i965/fs: Mark last used ip for all regs read in the payload
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_cfg.h"
30 #include "glsl/glsl_types.h"
31 #include "glsl/ir_optimization.h"
32
33 using namespace brw;
34
35 static void
36 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
37 {
38 if (reg->file == GRF) {
39 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset;
40 reg->reg_offset = 0;
41 }
42 }
43
44 void
45 fs_visitor::assign_regs_trivial()
46 {
47 unsigned hw_reg_mapping[this->alloc.count + 1];
48 unsigned i;
49 int reg_width = dispatch_width / 8;
50
51 /* Note that compressed instructions require alignment to 2 registers. */
52 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
53 for (i = 1; i <= this->alloc.count; i++) {
54 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
55 this->alloc.sizes[i - 1]);
56 }
57 this->grf_used = hw_reg_mapping[this->alloc.count];
58
59 foreach_block_and_inst(block, fs_inst, inst, cfg) {
60 assign_reg(hw_reg_mapping, &inst->dst);
61 for (i = 0; i < inst->sources; i++) {
62 assign_reg(hw_reg_mapping, &inst->src[i]);
63 }
64 }
65
66 if (this->grf_used >= max_grf) {
67 fail("Ran out of regs on trivial allocator (%d/%d)\n",
68 this->grf_used, max_grf);
69 } else {
70 this->alloc.count = this->grf_used;
71 }
72
73 }
74
75 static void
76 brw_alloc_reg_set(struct brw_compiler *compiler, int reg_width)
77 {
78 const struct brw_device_info *devinfo = compiler->devinfo;
79 int base_reg_count = BRW_MAX_GRF;
80 int index = reg_width - 1;
81
82 /* The registers used to make up almost all values handled in the compiler
83 * are a scalar value occupying a single register (or 2 registers in the
84 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
85 * multiplying allocated register numbers by 2). Things that were
86 * aggregates of scalar values at the GLSL level were split to scalar
87 * values by split_virtual_grfs().
88 *
89 * However, texture SEND messages return a series of contiguous registers
90 * to write into. We currently always ask for 4 registers, but we may
91 * convert that to use less some day.
92 *
93 * Additionally, on gen5 we need aligned pairs of registers for the PLN
94 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
95 * texturing.
96 *
97 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
98 * and we add in '3' to make indexing the array easier for the common case
99 * (since we'll probably want it for texturing later).
100 *
101 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
102 * means that we may need any size up to the sampler message size limit (11
103 * regs).
104 */
105 int class_count;
106 int class_sizes[MAX_VGRF_SIZE];
107
108 if (devinfo->gen >= 7) {
109 for (class_count = 0; class_count < MAX_VGRF_SIZE; class_count++)
110 class_sizes[class_count] = class_count + 1;
111 } else {
112 for (class_count = 0; class_count < 4; class_count++)
113 class_sizes[class_count] = class_count + 1;
114 class_sizes[class_count++] = 8;
115 }
116
117 memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
118 sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
119 int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
120
121 /* Compute the total number of registers across all classes. */
122 int ra_reg_count = 0;
123 for (int i = 0; i < class_count; i++) {
124 if (devinfo->gen <= 5 && reg_width == 2) {
125 /* From the G45 PRM:
126 *
127 * In order to reduce the hardware complexity, the following
128 * rules and restrictions apply to the compressed instruction:
129 * ...
130 * * Operand Alignment Rule: With the exceptions listed below, a
131 * source/destination operand in general should be aligned to
132 * even 256-bit physical register with a region size equal to
133 * two 256-bit physical register
134 */
135 ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
136 } else {
137 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
138 }
139 /* Mark the last register. We'll fill in the beginnings later. */
140 class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
141 }
142
143 /* Fill out the rest of the range markers */
144 for (int i = 1; i < 17; ++i) {
145 if (class_to_ra_reg_range[i] == 0)
146 class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
147 }
148
149 uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
150 struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count);
151 if (devinfo->gen >= 6)
152 ra_set_allocate_round_robin(regs);
153 int *classes = ralloc_array(compiler, int, class_count);
154 int aligned_pairs_class = -1;
155
156 /* Allocate space for q values. We allocate class_count + 1 because we
157 * want to leave room for the aligned pairs class if we have it. */
158 unsigned int **q_values = ralloc_array(compiler, unsigned int *,
159 class_count + 1);
160 for (int i = 0; i < class_count + 1; ++i)
161 q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
162
163 /* Now, add the registers to their classes, and add the conflicts
164 * between them and the base GRF registers (and also each other).
165 */
166 int reg = 0;
167 int pairs_base_reg = 0;
168 int pairs_reg_count = 0;
169 for (int i = 0; i < class_count; i++) {
170 int class_reg_count;
171 if (devinfo->gen <= 5 && reg_width == 2) {
172 class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
173
174 /* See comment below. The only difference here is that we are
175 * dealing with pairs of registers instead of single registers.
176 * Registers of odd sizes simply get rounded up. */
177 for (int j = 0; j < class_count; j++)
178 q_values[i][j] = (class_sizes[i] + 1) / 2 +
179 (class_sizes[j] + 1) / 2 - 1;
180 } else {
181 class_reg_count = base_reg_count - (class_sizes[i] - 1);
182
183 /* From register_allocate.c:
184 *
185 * q(B,C) (indexed by C, B is this register class) in
186 * Runeson/Nyström paper. This is "how many registers of B could
187 * the worst choice register from C conflict with".
188 *
189 * If we just let the register allocation algorithm compute these
190 * values, is extremely expensive. However, since all of our
191 * registers are laid out, we can very easily compute them
192 * ourselves. View the register from C as fixed starting at GRF n
193 * somwhere in the middle, and the register from B as sliding back
194 * and forth. Then the first register to conflict from B is the
195 * one starting at n - class_size[B] + 1 and the last register to
196 * conflict will start at n + class_size[B] - 1. Therefore, the
197 * number of conflicts from B is class_size[B] + class_size[C] - 1.
198 *
199 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
200 * B | | | | | |n| --> | | | | | | |
201 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
202 * +-+-+-+-+-+
203 * C |n| | | | |
204 * +-+-+-+-+-+
205 */
206 for (int j = 0; j < class_count; j++)
207 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
208 }
209 classes[i] = ra_alloc_reg_class(regs);
210
211 /* Save this off for the aligned pair class at the end. */
212 if (class_sizes[i] == 2) {
213 pairs_base_reg = reg;
214 pairs_reg_count = class_reg_count;
215 }
216
217 if (devinfo->gen <= 5 && reg_width == 2) {
218 for (int j = 0; j < class_reg_count; j++) {
219 ra_class_add_reg(regs, classes[i], reg);
220
221 ra_reg_to_grf[reg] = j * 2;
222
223 for (int base_reg = j;
224 base_reg < j + (class_sizes[i] + 1) / 2;
225 base_reg++) {
226 ra_add_transitive_reg_conflict(regs, base_reg, reg);
227 }
228
229 reg++;
230 }
231 } else {
232 for (int j = 0; j < class_reg_count; j++) {
233 ra_class_add_reg(regs, classes[i], reg);
234
235 ra_reg_to_grf[reg] = j;
236
237 for (int base_reg = j;
238 base_reg < j + class_sizes[i];
239 base_reg++) {
240 ra_add_transitive_reg_conflict(regs, base_reg, reg);
241 }
242
243 reg++;
244 }
245 }
246 }
247 assert(reg == ra_reg_count);
248
249 /* Add a special class for aligned pairs, which we'll put delta_xy
250 * in on Gen <= 6 so that we can do PLN.
251 */
252 if (devinfo->has_pln && reg_width == 1 && devinfo->gen <= 6) {
253 aligned_pairs_class = ra_alloc_reg_class(regs);
254
255 for (int i = 0; i < pairs_reg_count; i++) {
256 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
257 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
258 }
259 }
260
261 for (int i = 0; i < class_count; i++) {
262 /* These are a little counter-intuitive because the pair registers
263 * are required to be aligned while the register they are
264 * potentially interferring with are not. In the case where the
265 * size is even, the worst-case is that the register is
266 * odd-aligned. In the odd-size case, it doesn't matter.
267 */
268 q_values[class_count][i] = class_sizes[i] / 2 + 1;
269 q_values[i][class_count] = class_sizes[i] + 1;
270 }
271 q_values[class_count][class_count] = 1;
272 }
273
274 ra_set_finalize(regs, q_values);
275
276 ralloc_free(q_values);
277
278 compiler->fs_reg_sets[index].regs = regs;
279 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
280 compiler->fs_reg_sets[index].classes[i] = -1;
281 for (int i = 0; i < class_count; i++)
282 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
283 compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
284 compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
285 }
286
287 void
288 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
289 {
290 brw_alloc_reg_set(compiler, 1);
291 brw_alloc_reg_set(compiler, 2);
292 }
293
294 static int
295 count_to_loop_end(const bblock_t *block)
296 {
297 if (block->end()->opcode == BRW_OPCODE_WHILE)
298 return block->end_ip;
299
300 int depth = 1;
301 /* Skip the first block, since we don't want to count the do the calling
302 * function found.
303 */
304 for (block = block->next();
305 depth > 0;
306 block = block->next()) {
307 if (block->start()->opcode == BRW_OPCODE_DO)
308 depth++;
309 if (block->end()->opcode == BRW_OPCODE_WHILE) {
310 depth--;
311 if (depth == 0)
312 return block->end_ip;
313 }
314 }
315 unreachable("not reached");
316 }
317
318 /**
319 * Sets up interference between thread payload registers and the virtual GRFs
320 * to be allocated for program temporaries.
321 *
322 * We want to be able to reallocate the payload for our virtual GRFs, notably
323 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
324 * our 128 registers.
325 *
326 * The layout of the payload registers is:
327 *
328 * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
329 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
330 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
331 *
332 * And we have payload_node_count nodes covering these registers in order
333 * (note that in SIMD16, a node is two registers).
334 */
335 void
336 fs_visitor::setup_payload_interference(struct ra_graph *g,
337 int payload_node_count,
338 int first_payload_node)
339 {
340 int loop_depth = 0;
341 int loop_end_ip = 0;
342
343 int payload_last_use_ip[payload_node_count];
344 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
345 int ip = 0;
346 foreach_block_and_inst(block, fs_inst, inst, cfg) {
347 switch (inst->opcode) {
348 case BRW_OPCODE_DO:
349 loop_depth++;
350
351 /* Since payload regs are deffed only at the start of the shader
352 * execution, any uses of the payload within a loop mean the live
353 * interval extends to the end of the outermost loop. Find the ip of
354 * the end now.
355 */
356 if (loop_depth == 1)
357 loop_end_ip = count_to_loop_end(block);
358 break;
359 case BRW_OPCODE_WHILE:
360 loop_depth--;
361 break;
362 default:
363 break;
364 }
365
366 int use_ip;
367 if (loop_depth > 0)
368 use_ip = loop_end_ip;
369 else
370 use_ip = ip;
371
372 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
373 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
374 * the start (see interp_reg()).
375 */
376 for (int i = 0; i < inst->sources; i++) {
377 if (inst->src[i].file == HW_REG &&
378 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
379 int node_nr = inst->src[i].fixed_hw_reg.nr;
380 if (node_nr >= payload_node_count)
381 continue;
382
383 for (int j = 0; j < inst->regs_read(i); j++) {
384 payload_last_use_ip[node_nr + j] = use_ip;
385 assert(node_nr + j < payload_node_count);
386 }
387 }
388 }
389
390 /* Special case instructions which have extra implied registers used. */
391 switch (inst->opcode) {
392 case FS_OPCODE_LINTERP:
393 /* On gen6+ in SIMD16, there are 4 adjacent registers used by
394 * PLN's sourcing of the deltas, while we list only the first one
395 * in the arguments. Pre-gen6, the deltas are computed in normal
396 * VGRFs.
397 */
398 if (devinfo->gen >= 6) {
399 int delta_x_arg = 0;
400 if (inst->src[delta_x_arg].file == HW_REG &&
401 inst->src[delta_x_arg].fixed_hw_reg.file ==
402 BRW_GENERAL_REGISTER_FILE) {
403 for (int i = 1; i < 4; ++i) {
404 int node = inst->src[delta_x_arg].fixed_hw_reg.nr + i;
405 assert(node < payload_node_count);
406 payload_last_use_ip[node] = use_ip;
407 }
408 }
409 }
410 break;
411
412 case CS_OPCODE_CS_TERMINATE:
413 payload_last_use_ip[0] = use_ip;
414 break;
415
416 default:
417 if (inst->eot) {
418 /* We could omit this for the !inst->header_present case, except
419 * that the simulator apparently incorrectly reads from g0/g1
420 * instead of sideband. It also really freaks out driver
421 * developers to see g0 used in unusual places, so just always
422 * reserve it.
423 */
424 payload_last_use_ip[0] = use_ip;
425 payload_last_use_ip[1] = use_ip;
426 }
427 break;
428 }
429
430 ip++;
431 }
432
433 for (int i = 0; i < payload_node_count; i++) {
434 /* Mark the payload node as interfering with any virtual grf that is
435 * live between the start of the program and our last use of the payload
436 * node.
437 */
438 for (unsigned j = 0; j < this->alloc.count; j++) {
439 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
440 * in order to not have to worry about the uniform issue described in
441 * calculate_live_intervals().
442 */
443 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
444 ra_add_node_interference(g, first_payload_node + i, j);
445 }
446 }
447 }
448
449 for (int i = 0; i < payload_node_count; i++) {
450 /* Mark each payload node as being allocated to its physical register.
451 *
452 * The alternative would be to have per-physical-register classes, which
453 * would just be silly.
454 */
455 if (devinfo->gen <= 5 && dispatch_width == 16) {
456 /* We have to divide by 2 here because we only have even numbered
457 * registers. Some of the payload registers will be odd, but
458 * that's ok because their physical register numbers have already
459 * been assigned. The only thing this is used for is interference.
460 */
461 ra_set_node_reg(g, first_payload_node + i, i / 2);
462 } else {
463 ra_set_node_reg(g, first_payload_node + i, i);
464 }
465 }
466 }
467
468 /**
469 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
470 *
471 * This is used in assign_regs() to decide which of the GRFs that we use as
472 * MRFs on gen7 get normally register allocated, and in register spilling to
473 * see if we can actually use MRFs to do spills without overwriting normal MRF
474 * contents.
475 */
476 static void
477 get_used_mrfs(fs_visitor *v, bool *mrf_used)
478 {
479 int reg_width = v->dispatch_width / 8;
480
481 memset(mrf_used, 0, BRW_MAX_MRF * sizeof(bool));
482
483 foreach_block_and_inst(block, fs_inst, inst, v->cfg) {
484 if (inst->dst.file == MRF) {
485 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
486 mrf_used[reg] = true;
487 if (reg_width == 2) {
488 if (inst->dst.reg & BRW_MRF_COMPR4) {
489 mrf_used[reg + 4] = true;
490 } else {
491 mrf_used[reg + 1] = true;
492 }
493 }
494 }
495
496 if (inst->mlen > 0) {
497 for (int i = 0; i < v->implied_mrf_writes(inst); i++) {
498 mrf_used[inst->base_mrf + i] = true;
499 }
500 }
501 }
502 }
503
504 /**
505 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
506 * messages (treated as MRFs in code generation).
507 */
508 static void
509 setup_mrf_hack_interference(fs_visitor *v, struct ra_graph *g,
510 int first_mrf_node, int *first_used_mrf)
511 {
512 bool mrf_used[BRW_MAX_MRF];
513 get_used_mrfs(v, mrf_used);
514
515 *first_used_mrf = BRW_MAX_MRF;
516 for (int i = 0; i < BRW_MAX_MRF; i++) {
517 /* Mark each MRF reg node as being allocated to its physical register.
518 *
519 * The alternative would be to have per-physical-register classes, which
520 * would just be silly.
521 */
522 ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i);
523
524 /* Since we don't have any live/dead analysis on the MRFs, just mark all
525 * that are used as conflicting with all virtual GRFs.
526 */
527 if (mrf_used[i]) {
528 if (i < *first_used_mrf)
529 *first_used_mrf = i;
530
531 for (unsigned j = 0; j < v->alloc.count; j++) {
532 ra_add_node_interference(g, first_mrf_node + i, j);
533 }
534 }
535 }
536 }
537
538 bool
539 fs_visitor::assign_regs(bool allow_spilling)
540 {
541 /* Most of this allocation was written for a reg_width of 1
542 * (dispatch_width == 8). In extending to SIMD16, the code was
543 * left in place and it was converted to have the hardware
544 * registers it's allocating be contiguous physical pairs of regs
545 * for reg_width == 2.
546 */
547 int reg_width = dispatch_width / 8;
548 unsigned hw_reg_mapping[this->alloc.count];
549 int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width);
550 int rsi = reg_width - 1; /* Which compiler->fs_reg_sets[] to use */
551 calculate_live_intervals();
552
553 int node_count = this->alloc.count;
554 int first_payload_node = node_count;
555 node_count += payload_node_count;
556 int first_mrf_hack_node = node_count;
557 if (devinfo->gen >= 7)
558 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
559 struct ra_graph *g =
560 ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
561
562 for (unsigned i = 0; i < this->alloc.count; i++) {
563 unsigned size = this->alloc.sizes[i];
564 int c;
565
566 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
567 "Register allocation relies on split_virtual_grfs()");
568 c = compiler->fs_reg_sets[rsi].classes[size - 1];
569
570 /* Special case: on pre-GEN6 hardware that supports PLN, the
571 * second operand of a PLN instruction needs to be an
572 * even-numbered register, so we have a special register class
573 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
574 * uses this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
575 * second operand of a PLN instruction (since it doesn't support
576 * any other interpolation modes). So all we need to do is find
577 * that register and set it to the appropriate class.
578 */
579 if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
580 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF &&
581 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
582 c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
583 }
584
585 ra_set_node_class(g, i, c);
586
587 for (unsigned j = 0; j < i; j++) {
588 if (virtual_grf_interferes(i, j)) {
589 ra_add_node_interference(g, i, j);
590 }
591 }
592 }
593
594 setup_payload_interference(g, payload_node_count, first_payload_node);
595 if (devinfo->gen >= 7) {
596 int first_used_mrf = BRW_MAX_MRF;
597 setup_mrf_hack_interference(this, g, first_mrf_hack_node,
598 &first_used_mrf);
599
600 foreach_block_and_inst(block, fs_inst, inst, cfg) {
601 /* When we do send-from-GRF for FB writes, we need to ensure that
602 * the last write instruction sends from a high register. This is
603 * because the vertex fetcher wants to start filling the low
604 * payload registers while the pixel data port is still working on
605 * writing out the memory. If we don't do this, we get rendering
606 * artifacts.
607 *
608 * We could just do "something high". Instead, we just pick the
609 * highest register that works.
610 */
611 if (inst->eot) {
612 int size = alloc.sizes[inst->src[0].reg];
613 int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
614
615 /* If something happened to spill, we want to push the EOT send
616 * register early enough in the register file that we don't
617 * conflict with any used MRF hack registers.
618 */
619 reg -= BRW_MAX_MRF - first_used_mrf;
620
621 ra_set_node_reg(g, inst->src[0].reg, reg);
622 break;
623 }
624 }
625 }
626
627 if (dispatch_width > 8) {
628 /* In 16-wide dispatch we have an issue where a compressed
629 * instruction is actually two instructions executed simultaneiously.
630 * It's actually ok to have the source and destination registers be
631 * the same. In this case, each instruction over-writes its own
632 * source and there's no problem. The real problem here is if the
633 * source and destination registers are off by one. Then you can end
634 * up in a scenario where the first instruction over-writes the
635 * source of the second instruction. Since the compiler doesn't know
636 * about this level of granularity, we simply make the source and
637 * destination interfere.
638 */
639 foreach_block_and_inst(block, fs_inst, inst, cfg) {
640 if (inst->dst.file != GRF)
641 continue;
642
643 for (int i = 0; i < inst->sources; ++i) {
644 if (inst->src[i].file == GRF) {
645 ra_add_node_interference(g, inst->dst.reg, inst->src[i].reg);
646 }
647 }
648 }
649 }
650
651 /* Debug of register spilling: Go spill everything. */
652 if (unlikely(INTEL_DEBUG & DEBUG_SPILL)) {
653 int reg = choose_spill_reg(g);
654
655 if (reg != -1) {
656 spill_reg(reg);
657 ralloc_free(g);
658 return false;
659 }
660 }
661
662 if (!ra_allocate(g)) {
663 /* Failed to allocate registers. Spill a reg, and the caller will
664 * loop back into here to try again.
665 */
666 int reg = choose_spill_reg(g);
667
668 if (reg == -1) {
669 fail("no register to spill:\n");
670 dump_instructions(NULL);
671 } else if (allow_spilling) {
672 spill_reg(reg);
673 }
674
675 ralloc_free(g);
676
677 return false;
678 }
679
680 /* Get the chosen virtual registers for each node, and map virtual
681 * regs in the register classes back down to real hardware reg
682 * numbers.
683 */
684 this->grf_used = payload_node_count;
685 for (unsigned i = 0; i < this->alloc.count; i++) {
686 int reg = ra_get_node_reg(g, i);
687
688 hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
689 this->grf_used = MAX2(this->grf_used,
690 hw_reg_mapping[i] + this->alloc.sizes[i]);
691 }
692
693 foreach_block_and_inst(block, fs_inst, inst, cfg) {
694 assign_reg(hw_reg_mapping, &inst->dst);
695 for (int i = 0; i < inst->sources; i++) {
696 assign_reg(hw_reg_mapping, &inst->src[i]);
697 }
698 }
699
700 this->alloc.count = this->grf_used;
701
702 ralloc_free(g);
703
704 return true;
705 }
706
707 void
708 fs_visitor::emit_unspill(bblock_t *block, fs_inst *inst, fs_reg dst,
709 uint32_t spill_offset, int count)
710 {
711 int reg_size = 1;
712 if (dispatch_width == 16 && count % 2 == 0)
713 reg_size = 2;
714
715 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
716 .group(reg_size * 8, 0)
717 .at(block, inst);
718
719 for (int i = 0; i < count / reg_size; i++) {
720 /* The gen7 descriptor-based offset is 12 bits of HWORD units. */
721 bool gen7_read = devinfo->gen >= 7 && spill_offset < (1 << 12) * REG_SIZE;
722 fs_inst *unspill_inst = ibld.emit(gen7_read ?
723 SHADER_OPCODE_GEN7_SCRATCH_READ :
724 SHADER_OPCODE_GEN4_SCRATCH_READ,
725 dst);
726 unspill_inst->offset = spill_offset;
727 unspill_inst->regs_written = reg_size;
728
729 if (!gen7_read) {
730 unspill_inst->base_mrf = 14;
731 unspill_inst->mlen = 1; /* header contains offset */
732 }
733
734 dst.reg_offset += reg_size;
735 spill_offset += reg_size * REG_SIZE;
736 }
737 }
738
739 void
740 fs_visitor::emit_spill(bblock_t *block, fs_inst *inst, fs_reg src,
741 uint32_t spill_offset, int count)
742 {
743 int reg_size = 1;
744 int spill_base_mrf = 14;
745 if (dispatch_width == 16 && count % 2 == 0) {
746 spill_base_mrf = 13;
747 reg_size = 2;
748 }
749
750 const fs_builder ibld = bld.annotate(inst->annotation, inst->ir)
751 .group(reg_size * 8, 0)
752 .at(block, inst->next);
753
754 for (int i = 0; i < count / reg_size; i++) {
755 fs_inst *spill_inst =
756 ibld.emit(SHADER_OPCODE_GEN4_SCRATCH_WRITE, bld.null_reg_f(), src);
757 src.reg_offset += reg_size;
758 spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
759 spill_inst->mlen = 1 + reg_size; /* header, value */
760 spill_inst->base_mrf = spill_base_mrf;
761 }
762 }
763
764 int
765 fs_visitor::choose_spill_reg(struct ra_graph *g)
766 {
767 float loop_scale = 1.0;
768 float spill_costs[this->alloc.count];
769 bool no_spill[this->alloc.count];
770
771 for (unsigned i = 0; i < this->alloc.count; i++) {
772 spill_costs[i] = 0.0;
773 no_spill[i] = false;
774 }
775
776 /* Calculate costs for spilling nodes. Call it a cost of 1 per
777 * spill/unspill we'll have to do, and guess that the insides of
778 * loops run 10 times.
779 */
780 foreach_block_and_inst(block, fs_inst, inst, cfg) {
781 for (unsigned int i = 0; i < inst->sources; i++) {
782 if (inst->src[i].file == GRF) {
783 spill_costs[inst->src[i].reg] += loop_scale;
784
785 /* Register spilling logic assumes full-width registers; smeared
786 * registers have a width of 1 so if we try to spill them we'll
787 * generate invalid assembly. This shouldn't be a problem because
788 * smeared registers are only used as short-term temporaries when
789 * loading pull constants, so spilling them is unlikely to reduce
790 * register pressure anyhow.
791 */
792 if (!inst->src[i].is_contiguous()) {
793 no_spill[inst->src[i].reg] = true;
794 }
795 }
796 }
797
798 if (inst->dst.file == GRF) {
799 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
800
801 if (!inst->dst.is_contiguous()) {
802 no_spill[inst->dst.reg] = true;
803 }
804 }
805
806 switch (inst->opcode) {
807
808 case BRW_OPCODE_DO:
809 loop_scale *= 10;
810 break;
811
812 case BRW_OPCODE_WHILE:
813 loop_scale /= 10;
814 break;
815
816 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
817 if (inst->src[0].file == GRF)
818 no_spill[inst->src[0].reg] = true;
819 break;
820
821 case SHADER_OPCODE_GEN4_SCRATCH_READ:
822 case SHADER_OPCODE_GEN7_SCRATCH_READ:
823 if (inst->dst.file == GRF)
824 no_spill[inst->dst.reg] = true;
825 break;
826
827 default:
828 break;
829 }
830 }
831
832 for (unsigned i = 0; i < this->alloc.count; i++) {
833 if (!no_spill[i])
834 ra_set_node_spill_cost(g, i, spill_costs[i]);
835 }
836
837 return ra_get_best_spill_node(g);
838 }
839
840 void
841 fs_visitor::spill_reg(int spill_reg)
842 {
843 int size = alloc.sizes[spill_reg];
844 unsigned int spill_offset = last_scratch;
845 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
846 int spill_base_mrf = dispatch_width > 8 ? 13 : 14;
847
848 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
849 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
850 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
851 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
852 * depth), starting from m1. In summary: We may not be able to spill in
853 * SIMD16 mode, because we'd stomp the FB writes.
854 */
855 if (!spilled_any_registers) {
856 bool mrf_used[BRW_MAX_MRF];
857 get_used_mrfs(this, mrf_used);
858
859 for (int i = spill_base_mrf; i < BRW_MAX_MRF; i++) {
860 if (mrf_used[i]) {
861 fail("Register spilling not supported with m%d used", i);
862 return;
863 }
864 }
865
866 spilled_any_registers = true;
867 }
868
869 last_scratch += size * REG_SIZE;
870
871 /* Generate spill/unspill instructions for the objects being
872 * spilled. Right now, we spill or unspill the whole thing to a
873 * virtual grf of the same size. For most instructions, though, we
874 * could just spill/unspill the GRF being accessed.
875 */
876 foreach_block_and_inst (block, fs_inst, inst, cfg) {
877 for (unsigned int i = 0; i < inst->sources; i++) {
878 if (inst->src[i].file == GRF &&
879 inst->src[i].reg == spill_reg) {
880 int regs_read = inst->regs_read(i);
881 int subset_spill_offset = (spill_offset +
882 REG_SIZE * inst->src[i].reg_offset);
883 fs_reg unspill_dst(GRF, alloc.allocate(regs_read));
884
885 inst->src[i].reg = unspill_dst.reg;
886 inst->src[i].reg_offset = 0;
887
888 emit_unspill(block, inst, unspill_dst, subset_spill_offset,
889 regs_read);
890 }
891 }
892
893 if (inst->dst.file == GRF &&
894 inst->dst.reg == spill_reg) {
895 int subset_spill_offset = (spill_offset +
896 REG_SIZE * inst->dst.reg_offset);
897 fs_reg spill_src(GRF, alloc.allocate(inst->regs_written));
898
899 inst->dst.reg = spill_src.reg;
900 inst->dst.reg_offset = 0;
901
902 /* If we're immediately spilling the register, we should not use
903 * destination dependency hints. Doing so will cause the GPU do
904 * try to read and write the register at the same time and may
905 * hang the GPU.
906 */
907 inst->no_dd_clear = false;
908 inst->no_dd_check = false;
909
910 /* If our write is going to affect just part of the
911 * inst->regs_written(), then we need to unspill the destination
912 * since we write back out all of the regs_written().
913 */
914 if (inst->is_partial_write())
915 emit_unspill(block, inst, spill_src, subset_spill_offset,
916 inst->regs_written);
917
918 emit_spill(block, inst, spill_src, subset_spill_offset,
919 inst->regs_written);
920 }
921 }
922
923 invalidate_live_intervals();
924 }