glsl: move to compiler/
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182
183 nir_foreach_variable(var, &nir->uniforms) {
184 /* UBO's and atomics don't take up space in the uniform file */
185 if (var->interface_type != NULL || var->type->contains_atomic())
186 continue;
187
188 if (type_size_scalar(var->type) > 0)
189 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
190 }
191 }
192
193 static bool
194 emit_system_values_block(nir_block *block, void *void_visitor)
195 {
196 fs_visitor *v = (fs_visitor *)void_visitor;
197 fs_reg *reg;
198
199 nir_foreach_instr(block, instr) {
200 if (instr->type != nir_instr_type_intrinsic)
201 continue;
202
203 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
204 switch (intrin->intrinsic) {
205 case nir_intrinsic_load_vertex_id:
206 unreachable("should be lowered by lower_vertex_id().");
207
208 case nir_intrinsic_load_vertex_id_zero_base:
209 assert(v->stage == MESA_SHADER_VERTEX);
210 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
211 if (reg->file == BAD_FILE)
212 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
213 break;
214
215 case nir_intrinsic_load_base_vertex:
216 assert(v->stage == MESA_SHADER_VERTEX);
217 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
218 if (reg->file == BAD_FILE)
219 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
220 break;
221
222 case nir_intrinsic_load_instance_id:
223 assert(v->stage == MESA_SHADER_VERTEX);
224 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
225 if (reg->file == BAD_FILE)
226 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
227 break;
228
229 case nir_intrinsic_load_base_instance:
230 assert(v->stage == MESA_SHADER_VERTEX);
231 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
232 if (reg->file == BAD_FILE)
233 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
234 break;
235
236 case nir_intrinsic_load_draw_id:
237 assert(v->stage == MESA_SHADER_VERTEX);
238 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
239 if (reg->file == BAD_FILE)
240 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
241 break;
242
243 case nir_intrinsic_load_invocation_id:
244 assert(v->stage == MESA_SHADER_GEOMETRY);
245 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
246 if (reg->file == BAD_FILE) {
247 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
248 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
249 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
250 abld.SHR(iid, g1, brw_imm_ud(27u));
251 *reg = iid;
252 }
253 break;
254
255 case nir_intrinsic_load_sample_pos:
256 assert(v->stage == MESA_SHADER_FRAGMENT);
257 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
258 if (reg->file == BAD_FILE)
259 *reg = *v->emit_samplepos_setup();
260 break;
261
262 case nir_intrinsic_load_sample_id:
263 assert(v->stage == MESA_SHADER_FRAGMENT);
264 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
265 if (reg->file == BAD_FILE)
266 *reg = *v->emit_sampleid_setup();
267 break;
268
269 case nir_intrinsic_load_sample_mask_in:
270 assert(v->stage == MESA_SHADER_FRAGMENT);
271 assert(v->devinfo->gen >= 7);
272 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
273 if (reg->file == BAD_FILE)
274 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
275 BRW_REGISTER_TYPE_D));
276 break;
277
278 case nir_intrinsic_load_local_invocation_id:
279 assert(v->stage == MESA_SHADER_COMPUTE);
280 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
281 if (reg->file == BAD_FILE)
282 *reg = *v->emit_cs_local_invocation_id_setup();
283 break;
284
285 case nir_intrinsic_load_work_group_id:
286 assert(v->stage == MESA_SHADER_COMPUTE);
287 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
288 if (reg->file == BAD_FILE)
289 *reg = *v->emit_cs_work_group_id_setup();
290 break;
291
292 case nir_intrinsic_load_helper_invocation:
293 assert(v->stage == MESA_SHADER_FRAGMENT);
294 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
295 if (reg->file == BAD_FILE) {
296 const fs_builder abld =
297 v->bld.annotate("gl_HelperInvocation", NULL);
298
299 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
300 * pixel mask is in g1.7 of the thread payload.
301 *
302 * We move the per-channel pixel enable bit to the low bit of each
303 * channel by shifting the byte containing the pixel mask by the
304 * vector immediate 0x76543210UV.
305 *
306 * The region of <1,8,0> reads only 1 byte (the pixel masks for
307 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
308 * masks for 2 and 3) in SIMD16.
309 */
310 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
311 abld.SHR(shifted,
312 stride(byte_offset(retype(brw_vec1_grf(1, 0),
313 BRW_REGISTER_TYPE_UB), 28),
314 1, 8, 0),
315 brw_imm_uv(0x76543210));
316
317 /* A set bit in the pixel mask means the channel is enabled, but
318 * that is the opposite of gl_HelperInvocation so we need to invert
319 * the mask.
320 *
321 * The negate source-modifier bit of logical instructions on Gen8+
322 * performs 1's complement negation, so we can use that instead of
323 * a NOT instruction.
324 */
325 fs_reg inverted = negate(shifted);
326 if (v->devinfo->gen < 8) {
327 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
328 abld.NOT(inverted, shifted);
329 }
330
331 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
332 * with 1 and negating.
333 */
334 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
335 abld.AND(anded, inverted, brw_imm_uw(1));
336
337 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
338 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
339 *reg = dst;
340 }
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values()
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
356 nir_system_values[i] = fs_reg();
357 }
358
359 nir_foreach_function(nir, function) {
360 assert(strcmp(function->name, "main") == 0);
361 assert(function->impl);
362 nir_foreach_block(function->impl, emit_system_values_block, this);
363 }
364 }
365
366 void
367 fs_visitor::nir_emit_impl(nir_function_impl *impl)
368 {
369 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
370 for (unsigned i = 0; i < impl->reg_alloc; i++) {
371 nir_locals[i] = fs_reg();
372 }
373
374 foreach_list_typed(nir_register, reg, node, &impl->registers) {
375 unsigned array_elems =
376 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
377 unsigned size = array_elems * reg->num_components;
378 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
379 }
380
381 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
382 impl->ssa_alloc);
383
384 nir_emit_cf_list(&impl->body);
385 }
386
387 void
388 fs_visitor::nir_emit_cf_list(exec_list *list)
389 {
390 exec_list_validate(list);
391 foreach_list_typed(nir_cf_node, node, node, list) {
392 switch (node->type) {
393 case nir_cf_node_if:
394 nir_emit_if(nir_cf_node_as_if(node));
395 break;
396
397 case nir_cf_node_loop:
398 nir_emit_loop(nir_cf_node_as_loop(node));
399 break;
400
401 case nir_cf_node_block:
402 nir_emit_block(nir_cf_node_as_block(node));
403 break;
404
405 default:
406 unreachable("Invalid CFG node block");
407 }
408 }
409 }
410
411 void
412 fs_visitor::nir_emit_if(nir_if *if_stmt)
413 {
414 /* first, put the condition into f0 */
415 fs_inst *inst = bld.MOV(bld.null_reg_d(),
416 retype(get_nir_src(if_stmt->condition),
417 BRW_REGISTER_TYPE_D));
418 inst->conditional_mod = BRW_CONDITIONAL_NZ;
419
420 bld.IF(BRW_PREDICATE_NORMAL);
421
422 nir_emit_cf_list(&if_stmt->then_list);
423
424 /* note: if the else is empty, dead CF elimination will remove it */
425 bld.emit(BRW_OPCODE_ELSE);
426
427 nir_emit_cf_list(&if_stmt->else_list);
428
429 bld.emit(BRW_OPCODE_ENDIF);
430 }
431
432 void
433 fs_visitor::nir_emit_loop(nir_loop *loop)
434 {
435 bld.emit(BRW_OPCODE_DO);
436
437 nir_emit_cf_list(&loop->body);
438
439 bld.emit(BRW_OPCODE_WHILE);
440 }
441
442 void
443 fs_visitor::nir_emit_block(nir_block *block)
444 {
445 nir_foreach_instr(block, instr) {
446 nir_emit_instr(instr);
447 }
448 }
449
450 void
451 fs_visitor::nir_emit_instr(nir_instr *instr)
452 {
453 const fs_builder abld = bld.annotate(NULL, instr);
454
455 switch (instr->type) {
456 case nir_instr_type_alu:
457 nir_emit_alu(abld, nir_instr_as_alu(instr));
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_EVAL:
466 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_GEOMETRY:
469 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_FRAGMENT:
472 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_COMPUTE:
475 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 default:
478 unreachable("unsupported shader stage");
479 }
480 break;
481
482 case nir_instr_type_tex:
483 nir_emit_texture(abld, nir_instr_as_tex(instr));
484 break;
485
486 case nir_instr_type_load_const:
487 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
488 break;
489
490 case nir_instr_type_ssa_undef:
491 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
492 break;
493
494 case nir_instr_type_jump:
495 nir_emit_jump(abld, nir_instr_as_jump(instr));
496 break;
497
498 default:
499 unreachable("unknown instruction type");
500 }
501 }
502
503 bool
504 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
505 const fs_reg &result)
506 {
507 if (!instr->src[0].src.is_ssa ||
508 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
509 return false;
510
511 nir_intrinsic_instr *src0 =
512 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
513
514 if (src0->intrinsic != nir_intrinsic_load_front_face)
515 return false;
516
517 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
518 if (!value1 || fabsf(value1->f[0]) != 1.0f)
519 return false;
520
521 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
522 if (!value2 || fabsf(value2->f[0]) != 1.0f)
523 return false;
524
525 fs_reg tmp = vgrf(glsl_type::int_type);
526
527 if (devinfo->gen >= 6) {
528 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
529 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
530
531 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
532 *
533 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
534 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
535 *
536 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
537 *
538 * This negation looks like it's safe in practice, because bits 0:4 will
539 * surely be TRIANGLES
540 */
541
542 if (value1->f[0] == -1.0f) {
543 g0.negate = true;
544 }
545
546 tmp.type = BRW_REGISTER_TYPE_W;
547 tmp.subreg_offset = 2;
548 tmp.stride = 2;
549
550 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
551
552 tmp.type = BRW_REGISTER_TYPE_D;
553 tmp.subreg_offset = 0;
554 tmp.stride = 1;
555 } else {
556 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
557 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
558
559 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
560 *
561 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
562 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
563 *
564 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
565 *
566 * This negation looks like it's safe in practice, because bits 0:4 will
567 * surely be TRIANGLES
568 */
569
570 if (value1->f[0] == -1.0f) {
571 g1_6.negate = true;
572 }
573
574 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
575 }
576 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
577
578 return true;
579 }
580
581 void
582 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
583 {
584 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
585 fs_inst *inst;
586
587 fs_reg result = get_nir_dest(instr->dest.dest);
588 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
589
590 fs_reg op[4];
591 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
592 op[i] = get_nir_src(instr->src[i].src);
593 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
594 op[i].abs = instr->src[i].abs;
595 op[i].negate = instr->src[i].negate;
596 }
597
598 /* We get a bunch of mov's out of the from_ssa pass and they may still
599 * be vectorized. We'll handle them as a special-case. We'll also
600 * handle vecN here because it's basically the same thing.
601 */
602 switch (instr->op) {
603 case nir_op_imov:
604 case nir_op_fmov:
605 case nir_op_vec2:
606 case nir_op_vec3:
607 case nir_op_vec4: {
608 fs_reg temp = result;
609 bool need_extra_copy = false;
610 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
611 if (!instr->src[i].src.is_ssa &&
612 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
613 need_extra_copy = true;
614 temp = bld.vgrf(result.type, 4);
615 break;
616 }
617 }
618
619 for (unsigned i = 0; i < 4; i++) {
620 if (!(instr->dest.write_mask & (1 << i)))
621 continue;
622
623 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
624 inst = bld.MOV(offset(temp, bld, i),
625 offset(op[0], bld, instr->src[0].swizzle[i]));
626 } else {
627 inst = bld.MOV(offset(temp, bld, i),
628 offset(op[i], bld, instr->src[i].swizzle[0]));
629 }
630 inst->saturate = instr->dest.saturate;
631 }
632
633 /* In this case the source and destination registers were the same,
634 * so we need to insert an extra set of moves in order to deal with
635 * any swizzling.
636 */
637 if (need_extra_copy) {
638 for (unsigned i = 0; i < 4; i++) {
639 if (!(instr->dest.write_mask & (1 << i)))
640 continue;
641
642 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
643 }
644 }
645 return;
646 }
647 default:
648 break;
649 }
650
651 /* At this point, we have dealt with any instruction that operates on
652 * more than a single channel. Therefore, we can just adjust the source
653 * and destination registers for that channel and emit the instruction.
654 */
655 unsigned channel = 0;
656 if (nir_op_infos[instr->op].output_size == 0) {
657 /* Since NIR is doing the scalarizing for us, we should only ever see
658 * vectorized operations with a single channel.
659 */
660 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
661 channel = ffs(instr->dest.write_mask) - 1;
662
663 result = offset(result, bld, channel);
664 }
665
666 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
667 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
668 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
669 }
670
671 switch (instr->op) {
672 case nir_op_i2f:
673 case nir_op_u2f:
674 inst = bld.MOV(result, op[0]);
675 inst->saturate = instr->dest.saturate;
676 break;
677
678 case nir_op_f2i:
679 case nir_op_f2u:
680 bld.MOV(result, op[0]);
681 break;
682
683 case nir_op_fsign: {
684 /* AND(val, 0x80000000) gives the sign bit.
685 *
686 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
687 * zero.
688 */
689 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
690
691 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
692 op[0].type = BRW_REGISTER_TYPE_UD;
693 result.type = BRW_REGISTER_TYPE_UD;
694 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
695
696 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
697 inst->predicate = BRW_PREDICATE_NORMAL;
698 if (instr->dest.saturate) {
699 inst = bld.MOV(result, result);
700 inst->saturate = true;
701 }
702 break;
703 }
704
705 case nir_op_isign:
706 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
707 * -> non-negative val generates 0x00000000.
708 * Predicated OR sets 1 if val is positive.
709 */
710 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
711 bld.ASR(result, op[0], brw_imm_d(31));
712 inst = bld.OR(result, result, brw_imm_d(1));
713 inst->predicate = BRW_PREDICATE_NORMAL;
714 break;
715
716 case nir_op_frcp:
717 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
718 inst->saturate = instr->dest.saturate;
719 break;
720
721 case nir_op_fexp2:
722 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
723 inst->saturate = instr->dest.saturate;
724 break;
725
726 case nir_op_flog2:
727 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
728 inst->saturate = instr->dest.saturate;
729 break;
730
731 case nir_op_fsin:
732 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_fcos:
737 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_fddx:
742 if (fs_key->high_quality_derivatives) {
743 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
744 } else {
745 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
746 }
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddx_fine:
750 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
751 inst->saturate = instr->dest.saturate;
752 break;
753 case nir_op_fddx_coarse:
754 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
755 inst->saturate = instr->dest.saturate;
756 break;
757 case nir_op_fddy:
758 if (fs_key->high_quality_derivatives) {
759 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
760 brw_imm_d(fs_key->render_to_fbo));
761 } else {
762 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
763 brw_imm_d(fs_key->render_to_fbo));
764 }
765 inst->saturate = instr->dest.saturate;
766 break;
767 case nir_op_fddy_fine:
768 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
769 brw_imm_d(fs_key->render_to_fbo));
770 inst->saturate = instr->dest.saturate;
771 break;
772 case nir_op_fddy_coarse:
773 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
774 brw_imm_d(fs_key->render_to_fbo));
775 inst->saturate = instr->dest.saturate;
776 break;
777
778 case nir_op_fadd:
779 case nir_op_iadd:
780 inst = bld.ADD(result, op[0], op[1]);
781 inst->saturate = instr->dest.saturate;
782 break;
783
784 case nir_op_fmul:
785 inst = bld.MUL(result, op[0], op[1]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_imul:
790 bld.MUL(result, op[0], op[1]);
791 break;
792
793 case nir_op_imul_high:
794 case nir_op_umul_high:
795 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
796 break;
797
798 case nir_op_idiv:
799 case nir_op_udiv:
800 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
801 break;
802
803 case nir_op_uadd_carry:
804 unreachable("Should have been lowered by carry_to_arith().");
805
806 case nir_op_usub_borrow:
807 unreachable("Should have been lowered by borrow_to_arith().");
808
809 case nir_op_umod:
810 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
811 break;
812
813 case nir_op_flt:
814 case nir_op_ilt:
815 case nir_op_ult:
816 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
817 break;
818
819 case nir_op_fge:
820 case nir_op_ige:
821 case nir_op_uge:
822 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
823 break;
824
825 case nir_op_feq:
826 case nir_op_ieq:
827 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
828 break;
829
830 case nir_op_fne:
831 case nir_op_ine:
832 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
833 break;
834
835 case nir_op_inot:
836 if (devinfo->gen >= 8) {
837 op[0] = resolve_source_modifiers(op[0]);
838 }
839 bld.NOT(result, op[0]);
840 break;
841 case nir_op_ixor:
842 if (devinfo->gen >= 8) {
843 op[0] = resolve_source_modifiers(op[0]);
844 op[1] = resolve_source_modifiers(op[1]);
845 }
846 bld.XOR(result, op[0], op[1]);
847 break;
848 case nir_op_ior:
849 if (devinfo->gen >= 8) {
850 op[0] = resolve_source_modifiers(op[0]);
851 op[1] = resolve_source_modifiers(op[1]);
852 }
853 bld.OR(result, op[0], op[1]);
854 break;
855 case nir_op_iand:
856 if (devinfo->gen >= 8) {
857 op[0] = resolve_source_modifiers(op[0]);
858 op[1] = resolve_source_modifiers(op[1]);
859 }
860 bld.AND(result, op[0], op[1]);
861 break;
862
863 case nir_op_fdot2:
864 case nir_op_fdot3:
865 case nir_op_fdot4:
866 case nir_op_ball_fequal2:
867 case nir_op_ball_iequal2:
868 case nir_op_ball_fequal3:
869 case nir_op_ball_iequal3:
870 case nir_op_ball_fequal4:
871 case nir_op_ball_iequal4:
872 case nir_op_bany_fnequal2:
873 case nir_op_bany_inequal2:
874 case nir_op_bany_fnequal3:
875 case nir_op_bany_inequal3:
876 case nir_op_bany_fnequal4:
877 case nir_op_bany_inequal4:
878 unreachable("Lowered by nir_lower_alu_reductions");
879
880 case nir_op_fnoise1_1:
881 case nir_op_fnoise1_2:
882 case nir_op_fnoise1_3:
883 case nir_op_fnoise1_4:
884 case nir_op_fnoise2_1:
885 case nir_op_fnoise2_2:
886 case nir_op_fnoise2_3:
887 case nir_op_fnoise2_4:
888 case nir_op_fnoise3_1:
889 case nir_op_fnoise3_2:
890 case nir_op_fnoise3_3:
891 case nir_op_fnoise3_4:
892 case nir_op_fnoise4_1:
893 case nir_op_fnoise4_2:
894 case nir_op_fnoise4_3:
895 case nir_op_fnoise4_4:
896 unreachable("not reached: should be handled by lower_noise");
897
898 case nir_op_ldexp:
899 unreachable("not reached: should be handled by ldexp_to_arith()");
900
901 case nir_op_fsqrt:
902 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905
906 case nir_op_frsq:
907 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
908 inst->saturate = instr->dest.saturate;
909 break;
910
911 case nir_op_b2i:
912 case nir_op_b2f:
913 bld.MOV(result, negate(op[0]));
914 break;
915
916 case nir_op_f2b:
917 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
918 break;
919 case nir_op_i2b:
920 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
921 break;
922
923 case nir_op_ftrunc:
924 inst = bld.RNDZ(result, op[0]);
925 inst->saturate = instr->dest.saturate;
926 break;
927
928 case nir_op_fceil: {
929 op[0].negate = !op[0].negate;
930 fs_reg temp = vgrf(glsl_type::float_type);
931 bld.RNDD(temp, op[0]);
932 temp.negate = true;
933 inst = bld.MOV(result, temp);
934 inst->saturate = instr->dest.saturate;
935 break;
936 }
937 case nir_op_ffloor:
938 inst = bld.RNDD(result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941 case nir_op_ffract:
942 inst = bld.FRC(result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945 case nir_op_fround_even:
946 inst = bld.RNDE(result, op[0]);
947 inst->saturate = instr->dest.saturate;
948 break;
949
950 case nir_op_fmin:
951 case nir_op_imin:
952 case nir_op_umin:
953 if (devinfo->gen >= 6) {
954 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
955 inst->conditional_mod = BRW_CONDITIONAL_L;
956 } else {
957 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
958 inst = bld.SEL(result, op[0], op[1]);
959 inst->predicate = BRW_PREDICATE_NORMAL;
960 }
961 inst->saturate = instr->dest.saturate;
962 break;
963
964 case nir_op_fmax:
965 case nir_op_imax:
966 case nir_op_umax:
967 if (devinfo->gen >= 6) {
968 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
969 inst->conditional_mod = BRW_CONDITIONAL_GE;
970 } else {
971 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
972 inst = bld.SEL(result, op[0], op[1]);
973 inst->predicate = BRW_PREDICATE_NORMAL;
974 }
975 inst->saturate = instr->dest.saturate;
976 break;
977
978 case nir_op_pack_snorm_2x16:
979 case nir_op_pack_snorm_4x8:
980 case nir_op_pack_unorm_2x16:
981 case nir_op_pack_unorm_4x8:
982 case nir_op_unpack_snorm_2x16:
983 case nir_op_unpack_snorm_4x8:
984 case nir_op_unpack_unorm_2x16:
985 case nir_op_unpack_unorm_4x8:
986 case nir_op_unpack_half_2x16:
987 case nir_op_pack_half_2x16:
988 unreachable("not reached: should be handled by lower_packing_builtins");
989
990 case nir_op_unpack_half_2x16_split_x:
991 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
992 inst->saturate = instr->dest.saturate;
993 break;
994 case nir_op_unpack_half_2x16_split_y:
995 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fpow:
1000 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003
1004 case nir_op_bitfield_reverse:
1005 bld.BFREV(result, op[0]);
1006 break;
1007
1008 case nir_op_bit_count:
1009 bld.CBIT(result, op[0]);
1010 break;
1011
1012 case nir_op_ufind_msb:
1013 case nir_op_ifind_msb: {
1014 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1015
1016 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1017 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1018 * subtract the result from 31 to convert the MSB count into an LSB count.
1019 */
1020 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1021
1022 inst = bld.ADD(result, result, brw_imm_d(31));
1023 inst->predicate = BRW_PREDICATE_NORMAL;
1024 inst->src[0].negate = true;
1025 break;
1026 }
1027
1028 case nir_op_find_lsb:
1029 bld.FBL(result, op[0]);
1030 break;
1031
1032 case nir_op_ubitfield_extract:
1033 case nir_op_ibitfield_extract:
1034 unreachable("should have been lowered");
1035 case nir_op_ubfe:
1036 case nir_op_ibfe:
1037 bld.BFE(result, op[2], op[1], op[0]);
1038 break;
1039 case nir_op_bfm:
1040 bld.BFI1(result, op[0], op[1]);
1041 break;
1042 case nir_op_bfi:
1043 bld.BFI2(result, op[0], op[1], op[2]);
1044 break;
1045
1046 case nir_op_bitfield_insert:
1047 unreachable("not reached: should have been lowered");
1048
1049 case nir_op_ishl:
1050 bld.SHL(result, op[0], op[1]);
1051 break;
1052 case nir_op_ishr:
1053 bld.ASR(result, op[0], op[1]);
1054 break;
1055 case nir_op_ushr:
1056 bld.SHR(result, op[0], op[1]);
1057 break;
1058
1059 case nir_op_pack_half_2x16_split:
1060 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1061 break;
1062
1063 case nir_op_ffma:
1064 inst = bld.MAD(result, op[2], op[1], op[0]);
1065 inst->saturate = instr->dest.saturate;
1066 break;
1067
1068 case nir_op_flrp:
1069 inst = bld.LRP(result, op[0], op[1], op[2]);
1070 inst->saturate = instr->dest.saturate;
1071 break;
1072
1073 case nir_op_bcsel:
1074 if (optimize_frontfacing_ternary(instr, result))
1075 return;
1076
1077 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1078 inst = bld.SEL(result, op[1], op[2]);
1079 inst->predicate = BRW_PREDICATE_NORMAL;
1080 break;
1081
1082 default:
1083 unreachable("unhandled instruction");
1084 }
1085
1086 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1087 * to sign extend the low bit to 0/~0
1088 */
1089 if (devinfo->gen <= 5 &&
1090 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1091 fs_reg masked = vgrf(glsl_type::int_type);
1092 bld.AND(masked, result, brw_imm_d(1));
1093 masked.negate = true;
1094 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1095 }
1096 }
1097
1098 void
1099 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1100 nir_load_const_instr *instr)
1101 {
1102 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1103
1104 for (unsigned i = 0; i < instr->def.num_components; i++)
1105 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1106
1107 nir_ssa_values[instr->def.index] = reg;
1108 }
1109
1110 void
1111 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1112 {
1113 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1114 instr->def.num_components);
1115 }
1116
1117 fs_reg
1118 fs_visitor::get_nir_src(nir_src src)
1119 {
1120 fs_reg reg;
1121 if (src.is_ssa) {
1122 reg = nir_ssa_values[src.ssa->index];
1123 } else {
1124 /* We don't handle indirects on locals */
1125 assert(src.reg.indirect == NULL);
1126 reg = offset(nir_locals[src.reg.reg->index], bld,
1127 src.reg.base_offset * src.reg.reg->num_components);
1128 }
1129
1130 /* to avoid floating-point denorm flushing problems, set the type by
1131 * default to D - instructions that need floating point semantics will set
1132 * this to F if they need to
1133 */
1134 return retype(reg, BRW_REGISTER_TYPE_D);
1135 }
1136
1137 fs_reg
1138 fs_visitor::get_nir_dest(nir_dest dest)
1139 {
1140 if (dest.is_ssa) {
1141 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1142 dest.ssa.num_components);
1143 return nir_ssa_values[dest.ssa.index];
1144 } else {
1145 /* We don't handle indirects on locals */
1146 assert(dest.reg.indirect == NULL);
1147 return offset(nir_locals[dest.reg.reg->index], bld,
1148 dest.reg.base_offset * dest.reg.reg->num_components);
1149 }
1150 }
1151
1152 fs_reg
1153 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1154 {
1155 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1156 BRW_REGISTER_TYPE_UD);
1157
1158 for (const nir_deref *tail = &deref->deref; tail->child;
1159 tail = tail->child) {
1160 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1161 assert(tail->child->deref_type == nir_deref_type_array);
1162 const unsigned size = glsl_get_length(tail->type);
1163 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1164 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1165 image = offset(image, bld, base * element_size);
1166
1167 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1168 fs_reg tmp = vgrf(glsl_type::int_type);
1169
1170 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1171 /* IVB hangs when trying to access an invalid surface index with
1172 * the dataport. According to the spec "if the index used to
1173 * select an individual element is negative or greater than or
1174 * equal to the size of the array, the results of the operation
1175 * are undefined but may not lead to termination" -- which is one
1176 * of the possible outcomes of the hang. Clamp the index to
1177 * prevent access outside of the array bounds.
1178 */
1179 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1180 BRW_REGISTER_TYPE_UD),
1181 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1182 } else {
1183 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1184 }
1185
1186 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1187 if (image.reladdr)
1188 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1189 else
1190 image.reladdr = new(mem_ctx) fs_reg(tmp);
1191 }
1192 }
1193
1194 return image;
1195 }
1196
1197 void
1198 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1199 unsigned wr_mask)
1200 {
1201 for (unsigned i = 0; i < 4; i++) {
1202 if (!((wr_mask >> i) & 1))
1203 continue;
1204
1205 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1206 new_inst->dst = offset(new_inst->dst, bld, i);
1207 for (unsigned j = 0; j < new_inst->sources; j++)
1208 if (new_inst->src[j].file == VGRF)
1209 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1210
1211 bld.emit(new_inst);
1212 }
1213 }
1214
1215 /**
1216 * Get the matching channel register datatype for an image intrinsic of the
1217 * specified GLSL image type.
1218 */
1219 static brw_reg_type
1220 get_image_base_type(const glsl_type *type)
1221 {
1222 switch ((glsl_base_type)type->sampler_type) {
1223 case GLSL_TYPE_UINT:
1224 return BRW_REGISTER_TYPE_UD;
1225 case GLSL_TYPE_INT:
1226 return BRW_REGISTER_TYPE_D;
1227 case GLSL_TYPE_FLOAT:
1228 return BRW_REGISTER_TYPE_F;
1229 default:
1230 unreachable("Not reached.");
1231 }
1232 }
1233
1234 /**
1235 * Get the appropriate atomic op for an image atomic intrinsic.
1236 */
1237 static unsigned
1238 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1239 {
1240 switch (op) {
1241 case nir_intrinsic_image_atomic_add:
1242 return BRW_AOP_ADD;
1243 case nir_intrinsic_image_atomic_min:
1244 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1245 BRW_AOP_IMIN : BRW_AOP_UMIN);
1246 case nir_intrinsic_image_atomic_max:
1247 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1248 BRW_AOP_IMAX : BRW_AOP_UMAX);
1249 case nir_intrinsic_image_atomic_and:
1250 return BRW_AOP_AND;
1251 case nir_intrinsic_image_atomic_or:
1252 return BRW_AOP_OR;
1253 case nir_intrinsic_image_atomic_xor:
1254 return BRW_AOP_XOR;
1255 case nir_intrinsic_image_atomic_exchange:
1256 return BRW_AOP_MOV;
1257 case nir_intrinsic_image_atomic_comp_swap:
1258 return BRW_AOP_CMPWR;
1259 default:
1260 unreachable("Not reachable.");
1261 }
1262 }
1263
1264 static fs_inst *
1265 emit_pixel_interpolater_send(const fs_builder &bld,
1266 enum opcode opcode,
1267 const fs_reg &dst,
1268 const fs_reg &src,
1269 const fs_reg &desc,
1270 glsl_interp_qualifier interpolation)
1271 {
1272 fs_inst *inst;
1273 fs_reg payload;
1274 int mlen;
1275
1276 if (src.file == BAD_FILE) {
1277 /* Dummy payload */
1278 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1279 mlen = 1;
1280 } else {
1281 payload = src;
1282 mlen = 2 * bld.dispatch_width() / 8;
1283 }
1284
1285 inst = bld.emit(opcode, dst, payload, desc);
1286 inst->mlen = mlen;
1287 /* 2 floats per slot returned */
1288 inst->regs_written = 2 * bld.dispatch_width() / 8;
1289 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1290
1291 return inst;
1292 }
1293
1294 /**
1295 * Computes 1 << x, given a D/UD register containing some value x.
1296 */
1297 static fs_reg
1298 intexp2(const fs_builder &bld, const fs_reg &x)
1299 {
1300 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1301
1302 fs_reg result = bld.vgrf(x.type, 1);
1303 fs_reg one = bld.vgrf(x.type, 1);
1304
1305 bld.MOV(one, retype(brw_imm_d(1), one.type));
1306 bld.SHL(result, one, x);
1307 return result;
1308 }
1309
1310 void
1311 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1312 {
1313 assert(stage == MESA_SHADER_GEOMETRY);
1314
1315 struct brw_gs_prog_data *gs_prog_data =
1316 (struct brw_gs_prog_data *) prog_data;
1317
1318 /* We can only do EndPrimitive() functionality when the control data
1319 * consists of cut bits. Fortunately, the only time it isn't is when the
1320 * output type is points, in which case EndPrimitive() is a no-op.
1321 */
1322 if (gs_prog_data->control_data_format !=
1323 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1324 return;
1325 }
1326
1327 /* Cut bits use one bit per vertex. */
1328 assert(gs_compile->control_data_bits_per_vertex == 1);
1329
1330 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1331 vertex_count.type = BRW_REGISTER_TYPE_UD;
1332
1333 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1334 * vertex n, 0 otherwise. So all we need to do here is mark bit
1335 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1336 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1337 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1338 *
1339 * Note that if EndPrimitive() is called before emitting any vertices, this
1340 * will cause us to set bit 31 of the control_data_bits register to 1.
1341 * That's fine because:
1342 *
1343 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1344 * output, so the hardware will ignore cut bit 31.
1345 *
1346 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1347 * last vertex, so setting cut bit 31 has no effect (since the primitive
1348 * is automatically ended when the GS terminates).
1349 *
1350 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1351 * control_data_bits register to 0 when the first vertex is emitted.
1352 */
1353
1354 const fs_builder abld = bld.annotate("end primitive");
1355
1356 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1357 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1358 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1359 fs_reg mask = intexp2(abld, prev_count);
1360 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1361 * attention to the lower 5 bits of its second source argument, so on this
1362 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1363 * ((vertex_count - 1) % 32).
1364 */
1365 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1366 }
1367
1368 void
1369 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1370 {
1371 assert(stage == MESA_SHADER_GEOMETRY);
1372 assert(gs_compile->control_data_bits_per_vertex != 0);
1373
1374 struct brw_gs_prog_data *gs_prog_data =
1375 (struct brw_gs_prog_data *) prog_data;
1376
1377 const fs_builder abld = bld.annotate("emit control data bits");
1378 const fs_builder fwa_bld = bld.exec_all();
1379
1380 /* We use a single UD register to accumulate control data bits (32 bits
1381 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1382 * at a time.
1383 *
1384 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1385 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1386 * use the Channel Mask phase to enable/disable which DWord within that
1387 * group to write. (Remember, different SIMD8 channels may have emitted
1388 * different numbers of vertices, so we may need per-slot offsets.)
1389 *
1390 * Channel masking presents an annoying problem: we may have to replicate
1391 * the data up to 4 times:
1392 *
1393 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1394 *
1395 * To avoid penalizing shaders that emit a small number of vertices, we
1396 * can avoid these sometimes: if the size of the control data header is
1397 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1398 * land in the same 128-bit group, so we can skip per-slot offsets.
1399 *
1400 * Similarly, if the control data header is <= 32 bits, there is only one
1401 * DWord, so we can skip channel masks.
1402 */
1403 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1404
1405 fs_reg channel_mask, per_slot_offset;
1406
1407 if (gs_compile->control_data_header_size_bits > 32) {
1408 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1409 channel_mask = vgrf(glsl_type::uint_type);
1410 }
1411
1412 if (gs_compile->control_data_header_size_bits > 128) {
1413 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1414 per_slot_offset = vgrf(glsl_type::uint_type);
1415 }
1416
1417 /* Figure out which DWord we're trying to write to using the formula:
1418 *
1419 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1420 *
1421 * Since bits_per_vertex is a power of two, and is known at compile
1422 * time, this can be optimized to:
1423 *
1424 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1425 */
1426 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1427 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1428 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1429 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1430 unsigned log2_bits_per_vertex =
1431 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1432 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1433
1434 if (per_slot_offset.file != BAD_FILE) {
1435 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1436 * the appropriate OWord within the control data header.
1437 */
1438 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1439 }
1440
1441 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1442 * write to the appropriate DWORD within the OWORD.
1443 */
1444 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1445 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1446 channel_mask = intexp2(fwa_bld, channel);
1447 /* Then the channel masks need to be in bits 23:16. */
1448 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1449 }
1450
1451 /* Store the control data bits in the message payload and send it. */
1452 int mlen = 2;
1453 if (channel_mask.file != BAD_FILE)
1454 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1455 if (per_slot_offset.file != BAD_FILE)
1456 mlen++;
1457
1458 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1459 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1460 int i = 0;
1461 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1462 if (per_slot_offset.file != BAD_FILE)
1463 sources[i++] = per_slot_offset;
1464 if (channel_mask.file != BAD_FILE)
1465 sources[i++] = channel_mask;
1466 while (i < mlen) {
1467 sources[i++] = this->control_data_bits;
1468 }
1469
1470 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1471 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1472 inst->mlen = mlen;
1473 /* We need to increment Global Offset by 256-bits to make room for
1474 * Broadwell's extra "Vertex Count" payload at the beginning of the
1475 * URB entry. Since this is an OWord message, Global Offset is counted
1476 * in 128-bit units, so we must set it to 2.
1477 */
1478 if (gs_prog_data->static_vertex_count == -1)
1479 inst->offset = 2;
1480 }
1481
1482 void
1483 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1484 unsigned stream_id)
1485 {
1486 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1487
1488 /* Note: we are calling this *before* increasing vertex_count, so
1489 * this->vertex_count == vertex_count - 1 in the formula above.
1490 */
1491
1492 /* Stream mode uses 2 bits per vertex */
1493 assert(gs_compile->control_data_bits_per_vertex == 2);
1494
1495 /* Must be a valid stream */
1496 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1497
1498 /* Control data bits are initialized to 0 so we don't have to set any
1499 * bits when sending vertices to stream 0.
1500 */
1501 if (stream_id == 0)
1502 return;
1503
1504 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1505
1506 /* reg::sid = stream_id */
1507 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1508 abld.MOV(sid, brw_imm_ud(stream_id));
1509
1510 /* reg:shift_count = 2 * (vertex_count - 1) */
1511 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1512 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1513
1514 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1515 * attention to the lower 5 bits of its second source argument, so on this
1516 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1517 * stream_id << ((2 * (vertex_count - 1)) % 32).
1518 */
1519 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1520 abld.SHL(mask, sid, shift_count);
1521 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1522 }
1523
1524 void
1525 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1526 unsigned stream_id)
1527 {
1528 assert(stage == MESA_SHADER_GEOMETRY);
1529
1530 struct brw_gs_prog_data *gs_prog_data =
1531 (struct brw_gs_prog_data *) prog_data;
1532
1533 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1534 vertex_count.type = BRW_REGISTER_TYPE_UD;
1535
1536 /* Haswell and later hardware ignores the "Render Stream Select" bits
1537 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1538 * and instead sends all primitives down the pipeline for rasterization.
1539 * If the SOL stage is enabled, "Render Stream Select" is honored and
1540 * primitives bound to non-zero streams are discarded after stream output.
1541 *
1542 * Since the only purpose of primives sent to non-zero streams is to
1543 * be recorded by transform feedback, we can simply discard all geometry
1544 * bound to these streams when transform feedback is disabled.
1545 */
1546 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1547 return;
1548
1549 /* If we're outputting 32 control data bits or less, then we can wait
1550 * until the shader is over to output them all. Otherwise we need to
1551 * output them as we go. Now is the time to do it, since we're about to
1552 * output the vertex_count'th vertex, so it's guaranteed that the
1553 * control data bits associated with the (vertex_count - 1)th vertex are
1554 * correct.
1555 */
1556 if (gs_compile->control_data_header_size_bits > 32) {
1557 const fs_builder abld =
1558 bld.annotate("emit vertex: emit control data bits");
1559
1560 /* Only emit control data bits if we've finished accumulating a batch
1561 * of 32 bits. This is the case when:
1562 *
1563 * (vertex_count * bits_per_vertex) % 32 == 0
1564 *
1565 * (in other words, when the last 5 bits of vertex_count *
1566 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1567 * integer n (which is always the case, since bits_per_vertex is
1568 * always 1 or 2), this is equivalent to requiring that the last 5-n
1569 * bits of vertex_count are 0:
1570 *
1571 * vertex_count & (2^(5-n) - 1) == 0
1572 *
1573 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1574 * equivalent to:
1575 *
1576 * vertex_count & (32 / bits_per_vertex - 1) == 0
1577 *
1578 * TODO: If vertex_count is an immediate, we could do some of this math
1579 * at compile time...
1580 */
1581 fs_inst *inst =
1582 abld.AND(bld.null_reg_d(), vertex_count,
1583 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1584 inst->conditional_mod = BRW_CONDITIONAL_Z;
1585
1586 abld.IF(BRW_PREDICATE_NORMAL);
1587 /* If vertex_count is 0, then no control data bits have been
1588 * accumulated yet, so we can skip emitting them.
1589 */
1590 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1591 BRW_CONDITIONAL_NEQ);
1592 abld.IF(BRW_PREDICATE_NORMAL);
1593 emit_gs_control_data_bits(vertex_count);
1594 abld.emit(BRW_OPCODE_ENDIF);
1595
1596 /* Reset control_data_bits to 0 so we can start accumulating a new
1597 * batch.
1598 *
1599 * Note: in the case where vertex_count == 0, this neutralizes the
1600 * effect of any call to EndPrimitive() that the shader may have
1601 * made before outputting its first vertex.
1602 */
1603 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1604 inst->force_writemask_all = true;
1605 abld.emit(BRW_OPCODE_ENDIF);
1606 }
1607
1608 emit_urb_writes(vertex_count);
1609
1610 /* In stream mode we have to set control data bits for all vertices
1611 * unless we have disabled control data bits completely (which we do
1612 * do for GL_POINTS outputs that don't use streams).
1613 */
1614 if (gs_compile->control_data_header_size_bits > 0 &&
1615 gs_prog_data->control_data_format ==
1616 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1617 set_gs_stream_control_data_bits(vertex_count, stream_id);
1618 }
1619 }
1620
1621 void
1622 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1623 const nir_src &vertex_src,
1624 unsigned base_offset,
1625 const nir_src &offset_src,
1626 unsigned num_components)
1627 {
1628 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1629
1630 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1631 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1632 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1633
1634 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1635 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1636 * gl_PointSize is available as a GS input, however, so it must be that.
1637 */
1638 const bool is_point_size = (base_offset == 0);
1639
1640 if (offset_const != NULL && vertex_const != NULL &&
1641 4 * (base_offset + offset_const->u[0]) < push_reg_count) {
1642 int imm_offset = (base_offset + offset_const->u[0]) * 4 +
1643 vertex_const->u[0] * push_reg_count;
1644 /* This input was pushed into registers. */
1645 if (is_point_size) {
1646 /* gl_PointSize comes in .w */
1647 assert(imm_offset == 0);
1648 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1649 } else {
1650 for (unsigned i = 0; i < num_components; i++) {
1651 bld.MOV(offset(dst, bld, i),
1652 fs_reg(ATTR, imm_offset + i, dst.type));
1653 }
1654 }
1655 } else {
1656 /* Resort to the pull model. Ensure the VUE handles are provided. */
1657 gs_prog_data->base.include_vue_handles = true;
1658
1659 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1660 fs_reg icp_handle;
1661
1662 if (vertex_const) {
1663 /* The vertex index is constant; just select the proper URB handle. */
1664 icp_handle =
1665 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1666 BRW_REGISTER_TYPE_UD);
1667 } else {
1668 /* The vertex index is non-constant. We need to use indirect
1669 * addressing to fetch the proper URB handle.
1670 *
1671 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1672 * indicating that channel <n> should read the handle from
1673 * DWord <n>. We convert that to bytes by multiplying by 4.
1674 *
1675 * Next, we convert the vertex index to bytes by multiplying
1676 * by 32 (shifting by 5), and add the two together. This is
1677 * the final indirect byte offset.
1678 */
1679 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1680 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1681 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1682 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1683 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1684
1685 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1686 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1687 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1688 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1689 /* Convert vertex_index to bytes (multiply by 32) */
1690 bld.SHL(vertex_offset_bytes,
1691 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1692 brw_imm_ud(5u));
1693 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1694
1695 /* Use first_icp_handle as the base offset. There is one register
1696 * of URB handles per vertex, so inform the register allocator that
1697 * we might read up to nir->info.gs.vertices_in registers.
1698 */
1699 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1700 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1701 fs_reg(icp_offset_bytes),
1702 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1703 }
1704
1705 fs_inst *inst;
1706 if (offset_const) {
1707 /* Constant indexing - use global offset. */
1708 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1709 inst->offset = base_offset + offset_const->u[0];
1710 inst->base_mrf = -1;
1711 inst->mlen = 1;
1712 inst->regs_written = num_components;
1713 } else {
1714 /* Indirect indexing - use per-slot offsets as well. */
1715 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1716 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1717 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1718
1719 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1720 inst->offset = base_offset;
1721 inst->base_mrf = -1;
1722 inst->mlen = 2;
1723 inst->regs_written = num_components;
1724 }
1725
1726 if (is_point_size) {
1727 /* Read the whole VUE header (because of alignment) and read .w. */
1728 fs_reg tmp = bld.vgrf(dst.type, 4);
1729 inst->dst = tmp;
1730 inst->regs_written = 4;
1731 bld.MOV(dst, offset(tmp, bld, 3));
1732 }
1733 }
1734 }
1735
1736 fs_reg
1737 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1738 {
1739 nir_src *offset_src = nir_get_io_offset_src(instr);
1740 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1741
1742 if (const_value) {
1743 /* The only constant offset we should find is 0. brw_nir.c's
1744 * add_const_offset_to_base() will fold other constant offsets
1745 * into instr->const_index[0].
1746 */
1747 assert(const_value->u[0] == 0);
1748 return fs_reg();
1749 }
1750
1751 return get_nir_src(*offset_src);
1752 }
1753
1754 void
1755 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1756 nir_intrinsic_instr *instr)
1757 {
1758 assert(stage == MESA_SHADER_VERTEX);
1759
1760 fs_reg dest;
1761 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1762 dest = get_nir_dest(instr->dest);
1763
1764 switch (instr->intrinsic) {
1765 case nir_intrinsic_load_vertex_id:
1766 unreachable("should be lowered by lower_vertex_id()");
1767
1768 case nir_intrinsic_load_vertex_id_zero_base:
1769 case nir_intrinsic_load_base_vertex:
1770 case nir_intrinsic_load_instance_id:
1771 case nir_intrinsic_load_base_instance:
1772 case nir_intrinsic_load_draw_id: {
1773 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1774 fs_reg val = nir_system_values[sv];
1775 assert(val.file != BAD_FILE);
1776 dest.type = val.type;
1777 bld.MOV(dest, val);
1778 break;
1779 }
1780
1781 default:
1782 nir_emit_intrinsic(bld, instr);
1783 break;
1784 }
1785 }
1786
1787 void
1788 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1789 nir_intrinsic_instr *instr)
1790 {
1791 assert(stage == MESA_SHADER_TESS_EVAL);
1792 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1793
1794 fs_reg dest;
1795 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1796 dest = get_nir_dest(instr->dest);
1797
1798 switch (instr->intrinsic) {
1799 case nir_intrinsic_load_primitive_id:
1800 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1801 break;
1802 case nir_intrinsic_load_tess_coord:
1803 /* gl_TessCoord is part of the payload in g1-3 */
1804 for (unsigned i = 0; i < 3; i++) {
1805 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1806 }
1807 break;
1808
1809 case nir_intrinsic_load_tess_level_outer:
1810 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1811 * appears as a push-model input. So, we can simply use the ATTR file
1812 * rather than issuing URB read messages. The data is stored in the
1813 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1814 * .y, and so on.
1815 */
1816 switch (tes_prog_data->domain) {
1817 case BRW_TESS_DOMAIN_QUAD:
1818 for (unsigned i = 0; i < 4; i++)
1819 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1820 break;
1821 case BRW_TESS_DOMAIN_TRI:
1822 for (unsigned i = 0; i < 3; i++)
1823 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1824 break;
1825 case BRW_TESS_DOMAIN_ISOLINE:
1826 for (unsigned i = 0; i < 2; i++)
1827 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1828 break;
1829 }
1830 break;
1831
1832 case nir_intrinsic_load_tess_level_inner:
1833 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1834 * appears as a push-model input. So, we can simply use the ATTR file
1835 * rather than issuing URB read messages.
1836 */
1837 switch (tes_prog_data->domain) {
1838 case BRW_TESS_DOMAIN_QUAD:
1839 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1840 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1841 break;
1842 case BRW_TESS_DOMAIN_TRI:
1843 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1844 break;
1845 case BRW_TESS_DOMAIN_ISOLINE:
1846 /* ignore - value is undefined */
1847 break;
1848 }
1849 break;
1850
1851 case nir_intrinsic_load_input:
1852 case nir_intrinsic_load_per_vertex_input: {
1853 fs_reg indirect_offset = get_indirect_offset(instr);
1854 unsigned imm_offset = instr->const_index[0];
1855
1856 fs_inst *inst;
1857 if (indirect_offset.file == BAD_FILE) {
1858 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1859 * which is 16 registers (since each holds 2 vec4 slots).
1860 */
1861 const unsigned max_push_slots = 32;
1862 if (imm_offset < max_push_slots) {
1863 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1864 for (int i = 0; i < instr->num_components; i++) {
1865 bld.MOV(offset(dest, bld, i),
1866 component(src, 4 * (imm_offset % 2) + i));
1867 }
1868 tes_prog_data->base.urb_read_length =
1869 MAX2(tes_prog_data->base.urb_read_length,
1870 DIV_ROUND_UP(imm_offset + 1, 2));
1871 } else {
1872 /* Replicate the patch handle to all enabled channels */
1873 const fs_reg srcs[] = {
1874 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1875 };
1876 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1877 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1878
1879 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1880 inst->mlen = 1;
1881 inst->offset = imm_offset;
1882 inst->base_mrf = -1;
1883 inst->regs_written = instr->num_components;
1884 }
1885 } else {
1886 /* Indirect indexing - use per-slot offsets as well. */
1887 const fs_reg srcs[] = {
1888 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1889 indirect_offset
1890 };
1891 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1892 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1893
1894 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1895 inst->mlen = 2;
1896 inst->offset = imm_offset;
1897 inst->base_mrf = -1;
1898 inst->regs_written = instr->num_components;
1899 }
1900 break;
1901 }
1902 default:
1903 nir_emit_intrinsic(bld, instr);
1904 break;
1905 }
1906 }
1907
1908 void
1909 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1910 nir_intrinsic_instr *instr)
1911 {
1912 assert(stage == MESA_SHADER_GEOMETRY);
1913 fs_reg indirect_offset;
1914
1915 fs_reg dest;
1916 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1917 dest = get_nir_dest(instr->dest);
1918
1919 switch (instr->intrinsic) {
1920 case nir_intrinsic_load_primitive_id:
1921 assert(stage == MESA_SHADER_GEOMETRY);
1922 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
1923 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
1924 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
1925 break;
1926
1927 case nir_intrinsic_load_input:
1928 unreachable("load_input intrinsics are invalid for the GS stage");
1929
1930 case nir_intrinsic_load_per_vertex_input:
1931 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
1932 instr->src[1], instr->num_components);
1933 break;
1934
1935 case nir_intrinsic_emit_vertex_with_counter:
1936 emit_gs_vertex(instr->src[0], instr->const_index[0]);
1937 break;
1938
1939 case nir_intrinsic_end_primitive_with_counter:
1940 emit_gs_end_primitive(instr->src[0]);
1941 break;
1942
1943 case nir_intrinsic_set_vertex_count:
1944 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
1945 break;
1946
1947 case nir_intrinsic_load_invocation_id: {
1948 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
1949 assert(val.file != BAD_FILE);
1950 dest.type = val.type;
1951 bld.MOV(dest, val);
1952 break;
1953 }
1954
1955 default:
1956 nir_emit_intrinsic(bld, instr);
1957 break;
1958 }
1959 }
1960
1961 void
1962 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
1963 nir_intrinsic_instr *instr)
1964 {
1965 assert(stage == MESA_SHADER_FRAGMENT);
1966 struct brw_wm_prog_data *wm_prog_data =
1967 (struct brw_wm_prog_data *) prog_data;
1968
1969 fs_reg dest;
1970 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1971 dest = get_nir_dest(instr->dest);
1972
1973 switch (instr->intrinsic) {
1974 case nir_intrinsic_load_front_face:
1975 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1976 *emit_frontfacing_interpolation());
1977 break;
1978
1979 case nir_intrinsic_load_sample_pos: {
1980 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1981 assert(sample_pos.file != BAD_FILE);
1982 dest.type = sample_pos.type;
1983 bld.MOV(dest, sample_pos);
1984 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
1985 break;
1986 }
1987
1988 case nir_intrinsic_load_helper_invocation:
1989 case nir_intrinsic_load_sample_mask_in:
1990 case nir_intrinsic_load_sample_id: {
1991 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1992 fs_reg val = nir_system_values[sv];
1993 assert(val.file != BAD_FILE);
1994 dest.type = val.type;
1995 bld.MOV(dest, val);
1996 break;
1997 }
1998
1999 case nir_intrinsic_discard:
2000 case nir_intrinsic_discard_if: {
2001 /* We track our discarded pixels in f0.1. By predicating on it, we can
2002 * update just the flag bits that aren't yet discarded. If there's no
2003 * condition, we emit a CMP of g0 != g0, so all currently executing
2004 * channels will get turned off.
2005 */
2006 fs_inst *cmp;
2007 if (instr->intrinsic == nir_intrinsic_discard_if) {
2008 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2009 brw_imm_d(0), BRW_CONDITIONAL_Z);
2010 } else {
2011 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2012 BRW_REGISTER_TYPE_UW));
2013 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2014 }
2015 cmp->predicate = BRW_PREDICATE_NORMAL;
2016 cmp->flag_subreg = 1;
2017
2018 if (devinfo->gen >= 6) {
2019 emit_discard_jump();
2020 }
2021 break;
2022 }
2023
2024 case nir_intrinsic_interp_var_at_centroid:
2025 case nir_intrinsic_interp_var_at_sample:
2026 case nir_intrinsic_interp_var_at_offset: {
2027 /* Handle ARB_gpu_shader5 interpolation intrinsics
2028 *
2029 * It's worth a quick word of explanation as to why we handle the full
2030 * variable-based interpolation intrinsic rather than a lowered version
2031 * with like we do for other inputs. We have to do that because the way
2032 * we set up inputs doesn't allow us to use the already setup inputs for
2033 * interpolation. At the beginning of the shader, we go through all of
2034 * the input variables and do the initial interpolation and put it in
2035 * the nir_inputs array based on its location as determined in
2036 * nir_lower_io. If the input isn't used, dead code cleans up and
2037 * everything works fine. However, when we get to the ARB_gpu_shader5
2038 * interpolation intrinsics, we need to reinterpolate the input
2039 * differently. If we used an intrinsic that just had an index it would
2040 * only give us the offset into the nir_inputs array. However, this is
2041 * useless because that value is post-interpolation and we need
2042 * pre-interpolation. In order to get the actual location of the bits
2043 * we get from the vertex fetching hardware, we need the variable.
2044 */
2045 wm_prog_data->pulls_bary = true;
2046
2047 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2048 const glsl_interp_qualifier interpolation =
2049 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2050
2051 switch (instr->intrinsic) {
2052 case nir_intrinsic_interp_var_at_centroid:
2053 emit_pixel_interpolater_send(bld,
2054 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2055 dst_xy,
2056 fs_reg(), /* src */
2057 brw_imm_ud(0u),
2058 interpolation);
2059 break;
2060
2061 case nir_intrinsic_interp_var_at_sample: {
2062 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2063
2064 if (const_sample) {
2065 unsigned msg_data = const_sample->i[0] << 4;
2066
2067 emit_pixel_interpolater_send(bld,
2068 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2069 dst_xy,
2070 fs_reg(), /* src */
2071 brw_imm_ud(msg_data),
2072 interpolation);
2073 } else {
2074 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2075 BRW_REGISTER_TYPE_UD);
2076
2077 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2078 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2079 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2080 bld.exec_all().group(1, 0)
2081 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2082 emit_pixel_interpolater_send(bld,
2083 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2084 dst_xy,
2085 fs_reg(), /* src */
2086 msg_data,
2087 interpolation);
2088 } else {
2089 /* Make a loop that sends a message to the pixel interpolater
2090 * for the sample number in each live channel. If there are
2091 * multiple channels with the same sample number then these
2092 * will be handled simultaneously with a single interation of
2093 * the loop.
2094 */
2095 bld.emit(BRW_OPCODE_DO);
2096
2097 /* Get the next live sample number into sample_id_reg */
2098 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2099
2100 /* Set the flag register so that we can perform the send
2101 * message on all channels that have the same sample number
2102 */
2103 bld.CMP(bld.null_reg_ud(),
2104 sample_src, sample_id,
2105 BRW_CONDITIONAL_EQ);
2106 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2107 bld.exec_all().group(1, 0)
2108 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2109 fs_inst *inst =
2110 emit_pixel_interpolater_send(bld,
2111 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2112 dst_xy,
2113 fs_reg(), /* src */
2114 msg_data,
2115 interpolation);
2116 set_predicate(BRW_PREDICATE_NORMAL, inst);
2117
2118 /* Continue the loop if there are any live channels left */
2119 set_predicate_inv(BRW_PREDICATE_NORMAL,
2120 true, /* inverse */
2121 bld.emit(BRW_OPCODE_WHILE));
2122 }
2123 }
2124
2125 break;
2126 }
2127
2128 case nir_intrinsic_interp_var_at_offset: {
2129 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2130
2131 if (const_offset) {
2132 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
2133 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
2134
2135 emit_pixel_interpolater_send(bld,
2136 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2137 dst_xy,
2138 fs_reg(), /* src */
2139 brw_imm_ud(off_x | (off_y << 4)),
2140 interpolation);
2141 } else {
2142 fs_reg src = vgrf(glsl_type::ivec2_type);
2143 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2144 BRW_REGISTER_TYPE_F);
2145 for (int i = 0; i < 2; i++) {
2146 fs_reg temp = vgrf(glsl_type::float_type);
2147 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2148 fs_reg itemp = vgrf(glsl_type::int_type);
2149 bld.MOV(itemp, temp); /* float to int */
2150
2151 /* Clamp the upper end of the range to +7/16.
2152 * ARB_gpu_shader5 requires that we support a maximum offset
2153 * of +0.5, which isn't representable in a S0.4 value -- if
2154 * we didn't clamp it, we'd end up with -8/16, which is the
2155 * opposite of what the shader author wanted.
2156 *
2157 * This is legal due to ARB_gpu_shader5's quantization
2158 * rules:
2159 *
2160 * "Not all values of <offset> may be supported; x and y
2161 * offsets may be rounded to fixed-point values with the
2162 * number of fraction bits given by the
2163 * implementation-dependent constant
2164 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2165 */
2166 set_condmod(BRW_CONDITIONAL_L,
2167 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2168 }
2169
2170 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2171 emit_pixel_interpolater_send(bld,
2172 opcode,
2173 dst_xy,
2174 src,
2175 brw_imm_ud(0u),
2176 interpolation);
2177 }
2178 break;
2179 }
2180
2181 default:
2182 unreachable("Invalid intrinsic");
2183 }
2184
2185 for (unsigned j = 0; j < instr->num_components; j++) {
2186 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2187 src.type = dest.type;
2188
2189 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2190 dest = offset(dest, bld, 1);
2191 }
2192 break;
2193 }
2194 default:
2195 nir_emit_intrinsic(bld, instr);
2196 break;
2197 }
2198 }
2199
2200 void
2201 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2202 nir_intrinsic_instr *instr)
2203 {
2204 assert(stage == MESA_SHADER_COMPUTE);
2205 struct brw_cs_prog_data *cs_prog_data =
2206 (struct brw_cs_prog_data *) prog_data;
2207
2208 fs_reg dest;
2209 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2210 dest = get_nir_dest(instr->dest);
2211
2212 switch (instr->intrinsic) {
2213 case nir_intrinsic_barrier:
2214 emit_barrier();
2215 cs_prog_data->uses_barrier = true;
2216 break;
2217
2218 case nir_intrinsic_load_local_invocation_id:
2219 case nir_intrinsic_load_work_group_id: {
2220 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2221 fs_reg val = nir_system_values[sv];
2222 assert(val.file != BAD_FILE);
2223 dest.type = val.type;
2224 for (unsigned i = 0; i < 3; i++)
2225 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2226 break;
2227 }
2228
2229 case nir_intrinsic_load_num_work_groups: {
2230 const unsigned surface =
2231 cs_prog_data->binding_table.work_groups_start;
2232
2233 cs_prog_data->uses_num_work_groups = true;
2234
2235 fs_reg surf_index = brw_imm_ud(surface);
2236 brw_mark_surface_used(prog_data, surface);
2237
2238 /* Read the 3 GLuint components of gl_NumWorkGroups */
2239 for (unsigned i = 0; i < 3; i++) {
2240 fs_reg read_result =
2241 emit_untyped_read(bld, surf_index,
2242 brw_imm_ud(i << 2),
2243 1 /* dims */, 1 /* size */,
2244 BRW_PREDICATE_NONE);
2245 read_result.type = dest.type;
2246 bld.MOV(dest, read_result);
2247 dest = offset(dest, bld, 1);
2248 }
2249 break;
2250 }
2251
2252 case nir_intrinsic_shared_atomic_add:
2253 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2254 break;
2255 case nir_intrinsic_shared_atomic_imin:
2256 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2257 break;
2258 case nir_intrinsic_shared_atomic_umin:
2259 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2260 break;
2261 case nir_intrinsic_shared_atomic_imax:
2262 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2263 break;
2264 case nir_intrinsic_shared_atomic_umax:
2265 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2266 break;
2267 case nir_intrinsic_shared_atomic_and:
2268 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2269 break;
2270 case nir_intrinsic_shared_atomic_or:
2271 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2272 break;
2273 case nir_intrinsic_shared_atomic_xor:
2274 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2275 break;
2276 case nir_intrinsic_shared_atomic_exchange:
2277 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2278 break;
2279 case nir_intrinsic_shared_atomic_comp_swap:
2280 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2281 break;
2282
2283 default:
2284 nir_emit_intrinsic(bld, instr);
2285 break;
2286 }
2287 }
2288
2289 void
2290 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2291 {
2292 fs_reg dest;
2293 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2294 dest = get_nir_dest(instr->dest);
2295
2296 switch (instr->intrinsic) {
2297 case nir_intrinsic_atomic_counter_inc:
2298 case nir_intrinsic_atomic_counter_dec:
2299 case nir_intrinsic_atomic_counter_read: {
2300 using namespace surface_access;
2301
2302 /* Get the arguments of the atomic intrinsic. */
2303 const fs_reg offset = get_nir_src(instr->src[0]);
2304 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2305 instr->const_index[0]);
2306 fs_reg tmp;
2307
2308 /* Emit a surface read or atomic op. */
2309 switch (instr->intrinsic) {
2310 case nir_intrinsic_atomic_counter_read:
2311 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2312 break;
2313
2314 case nir_intrinsic_atomic_counter_inc:
2315 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2316 fs_reg(), 1, 1, BRW_AOP_INC);
2317 break;
2318
2319 case nir_intrinsic_atomic_counter_dec:
2320 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2321 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2322 break;
2323
2324 default:
2325 unreachable("Unreachable");
2326 }
2327
2328 /* Assign the result. */
2329 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2330
2331 /* Mark the surface as used. */
2332 brw_mark_surface_used(stage_prog_data, surface);
2333 break;
2334 }
2335
2336 case nir_intrinsic_image_load:
2337 case nir_intrinsic_image_store:
2338 case nir_intrinsic_image_atomic_add:
2339 case nir_intrinsic_image_atomic_min:
2340 case nir_intrinsic_image_atomic_max:
2341 case nir_intrinsic_image_atomic_and:
2342 case nir_intrinsic_image_atomic_or:
2343 case nir_intrinsic_image_atomic_xor:
2344 case nir_intrinsic_image_atomic_exchange:
2345 case nir_intrinsic_image_atomic_comp_swap: {
2346 using namespace image_access;
2347
2348 /* Get the referenced image variable and type. */
2349 const nir_variable *var = instr->variables[0]->var;
2350 const glsl_type *type = var->type->without_array();
2351 const brw_reg_type base_type = get_image_base_type(type);
2352
2353 /* Get some metadata from the image intrinsic. */
2354 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2355 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2356 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2357 const mesa_format format =
2358 (var->data.image.write_only ? MESA_FORMAT_NONE :
2359 _mesa_get_shader_image_format(var->data.image.format));
2360
2361 /* Get the arguments of the image intrinsic. */
2362 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2363 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2364 BRW_REGISTER_TYPE_UD);
2365 const fs_reg src0 = (info->num_srcs >= 3 ?
2366 retype(get_nir_src(instr->src[2]), base_type) :
2367 fs_reg());
2368 const fs_reg src1 = (info->num_srcs >= 4 ?
2369 retype(get_nir_src(instr->src[3]), base_type) :
2370 fs_reg());
2371 fs_reg tmp;
2372
2373 /* Emit an image load, store or atomic op. */
2374 if (instr->intrinsic == nir_intrinsic_image_load)
2375 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2376
2377 else if (instr->intrinsic == nir_intrinsic_image_store)
2378 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2379
2380 else
2381 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2382 surf_dims, arr_dims, info->dest_components,
2383 get_image_atomic_op(instr->intrinsic, type));
2384
2385 /* Assign the result. */
2386 for (unsigned c = 0; c < info->dest_components; ++c)
2387 bld.MOV(offset(retype(dest, base_type), bld, c),
2388 offset(tmp, bld, c));
2389 break;
2390 }
2391
2392 case nir_intrinsic_memory_barrier_atomic_counter:
2393 case nir_intrinsic_memory_barrier_buffer:
2394 case nir_intrinsic_memory_barrier_image:
2395 case nir_intrinsic_memory_barrier: {
2396 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2397 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2398 ->regs_written = 2;
2399 break;
2400 }
2401
2402 case nir_intrinsic_group_memory_barrier:
2403 case nir_intrinsic_memory_barrier_shared:
2404 /* We treat these workgroup-level barriers as no-ops. This should be
2405 * safe at present and as long as:
2406 *
2407 * - Memory access instructions are not subsequently reordered by the
2408 * compiler back-end.
2409 *
2410 * - All threads from a given compute shader workgroup fit within a
2411 * single subslice and therefore talk to the same HDC shared unit
2412 * what supposedly guarantees ordering and coherency between threads
2413 * from the same workgroup. This may change in the future when we
2414 * start splitting workgroups across multiple subslices.
2415 *
2416 * - The context is not in fault-and-stream mode, which could cause
2417 * memory transactions (including to SLM) prior to the barrier to be
2418 * replayed after the barrier if a pagefault occurs. This shouldn't
2419 * be a problem up to and including SKL because fault-and-stream is
2420 * not usable due to hardware issues, but that's likely to change in
2421 * the future.
2422 */
2423 break;
2424
2425 case nir_intrinsic_shader_clock: {
2426 /* We cannot do anything if there is an event, so ignore it for now */
2427 fs_reg shader_clock = get_timestamp(bld);
2428 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2429
2430 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2431 break;
2432 }
2433
2434 case nir_intrinsic_image_size: {
2435 /* Get the referenced image variable and type. */
2436 const nir_variable *var = instr->variables[0]->var;
2437 const glsl_type *type = var->type->without_array();
2438
2439 /* Get the size of the image. */
2440 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2441 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2442
2443 /* For 1DArray image types, the array index is stored in the Z component.
2444 * Fix this by swizzling the Z component to the Y component.
2445 */
2446 const bool is_1d_array_image =
2447 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2448 type->sampler_array;
2449
2450 /* For CubeArray images, we should count the number of cubes instead
2451 * of the number of faces. Fix it by dividing the (Z component) by 6.
2452 */
2453 const bool is_cube_array_image =
2454 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2455 type->sampler_array;
2456
2457 /* Copy all the components. */
2458 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2459 for (unsigned c = 0; c < info->dest_components; ++c) {
2460 if ((int)c >= type->coordinate_components()) {
2461 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2462 brw_imm_d(1));
2463 } else if (c == 1 && is_1d_array_image) {
2464 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2465 offset(size, bld, 2));
2466 } else if (c == 2 && is_cube_array_image) {
2467 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2468 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2469 offset(size, bld, c), brw_imm_d(6));
2470 } else {
2471 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2472 offset(size, bld, c));
2473 }
2474 }
2475
2476 break;
2477 }
2478
2479 case nir_intrinsic_image_samples:
2480 /* The driver does not support multi-sampled images. */
2481 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2482 break;
2483
2484 case nir_intrinsic_load_uniform: {
2485 /* Offsets are in bytes but they should always be multiples of 4 */
2486 assert(instr->const_index[0] % 4 == 0);
2487
2488 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2489
2490 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2491 if (const_offset) {
2492 /* Offsets are in bytes but they should always be multiples of 4 */
2493 assert(const_offset->u[0] % 4 == 0);
2494 src.reg_offset = const_offset->u[0] / 4;
2495 } else {
2496 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2497 }
2498
2499 for (unsigned j = 0; j < instr->num_components; j++) {
2500 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2501 }
2502 break;
2503 }
2504
2505 case nir_intrinsic_load_ubo: {
2506 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2507 fs_reg surf_index;
2508
2509 if (const_index) {
2510 const unsigned index = stage_prog_data->binding_table.ubo_start +
2511 const_index->u[0];
2512 surf_index = brw_imm_ud(index);
2513 brw_mark_surface_used(prog_data, index);
2514 } else {
2515 /* The block index is not a constant. Evaluate the index expression
2516 * per-channel and add the base UBO index; we have to select a value
2517 * from any live channel.
2518 */
2519 surf_index = vgrf(glsl_type::uint_type);
2520 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2521 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2522 surf_index = bld.emit_uniformize(surf_index);
2523
2524 /* Assume this may touch any UBO. It would be nice to provide
2525 * a tighter bound, but the array information is already lowered away.
2526 */
2527 brw_mark_surface_used(prog_data,
2528 stage_prog_data->binding_table.ubo_start +
2529 nir->info.num_ubos - 1);
2530 }
2531
2532 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2533 if (const_offset == NULL) {
2534 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2535 BRW_REGISTER_TYPE_D);
2536
2537 for (int i = 0; i < instr->num_components; i++)
2538 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2539 base_offset, i * 4);
2540 } else {
2541 fs_reg packed_consts = vgrf(glsl_type::float_type);
2542 packed_consts.type = dest.type;
2543
2544 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u[0] & ~15);
2545 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2546 surf_index, const_offset_reg);
2547
2548 for (unsigned i = 0; i < instr->num_components; i++) {
2549 packed_consts.set_smear(const_offset->u[0] % 16 / 4 + i);
2550
2551 /* The std140 packing rules don't allow vectors to cross 16-byte
2552 * boundaries, and a reg is 32 bytes.
2553 */
2554 assert(packed_consts.subreg_offset < 32);
2555
2556 bld.MOV(dest, packed_consts);
2557 dest = offset(dest, bld, 1);
2558 }
2559 }
2560 break;
2561 }
2562
2563 case nir_intrinsic_load_ssbo: {
2564 assert(devinfo->gen >= 7);
2565
2566 nir_const_value *const_uniform_block =
2567 nir_src_as_const_value(instr->src[0]);
2568
2569 fs_reg surf_index;
2570 if (const_uniform_block) {
2571 unsigned index = stage_prog_data->binding_table.ssbo_start +
2572 const_uniform_block->u[0];
2573 surf_index = brw_imm_ud(index);
2574 brw_mark_surface_used(prog_data, index);
2575 } else {
2576 surf_index = vgrf(glsl_type::uint_type);
2577 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2578 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2579
2580 /* Assume this may touch any UBO. It would be nice to provide
2581 * a tighter bound, but the array information is already lowered away.
2582 */
2583 brw_mark_surface_used(prog_data,
2584 stage_prog_data->binding_table.ssbo_start +
2585 nir->info.num_ssbos - 1);
2586 }
2587
2588 fs_reg offset_reg;
2589 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2590 if (const_offset) {
2591 offset_reg = brw_imm_ud(const_offset->u[0]);
2592 } else {
2593 offset_reg = get_nir_src(instr->src[1]);
2594 }
2595
2596 /* Read the vector */
2597 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2598 1 /* dims */,
2599 instr->num_components,
2600 BRW_PREDICATE_NONE);
2601 read_result.type = dest.type;
2602 for (int i = 0; i < instr->num_components; i++)
2603 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2604
2605 break;
2606 }
2607
2608 case nir_intrinsic_load_shared: {
2609 assert(devinfo->gen >= 7);
2610
2611 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2612
2613 /* Get the offset to read from */
2614 fs_reg offset_reg;
2615 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2616 if (const_offset) {
2617 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0]);
2618 } else {
2619 offset_reg = vgrf(glsl_type::uint_type);
2620 bld.ADD(offset_reg,
2621 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2622 brw_imm_ud(instr->const_index[0]));
2623 }
2624
2625 /* Read the vector */
2626 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2627 1 /* dims */,
2628 instr->num_components,
2629 BRW_PREDICATE_NONE);
2630 read_result.type = dest.type;
2631 for (int i = 0; i < instr->num_components; i++)
2632 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2633
2634 break;
2635 }
2636
2637 case nir_intrinsic_store_shared: {
2638 assert(devinfo->gen >= 7);
2639
2640 /* Block index */
2641 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2642
2643 /* Value */
2644 fs_reg val_reg = get_nir_src(instr->src[0]);
2645
2646 /* Writemask */
2647 unsigned writemask = instr->const_index[1];
2648
2649 /* Combine groups of consecutive enabled channels in one write
2650 * message. We use ffs to find the first enabled channel and then ffs on
2651 * the bit-inverse, down-shifted writemask to determine the length of
2652 * the block of enabled bits.
2653 */
2654 while (writemask) {
2655 unsigned first_component = ffs(writemask) - 1;
2656 unsigned length = ffs(~(writemask >> first_component)) - 1;
2657 fs_reg offset_reg;
2658
2659 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2660 if (const_offset) {
2661 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0] +
2662 4 * first_component);
2663 } else {
2664 offset_reg = vgrf(glsl_type::uint_type);
2665 bld.ADD(offset_reg,
2666 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2667 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2668 }
2669
2670 emit_untyped_write(bld, surf_index, offset_reg,
2671 offset(val_reg, bld, first_component),
2672 1 /* dims */, length,
2673 BRW_PREDICATE_NONE);
2674
2675 /* Clear the bits in the writemask that we just wrote, then try
2676 * again to see if more channels are left.
2677 */
2678 writemask &= (15 << (first_component + length));
2679 }
2680
2681 break;
2682 }
2683
2684 case nir_intrinsic_load_input: {
2685 fs_reg src;
2686 if (stage == MESA_SHADER_VERTEX) {
2687 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2688 } else {
2689 src = offset(retype(nir_inputs, dest.type), bld,
2690 instr->const_index[0]);
2691 }
2692
2693 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2694 assert(const_offset && "Indirect input loads not allowed");
2695 src = offset(src, bld, const_offset->u[0]);
2696
2697 for (unsigned j = 0; j < instr->num_components; j++) {
2698 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2699 }
2700 break;
2701 }
2702
2703 case nir_intrinsic_store_ssbo: {
2704 assert(devinfo->gen >= 7);
2705
2706 /* Block index */
2707 fs_reg surf_index;
2708 nir_const_value *const_uniform_block =
2709 nir_src_as_const_value(instr->src[1]);
2710 if (const_uniform_block) {
2711 unsigned index = stage_prog_data->binding_table.ssbo_start +
2712 const_uniform_block->u[0];
2713 surf_index = brw_imm_ud(index);
2714 brw_mark_surface_used(prog_data, index);
2715 } else {
2716 surf_index = vgrf(glsl_type::uint_type);
2717 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2718 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2719
2720 brw_mark_surface_used(prog_data,
2721 stage_prog_data->binding_table.ssbo_start +
2722 nir->info.num_ssbos - 1);
2723 }
2724
2725 /* Value */
2726 fs_reg val_reg = get_nir_src(instr->src[0]);
2727
2728 /* Writemask */
2729 unsigned writemask = instr->const_index[0];
2730
2731 /* Combine groups of consecutive enabled channels in one write
2732 * message. We use ffs to find the first enabled channel and then ffs on
2733 * the bit-inverse, down-shifted writemask to determine the length of
2734 * the block of enabled bits.
2735 */
2736 while (writemask) {
2737 unsigned first_component = ffs(writemask) - 1;
2738 unsigned length = ffs(~(writemask >> first_component)) - 1;
2739
2740 fs_reg offset_reg;
2741 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2742 if (const_offset) {
2743 offset_reg = brw_imm_ud(const_offset->u[0] + 4 * first_component);
2744 } else {
2745 offset_reg = vgrf(glsl_type::uint_type);
2746 bld.ADD(offset_reg,
2747 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2748 brw_imm_ud(4 * first_component));
2749 }
2750
2751 emit_untyped_write(bld, surf_index, offset_reg,
2752 offset(val_reg, bld, first_component),
2753 1 /* dims */, length,
2754 BRW_PREDICATE_NONE);
2755
2756 /* Clear the bits in the writemask that we just wrote, then try
2757 * again to see if more channels are left.
2758 */
2759 writemask &= (15 << (first_component + length));
2760 }
2761 break;
2762 }
2763
2764 case nir_intrinsic_store_output: {
2765 fs_reg src = get_nir_src(instr->src[0]);
2766 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2767 instr->const_index[0]);
2768
2769 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2770 assert(const_offset && "Indirect output stores not allowed");
2771 new_dest = offset(new_dest, bld, const_offset->u[0]);
2772
2773 for (unsigned j = 0; j < instr->num_components; j++) {
2774 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2775 }
2776 break;
2777 }
2778
2779 case nir_intrinsic_ssbo_atomic_add:
2780 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2781 break;
2782 case nir_intrinsic_ssbo_atomic_imin:
2783 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2784 break;
2785 case nir_intrinsic_ssbo_atomic_umin:
2786 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2787 break;
2788 case nir_intrinsic_ssbo_atomic_imax:
2789 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2790 break;
2791 case nir_intrinsic_ssbo_atomic_umax:
2792 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2793 break;
2794 case nir_intrinsic_ssbo_atomic_and:
2795 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2796 break;
2797 case nir_intrinsic_ssbo_atomic_or:
2798 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2799 break;
2800 case nir_intrinsic_ssbo_atomic_xor:
2801 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2802 break;
2803 case nir_intrinsic_ssbo_atomic_exchange:
2804 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2805 break;
2806 case nir_intrinsic_ssbo_atomic_comp_swap:
2807 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2808 break;
2809
2810 case nir_intrinsic_get_buffer_size: {
2811 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2812 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2813 int reg_width = dispatch_width / 8;
2814
2815 /* Set LOD = 0 */
2816 fs_reg source = brw_imm_d(0);
2817
2818 int mlen = 1 * reg_width;
2819
2820 /* A resinfo's sampler message is used to get the buffer size.
2821 * The SIMD8's writeback message consists of four registers and
2822 * SIMD16's writeback message consists of 8 destination registers
2823 * (two per each component), although we are only interested on the
2824 * first component, where resinfo returns the buffer size for
2825 * SURFTYPE_BUFFER.
2826 */
2827 int regs_written = 4 * mlen;
2828 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2829 BRW_REGISTER_TYPE_UD);
2830 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2831 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2832 BRW_REGISTER_TYPE_UD);
2833 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2834 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2835 src_payload, brw_imm_ud(index));
2836 inst->header_size = 0;
2837 inst->mlen = mlen;
2838 inst->regs_written = regs_written;
2839 bld.emit(inst);
2840 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2841
2842 brw_mark_surface_used(prog_data, index);
2843 break;
2844 }
2845
2846 default:
2847 unreachable("unknown intrinsic");
2848 }
2849 }
2850
2851 void
2852 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2853 int op, nir_intrinsic_instr *instr)
2854 {
2855 fs_reg dest;
2856 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2857 dest = get_nir_dest(instr->dest);
2858
2859 fs_reg surface;
2860 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2861 if (const_surface) {
2862 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2863 const_surface->u[0];
2864 surface = brw_imm_ud(surf_index);
2865 brw_mark_surface_used(prog_data, surf_index);
2866 } else {
2867 surface = vgrf(glsl_type::uint_type);
2868 bld.ADD(surface, get_nir_src(instr->src[0]),
2869 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2870
2871 /* Assume this may touch any SSBO. This is the same we do for other
2872 * UBO/SSBO accesses with non-constant surface.
2873 */
2874 brw_mark_surface_used(prog_data,
2875 stage_prog_data->binding_table.ssbo_start +
2876 nir->info.num_ssbos - 1);
2877 }
2878
2879 fs_reg offset = get_nir_src(instr->src[1]);
2880 fs_reg data1 = get_nir_src(instr->src[2]);
2881 fs_reg data2;
2882 if (op == BRW_AOP_CMPWR)
2883 data2 = get_nir_src(instr->src[3]);
2884
2885 /* Emit the actual atomic operation operation */
2886
2887 fs_reg atomic_result =
2888 surface_access::emit_untyped_atomic(bld, surface, offset,
2889 data1, data2,
2890 1 /* dims */, 1 /* rsize */,
2891 op,
2892 BRW_PREDICATE_NONE);
2893 dest.type = atomic_result.type;
2894 bld.MOV(dest, atomic_result);
2895 }
2896
2897 void
2898 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
2899 int op, nir_intrinsic_instr *instr)
2900 {
2901 fs_reg dest;
2902 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2903 dest = get_nir_dest(instr->dest);
2904
2905 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
2906 fs_reg offset = get_nir_src(instr->src[0]);
2907 fs_reg data1 = get_nir_src(instr->src[1]);
2908 fs_reg data2;
2909 if (op == BRW_AOP_CMPWR)
2910 data2 = get_nir_src(instr->src[2]);
2911
2912 /* Emit the actual atomic operation operation */
2913
2914 fs_reg atomic_result =
2915 surface_access::emit_untyped_atomic(bld, surface, offset,
2916 data1, data2,
2917 1 /* dims */, 1 /* rsize */,
2918 op,
2919 BRW_PREDICATE_NONE);
2920 dest.type = atomic_result.type;
2921 bld.MOV(dest, atomic_result);
2922 }
2923
2924 void
2925 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
2926 {
2927 unsigned sampler = instr->sampler_index;
2928 fs_reg sampler_reg(brw_imm_ud(sampler));
2929
2930 int gather_component = instr->component;
2931
2932 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
2933 instr->is_array;
2934
2935 int lod_components = 0;
2936 int UNUSED offset_components = 0;
2937
2938 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
2939
2940 for (unsigned i = 0; i < instr->num_srcs; i++) {
2941 fs_reg src = get_nir_src(instr->src[i].src);
2942 switch (instr->src[i].src_type) {
2943 case nir_tex_src_bias:
2944 lod = retype(src, BRW_REGISTER_TYPE_F);
2945 break;
2946 case nir_tex_src_comparitor:
2947 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
2948 break;
2949 case nir_tex_src_coord:
2950 switch (instr->op) {
2951 case nir_texop_txf:
2952 case nir_texop_txf_ms:
2953 case nir_texop_samples_identical:
2954 coordinate = retype(src, BRW_REGISTER_TYPE_D);
2955 break;
2956 default:
2957 coordinate = retype(src, BRW_REGISTER_TYPE_F);
2958 break;
2959 }
2960 break;
2961 case nir_tex_src_ddx:
2962 lod = retype(src, BRW_REGISTER_TYPE_F);
2963 lod_components = nir_tex_instr_src_size(instr, i);
2964 break;
2965 case nir_tex_src_ddy:
2966 lod2 = retype(src, BRW_REGISTER_TYPE_F);
2967 break;
2968 case nir_tex_src_lod:
2969 switch (instr->op) {
2970 case nir_texop_txs:
2971 lod = retype(src, BRW_REGISTER_TYPE_UD);
2972 break;
2973 case nir_texop_txf:
2974 lod = retype(src, BRW_REGISTER_TYPE_D);
2975 break;
2976 default:
2977 lod = retype(src, BRW_REGISTER_TYPE_F);
2978 break;
2979 }
2980 break;
2981 case nir_tex_src_ms_index:
2982 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
2983 break;
2984 case nir_tex_src_offset:
2985 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
2986 if (instr->is_array)
2987 offset_components = instr->coord_components - 1;
2988 else
2989 offset_components = instr->coord_components;
2990 break;
2991 case nir_tex_src_projector:
2992 unreachable("should be lowered");
2993
2994 case nir_tex_src_sampler_offset: {
2995 /* Figure out the highest possible sampler index and mark it as used */
2996 uint32_t max_used = sampler + instr->sampler_array_size - 1;
2997 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
2998 max_used += stage_prog_data->binding_table.gather_texture_start;
2999 } else {
3000 max_used += stage_prog_data->binding_table.texture_start;
3001 }
3002 brw_mark_surface_used(prog_data, max_used);
3003
3004 /* Emit code to evaluate the actual indexing expression */
3005 sampler_reg = vgrf(glsl_type::uint_type);
3006 bld.ADD(sampler_reg, src, brw_imm_ud(sampler));
3007 sampler_reg = bld.emit_uniformize(sampler_reg);
3008 break;
3009 }
3010
3011 default:
3012 unreachable("unknown texture source");
3013 }
3014 }
3015
3016 if (instr->op == nir_texop_txf_ms ||
3017 instr->op == nir_texop_samples_identical) {
3018 if (devinfo->gen >= 7 &&
3019 key_tex->compressed_multisample_layout_mask & (1 << sampler)) {
3020 mcs = emit_mcs_fetch(coordinate, instr->coord_components, sampler_reg);
3021 } else {
3022 mcs = brw_imm_ud(0u);
3023 }
3024 }
3025
3026 for (unsigned i = 0; i < 3; i++) {
3027 if (instr->const_offset[i] != 0) {
3028 assert(offset_components == 0);
3029 tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
3030 break;
3031 }
3032 }
3033
3034 enum glsl_base_type dest_base_type =
3035 brw_glsl_base_type_for_nir_type (instr->dest_type);
3036
3037 const glsl_type *dest_type =
3038 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3039 1);
3040
3041 ir_texture_opcode op;
3042 switch (instr->op) {
3043 case nir_texop_lod: op = ir_lod; break;
3044 case nir_texop_query_levels: op = ir_query_levels; break;
3045 case nir_texop_tex: op = ir_tex; break;
3046 case nir_texop_tg4: op = ir_tg4; break;
3047 case nir_texop_txb: op = ir_txb; break;
3048 case nir_texop_txd: op = ir_txd; break;
3049 case nir_texop_txf: op = ir_txf; break;
3050 case nir_texop_txf_ms: op = ir_txf_ms; break;
3051 case nir_texop_txl: op = ir_txl; break;
3052 case nir_texop_txs: op = ir_txs; break;
3053 case nir_texop_texture_samples: {
3054 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3055 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3056 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3057 sampler_reg);
3058 inst->mlen = 1;
3059 inst->header_size = 1;
3060 inst->base_mrf = -1;
3061 return;
3062 }
3063 case nir_texop_samples_identical: op = ir_samples_identical; break;
3064 default:
3065 unreachable("unknown texture opcode");
3066 }
3067
3068 emit_texture(op, dest_type, coordinate, instr->coord_components,
3069 shadow_comparitor, lod, lod2, lod_components, sample_index,
3070 tex_offset, mcs, gather_component,
3071 is_cube_array, sampler, sampler_reg);
3072
3073 fs_reg dest = get_nir_dest(instr->dest);
3074 dest.type = this->result.type;
3075 unsigned num_components = nir_tex_instr_dest_size(instr);
3076 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3077 dest, this->result),
3078 (1 << num_components) - 1);
3079 }
3080
3081 void
3082 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3083 {
3084 switch (instr->type) {
3085 case nir_jump_break:
3086 bld.emit(BRW_OPCODE_BREAK);
3087 break;
3088 case nir_jump_continue:
3089 bld.emit(BRW_OPCODE_CONTINUE);
3090 break;
3091 case nir_jump_return:
3092 default:
3093 unreachable("unknown jump");
3094 }
3095 }