intrinsic_load_per_vertex_input: {
2298 fs_reg indirect_offset = get_indirect_offset(instr);
2299 unsigned imm_offset = instr->const_index[0];
2300
2301 const nir_src &vertex_src = instr->src[0];
2302 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
2303
2304 fs_inst *inst;
2305
2306 fs_reg icp_handle;
2307
2308 if (vertex_const) {
2309 /* Emit a MOV to resolve <0,1,0> regioning. */
2310 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2311 bld.MOV(icp_handle,
2312 retype(brw_vec1_grf(1 + (vertex_const->i32[0] >> 3),
2313 vertex_const->i32[0] & 7),
2314 BRW_REGISTER_TYPE_UD));
2315 } else if (tcs_prog_data->instances == 1 &&
2316 vertex_src.is_ssa &&
2317 vertex_src.ssa->parent_instr->type == nir_instr_type_intrinsic &&
2318 nir_instr_as_intrinsic(vertex_src.ssa->parent_instr)->intrinsic == nir_intrinsic_load_invocation_id) {
2319 /* For the common case of only 1 instance, an array index of
2320 * gl_InvocationID means reading g1. Skip all the indirect work.
2321 */
2322 icp_handle = retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD);
2323 } else {
2324 /* The vertex index is non-constant. We need to use indirect
2325 * addressing to fetch the proper URB handle.
2326 */
2327 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2328
2329 /* Each ICP handle is a single DWord (4 bytes) */
2330 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2331 bld.SHL(vertex_offset_bytes,
2332 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
2333 brw_imm_ud(2u));
2334
2335 /* Start at g1. We might read up to 4 registers. */
2336 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
2337 fs_reg(brw_vec8_grf(1, 0)), vertex_offset_bytes,
2338 brw_imm_ud(4 * REG_SIZE));
2339 }
2340
2341 /* We can only read two double components with each URB read, so
2342 * we send two read messages in that case, each one loading up to
2343 * two double components.
2344 */
2345 unsigned num_iterations = 1;
2346 unsigned num_components = instr->num_components;
2347 fs_reg orig_dst = dst;
2348 if (type_sz(dst.type) == 8) {
2349 if (instr->num_components > 2) {
2350 num_iterations = 2;
2351 num_components = 2;
2352 }
2353
2354 fs_reg tmp = fs_reg(VGRF, alloc.allocate(4), dst.type);
2355 dst = tmp;
2356 }
2357
2358 for (unsigned iter = 0; iter < num_iterations; iter++) {
2359 if (indirect_offset.file == BAD_FILE) {
2360 /* Constant indexing - use global offset. */
2361 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
2362 inst->offset = imm_offset;
2363 inst->mlen = 1;
2364 inst->base_mrf = -1;
2365 } else {
2366 /* Indirect indexing - use per-slot offsets as well. */
2367 const fs_reg srcs[] = { icp_handle, indirect_offset };
2368 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2369 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2370
2371 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2372 inst->offset = imm_offset;
2373 inst->base_mrf = -1;
2374 inst->mlen = 2;
2375 }
2376 inst->regs_written = num_components * type_sz(dst.type) / 4;
2377
2378 /* If we are reading 64-bit data using 32-bit read messages we need
2379 * build proper 64-bit data elements by shuffling the low and high
2380 * 32-bit components around like we do for other things like UBOs
2381 * or SSBOs.
2382 */
2383 if (type_sz(dst.type) == 8) {
2384 shuffle_32bit_load_result_to_64bit_data(
2385 bld, dst, retype(dst, BRW_REGISTER_TYPE_F), num_components);
2386
2387 for (unsigned c = 0; c < num_components; c++) {
2388 bld.MOV(offset(orig_dst, bld, iter * 2 + c),
2389 offset(dst, bld, c));
2390 }
2391 }
2392
2393 /* Copy the temporary to the destination to deal with writemasking.
2394 *
2395 * Also attempt to deal with gl_PointSize being in the .w component.
2396 */
2397 if (inst->offset == 0 && indirect_offset.file == BAD_FILE) {
2398 assert(type_sz(dst.type) < 8);
2399 inst->dst = bld.vgrf(dst.type, 4);
2400 inst->regs_written = 4;
2401 bld.MOV(dst, offset(inst->dst, bld, 3));
2402 }
2403
2404 /* If we are loading double data and we need a second read message
2405 * adjust the write offset
2406 */
2407 if (num_iterations > 1) {
2408 num_components = instr->num_components - 2;
2409 if (indirect_offset.file == BAD_FILE) {
2410 imm_offset++;
2411 } else {
2412 fs_reg new_indirect = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2413 bld.ADD(new_indirect, indirect_offset, brw_imm_ud(1u));
2414 indirect_offset = new_indirect;
2415 }
2416 }
2417 }
2418 break;
2419 }
2420
2421 case nir_intrinsic_load_output:
2422 case nir_intrinsic_load_per_vertex_output: {
2423 fs_reg indirect_offset = get_indirect_offset(instr);
2424 unsigned imm_offset = instr->const_index[0];
2425
2426 fs_inst *inst;
2427 if (indirect_offset.file == BAD_FILE) {
2428 /* Replicate the patch handle to all enabled channels */
2429 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2430 bld.MOV(patch_handle,
2431 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD));
2432
2433 if (imm_offset == 0) {
2434 /* This is a read of gl_TessLevelInner[], which lives in the
2435 * Patch URB header. The layout depends on the domain.
2436 */
2437 dst.type = BRW_REGISTER_TYPE_F;
2438 switch (tcs_key->tes_primitive_mode) {
2439 case GL_QUADS: {
2440 /* DWords 3-2 (reversed) */
2441 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
2442
2443 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle);
2444 inst->offset = 0;
2445 inst->mlen = 1;
2446 inst->base_mrf = -1;
2447 inst->regs_written = 4;
2448
2449 /* dst.xy = tmp.wz */
2450 bld.MOV(dst, offset(tmp, bld, 3));
2451 bld.MOV(offset(dst, bld, 1), offset(tmp, bld, 2));
2452 break;
2453 }
2454 case GL_TRIANGLES:
2455 /* DWord 4; hardcode offset = 1 and regs_written = 1 */
2456 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle);
2457 inst->offset = 1;
2458 inst->mlen = 1;
2459 inst->base_mrf = -1;
2460 inst->regs_written = 1;
2461 break;
2462 case GL_ISOLINES:
2463 /* All channels are undefined. */
2464 break;
2465 default:
2466 unreachable("Bogus tessellation domain");
2467 }
2468 } else if (imm_offset == 1) {
2469 /* This is a read of gl_TessLevelOuter[], which lives in the
2470 * Patch URB header. The layout depends on the domain.
2471 */
2472 dst.type = BRW_REGISTER_TYPE_F;
2473
2474 fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_F, 4);
2475 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, tmp, patch_handle);
2476 inst->offset = 1;
2477 inst->mlen = 1;
2478 inst->base_mrf = -1;
2479 inst->regs_written = 4;
2480
2481 /* Reswizzle: WZYX */
2482 fs_reg srcs[4] = {
2483 offset(tmp, bld, 3),
2484 offset(tmp, bld, 2),
2485 offset(tmp, bld, 1),
2486 offset(tmp, bld, 0),
2487 };
2488
2489 unsigned num_components;
2490 switch (tcs_key->tes_primitive_mode) {
2491 case GL_QUADS:
2492 num_components = 4;
2493 break;
2494 case GL_TRIANGLES:
2495 num_components = 3;
2496 break;
2497 case GL_ISOLINES:
2498 /* Isolines are not reversed; swizzle .zw -> .xy */
2499 srcs[0] = offset(tmp, bld, 2);
2500 srcs[1] = offset(tmp, bld, 3);
2501 num_components = 2;
2502 break;
2503 default:
2504 unreachable("Bogus tessellation domain");
2505 }
2506 bld.LOAD_PAYLOAD(dst, srcs, num_components, 0);
2507 } else {
2508 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, patch_handle);
2509 inst->offset = imm_offset;
2510 inst->mlen = 1;
2511 inst->base_mrf = -1;
2512 inst->regs_written = instr->num_components;
2513 }
2514 } else {
2515 /* Indirect indexing - use per-slot offsets as well. */
2516 const fs_reg srcs[] = {
2517 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2518 indirect_offset
2519 };
2520 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2521 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2522
2523 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
2524 inst->offset = imm_offset;
2525 inst->mlen = 2;
2526 inst->base_mrf = -1;
2527 inst->regs_written = instr->num_components;
2528 }
2529 break;
2530 }
2531
2532 case nir_intrinsic_store_output:
2533 case nir_intrinsic_store_per_vertex_output: {
2534 fs_reg value = get_nir_src(instr->src[0]);
2535 bool is_64bit = (instr->src[0].is_ssa ?
2536 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size) == 64;
2537 fs_reg indirect_offset = get_indirect_offset(instr);
2538 unsigned imm_offset = instr->const_index[0];
2539 unsigned swiz = BRW_SWIZZLE_XYZW;
2540 unsigned mask = instr->const_index[1];
2541 unsigned header_regs = 0;
2542 fs_reg srcs[7];
2543 srcs[header_regs++] = retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD);
2544
2545 if (indirect_offset.file != BAD_FILE) {
2546 srcs[header_regs++] = indirect_offset;
2547 } else if (!is_passthrough_shader) {
2548 if (imm_offset == 0) {
2549 value.type = BRW_REGISTER_TYPE_F;
2550
2551 mask &= (1 << tesslevel_inner_components(tcs_key->tes_primitive_mode)) - 1;
2552
2553 /* This is a write to gl_TessLevelInner[], which lives in the
2554 * Patch URB header. The layout depends on the domain.
2555 */
2556 switch (tcs_key->tes_primitive_mode) {
2557 case GL_QUADS:
2558 /* gl_TessLevelInner[].xy lives at DWords 3-2 (reversed).
2559 * We use an XXYX swizzle to reverse put .xy in the .wz
2560 * channels, and use a .zw writemask.
2561 */
2562 mask = writemask_for_backwards_vector(mask);
2563 swiz = BRW_SWIZZLE4(0, 0, 1, 0);
2564 break;
2565 case GL_TRIANGLES:
2566 /* gl_TessLevelInner[].x lives at DWord 4, so we set the
2567 * writemask to X and bump the URB offset by 1.
2568 */
2569 imm_offset = 1;
2570 break;
2571 case GL_ISOLINES:
2572 /* Skip; gl_TessLevelInner[] doesn't exist for isolines. */
2573 return;
2574 default:
2575 unreachable("Bogus tessellation domain");
2576 }
2577 } else if (imm_offset == 1) {
2578 /* This is a write to gl_TessLevelOuter[] which lives in the
2579 * Patch URB Header at DWords 4-7. However, it's reversed, so
2580 * instead of .xyzw we have .wzyx.
2581 */
2582 value.type = BRW_REGISTER_TYPE_F;
2583
2584 mask &= (1 << tesslevel_outer_components(tcs_key->tes_primitive_mode)) - 1;
2585
2586 if (tcs_key->tes_primitive_mode == GL_ISOLINES) {
2587 /* Isolines .xy should be stored in .zw, in order. */
2588 swiz = BRW_SWIZZLE4(0, 0, 0, 1);
2589 mask <<= 2;
2590 } else {
2591 /* Other domains are reversed; store .wzyx instead of .xyzw */
2592 swiz = BRW_SWIZZLE_WZYX;
2593 mask = writemask_for_backwards_vector(mask);
2594 }
2595 }
2596 }
2597
2598 if (mask == 0)
2599 break;
2600
2601 unsigned num_components = _mesa_fls(mask);
2602 enum opcode opcode;
2603
2604 /* We can only pack two 64-bit components in a single message, so send
2605 * 2 messages if we have more components
2606 */
2607 unsigned num_iterations = 1;
2608 unsigned iter_components = num_components;
2609 if (is_64bit && instr->num_components > 2) {
2610 num_iterations = 2;
2611 iter_components = 2;
2612 }
2613
2614 /* 64-bit data needs to me shuffled before we can write it to the URB.
2615 * We will use this temporary to shuffle the components in each
2616 * iteration.
2617 */
2618 fs_reg tmp =
2619 fs_reg(VGRF, alloc.allocate(2 * iter_components), value.type);
2620
2621 for (unsigned iter = 0; iter < num_iterations; iter++) {
2622 if (!is_64bit && mask != WRITEMASK_XYZW) {
2623 srcs[header_regs++] = brw_imm_ud(mask << 16);
2624 opcode = indirect_offset.file != BAD_FILE ?
2625 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2626 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2627 } else if (is_64bit && ((mask & WRITEMASK_XY) != WRITEMASK_XY)) {
2628 /* Expand the 64-bit mask to 32-bit channels. We only handle
2629 * two channels in each iteration, so we only care about X/Y.
2630 */
2631 unsigned mask32 = 0;
2632 if (mask & WRITEMASK_X)
2633 mask32 |= WRITEMASK_XY;
2634 if (mask & WRITEMASK_Y)
2635 mask32 |= WRITEMASK_ZW;
2636
2637 /* If the mask does not include any of the channels X or Y there
2638 * is nothing to do in this iteration. Move on to the next couple
2639 * of 64-bit channels.
2640 */
2641 if (!mask32) {
2642 mask >>= 2;
2643 imm_offset++;
2644 continue;
2645 }
2646
2647 srcs[header_regs++] = brw_imm_ud(mask32 << 16);
2648 opcode = indirect_offset.file != BAD_FILE ?
2649 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT :
2650 SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
2651 } else {
2652 opcode = indirect_offset.file != BAD_FILE ?
2653 SHADER_OPCODE_URB_WRITE_SIMD8_PER_SLOT :
2654 SHADER_OPCODE_URB_WRITE_SIMD8;
2655 }
2656
2657 for (unsigned i = 0; i < iter_components; i++) {
2658 if (!(mask & (1 << i)))
2659 continue;
2660
2661 if (!is_64bit) {
2662 srcs[header_regs + i] = offset(value, bld, BRW_GET_SWZ(swiz, i));
2663 } else {
2664 /* We need to shuffle the 64-bit data to match the layout
2665 * expected by our 32-bit URB write messages. We use a temporary
2666 * for that.
2667 */
2668 unsigned channel = BRW_GET_SWZ(swiz, iter * 2 + i);
2669 shuffle_64bit_data_for_32bit_write(bld,
2670 retype(offset(tmp, bld, 2 * i), BRW_REGISTER_TYPE_F),
2671 retype(offset(value, bld, 2 * channel), BRW_REGISTER_TYPE_DF),
2672 1);
2673
2674 /* Now copy the data to the destination */
2675 fs_reg dest = fs_reg(VGRF, alloc.allocate(2), value.type);
2676 unsigned idx = 2 * i;
2677 bld.MOV(dest, offset(tmp, bld, idx));
2678 bld.MOV(offset(dest, bld, 1), offset(tmp, bld, idx + 1));
2679 srcs[header_regs + idx] = dest;
2680 srcs[header_regs + idx + 1] = offset(dest, bld, 1);
2681 }
2682 }
2683
2684 unsigned mlen =
2685 header_regs + (is_64bit ? 2 * iter_components : iter_components);
2686 fs_reg payload =
2687 bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
2688 bld.LOAD_PAYLOAD(payload, srcs, mlen, header_regs);
2689
2690 fs_inst *inst = bld.emit(opcode, bld.null_reg_ud(), payload);
2691 inst->offset = imm_offset;
2692 inst->mlen = mlen;
2693 inst->base_mrf = -1;
2694
2695 /* If this is a 64-bit attribute, select the next two 64-bit channels
2696 * to be handled in the next iteration.
2697 */
2698 if (is_64bit) {
2699 mask >>= 2;
2700 imm_offset++;
2701 }
2702 }
2703 break;
2704 }
2705
2706 default:
2707 nir_emit_intrinsic(bld, instr);
2708 break;
2709 }
2710 }
2711
2712 void
2713 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
2714 nir_intrinsic_instr *instr)
2715 {
2716 assert(stage == MESA_SHADER_TESS_EVAL);
2717 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
2718
2719 fs_reg dest;
2720 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2721 dest = get_nir_dest(instr->dest);
2722
2723 switch (instr->intrinsic) {
2724 case nir_intrinsic_load_primitive_id:
2725 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
2726 break;
2727 case nir_intrinsic_load_tess_coord:
2728 /* gl_TessCoord is part of the payload in g1-3 */
2729 for (unsigned i = 0; i < 3; i++) {
2730 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
2731 }
2732 break;
2733
2734 case nir_intrinsic_load_tess_level_outer:
2735 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
2736 * appears as a push-model input. So, we can simply use the ATTR file
2737 * rather than issuing URB read messages. The data is stored in the
2738 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
2739 * .y, and so on.
2740 */
2741 switch (tes_prog_data->domain) {
2742 case BRW_TESS_DOMAIN_QUAD:
2743 for (unsigned i = 0; i < 4; i++)
2744 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2745 break;
2746 case BRW_TESS_DOMAIN_TRI:
2747 for (unsigned i = 0; i < 3; i++)
2748 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2749 break;
2750 case BRW_TESS_DOMAIN_ISOLINE:
2751 for (unsigned i = 0; i < 2; i++)
2752 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
2753 break;
2754 }
2755 break;
2756
2757 case nir_intrinsic_load_tess_level_inner:
2758 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
2759 * appears as a push-model input. So, we can simply use the ATTR file
2760 * rather than issuing URB read messages.
2761 */
2762 switch (tes_prog_data->domain) {
2763 case BRW_TESS_DOMAIN_QUAD:
2764 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
2765 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
2766 break;
2767 case BRW_TESS_DOMAIN_TRI:
2768 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
2769 break;
2770 case BRW_TESS_DOMAIN_ISOLINE:
2771 /* ignore - value is undefined */
2772 break;
2773 }
2774 break;
2775
2776 case nir_intrinsic_load_input:
2777 case nir_intrinsic_load_per_vertex_input: {
2778 fs_reg indirect_offset = get_indirect_offset(instr);
2779 unsigned imm_offset = instr->const_index[0];
2780
2781 fs_inst *inst;
2782 if (indirect_offset.file == BAD_FILE) {
2783 /* Arbitrarily only push up to 32 vec4 slots worth of data,
2784 * which is 16 registers (since each holds 2 vec4 slots).
2785 */
2786 const unsigned max_push_slots = 32;
2787 if (imm_offset < max_push_slots) {
2788 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
2789 for (int i = 0; i < instr->num_components; i++) {
2790 unsigned comp = 16 / type_sz(dest.type) * (imm_offset % 2) + i;
2791 bld.MOV(offset(dest, bld, i), component(src, comp));
2792 }
2793 tes_prog_data->base.urb_read_length =
2794 MAX2(tes_prog_data->base.urb_read_length,
2795 DIV_ROUND_UP(imm_offset + 1, 2));
2796 } else {
2797 /* Replicate the patch handle to all enabled channels */
2798 const fs_reg srcs[] = {
2799 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
2800 };
2801 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
2802 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
2803
2804 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
2805 inst->mlen = 1;
2806 inst->offset = imm_offset;
2807 inst->base_mrf = -1;
2808 inst->regs_written = instr->num_components;
2809 }
2810 } else {
2811 /* Indirect indexing - use per-slot offsets as well. */
2812 const fs_reg srcs[] = {
2813 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
2814 indirect_offset
2815 };
2816 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
2817 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
2818
2819 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
2820 inst->mlen = 2;
2821 inst->offset = imm_offset;
2822 inst->base_mrf = -1;
2823 inst->regs_written = instr->num_components;
2824 }
2825 break;
2826 }
2827 default:
2828 nir_emit_intrinsic(bld, instr);
2829 break;
2830 }
2831 }
2832
2833 void
2834 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
2835 nir_intrinsic_instr *instr)
2836 {
2837 assert(stage == MESA_SHADER_GEOMETRY);
2838 fs_reg indirect_offset;
2839
2840 fs_reg dest;
2841 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2842 dest = get_nir_dest(instr->dest);
2843
2844 switch (instr->intrinsic) {
2845 case nir_intrinsic_load_primitive_id:
2846 assert(stage == MESA_SHADER_GEOMETRY);
2847 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
2848 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
2849 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
2850 break;
2851
2852 case nir_intrinsic_load_input:
2853 unreachable("load_input intrinsics are invalid for the GS stage");
2854
2855 case nir_intrinsic_load_per_vertex_input:
2856 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
2857 instr->src[1], instr->num_components);
2858 break;
2859
2860 case nir_intrinsic_emit_vertex_with_counter:
2861 emit_gs_vertex(instr->src[0], instr->const_index[0]);
2862 break;
2863
2864 case nir_intrinsic_end_primitive_with_counter:
2865 emit_gs_end_primitive(instr->src[0]);
2866 break;
2867
2868 case nir_intrinsic_set_vertex_count:
2869 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
2870 break;
2871
2872 case nir_intrinsic_load_invocation_id: {
2873 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
2874 assert(val.file != BAD_FILE);
2875 dest.type = val.type;
2876 bld.MOV(dest, val);
2877 break;
2878 }
2879
2880 default:
2881 nir_emit_intrinsic(bld, instr);
2882 break;
2883 }
2884 }
2885
2886 void
2887 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
2888 nir_intrinsic_instr *instr)
2889 {
2890 assert(stage == MESA_SHADER_FRAGMENT);
2891 struct brw_wm_prog_data *wm_prog_data =
2892 (struct brw_wm_prog_data *) prog_data;
2893 const struct brw_wm_prog_key *wm_key = (const struct brw_wm_prog_key *) key;
2894
2895 fs_reg dest;
2896 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2897 dest = get_nir_dest(instr->dest);
2898
2899 switch (instr->intrinsic) {
2900 case nir_intrinsic_load_front_face:
2901 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
2902 *emit_frontfacing_interpolation());
2903 break;
2904
2905 case nir_intrinsic_load_sample_pos: {
2906 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
2907 assert(sample_pos.file != BAD_FILE);
2908 dest.type = sample_pos.type;
2909 bld.MOV(dest, sample_pos);
2910 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2911 break;
2912 }
2913
2914 case nir_intrinsic_load_helper_invocation:
2915 case nir_intrinsic_load_sample_mask_in:
2916 case nir_intrinsic_load_sample_id: {
2917 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2918 fs_reg val = nir_system_values[sv];
2919 assert(val.file != BAD_FILE);
2920 dest.type = val.type;
2921 bld.MOV(dest, val);
2922 break;
2923 }
2924
2925 case nir_intrinsic_discard:
2926 case nir_intrinsic_discard_if: {
2927 /* We track our discarded pixels in f0.1. By predicating on it, we can
2928 * update just the flag bits that aren't yet discarded. If there's no
2929 * condition, we emit a CMP of g0 != g0, so all currently executing
2930 * channels will get turned off.
2931 */
2932 fs_inst *cmp;
2933 if (instr->intrinsic == nir_intrinsic_discard_if) {
2934 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2935 brw_imm_d(0), BRW_CONDITIONAL_Z);
2936 } else {
2937 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2938 BRW_REGISTER_TYPE_UW));
2939 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2940 }
2941 cmp->predicate = BRW_PREDICATE_NORMAL;
2942 cmp->flag_subreg = 1;
2943
2944 if (devinfo->gen >= 6) {
2945 emit_discard_jump();
2946 }
2947 break;
2948 }
2949
2950 case nir_intrinsic_interp_var_at_centroid:
2951 case nir_intrinsic_interp_var_at_sample:
2952 case nir_intrinsic_interp_var_at_offset: {
2953 /* Handle ARB_gpu_shader5 interpolation intrinsics
2954 *
2955 * It's worth a quick word of explanation as to why we handle the full
2956 * variable-based interpolation intrinsic rather than a lowered version
2957 * with like we do for other inputs. We have to do that because the way
2958 * we set up inputs doesn't allow us to use the already setup inputs for
2959 * interpolation. At the beginning of the shader, we go through all of
2960 * the input variables and do the initial interpolation and put it in
2961 * the nir_inputs array based on its location as determined in
2962 * nir_lower_io. If the input isn't used, dead code cleans up and
2963 * everything works fine. However, when we get to the ARB_gpu_shader5
2964 * interpolation intrinsics, we need to reinterpolate the input
2965 * differently. If we used an intrinsic that just had an index it would
2966 * only give us the offset into the nir_inputs array. However, this is
2967 * useless because that value is post-interpolation and we need
2968 * pre-interpolation. In order to get the actual location of the bits
2969 * we get from the vertex fetching hardware, we need the variable.
2970 */
2971 wm_prog_data->pulls_bary = true;
2972
2973 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2974 const glsl_interp_qualifier interpolation =
2975 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2976
2977 switch (instr->intrinsic) {
2978 case nir_intrinsic_interp_var_at_centroid:
2979 emit_pixel_interpolater_send(bld,
2980 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2981 dst_xy,
2982 fs_reg(), /* src */
2983 brw_imm_ud(0u),
2984 interpolation);
2985 break;
2986
2987 case nir_intrinsic_interp_var_at_sample: {
2988 if (!wm_key->multisample_fbo) {
2989 /* From the ARB_gpu_shader5 specification:
2990 * "If multisample buffers are not available, the input varying
2991 * will be evaluated at the center of the pixel."
2992 */
2993 emit_pixel_interpolater_send(bld,
2994 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2995 dst_xy,
2996 fs_reg(), /* src */
2997 brw_imm_ud(0u),
2998 interpolation);
2999 break;
3000 }
3001
3002 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
3003
3004 if (const_sample) {
3005 unsigned msg_data = const_sample->i32[0] << 4;
3006
3007 emit_pixel_interpolater_send(bld,
3008 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3009 dst_xy,
3010 fs_reg(), /* src */
3011 brw_imm_ud(msg_data),
3012 interpolation);
3013 } else {
3014 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
3015 BRW_REGISTER_TYPE_UD);
3016
3017 if (nir_src_is_dynamically_uniform(instr->src[0])) {
3018 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3019 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3020 bld.exec_all().group(1, 0)
3021 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3022 emit_pixel_interpolater_send(bld,
3023 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3024 dst_xy,
3025 fs_reg(), /* src */
3026 msg_data,
3027 interpolation);
3028 } else {
3029 /* Make a loop that sends a message to the pixel interpolater
3030 * for the sample number in each live channel. If there are
3031 * multiple channels with the same sample number then these
3032 * will be handled simultaneously with a single interation of
3033 * the loop.
3034 */
3035 bld.emit(BRW_OPCODE_DO);
3036
3037 /* Get the next live sample number into sample_id_reg */
3038 const fs_reg sample_id = bld.emit_uniformize(sample_src);
3039
3040 /* Set the flag register so that we can perform the send
3041 * message on all channels that have the same sample number
3042 */
3043 bld.CMP(bld.null_reg_ud(),
3044 sample_src, sample_id,
3045 BRW_CONDITIONAL_EQ);
3046 const fs_reg msg_data = vgrf(glsl_type::uint_type);
3047 bld.exec_all().group(1, 0)
3048 .SHL(msg_data, sample_id, brw_imm_ud(4u));
3049 fs_inst *inst =
3050 emit_pixel_interpolater_send(bld,
3051 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
3052 dst_xy,
3053 fs_reg(), /* src */
3054 msg_data,
3055 interpolation);
3056 set_predicate(BRW_PREDICATE_NORMAL, inst);
3057
3058 /* Continue the loop if there are any live channels left */
3059 set_predicate_inv(BRW_PREDICATE_NORMAL,
3060 true, /* inverse */
3061 bld.emit(BRW_OPCODE_WHILE));
3062 }
3063 }
3064
3065 break;
3066 }
3067
3068 case nir_intrinsic_interp_var_at_offset: {
3069 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3070
3071 if (const_offset) {
3072 unsigned off_x = MIN2((int)(const_offset->f32[0] * 16), 7) & 0xf;
3073 unsigned off_y = MIN2((int)(const_offset->f32[1] * 16), 7) & 0xf;
3074
3075 emit_pixel_interpolater_send(bld,
3076 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
3077 dst_xy,
3078 fs_reg(), /* src */
3079 brw_imm_ud(off_x | (off_y << 4)),
3080 interpolation);
3081 } else {
3082 fs_reg src = vgrf(glsl_type::ivec2_type);
3083 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
3084 BRW_REGISTER_TYPE_F);
3085 for (int i = 0; i < 2; i++) {
3086 fs_reg temp = vgrf(glsl_type::float_type);
3087 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
3088 fs_reg itemp = vgrf(glsl_type::int_type);
3089 /* float to int */
3090 bld.MOV(itemp, temp);
3091
3092 /* Clamp the upper end of the range to +7/16.
3093 * ARB_gpu_shader5 requires that we support a maximum offset
3094 * of +0.5, which isn't representable in a S0.4 value -- if
3095 * we didn't clamp it, we'd end up with -8/16, which is the
3096 * opposite of what the shader author wanted.
3097 *
3098 * This is legal due to ARB_gpu_shader5's quantization
3099 * rules:
3100 *
3101 * "Not all values of <offset> may be supported; x and y
3102 * offsets may be rounded to fixed-point values with the
3103 * number of fraction bits given by the
3104 * implementation-dependent constant
3105 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
3106 */
3107 set_condmod(BRW_CONDITIONAL_L,
3108 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
3109 }
3110
3111 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
3112 emit_pixel_interpolater_send(bld,
3113 opcode,
3114 dst_xy,
3115 src,
3116 brw_imm_ud(0u),
3117 interpolation);
3118 }
3119 break;
3120 }
3121
3122 default:
3123 unreachable("Invalid intrinsic");
3124 }
3125
3126 for (unsigned j = 0; j < instr->num_components; j++) {
3127 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
3128 src.type = dest.type;
3129
3130 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
3131 dest = offset(dest, bld, 1);
3132 }
3133 break;
3134 }
3135 default:
3136 nir_emit_intrinsic(bld, instr);
3137 break;
3138 }
3139 }
3140
3141 void
3142 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
3143 nir_intrinsic_instr *instr)
3144 {
3145 assert(stage == MESA_SHADER_COMPUTE);
3146 struct brw_cs_prog_data *cs_prog_data =
3147 (struct brw_cs_prog_data *) prog_data;
3148
3149 fs_reg dest;
3150 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3151 dest = get_nir_dest(instr->dest);
3152
3153 switch (instr->intrinsic) {
3154 case nir_intrinsic_barrier:
3155 emit_barrier();
3156 cs_prog_data->uses_barrier = true;
3157 break;
3158
3159 case nir_intrinsic_load_local_invocation_id:
3160 case nir_intrinsic_load_work_group_id: {
3161 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
3162 fs_reg val = nir_system_values[sv];
3163 assert(val.file != BAD_FILE);
3164 dest.type = val.type;
3165 for (unsigned i = 0; i < 3; i++)
3166 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
3167 break;
3168 }
3169
3170 case nir_intrinsic_load_num_work_groups: {
3171 const unsigned surface =
3172 cs_prog_data->binding_table.work_groups_start;
3173
3174 cs_prog_data->uses_num_work_groups = true;
3175
3176 fs_reg surf_index = brw_imm_ud(surface);
3177 brw_mark_surface_used(prog_data, surface);
3178
3179 /* Read the 3 GLuint components of gl_NumWorkGroups */
3180 for (unsigned i = 0; i < 3; i++) {
3181 fs_reg read_result =
3182 emit_untyped_read(bld, surf_index,
3183 brw_imm_ud(i << 2),
3184 1 /* dims */, 1 /* size */,
3185 BRW_PREDICATE_NONE);
3186 read_result.type = dest.type;
3187 bld.MOV(dest, read_result);
3188 dest = offset(dest, bld, 1);
3189 }
3190 break;
3191 }
3192
3193 case nir_intrinsic_shared_atomic_add:
3194 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
3195 break;
3196 case nir_intrinsic_shared_atomic_imin:
3197 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
3198 break;
3199 case nir_intrinsic_shared_atomic_umin:
3200 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
3201 break;
3202 case nir_intrinsic_shared_atomic_imax:
3203 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
3204 break;
3205 case nir_intrinsic_shared_atomic_umax:
3206 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
3207 break;
3208 case nir_intrinsic_shared_atomic_and:
3209 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
3210 break;
3211 case nir_intrinsic_shared_atomic_or:
3212 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
3213 break;
3214 case nir_intrinsic_shared_atomic_xor:
3215 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
3216 break;
3217 case nir_intrinsic_shared_atomic_exchange:
3218 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
3219 break;
3220 case nir_intrinsic_shared_atomic_comp_swap:
3221 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
3222 break;
3223
3224 case nir_intrinsic_load_shared: {
3225 assert(devinfo->gen >= 7);
3226
3227 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3228
3229 /* Get the offset to read from */
3230 fs_reg offset_reg;
3231 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3232 if (const_offset) {
3233 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0]);
3234 } else {
3235 offset_reg = vgrf(glsl_type::uint_type);
3236 bld.ADD(offset_reg,
3237 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
3238 brw_imm_ud(instr->const_index[0]));
3239 }
3240
3241 /* Read the vector */
3242 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3243 instr->num_components);
3244 break;
3245 }
3246
3247 case nir_intrinsic_store_shared: {
3248 assert(devinfo->gen >= 7);
3249
3250 /* Block index */
3251 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
3252
3253 /* Value */
3254 fs_reg val_reg = get_nir_src(instr->src[0]);
3255
3256 /* Writemask */
3257 unsigned writemask = instr->const_index[1];
3258
3259 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3260 * since the untyped writes below operate in units of 32-bits, which
3261 * means that we need to write twice as many components each time.
3262 * Also, we have to suffle 64-bit data to be in the appropriate layout
3263 * expected by our 32-bit write messages.
3264 */
3265 unsigned type_size = 4;
3266 unsigned bit_size = instr->src[0].is_ssa ?
3267 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3268 if (bit_size == 64) {
3269 type_size = 8;
3270 fs_reg tmp =
3271 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3272 shuffle_64bit_data_for_32bit_write(
3273 bld,
3274 retype(tmp, BRW_REGISTER_TYPE_F),
3275 retype(val_reg, BRW_REGISTER_TYPE_DF),
3276 instr->num_components);
3277 val_reg = tmp;
3278 }
3279
3280 unsigned type_slots = type_size / 4;
3281
3282 /* Combine groups of consecutive enabled channels in one write
3283 * message. We use ffs to find the first enabled channel and then ffs on
3284 * the bit-inverse, down-shifted writemask to determine the length of
3285 * the block of enabled bits.
3286 */
3287 while (writemask) {
3288 unsigned first_component = ffs(writemask) - 1;
3289 unsigned length = ffs(~(writemask >> first_component)) - 1;
3290
3291 /* We can't write more than 2 64-bit components at once. Limit the
3292 * length of the write to what we can do and let the next iteration
3293 * handle the rest
3294 */
3295 if (type_size > 4)
3296 length = MIN2(2, length);
3297
3298 fs_reg offset_reg;
3299 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3300 if (const_offset) {
3301 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u32[0] +
3302 type_size * first_component);
3303 } else {
3304 offset_reg = vgrf(glsl_type::uint_type);
3305 bld.ADD(offset_reg,
3306 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
3307 brw_imm_ud(instr->const_index[0] + type_size * first_component));
3308 }
3309
3310 emit_untyped_write(bld, surf_index, offset_reg,
3311 offset(val_reg, bld, first_component * type_slots),
3312 1 /* dims */, length * type_slots,
3313 BRW_PREDICATE_NONE);
3314
3315 /* Clear the bits in the writemask that we just wrote, then try
3316 * again to see if more channels are left.
3317 */
3318 writemask &= (15 << (first_component + length));
3319 }
3320
3321 break;
3322 }
3323
3324 default:
3325 nir_emit_intrinsic(bld, instr);
3326 break;
3327 }
3328 }
3329
3330 void
3331 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
3332 {
3333 fs_reg dest;
3334 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3335 dest = get_nir_dest(instr->dest);
3336
3337 switch (instr->intrinsic) {
3338 case nir_intrinsic_atomic_counter_inc:
3339 case nir_intrinsic_atomic_counter_dec:
3340 case nir_intrinsic_atomic_counter_read: {
3341 /* Get the arguments of the atomic intrinsic. */
3342 const fs_reg offset = get_nir_src(instr->src[0]);
3343 const unsigned surface = (stage_prog_data->binding_table.abo_start +
3344 instr->const_index[0]);
3345 fs_reg tmp;
3346
3347 /* Emit a surface read or atomic op. */
3348 switch (instr->intrinsic) {
3349 case nir_intrinsic_atomic_counter_read:
3350 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
3351 break;
3352
3353 case nir_intrinsic_atomic_counter_inc:
3354 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
3355 fs_reg(), 1, 1, BRW_AOP_INC);
3356 break;
3357
3358 case nir_intrinsic_atomic_counter_dec:
3359 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
3360 fs_reg(), 1, 1, BRW_AOP_PREDEC);
3361 break;
3362
3363 default:
3364 unreachable("Unreachable");
3365 }
3366
3367 /* Assign the result. */
3368 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
3369
3370 /* Mark the surface as used. */
3371 brw_mark_surface_used(stage_prog_data, surface);
3372 break;
3373 }
3374
3375 case nir_intrinsic_image_load:
3376 case nir_intrinsic_image_store:
3377 case nir_intrinsic_image_atomic_add:
3378 case nir_intrinsic_image_atomic_min:
3379 case nir_intrinsic_image_atomic_max:
3380 case nir_intrinsic_image_atomic_and:
3381 case nir_intrinsic_image_atomic_or:
3382 case nir_intrinsic_image_atomic_xor:
3383 case nir_intrinsic_image_atomic_exchange:
3384 case nir_intrinsic_image_atomic_comp_swap: {
3385 using namespace image_access;
3386
3387 /* Get the referenced image variable and type. */
3388 const nir_variable *var = instr->variables[0]->var;
3389 const glsl_type *type = var->type->without_array();
3390 const brw_reg_type base_type = get_image_base_type(type);
3391
3392 /* Get some metadata from the image intrinsic. */
3393 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3394 const unsigned arr_dims = type->sampler_array ? 1 : 0;
3395 const unsigned surf_dims = type->coordinate_components() - arr_dims;
3396 const unsigned format = var->data.image.format;
3397
3398 /* Get the arguments of the image intrinsic. */
3399 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3400 const fs_reg addr = retype(get_nir_src(instr->src[0]),
3401 BRW_REGISTER_TYPE_UD);
3402 const fs_reg src0 = (info->num_srcs >= 3 ?
3403 retype(get_nir_src(instr->src[2]), base_type) :
3404 fs_reg());
3405 const fs_reg src1 = (info->num_srcs >= 4 ?
3406 retype(get_nir_src(instr->src[3]), base_type) :
3407 fs_reg());
3408 fs_reg tmp;
3409
3410 /* Emit an image load, store or atomic op. */
3411 if (instr->intrinsic == nir_intrinsic_image_load)
3412 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
3413
3414 else if (instr->intrinsic == nir_intrinsic_image_store)
3415 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims,
3416 var->data.image.write_only ? GL_NONE : format);
3417
3418 else
3419 tmp = emit_image_atomic(bld, image, addr, src0, src1,
3420 surf_dims, arr_dims, info->dest_components,
3421 get_image_atomic_op(instr->intrinsic, type));
3422
3423 /* Assign the result. */
3424 for (unsigned c = 0; c < info->dest_components; ++c)
3425 bld.MOV(offset(retype(dest, base_type), bld, c),
3426 offset(tmp, bld, c));
3427 break;
3428 }
3429
3430 case nir_intrinsic_memory_barrier_atomic_counter:
3431 case nir_intrinsic_memory_barrier_buffer:
3432 case nir_intrinsic_memory_barrier_image:
3433 case nir_intrinsic_memory_barrier: {
3434 const fs_builder ubld = bld.group(8, 0);
3435 const fs_reg tmp = ubld.vgrf(BRW_REGISTER_TYPE_UD, 2);
3436 ubld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
3437 ->regs_written = 2;
3438 break;
3439 }
3440
3441 case nir_intrinsic_group_memory_barrier:
3442 case nir_intrinsic_memory_barrier_shared:
3443 /* We treat these workgroup-level barriers as no-ops. This should be
3444 * safe at present and as long as:
3445 *
3446 * - Memory access instructions are not subsequently reordered by the
3447 * compiler back-end.
3448 *
3449 * - All threads from a given compute shader workgroup fit within a
3450 * single subslice and therefore talk to the same HDC shared unit
3451 * what supposedly guarantees ordering and coherency between threads
3452 * from the same workgroup. This may change in the future when we
3453 * start splitting workgroups across multiple subslices.
3454 *
3455 * - The context is not in fault-and-stream mode, which could cause
3456 * memory transactions (including to SLM) prior to the barrier to be
3457 * replayed after the barrier if a pagefault occurs. This shouldn't
3458 * be a problem up to and including SKL because fault-and-stream is
3459 * not usable due to hardware issues, but that's likely to change in
3460 * the future.
3461 */
3462 break;
3463
3464 case nir_intrinsic_shader_clock: {
3465 /* We cannot do anything if there is an event, so ignore it for now */
3466 fs_reg shader_clock = get_timestamp(bld);
3467 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
3468
3469 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
3470 break;
3471 }
3472
3473 case nir_intrinsic_image_size: {
3474 /* Get the referenced image variable and type. */
3475 const nir_variable *var = instr->variables[0]->var;
3476 const glsl_type *type = var->type->without_array();
3477
3478 /* Get the size of the image. */
3479 const fs_reg image = get_nir_image_deref(instr->variables[0]);
3480 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
3481
3482 /* For 1DArray image types, the array index is stored in the Z component.
3483 * Fix this by swizzling the Z component to the Y component.
3484 */
3485 const bool is_1d_array_image =
3486 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
3487 type->sampler_array;
3488
3489 /* For CubeArray images, we should count the number of cubes instead
3490 * of the number of faces. Fix it by dividing the (Z component) by 6.
3491 */
3492 const bool is_cube_array_image =
3493 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
3494 type->sampler_array;
3495
3496 /* Copy all the components. */
3497 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
3498 for (unsigned c = 0; c < info->dest_components; ++c) {
3499 if ((int)c >= type->coordinate_components()) {
3500 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3501 brw_imm_d(1));
3502 } else if (c == 1 && is_1d_array_image) {
3503 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3504 offset(size, bld, 2));
3505 } else if (c == 2 && is_cube_array_image) {
3506 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
3507 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3508 offset(size, bld, c), brw_imm_d(6));
3509 } else {
3510 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
3511 offset(size, bld, c));
3512 }
3513 }
3514
3515 break;
3516 }
3517
3518 case nir_intrinsic_image_samples:
3519 /* The driver does not support multi-sampled images. */
3520 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
3521 break;
3522
3523 case nir_intrinsic_load_uniform: {
3524 /* Offsets are in bytes but they should always be multiples of 4 */
3525 assert(instr->const_index[0] % 4 == 0);
3526
3527 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
3528
3529 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3530 if (const_offset) {
3531 /* Offsets are in bytes but they should always be multiples of 4 */
3532 assert(const_offset->u32[0] % 4 == 0);
3533 src.reg_offset = const_offset->u32[0] / 4;
3534
3535 for (unsigned j = 0; j < instr->num_components; j++) {
3536 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3537 }
3538 } else {
3539 fs_reg indirect = retype(get_nir_src(instr->src[0]),
3540 BRW_REGISTER_TYPE_UD);
3541
3542 /* We need to pass a size to the MOV_INDIRECT but we don't want it to
3543 * go past the end of the uniform. In order to keep the n'th
3544 * component from running past, we subtract off the size of all but
3545 * one component of the vector.
3546 */
3547 assert(instr->const_index[1] >=
3548 instr->num_components * (int) type_sz(dest.type));
3549 unsigned read_size = instr->const_index[1] -
3550 (instr->num_components - 1) * type_sz(dest.type);
3551
3552 for (unsigned j = 0; j < instr->num_components; j++) {
3553 bld.emit(SHADER_OPCODE_MOV_INDIRECT,
3554 offset(dest, bld, j), offset(src, bld, j),
3555 indirect, brw_imm_ud(read_size));
3556 }
3557 }
3558 break;
3559 }
3560
3561 case nir_intrinsic_load_ubo: {
3562 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
3563 fs_reg surf_index;
3564
3565 if (const_index) {
3566 const unsigned index = stage_prog_data->binding_table.ubo_start +
3567 const_index->u32[0];
3568 surf_index = brw_imm_ud(index);
3569 brw_mark_surface_used(prog_data, index);
3570 } else {
3571 /* The block index is not a constant. Evaluate the index expression
3572 * per-channel and add the base UBO index; we have to select a value
3573 * from any live channel.
3574 */
3575 surf_index = vgrf(glsl_type::uint_type);
3576 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3577 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
3578 surf_index = bld.emit_uniformize(surf_index);
3579
3580 /* Assume this may touch any UBO. It would be nice to provide
3581 * a tighter bound, but the array information is already lowered away.
3582 */
3583 brw_mark_surface_used(prog_data,
3584 stage_prog_data->binding_table.ubo_start +
3585 nir->info.num_ubos - 1);
3586 }
3587
3588 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3589 if (const_offset == NULL) {
3590 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
3591 BRW_REGISTER_TYPE_UD);
3592
3593 for (int i = 0; i < instr->num_components; i++)
3594 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
3595 base_offset, i * type_sz(dest.type));
3596 } else {
3597 /* Even if we are loading doubles, a pull constant load will load
3598 * a 32-bit vec4, so should only reserve vgrf space for that. If we
3599 * need to load a full dvec4 we will have to emit 2 loads. This is
3600 * similar to demote_pull_constants(), except that in that case we
3601 * see individual accesses to each component of the vector and then
3602 * we let CSE deal with duplicate loads. Here we see a vector access
3603 * and we have to split it if necessary.
3604 */
3605 const unsigned type_size = type_sz(dest.type);
3606 const fs_reg packed_consts = bld.vgrf(BRW_REGISTER_TYPE_F);
3607 for (unsigned c = 0; c < instr->num_components;) {
3608 const unsigned base = const_offset->u32[0] + c * type_size;
3609
3610 /* Number of usable components in the next 16B-aligned load */
3611 const unsigned count = MIN2(instr->num_components - c,
3612 (16 - base % 16) / type_size);
3613
3614 bld.exec_all()
3615 .emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD,
3616 packed_consts, surf_index, brw_imm_ud(base & ~15));
3617
3618 const fs_reg consts =
3619 retype(byte_offset(packed_consts, base & 15), dest.type);
3620
3621 for (unsigned d = 0; d < count; d++)
3622 bld.MOV(offset(dest, bld, c + d), component(consts, d));
3623
3624 c += count;
3625 }
3626 }
3627 break;
3628 }
3629
3630 case nir_intrinsic_load_ssbo: {
3631 assert(devinfo->gen >= 7);
3632
3633 nir_const_value *const_uniform_block =
3634 nir_src_as_const_value(instr->src[0]);
3635
3636 fs_reg surf_index;
3637 if (const_uniform_block) {
3638 unsigned index = stage_prog_data->binding_table.ssbo_start +
3639 const_uniform_block->u32[0];
3640 surf_index = brw_imm_ud(index);
3641 brw_mark_surface_used(prog_data, index);
3642 } else {
3643 surf_index = vgrf(glsl_type::uint_type);
3644 bld.ADD(surf_index, get_nir_src(instr->src[0]),
3645 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3646
3647 /* Assume this may touch any UBO. It would be nice to provide
3648 * a tighter bound, but the array information is already lowered away.
3649 */
3650 brw_mark_surface_used(prog_data,
3651 stage_prog_data->binding_table.ssbo_start +
3652 nir->info.num_ssbos - 1);
3653 }
3654
3655 fs_reg offset_reg;
3656 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3657 if (const_offset) {
3658 offset_reg = brw_imm_ud(const_offset->u32[0]);
3659 } else {
3660 offset_reg = get_nir_src(instr->src[1]);
3661 }
3662
3663 /* Read the vector */
3664 do_untyped_vector_read(bld, dest, surf_index, offset_reg,
3665 instr->num_components);
3666
3667 break;
3668 }
3669
3670 case nir_intrinsic_load_input: {
3671 fs_reg src;
3672 if (stage == MESA_SHADER_VERTEX) {
3673 src = fs_reg(ATTR, instr->const_index[0], dest.type);
3674 } else {
3675 src = offset(retype(nir_inputs, dest.type), bld,
3676 instr->const_index[0]);
3677 }
3678
3679 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
3680 assert(const_offset && "Indirect input loads not allowed");
3681 src = offset(src, bld, const_offset->u32[0]);
3682
3683 for (unsigned j = 0; j < instr->num_components; j++) {
3684 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
3685 }
3686
3687 if (type_sz(src.type) == 8) {
3688 shuffle_32bit_load_result_to_64bit_data(bld,
3689 dest,
3690 retype(dest, BRW_REGISTER_TYPE_F),
3691 instr->num_components);
3692 }
3693
3694 break;
3695 }
3696
3697 case nir_intrinsic_store_ssbo: {
3698 assert(devinfo->gen >= 7);
3699
3700 /* Block index */
3701 fs_reg surf_index;
3702 nir_const_value *const_uniform_block =
3703 nir_src_as_const_value(instr->src[1]);
3704 if (const_uniform_block) {
3705 unsigned index = stage_prog_data->binding_table.ssbo_start +
3706 const_uniform_block->u32[0];
3707 surf_index = brw_imm_ud(index);
3708 brw_mark_surface_used(prog_data, index);
3709 } else {
3710 surf_index = vgrf(glsl_type::uint_type);
3711 bld.ADD(surf_index, get_nir_src(instr->src[1]),
3712 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3713
3714 brw_mark_surface_used(prog_data,
3715 stage_prog_data->binding_table.ssbo_start +
3716 nir->info.num_ssbos - 1);
3717 }
3718
3719 /* Value */
3720 fs_reg val_reg = get_nir_src(instr->src[0]);
3721
3722 /* Writemask */
3723 unsigned writemask = instr->const_index[0];
3724
3725 /* get_nir_src() retypes to integer. Be wary of 64-bit types though
3726 * since the untyped writes below operate in units of 32-bits, which
3727 * means that we need to write twice as many components each time.
3728 * Also, we have to suffle 64-bit data to be in the appropriate layout
3729 * expected by our 32-bit write messages.
3730 */
3731 unsigned type_size = 4;
3732 unsigned bit_size = instr->src[0].is_ssa ?
3733 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3734 if (bit_size == 64) {
3735 type_size = 8;
3736 fs_reg tmp =
3737 fs_reg(VGRF, alloc.allocate(alloc.sizes[val_reg.nr]), val_reg.type);
3738 shuffle_64bit_data_for_32bit_write(bld,
3739 retype(tmp, BRW_REGISTER_TYPE_F),
3740 retype(val_reg, BRW_REGISTER_TYPE_DF),
3741 instr->num_components);
3742 val_reg = tmp;
3743 }
3744
3745 unsigned type_slots = type_size / 4;
3746
3747 /* Combine groups of consecutive enabled channels in one write
3748 * message. We use ffs to find the first enabled channel and then ffs on
3749 * the bit-inverse, down-shifted writemask to determine the length of
3750 * the block of enabled bits.
3751 */
3752 while (writemask) {
3753 unsigned first_component = ffs(writemask) - 1;
3754 unsigned length = ffs(~(writemask >> first_component)) - 1;
3755
3756 /* We can't write more than 2 64-bit components at once. Limit the
3757 * length of the write to what we can do and let the next iteration
3758 * handle the rest
3759 */
3760 if (type_size > 4)
3761 length = MIN2(2, length);
3762
3763 fs_reg offset_reg;
3764 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
3765 if (const_offset) {
3766 offset_reg = brw_imm_ud(const_offset->u32[0] +
3767 type_size * first_component);
3768 } else {
3769 offset_reg = vgrf(glsl_type::uint_type);
3770 bld.ADD(offset_reg,
3771 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
3772 brw_imm_ud(type_size * first_component));
3773 }
3774
3775
3776 emit_untyped_write(bld, surf_index, offset_reg,
3777 offset(val_reg, bld, first_component * type_slots),
3778 1 /* dims */, length * type_slots,
3779 BRW_PREDICATE_NONE);
3780
3781 /* Clear the bits in the writemask that we just wrote, then try
3782 * again to see if more channels are left.
3783 */
3784 writemask &= (15 << (first_component + length));
3785 }
3786 break;
3787 }
3788
3789 case nir_intrinsic_store_output: {
3790 fs_reg src = get_nir_src(instr->src[0]);
3791 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
3792 instr->const_index[0]);
3793
3794 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
3795 assert(const_offset && "Indirect output stores not allowed");
3796 new_dest = offset(new_dest, bld, const_offset->u32[0]);
3797
3798 unsigned num_components = instr->num_components;
3799 unsigned bit_size = instr->src[0].is_ssa ?
3800 instr->src[0].ssa->bit_size : instr->src[0].reg.reg->bit_size;
3801 if (bit_size == 64) {
3802 fs_reg tmp =
3803 fs_reg(VGRF, alloc.allocate(2 * num_components),
3804 BRW_REGISTER_TYPE_F);
3805 shuffle_64bit_data_for_32bit_write(
3806 bld, tmp, retype(src, BRW_REGISTER_TYPE_DF), num_components);
3807 src = retype(tmp, src.type);
3808 num_components *= 2;
3809 }
3810
3811 for (unsigned j = 0; j < num_components; j++) {
3812 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
3813 }
3814 break;
3815 }
3816
3817 case nir_intrinsic_ssbo_atomic_add:
3818 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
3819 break;
3820 case nir_intrinsic_ssbo_atomic_imin:
3821 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
3822 break;
3823 case nir_intrinsic_ssbo_atomic_umin:
3824 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
3825 break;
3826 case nir_intrinsic_ssbo_atomic_imax:
3827 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
3828 break;
3829 case nir_intrinsic_ssbo_atomic_umax:
3830 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
3831 break;
3832 case nir_intrinsic_ssbo_atomic_and:
3833 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
3834 break;
3835 case nir_intrinsic_ssbo_atomic_or:
3836 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
3837 break;
3838 case nir_intrinsic_ssbo_atomic_xor:
3839 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
3840 break;
3841 case nir_intrinsic_ssbo_atomic_exchange:
3842 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
3843 break;
3844 case nir_intrinsic_ssbo_atomic_comp_swap:
3845 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
3846 break;
3847
3848 case nir_intrinsic_get_buffer_size: {
3849 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
3850 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u32[0] : 0;
3851
3852 /* A resinfo's sampler message is used to get the buffer size. The
3853 * SIMD8's writeback message consists of four registers and SIMD16's
3854 * writeback message consists of 8 destination registers (two per each
3855 * component). Because we are only interested on the first channel of
3856 * the first returned component, where resinfo returns the buffer size
3857 * for SURFTYPE_BUFFER, we can just use the SIMD8 variant regardless of
3858 * the dispatch width.
3859 */
3860 const fs_builder ubld = bld.exec_all().group(8, 0);
3861 fs_reg src_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD);
3862 fs_reg ret_payload = ubld.vgrf(BRW_REGISTER_TYPE_UD, 4);
3863
3864 /* Set LOD = 0 */
3865 ubld.MOV(src_payload, brw_imm_d(0));
3866
3867 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
3868 fs_inst *inst = ubld.emit(FS_OPCODE_GET_BUFFER_SIZE, ret_payload,
3869 src_payload, brw_imm_ud(index));
3870 inst->header_size = 0;
3871 inst->mlen = 1;
3872 inst->regs_written = 4;
3873
3874 bld.MOV(retype(dest, ret_payload.type), component(ret_payload, 0));
3875 brw_mark_surface_used(prog_data, index);
3876 break;
3877 }
3878
3879 default:
3880 unreachable("unknown intrinsic");
3881 }
3882 }
3883
3884 void
3885 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
3886 int op, nir_intrinsic_instr *instr)
3887 {
3888 fs_reg dest;
3889 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3890 dest = get_nir_dest(instr->dest);
3891
3892 fs_reg surface;
3893 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
3894 if (const_surface) {
3895 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
3896 const_surface->u32[0];
3897 surface = brw_imm_ud(surf_index);
3898 brw_mark_surface_used(prog_data, surf_index);
3899 } else {
3900 surface = vgrf(glsl_type::uint_type);
3901 bld.ADD(surface, get_nir_src(instr->src[0]),
3902 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
3903
3904 /* Assume this may touch any SSBO. This is the same we do for other
3905 * UBO/SSBO accesses with non-constant surface.
3906 */
3907 brw_mark_surface_used(prog_data,
3908 stage_prog_data->binding_table.ssbo_start +
3909 nir->info.num_ssbos - 1);
3910 }
3911
3912 fs_reg offset = get_nir_src(instr->src[1]);
3913 fs_reg data1 = get_nir_src(instr->src[2]);
3914 fs_reg data2;
3915 if (op == BRW_AOP_CMPWR)
3916 data2 = get_nir_src(instr->src[3]);
3917
3918 /* Emit the actual atomic operation operation */
3919
3920 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3921 data1, data2,
3922 1 /* dims */, 1 /* rsize */,
3923 op,
3924 BRW_PREDICATE_NONE);
3925 dest.type = atomic_result.type;
3926 bld.MOV(dest, atomic_result);
3927 }
3928
3929 void
3930 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
3931 int op, nir_intrinsic_instr *instr)
3932 {
3933 fs_reg dest;
3934 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
3935 dest = get_nir_dest(instr->dest);
3936
3937 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
3938 fs_reg offset = get_nir_src(instr->src[0]);
3939 fs_reg data1 = get_nir_src(instr->src[1]);
3940 fs_reg data2;
3941 if (op == BRW_AOP_CMPWR)
3942 data2 = get_nir_src(instr->src[2]);
3943
3944 /* Emit the actual atomic operation operation */
3945
3946 fs_reg atomic_result = emit_untyped_atomic(bld, surface, offset,
3947 data1, data2,
3948 1 /* dims */, 1 /* rsize */,
3949 op,
3950 BRW_PREDICATE_NONE);
3951 dest.type = atomic_result.type;
3952 bld.MOV(dest, atomic_result);
3953 }
3954
3955 void
3956 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
3957 {
3958 unsigned texture = instr->texture_index;
3959 unsigned sampler = instr->sampler_index;
3960
3961 fs_reg srcs[TEX_LOGICAL_NUM_SRCS];
3962
3963 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture);
3964 srcs[TEX_LOGICAL_SRC_SAMPLER] = brw_imm_ud(sampler);
3965
3966 int lod_components = 0;
3967
3968 /* The hardware requires a LOD for buffer textures */
3969 if (instr->sampler_dim == GLSL_SAMPLER_DIM_BUF)
3970 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_d(0);
3971
3972 for (unsigned i = 0; i < instr->num_srcs; i++) {
3973 fs_reg src = get_nir_src(instr->src[i].src);
3974 switch (instr->src[i].src_type) {
3975 case nir_tex_src_bias:
3976 srcs[TEX_LOGICAL_SRC_LOD] =
3977 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
3978 break;
3979 case nir_tex_src_comparitor:
3980 srcs[TEX_LOGICAL_SRC_SHADOW_C] = retype(src, BRW_REGISTER_TYPE_F);
3981 break;
3982 case nir_tex_src_coord:
3983 switch (instr->op) {
3984 case nir_texop_txf:
3985 case nir_texop_txf_ms:
3986 case nir_texop_txf_ms_mcs:
3987 case nir_texop_samples_identical:
3988 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_D);
3989 break;
3990 default:
3991 srcs[TEX_LOGICAL_SRC_COORDINATE] = retype(src, BRW_REGISTER_TYPE_F);
3992 break;
3993 }
3994 break;
3995 case nir_tex_src_ddx:
3996 srcs[TEX_LOGICAL_SRC_LOD] = retype(src, BRW_REGISTER_TYPE_F);
3997 lod_components = nir_tex_instr_src_size(instr, i);
3998 break;
3999 case nir_tex_src_ddy:
4000 srcs[TEX_LOGICAL_SRC_LOD2] = retype(src, BRW_REGISTER_TYPE_F);
4001 break;
4002 case nir_tex_src_lod:
4003 switch (instr->op) {
4004 case nir_texop_txs:
4005 srcs[TEX_LOGICAL_SRC_LOD] =
4006 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_UD);
4007 break;
4008 case nir_texop_txf:
4009 srcs[TEX_LOGICAL_SRC_LOD] =
4010 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_D);
4011 break;
4012 default:
4013 srcs[TEX_LOGICAL_SRC_LOD] =
4014 retype(get_nir_src_imm(instr->src[i].src), BRW_REGISTER_TYPE_F);
4015 break;
4016 }
4017 break;
4018 case nir_tex_src_ms_index:
4019 srcs[TEX_LOGICAL_SRC_SAMPLE_INDEX] = retype(src, BRW_REGISTER_TYPE_UD);
4020 break;
4021
4022 case nir_tex_src_offset: {
4023 nir_const_value *const_offset =
4024 nir_src_as_const_value(instr->src[i].src);
4025 if (const_offset) {
4026 unsigned header_bits = brw_texture_offset(const_offset->i32, 3);
4027 if (header_bits != 0)
4028 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] = brw_imm_ud(header_bits);
4029 } else {
4030 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE] =
4031 retype(src, BRW_REGISTER_TYPE_D);
4032 }
4033 break;
4034 }
4035
4036 case nir_tex_src_projector:
4037 unreachable("should be lowered");
4038
4039 case nir_tex_src_texture_offset: {
4040 /* Figure out the highest possible texture index and mark it as used */
4041 uint32_t max_used = texture + instr->texture_array_size - 1;
4042 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
4043 max_used += stage_prog_data->binding_table.gather_texture_start;
4044 } else {
4045 max_used += stage_prog_data->binding_table.texture_start;
4046 }
4047 brw_mark_surface_used(prog_data, max_used);
4048
4049 /* Emit code to evaluate the actual indexing expression */
4050 fs_reg tmp = vgrf(glsl_type::uint_type);
4051 bld.ADD(tmp, src, brw_imm_ud(texture));
4052 srcs[TEX_LOGICAL_SRC_SURFACE] = bld.emit_uniformize(tmp);
4053 break;
4054 }
4055
4056 case nir_tex_src_sampler_offset: {
4057 /* Emit code to evaluate the actual indexing expression */
4058 fs_reg tmp = vgrf(glsl_type::uint_type);
4059 bld.ADD(tmp, src, brw_imm_ud(sampler));
4060 srcs[TEX_LOGICAL_SRC_SAMPLER] = bld.emit_uniformize(tmp);
4061 break;
4062 }
4063
4064 case nir_tex_src_ms_mcs:
4065 assert(instr->op == nir_texop_txf_ms);
4066 srcs[TEX_LOGICAL_SRC_MCS] = retype(src, BRW_REGISTER_TYPE_D);
4067 break;
4068
4069 case nir_tex_src_plane: {
4070 nir_const_value *const_plane =
4071 nir_src_as_const_value(instr->src[i].src);
4072 const uint32_t plane = const_plane->u32[0];
4073 const uint32_t texture_index =
4074 instr->texture_index +
4075 stage_prog_data->binding_table.plane_start[plane] -
4076 stage_prog_data->binding_table.texture_start;
4077
4078 srcs[TEX_LOGICAL_SRC_SURFACE] = brw_imm_ud(texture_index);
4079 break;
4080 }
4081
4082 default:
4083 unreachable("unknown texture source");
4084 }
4085 }
4086
4087 if (srcs[TEX_LOGICAL_SRC_MCS].file == BAD_FILE &&
4088 (instr->op == nir_texop_txf_ms ||
4089 instr->op == nir_texop_samples_identical)) {
4090 if (devinfo->gen >= 7 &&
4091 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
4092 srcs[TEX_LOGICAL_SRC_MCS] =
4093 emit_mcs_fetch(srcs[TEX_LOGICAL_SRC_COORDINATE],
4094 instr->coord_components,
4095 srcs[TEX_LOGICAL_SRC_SURFACE]);
4096 } else {
4097 srcs[TEX_LOGICAL_SRC_MCS] = brw_imm_ud(0u);
4098 }
4099 }
4100
4101 srcs[TEX_LOGICAL_SRC_COORD_COMPONENTS] = brw_imm_d(instr->coord_components);
4102 srcs[TEX_LOGICAL_SRC_GRAD_COMPONENTS] = brw_imm_d(lod_components);
4103
4104 if (instr->op == nir_texop_query_levels) {
4105 /* textureQueryLevels() is implemented in terms of TXS so we need to
4106 * pass a valid LOD argument.
4107 */
4108 assert(srcs[TEX_LOGICAL_SRC_LOD].file == BAD_FILE);
4109 srcs[TEX_LOGICAL_SRC_LOD] = brw_imm_ud(0u);
4110 }
4111
4112 enum opcode opcode;
4113 switch (instr->op) {
4114 case nir_texop_tex:
4115 opcode = SHADER_OPCODE_TEX_LOGICAL;
4116 break;
4117 case nir_texop_txb:
4118 opcode = FS_OPCODE_TXB_LOGICAL;
4119 break;
4120 case nir_texop_txl:
4121 opcode = SHADER_OPCODE_TXL_LOGICAL;
4122 break;
4123 case nir_texop_txd:
4124 opcode = SHADER_OPCODE_TXD_LOGICAL;
4125 break;
4126 case nir_texop_txf:
4127 opcode = SHADER_OPCODE_TXF_LOGICAL;
4128 break;
4129 case nir_texop_txf_ms:
4130 if ((key_tex->msaa_16 & (1 << sampler)))
4131 opcode = SHADER_OPCODE_TXF_CMS_W_LOGICAL;
4132 else
4133 opcode = SHADER_OPCODE_TXF_CMS_LOGICAL;
4134 break;
4135 case nir_texop_txf_ms_mcs:
4136 opcode = SHADER_OPCODE_TXF_MCS_LOGICAL;
4137 break;
4138 case nir_texop_query_levels:
4139 case nir_texop_txs:
4140 opcode = SHADER_OPCODE_TXS_LOGICAL;
4141 break;
4142 case nir_texop_lod:
4143 opcode = SHADER_OPCODE_LOD_LOGICAL;
4144 break;
4145 case nir_texop_tg4:
4146 if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != BAD_FILE &&
4147 srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file != IMM)
4148 opcode = SHADER_OPCODE_TG4_OFFSET_LOGICAL;
4149 else
4150 opcode = SHADER_OPCODE_TG4_LOGICAL;
4151 break;
4152 case nir_texop_texture_samples:
4153 opcode = SHADER_OPCODE_SAMPLEINFO_LOGICAL;
4154 break;
4155 case nir_texop_samples_identical: {
4156 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
4157
4158 /* If mcs is an immediate value, it means there is no MCS. In that case
4159 * just return false.
4160 */
4161 if (srcs[TEX_LOGICAL_SRC_MCS].file == BRW_IMMEDIATE_VALUE) {
4162 bld.MOV(dst, brw_imm_ud(0u));
4163 } else if ((key_tex->msaa_16 & (1 << sampler))) {
4164 fs_reg tmp = vgrf(glsl_type::uint_type);
4165 bld.OR(tmp, srcs[TEX_LOGICAL_SRC_MCS],
4166 offset(srcs[TEX_LOGICAL_SRC_MCS], bld, 1));
4167 bld.CMP(dst, tmp, brw_imm_ud(0u), BRW_CONDITIONAL_EQ);
4168 } else {
4169 bld.CMP(dst, srcs[TEX_LOGICAL_SRC_MCS], brw_imm_ud(0u),
4170 BRW_CONDITIONAL_EQ);
4171 }
4172 return;
4173 }
4174 default:
4175 unreachable("unknown texture opcode");
4176 }
4177
4178 fs_reg dst = bld.vgrf(brw_type_for_nir_type(instr->dest_type), 4);
4179 fs_inst *inst = bld.emit(opcode, dst, srcs, ARRAY_SIZE(srcs));
4180
4181 const unsigned dest_size = nir_tex_instr_dest_size(instr);
4182 if (devinfo->gen >= 9 &&
4183 instr->op != nir_texop_tg4 && instr->op != nir_texop_query_levels) {
4184 unsigned write_mask = instr->dest.is_ssa ?
4185 nir_ssa_def_components_read(&instr->dest.ssa):
4186 (1 << dest_size) - 1;
4187 assert(write_mask != 0); /* dead code should have been eliminated */
4188 inst->regs_written = _mesa_fls(write_mask) * dispatch_width / 8;
4189 } else {
4190 inst->regs_written = 4 * dispatch_width / 8;
4191 }
4192
4193 if (srcs[TEX_LOGICAL_SRC_SHADOW_C].file != BAD_FILE)
4194 inst->shadow_compare = true;
4195
4196 if (srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].file == IMM)
4197 inst->offset = srcs[TEX_LOGICAL_SRC_OFFSET_VALUE].ud;
4198
4199 if (instr->op == nir_texop_tg4) {
4200 if (instr->component == 1 &&
4201 key_tex->gather_channel_quirk_mask & (1 << texture)) {
4202 /* gather4 sampler is broken for green channel on RG32F --
4203 * we must ask for blue instead.
4204 */
4205 inst->offset |= 2 << 16;
4206 } else {
4207 inst->offset |= instr->component << 16;
4208 }
4209
4210 if (devinfo->gen == 6)
4211 emit_gen6_gather_wa(key_tex->gen6_gather_wa[texture], dst);
4212 }
4213
4214 fs_reg nir_dest[4];
4215 for (unsigned i = 0; i < dest_size; i++)
4216 nir_dest[i] = offset(dst, bld, i);
4217
4218 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
4219 instr->is_array;
4220
4221 if (instr->op == nir_texop_query_levels) {
4222 /* # levels is in .w */
4223 nir_dest[0] = offset(dst, bld, 3);
4224 } else if (instr->op == nir_texop_txs && dest_size >= 3 &&
4225 (devinfo->gen < 7 || is_cube_array)) {
4226 fs_reg depth = offset(dst, bld, 2);
4227 fs_reg fixed_depth = vgrf(glsl_type::int_type);
4228
4229 if (is_cube_array) {
4230 /* fixup #layers for cube map arrays */
4231 bld.emit(SHADER_OPCODE_INT_QUOTIENT, fixed_depth, depth, brw_imm_d(6));
4232 } else if (devinfo->gen < 7) {
4233 /* Gen4-6 return 0 instead of 1 for single layer surfaces. */
4234 bld.emit_minmax(fixed_depth, depth, brw_imm_d(1), BRW_CONDITIONAL_GE);
4235 }
4236
4237 nir_dest[2] = fixed_depth;
4238 }
4239
4240 bld.LOAD_PAYLOAD(get_nir_dest(instr->dest), nir_dest, dest_size, 0);
4241 }
4242
4243 void
4244 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
4245 {
4246 switch (instr->type) {
4247 case nir_jump_break:
4248 bld.emit(BRW_OPCODE_BREAK);
4249 break;
4250 case nir_jump_continue:
4251 bld.emit(BRW_OPCODE_CONTINUE);
4252 break;
4253 case nir_jump_return:
4254 default:
4255 unreachable("unknown jump");
4256 }
4257 }
4258
4259 /**
4260 * This helper takes the result of a load operation that reads 32-bit elements
4261 * in this format:
4262 *
4263 * x x x x x x x x
4264 * y y y y y y y y
4265 * z z z z z z z z
4266 * w w w w w w w w
4267 *
4268 * and shuffles the data to get this:
4269 *
4270 * x y x y x y x y
4271 * x y x y x y x y
4272 * z w z w z w z w
4273 * z w z w z w z w
4274 *
4275 * Which is exactly what we want if the load is reading 64-bit components
4276 * like doubles, where x represents the low 32-bit of the x double component
4277 * and y represents the high 32-bit of the x double component (likewise with
4278 * z and w for double component y). The parameter @components represents
4279 * the number of 64-bit components present in @src. This would typically be
4280 * 2 at most, since we can only fit 2 double elements in the result of a
4281 * vec4 load.
4282 *
4283 * Notice that @dst and @src can be the same register.
4284 */
4285 void
4286 shuffle_32bit_load_result_to_64bit_data(const fs_builder &bld,
4287 const fs_reg &dst,
4288 const fs_reg &src,
4289 uint32_t components)
4290 {
4291 assert(type_sz(src.type) == 4);
4292 assert(type_sz(dst.type) == 8);
4293
4294 /* A temporary that we will use to shuffle the 32-bit data of each
4295 * component in the vector into valid 64-bit data. We can't write directly
4296 * to dst because dst can be (and would usually be) the same as src
4297 * and in that case the first MOV in the loop below would overwrite the
4298 * data read in the second MOV.
4299 */
4300 fs_reg tmp = bld.vgrf(dst.type);
4301
4302 for (unsigned i = 0; i < components; i++) {
4303 const fs_reg component_i = offset(src, bld, 2 * i);
4304
4305 bld.MOV(subscript(tmp, src.type, 0), component_i);
4306 bld.MOV(subscript(tmp, src.type, 1), offset(component_i, bld, 1));
4307
4308 bld.MOV(offset(dst, bld, i), tmp);
4309 }
4310 }
4311
4312 /**
4313 * This helper does the inverse operation of
4314 * SHUFFLE_32BIT_LOAD_RESULT_TO_64BIT_DATA.
4315 *
4316 * We need to do this when we are going to use untyped write messsages that
4317 * operate with 32-bit components in order to arrange our 64-bit data to be
4318 * in the expected layout.
4319 *
4320 * Notice that callers of this function, unlike in the case of the inverse
4321 * operation, would typically need to call this with dst and src being
4322 * different registers, since they would otherwise corrupt the original
4323 * 64-bit data they are about to write. Because of this the function checks
4324 * that the src and dst regions involved in the operation do not overlap.
4325 */
4326 void
4327 shuffle_64bit_data_for_32bit_write(const fs_builder &bld,
4328 const fs_reg &dst,
4329 const fs_reg &src,
4330 uint32_t components)
4331 {
4332 assert(type_sz(src.type) == 8);
4333 assert(type_sz(dst.type) == 4);
4334
4335 assert(!src.in_range(dst, 2 * components * bld.dispatch_width() / 8));
4336
4337 for (unsigned i = 0; i < components; i++) {
4338 const fs_reg component_i = offset(src, bld, i);
4339 bld.MOV(offset(dst, bld, 2 * i), subscript(component_i, dst.type, 0));
4340 bld.MOV(offset(dst, bld, 2 * i + 1), subscript(component_i, dst.type, 1));
4341 }
4342 }