i965: Add an INTEL_DEBUG=spill option to test spilling
[mesa.git] / src / mesa / drivers / dri / i965 / brw_fs_reg_allocate.cpp
1 /*
2 * Copyright © 2010 Intel Corporation
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21 * IN THE SOFTWARE.
22 *
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
25 *
26 */
27
28 #include "brw_fs.h"
29 #include "brw_cfg.h"
30 #include "glsl/glsl_types.h"
31 #include "glsl/ir_optimization.h"
32
33 static void
34 assign_reg(unsigned *reg_hw_locations, fs_reg *reg)
35 {
36 if (reg->file == GRF) {
37 reg->reg = reg_hw_locations[reg->reg] + reg->reg_offset;
38 reg->reg_offset = 0;
39 }
40 }
41
42 void
43 fs_visitor::assign_regs_trivial()
44 {
45 unsigned hw_reg_mapping[this->alloc.count + 1];
46 unsigned i;
47 int reg_width = dispatch_width / 8;
48
49 /* Note that compressed instructions require alignment to 2 registers. */
50 hw_reg_mapping[0] = ALIGN(this->first_non_payload_grf, reg_width);
51 for (i = 1; i <= this->alloc.count; i++) {
52 hw_reg_mapping[i] = (hw_reg_mapping[i - 1] +
53 this->alloc.sizes[i - 1]);
54 }
55 this->grf_used = hw_reg_mapping[this->alloc.count];
56
57 foreach_block_and_inst(block, fs_inst, inst, cfg) {
58 assign_reg(hw_reg_mapping, &inst->dst);
59 for (i = 0; i < inst->sources; i++) {
60 assign_reg(hw_reg_mapping, &inst->src[i]);
61 }
62 }
63
64 if (this->grf_used >= max_grf) {
65 fail("Ran out of regs on trivial allocator (%d/%d)\n",
66 this->grf_used, max_grf);
67 } else {
68 this->alloc.count = this->grf_used;
69 }
70
71 }
72
73 static void
74 brw_alloc_reg_set(struct brw_compiler *compiler, int reg_width)
75 {
76 const struct brw_device_info *devinfo = compiler->devinfo;
77 int base_reg_count = BRW_MAX_GRF;
78 int index = reg_width - 1;
79
80 /* The registers used to make up almost all values handled in the compiler
81 * are a scalar value occupying a single register (or 2 registers in the
82 * case of SIMD16, which is handled by dividing base_reg_count by 2 and
83 * multiplying allocated register numbers by 2). Things that were
84 * aggregates of scalar values at the GLSL level were split to scalar
85 * values by split_virtual_grfs().
86 *
87 * However, texture SEND messages return a series of contiguous registers
88 * to write into. We currently always ask for 4 registers, but we may
89 * convert that to use less some day.
90 *
91 * Additionally, on gen5 we need aligned pairs of registers for the PLN
92 * instruction, and on gen4 we need 8 contiguous regs for workaround simd16
93 * texturing.
94 *
95 * So we have a need for classes for 1, 2, 4, and 8 registers currently,
96 * and we add in '3' to make indexing the array easier for the common case
97 * (since we'll probably want it for texturing later).
98 *
99 * And, on gen7 and newer, we do texturing SEND messages from GRFs, which
100 * means that we may need any size up to the sampler message size limit (11
101 * regs).
102 */
103 int class_count;
104 int class_sizes[MAX_VGRF_SIZE];
105
106 if (devinfo->gen >= 7) {
107 for (class_count = 0; class_count < MAX_VGRF_SIZE; class_count++)
108 class_sizes[class_count] = class_count + 1;
109 } else {
110 for (class_count = 0; class_count < 4; class_count++)
111 class_sizes[class_count] = class_count + 1;
112 class_sizes[class_count++] = 8;
113 }
114
115 memset(compiler->fs_reg_sets[index].class_to_ra_reg_range, 0,
116 sizeof(compiler->fs_reg_sets[index].class_to_ra_reg_range));
117 int *class_to_ra_reg_range = compiler->fs_reg_sets[index].class_to_ra_reg_range;
118
119 /* Compute the total number of registers across all classes. */
120 int ra_reg_count = 0;
121 for (int i = 0; i < class_count; i++) {
122 if (devinfo->gen <= 5 && reg_width == 2) {
123 /* From the G45 PRM:
124 *
125 * In order to reduce the hardware complexity, the following
126 * rules and restrictions apply to the compressed instruction:
127 * ...
128 * * Operand Alignment Rule: With the exceptions listed below, a
129 * source/destination operand in general should be aligned to
130 * even 256-bit physical register with a region size equal to
131 * two 256-bit physical register
132 */
133 ra_reg_count += (base_reg_count - (class_sizes[i] - 1)) / 2;
134 } else {
135 ra_reg_count += base_reg_count - (class_sizes[i] - 1);
136 }
137 /* Mark the last register. We'll fill in the beginnings later. */
138 class_to_ra_reg_range[class_sizes[i]] = ra_reg_count;
139 }
140
141 /* Fill out the rest of the range markers */
142 for (int i = 1; i < 17; ++i) {
143 if (class_to_ra_reg_range[i] == 0)
144 class_to_ra_reg_range[i] = class_to_ra_reg_range[i-1];
145 }
146
147 uint8_t *ra_reg_to_grf = ralloc_array(compiler, uint8_t, ra_reg_count);
148 struct ra_regs *regs = ra_alloc_reg_set(compiler, ra_reg_count);
149 if (devinfo->gen >= 6)
150 ra_set_allocate_round_robin(regs);
151 int *classes = ralloc_array(compiler, int, class_count);
152 int aligned_pairs_class = -1;
153
154 /* Allocate space for q values. We allocate class_count + 1 because we
155 * want to leave room for the aligned pairs class if we have it. */
156 unsigned int **q_values = ralloc_array(compiler, unsigned int *,
157 class_count + 1);
158 for (int i = 0; i < class_count + 1; ++i)
159 q_values[i] = ralloc_array(q_values, unsigned int, class_count + 1);
160
161 /* Now, add the registers to their classes, and add the conflicts
162 * between them and the base GRF registers (and also each other).
163 */
164 int reg = 0;
165 int pairs_base_reg = 0;
166 int pairs_reg_count = 0;
167 for (int i = 0; i < class_count; i++) {
168 int class_reg_count;
169 if (devinfo->gen <= 5 && reg_width == 2) {
170 class_reg_count = (base_reg_count - (class_sizes[i] - 1)) / 2;
171
172 /* See comment below. The only difference here is that we are
173 * dealing with pairs of registers instead of single registers.
174 * Registers of odd sizes simply get rounded up. */
175 for (int j = 0; j < class_count; j++)
176 q_values[i][j] = (class_sizes[i] + 1) / 2 +
177 (class_sizes[j] + 1) / 2 - 1;
178 } else {
179 class_reg_count = base_reg_count - (class_sizes[i] - 1);
180
181 /* From register_allocate.c:
182 *
183 * q(B,C) (indexed by C, B is this register class) in
184 * Runeson/Nyström paper. This is "how many registers of B could
185 * the worst choice register from C conflict with".
186 *
187 * If we just let the register allocation algorithm compute these
188 * values, is extremely expensive. However, since all of our
189 * registers are laid out, we can very easily compute them
190 * ourselves. View the register from C as fixed starting at GRF n
191 * somwhere in the middle, and the register from B as sliding back
192 * and forth. Then the first register to conflict from B is the
193 * one starting at n - class_size[B] + 1 and the last register to
194 * conflict will start at n + class_size[B] - 1. Therefore, the
195 * number of conflicts from B is class_size[B] + class_size[C] - 1.
196 *
197 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
198 * B | | | | | |n| --> | | | | | | |
199 * +-+-+-+-+-+-+ +-+-+-+-+-+-+
200 * +-+-+-+-+-+
201 * C |n| | | | |
202 * +-+-+-+-+-+
203 */
204 for (int j = 0; j < class_count; j++)
205 q_values[i][j] = class_sizes[i] + class_sizes[j] - 1;
206 }
207 classes[i] = ra_alloc_reg_class(regs);
208
209 /* Save this off for the aligned pair class at the end. */
210 if (class_sizes[i] == 2) {
211 pairs_base_reg = reg;
212 pairs_reg_count = class_reg_count;
213 }
214
215 if (devinfo->gen <= 5 && reg_width == 2) {
216 for (int j = 0; j < class_reg_count; j++) {
217 ra_class_add_reg(regs, classes[i], reg);
218
219 ra_reg_to_grf[reg] = j * 2;
220
221 for (int base_reg = j;
222 base_reg < j + (class_sizes[i] + 1) / 2;
223 base_reg++) {
224 ra_add_transitive_reg_conflict(regs, base_reg, reg);
225 }
226
227 reg++;
228 }
229 } else {
230 for (int j = 0; j < class_reg_count; j++) {
231 ra_class_add_reg(regs, classes[i], reg);
232
233 ra_reg_to_grf[reg] = j;
234
235 for (int base_reg = j;
236 base_reg < j + class_sizes[i];
237 base_reg++) {
238 ra_add_transitive_reg_conflict(regs, base_reg, reg);
239 }
240
241 reg++;
242 }
243 }
244 }
245 assert(reg == ra_reg_count);
246
247 /* Add a special class for aligned pairs, which we'll put delta_xy
248 * in on Gen <= 6 so that we can do PLN.
249 */
250 if (devinfo->has_pln && reg_width == 1 && devinfo->gen <= 6) {
251 aligned_pairs_class = ra_alloc_reg_class(regs);
252
253 for (int i = 0; i < pairs_reg_count; i++) {
254 if ((ra_reg_to_grf[pairs_base_reg + i] & 1) == 0) {
255 ra_class_add_reg(regs, aligned_pairs_class, pairs_base_reg + i);
256 }
257 }
258
259 for (int i = 0; i < class_count; i++) {
260 /* These are a little counter-intuitive because the pair registers
261 * are required to be aligned while the register they are
262 * potentially interferring with are not. In the case where the
263 * size is even, the worst-case is that the register is
264 * odd-aligned. In the odd-size case, it doesn't matter.
265 */
266 q_values[class_count][i] = class_sizes[i] / 2 + 1;
267 q_values[i][class_count] = class_sizes[i] + 1;
268 }
269 q_values[class_count][class_count] = 1;
270 }
271
272 ra_set_finalize(regs, q_values);
273
274 ralloc_free(q_values);
275
276 compiler->fs_reg_sets[index].regs = regs;
277 for (unsigned i = 0; i < ARRAY_SIZE(compiler->fs_reg_sets[index].classes); i++)
278 compiler->fs_reg_sets[index].classes[i] = -1;
279 for (int i = 0; i < class_count; i++)
280 compiler->fs_reg_sets[index].classes[class_sizes[i] - 1] = classes[i];
281 compiler->fs_reg_sets[index].ra_reg_to_grf = ra_reg_to_grf;
282 compiler->fs_reg_sets[index].aligned_pairs_class = aligned_pairs_class;
283 }
284
285 void
286 brw_fs_alloc_reg_sets(struct brw_compiler *compiler)
287 {
288 brw_alloc_reg_set(compiler, 1);
289 brw_alloc_reg_set(compiler, 2);
290 }
291
292 static int
293 count_to_loop_end(const bblock_t *block)
294 {
295 if (block->end()->opcode == BRW_OPCODE_WHILE)
296 return block->end_ip;
297
298 int depth = 1;
299 /* Skip the first block, since we don't want to count the do the calling
300 * function found.
301 */
302 for (block = block->next();
303 depth > 0;
304 block = block->next()) {
305 if (block->start()->opcode == BRW_OPCODE_DO)
306 depth++;
307 if (block->end()->opcode == BRW_OPCODE_WHILE) {
308 depth--;
309 if (depth == 0)
310 return block->end_ip;
311 }
312 }
313 unreachable("not reached");
314 }
315
316 /**
317 * Sets up interference between thread payload registers and the virtual GRFs
318 * to be allocated for program temporaries.
319 *
320 * We want to be able to reallocate the payload for our virtual GRFs, notably
321 * because the setup coefficients for a full set of 16 FS inputs takes up 8 of
322 * our 128 registers.
323 *
324 * The layout of the payload registers is:
325 *
326 * 0..payload.num_regs-1: fixed function setup (including bary coordinates).
327 * payload.num_regs..payload.num_regs+curb_read_lengh-1: uniform data
328 * payload.num_regs+curb_read_lengh..first_non_payload_grf-1: setup coefficients.
329 *
330 * And we have payload_node_count nodes covering these registers in order
331 * (note that in SIMD16, a node is two registers).
332 */
333 void
334 fs_visitor::setup_payload_interference(struct ra_graph *g,
335 int payload_node_count,
336 int first_payload_node)
337 {
338 int loop_depth = 0;
339 int loop_end_ip = 0;
340
341 int payload_last_use_ip[payload_node_count];
342 memset(payload_last_use_ip, 0, sizeof(payload_last_use_ip));
343 int ip = 0;
344 foreach_block_and_inst(block, fs_inst, inst, cfg) {
345 switch (inst->opcode) {
346 case BRW_OPCODE_DO:
347 loop_depth++;
348
349 /* Since payload regs are deffed only at the start of the shader
350 * execution, any uses of the payload within a loop mean the live
351 * interval extends to the end of the outermost loop. Find the ip of
352 * the end now.
353 */
354 if (loop_depth == 1)
355 loop_end_ip = count_to_loop_end(block);
356 break;
357 case BRW_OPCODE_WHILE:
358 loop_depth--;
359 break;
360 default:
361 break;
362 }
363
364 int use_ip;
365 if (loop_depth > 0)
366 use_ip = loop_end_ip;
367 else
368 use_ip = ip;
369
370 /* Note that UNIFORM args have been turned into FIXED_HW_REG by
371 * assign_curbe_setup(), and interpolation uses fixed hardware regs from
372 * the start (see interp_reg()).
373 */
374 for (int i = 0; i < inst->sources; i++) {
375 if (inst->src[i].file == HW_REG &&
376 inst->src[i].fixed_hw_reg.file == BRW_GENERAL_REGISTER_FILE) {
377 int node_nr = inst->src[i].fixed_hw_reg.nr;
378 if (node_nr >= payload_node_count)
379 continue;
380
381 payload_last_use_ip[node_nr] = use_ip;
382 }
383 }
384
385 /* Special case instructions which have extra implied registers used. */
386 switch (inst->opcode) {
387 case FS_OPCODE_LINTERP:
388 /* On gen6+ in SIMD16, there are 4 adjacent registers used by
389 * PLN's sourcing of the deltas, while we list only the first one
390 * in the arguments. Pre-gen6, the deltas are computed in normal
391 * VGRFs.
392 */
393 if (devinfo->gen >= 6) {
394 int delta_x_arg = 0;
395 if (inst->src[delta_x_arg].file == HW_REG &&
396 inst->src[delta_x_arg].fixed_hw_reg.file ==
397 BRW_GENERAL_REGISTER_FILE) {
398 for (int i = 1; i < 4; ++i) {
399 int node = inst->src[delta_x_arg].fixed_hw_reg.nr + i;
400 assert(node < payload_node_count);
401 payload_last_use_ip[node] = use_ip;
402 }
403 }
404 }
405 break;
406
407 default:
408 if (inst->eot) {
409 /* We could omit this for the !inst->header_present case, except
410 * that the simulator apparently incorrectly reads from g0/g1
411 * instead of sideband. It also really freaks out driver
412 * developers to see g0 used in unusual places, so just always
413 * reserve it.
414 */
415 payload_last_use_ip[0] = use_ip;
416 payload_last_use_ip[1] = use_ip;
417 }
418 break;
419 }
420
421 ip++;
422 }
423
424 for (int i = 0; i < payload_node_count; i++) {
425 /* Mark the payload node as interfering with any virtual grf that is
426 * live between the start of the program and our last use of the payload
427 * node.
428 */
429 for (unsigned j = 0; j < this->alloc.count; j++) {
430 /* Note that we use a <= comparison, unlike virtual_grf_interferes(),
431 * in order to not have to worry about the uniform issue described in
432 * calculate_live_intervals().
433 */
434 if (this->virtual_grf_start[j] <= payload_last_use_ip[i]) {
435 ra_add_node_interference(g, first_payload_node + i, j);
436 }
437 }
438 }
439
440 for (int i = 0; i < payload_node_count; i++) {
441 /* Mark each payload node as being allocated to its physical register.
442 *
443 * The alternative would be to have per-physical-register classes, which
444 * would just be silly.
445 */
446 if (devinfo->gen <= 5 && dispatch_width == 16) {
447 /* We have to divide by 2 here because we only have even numbered
448 * registers. Some of the payload registers will be odd, but
449 * that's ok because their physical register numbers have already
450 * been assigned. The only thing this is used for is interference.
451 */
452 ra_set_node_reg(g, first_payload_node + i, i / 2);
453 } else {
454 ra_set_node_reg(g, first_payload_node + i, i);
455 }
456 }
457 }
458
459 /**
460 * Sets the mrf_used array to indicate which MRFs are used by the shader IR
461 *
462 * This is used in assign_regs() to decide which of the GRFs that we use as
463 * MRFs on gen7 get normally register allocated, and in register spilling to
464 * see if we can actually use MRFs to do spills without overwriting normal MRF
465 * contents.
466 */
467 void
468 fs_visitor::get_used_mrfs(bool *mrf_used)
469 {
470 int reg_width = dispatch_width / 8;
471
472 memset(mrf_used, 0, BRW_MAX_MRF * sizeof(bool));
473
474 foreach_block_and_inst(block, fs_inst, inst, cfg) {
475 if (inst->dst.file == MRF) {
476 int reg = inst->dst.reg & ~BRW_MRF_COMPR4;
477 mrf_used[reg] = true;
478 if (reg_width == 2) {
479 if (inst->dst.reg & BRW_MRF_COMPR4) {
480 mrf_used[reg + 4] = true;
481 } else {
482 mrf_used[reg + 1] = true;
483 }
484 }
485 }
486
487 if (inst->mlen > 0) {
488 for (int i = 0; i < implied_mrf_writes(inst); i++) {
489 mrf_used[inst->base_mrf + i] = true;
490 }
491 }
492 }
493 }
494
495 /**
496 * Sets interference between virtual GRFs and usage of the high GRFs for SEND
497 * messages (treated as MRFs in code generation).
498 */
499 void
500 fs_visitor::setup_mrf_hack_interference(struct ra_graph *g, int first_mrf_node)
501 {
502 bool mrf_used[BRW_MAX_MRF];
503 get_used_mrfs(mrf_used);
504
505 for (int i = 0; i < BRW_MAX_MRF; i++) {
506 /* Mark each MRF reg node as being allocated to its physical register.
507 *
508 * The alternative would be to have per-physical-register classes, which
509 * would just be silly.
510 */
511 ra_set_node_reg(g, first_mrf_node + i, GEN7_MRF_HACK_START + i);
512
513 /* Since we don't have any live/dead analysis on the MRFs, just mark all
514 * that are used as conflicting with all virtual GRFs.
515 */
516 if (mrf_used[i]) {
517 for (unsigned j = 0; j < this->alloc.count; j++) {
518 ra_add_node_interference(g, first_mrf_node + i, j);
519 }
520 }
521 }
522 }
523
524 bool
525 fs_visitor::assign_regs(bool allow_spilling)
526 {
527 struct brw_compiler *compiler = brw->intelScreen->compiler;
528 /* Most of this allocation was written for a reg_width of 1
529 * (dispatch_width == 8). In extending to SIMD16, the code was
530 * left in place and it was converted to have the hardware
531 * registers it's allocating be contiguous physical pairs of regs
532 * for reg_width == 2.
533 */
534 int reg_width = dispatch_width / 8;
535 unsigned hw_reg_mapping[this->alloc.count];
536 int payload_node_count = ALIGN(this->first_non_payload_grf, reg_width);
537 int rsi = reg_width - 1; /* Which compiler->fs_reg_sets[] to use */
538 calculate_live_intervals();
539
540 int node_count = this->alloc.count;
541 int first_payload_node = node_count;
542 node_count += payload_node_count;
543 int first_mrf_hack_node = node_count;
544 if (devinfo->gen >= 7)
545 node_count += BRW_MAX_GRF - GEN7_MRF_HACK_START;
546 struct ra_graph *g =
547 ra_alloc_interference_graph(compiler->fs_reg_sets[rsi].regs, node_count);
548
549 for (unsigned i = 0; i < this->alloc.count; i++) {
550 unsigned size = this->alloc.sizes[i];
551 int c;
552
553 assert(size <= ARRAY_SIZE(compiler->fs_reg_sets[rsi].classes) &&
554 "Register allocation relies on split_virtual_grfs()");
555 c = compiler->fs_reg_sets[rsi].classes[size - 1];
556
557 /* Special case: on pre-GEN6 hardware that supports PLN, the
558 * second operand of a PLN instruction needs to be an
559 * even-numbered register, so we have a special register class
560 * wm_aligned_pairs_class to handle this case. pre-GEN6 always
561 * uses this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC] as the
562 * second operand of a PLN instruction (since it doesn't support
563 * any other interpolation modes). So all we need to do is find
564 * that register and set it to the appropriate class.
565 */
566 if (compiler->fs_reg_sets[rsi].aligned_pairs_class >= 0 &&
567 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].file == GRF &&
568 this->delta_xy[BRW_WM_PERSPECTIVE_PIXEL_BARYCENTRIC].reg == i) {
569 c = compiler->fs_reg_sets[rsi].aligned_pairs_class;
570 }
571
572 ra_set_node_class(g, i, c);
573
574 for (unsigned j = 0; j < i; j++) {
575 if (virtual_grf_interferes(i, j)) {
576 ra_add_node_interference(g, i, j);
577 }
578 }
579 }
580
581 setup_payload_interference(g, payload_node_count, first_payload_node);
582 if (devinfo->gen >= 7) {
583 setup_mrf_hack_interference(g, first_mrf_hack_node);
584
585 foreach_block_and_inst(block, fs_inst, inst, cfg) {
586 /* When we do send-from-GRF for FB writes, we need to ensure that
587 * the last write instruction sends from a high register. This is
588 * because the vertex fetcher wants to start filling the low
589 * payload registers while the pixel data port is still working on
590 * writing out the memory. If we don't do this, we get rendering
591 * artifacts.
592 *
593 * We could just do "something high". Instead, we just pick the
594 * highest register that works.
595 */
596 if (inst->eot) {
597 int size = alloc.sizes[inst->src[0].reg];
598 int reg = compiler->fs_reg_sets[rsi].class_to_ra_reg_range[size] - 1;
599 ra_set_node_reg(g, inst->src[0].reg, reg);
600 break;
601 }
602 }
603 }
604
605 if (dispatch_width > 8) {
606 /* In 16-wide dispatch we have an issue where a compressed
607 * instruction is actually two instructions executed simultaneiously.
608 * It's actually ok to have the source and destination registers be
609 * the same. In this case, each instruction over-writes its own
610 * source and there's no problem. The real problem here is if the
611 * source and destination registers are off by one. Then you can end
612 * up in a scenario where the first instruction over-writes the
613 * source of the second instruction. Since the compiler doesn't know
614 * about this level of granularity, we simply make the source and
615 * destination interfere.
616 */
617 foreach_block_and_inst(block, fs_inst, inst, cfg) {
618 if (inst->dst.file != GRF)
619 continue;
620
621 for (int i = 0; i < inst->sources; ++i) {
622 if (inst->src[i].file == GRF) {
623 ra_add_node_interference(g, inst->dst.reg, inst->src[i].reg);
624 }
625 }
626 }
627 }
628
629 /* Debug of register spilling: Go spill everything. */
630 if (unlikely(INTEL_DEBUG & DEBUG_SPILL)) {
631 int reg = choose_spill_reg(g);
632
633 if (reg != -1) {
634 spill_reg(reg);
635 ralloc_free(g);
636 return false;
637 }
638 }
639
640 if (!ra_allocate(g)) {
641 /* Failed to allocate registers. Spill a reg, and the caller will
642 * loop back into here to try again.
643 */
644 int reg = choose_spill_reg(g);
645
646 if (reg == -1) {
647 fail("no register to spill:\n");
648 dump_instructions(NULL);
649 } else if (allow_spilling) {
650 spill_reg(reg);
651 }
652
653 ralloc_free(g);
654
655 return false;
656 }
657
658 /* Get the chosen virtual registers for each node, and map virtual
659 * regs in the register classes back down to real hardware reg
660 * numbers.
661 */
662 this->grf_used = payload_node_count;
663 for (unsigned i = 0; i < this->alloc.count; i++) {
664 int reg = ra_get_node_reg(g, i);
665
666 hw_reg_mapping[i] = compiler->fs_reg_sets[rsi].ra_reg_to_grf[reg];
667 this->grf_used = MAX2(this->grf_used,
668 hw_reg_mapping[i] + this->alloc.sizes[i]);
669 }
670
671 foreach_block_and_inst(block, fs_inst, inst, cfg) {
672 assign_reg(hw_reg_mapping, &inst->dst);
673 for (int i = 0; i < inst->sources; i++) {
674 assign_reg(hw_reg_mapping, &inst->src[i]);
675 }
676 }
677
678 this->alloc.count = this->grf_used;
679
680 ralloc_free(g);
681
682 return true;
683 }
684
685 void
686 fs_visitor::emit_unspill(bblock_t *block, fs_inst *inst, fs_reg dst,
687 uint32_t spill_offset, int count)
688 {
689 int reg_size = 1;
690 if (dispatch_width == 16 && count % 2 == 0) {
691 reg_size = 2;
692 dst.width = 16;
693 }
694
695 for (int i = 0; i < count / reg_size; i++) {
696 /* The gen7 descriptor-based offset is 12 bits of HWORD units. */
697 bool gen7_read = devinfo->gen >= 7 && spill_offset < (1 << 12) * REG_SIZE;
698
699 fs_inst *unspill_inst =
700 new(mem_ctx) fs_inst(gen7_read ?
701 SHADER_OPCODE_GEN7_SCRATCH_READ :
702 SHADER_OPCODE_GEN4_SCRATCH_READ,
703 dst);
704 unspill_inst->offset = spill_offset;
705 unspill_inst->ir = inst->ir;
706 unspill_inst->annotation = inst->annotation;
707 unspill_inst->regs_written = reg_size;
708
709 if (!gen7_read) {
710 unspill_inst->base_mrf = 14;
711 unspill_inst->mlen = 1; /* header contains offset */
712 }
713 inst->insert_before(block, unspill_inst);
714
715 dst.reg_offset += reg_size;
716 spill_offset += reg_size * REG_SIZE;
717 }
718 }
719
720 void
721 fs_visitor::emit_spill(bblock_t *block, fs_inst *inst, fs_reg src,
722 uint32_t spill_offset, int count)
723 {
724 int reg_size = 1;
725 int spill_base_mrf = 14;
726 if (dispatch_width == 16 && count % 2 == 0) {
727 spill_base_mrf = 13;
728 reg_size = 2;
729 }
730
731 for (int i = 0; i < count / reg_size; i++) {
732 fs_inst *spill_inst =
733 new(mem_ctx) fs_inst(SHADER_OPCODE_GEN4_SCRATCH_WRITE,
734 reg_size * 8, reg_null_f, src);
735 src.reg_offset += reg_size;
736 spill_inst->offset = spill_offset + i * reg_size * REG_SIZE;
737 spill_inst->ir = inst->ir;
738 spill_inst->annotation = inst->annotation;
739 spill_inst->mlen = 1 + reg_size; /* header, value */
740 spill_inst->base_mrf = spill_base_mrf;
741 inst->insert_after(block, spill_inst);
742 }
743 }
744
745 int
746 fs_visitor::choose_spill_reg(struct ra_graph *g)
747 {
748 float loop_scale = 1.0;
749 float spill_costs[this->alloc.count];
750 bool no_spill[this->alloc.count];
751
752 for (unsigned i = 0; i < this->alloc.count; i++) {
753 spill_costs[i] = 0.0;
754 no_spill[i] = false;
755 }
756
757 /* Calculate costs for spilling nodes. Call it a cost of 1 per
758 * spill/unspill we'll have to do, and guess that the insides of
759 * loops run 10 times.
760 */
761 foreach_block_and_inst(block, fs_inst, inst, cfg) {
762 for (unsigned int i = 0; i < inst->sources; i++) {
763 if (inst->src[i].file == GRF) {
764 spill_costs[inst->src[i].reg] += loop_scale;
765
766 /* Register spilling logic assumes full-width registers; smeared
767 * registers have a width of 1 so if we try to spill them we'll
768 * generate invalid assembly. This shouldn't be a problem because
769 * smeared registers are only used as short-term temporaries when
770 * loading pull constants, so spilling them is unlikely to reduce
771 * register pressure anyhow.
772 */
773 if (!inst->src[i].is_contiguous()) {
774 no_spill[inst->src[i].reg] = true;
775 }
776 }
777 }
778
779 if (inst->dst.file == GRF) {
780 spill_costs[inst->dst.reg] += inst->regs_written * loop_scale;
781
782 if (!inst->dst.is_contiguous()) {
783 no_spill[inst->dst.reg] = true;
784 }
785 }
786
787 switch (inst->opcode) {
788
789 case BRW_OPCODE_DO:
790 loop_scale *= 10;
791 break;
792
793 case BRW_OPCODE_WHILE:
794 loop_scale /= 10;
795 break;
796
797 case SHADER_OPCODE_GEN4_SCRATCH_WRITE:
798 if (inst->src[0].file == GRF)
799 no_spill[inst->src[0].reg] = true;
800 break;
801
802 case SHADER_OPCODE_GEN4_SCRATCH_READ:
803 case SHADER_OPCODE_GEN7_SCRATCH_READ:
804 if (inst->dst.file == GRF)
805 no_spill[inst->dst.reg] = true;
806 break;
807
808 default:
809 break;
810 }
811 }
812
813 for (unsigned i = 0; i < this->alloc.count; i++) {
814 if (!no_spill[i])
815 ra_set_node_spill_cost(g, i, spill_costs[i]);
816 }
817
818 return ra_get_best_spill_node(g);
819 }
820
821 void
822 fs_visitor::spill_reg(int spill_reg)
823 {
824 int size = alloc.sizes[spill_reg];
825 unsigned int spill_offset = last_scratch;
826 assert(ALIGN(spill_offset, 16) == spill_offset); /* oword read/write req. */
827 int spill_base_mrf = dispatch_width > 8 ? 13 : 14;
828
829 /* Spills may use MRFs 13-15 in the SIMD16 case. Our texturing is done
830 * using up to 11 MRFs starting from either m1 or m2, and fb writes can use
831 * up to m13 (gen6+ simd16: 2 header + 8 color + 2 src0alpha + 2 omask) or
832 * m15 (gen4-5 simd16: 2 header + 8 color + 1 aads + 2 src depth + 2 dst
833 * depth), starting from m1. In summary: We may not be able to spill in
834 * SIMD16 mode, because we'd stomp the FB writes.
835 */
836 if (!spilled_any_registers) {
837 bool mrf_used[BRW_MAX_MRF];
838 get_used_mrfs(mrf_used);
839
840 for (int i = spill_base_mrf; i < BRW_MAX_MRF; i++) {
841 if (mrf_used[i]) {
842 fail("Register spilling not supported with m%d used", i);
843 return;
844 }
845 }
846
847 spilled_any_registers = true;
848 }
849
850 last_scratch += size * REG_SIZE;
851
852 /* Generate spill/unspill instructions for the objects being
853 * spilled. Right now, we spill or unspill the whole thing to a
854 * virtual grf of the same size. For most instructions, though, we
855 * could just spill/unspill the GRF being accessed.
856 */
857 foreach_block_and_inst (block, fs_inst, inst, cfg) {
858 for (unsigned int i = 0; i < inst->sources; i++) {
859 if (inst->src[i].file == GRF &&
860 inst->src[i].reg == spill_reg) {
861 int regs_read = inst->regs_read(i);
862 int subset_spill_offset = (spill_offset +
863 REG_SIZE * inst->src[i].reg_offset);
864 fs_reg unspill_dst(GRF, alloc.allocate(regs_read));
865
866 inst->src[i].reg = unspill_dst.reg;
867 inst->src[i].reg_offset = 0;
868
869 emit_unspill(block, inst, unspill_dst, subset_spill_offset,
870 regs_read);
871 }
872 }
873
874 if (inst->dst.file == GRF &&
875 inst->dst.reg == spill_reg) {
876 int subset_spill_offset = (spill_offset +
877 REG_SIZE * inst->dst.reg_offset);
878 fs_reg spill_src(GRF, alloc.allocate(inst->regs_written));
879
880 inst->dst.reg = spill_src.reg;
881 inst->dst.reg_offset = 0;
882
883 /* If we're immediately spilling the register, we should not use
884 * destination dependency hints. Doing so will cause the GPU do
885 * try to read and write the register at the same time and may
886 * hang the GPU.
887 */
888 inst->no_dd_clear = false;
889 inst->no_dd_check = false;
890
891 /* If our write is going to affect just part of the
892 * inst->regs_written(), then we need to unspill the destination
893 * since we write back out all of the regs_written().
894 */
895 if (inst->is_partial_write())
896 emit_unspill(block, inst, spill_src, subset_spill_offset,
897 inst->regs_written);
898
899 emit_spill(block, inst, spill_src, subset_spill_offset,
900 inst->regs_written);
901 }
902 }
903
904 invalidate_live_intervals();
905 }