nir/tex_instr: Rename sampler to texture
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_nir.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 */
23
24 #include "compiler/glsl/ir.h"
25 #include "main/shaderimage.h"
26 #include "brw_fs.h"
27 #include "brw_fs_surface_builder.h"
28 #include "brw_nir.h"
29 #include "brw_program.h"
30
31 using namespace brw;
32 using namespace brw::surface_access;
33
34 void
35 fs_visitor::emit_nir_code()
36 {
37 /* emit the arrays used for inputs and outputs - load/store intrinsics will
38 * be converted to reads/writes of these arrays
39 */
40 nir_setup_inputs();
41 nir_setup_outputs();
42 nir_setup_uniforms();
43 nir_emit_system_values();
44
45 /* get the main function and emit it */
46 nir_foreach_function(nir, function) {
47 assert(strcmp(function->name, "main") == 0);
48 assert(function->impl);
49 nir_emit_impl(function->impl);
50 }
51 }
52
53 void
54 fs_visitor::nir_setup_inputs()
55 {
56 if (stage != MESA_SHADER_FRAGMENT)
57 return;
58
59 nir_inputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_inputs);
60
61 nir_foreach_variable(var, &nir->inputs) {
62 fs_reg input = offset(nir_inputs, bld, var->data.driver_location);
63
64 fs_reg reg;
65 if (var->data.location == VARYING_SLOT_POS) {
66 reg = *emit_fragcoord_interpolation(var->data.pixel_center_integer,
67 var->data.origin_upper_left);
68 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
69 input, reg), 0xF);
70 } else if (var->data.location == VARYING_SLOT_LAYER) {
71 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_LAYER, 1), 3);
72 reg.type = BRW_REGISTER_TYPE_D;
73 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
74 } else if (var->data.location == VARYING_SLOT_VIEWPORT) {
75 struct brw_reg reg = suboffset(interp_reg(VARYING_SLOT_VIEWPORT, 2), 3);
76 reg.type = BRW_REGISTER_TYPE_D;
77 bld.emit(FS_OPCODE_CINTERP, retype(input, BRW_REGISTER_TYPE_D), reg);
78 } else {
79 int location = var->data.location;
80 emit_general_interpolation(&input, var->name, var->type,
81 (glsl_interp_qualifier) var->data.interpolation,
82 &location, var->data.centroid,
83 var->data.sample);
84 }
85 }
86 }
87
88 void
89 fs_visitor::nir_setup_single_output_varying(fs_reg *reg,
90 const glsl_type *type,
91 unsigned *location)
92 {
93 if (type->is_array() || type->is_matrix()) {
94 const struct glsl_type *elem_type = glsl_get_array_element(type);
95 const unsigned length = glsl_get_length(type);
96
97 for (unsigned i = 0; i < length; i++) {
98 nir_setup_single_output_varying(reg, elem_type, location);
99 }
100 } else if (type->is_record()) {
101 for (unsigned i = 0; i < type->length; i++) {
102 const struct glsl_type *field_type = type->fields.structure[i].type;
103 nir_setup_single_output_varying(reg, field_type, location);
104 }
105 } else {
106 assert(type->is_scalar() || type->is_vector());
107 this->outputs[*location] = *reg;
108 this->output_components[*location] = type->vector_elements;
109 *reg = offset(*reg, bld, 4);
110 (*location)++;
111 }
112 }
113
114 void
115 fs_visitor::nir_setup_outputs()
116 {
117 brw_wm_prog_key *key = (brw_wm_prog_key*) this->key;
118
119 nir_outputs = bld.vgrf(BRW_REGISTER_TYPE_F, nir->num_outputs);
120
121 nir_foreach_variable(var, &nir->outputs) {
122 fs_reg reg = offset(nir_outputs, bld, var->data.driver_location);
123
124 switch (stage) {
125 case MESA_SHADER_VERTEX:
126 case MESA_SHADER_TESS_EVAL:
127 case MESA_SHADER_GEOMETRY: {
128 unsigned location = var->data.location;
129 nir_setup_single_output_varying(&reg, var->type, &location);
130 break;
131 }
132 case MESA_SHADER_FRAGMENT:
133 if (key->force_dual_color_blend &&
134 var->data.location == FRAG_RESULT_DATA1) {
135 this->dual_src_output = reg;
136 this->do_dual_src = true;
137 } else if (var->data.index > 0) {
138 assert(var->data.location == FRAG_RESULT_DATA0);
139 assert(var->data.index == 1);
140 this->dual_src_output = reg;
141 this->do_dual_src = true;
142 } else if (var->data.location == FRAG_RESULT_COLOR) {
143 /* Writing gl_FragColor outputs to all color regions. */
144 for (unsigned int i = 0; i < MAX2(key->nr_color_regions, 1); i++) {
145 this->outputs[i] = reg;
146 this->output_components[i] = 4;
147 }
148 } else if (var->data.location == FRAG_RESULT_DEPTH) {
149 this->frag_depth = reg;
150 } else if (var->data.location == FRAG_RESULT_STENCIL) {
151 this->frag_stencil = reg;
152 } else if (var->data.location == FRAG_RESULT_SAMPLE_MASK) {
153 this->sample_mask = reg;
154 } else {
155 int vector_elements = var->type->without_array()->vector_elements;
156
157 /* gl_FragData or a user-defined FS output */
158 assert(var->data.location >= FRAG_RESULT_DATA0 &&
159 var->data.location < FRAG_RESULT_DATA0+BRW_MAX_DRAW_BUFFERS);
160
161 /* General color output. */
162 for (unsigned int i = 0; i < MAX2(1, var->type->length); i++) {
163 int output = var->data.location - FRAG_RESULT_DATA0 + i;
164 this->outputs[output] = offset(reg, bld, vector_elements * i);
165 this->output_components[output] = vector_elements;
166 }
167 }
168 break;
169 default:
170 unreachable("unhandled shader stage");
171 }
172 }
173 }
174
175 void
176 fs_visitor::nir_setup_uniforms()
177 {
178 if (dispatch_width != 8)
179 return;
180
181 uniforms = nir->num_uniforms / 4;
182
183 nir_foreach_variable(var, &nir->uniforms) {
184 /* UBO's and atomics don't take up space in the uniform file */
185 if (var->interface_type != NULL || var->type->contains_atomic())
186 continue;
187
188 if (type_size_scalar(var->type) > 0)
189 param_size[var->data.driver_location / 4] = type_size_scalar(var->type);
190 }
191 }
192
193 static bool
194 emit_system_values_block(nir_block *block, void *void_visitor)
195 {
196 fs_visitor *v = (fs_visitor *)void_visitor;
197 fs_reg *reg;
198
199 nir_foreach_instr(block, instr) {
200 if (instr->type != nir_instr_type_intrinsic)
201 continue;
202
203 nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
204 switch (intrin->intrinsic) {
205 case nir_intrinsic_load_vertex_id:
206 unreachable("should be lowered by lower_vertex_id().");
207
208 case nir_intrinsic_load_vertex_id_zero_base:
209 assert(v->stage == MESA_SHADER_VERTEX);
210 reg = &v->nir_system_values[SYSTEM_VALUE_VERTEX_ID_ZERO_BASE];
211 if (reg->file == BAD_FILE)
212 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_VERTEX_ID_ZERO_BASE);
213 break;
214
215 case nir_intrinsic_load_base_vertex:
216 assert(v->stage == MESA_SHADER_VERTEX);
217 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_VERTEX];
218 if (reg->file == BAD_FILE)
219 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_VERTEX);
220 break;
221
222 case nir_intrinsic_load_instance_id:
223 assert(v->stage == MESA_SHADER_VERTEX);
224 reg = &v->nir_system_values[SYSTEM_VALUE_INSTANCE_ID];
225 if (reg->file == BAD_FILE)
226 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_INSTANCE_ID);
227 break;
228
229 case nir_intrinsic_load_base_instance:
230 assert(v->stage == MESA_SHADER_VERTEX);
231 reg = &v->nir_system_values[SYSTEM_VALUE_BASE_INSTANCE];
232 if (reg->file == BAD_FILE)
233 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_BASE_INSTANCE);
234 break;
235
236 case nir_intrinsic_load_draw_id:
237 assert(v->stage == MESA_SHADER_VERTEX);
238 reg = &v->nir_system_values[SYSTEM_VALUE_DRAW_ID];
239 if (reg->file == BAD_FILE)
240 *reg = *v->emit_vs_system_value(SYSTEM_VALUE_DRAW_ID);
241 break;
242
243 case nir_intrinsic_load_invocation_id:
244 assert(v->stage == MESA_SHADER_GEOMETRY);
245 reg = &v->nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
246 if (reg->file == BAD_FILE) {
247 const fs_builder abld = v->bld.annotate("gl_InvocationID", NULL);
248 fs_reg g1(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
249 fs_reg iid = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
250 abld.SHR(iid, g1, brw_imm_ud(27u));
251 *reg = iid;
252 }
253 break;
254
255 case nir_intrinsic_load_sample_pos:
256 assert(v->stage == MESA_SHADER_FRAGMENT);
257 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
258 if (reg->file == BAD_FILE)
259 *reg = *v->emit_samplepos_setup();
260 break;
261
262 case nir_intrinsic_load_sample_id:
263 assert(v->stage == MESA_SHADER_FRAGMENT);
264 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_ID];
265 if (reg->file == BAD_FILE)
266 *reg = *v->emit_sampleid_setup();
267 break;
268
269 case nir_intrinsic_load_sample_mask_in:
270 assert(v->stage == MESA_SHADER_FRAGMENT);
271 assert(v->devinfo->gen >= 7);
272 reg = &v->nir_system_values[SYSTEM_VALUE_SAMPLE_MASK_IN];
273 if (reg->file == BAD_FILE)
274 *reg = fs_reg(retype(brw_vec8_grf(v->payload.sample_mask_in_reg, 0),
275 BRW_REGISTER_TYPE_D));
276 break;
277
278 case nir_intrinsic_load_local_invocation_id:
279 assert(v->stage == MESA_SHADER_COMPUTE);
280 reg = &v->nir_system_values[SYSTEM_VALUE_LOCAL_INVOCATION_ID];
281 if (reg->file == BAD_FILE)
282 *reg = *v->emit_cs_local_invocation_id_setup();
283 break;
284
285 case nir_intrinsic_load_work_group_id:
286 assert(v->stage == MESA_SHADER_COMPUTE);
287 reg = &v->nir_system_values[SYSTEM_VALUE_WORK_GROUP_ID];
288 if (reg->file == BAD_FILE)
289 *reg = *v->emit_cs_work_group_id_setup();
290 break;
291
292 case nir_intrinsic_load_helper_invocation:
293 assert(v->stage == MESA_SHADER_FRAGMENT);
294 reg = &v->nir_system_values[SYSTEM_VALUE_HELPER_INVOCATION];
295 if (reg->file == BAD_FILE) {
296 const fs_builder abld =
297 v->bld.annotate("gl_HelperInvocation", NULL);
298
299 /* On Gen6+ (gl_HelperInvocation is only exposed on Gen7+) the
300 * pixel mask is in g1.7 of the thread payload.
301 *
302 * We move the per-channel pixel enable bit to the low bit of each
303 * channel by shifting the byte containing the pixel mask by the
304 * vector immediate 0x76543210UV.
305 *
306 * The region of <1,8,0> reads only 1 byte (the pixel masks for
307 * subspans 0 and 1) in SIMD8 and an additional byte (the pixel
308 * masks for 2 and 3) in SIMD16.
309 */
310 fs_reg shifted = abld.vgrf(BRW_REGISTER_TYPE_UW, 1);
311 abld.SHR(shifted,
312 stride(byte_offset(retype(brw_vec1_grf(1, 0),
313 BRW_REGISTER_TYPE_UB), 28),
314 1, 8, 0),
315 brw_imm_uv(0x76543210));
316
317 /* A set bit in the pixel mask means the channel is enabled, but
318 * that is the opposite of gl_HelperInvocation so we need to invert
319 * the mask.
320 *
321 * The negate source-modifier bit of logical instructions on Gen8+
322 * performs 1's complement negation, so we can use that instead of
323 * a NOT instruction.
324 */
325 fs_reg inverted = negate(shifted);
326 if (v->devinfo->gen < 8) {
327 inverted = abld.vgrf(BRW_REGISTER_TYPE_UW);
328 abld.NOT(inverted, shifted);
329 }
330
331 /* We then resolve the 0/1 result to 0/~0 boolean values by ANDing
332 * with 1 and negating.
333 */
334 fs_reg anded = abld.vgrf(BRW_REGISTER_TYPE_UD, 1);
335 abld.AND(anded, inverted, brw_imm_uw(1));
336
337 fs_reg dst = abld.vgrf(BRW_REGISTER_TYPE_D, 1);
338 abld.MOV(dst, negate(retype(anded, BRW_REGISTER_TYPE_D)));
339 *reg = dst;
340 }
341 break;
342
343 default:
344 break;
345 }
346 }
347
348 return true;
349 }
350
351 void
352 fs_visitor::nir_emit_system_values()
353 {
354 nir_system_values = ralloc_array(mem_ctx, fs_reg, SYSTEM_VALUE_MAX);
355 for (unsigned i = 0; i < SYSTEM_VALUE_MAX; i++) {
356 nir_system_values[i] = fs_reg();
357 }
358
359 nir_foreach_function(nir, function) {
360 assert(strcmp(function->name, "main") == 0);
361 assert(function->impl);
362 nir_foreach_block(function->impl, emit_system_values_block, this);
363 }
364 }
365
366 void
367 fs_visitor::nir_emit_impl(nir_function_impl *impl)
368 {
369 nir_locals = ralloc_array(mem_ctx, fs_reg, impl->reg_alloc);
370 for (unsigned i = 0; i < impl->reg_alloc; i++) {
371 nir_locals[i] = fs_reg();
372 }
373
374 foreach_list_typed(nir_register, reg, node, &impl->registers) {
375 unsigned array_elems =
376 reg->num_array_elems == 0 ? 1 : reg->num_array_elems;
377 unsigned size = array_elems * reg->num_components;
378 nir_locals[reg->index] = bld.vgrf(BRW_REGISTER_TYPE_F, size);
379 }
380
381 nir_ssa_values = reralloc(mem_ctx, nir_ssa_values, fs_reg,
382 impl->ssa_alloc);
383
384 nir_emit_cf_list(&impl->body);
385 }
386
387 void
388 fs_visitor::nir_emit_cf_list(exec_list *list)
389 {
390 exec_list_validate(list);
391 foreach_list_typed(nir_cf_node, node, node, list) {
392 switch (node->type) {
393 case nir_cf_node_if:
394 nir_emit_if(nir_cf_node_as_if(node));
395 break;
396
397 case nir_cf_node_loop:
398 nir_emit_loop(nir_cf_node_as_loop(node));
399 break;
400
401 case nir_cf_node_block:
402 nir_emit_block(nir_cf_node_as_block(node));
403 break;
404
405 default:
406 unreachable("Invalid CFG node block");
407 }
408 }
409 }
410
411 void
412 fs_visitor::nir_emit_if(nir_if *if_stmt)
413 {
414 /* first, put the condition into f0 */
415 fs_inst *inst = bld.MOV(bld.null_reg_d(),
416 retype(get_nir_src(if_stmt->condition),
417 BRW_REGISTER_TYPE_D));
418 inst->conditional_mod = BRW_CONDITIONAL_NZ;
419
420 bld.IF(BRW_PREDICATE_NORMAL);
421
422 nir_emit_cf_list(&if_stmt->then_list);
423
424 /* note: if the else is empty, dead CF elimination will remove it */
425 bld.emit(BRW_OPCODE_ELSE);
426
427 nir_emit_cf_list(&if_stmt->else_list);
428
429 bld.emit(BRW_OPCODE_ENDIF);
430 }
431
432 void
433 fs_visitor::nir_emit_loop(nir_loop *loop)
434 {
435 bld.emit(BRW_OPCODE_DO);
436
437 nir_emit_cf_list(&loop->body);
438
439 bld.emit(BRW_OPCODE_WHILE);
440 }
441
442 void
443 fs_visitor::nir_emit_block(nir_block *block)
444 {
445 nir_foreach_instr(block, instr) {
446 nir_emit_instr(instr);
447 }
448 }
449
450 void
451 fs_visitor::nir_emit_instr(nir_instr *instr)
452 {
453 const fs_builder abld = bld.annotate(NULL, instr);
454
455 switch (instr->type) {
456 case nir_instr_type_alu:
457 nir_emit_alu(abld, nir_instr_as_alu(instr));
458 break;
459
460 case nir_instr_type_intrinsic:
461 switch (stage) {
462 case MESA_SHADER_VERTEX:
463 nir_emit_vs_intrinsic(abld, nir_instr_as_intrinsic(instr));
464 break;
465 case MESA_SHADER_TESS_EVAL:
466 nir_emit_tes_intrinsic(abld, nir_instr_as_intrinsic(instr));
467 break;
468 case MESA_SHADER_GEOMETRY:
469 nir_emit_gs_intrinsic(abld, nir_instr_as_intrinsic(instr));
470 break;
471 case MESA_SHADER_FRAGMENT:
472 nir_emit_fs_intrinsic(abld, nir_instr_as_intrinsic(instr));
473 break;
474 case MESA_SHADER_COMPUTE:
475 nir_emit_cs_intrinsic(abld, nir_instr_as_intrinsic(instr));
476 break;
477 default:
478 unreachable("unsupported shader stage");
479 }
480 break;
481
482 case nir_instr_type_tex:
483 nir_emit_texture(abld, nir_instr_as_tex(instr));
484 break;
485
486 case nir_instr_type_load_const:
487 nir_emit_load_const(abld, nir_instr_as_load_const(instr));
488 break;
489
490 case nir_instr_type_ssa_undef:
491 nir_emit_undef(abld, nir_instr_as_ssa_undef(instr));
492 break;
493
494 case nir_instr_type_jump:
495 nir_emit_jump(abld, nir_instr_as_jump(instr));
496 break;
497
498 default:
499 unreachable("unknown instruction type");
500 }
501 }
502
503 bool
504 fs_visitor::optimize_frontfacing_ternary(nir_alu_instr *instr,
505 const fs_reg &result)
506 {
507 if (!instr->src[0].src.is_ssa ||
508 instr->src[0].src.ssa->parent_instr->type != nir_instr_type_intrinsic)
509 return false;
510
511 nir_intrinsic_instr *src0 =
512 nir_instr_as_intrinsic(instr->src[0].src.ssa->parent_instr);
513
514 if (src0->intrinsic != nir_intrinsic_load_front_face)
515 return false;
516
517 nir_const_value *value1 = nir_src_as_const_value(instr->src[1].src);
518 if (!value1 || fabsf(value1->f[0]) != 1.0f)
519 return false;
520
521 nir_const_value *value2 = nir_src_as_const_value(instr->src[2].src);
522 if (!value2 || fabsf(value2->f[0]) != 1.0f)
523 return false;
524
525 fs_reg tmp = vgrf(glsl_type::int_type);
526
527 if (devinfo->gen >= 6) {
528 /* Bit 15 of g0.0 is 0 if the polygon is front facing. */
529 fs_reg g0 = fs_reg(retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_W));
530
531 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
532 *
533 * or(8) tmp.1<2>W g0.0<0,1,0>W 0x00003f80W
534 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
535 *
536 * and negate g0.0<0,1,0>W for (gl_FrontFacing ? -1.0 : 1.0).
537 *
538 * This negation looks like it's safe in practice, because bits 0:4 will
539 * surely be TRIANGLES
540 */
541
542 if (value1->f[0] == -1.0f) {
543 g0.negate = true;
544 }
545
546 tmp.type = BRW_REGISTER_TYPE_W;
547 tmp.subreg_offset = 2;
548 tmp.stride = 2;
549
550 bld.OR(tmp, g0, brw_imm_uw(0x3f80));
551
552 tmp.type = BRW_REGISTER_TYPE_D;
553 tmp.subreg_offset = 0;
554 tmp.stride = 1;
555 } else {
556 /* Bit 31 of g1.6 is 0 if the polygon is front facing. */
557 fs_reg g1_6 = fs_reg(retype(brw_vec1_grf(1, 6), BRW_REGISTER_TYPE_D));
558
559 /* For (gl_FrontFacing ? 1.0 : -1.0), emit:
560 *
561 * or(8) tmp<1>D g1.6<0,1,0>D 0x3f800000D
562 * and(8) dst<1>D tmp<8,8,1>D 0xbf800000D
563 *
564 * and negate g1.6<0,1,0>D for (gl_FrontFacing ? -1.0 : 1.0).
565 *
566 * This negation looks like it's safe in practice, because bits 0:4 will
567 * surely be TRIANGLES
568 */
569
570 if (value1->f[0] == -1.0f) {
571 g1_6.negate = true;
572 }
573
574 bld.OR(tmp, g1_6, brw_imm_d(0x3f800000));
575 }
576 bld.AND(retype(result, BRW_REGISTER_TYPE_D), tmp, brw_imm_d(0xbf800000));
577
578 return true;
579 }
580
581 void
582 fs_visitor::nir_emit_alu(const fs_builder &bld, nir_alu_instr *instr)
583 {
584 struct brw_wm_prog_key *fs_key = (struct brw_wm_prog_key *) this->key;
585 fs_inst *inst;
586
587 fs_reg result = get_nir_dest(instr->dest.dest);
588 result.type = brw_type_for_nir_type(nir_op_infos[instr->op].output_type);
589
590 fs_reg op[4];
591 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
592 op[i] = get_nir_src(instr->src[i].src);
593 op[i].type = brw_type_for_nir_type(nir_op_infos[instr->op].input_types[i]);
594 op[i].abs = instr->src[i].abs;
595 op[i].negate = instr->src[i].negate;
596 }
597
598 /* We get a bunch of mov's out of the from_ssa pass and they may still
599 * be vectorized. We'll handle them as a special-case. We'll also
600 * handle vecN here because it's basically the same thing.
601 */
602 switch (instr->op) {
603 case nir_op_imov:
604 case nir_op_fmov:
605 case nir_op_vec2:
606 case nir_op_vec3:
607 case nir_op_vec4: {
608 fs_reg temp = result;
609 bool need_extra_copy = false;
610 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
611 if (!instr->src[i].src.is_ssa &&
612 instr->dest.dest.reg.reg == instr->src[i].src.reg.reg) {
613 need_extra_copy = true;
614 temp = bld.vgrf(result.type, 4);
615 break;
616 }
617 }
618
619 for (unsigned i = 0; i < 4; i++) {
620 if (!(instr->dest.write_mask & (1 << i)))
621 continue;
622
623 if (instr->op == nir_op_imov || instr->op == nir_op_fmov) {
624 inst = bld.MOV(offset(temp, bld, i),
625 offset(op[0], bld, instr->src[0].swizzle[i]));
626 } else {
627 inst = bld.MOV(offset(temp, bld, i),
628 offset(op[i], bld, instr->src[i].swizzle[0]));
629 }
630 inst->saturate = instr->dest.saturate;
631 }
632
633 /* In this case the source and destination registers were the same,
634 * so we need to insert an extra set of moves in order to deal with
635 * any swizzling.
636 */
637 if (need_extra_copy) {
638 for (unsigned i = 0; i < 4; i++) {
639 if (!(instr->dest.write_mask & (1 << i)))
640 continue;
641
642 bld.MOV(offset(result, bld, i), offset(temp, bld, i));
643 }
644 }
645 return;
646 }
647 default:
648 break;
649 }
650
651 /* At this point, we have dealt with any instruction that operates on
652 * more than a single channel. Therefore, we can just adjust the source
653 * and destination registers for that channel and emit the instruction.
654 */
655 unsigned channel = 0;
656 if (nir_op_infos[instr->op].output_size == 0) {
657 /* Since NIR is doing the scalarizing for us, we should only ever see
658 * vectorized operations with a single channel.
659 */
660 assert(_mesa_bitcount(instr->dest.write_mask) == 1);
661 channel = ffs(instr->dest.write_mask) - 1;
662
663 result = offset(result, bld, channel);
664 }
665
666 for (unsigned i = 0; i < nir_op_infos[instr->op].num_inputs; i++) {
667 assert(nir_op_infos[instr->op].input_sizes[i] < 2);
668 op[i] = offset(op[i], bld, instr->src[i].swizzle[channel]);
669 }
670
671 switch (instr->op) {
672 case nir_op_i2f:
673 case nir_op_u2f:
674 inst = bld.MOV(result, op[0]);
675 inst->saturate = instr->dest.saturate;
676 break;
677
678 case nir_op_f2i:
679 case nir_op_f2u:
680 bld.MOV(result, op[0]);
681 break;
682
683 case nir_op_fsign: {
684 /* AND(val, 0x80000000) gives the sign bit.
685 *
686 * Predicated OR ORs 1.0 (0x3f800000) with the sign bit if val is not
687 * zero.
688 */
689 bld.CMP(bld.null_reg_f(), op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
690
691 fs_reg result_int = retype(result, BRW_REGISTER_TYPE_UD);
692 op[0].type = BRW_REGISTER_TYPE_UD;
693 result.type = BRW_REGISTER_TYPE_UD;
694 bld.AND(result_int, op[0], brw_imm_ud(0x80000000u));
695
696 inst = bld.OR(result_int, result_int, brw_imm_ud(0x3f800000u));
697 inst->predicate = BRW_PREDICATE_NORMAL;
698 if (instr->dest.saturate) {
699 inst = bld.MOV(result, result);
700 inst->saturate = true;
701 }
702 break;
703 }
704
705 case nir_op_isign:
706 /* ASR(val, 31) -> negative val generates 0xffffffff (signed -1).
707 * -> non-negative val generates 0x00000000.
708 * Predicated OR sets 1 if val is positive.
709 */
710 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_G);
711 bld.ASR(result, op[0], brw_imm_d(31));
712 inst = bld.OR(result, result, brw_imm_d(1));
713 inst->predicate = BRW_PREDICATE_NORMAL;
714 break;
715
716 case nir_op_frcp:
717 inst = bld.emit(SHADER_OPCODE_RCP, result, op[0]);
718 inst->saturate = instr->dest.saturate;
719 break;
720
721 case nir_op_fexp2:
722 inst = bld.emit(SHADER_OPCODE_EXP2, result, op[0]);
723 inst->saturate = instr->dest.saturate;
724 break;
725
726 case nir_op_flog2:
727 inst = bld.emit(SHADER_OPCODE_LOG2, result, op[0]);
728 inst->saturate = instr->dest.saturate;
729 break;
730
731 case nir_op_fsin:
732 inst = bld.emit(SHADER_OPCODE_SIN, result, op[0]);
733 inst->saturate = instr->dest.saturate;
734 break;
735
736 case nir_op_fcos:
737 inst = bld.emit(SHADER_OPCODE_COS, result, op[0]);
738 inst->saturate = instr->dest.saturate;
739 break;
740
741 case nir_op_fddx:
742 if (fs_key->high_quality_derivatives) {
743 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
744 } else {
745 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
746 }
747 inst->saturate = instr->dest.saturate;
748 break;
749 case nir_op_fddx_fine:
750 inst = bld.emit(FS_OPCODE_DDX_FINE, result, op[0]);
751 inst->saturate = instr->dest.saturate;
752 break;
753 case nir_op_fddx_coarse:
754 inst = bld.emit(FS_OPCODE_DDX_COARSE, result, op[0]);
755 inst->saturate = instr->dest.saturate;
756 break;
757 case nir_op_fddy:
758 if (fs_key->high_quality_derivatives) {
759 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
760 brw_imm_d(fs_key->render_to_fbo));
761 } else {
762 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
763 brw_imm_d(fs_key->render_to_fbo));
764 }
765 inst->saturate = instr->dest.saturate;
766 break;
767 case nir_op_fddy_fine:
768 inst = bld.emit(FS_OPCODE_DDY_FINE, result, op[0],
769 brw_imm_d(fs_key->render_to_fbo));
770 inst->saturate = instr->dest.saturate;
771 break;
772 case nir_op_fddy_coarse:
773 inst = bld.emit(FS_OPCODE_DDY_COARSE, result, op[0],
774 brw_imm_d(fs_key->render_to_fbo));
775 inst->saturate = instr->dest.saturate;
776 break;
777
778 case nir_op_fadd:
779 case nir_op_iadd:
780 inst = bld.ADD(result, op[0], op[1]);
781 inst->saturate = instr->dest.saturate;
782 break;
783
784 case nir_op_fmul:
785 inst = bld.MUL(result, op[0], op[1]);
786 inst->saturate = instr->dest.saturate;
787 break;
788
789 case nir_op_imul:
790 bld.MUL(result, op[0], op[1]);
791 break;
792
793 case nir_op_imul_high:
794 case nir_op_umul_high:
795 bld.emit(SHADER_OPCODE_MULH, result, op[0], op[1]);
796 break;
797
798 case nir_op_idiv:
799 case nir_op_udiv:
800 bld.emit(SHADER_OPCODE_INT_QUOTIENT, result, op[0], op[1]);
801 break;
802
803 case nir_op_uadd_carry:
804 unreachable("Should have been lowered by carry_to_arith().");
805
806 case nir_op_usub_borrow:
807 unreachable("Should have been lowered by borrow_to_arith().");
808
809 case nir_op_umod:
810 bld.emit(SHADER_OPCODE_INT_REMAINDER, result, op[0], op[1]);
811 break;
812
813 case nir_op_flt:
814 case nir_op_ilt:
815 case nir_op_ult:
816 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_L);
817 break;
818
819 case nir_op_fge:
820 case nir_op_ige:
821 case nir_op_uge:
822 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_GE);
823 break;
824
825 case nir_op_feq:
826 case nir_op_ieq:
827 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_Z);
828 break;
829
830 case nir_op_fne:
831 case nir_op_ine:
832 bld.CMP(result, op[0], op[1], BRW_CONDITIONAL_NZ);
833 break;
834
835 case nir_op_inot:
836 if (devinfo->gen >= 8) {
837 op[0] = resolve_source_modifiers(op[0]);
838 }
839 bld.NOT(result, op[0]);
840 break;
841 case nir_op_ixor:
842 if (devinfo->gen >= 8) {
843 op[0] = resolve_source_modifiers(op[0]);
844 op[1] = resolve_source_modifiers(op[1]);
845 }
846 bld.XOR(result, op[0], op[1]);
847 break;
848 case nir_op_ior:
849 if (devinfo->gen >= 8) {
850 op[0] = resolve_source_modifiers(op[0]);
851 op[1] = resolve_source_modifiers(op[1]);
852 }
853 bld.OR(result, op[0], op[1]);
854 break;
855 case nir_op_iand:
856 if (devinfo->gen >= 8) {
857 op[0] = resolve_source_modifiers(op[0]);
858 op[1] = resolve_source_modifiers(op[1]);
859 }
860 bld.AND(result, op[0], op[1]);
861 break;
862
863 case nir_op_fdot2:
864 case nir_op_fdot3:
865 case nir_op_fdot4:
866 case nir_op_ball_fequal2:
867 case nir_op_ball_iequal2:
868 case nir_op_ball_fequal3:
869 case nir_op_ball_iequal3:
870 case nir_op_ball_fequal4:
871 case nir_op_ball_iequal4:
872 case nir_op_bany_fnequal2:
873 case nir_op_bany_inequal2:
874 case nir_op_bany_fnequal3:
875 case nir_op_bany_inequal3:
876 case nir_op_bany_fnequal4:
877 case nir_op_bany_inequal4:
878 unreachable("Lowered by nir_lower_alu_reductions");
879
880 case nir_op_fnoise1_1:
881 case nir_op_fnoise1_2:
882 case nir_op_fnoise1_3:
883 case nir_op_fnoise1_4:
884 case nir_op_fnoise2_1:
885 case nir_op_fnoise2_2:
886 case nir_op_fnoise2_3:
887 case nir_op_fnoise2_4:
888 case nir_op_fnoise3_1:
889 case nir_op_fnoise3_2:
890 case nir_op_fnoise3_3:
891 case nir_op_fnoise3_4:
892 case nir_op_fnoise4_1:
893 case nir_op_fnoise4_2:
894 case nir_op_fnoise4_3:
895 case nir_op_fnoise4_4:
896 unreachable("not reached: should be handled by lower_noise");
897
898 case nir_op_ldexp:
899 unreachable("not reached: should be handled by ldexp_to_arith()");
900
901 case nir_op_fsqrt:
902 inst = bld.emit(SHADER_OPCODE_SQRT, result, op[0]);
903 inst->saturate = instr->dest.saturate;
904 break;
905
906 case nir_op_frsq:
907 inst = bld.emit(SHADER_OPCODE_RSQ, result, op[0]);
908 inst->saturate = instr->dest.saturate;
909 break;
910
911 case nir_op_b2i:
912 case nir_op_b2f:
913 bld.MOV(result, negate(op[0]));
914 break;
915
916 case nir_op_f2b:
917 bld.CMP(result, op[0], brw_imm_f(0.0f), BRW_CONDITIONAL_NZ);
918 break;
919 case nir_op_i2b:
920 bld.CMP(result, op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
921 break;
922
923 case nir_op_ftrunc:
924 inst = bld.RNDZ(result, op[0]);
925 inst->saturate = instr->dest.saturate;
926 break;
927
928 case nir_op_fceil: {
929 op[0].negate = !op[0].negate;
930 fs_reg temp = vgrf(glsl_type::float_type);
931 bld.RNDD(temp, op[0]);
932 temp.negate = true;
933 inst = bld.MOV(result, temp);
934 inst->saturate = instr->dest.saturate;
935 break;
936 }
937 case nir_op_ffloor:
938 inst = bld.RNDD(result, op[0]);
939 inst->saturate = instr->dest.saturate;
940 break;
941 case nir_op_ffract:
942 inst = bld.FRC(result, op[0]);
943 inst->saturate = instr->dest.saturate;
944 break;
945 case nir_op_fround_even:
946 inst = bld.RNDE(result, op[0]);
947 inst->saturate = instr->dest.saturate;
948 break;
949
950 case nir_op_fmin:
951 case nir_op_imin:
952 case nir_op_umin:
953 if (devinfo->gen >= 6) {
954 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
955 inst->conditional_mod = BRW_CONDITIONAL_L;
956 } else {
957 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_L);
958 inst = bld.SEL(result, op[0], op[1]);
959 inst->predicate = BRW_PREDICATE_NORMAL;
960 }
961 inst->saturate = instr->dest.saturate;
962 break;
963
964 case nir_op_fmax:
965 case nir_op_imax:
966 case nir_op_umax:
967 if (devinfo->gen >= 6) {
968 inst = bld.emit(BRW_OPCODE_SEL, result, op[0], op[1]);
969 inst->conditional_mod = BRW_CONDITIONAL_GE;
970 } else {
971 bld.CMP(bld.null_reg_d(), op[0], op[1], BRW_CONDITIONAL_GE);
972 inst = bld.SEL(result, op[0], op[1]);
973 inst->predicate = BRW_PREDICATE_NORMAL;
974 }
975 inst->saturate = instr->dest.saturate;
976 break;
977
978 case nir_op_pack_snorm_2x16:
979 case nir_op_pack_snorm_4x8:
980 case nir_op_pack_unorm_2x16:
981 case nir_op_pack_unorm_4x8:
982 case nir_op_unpack_snorm_2x16:
983 case nir_op_unpack_snorm_4x8:
984 case nir_op_unpack_unorm_2x16:
985 case nir_op_unpack_unorm_4x8:
986 case nir_op_unpack_half_2x16:
987 case nir_op_pack_half_2x16:
988 unreachable("not reached: should be handled by lower_packing_builtins");
989
990 case nir_op_unpack_half_2x16_split_x:
991 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_X, result, op[0]);
992 inst->saturate = instr->dest.saturate;
993 break;
994 case nir_op_unpack_half_2x16_split_y:
995 inst = bld.emit(FS_OPCODE_UNPACK_HALF_2x16_SPLIT_Y, result, op[0]);
996 inst->saturate = instr->dest.saturate;
997 break;
998
999 case nir_op_fpow:
1000 inst = bld.emit(SHADER_OPCODE_POW, result, op[0], op[1]);
1001 inst->saturate = instr->dest.saturate;
1002 break;
1003
1004 case nir_op_bitfield_reverse:
1005 bld.BFREV(result, op[0]);
1006 break;
1007
1008 case nir_op_bit_count:
1009 bld.CBIT(result, op[0]);
1010 break;
1011
1012 case nir_op_ufind_msb:
1013 case nir_op_ifind_msb: {
1014 bld.FBH(retype(result, BRW_REGISTER_TYPE_UD), op[0]);
1015
1016 /* FBH counts from the MSB side, while GLSL's findMSB() wants the count
1017 * from the LSB side. If FBH didn't return an error (0xFFFFFFFF), then
1018 * subtract the result from 31 to convert the MSB count into an LSB count.
1019 */
1020 bld.CMP(bld.null_reg_d(), result, brw_imm_d(-1), BRW_CONDITIONAL_NZ);
1021
1022 inst = bld.ADD(result, result, brw_imm_d(31));
1023 inst->predicate = BRW_PREDICATE_NORMAL;
1024 inst->src[0].negate = true;
1025 break;
1026 }
1027
1028 case nir_op_find_lsb:
1029 bld.FBL(result, op[0]);
1030 break;
1031
1032 case nir_op_ubitfield_extract:
1033 case nir_op_ibitfield_extract:
1034 unreachable("should have been lowered");
1035 case nir_op_ubfe:
1036 case nir_op_ibfe:
1037 bld.BFE(result, op[2], op[1], op[0]);
1038 break;
1039 case nir_op_bfm:
1040 bld.BFI1(result, op[0], op[1]);
1041 break;
1042 case nir_op_bfi:
1043 bld.BFI2(result, op[0], op[1], op[2]);
1044 break;
1045
1046 case nir_op_bitfield_insert:
1047 unreachable("not reached: should have been lowered");
1048
1049 case nir_op_ishl:
1050 bld.SHL(result, op[0], op[1]);
1051 break;
1052 case nir_op_ishr:
1053 bld.ASR(result, op[0], op[1]);
1054 break;
1055 case nir_op_ushr:
1056 bld.SHR(result, op[0], op[1]);
1057 break;
1058
1059 case nir_op_pack_half_2x16_split:
1060 bld.emit(FS_OPCODE_PACK_HALF_2x16_SPLIT, result, op[0], op[1]);
1061 break;
1062
1063 case nir_op_ffma:
1064 inst = bld.MAD(result, op[2], op[1], op[0]);
1065 inst->saturate = instr->dest.saturate;
1066 break;
1067
1068 case nir_op_flrp:
1069 inst = bld.LRP(result, op[0], op[1], op[2]);
1070 inst->saturate = instr->dest.saturate;
1071 break;
1072
1073 case nir_op_bcsel:
1074 if (optimize_frontfacing_ternary(instr, result))
1075 return;
1076
1077 bld.CMP(bld.null_reg_d(), op[0], brw_imm_d(0), BRW_CONDITIONAL_NZ);
1078 inst = bld.SEL(result, op[1], op[2]);
1079 inst->predicate = BRW_PREDICATE_NORMAL;
1080 break;
1081
1082 case nir_op_extract_u8:
1083 case nir_op_extract_i8: {
1084 nir_const_value *byte = nir_src_as_const_value(instr->src[1].src);
1085 bld.emit(SHADER_OPCODE_EXTRACT_BYTE,
1086 result, op[0], brw_imm_ud(byte->u[0]));
1087 break;
1088 }
1089
1090 case nir_op_extract_u16:
1091 case nir_op_extract_i16: {
1092 nir_const_value *word = nir_src_as_const_value(instr->src[1].src);
1093 bld.emit(SHADER_OPCODE_EXTRACT_WORD,
1094 result, op[0], brw_imm_ud(word->u[0]));
1095 break;
1096 }
1097
1098 default:
1099 unreachable("unhandled instruction");
1100 }
1101
1102 /* If we need to do a boolean resolve, replace the result with -(x & 1)
1103 * to sign extend the low bit to 0/~0
1104 */
1105 if (devinfo->gen <= 5 &&
1106 (instr->instr.pass_flags & BRW_NIR_BOOLEAN_MASK) == BRW_NIR_BOOLEAN_NEEDS_RESOLVE) {
1107 fs_reg masked = vgrf(glsl_type::int_type);
1108 bld.AND(masked, result, brw_imm_d(1));
1109 masked.negate = true;
1110 bld.MOV(retype(result, BRW_REGISTER_TYPE_D), masked);
1111 }
1112 }
1113
1114 void
1115 fs_visitor::nir_emit_load_const(const fs_builder &bld,
1116 nir_load_const_instr *instr)
1117 {
1118 fs_reg reg = bld.vgrf(BRW_REGISTER_TYPE_D, instr->def.num_components);
1119
1120 for (unsigned i = 0; i < instr->def.num_components; i++)
1121 bld.MOV(offset(reg, bld, i), brw_imm_d(instr->value.i[i]));
1122
1123 nir_ssa_values[instr->def.index] = reg;
1124 }
1125
1126 void
1127 fs_visitor::nir_emit_undef(const fs_builder &bld, nir_ssa_undef_instr *instr)
1128 {
1129 nir_ssa_values[instr->def.index] = bld.vgrf(BRW_REGISTER_TYPE_D,
1130 instr->def.num_components);
1131 }
1132
1133 fs_reg
1134 fs_visitor::get_nir_src(nir_src src)
1135 {
1136 fs_reg reg;
1137 if (src.is_ssa) {
1138 reg = nir_ssa_values[src.ssa->index];
1139 } else {
1140 /* We don't handle indirects on locals */
1141 assert(src.reg.indirect == NULL);
1142 reg = offset(nir_locals[src.reg.reg->index], bld,
1143 src.reg.base_offset * src.reg.reg->num_components);
1144 }
1145
1146 /* to avoid floating-point denorm flushing problems, set the type by
1147 * default to D - instructions that need floating point semantics will set
1148 * this to F if they need to
1149 */
1150 return retype(reg, BRW_REGISTER_TYPE_D);
1151 }
1152
1153 fs_reg
1154 fs_visitor::get_nir_dest(nir_dest dest)
1155 {
1156 if (dest.is_ssa) {
1157 nir_ssa_values[dest.ssa.index] = bld.vgrf(BRW_REGISTER_TYPE_F,
1158 dest.ssa.num_components);
1159 return nir_ssa_values[dest.ssa.index];
1160 } else {
1161 /* We don't handle indirects on locals */
1162 assert(dest.reg.indirect == NULL);
1163 return offset(nir_locals[dest.reg.reg->index], bld,
1164 dest.reg.base_offset * dest.reg.reg->num_components);
1165 }
1166 }
1167
1168 fs_reg
1169 fs_visitor::get_nir_image_deref(const nir_deref_var *deref)
1170 {
1171 fs_reg image(UNIFORM, deref->var->data.driver_location / 4,
1172 BRW_REGISTER_TYPE_UD);
1173
1174 for (const nir_deref *tail = &deref->deref; tail->child;
1175 tail = tail->child) {
1176 const nir_deref_array *deref_array = nir_deref_as_array(tail->child);
1177 assert(tail->child->deref_type == nir_deref_type_array);
1178 const unsigned size = glsl_get_length(tail->type);
1179 const unsigned element_size = type_size_scalar(deref_array->deref.type);
1180 const unsigned base = MIN2(deref_array->base_offset, size - 1);
1181 image = offset(image, bld, base * element_size);
1182
1183 if (deref_array->deref_array_type == nir_deref_array_type_indirect) {
1184 fs_reg tmp = vgrf(glsl_type::int_type);
1185
1186 if (devinfo->gen == 7 && !devinfo->is_haswell) {
1187 /* IVB hangs when trying to access an invalid surface index with
1188 * the dataport. According to the spec "if the index used to
1189 * select an individual element is negative or greater than or
1190 * equal to the size of the array, the results of the operation
1191 * are undefined but may not lead to termination" -- which is one
1192 * of the possible outcomes of the hang. Clamp the index to
1193 * prevent access outside of the array bounds.
1194 */
1195 bld.emit_minmax(tmp, retype(get_nir_src(deref_array->indirect),
1196 BRW_REGISTER_TYPE_UD),
1197 brw_imm_ud(size - base - 1), BRW_CONDITIONAL_L);
1198 } else {
1199 bld.MOV(tmp, get_nir_src(deref_array->indirect));
1200 }
1201
1202 bld.MUL(tmp, tmp, brw_imm_ud(element_size * 4));
1203 if (image.reladdr)
1204 bld.ADD(*image.reladdr, *image.reladdr, tmp);
1205 else
1206 image.reladdr = new(mem_ctx) fs_reg(tmp);
1207 }
1208 }
1209
1210 return image;
1211 }
1212
1213 void
1214 fs_visitor::emit_percomp(const fs_builder &bld, const fs_inst &inst,
1215 unsigned wr_mask)
1216 {
1217 for (unsigned i = 0; i < 4; i++) {
1218 if (!((wr_mask >> i) & 1))
1219 continue;
1220
1221 fs_inst *new_inst = new(mem_ctx) fs_inst(inst);
1222 new_inst->dst = offset(new_inst->dst, bld, i);
1223 for (unsigned j = 0; j < new_inst->sources; j++)
1224 if (new_inst->src[j].file == VGRF)
1225 new_inst->src[j] = offset(new_inst->src[j], bld, i);
1226
1227 bld.emit(new_inst);
1228 }
1229 }
1230
1231 /**
1232 * Get the matching channel register datatype for an image intrinsic of the
1233 * specified GLSL image type.
1234 */
1235 static brw_reg_type
1236 get_image_base_type(const glsl_type *type)
1237 {
1238 switch ((glsl_base_type)type->sampler_type) {
1239 case GLSL_TYPE_UINT:
1240 return BRW_REGISTER_TYPE_UD;
1241 case GLSL_TYPE_INT:
1242 return BRW_REGISTER_TYPE_D;
1243 case GLSL_TYPE_FLOAT:
1244 return BRW_REGISTER_TYPE_F;
1245 default:
1246 unreachable("Not reached.");
1247 }
1248 }
1249
1250 /**
1251 * Get the appropriate atomic op for an image atomic intrinsic.
1252 */
1253 static unsigned
1254 get_image_atomic_op(nir_intrinsic_op op, const glsl_type *type)
1255 {
1256 switch (op) {
1257 case nir_intrinsic_image_atomic_add:
1258 return BRW_AOP_ADD;
1259 case nir_intrinsic_image_atomic_min:
1260 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1261 BRW_AOP_IMIN : BRW_AOP_UMIN);
1262 case nir_intrinsic_image_atomic_max:
1263 return (get_image_base_type(type) == BRW_REGISTER_TYPE_D ?
1264 BRW_AOP_IMAX : BRW_AOP_UMAX);
1265 case nir_intrinsic_image_atomic_and:
1266 return BRW_AOP_AND;
1267 case nir_intrinsic_image_atomic_or:
1268 return BRW_AOP_OR;
1269 case nir_intrinsic_image_atomic_xor:
1270 return BRW_AOP_XOR;
1271 case nir_intrinsic_image_atomic_exchange:
1272 return BRW_AOP_MOV;
1273 case nir_intrinsic_image_atomic_comp_swap:
1274 return BRW_AOP_CMPWR;
1275 default:
1276 unreachable("Not reachable.");
1277 }
1278 }
1279
1280 static fs_inst *
1281 emit_pixel_interpolater_send(const fs_builder &bld,
1282 enum opcode opcode,
1283 const fs_reg &dst,
1284 const fs_reg &src,
1285 const fs_reg &desc,
1286 glsl_interp_qualifier interpolation)
1287 {
1288 fs_inst *inst;
1289 fs_reg payload;
1290 int mlen;
1291
1292 if (src.file == BAD_FILE) {
1293 /* Dummy payload */
1294 payload = bld.vgrf(BRW_REGISTER_TYPE_F, 1);
1295 mlen = 1;
1296 } else {
1297 payload = src;
1298 mlen = 2 * bld.dispatch_width() / 8;
1299 }
1300
1301 inst = bld.emit(opcode, dst, payload, desc);
1302 inst->mlen = mlen;
1303 /* 2 floats per slot returned */
1304 inst->regs_written = 2 * bld.dispatch_width() / 8;
1305 inst->pi_noperspective = interpolation == INTERP_QUALIFIER_NOPERSPECTIVE;
1306
1307 return inst;
1308 }
1309
1310 /**
1311 * Computes 1 << x, given a D/UD register containing some value x.
1312 */
1313 static fs_reg
1314 intexp2(const fs_builder &bld, const fs_reg &x)
1315 {
1316 assert(x.type == BRW_REGISTER_TYPE_UD || x.type == BRW_REGISTER_TYPE_D);
1317
1318 fs_reg result = bld.vgrf(x.type, 1);
1319 fs_reg one = bld.vgrf(x.type, 1);
1320
1321 bld.MOV(one, retype(brw_imm_d(1), one.type));
1322 bld.SHL(result, one, x);
1323 return result;
1324 }
1325
1326 void
1327 fs_visitor::emit_gs_end_primitive(const nir_src &vertex_count_nir_src)
1328 {
1329 assert(stage == MESA_SHADER_GEOMETRY);
1330
1331 struct brw_gs_prog_data *gs_prog_data =
1332 (struct brw_gs_prog_data *) prog_data;
1333
1334 /* We can only do EndPrimitive() functionality when the control data
1335 * consists of cut bits. Fortunately, the only time it isn't is when the
1336 * output type is points, in which case EndPrimitive() is a no-op.
1337 */
1338 if (gs_prog_data->control_data_format !=
1339 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_CUT) {
1340 return;
1341 }
1342
1343 /* Cut bits use one bit per vertex. */
1344 assert(gs_compile->control_data_bits_per_vertex == 1);
1345
1346 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1347 vertex_count.type = BRW_REGISTER_TYPE_UD;
1348
1349 /* Cut bit n should be set to 1 if EndPrimitive() was called after emitting
1350 * vertex n, 0 otherwise. So all we need to do here is mark bit
1351 * (vertex_count - 1) % 32 in the cut_bits register to indicate that
1352 * EndPrimitive() was called after emitting vertex (vertex_count - 1);
1353 * vec4_gs_visitor::emit_control_data_bits() will take care of the rest.
1354 *
1355 * Note that if EndPrimitive() is called before emitting any vertices, this
1356 * will cause us to set bit 31 of the control_data_bits register to 1.
1357 * That's fine because:
1358 *
1359 * - If max_vertices < 32, then vertex number 31 (zero-based) will never be
1360 * output, so the hardware will ignore cut bit 31.
1361 *
1362 * - If max_vertices == 32, then vertex number 31 is guaranteed to be the
1363 * last vertex, so setting cut bit 31 has no effect (since the primitive
1364 * is automatically ended when the GS terminates).
1365 *
1366 * - If max_vertices > 32, then the ir_emit_vertex visitor will reset the
1367 * control_data_bits register to 0 when the first vertex is emitted.
1368 */
1369
1370 const fs_builder abld = bld.annotate("end primitive");
1371
1372 /* control_data_bits |= 1 << ((vertex_count - 1) % 32) */
1373 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1374 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1375 fs_reg mask = intexp2(abld, prev_count);
1376 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1377 * attention to the lower 5 bits of its second source argument, so on this
1378 * architecture, 1 << (vertex_count - 1) is equivalent to 1 <<
1379 * ((vertex_count - 1) % 32).
1380 */
1381 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1382 }
1383
1384 void
1385 fs_visitor::emit_gs_control_data_bits(const fs_reg &vertex_count)
1386 {
1387 assert(stage == MESA_SHADER_GEOMETRY);
1388 assert(gs_compile->control_data_bits_per_vertex != 0);
1389
1390 struct brw_gs_prog_data *gs_prog_data =
1391 (struct brw_gs_prog_data *) prog_data;
1392
1393 const fs_builder abld = bld.annotate("emit control data bits");
1394 const fs_builder fwa_bld = bld.exec_all();
1395
1396 /* We use a single UD register to accumulate control data bits (32 bits
1397 * for each of the SIMD8 channels). So we need to write a DWord (32 bits)
1398 * at a time.
1399 *
1400 * Unfortunately, the URB_WRITE_SIMD8 message uses 128-bit (OWord) offsets.
1401 * We have select a 128-bit group via the Global and Per-Slot Offsets, then
1402 * use the Channel Mask phase to enable/disable which DWord within that
1403 * group to write. (Remember, different SIMD8 channels may have emitted
1404 * different numbers of vertices, so we may need per-slot offsets.)
1405 *
1406 * Channel masking presents an annoying problem: we may have to replicate
1407 * the data up to 4 times:
1408 *
1409 * Msg = Handles, Per-Slot Offsets, Channel Masks, Data, Data, Data, Data.
1410 *
1411 * To avoid penalizing shaders that emit a small number of vertices, we
1412 * can avoid these sometimes: if the size of the control data header is
1413 * <= 128 bits, then there is only 1 OWord. All SIMD8 channels will land
1414 * land in the same 128-bit group, so we can skip per-slot offsets.
1415 *
1416 * Similarly, if the control data header is <= 32 bits, there is only one
1417 * DWord, so we can skip channel masks.
1418 */
1419 enum opcode opcode = SHADER_OPCODE_URB_WRITE_SIMD8;
1420
1421 fs_reg channel_mask, per_slot_offset;
1422
1423 if (gs_compile->control_data_header_size_bits > 32) {
1424 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED;
1425 channel_mask = vgrf(glsl_type::uint_type);
1426 }
1427
1428 if (gs_compile->control_data_header_size_bits > 128) {
1429 opcode = SHADER_OPCODE_URB_WRITE_SIMD8_MASKED_PER_SLOT;
1430 per_slot_offset = vgrf(glsl_type::uint_type);
1431 }
1432
1433 /* Figure out which DWord we're trying to write to using the formula:
1434 *
1435 * dword_index = (vertex_count - 1) * bits_per_vertex / 32
1436 *
1437 * Since bits_per_vertex is a power of two, and is known at compile
1438 * time, this can be optimized to:
1439 *
1440 * dword_index = (vertex_count - 1) >> (6 - log2(bits_per_vertex))
1441 */
1442 if (opcode != SHADER_OPCODE_URB_WRITE_SIMD8) {
1443 fs_reg dword_index = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1444 fs_reg prev_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1445 abld.ADD(prev_count, vertex_count, brw_imm_ud(0xffffffffu));
1446 unsigned log2_bits_per_vertex =
1447 _mesa_fls(gs_compile->control_data_bits_per_vertex);
1448 abld.SHR(dword_index, prev_count, brw_imm_ud(6u - log2_bits_per_vertex));
1449
1450 if (per_slot_offset.file != BAD_FILE) {
1451 /* Set the per-slot offset to dword_index / 4, so that we'll write to
1452 * the appropriate OWord within the control data header.
1453 */
1454 abld.SHR(per_slot_offset, dword_index, brw_imm_ud(2u));
1455 }
1456
1457 /* Set the channel masks to 1 << (dword_index % 4), so that we'll
1458 * write to the appropriate DWORD within the OWORD.
1459 */
1460 fs_reg channel = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1461 fwa_bld.AND(channel, dword_index, brw_imm_ud(3u));
1462 channel_mask = intexp2(fwa_bld, channel);
1463 /* Then the channel masks need to be in bits 23:16. */
1464 fwa_bld.SHL(channel_mask, channel_mask, brw_imm_ud(16u));
1465 }
1466
1467 /* Store the control data bits in the message payload and send it. */
1468 int mlen = 2;
1469 if (channel_mask.file != BAD_FILE)
1470 mlen += 4; /* channel masks, plus 3 extra copies of the data */
1471 if (per_slot_offset.file != BAD_FILE)
1472 mlen++;
1473
1474 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, mlen);
1475 fs_reg *sources = ralloc_array(mem_ctx, fs_reg, mlen);
1476 int i = 0;
1477 sources[i++] = fs_reg(retype(brw_vec8_grf(1, 0), BRW_REGISTER_TYPE_UD));
1478 if (per_slot_offset.file != BAD_FILE)
1479 sources[i++] = per_slot_offset;
1480 if (channel_mask.file != BAD_FILE)
1481 sources[i++] = channel_mask;
1482 while (i < mlen) {
1483 sources[i++] = this->control_data_bits;
1484 }
1485
1486 abld.LOAD_PAYLOAD(payload, sources, mlen, mlen);
1487 fs_inst *inst = abld.emit(opcode, reg_undef, payload);
1488 inst->mlen = mlen;
1489 /* We need to increment Global Offset by 256-bits to make room for
1490 * Broadwell's extra "Vertex Count" payload at the beginning of the
1491 * URB entry. Since this is an OWord message, Global Offset is counted
1492 * in 128-bit units, so we must set it to 2.
1493 */
1494 if (gs_prog_data->static_vertex_count == -1)
1495 inst->offset = 2;
1496 }
1497
1498 void
1499 fs_visitor::set_gs_stream_control_data_bits(const fs_reg &vertex_count,
1500 unsigned stream_id)
1501 {
1502 /* control_data_bits |= stream_id << ((2 * (vertex_count - 1)) % 32) */
1503
1504 /* Note: we are calling this *before* increasing vertex_count, so
1505 * this->vertex_count == vertex_count - 1 in the formula above.
1506 */
1507
1508 /* Stream mode uses 2 bits per vertex */
1509 assert(gs_compile->control_data_bits_per_vertex == 2);
1510
1511 /* Must be a valid stream */
1512 assert(stream_id >= 0 && stream_id < MAX_VERTEX_STREAMS);
1513
1514 /* Control data bits are initialized to 0 so we don't have to set any
1515 * bits when sending vertices to stream 0.
1516 */
1517 if (stream_id == 0)
1518 return;
1519
1520 const fs_builder abld = bld.annotate("set stream control data bits", NULL);
1521
1522 /* reg::sid = stream_id */
1523 fs_reg sid = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1524 abld.MOV(sid, brw_imm_ud(stream_id));
1525
1526 /* reg:shift_count = 2 * (vertex_count - 1) */
1527 fs_reg shift_count = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1528 abld.SHL(shift_count, vertex_count, brw_imm_ud(1u));
1529
1530 /* Note: we're relying on the fact that the GEN SHL instruction only pays
1531 * attention to the lower 5 bits of its second source argument, so on this
1532 * architecture, stream_id << 2 * (vertex_count - 1) is equivalent to
1533 * stream_id << ((2 * (vertex_count - 1)) % 32).
1534 */
1535 fs_reg mask = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1536 abld.SHL(mask, sid, shift_count);
1537 abld.OR(this->control_data_bits, this->control_data_bits, mask);
1538 }
1539
1540 void
1541 fs_visitor::emit_gs_vertex(const nir_src &vertex_count_nir_src,
1542 unsigned stream_id)
1543 {
1544 assert(stage == MESA_SHADER_GEOMETRY);
1545
1546 struct brw_gs_prog_data *gs_prog_data =
1547 (struct brw_gs_prog_data *) prog_data;
1548
1549 fs_reg vertex_count = get_nir_src(vertex_count_nir_src);
1550 vertex_count.type = BRW_REGISTER_TYPE_UD;
1551
1552 /* Haswell and later hardware ignores the "Render Stream Select" bits
1553 * from the 3DSTATE_STREAMOUT packet when the SOL stage is disabled,
1554 * and instead sends all primitives down the pipeline for rasterization.
1555 * If the SOL stage is enabled, "Render Stream Select" is honored and
1556 * primitives bound to non-zero streams are discarded after stream output.
1557 *
1558 * Since the only purpose of primives sent to non-zero streams is to
1559 * be recorded by transform feedback, we can simply discard all geometry
1560 * bound to these streams when transform feedback is disabled.
1561 */
1562 if (stream_id > 0 && !nir->info.has_transform_feedback_varyings)
1563 return;
1564
1565 /* If we're outputting 32 control data bits or less, then we can wait
1566 * until the shader is over to output them all. Otherwise we need to
1567 * output them as we go. Now is the time to do it, since we're about to
1568 * output the vertex_count'th vertex, so it's guaranteed that the
1569 * control data bits associated with the (vertex_count - 1)th vertex are
1570 * correct.
1571 */
1572 if (gs_compile->control_data_header_size_bits > 32) {
1573 const fs_builder abld =
1574 bld.annotate("emit vertex: emit control data bits");
1575
1576 /* Only emit control data bits if we've finished accumulating a batch
1577 * of 32 bits. This is the case when:
1578 *
1579 * (vertex_count * bits_per_vertex) % 32 == 0
1580 *
1581 * (in other words, when the last 5 bits of vertex_count *
1582 * bits_per_vertex are 0). Assuming bits_per_vertex == 2^n for some
1583 * integer n (which is always the case, since bits_per_vertex is
1584 * always 1 or 2), this is equivalent to requiring that the last 5-n
1585 * bits of vertex_count are 0:
1586 *
1587 * vertex_count & (2^(5-n) - 1) == 0
1588 *
1589 * 2^(5-n) == 2^5 / 2^n == 32 / bits_per_vertex, so this is
1590 * equivalent to:
1591 *
1592 * vertex_count & (32 / bits_per_vertex - 1) == 0
1593 *
1594 * TODO: If vertex_count is an immediate, we could do some of this math
1595 * at compile time...
1596 */
1597 fs_inst *inst =
1598 abld.AND(bld.null_reg_d(), vertex_count,
1599 brw_imm_ud(32u / gs_compile->control_data_bits_per_vertex - 1u));
1600 inst->conditional_mod = BRW_CONDITIONAL_Z;
1601
1602 abld.IF(BRW_PREDICATE_NORMAL);
1603 /* If vertex_count is 0, then no control data bits have been
1604 * accumulated yet, so we can skip emitting them.
1605 */
1606 abld.CMP(bld.null_reg_d(), vertex_count, brw_imm_ud(0u),
1607 BRW_CONDITIONAL_NEQ);
1608 abld.IF(BRW_PREDICATE_NORMAL);
1609 emit_gs_control_data_bits(vertex_count);
1610 abld.emit(BRW_OPCODE_ENDIF);
1611
1612 /* Reset control_data_bits to 0 so we can start accumulating a new
1613 * batch.
1614 *
1615 * Note: in the case where vertex_count == 0, this neutralizes the
1616 * effect of any call to EndPrimitive() that the shader may have
1617 * made before outputting its first vertex.
1618 */
1619 inst = abld.MOV(this->control_data_bits, brw_imm_ud(0u));
1620 inst->force_writemask_all = true;
1621 abld.emit(BRW_OPCODE_ENDIF);
1622 }
1623
1624 emit_urb_writes(vertex_count);
1625
1626 /* In stream mode we have to set control data bits for all vertices
1627 * unless we have disabled control data bits completely (which we do
1628 * do for GL_POINTS outputs that don't use streams).
1629 */
1630 if (gs_compile->control_data_header_size_bits > 0 &&
1631 gs_prog_data->control_data_format ==
1632 GEN7_GS_CONTROL_DATA_FORMAT_GSCTL_SID) {
1633 set_gs_stream_control_data_bits(vertex_count, stream_id);
1634 }
1635 }
1636
1637 void
1638 fs_visitor::emit_gs_input_load(const fs_reg &dst,
1639 const nir_src &vertex_src,
1640 unsigned base_offset,
1641 const nir_src &offset_src,
1642 unsigned num_components)
1643 {
1644 struct brw_gs_prog_data *gs_prog_data = (struct brw_gs_prog_data *) prog_data;
1645
1646 nir_const_value *vertex_const = nir_src_as_const_value(vertex_src);
1647 nir_const_value *offset_const = nir_src_as_const_value(offset_src);
1648 const unsigned push_reg_count = gs_prog_data->base.urb_read_length * 8;
1649
1650 /* Offset 0 is the VUE header, which contains VARYING_SLOT_LAYER [.y],
1651 * VARYING_SLOT_VIEWPORT [.z], and VARYING_SLOT_PSIZ [.w]. Only
1652 * gl_PointSize is available as a GS input, however, so it must be that.
1653 */
1654 const bool is_point_size = (base_offset == 0);
1655
1656 if (offset_const != NULL && vertex_const != NULL &&
1657 4 * (base_offset + offset_const->u[0]) < push_reg_count) {
1658 int imm_offset = (base_offset + offset_const->u[0]) * 4 +
1659 vertex_const->u[0] * push_reg_count;
1660 /* This input was pushed into registers. */
1661 if (is_point_size) {
1662 /* gl_PointSize comes in .w */
1663 assert(imm_offset == 0);
1664 bld.MOV(dst, fs_reg(ATTR, imm_offset + 3, dst.type));
1665 } else {
1666 for (unsigned i = 0; i < num_components; i++) {
1667 bld.MOV(offset(dst, bld, i),
1668 fs_reg(ATTR, imm_offset + i, dst.type));
1669 }
1670 }
1671 } else {
1672 /* Resort to the pull model. Ensure the VUE handles are provided. */
1673 gs_prog_data->base.include_vue_handles = true;
1674
1675 unsigned first_icp_handle = gs_prog_data->include_primitive_id ? 3 : 2;
1676 fs_reg icp_handle;
1677
1678 if (vertex_const) {
1679 /* The vertex index is constant; just select the proper URB handle. */
1680 icp_handle =
1681 retype(brw_vec8_grf(first_icp_handle + vertex_const->i[0], 0),
1682 BRW_REGISTER_TYPE_UD);
1683 } else {
1684 /* The vertex index is non-constant. We need to use indirect
1685 * addressing to fetch the proper URB handle.
1686 *
1687 * First, we start with the sequence <7, 6, 5, 4, 3, 2, 1, 0>
1688 * indicating that channel <n> should read the handle from
1689 * DWord <n>. We convert that to bytes by multiplying by 4.
1690 *
1691 * Next, we convert the vertex index to bytes by multiplying
1692 * by 32 (shifting by 5), and add the two together. This is
1693 * the final indirect byte offset.
1694 */
1695 fs_reg sequence = bld.vgrf(BRW_REGISTER_TYPE_W, 1);
1696 fs_reg channel_offsets = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1697 fs_reg vertex_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1698 fs_reg icp_offset_bytes = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1699 icp_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1700
1701 /* sequence = <7, 6, 5, 4, 3, 2, 1, 0> */
1702 bld.MOV(sequence, fs_reg(brw_imm_v(0x76543210)));
1703 /* channel_offsets = 4 * sequence = <28, 24, 20, 16, 12, 8, 4, 0> */
1704 bld.SHL(channel_offsets, sequence, brw_imm_ud(2u));
1705 /* Convert vertex_index to bytes (multiply by 32) */
1706 bld.SHL(vertex_offset_bytes,
1707 retype(get_nir_src(vertex_src), BRW_REGISTER_TYPE_UD),
1708 brw_imm_ud(5u));
1709 bld.ADD(icp_offset_bytes, vertex_offset_bytes, channel_offsets);
1710
1711 /* Use first_icp_handle as the base offset. There is one register
1712 * of URB handles per vertex, so inform the register allocator that
1713 * we might read up to nir->info.gs.vertices_in registers.
1714 */
1715 bld.emit(SHADER_OPCODE_MOV_INDIRECT, icp_handle,
1716 fs_reg(brw_vec8_grf(first_icp_handle, 0)),
1717 fs_reg(icp_offset_bytes),
1718 brw_imm_ud(nir->info.gs.vertices_in * REG_SIZE));
1719 }
1720
1721 fs_inst *inst;
1722 if (offset_const) {
1723 /* Constant indexing - use global offset. */
1724 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dst, icp_handle);
1725 inst->offset = base_offset + offset_const->u[0];
1726 inst->base_mrf = -1;
1727 inst->mlen = 1;
1728 inst->regs_written = num_components;
1729 } else {
1730 /* Indirect indexing - use per-slot offsets as well. */
1731 const fs_reg srcs[] = { icp_handle, get_nir_src(offset_src) };
1732 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1733 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1734
1735 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dst, payload);
1736 inst->offset = base_offset;
1737 inst->base_mrf = -1;
1738 inst->mlen = 2;
1739 inst->regs_written = num_components;
1740 }
1741
1742 if (is_point_size) {
1743 /* Read the whole VUE header (because of alignment) and read .w. */
1744 fs_reg tmp = bld.vgrf(dst.type, 4);
1745 inst->dst = tmp;
1746 inst->regs_written = 4;
1747 bld.MOV(dst, offset(tmp, bld, 3));
1748 }
1749 }
1750 }
1751
1752 fs_reg
1753 fs_visitor::get_indirect_offset(nir_intrinsic_instr *instr)
1754 {
1755 nir_src *offset_src = nir_get_io_offset_src(instr);
1756 nir_const_value *const_value = nir_src_as_const_value(*offset_src);
1757
1758 if (const_value) {
1759 /* The only constant offset we should find is 0. brw_nir.c's
1760 * add_const_offset_to_base() will fold other constant offsets
1761 * into instr->const_index[0].
1762 */
1763 assert(const_value->u[0] == 0);
1764 return fs_reg();
1765 }
1766
1767 return get_nir_src(*offset_src);
1768 }
1769
1770 void
1771 fs_visitor::nir_emit_vs_intrinsic(const fs_builder &bld,
1772 nir_intrinsic_instr *instr)
1773 {
1774 assert(stage == MESA_SHADER_VERTEX);
1775
1776 fs_reg dest;
1777 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1778 dest = get_nir_dest(instr->dest);
1779
1780 switch (instr->intrinsic) {
1781 case nir_intrinsic_load_vertex_id:
1782 unreachable("should be lowered by lower_vertex_id()");
1783
1784 case nir_intrinsic_load_vertex_id_zero_base:
1785 case nir_intrinsic_load_base_vertex:
1786 case nir_intrinsic_load_instance_id:
1787 case nir_intrinsic_load_base_instance:
1788 case nir_intrinsic_load_draw_id: {
1789 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
1790 fs_reg val = nir_system_values[sv];
1791 assert(val.file != BAD_FILE);
1792 dest.type = val.type;
1793 bld.MOV(dest, val);
1794 break;
1795 }
1796
1797 default:
1798 nir_emit_intrinsic(bld, instr);
1799 break;
1800 }
1801 }
1802
1803 void
1804 fs_visitor::nir_emit_tes_intrinsic(const fs_builder &bld,
1805 nir_intrinsic_instr *instr)
1806 {
1807 assert(stage == MESA_SHADER_TESS_EVAL);
1808 struct brw_tes_prog_data *tes_prog_data = (struct brw_tes_prog_data *) prog_data;
1809
1810 fs_reg dest;
1811 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1812 dest = get_nir_dest(instr->dest);
1813
1814 switch (instr->intrinsic) {
1815 case nir_intrinsic_load_primitive_id:
1816 bld.MOV(dest, fs_reg(brw_vec1_grf(0, 1)));
1817 break;
1818 case nir_intrinsic_load_tess_coord:
1819 /* gl_TessCoord is part of the payload in g1-3 */
1820 for (unsigned i = 0; i < 3; i++) {
1821 bld.MOV(offset(dest, bld, i), fs_reg(brw_vec8_grf(1 + i, 0)));
1822 }
1823 break;
1824
1825 case nir_intrinsic_load_tess_level_outer:
1826 /* When the TES reads gl_TessLevelOuter, we ensure that the patch header
1827 * appears as a push-model input. So, we can simply use the ATTR file
1828 * rather than issuing URB read messages. The data is stored in the
1829 * high DWords in reverse order - DWord 7 contains .x, DWord 6 contains
1830 * .y, and so on.
1831 */
1832 switch (tes_prog_data->domain) {
1833 case BRW_TESS_DOMAIN_QUAD:
1834 for (unsigned i = 0; i < 4; i++)
1835 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1836 break;
1837 case BRW_TESS_DOMAIN_TRI:
1838 for (unsigned i = 0; i < 3; i++)
1839 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1840 break;
1841 case BRW_TESS_DOMAIN_ISOLINE:
1842 for (unsigned i = 0; i < 2; i++)
1843 bld.MOV(offset(dest, bld, i), component(fs_reg(ATTR, 0), 7 - i));
1844 break;
1845 }
1846 break;
1847
1848 case nir_intrinsic_load_tess_level_inner:
1849 /* When the TES reads gl_TessLevelInner, we ensure that the patch header
1850 * appears as a push-model input. So, we can simply use the ATTR file
1851 * rather than issuing URB read messages.
1852 */
1853 switch (tes_prog_data->domain) {
1854 case BRW_TESS_DOMAIN_QUAD:
1855 bld.MOV(dest, component(fs_reg(ATTR, 0), 3));
1856 bld.MOV(offset(dest, bld, 1), component(fs_reg(ATTR, 0), 2));
1857 break;
1858 case BRW_TESS_DOMAIN_TRI:
1859 bld.MOV(dest, component(fs_reg(ATTR, 0), 4));
1860 break;
1861 case BRW_TESS_DOMAIN_ISOLINE:
1862 /* ignore - value is undefined */
1863 break;
1864 }
1865 break;
1866
1867 case nir_intrinsic_load_input:
1868 case nir_intrinsic_load_per_vertex_input: {
1869 fs_reg indirect_offset = get_indirect_offset(instr);
1870 unsigned imm_offset = instr->const_index[0];
1871
1872 fs_inst *inst;
1873 if (indirect_offset.file == BAD_FILE) {
1874 /* Arbitrarily only push up to 32 vec4 slots worth of data,
1875 * which is 16 registers (since each holds 2 vec4 slots).
1876 */
1877 const unsigned max_push_slots = 32;
1878 if (imm_offset < max_push_slots) {
1879 fs_reg src = fs_reg(ATTR, imm_offset / 2, dest.type);
1880 for (int i = 0; i < instr->num_components; i++) {
1881 bld.MOV(offset(dest, bld, i),
1882 component(src, 4 * (imm_offset % 2) + i));
1883 }
1884 tes_prog_data->base.urb_read_length =
1885 MAX2(tes_prog_data->base.urb_read_length,
1886 DIV_ROUND_UP(imm_offset + 1, 2));
1887 } else {
1888 /* Replicate the patch handle to all enabled channels */
1889 const fs_reg srcs[] = {
1890 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD)
1891 };
1892 fs_reg patch_handle = bld.vgrf(BRW_REGISTER_TYPE_UD, 1);
1893 bld.LOAD_PAYLOAD(patch_handle, srcs, ARRAY_SIZE(srcs), 0);
1894
1895 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8, dest, patch_handle);
1896 inst->mlen = 1;
1897 inst->offset = imm_offset;
1898 inst->base_mrf = -1;
1899 inst->regs_written = instr->num_components;
1900 }
1901 } else {
1902 /* Indirect indexing - use per-slot offsets as well. */
1903 const fs_reg srcs[] = {
1904 retype(brw_vec1_grf(0, 0), BRW_REGISTER_TYPE_UD),
1905 indirect_offset
1906 };
1907 fs_reg payload = bld.vgrf(BRW_REGISTER_TYPE_UD, 2);
1908 bld.LOAD_PAYLOAD(payload, srcs, ARRAY_SIZE(srcs), 0);
1909
1910 inst = bld.emit(SHADER_OPCODE_URB_READ_SIMD8_PER_SLOT, dest, payload);
1911 inst->mlen = 2;
1912 inst->offset = imm_offset;
1913 inst->base_mrf = -1;
1914 inst->regs_written = instr->num_components;
1915 }
1916 break;
1917 }
1918 default:
1919 nir_emit_intrinsic(bld, instr);
1920 break;
1921 }
1922 }
1923
1924 void
1925 fs_visitor::nir_emit_gs_intrinsic(const fs_builder &bld,
1926 nir_intrinsic_instr *instr)
1927 {
1928 assert(stage == MESA_SHADER_GEOMETRY);
1929 fs_reg indirect_offset;
1930
1931 fs_reg dest;
1932 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1933 dest = get_nir_dest(instr->dest);
1934
1935 switch (instr->intrinsic) {
1936 case nir_intrinsic_load_primitive_id:
1937 assert(stage == MESA_SHADER_GEOMETRY);
1938 assert(((struct brw_gs_prog_data *)prog_data)->include_primitive_id);
1939 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD),
1940 retype(fs_reg(brw_vec8_grf(2, 0)), BRW_REGISTER_TYPE_UD));
1941 break;
1942
1943 case nir_intrinsic_load_input:
1944 unreachable("load_input intrinsics are invalid for the GS stage");
1945
1946 case nir_intrinsic_load_per_vertex_input:
1947 emit_gs_input_load(dest, instr->src[0], instr->const_index[0],
1948 instr->src[1], instr->num_components);
1949 break;
1950
1951 case nir_intrinsic_emit_vertex_with_counter:
1952 emit_gs_vertex(instr->src[0], instr->const_index[0]);
1953 break;
1954
1955 case nir_intrinsic_end_primitive_with_counter:
1956 emit_gs_end_primitive(instr->src[0]);
1957 break;
1958
1959 case nir_intrinsic_set_vertex_count:
1960 bld.MOV(this->final_gs_vertex_count, get_nir_src(instr->src[0]));
1961 break;
1962
1963 case nir_intrinsic_load_invocation_id: {
1964 fs_reg val = nir_system_values[SYSTEM_VALUE_INVOCATION_ID];
1965 assert(val.file != BAD_FILE);
1966 dest.type = val.type;
1967 bld.MOV(dest, val);
1968 break;
1969 }
1970
1971 default:
1972 nir_emit_intrinsic(bld, instr);
1973 break;
1974 }
1975 }
1976
1977 void
1978 fs_visitor::nir_emit_fs_intrinsic(const fs_builder &bld,
1979 nir_intrinsic_instr *instr)
1980 {
1981 assert(stage == MESA_SHADER_FRAGMENT);
1982 struct brw_wm_prog_data *wm_prog_data =
1983 (struct brw_wm_prog_data *) prog_data;
1984
1985 fs_reg dest;
1986 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
1987 dest = get_nir_dest(instr->dest);
1988
1989 switch (instr->intrinsic) {
1990 case nir_intrinsic_load_front_face:
1991 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D),
1992 *emit_frontfacing_interpolation());
1993 break;
1994
1995 case nir_intrinsic_load_sample_pos: {
1996 fs_reg sample_pos = nir_system_values[SYSTEM_VALUE_SAMPLE_POS];
1997 assert(sample_pos.file != BAD_FILE);
1998 dest.type = sample_pos.type;
1999 bld.MOV(dest, sample_pos);
2000 bld.MOV(offset(dest, bld, 1), offset(sample_pos, bld, 1));
2001 break;
2002 }
2003
2004 case nir_intrinsic_load_helper_invocation:
2005 case nir_intrinsic_load_sample_mask_in:
2006 case nir_intrinsic_load_sample_id: {
2007 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2008 fs_reg val = nir_system_values[sv];
2009 assert(val.file != BAD_FILE);
2010 dest.type = val.type;
2011 bld.MOV(dest, val);
2012 break;
2013 }
2014
2015 case nir_intrinsic_discard:
2016 case nir_intrinsic_discard_if: {
2017 /* We track our discarded pixels in f0.1. By predicating on it, we can
2018 * update just the flag bits that aren't yet discarded. If there's no
2019 * condition, we emit a CMP of g0 != g0, so all currently executing
2020 * channels will get turned off.
2021 */
2022 fs_inst *cmp;
2023 if (instr->intrinsic == nir_intrinsic_discard_if) {
2024 cmp = bld.CMP(bld.null_reg_f(), get_nir_src(instr->src[0]),
2025 brw_imm_d(0), BRW_CONDITIONAL_Z);
2026 } else {
2027 fs_reg some_reg = fs_reg(retype(brw_vec8_grf(0, 0),
2028 BRW_REGISTER_TYPE_UW));
2029 cmp = bld.CMP(bld.null_reg_f(), some_reg, some_reg, BRW_CONDITIONAL_NZ);
2030 }
2031 cmp->predicate = BRW_PREDICATE_NORMAL;
2032 cmp->flag_subreg = 1;
2033
2034 if (devinfo->gen >= 6) {
2035 emit_discard_jump();
2036 }
2037 break;
2038 }
2039
2040 case nir_intrinsic_interp_var_at_centroid:
2041 case nir_intrinsic_interp_var_at_sample:
2042 case nir_intrinsic_interp_var_at_offset: {
2043 /* Handle ARB_gpu_shader5 interpolation intrinsics
2044 *
2045 * It's worth a quick word of explanation as to why we handle the full
2046 * variable-based interpolation intrinsic rather than a lowered version
2047 * with like we do for other inputs. We have to do that because the way
2048 * we set up inputs doesn't allow us to use the already setup inputs for
2049 * interpolation. At the beginning of the shader, we go through all of
2050 * the input variables and do the initial interpolation and put it in
2051 * the nir_inputs array based on its location as determined in
2052 * nir_lower_io. If the input isn't used, dead code cleans up and
2053 * everything works fine. However, when we get to the ARB_gpu_shader5
2054 * interpolation intrinsics, we need to reinterpolate the input
2055 * differently. If we used an intrinsic that just had an index it would
2056 * only give us the offset into the nir_inputs array. However, this is
2057 * useless because that value is post-interpolation and we need
2058 * pre-interpolation. In order to get the actual location of the bits
2059 * we get from the vertex fetching hardware, we need the variable.
2060 */
2061 wm_prog_data->pulls_bary = true;
2062
2063 fs_reg dst_xy = bld.vgrf(BRW_REGISTER_TYPE_F, 2);
2064 const glsl_interp_qualifier interpolation =
2065 (glsl_interp_qualifier) instr->variables[0]->var->data.interpolation;
2066
2067 switch (instr->intrinsic) {
2068 case nir_intrinsic_interp_var_at_centroid:
2069 emit_pixel_interpolater_send(bld,
2070 FS_OPCODE_INTERPOLATE_AT_CENTROID,
2071 dst_xy,
2072 fs_reg(), /* src */
2073 brw_imm_ud(0u),
2074 interpolation);
2075 break;
2076
2077 case nir_intrinsic_interp_var_at_sample: {
2078 nir_const_value *const_sample = nir_src_as_const_value(instr->src[0]);
2079
2080 if (const_sample) {
2081 unsigned msg_data = const_sample->i[0] << 4;
2082
2083 emit_pixel_interpolater_send(bld,
2084 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2085 dst_xy,
2086 fs_reg(), /* src */
2087 brw_imm_ud(msg_data),
2088 interpolation);
2089 } else {
2090 const fs_reg sample_src = retype(get_nir_src(instr->src[0]),
2091 BRW_REGISTER_TYPE_UD);
2092
2093 if (nir_src_is_dynamically_uniform(instr->src[0])) {
2094 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2095 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2096 bld.exec_all().group(1, 0)
2097 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2098 emit_pixel_interpolater_send(bld,
2099 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2100 dst_xy,
2101 fs_reg(), /* src */
2102 msg_data,
2103 interpolation);
2104 } else {
2105 /* Make a loop that sends a message to the pixel interpolater
2106 * for the sample number in each live channel. If there are
2107 * multiple channels with the same sample number then these
2108 * will be handled simultaneously with a single interation of
2109 * the loop.
2110 */
2111 bld.emit(BRW_OPCODE_DO);
2112
2113 /* Get the next live sample number into sample_id_reg */
2114 const fs_reg sample_id = bld.emit_uniformize(sample_src);
2115
2116 /* Set the flag register so that we can perform the send
2117 * message on all channels that have the same sample number
2118 */
2119 bld.CMP(bld.null_reg_ud(),
2120 sample_src, sample_id,
2121 BRW_CONDITIONAL_EQ);
2122 const fs_reg msg_data = vgrf(glsl_type::uint_type);
2123 bld.exec_all().group(1, 0)
2124 .SHL(msg_data, sample_id, brw_imm_ud(4u));
2125 fs_inst *inst =
2126 emit_pixel_interpolater_send(bld,
2127 FS_OPCODE_INTERPOLATE_AT_SAMPLE,
2128 dst_xy,
2129 fs_reg(), /* src */
2130 msg_data,
2131 interpolation);
2132 set_predicate(BRW_PREDICATE_NORMAL, inst);
2133
2134 /* Continue the loop if there are any live channels left */
2135 set_predicate_inv(BRW_PREDICATE_NORMAL,
2136 true, /* inverse */
2137 bld.emit(BRW_OPCODE_WHILE));
2138 }
2139 }
2140
2141 break;
2142 }
2143
2144 case nir_intrinsic_interp_var_at_offset: {
2145 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2146
2147 if (const_offset) {
2148 unsigned off_x = MIN2((int)(const_offset->f[0] * 16), 7) & 0xf;
2149 unsigned off_y = MIN2((int)(const_offset->f[1] * 16), 7) & 0xf;
2150
2151 emit_pixel_interpolater_send(bld,
2152 FS_OPCODE_INTERPOLATE_AT_SHARED_OFFSET,
2153 dst_xy,
2154 fs_reg(), /* src */
2155 brw_imm_ud(off_x | (off_y << 4)),
2156 interpolation);
2157 } else {
2158 fs_reg src = vgrf(glsl_type::ivec2_type);
2159 fs_reg offset_src = retype(get_nir_src(instr->src[0]),
2160 BRW_REGISTER_TYPE_F);
2161 for (int i = 0; i < 2; i++) {
2162 fs_reg temp = vgrf(glsl_type::float_type);
2163 bld.MUL(temp, offset(offset_src, bld, i), brw_imm_f(16.0f));
2164 fs_reg itemp = vgrf(glsl_type::int_type);
2165 bld.MOV(itemp, temp); /* float to int */
2166
2167 /* Clamp the upper end of the range to +7/16.
2168 * ARB_gpu_shader5 requires that we support a maximum offset
2169 * of +0.5, which isn't representable in a S0.4 value -- if
2170 * we didn't clamp it, we'd end up with -8/16, which is the
2171 * opposite of what the shader author wanted.
2172 *
2173 * This is legal due to ARB_gpu_shader5's quantization
2174 * rules:
2175 *
2176 * "Not all values of <offset> may be supported; x and y
2177 * offsets may be rounded to fixed-point values with the
2178 * number of fraction bits given by the
2179 * implementation-dependent constant
2180 * FRAGMENT_INTERPOLATION_OFFSET_BITS"
2181 */
2182 set_condmod(BRW_CONDITIONAL_L,
2183 bld.SEL(offset(src, bld, i), itemp, brw_imm_d(7)));
2184 }
2185
2186 const enum opcode opcode = FS_OPCODE_INTERPOLATE_AT_PER_SLOT_OFFSET;
2187 emit_pixel_interpolater_send(bld,
2188 opcode,
2189 dst_xy,
2190 src,
2191 brw_imm_ud(0u),
2192 interpolation);
2193 }
2194 break;
2195 }
2196
2197 default:
2198 unreachable("Invalid intrinsic");
2199 }
2200
2201 for (unsigned j = 0; j < instr->num_components; j++) {
2202 fs_reg src = interp_reg(instr->variables[0]->var->data.location, j);
2203 src.type = dest.type;
2204
2205 bld.emit(FS_OPCODE_LINTERP, dest, dst_xy, src);
2206 dest = offset(dest, bld, 1);
2207 }
2208 break;
2209 }
2210 default:
2211 nir_emit_intrinsic(bld, instr);
2212 break;
2213 }
2214 }
2215
2216 void
2217 fs_visitor::nir_emit_cs_intrinsic(const fs_builder &bld,
2218 nir_intrinsic_instr *instr)
2219 {
2220 assert(stage == MESA_SHADER_COMPUTE);
2221 struct brw_cs_prog_data *cs_prog_data =
2222 (struct brw_cs_prog_data *) prog_data;
2223
2224 fs_reg dest;
2225 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2226 dest = get_nir_dest(instr->dest);
2227
2228 switch (instr->intrinsic) {
2229 case nir_intrinsic_barrier:
2230 emit_barrier();
2231 cs_prog_data->uses_barrier = true;
2232 break;
2233
2234 case nir_intrinsic_load_local_invocation_id:
2235 case nir_intrinsic_load_work_group_id: {
2236 gl_system_value sv = nir_system_value_from_intrinsic(instr->intrinsic);
2237 fs_reg val = nir_system_values[sv];
2238 assert(val.file != BAD_FILE);
2239 dest.type = val.type;
2240 for (unsigned i = 0; i < 3; i++)
2241 bld.MOV(offset(dest, bld, i), offset(val, bld, i));
2242 break;
2243 }
2244
2245 case nir_intrinsic_load_num_work_groups: {
2246 const unsigned surface =
2247 cs_prog_data->binding_table.work_groups_start;
2248
2249 cs_prog_data->uses_num_work_groups = true;
2250
2251 fs_reg surf_index = brw_imm_ud(surface);
2252 brw_mark_surface_used(prog_data, surface);
2253
2254 /* Read the 3 GLuint components of gl_NumWorkGroups */
2255 for (unsigned i = 0; i < 3; i++) {
2256 fs_reg read_result =
2257 emit_untyped_read(bld, surf_index,
2258 brw_imm_ud(i << 2),
2259 1 /* dims */, 1 /* size */,
2260 BRW_PREDICATE_NONE);
2261 read_result.type = dest.type;
2262 bld.MOV(dest, read_result);
2263 dest = offset(dest, bld, 1);
2264 }
2265 break;
2266 }
2267
2268 case nir_intrinsic_shared_atomic_add:
2269 nir_emit_shared_atomic(bld, BRW_AOP_ADD, instr);
2270 break;
2271 case nir_intrinsic_shared_atomic_imin:
2272 nir_emit_shared_atomic(bld, BRW_AOP_IMIN, instr);
2273 break;
2274 case nir_intrinsic_shared_atomic_umin:
2275 nir_emit_shared_atomic(bld, BRW_AOP_UMIN, instr);
2276 break;
2277 case nir_intrinsic_shared_atomic_imax:
2278 nir_emit_shared_atomic(bld, BRW_AOP_IMAX, instr);
2279 break;
2280 case nir_intrinsic_shared_atomic_umax:
2281 nir_emit_shared_atomic(bld, BRW_AOP_UMAX, instr);
2282 break;
2283 case nir_intrinsic_shared_atomic_and:
2284 nir_emit_shared_atomic(bld, BRW_AOP_AND, instr);
2285 break;
2286 case nir_intrinsic_shared_atomic_or:
2287 nir_emit_shared_atomic(bld, BRW_AOP_OR, instr);
2288 break;
2289 case nir_intrinsic_shared_atomic_xor:
2290 nir_emit_shared_atomic(bld, BRW_AOP_XOR, instr);
2291 break;
2292 case nir_intrinsic_shared_atomic_exchange:
2293 nir_emit_shared_atomic(bld, BRW_AOP_MOV, instr);
2294 break;
2295 case nir_intrinsic_shared_atomic_comp_swap:
2296 nir_emit_shared_atomic(bld, BRW_AOP_CMPWR, instr);
2297 break;
2298
2299 default:
2300 nir_emit_intrinsic(bld, instr);
2301 break;
2302 }
2303 }
2304
2305 void
2306 fs_visitor::nir_emit_intrinsic(const fs_builder &bld, nir_intrinsic_instr *instr)
2307 {
2308 fs_reg dest;
2309 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2310 dest = get_nir_dest(instr->dest);
2311
2312 switch (instr->intrinsic) {
2313 case nir_intrinsic_atomic_counter_inc:
2314 case nir_intrinsic_atomic_counter_dec:
2315 case nir_intrinsic_atomic_counter_read: {
2316 using namespace surface_access;
2317
2318 /* Get the arguments of the atomic intrinsic. */
2319 const fs_reg offset = get_nir_src(instr->src[0]);
2320 const unsigned surface = (stage_prog_data->binding_table.abo_start +
2321 instr->const_index[0]);
2322 fs_reg tmp;
2323
2324 /* Emit a surface read or atomic op. */
2325 switch (instr->intrinsic) {
2326 case nir_intrinsic_atomic_counter_read:
2327 tmp = emit_untyped_read(bld, brw_imm_ud(surface), offset, 1, 1);
2328 break;
2329
2330 case nir_intrinsic_atomic_counter_inc:
2331 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2332 fs_reg(), 1, 1, BRW_AOP_INC);
2333 break;
2334
2335 case nir_intrinsic_atomic_counter_dec:
2336 tmp = emit_untyped_atomic(bld, brw_imm_ud(surface), offset, fs_reg(),
2337 fs_reg(), 1, 1, BRW_AOP_PREDEC);
2338 break;
2339
2340 default:
2341 unreachable("Unreachable");
2342 }
2343
2344 /* Assign the result. */
2345 bld.MOV(retype(dest, BRW_REGISTER_TYPE_UD), tmp);
2346
2347 /* Mark the surface as used. */
2348 brw_mark_surface_used(stage_prog_data, surface);
2349 break;
2350 }
2351
2352 case nir_intrinsic_image_load:
2353 case nir_intrinsic_image_store:
2354 case nir_intrinsic_image_atomic_add:
2355 case nir_intrinsic_image_atomic_min:
2356 case nir_intrinsic_image_atomic_max:
2357 case nir_intrinsic_image_atomic_and:
2358 case nir_intrinsic_image_atomic_or:
2359 case nir_intrinsic_image_atomic_xor:
2360 case nir_intrinsic_image_atomic_exchange:
2361 case nir_intrinsic_image_atomic_comp_swap: {
2362 using namespace image_access;
2363
2364 /* Get the referenced image variable and type. */
2365 const nir_variable *var = instr->variables[0]->var;
2366 const glsl_type *type = var->type->without_array();
2367 const brw_reg_type base_type = get_image_base_type(type);
2368
2369 /* Get some metadata from the image intrinsic. */
2370 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2371 const unsigned arr_dims = type->sampler_array ? 1 : 0;
2372 const unsigned surf_dims = type->coordinate_components() - arr_dims;
2373 const mesa_format format =
2374 (var->data.image.write_only ? MESA_FORMAT_NONE :
2375 _mesa_get_shader_image_format(var->data.image.format));
2376
2377 /* Get the arguments of the image intrinsic. */
2378 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2379 const fs_reg addr = retype(get_nir_src(instr->src[0]),
2380 BRW_REGISTER_TYPE_UD);
2381 const fs_reg src0 = (info->num_srcs >= 3 ?
2382 retype(get_nir_src(instr->src[2]), base_type) :
2383 fs_reg());
2384 const fs_reg src1 = (info->num_srcs >= 4 ?
2385 retype(get_nir_src(instr->src[3]), base_type) :
2386 fs_reg());
2387 fs_reg tmp;
2388
2389 /* Emit an image load, store or atomic op. */
2390 if (instr->intrinsic == nir_intrinsic_image_load)
2391 tmp = emit_image_load(bld, image, addr, surf_dims, arr_dims, format);
2392
2393 else if (instr->intrinsic == nir_intrinsic_image_store)
2394 emit_image_store(bld, image, addr, src0, surf_dims, arr_dims, format);
2395
2396 else
2397 tmp = emit_image_atomic(bld, image, addr, src0, src1,
2398 surf_dims, arr_dims, info->dest_components,
2399 get_image_atomic_op(instr->intrinsic, type));
2400
2401 /* Assign the result. */
2402 for (unsigned c = 0; c < info->dest_components; ++c)
2403 bld.MOV(offset(retype(dest, base_type), bld, c),
2404 offset(tmp, bld, c));
2405 break;
2406 }
2407
2408 case nir_intrinsic_memory_barrier_atomic_counter:
2409 case nir_intrinsic_memory_barrier_buffer:
2410 case nir_intrinsic_memory_barrier_image:
2411 case nir_intrinsic_memory_barrier: {
2412 const fs_reg tmp = bld.vgrf(BRW_REGISTER_TYPE_UD, 16 / dispatch_width);
2413 bld.emit(SHADER_OPCODE_MEMORY_FENCE, tmp)
2414 ->regs_written = 2;
2415 break;
2416 }
2417
2418 case nir_intrinsic_group_memory_barrier:
2419 case nir_intrinsic_memory_barrier_shared:
2420 /* We treat these workgroup-level barriers as no-ops. This should be
2421 * safe at present and as long as:
2422 *
2423 * - Memory access instructions are not subsequently reordered by the
2424 * compiler back-end.
2425 *
2426 * - All threads from a given compute shader workgroup fit within a
2427 * single subslice and therefore talk to the same HDC shared unit
2428 * what supposedly guarantees ordering and coherency between threads
2429 * from the same workgroup. This may change in the future when we
2430 * start splitting workgroups across multiple subslices.
2431 *
2432 * - The context is not in fault-and-stream mode, which could cause
2433 * memory transactions (including to SLM) prior to the barrier to be
2434 * replayed after the barrier if a pagefault occurs. This shouldn't
2435 * be a problem up to and including SKL because fault-and-stream is
2436 * not usable due to hardware issues, but that's likely to change in
2437 * the future.
2438 */
2439 break;
2440
2441 case nir_intrinsic_shader_clock: {
2442 /* We cannot do anything if there is an event, so ignore it for now */
2443 fs_reg shader_clock = get_timestamp(bld);
2444 const fs_reg srcs[] = { shader_clock.set_smear(0), shader_clock.set_smear(1) };
2445
2446 bld.LOAD_PAYLOAD(dest, srcs, ARRAY_SIZE(srcs), 0);
2447 break;
2448 }
2449
2450 case nir_intrinsic_image_size: {
2451 /* Get the referenced image variable and type. */
2452 const nir_variable *var = instr->variables[0]->var;
2453 const glsl_type *type = var->type->without_array();
2454
2455 /* Get the size of the image. */
2456 const fs_reg image = get_nir_image_deref(instr->variables[0]);
2457 const fs_reg size = offset(image, bld, BRW_IMAGE_PARAM_SIZE_OFFSET);
2458
2459 /* For 1DArray image types, the array index is stored in the Z component.
2460 * Fix this by swizzling the Z component to the Y component.
2461 */
2462 const bool is_1d_array_image =
2463 type->sampler_dimensionality == GLSL_SAMPLER_DIM_1D &&
2464 type->sampler_array;
2465
2466 /* For CubeArray images, we should count the number of cubes instead
2467 * of the number of faces. Fix it by dividing the (Z component) by 6.
2468 */
2469 const bool is_cube_array_image =
2470 type->sampler_dimensionality == GLSL_SAMPLER_DIM_CUBE &&
2471 type->sampler_array;
2472
2473 /* Copy all the components. */
2474 const nir_intrinsic_info *info = &nir_intrinsic_infos[instr->intrinsic];
2475 for (unsigned c = 0; c < info->dest_components; ++c) {
2476 if ((int)c >= type->coordinate_components()) {
2477 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2478 brw_imm_d(1));
2479 } else if (c == 1 && is_1d_array_image) {
2480 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2481 offset(size, bld, 2));
2482 } else if (c == 2 && is_cube_array_image) {
2483 bld.emit(SHADER_OPCODE_INT_QUOTIENT,
2484 offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2485 offset(size, bld, c), brw_imm_d(6));
2486 } else {
2487 bld.MOV(offset(retype(dest, BRW_REGISTER_TYPE_D), bld, c),
2488 offset(size, bld, c));
2489 }
2490 }
2491
2492 break;
2493 }
2494
2495 case nir_intrinsic_image_samples:
2496 /* The driver does not support multi-sampled images. */
2497 bld.MOV(retype(dest, BRW_REGISTER_TYPE_D), brw_imm_d(1));
2498 break;
2499
2500 case nir_intrinsic_load_uniform: {
2501 /* Offsets are in bytes but they should always be multiples of 4 */
2502 assert(instr->const_index[0] % 4 == 0);
2503
2504 fs_reg src(UNIFORM, instr->const_index[0] / 4, dest.type);
2505
2506 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2507 if (const_offset) {
2508 /* Offsets are in bytes but they should always be multiples of 4 */
2509 assert(const_offset->u[0] % 4 == 0);
2510 src.reg_offset = const_offset->u[0] / 4;
2511 } else {
2512 src.reladdr = new(mem_ctx) fs_reg(get_nir_src(instr->src[0]));
2513 }
2514
2515 for (unsigned j = 0; j < instr->num_components; j++) {
2516 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2517 }
2518 break;
2519 }
2520
2521 case nir_intrinsic_load_ubo: {
2522 nir_const_value *const_index = nir_src_as_const_value(instr->src[0]);
2523 fs_reg surf_index;
2524
2525 if (const_index) {
2526 const unsigned index = stage_prog_data->binding_table.ubo_start +
2527 const_index->u[0];
2528 surf_index = brw_imm_ud(index);
2529 brw_mark_surface_used(prog_data, index);
2530 } else {
2531 /* The block index is not a constant. Evaluate the index expression
2532 * per-channel and add the base UBO index; we have to select a value
2533 * from any live channel.
2534 */
2535 surf_index = vgrf(glsl_type::uint_type);
2536 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2537 brw_imm_ud(stage_prog_data->binding_table.ubo_start));
2538 surf_index = bld.emit_uniformize(surf_index);
2539
2540 /* Assume this may touch any UBO. It would be nice to provide
2541 * a tighter bound, but the array information is already lowered away.
2542 */
2543 brw_mark_surface_used(prog_data,
2544 stage_prog_data->binding_table.ubo_start +
2545 nir->info.num_ubos - 1);
2546 }
2547
2548 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2549 if (const_offset == NULL) {
2550 fs_reg base_offset = retype(get_nir_src(instr->src[1]),
2551 BRW_REGISTER_TYPE_D);
2552
2553 for (int i = 0; i < instr->num_components; i++)
2554 VARYING_PULL_CONSTANT_LOAD(bld, offset(dest, bld, i), surf_index,
2555 base_offset, i * 4);
2556 } else {
2557 fs_reg packed_consts = vgrf(glsl_type::float_type);
2558 packed_consts.type = dest.type;
2559
2560 struct brw_reg const_offset_reg = brw_imm_ud(const_offset->u[0] & ~15);
2561 bld.emit(FS_OPCODE_UNIFORM_PULL_CONSTANT_LOAD, packed_consts,
2562 surf_index, const_offset_reg);
2563
2564 for (unsigned i = 0; i < instr->num_components; i++) {
2565 packed_consts.set_smear(const_offset->u[0] % 16 / 4 + i);
2566
2567 /* The std140 packing rules don't allow vectors to cross 16-byte
2568 * boundaries, and a reg is 32 bytes.
2569 */
2570 assert(packed_consts.subreg_offset < 32);
2571
2572 bld.MOV(dest, packed_consts);
2573 dest = offset(dest, bld, 1);
2574 }
2575 }
2576 break;
2577 }
2578
2579 case nir_intrinsic_load_ssbo: {
2580 assert(devinfo->gen >= 7);
2581
2582 nir_const_value *const_uniform_block =
2583 nir_src_as_const_value(instr->src[0]);
2584
2585 fs_reg surf_index;
2586 if (const_uniform_block) {
2587 unsigned index = stage_prog_data->binding_table.ssbo_start +
2588 const_uniform_block->u[0];
2589 surf_index = brw_imm_ud(index);
2590 brw_mark_surface_used(prog_data, index);
2591 } else {
2592 surf_index = vgrf(glsl_type::uint_type);
2593 bld.ADD(surf_index, get_nir_src(instr->src[0]),
2594 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2595
2596 /* Assume this may touch any UBO. It would be nice to provide
2597 * a tighter bound, but the array information is already lowered away.
2598 */
2599 brw_mark_surface_used(prog_data,
2600 stage_prog_data->binding_table.ssbo_start +
2601 nir->info.num_ssbos - 1);
2602 }
2603
2604 fs_reg offset_reg;
2605 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2606 if (const_offset) {
2607 offset_reg = brw_imm_ud(const_offset->u[0]);
2608 } else {
2609 offset_reg = get_nir_src(instr->src[1]);
2610 }
2611
2612 /* Read the vector */
2613 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2614 1 /* dims */,
2615 instr->num_components,
2616 BRW_PREDICATE_NONE);
2617 read_result.type = dest.type;
2618 for (int i = 0; i < instr->num_components; i++)
2619 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2620
2621 break;
2622 }
2623
2624 case nir_intrinsic_load_shared: {
2625 assert(devinfo->gen >= 7);
2626
2627 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2628
2629 /* Get the offset to read from */
2630 fs_reg offset_reg;
2631 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2632 if (const_offset) {
2633 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0]);
2634 } else {
2635 offset_reg = vgrf(glsl_type::uint_type);
2636 bld.ADD(offset_reg,
2637 retype(get_nir_src(instr->src[0]), BRW_REGISTER_TYPE_UD),
2638 brw_imm_ud(instr->const_index[0]));
2639 }
2640
2641 /* Read the vector */
2642 fs_reg read_result = emit_untyped_read(bld, surf_index, offset_reg,
2643 1 /* dims */,
2644 instr->num_components,
2645 BRW_PREDICATE_NONE);
2646 read_result.type = dest.type;
2647 for (int i = 0; i < instr->num_components; i++)
2648 bld.MOV(offset(dest, bld, i), offset(read_result, bld, i));
2649
2650 break;
2651 }
2652
2653 case nir_intrinsic_store_shared: {
2654 assert(devinfo->gen >= 7);
2655
2656 /* Block index */
2657 fs_reg surf_index = brw_imm_ud(GEN7_BTI_SLM);
2658
2659 /* Value */
2660 fs_reg val_reg = get_nir_src(instr->src[0]);
2661
2662 /* Writemask */
2663 unsigned writemask = instr->const_index[1];
2664
2665 /* Combine groups of consecutive enabled channels in one write
2666 * message. We use ffs to find the first enabled channel and then ffs on
2667 * the bit-inverse, down-shifted writemask to determine the length of
2668 * the block of enabled bits.
2669 */
2670 while (writemask) {
2671 unsigned first_component = ffs(writemask) - 1;
2672 unsigned length = ffs(~(writemask >> first_component)) - 1;
2673 fs_reg offset_reg;
2674
2675 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2676 if (const_offset) {
2677 offset_reg = brw_imm_ud(instr->const_index[0] + const_offset->u[0] +
2678 4 * first_component);
2679 } else {
2680 offset_reg = vgrf(glsl_type::uint_type);
2681 bld.ADD(offset_reg,
2682 retype(get_nir_src(instr->src[1]), BRW_REGISTER_TYPE_UD),
2683 brw_imm_ud(instr->const_index[0] + 4 * first_component));
2684 }
2685
2686 emit_untyped_write(bld, surf_index, offset_reg,
2687 offset(val_reg, bld, first_component),
2688 1 /* dims */, length,
2689 BRW_PREDICATE_NONE);
2690
2691 /* Clear the bits in the writemask that we just wrote, then try
2692 * again to see if more channels are left.
2693 */
2694 writemask &= (15 << (first_component + length));
2695 }
2696
2697 break;
2698 }
2699
2700 case nir_intrinsic_load_input: {
2701 fs_reg src;
2702 if (stage == MESA_SHADER_VERTEX) {
2703 src = fs_reg(ATTR, instr->const_index[0], dest.type);
2704 } else {
2705 src = offset(retype(nir_inputs, dest.type), bld,
2706 instr->const_index[0]);
2707 }
2708
2709 nir_const_value *const_offset = nir_src_as_const_value(instr->src[0]);
2710 assert(const_offset && "Indirect input loads not allowed");
2711 src = offset(src, bld, const_offset->u[0]);
2712
2713 for (unsigned j = 0; j < instr->num_components; j++) {
2714 bld.MOV(offset(dest, bld, j), offset(src, bld, j));
2715 }
2716 break;
2717 }
2718
2719 case nir_intrinsic_store_ssbo: {
2720 assert(devinfo->gen >= 7);
2721
2722 /* Block index */
2723 fs_reg surf_index;
2724 nir_const_value *const_uniform_block =
2725 nir_src_as_const_value(instr->src[1]);
2726 if (const_uniform_block) {
2727 unsigned index = stage_prog_data->binding_table.ssbo_start +
2728 const_uniform_block->u[0];
2729 surf_index = brw_imm_ud(index);
2730 brw_mark_surface_used(prog_data, index);
2731 } else {
2732 surf_index = vgrf(glsl_type::uint_type);
2733 bld.ADD(surf_index, get_nir_src(instr->src[1]),
2734 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2735
2736 brw_mark_surface_used(prog_data,
2737 stage_prog_data->binding_table.ssbo_start +
2738 nir->info.num_ssbos - 1);
2739 }
2740
2741 /* Value */
2742 fs_reg val_reg = get_nir_src(instr->src[0]);
2743
2744 /* Writemask */
2745 unsigned writemask = instr->const_index[0];
2746
2747 /* Combine groups of consecutive enabled channels in one write
2748 * message. We use ffs to find the first enabled channel and then ffs on
2749 * the bit-inverse, down-shifted writemask to determine the length of
2750 * the block of enabled bits.
2751 */
2752 while (writemask) {
2753 unsigned first_component = ffs(writemask) - 1;
2754 unsigned length = ffs(~(writemask >> first_component)) - 1;
2755
2756 fs_reg offset_reg;
2757 nir_const_value *const_offset = nir_src_as_const_value(instr->src[2]);
2758 if (const_offset) {
2759 offset_reg = brw_imm_ud(const_offset->u[0] + 4 * first_component);
2760 } else {
2761 offset_reg = vgrf(glsl_type::uint_type);
2762 bld.ADD(offset_reg,
2763 retype(get_nir_src(instr->src[2]), BRW_REGISTER_TYPE_UD),
2764 brw_imm_ud(4 * first_component));
2765 }
2766
2767 emit_untyped_write(bld, surf_index, offset_reg,
2768 offset(val_reg, bld, first_component),
2769 1 /* dims */, length,
2770 BRW_PREDICATE_NONE);
2771
2772 /* Clear the bits in the writemask that we just wrote, then try
2773 * again to see if more channels are left.
2774 */
2775 writemask &= (15 << (first_component + length));
2776 }
2777 break;
2778 }
2779
2780 case nir_intrinsic_store_output: {
2781 fs_reg src = get_nir_src(instr->src[0]);
2782 fs_reg new_dest = offset(retype(nir_outputs, src.type), bld,
2783 instr->const_index[0]);
2784
2785 nir_const_value *const_offset = nir_src_as_const_value(instr->src[1]);
2786 assert(const_offset && "Indirect output stores not allowed");
2787 new_dest = offset(new_dest, bld, const_offset->u[0]);
2788
2789 for (unsigned j = 0; j < instr->num_components; j++) {
2790 bld.MOV(offset(new_dest, bld, j), offset(src, bld, j));
2791 }
2792 break;
2793 }
2794
2795 case nir_intrinsic_ssbo_atomic_add:
2796 nir_emit_ssbo_atomic(bld, BRW_AOP_ADD, instr);
2797 break;
2798 case nir_intrinsic_ssbo_atomic_imin:
2799 nir_emit_ssbo_atomic(bld, BRW_AOP_IMIN, instr);
2800 break;
2801 case nir_intrinsic_ssbo_atomic_umin:
2802 nir_emit_ssbo_atomic(bld, BRW_AOP_UMIN, instr);
2803 break;
2804 case nir_intrinsic_ssbo_atomic_imax:
2805 nir_emit_ssbo_atomic(bld, BRW_AOP_IMAX, instr);
2806 break;
2807 case nir_intrinsic_ssbo_atomic_umax:
2808 nir_emit_ssbo_atomic(bld, BRW_AOP_UMAX, instr);
2809 break;
2810 case nir_intrinsic_ssbo_atomic_and:
2811 nir_emit_ssbo_atomic(bld, BRW_AOP_AND, instr);
2812 break;
2813 case nir_intrinsic_ssbo_atomic_or:
2814 nir_emit_ssbo_atomic(bld, BRW_AOP_OR, instr);
2815 break;
2816 case nir_intrinsic_ssbo_atomic_xor:
2817 nir_emit_ssbo_atomic(bld, BRW_AOP_XOR, instr);
2818 break;
2819 case nir_intrinsic_ssbo_atomic_exchange:
2820 nir_emit_ssbo_atomic(bld, BRW_AOP_MOV, instr);
2821 break;
2822 case nir_intrinsic_ssbo_atomic_comp_swap:
2823 nir_emit_ssbo_atomic(bld, BRW_AOP_CMPWR, instr);
2824 break;
2825
2826 case nir_intrinsic_get_buffer_size: {
2827 nir_const_value *const_uniform_block = nir_src_as_const_value(instr->src[0]);
2828 unsigned ssbo_index = const_uniform_block ? const_uniform_block->u[0] : 0;
2829 int reg_width = dispatch_width / 8;
2830
2831 /* Set LOD = 0 */
2832 fs_reg source = brw_imm_d(0);
2833
2834 int mlen = 1 * reg_width;
2835
2836 /* A resinfo's sampler message is used to get the buffer size.
2837 * The SIMD8's writeback message consists of four registers and
2838 * SIMD16's writeback message consists of 8 destination registers
2839 * (two per each component), although we are only interested on the
2840 * first component, where resinfo returns the buffer size for
2841 * SURFTYPE_BUFFER.
2842 */
2843 int regs_written = 4 * mlen;
2844 fs_reg src_payload = fs_reg(VGRF, alloc.allocate(mlen),
2845 BRW_REGISTER_TYPE_UD);
2846 bld.LOAD_PAYLOAD(src_payload, &source, 1, 0);
2847 fs_reg buffer_size = fs_reg(VGRF, alloc.allocate(regs_written),
2848 BRW_REGISTER_TYPE_UD);
2849 const unsigned index = prog_data->binding_table.ssbo_start + ssbo_index;
2850 fs_inst *inst = bld.emit(FS_OPCODE_GET_BUFFER_SIZE, buffer_size,
2851 src_payload, brw_imm_ud(index));
2852 inst->header_size = 0;
2853 inst->mlen = mlen;
2854 inst->regs_written = regs_written;
2855 bld.emit(inst);
2856 bld.MOV(retype(dest, buffer_size.type), buffer_size);
2857
2858 brw_mark_surface_used(prog_data, index);
2859 break;
2860 }
2861
2862 default:
2863 unreachable("unknown intrinsic");
2864 }
2865 }
2866
2867 void
2868 fs_visitor::nir_emit_ssbo_atomic(const fs_builder &bld,
2869 int op, nir_intrinsic_instr *instr)
2870 {
2871 fs_reg dest;
2872 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2873 dest = get_nir_dest(instr->dest);
2874
2875 fs_reg surface;
2876 nir_const_value *const_surface = nir_src_as_const_value(instr->src[0]);
2877 if (const_surface) {
2878 unsigned surf_index = stage_prog_data->binding_table.ssbo_start +
2879 const_surface->u[0];
2880 surface = brw_imm_ud(surf_index);
2881 brw_mark_surface_used(prog_data, surf_index);
2882 } else {
2883 surface = vgrf(glsl_type::uint_type);
2884 bld.ADD(surface, get_nir_src(instr->src[0]),
2885 brw_imm_ud(stage_prog_data->binding_table.ssbo_start));
2886
2887 /* Assume this may touch any SSBO. This is the same we do for other
2888 * UBO/SSBO accesses with non-constant surface.
2889 */
2890 brw_mark_surface_used(prog_data,
2891 stage_prog_data->binding_table.ssbo_start +
2892 nir->info.num_ssbos - 1);
2893 }
2894
2895 fs_reg offset = get_nir_src(instr->src[1]);
2896 fs_reg data1 = get_nir_src(instr->src[2]);
2897 fs_reg data2;
2898 if (op == BRW_AOP_CMPWR)
2899 data2 = get_nir_src(instr->src[3]);
2900
2901 /* Emit the actual atomic operation operation */
2902
2903 fs_reg atomic_result =
2904 surface_access::emit_untyped_atomic(bld, surface, offset,
2905 data1, data2,
2906 1 /* dims */, 1 /* rsize */,
2907 op,
2908 BRW_PREDICATE_NONE);
2909 dest.type = atomic_result.type;
2910 bld.MOV(dest, atomic_result);
2911 }
2912
2913 void
2914 fs_visitor::nir_emit_shared_atomic(const fs_builder &bld,
2915 int op, nir_intrinsic_instr *instr)
2916 {
2917 fs_reg dest;
2918 if (nir_intrinsic_infos[instr->intrinsic].has_dest)
2919 dest = get_nir_dest(instr->dest);
2920
2921 fs_reg surface = brw_imm_ud(GEN7_BTI_SLM);
2922 fs_reg offset = get_nir_src(instr->src[0]);
2923 fs_reg data1 = get_nir_src(instr->src[1]);
2924 fs_reg data2;
2925 if (op == BRW_AOP_CMPWR)
2926 data2 = get_nir_src(instr->src[2]);
2927
2928 /* Emit the actual atomic operation operation */
2929
2930 fs_reg atomic_result =
2931 surface_access::emit_untyped_atomic(bld, surface, offset,
2932 data1, data2,
2933 1 /* dims */, 1 /* rsize */,
2934 op,
2935 BRW_PREDICATE_NONE);
2936 dest.type = atomic_result.type;
2937 bld.MOV(dest, atomic_result);
2938 }
2939
2940 void
2941 fs_visitor::nir_emit_texture(const fs_builder &bld, nir_tex_instr *instr)
2942 {
2943 unsigned texture = instr->texture_index;
2944 fs_reg texture_reg(brw_imm_ud(texture));
2945
2946 int gather_component = instr->component;
2947
2948 bool is_cube_array = instr->sampler_dim == GLSL_SAMPLER_DIM_CUBE &&
2949 instr->is_array;
2950
2951 int lod_components = 0;
2952 int UNUSED offset_components = 0;
2953
2954 fs_reg coordinate, shadow_comparitor, lod, lod2, sample_index, mcs, tex_offset;
2955
2956 for (unsigned i = 0; i < instr->num_srcs; i++) {
2957 fs_reg src = get_nir_src(instr->src[i].src);
2958 switch (instr->src[i].src_type) {
2959 case nir_tex_src_bias:
2960 lod = retype(src, BRW_REGISTER_TYPE_F);
2961 break;
2962 case nir_tex_src_comparitor:
2963 shadow_comparitor = retype(src, BRW_REGISTER_TYPE_F);
2964 break;
2965 case nir_tex_src_coord:
2966 switch (instr->op) {
2967 case nir_texop_txf:
2968 case nir_texop_txf_ms:
2969 case nir_texop_samples_identical:
2970 coordinate = retype(src, BRW_REGISTER_TYPE_D);
2971 break;
2972 default:
2973 coordinate = retype(src, BRW_REGISTER_TYPE_F);
2974 break;
2975 }
2976 break;
2977 case nir_tex_src_ddx:
2978 lod = retype(src, BRW_REGISTER_TYPE_F);
2979 lod_components = nir_tex_instr_src_size(instr, i);
2980 break;
2981 case nir_tex_src_ddy:
2982 lod2 = retype(src, BRW_REGISTER_TYPE_F);
2983 break;
2984 case nir_tex_src_lod:
2985 switch (instr->op) {
2986 case nir_texop_txs:
2987 lod = retype(src, BRW_REGISTER_TYPE_UD);
2988 break;
2989 case nir_texop_txf:
2990 lod = retype(src, BRW_REGISTER_TYPE_D);
2991 break;
2992 default:
2993 lod = retype(src, BRW_REGISTER_TYPE_F);
2994 break;
2995 }
2996 break;
2997 case nir_tex_src_ms_index:
2998 sample_index = retype(src, BRW_REGISTER_TYPE_UD);
2999 break;
3000 case nir_tex_src_offset:
3001 tex_offset = retype(src, BRW_REGISTER_TYPE_D);
3002 if (instr->is_array)
3003 offset_components = instr->coord_components - 1;
3004 else
3005 offset_components = instr->coord_components;
3006 break;
3007 case nir_tex_src_projector:
3008 unreachable("should be lowered");
3009
3010 case nir_tex_src_texture_offset: {
3011 /* Figure out the highest possible texture index and mark it as used */
3012 uint32_t max_used = texture + instr->texture_array_size - 1;
3013 if (instr->op == nir_texop_tg4 && devinfo->gen < 8) {
3014 max_used += stage_prog_data->binding_table.gather_texture_start;
3015 } else {
3016 max_used += stage_prog_data->binding_table.texture_start;
3017 }
3018 brw_mark_surface_used(prog_data, max_used);
3019
3020 /* Emit code to evaluate the actual indexing expression */
3021 texture_reg = vgrf(glsl_type::uint_type);
3022 bld.ADD(texture_reg, src, brw_imm_ud(texture));
3023 texture_reg = bld.emit_uniformize(texture_reg);
3024 break;
3025 }
3026
3027 default:
3028 unreachable("unknown texture source");
3029 }
3030 }
3031
3032 if (instr->op == nir_texop_txf_ms ||
3033 instr->op == nir_texop_samples_identical) {
3034 if (devinfo->gen >= 7 &&
3035 key_tex->compressed_multisample_layout_mask & (1 << texture)) {
3036 mcs = emit_mcs_fetch(coordinate, instr->coord_components, texture_reg);
3037 } else {
3038 mcs = brw_imm_ud(0u);
3039 }
3040 }
3041
3042 for (unsigned i = 0; i < 3; i++) {
3043 if (instr->const_offset[i] != 0) {
3044 assert(offset_components == 0);
3045 tex_offset = brw_imm_ud(brw_texture_offset(instr->const_offset, 3));
3046 break;
3047 }
3048 }
3049
3050 enum glsl_base_type dest_base_type =
3051 brw_glsl_base_type_for_nir_type (instr->dest_type);
3052
3053 const glsl_type *dest_type =
3054 glsl_type::get_instance(dest_base_type, nir_tex_instr_dest_size(instr),
3055 1);
3056
3057 ir_texture_opcode op;
3058 switch (instr->op) {
3059 case nir_texop_lod: op = ir_lod; break;
3060 case nir_texop_query_levels: op = ir_query_levels; break;
3061 case nir_texop_tex: op = ir_tex; break;
3062 case nir_texop_tg4: op = ir_tg4; break;
3063 case nir_texop_txb: op = ir_txb; break;
3064 case nir_texop_txd: op = ir_txd; break;
3065 case nir_texop_txf: op = ir_txf; break;
3066 case nir_texop_txf_ms: op = ir_txf_ms; break;
3067 case nir_texop_txl: op = ir_txl; break;
3068 case nir_texop_txs: op = ir_txs; break;
3069 case nir_texop_texture_samples: {
3070 fs_reg dst = retype(get_nir_dest(instr->dest), BRW_REGISTER_TYPE_D);
3071 fs_inst *inst = bld.emit(SHADER_OPCODE_SAMPLEINFO, dst,
3072 bld.vgrf(BRW_REGISTER_TYPE_D, 1),
3073 texture_reg);
3074 inst->mlen = 1;
3075 inst->header_size = 1;
3076 inst->base_mrf = -1;
3077 return;
3078 }
3079 case nir_texop_samples_identical: op = ir_samples_identical; break;
3080 default:
3081 unreachable("unknown texture opcode");
3082 }
3083
3084 emit_texture(op, dest_type, coordinate, instr->coord_components,
3085 shadow_comparitor, lod, lod2, lod_components, sample_index,
3086 tex_offset, mcs, gather_component,
3087 is_cube_array, texture, texture_reg);
3088
3089 fs_reg dest = get_nir_dest(instr->dest);
3090 dest.type = this->result.type;
3091 unsigned num_components = nir_tex_instr_dest_size(instr);
3092 emit_percomp(bld, fs_inst(BRW_OPCODE_MOV, bld.dispatch_width(),
3093 dest, this->result),
3094 (1 << num_components) - 1);
3095 }
3096
3097 void
3098 fs_visitor::nir_emit_jump(const fs_builder &bld, nir_jump_instr *instr)
3099 {
3100 switch (instr->type) {
3101 case nir_jump_break:
3102 bld.emit(BRW_OPCODE_BREAK);
3103 break;
3104 case nir_jump_continue:
3105 bld.emit(BRW_OPCODE_CONTINUE);
3106 break;
3107 case nir_jump_return:
3108 default:
3109 unreachable("unknown jump");
3110 }
3111 }